

 Navigation

 	
 index

 	
 next |

 	Murano

Welcome to Murano Documentation

Murano is an open source OpenStack project that
combines an application catalog with versatile
tooling to simplify and accelerate packaging and
deployment. It can be used with almost any application
and service in OpenStack.

Murano project consists of several source code repositories:

	murano [https://git.openstack.org/cgit/openstack/murano/] - is the main repository. It contains code for Murano API server,
Murano engine and MuranoPL.

	murano-agent [https://git.openstack.org/cgit/openstack/murano-agent/] - agent which runs on guest VMs and executes deployment
plan.

	murano-dashboard [https://git.openstack.org/cgit/openstack/murano-dashboard/] - Murano UI implemented as a plugin for OpenStack
Dashboard.

	python-muranoclient [https://git.openstack.org/cgit/openstack/python-muranoclient/] - Client library and CLI client for Murano.

This documentation guides application developers
through the process of composing an application
package to get it ready for uploading to Murano.

Besides the deployment rules and requirements,
it contains information on how to manage images,
categories, and repositories using the murano client that
will surely be helpful for cloud administrators.

It also explains to end users how they can use the catalog
directly from the dashboard. These include guidance on how
to manage applications and environments.

And it provides information on how to contribute to the project.

Note

Deploying Murano and Contibuting guides are under development
at the moment. The most recently updated information is published
as the BETA version of the Murano documentation.

Introduction to Murano

	Key features
	Application catalog

	Application catalog management

	Application lifecycle management

	Target Users
	Cloud administrators

	Cloud end users

	Architecture

	Use cases

Using Murano

	Quickstart
	Upload an application

	Deploy an application

	Delete an application

	Managing environments
	Create an environment

	Edit an environment

	Review an environment

	Managing applications
	Import an application package

	Search for an application in the catalog

	Delete an application package

	Add an application to environment

	Deploy an environment

	Delete an application

	Log into murano-spawned instance

	Deploying environments using CLI
	Create an environment

	Create a configuration session

	Add applications to an environment

	Verify your object model

	Deploy your environment

Developing Applications

	Step-by-Step
	Step 1. Create the structure of the package

	Step 2. Create the manifest file

	Step 3. Create the execution plan template

	Step 4. Create the dynamic UI form definition

	Step 5: Define MuranoPL class definitions

	Step 6. Add the application logo (optional)

	Step 7. Compose a zip archive

	Execution plan template
	Template sections

	FormatVersion property

	Scripts section

	HOT packages
	Compose a package

	MuranoPL Reference
	YAML

	YAQL

	Common class structure

	MuranoPL Core Library

	Murano actions

	Murano packages
	Package structure

	Dynamic UI definition specification

	Version history

	Murano package repository

	Migrating applications between releases
	Migrate applications from Murano v0.5 to Stable/Juno

	Migrate applications to Stable/Kilo

	Migrate applications to Stable/Liberty

	Application unit tests

	Examples

	Use-cases
	Performing application interconnections

	Using application already installed on the image

	Interacting with non-OpenStack services

	Configuring Network Access for VMs

	FAQ

Miscellaneous

Installation

	Murano Installation Guide

Background Concepts for Murano

	Murano workflow

	Murano Policy Enforcement

Tutorials

	Building Murano Image

	Murano automated tests description

Client

	Murano client

Guidelines

	Contributing to Murano
	Contributor License Agreement

	Project Hosting Details

	Development Guidelines
	Coding Guidelines

	Testing Guidelines

	Documentation Guidelines

	Murano TroubleShooting and Debug Tips
	Problems during configuration

	Problems during deployment

API specification

	Murano API v1 specification

Indices and tables

	Index

	Module Index

	Search Page

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Key features

Murano has a number of features designed to
interact with the application catalog, for instance
managing what’s in the catalog, and determining
how apps in the catalog are deployed.

Application catalog

	Easy browsing:
	Icons display applications for point-and-click
and drag-and-drop selection and deployment.

	Each application provides configuration information
required for deploying it to a cloud.

	An application topology of your environment is available
in a separate tab, and shows the number of instances
spawned by each application.

	The presence of the Quick Deploy button
on the applications page saves the time.

	Quick filtering by:
	Tags and words included in application name and description.

	Recent activity.

	Predefined category.

	Dependency tracking:
	Automatic detection of dependent applications that minimizes
the possibility of an application deployment with incorrect
configuration.

	No underlying IaaS configuration knowledge is required.

Application catalog management

	Easy application uploading using UI or CLI from:
	Local zip file.

	URL.

	Package name, using an application repository.

	Managing applications include:
	Application organization in categories or transfer between them.

	Application name, description and tags update.

	Predefined application categories list setting.

	Deployment tracking includes the availability of:
	Logs for deployments via UI.

	Deployment modification history to track the recent changes.

Application lifecycle management

	Simplified configuration and integration:
	It is up to an application developer to decide what their application
will be able to do.

	Dependencies between applications are easily configured.

	New applications can be connected with already existing ones.

	Well specified application actions are available.

	HA-mode and auto-scaling:
	Application authors can set up any available monitoring system to track
application events and call corresponding actions, such as
failover, starting additional instances, and others.

	Isolation:
	Applications in the same environments can easily interact with
each other, though applications between different tenants are isolated.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Target Users

Cloud end users want to simply use applications as
opposed to installing and managing them. Cloud administrators,
in turn, would like to offer a well tested set of on demand
self-service applications to dramatically reduce their support burden.

Murano solves the problems of both constituents.
It enables cloud administrators to publish cloud-ready
applications in an online catalog. Cloud end users can use
the catalog to deploy these on demand applications, reliably
and consistently, with a button click.

Cloud administrators

For cloud administrators Murano provides UI and
API to easily compose, deploy, run applications, and manage
their lifecycle.

Designed to be operating system independent, it can handle apps on all
manner of the environments in the cloud, either Windows
or Linux/Unix-based operating systems.

It can be used to pre-configure and deploy anything that can
run in the cloud,
from low-level networking services to end-user applications.
By automating these ongoing cloud application management
activities, Murano speeds up the deployment, even for complex
distributed applications, without sacrificing simplicity
of use.

Cloud end users

Murano catalog lets cloud end users choose
from the available applications and services, and compose
reliable distributed environments with an intuitive UI.
Even users unfamiliar with cloud environments can easily
deploy cloud-aware applications.

Murano masks cloud-infrastructure specifics from end
users, letting them reliably compose and deploy
applications in the cloud for the widest range of
workloads and use cases without touching IaaS internals.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Architecture

Murano is composed of the following major components:

	murano command-line client

	murano-dashboard

	murano-api

	murano-engine

	murano-agent

They interact with each other as illustrated in the following diagram:

[image: Murano architecture]
All remote operations on users’ servers, such as software installation
and configuration, are carried out through an AMQP queue to the murano-agent.
Such communication can easily be configured on a separate instance of AMQP
to ensure that the infrastructure and servers are isolated.

Besides, Murano uses other OpenStack services to prevent the reimplementation
of the existing functionality. Murano interacts with these services using
their REST API through their python clients.

The external services used by Murano are:

	the Orchestration service (Heat) to orchestrate infrastructural
resources such as servers, volumes, and networks. Murano dynamically
creates heat templates based on application definitions.

	the Identity service (Keystone) to make murano API available
to all OpenStack users.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Use cases

IT-as-a-Service

An IT organization manages applications and controls the applications
availability to different OpenStack cloud users in a simple and timesaving
manner.

A cloud end user can easily find and deploy any available application
from the catalog.

Self-service portal

An application developer and quality assurance engineer reduces efforts
on testing an application for compatibility with other applications,
databases, platforms, and other components it depends on, by configuring
compound combinations of applications dynamically and deploying
environments that satisfy all requirements within minutes.

Glue layer use case

A cloud end user is able to link an ever growing number of technologies
to any application in an OpenStack cloud with a minimum cost due to
the powerful Murano architecture.

Currently, Murano applications have been integrated with the following
technologies: Docker, Legacy apps VMs or bare metal, apps outside of
OpenStack, and others.

The following technologies are to become available in the future:
Cloudify and TOSCA, Apache Brooklyn, and APS.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Quickstart

This is a brief walkthrough to quickly get you familiar with the basic
operations you can perform when using the Application catalog directly
from the dashboard.

For the detailed instructions on how to manage your environments and applications,
please proceed with dedicated sections.

Upload an application

To upload an application to the catalog:

	Log in to the OpenStack dashboard.

	Navigate to Murano > Manage > Packages.

	Click on the Import Package button:

[image: Packages page]

	In the Import Package dialog:

	Select URL from the Package Source drop-down list;

	Specify the URL in the Package URL field. Lets upload
the Apache HTTP Server package using
http://storage.apps.openstack.org/apps/io.murano.apps.apache.ApacheHttpServer.zip;

	Click Next to continue:

[image: Import Package dialog 1]

	View the package details in the new dialog, click Next
to continue:

[image: Import Package dialog 2]

	Select the Application Servers from the application category list,
click Create to import the application package:

[image: Import Package dialog 3]

	Now your application is available from Murano >
Application Catalog > Applications page.

Deploy an application

To add an application to an environment’s component list
and deploy the environment:

	Log in to the OpenStack dashboard.

	Navigate to Murano > Application Catalog > Applications.

	Click on the Quick Deploy button from the required application
from the list. Lets deploy Apache HTTP Server, for example:

[image: Applications page]

	Check Assign Floating IP and click Next to proceed:

[image: Configure Application dialog 1]

	Select the Instance Image from the drop-down list and click
Create:

[image: Configure Application dialog 2]

	Now the Apache HTTP Server application is successfully added to the newly
created quick-env-1 environment.
Click the Deploy This Environment button
to start the deployment:

[image: Environment "quick-env-1" page]
It may take some time for the environment to deploy. Wait until the status
is changed from Deploying to Ready.

	Navigate to Murano > Application Catalog > Environments to view the
details.

Delete an application

To delete an application that belongs to the environment:

	Log in to the OpenStack dashboard.

	Navigate to Murano > Application Catalog > Environments.

	Click on the name of the environment to view its details, which include
components, topology, and deployment history.

	In the Component List section, click on the
Delete Component button next to the application to be deleted.
Confirm the deletion.

Note

If an application that you are deleting has already been deployed,
you should redeploy it to apply the recent changes. If the environment
has not been deployed with this component, the changes are applied
immediately on receiving the confirmation.

Warning

Due to a known bug in Murano Kilo, resources allocated by a deleted
application might not be reclaimed until the deletion of an environment.
See LP1417136 [https://bugs.launchpad.net/murano/+bug/1417136]
for the details.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Managing environments

An environment is a set of logically connected applications that are grouped
together for an easy management. By default, each environment has a single
network for all its applications, and the deployment of the environment is
defined in a single heat stack. Applications in different environments are
always independent from one another.

An environment is a single unit of deployment. This means that you deploy not
an application but an environment that contains one or multiple applications.

Using OpenStack Dashboard you can easily perform such actions with an
environment as creating, editing, reviewing, deploying, and others.

Create an environment

To create an environment, perform the following steps:

	In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

	On the Environments page, click the Add New button.

	In the Environment Name field, enter the name for the new
environment.

	From the Environment Default Network drop-down list, choose a
specific network, if necessary, or leave the default Create New
option to generate a new network.

[image: Create an environment: Environment Default Network]

	Click the rightmost Create button. You will be redirected to
the page with the environment components.

Alternatively, you can create an environment automatically using the
Quick Deploy button below any application in the Application
Catalog. For more information, see: Quick deploy.

Edit an environment

You can edit the name of an environment. For this, perform the following steps:

	In OpenStack Dashboard, navigate to Murano > Application Catalog > Environments.

	Position your mouse pointer over the environment name and click the
appeared pencil icon.

	Edit the name of the environment.

	Click the tick icon to apply the change.

Review an environment

This section provides a general overview of an environment, its structure,
possible statuses, and actions. An environment groups applications together.
An application that is added to an environment is called a component.

To see an environment status, navigate to Murano > Application Catalog > Environments.
Environments may have one of the following statuses:

	Ready to configure. When the environment is new and contains no
components.

	Ready to deploy. When the environment contains a component or multiple
components and is ready for deployment.

	Ready. When the environment has been successfully deployed.

	Deploying. When the deploying is in progress.

	Deploy FAILURE. When the deployment finished with errors.

	Deleting. When deleting of an environment is in progress.

	Delete FAILURE. You can abandon the environment in this case.

Currently, the component status corresponds to the environment status.

To review an environment and its components, or reconfigure the environment,
click the name of an environment or simply click the rightmost
Manage Components button.

	On the Components tab you can:

	Add or delete a component from an environment

	Send an environment to deploy

	Track a component status

	Call murano actions of a particular application in a deployed environment:

[image: ../../_images/murano_actions.png]

For more information on murano actions, see:
Murano actions.

	On the Topology, Deployment History, and
Latest Deployment Log tabs of the environment page you can view
the following:

	The application topology of an environment. For more information, see:
Application topology.

	The log of a particular deployment. For more information, see:
Deployment history.

	The information on the latest deployment of an environment. For more
information, see: Latest deployment log.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Managing applications

In murano, each application, as well as the form of application data entry,
is defined by its package. The murano dashboard allows you to import and
manage packages as well as search, filter, and add applications from catalog
to environments.

This section provides detailed instructions on how to import application
packages into murano and then add applications to an environment and deploy
it. This section also shows you how to find component details, application
topology, and deployment logs.

Import an application package

There are several ways of importing an application package into
murano:

	from a zip file

	from murano applications repository

	from bundles of applications

From a zip file

Perform the following steps to import an application package from a
.zip file:

	In OpenStack dashboard, navigate to
Murano > Manage > Packages.

	Click the Import Package button on the top right of the
page.

[image: Packages page: Import Package 1]

	From the Package source drop-down list
choose File, then click Browse to select a
.zip file you want to import, and then click Next.

[image: Import Package dialog: zip file]

	At this step, the package is already uploaded. Choose a category
from the Application Category menu. You can select
multiple categories while holding down the Ctrl key. If
necessary, verify and update the information about the package,
then click the Create button.

[image: Import Package dialog: Description]

Note

Though specifying a category is optional, we recommend that you
specify at least one. It helps to filter applications in the
catalog.

Green messages appear at the top right corner when the application
is successfully uploaded. In case of a failure, you will see a red
message with the problem description. For more information, please
refer to the logs.

From a repository

Perform the following steps to import an application package from
murano applications repository:

Note

To import an application package from a repository, you need to
know the full name of the package. For the packages names, go to
http://apps.openstack.org/#tab=murano-apps and click on the desired
package to see its full name.

	In dashboard, navigate to
Murano > Manage > Packages.

	Click the Import Package button on the top right of the
page.

[image: Packages page: Import Package 2]

	From the Package source drop-down list,
choose Repository, enter the package name, and then
click Next. Note that you may also specify the version
of the package.

[image: Import Package dialog: Repository]

	At this step, the package is already uploaded. Choose a category
from the Application Category menu. You can select
multiple categories while holding down the Ctrl key. If
necessary, verify and update the information about the package,
then click the Create button.

[image: Import Package dialog: Description]

From a bundle of applications

Perform the following steps to import a bundle of applications:

Note

To import an application bundle from a repository, you need
to know the full name of the package bundle. To find it out, go
to http://apps.openstack.org/#tab=murano-apps and click on the
desired bundle to see its full name.

	In dashboard, navigate to
Murano > Manage > Packages.

	Click the Import Bundle button on the top right of the
page.

[image: Packages page: Import Bundle]

	From the Package Bundle Source drop-down list, choose
Repository, enter the bundle name, and then
click Create.

[image: Import Bundle dialog]

Search for an application in the catalog

When you have imported many applications and want to quickly find
a required one, you can filter them by category, tags and words that
the application name or description contains:

In dashboard, navigate to Murano > Application Catalog
> Applications.

The page is divided into two sections:

	Recent Activity shows the most recently imported or deployed
applications.

	The bottom section contains all the available applications sorted
alphabetically.

To view all the applications of a specific category, select it from
the App Category drop-down list:

[image: Applications page: App Category]

To filter applications by tags or words from the application name or
description, use the rightmost filter:

[image: Applications page: Filter]

Note

Tags can be specified during the import of an application package.

For example, there is an application that has the word
community-developed in description. Let’s find it with the filter.
The following screenshot shows you the result.

[image: Applications page: example]

Delete an application package

To delete an application package from the catalog, please perform
the following steps:

	In dashboard, navigate to Murano > Manage > Package
Definitions.

	Select a package or multiple packages you want to delete and click
Delete Packages.

[image: Packages page: Select packages]

	Confirm the deletion.

Add an application to environment

After uploading an application, the second step is to add it to an
environment. You can do this:

	from environment details page

	from applications catalog page

From environment details page

	In OpenStack dashboard, navigate to
Murano > Application catalog > Environments.

	Find the environment you want to manage and click
Manage Components, or simply click on the environment’s
name.

	Procced with the Drop Components here field
or the Add Component button.

Use of Drop Components here field

	On the Environment Components page, drag and drop a desired
application into the Drop Components here field under
the Application Components section.

[image: Environment Components page: Drag and drop a component]

	Configure the application. Note that the settings may vary from app to app
and are predefined by the application author. When done, click
Next, then click Create.

Now the application appears in the Component List section on
the Environment Components page.

Use of Add Component button

	On the Environment Components page, click Add Component.

[image: Environment Components page: Add component]

	Find the application you want to add and click Add to Env.

[image: Applications page: Add to Env]

	Configure the application and click Next. Note that the
settings may vary from app to app and are predefined by the
application author.

	To add more applications, check Add more applications
to the environment, then click Create and repeat the
steps above. Otherwise, just click Create.

[image: Configure Application dialog: Add more applications]
Now the application appears in the Component List section
on the Environment Components page.

From applications catalog page

	In OpenStack dashboard, navigate to
Murano > Application catalog > Applications.

	On the Applications catalog page, use one of the following methods:
	Quick deploy. Automatically creates an
environment, adds the selected application, and redirects you
to the page with the environment components.

	Add to Env. Adds an application to an already
existing environment.

Quick Deploy button

	Find the application you want to add and click
Quick Deploy. Let’s add Apache Tomcat, for example.

[image: Applications page: Quick Deploy]

	Configure the application. Note that the settings may vary from app to
app and are predefined by the application author. When done, click
Next, then click Create. In the example
below we assign a floating IP address.

[image: Configure Application dialog]

Now the Apache Tomcat application is successfully added to an
automatically created quick-env-1 environment.

[image: Environment Components page: Select packages]

Add to Env button

	From the Environment drop-down list, select the
required environment.

[image: Applications page: Select environment]

	Find the application you want to add and click
Add to Env. Let’s add Apache Tomcat, for example.

[image: Applications page: Add to Env]

	Configure the application and click Next. Note that the
settings may vary from app to app and are predefined by the
application author. In the example below we assign a floating
IP address.

[image: Configure Application dialog]

	To add more applications, check Add more applications
to the environment, then click Create and repeat the
steps above. Otherwise, just click Create.

[image: Configure Application dialog: Add more applications]

Deploy an environment

Make sure to add necessary applications to your environment, then deploy it
following one of the options below:

	Deploy an environment from the Environments page

	In OpenStack dashboard, navigate to Murano >
Application Catalog > Environments.

	Select Deploy Environment from the Actions drop-down list
next to the environment you want to deploy.

[image: Environments page]
It may take some time for the environment to deploy. Wait for the status
to change from Deploying to Ready. You cannot add applications to
your environment during deployment.

	Deploy an environment from the Environment Components page

	In OpenStack dashboard, navigate to Murano >
Application Catalog > Environments.

	Click the name of the environment you want to deploy.

[image: Environments page]

	On the Environment Components page, click Deploy This Environment
to start the deployment.

[image: Environment Components page]
It may take some time for the environment to deploy. You cannot add
applications to your environment during deployment. Wait for the status
to change from Deploying to Ready. You can check the status either on
the Environments page or on the Environment Components page.

Browse component details

You can browse component details to find the following information about
a component:

	Name

	ID

	Type

	Instance name (available only after deployment)

	Heat orchestration stack name (available only after deployment)

To browse a component details, perform the following steps:

	In OpenStack Dashboard, navigate to
Murano > Application Catalog > Environments.

	Click the name of the required environment.

	In the Component List section, click the name of the required
component.

[image: Components details]
The links redirect to corresponding horizon pages with the detailed
information on instance and heat stack.

Application topology

Once you add an application to your environment, the application topology of
this environment becomes available in a separate tab. The topology represents
an elastic diagram showing the relationship between a component and the
infrastructure it runs on. To view the topology:

	In OpenStack Dashboard, navigate to
Murano > Application Catalog > Environments.

	Click the name of the necessary environment.

	Click the Topology tab.

The topology is helpful to visually display complex components, for example
Kubernetes. The red icons reflect errors during the deployment while the green
ones show success.

[image: Topology tab: Deployment failed]
The following elements of the topology are virtual machine and an instance of
dependent MuranoPL class:

	Element
	Meaning

	[image: ../../_images/topology_element_1.png]

	Virtual machine

	[image: ../../_images/topology_element_2.png]

	Instance

Position your mouse pointer over an element to see its name, ID, and other
details.

[image: Topology tab: Deployment successful]

Deployment logs

To get detailed information on a deployment, use:

	Deployment history, which contains logs and deployment
structure of an environment.

	Latest deployment log, which contains information on the
latest deployment of an environment.

	Component logs, which contain logs on a particular
component in an environment.

Deployment history

To see the log of a particular deployment, proceed with the steps
below:

	In OpenStack Dashboard, navigate to Murano > Application
Catalog > Environments.

	Click the name of the required environment.

	Click the Deployment History tab.

	Find the required deployment and click Show Details.

	Click the Logs tab to see the logs.

[image: Deployment Logs page]

Latest deployment log

To see the latest deployment log, proceed with the steps below:

	In OpenStack Dashboard, navigate to Murano > Application
Catalog > Environments.

	Click the name of the required environment.

	Click the Latest Deployment Log tab to see the logs.

Component logs

To see the logs of a particular component of an environment, proceed with the
steps below:

	In OpenStack Dashboard, navigate to Murano > Application
Catalog > Environments.

	Click the name of the required environment.

	In the Component List section, click the required component.

	Click the Logs tab to see the component logs.

[image: Component Logs page]

Delete an application

To delete an application that belongs to the environment:

	In OpenStack dashboard, navigate to Murano >
Application Catalog > Environments.

	Click on the name of the environment you want to delete an
application from.

[image: Environments page]

	In the Component List section, click the
Delete Component button next to the application you
want to delete. Then confirm the deletion.

[image: Environment Components page]

Note

If the application that you are deleting has already been deployed,
you should redeploy the environment to apply the recent changes.
If the environment has not been deployed with this component,
the changes are applied immediately on receiving the confirmation.

Warning

Due to a known bug in murano as of Kilo release, the OS resources
allocated by a deleted application might not be reclaimed until
you delete the environment. See the Deallocating stack resources [https://blueprints.launchpad.net/murano/+spec/deallocating-stack-resources]
blueprint for details.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Log into murano-spawned instance

After the application is successfully deployed, you may need to log into the
virtual machine with the installed application. Follow the steps below.
Follow the steps below

All cloud images (including images imported from
The OpenStack Application Catalog [http://apps.openstack.org/])
have password authentication turned off. That is why it is not possible
to log in from the dashboard console.
So SSH is used to reach an instance spawned by murano.

Possible default image users are:

	ec2-user

	ubuntu or debian (depending on the operation system)

	Prepare a key pair.

To log in through SSH, provide a key pair during the application creation.
If you do not have a key pair, click the plus sign to create one directly
from the Configure Application dialog.

[image: Application creation: key pair]

	After the deployment is completed, find out the instance IP address.

Check out:

	Deployment logs

[image: Application logs: IP is provided]

	Detailed instance parameters.

See the Instance name link on the Component Details page.

[image: Application details: instance details link]

	To connect to the instance through SSH with the key pair, run:

$ ssh ec2-user@<IP> -i <key.location>

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Deploying environments using CLI

The main tool for deploying murano environments is murano-dashboard. It is
designed to be easy-to-use and intuitive. But it is not the only tool you can
use to deploy a murano environment, murano CLI client also possesses required
functionality for the task. This is an advanced scenario, however, that
requires knowledge of internal murano workflow,
murano object model, and
murano environment lifecycle.
This scenario is suitable for deployments without
horizon or deployment automation.

Note

This is an advanced mechanism and you should use it only when you are
confident in what you are doing. Otherwise, it is recommended that you use
murano-dashboard.

Create an environment

The following command creates a new murano environment that is ready for
configuration. For convenience, this guide refers to environment ID as
$ENV_ID.

murano environment-create deployed_from_cli

+----------------------------------+-------------------+---------------------+---------------------+
| ID | Name | Created | Updated |
+----------------------------------+-------------------+---------------------+---------------------+
| a66e5ea35e9d4da48c2abc37b5a9753a | deployed_from_cli | 2015-10-06T13:50:45 | 2015-10-06T13:50:45 |
+----------------------------------+-------------------+---------------------+---------------------+

Create a configuration session

Murano uses configuration sessions to allow several users to edit and configure
the same environment concurrently. Most of environment-related commands
require the --session-id parameter. For convenience, this guide
refers to session ID as $SESS_ID.

To create a configuration session, use the
murano environment-session-create $ENV_ID command:

murano environment-session-create $ENV_ID

+----------+----------------------------------+
| Property | Value |
+----------+----------------------------------+
| id | 5cbe7e561ffc484ebf11aabf83f9f4c6 |
+----------+----------------------------------+

Add applications to an environment

To manipulate environments object model from CLI, use the
environment-apps-edit command:

murano environment-apps-edit --session-id $SESS_ID $ENV_ID object_model_patch.json

The object_model_patch.json contains the jsonpatch object. This
object is applied to the /services key of the environment in question.
Below is an example of the object_model_patch.json file content:

[
 { "op": "add", "path": "/-", "value":
 {
 "instance": {
 "availabilityZone": "nova",
 "name": "xwvupifdxq27t1",
 "image": "fa578106-b3c1-4c42-8562-4e2e2d2a0a0c",
 "keyname": "",
 "flavor": "m1.small",
 "assignFloatingIp": false,
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "===id1==="
 }
 },
 "name": "ApacheHttpServer",
 "enablePHP": true,
 "?": {
 "type": "io.murano.apps.apache.ApacheHttpServer",
 "id": "===id2==="
 }
 }
 }
]

For convenience, the murano client replaces the "===id1===", "===id2==="
(and so on) strings with UUIDs. This way you can ensure that object IDs
inside your object model are unique.
To learn more about jsonpatch, consult jsonpatch.com [http://jsonpatch.com] and RFC 6902 [http://tools.ietf.org/html/rfc6902].
The murano-environment-edit command fully supports jsonpatch.
This means that you can alter, add, or remove parts of your applications
object model.

Verify your object model

To verify whether your object model is correct, check the environment by
running the environment-show command with the
--session-id parameter:

murano environment-show $ENV_ID --session-id $SESS_ID --only-apps

[
 {
 "instance": {
 "availabilityZone": "nova",
 "name": "xwvupifdxq27t1",
 "assignFloatingIp": false,
 "keyname": "",
 "flavor": "m1.small",
 "image": "fa578106-b3c1-4c42-8562-4e2e2d2a0a0c",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "fc4fe975f5454bab99bb0e309249e2d2"
 }
 },
 "?": {
 "status": "pending",
 "type": "io.murano.apps.apache.ApacheHttpServer",
 "id": "69cdf10d31e64196b4de894e7ea4f1be"
 },
 "enablePHP": true,
 "name": "ApacheHttpServer"
 }
]

Deploy your environment

To deploy a session $SESS_ID of your environment, use the
murano environment-deploy command:

murano environment-deploy $ENV_ID --session-id $SESS_ID

You can later use the murano environment-show command to
track the deployment status.

To view the deployed applications of a particular environment, use the
murano environment-show command with the --only-apps
parameter and specifying the environment ID:

murano environment-show $ENV_ID --only-apps

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Step-by-Step

The goal of this manual is to walk you through the steps
that should be taken while composing an application package
to get it ready for uploading to Murano.

This tutorial uses a demo application named ApacheHTTPServer
to demonstrate how you can create your own Murano application
from scratch. We will walk you through its source code and
explain how to upload it.

ApacheHTTPServer is a simple Murano application that spawns
a virtual machine and installs Apache HTTP Server on it.
It may also install php if a user wants to.

The source code of ApacheHTTPServer is available at github [https://github.com/openstack/murano-apps/tree/master/ApacheHTTPServer/package].

ApacheHTTPServer’s source code is written in MuranoPL.
This programming language is object-oriented, and we will
see classes, objects and object instances. The detailed
explanation of its syntax can be found in the MuranoPL
reference.

Warning

Before you start the Murano application creation process, please consider
the System prerequisites and
Lab requirements in order you do not risk
starting with a wrong environment

Step 1. Create the structure of the package

You should structure an application package very neatly in order
the application could be managed and deployed in the catalog
successfully.

The package structure of ApacheHTTPServer package is:

..

 |_ Classes
 | |_ ApacheHttpServer.yaml
 |
 |_ Resources
 | |_ scripts
 | |_runApacheDeploy.sh
 | |_ DeployApache.template
 |
 |_ UI
 | |_ ui.yaml
 |
 |_ logo.png
 |
 |_ manifest.yaml

The detailed information regarding the package structure can be found
in the Murano packages section.

Step 2. Create the manifest file

The application manifest file contains general application metadata.
It is an entry-point for each Murano application, and is very similar
to the manifest of a jar archive. It has a fixed format based on YAML.

The ApacheHTTPServer’s manifest file:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13

	 Format: 1.0
 Type: Application
 FullName: io.murano.apps.apache.ApacheHttpServer
 Name: Apache HTTP Server
 Description: |
 The Apache HTTP Server Project is an effort to develop and maintain an
 open-source HTTP server for modern operating systems including UNIX and
 Windows NT.
 ...
 Author: Mirantis, Inc
 Tags: [HTTP, Server, WebServer, HTML, Apache]
 Classes:
 io.murano.apps.apache.ApacheHttpServer: ApacheHttpServer.yaml

Now, let’s inspect manifest.yaml line-by-line.

Format

Specifies the version of the format for manifest.yaml to track
the syntax changes. Format key presents in each manifest file.
Currently, 1.0 is the only available version:

Format: 1.0

Type

Specifies the type of the package:

Type: Application

Note

Application starts with the capital letter.
This is the naming convention for all the pre-defined values
in Murano code.

FullName

Stands for the unique service application name. That name
allows to easily recognize to which scope an application
belongs. All other applications can address to the Apache
application methods by this name.

To ensure the global uniqueness, the same naming
convention as the naming convention of Java packages and
classes is followed. The io.murano.apps.apache. part
is the “package” part of the name, while ApacheHttpServer
stands for the “class” part of the name:

FullName: io.murano.apps.apache.ApacheHttpServer

Note

It is not necessary that all applications belong to one domain.
This naming allows to determine an application group by its name.
OpenStack-related applications may have full names, started with
org.openstack.apps, for example, org.openstack.apps.Rally

Name

Stands for the display name of the application. You will be able to reset a display name
when you upload ApacheHTTPServer package to Murano:

Name: Apache HTTP Server

Description

Contains the application description rendered under the application title:

	1
2
3
4
5
6
7
8

	Description: |
 The Apache HTTP Server Project is an effort to develop and maintain an
 open-source HTTP server for modern operating systems including UNIX and
 Windows NT. The goal of this project is to provide a secure, efficient and
 extensible server that provides HTTP services in sync with the current HTTP
 standards.
 Apache httpd has been the most popular web server on the Internet since
 April 1996, and celebrated its 17th birthday as a project this February.

Let’s take a closer look at the syntax:

The vertical line | symbol comes from YAML syntax.
The > symbol can be used interchangeably.
These are the YAML block style indicators [http://yaml.org/spec/current.html#id2537921],
which mean that all the leading indents and new line symbols should be preserved.
This is very useful for long, multi-line descriptions, because this affects how
they are displayed on the UI.

Warning

Avoid tab symbols inside YAML files. If YAML contains the tab symbol, it will not
be parsed correctly. The error message may be cryptic or misleading.
We recommend that you check the YAML syntax before composing the application
package using any of the available online tools.

Author

Contains the name of the author of an application, it is only displayed
in the application details and does not affect anything.

Author: Mirantis, Inc

Note

Single quotes usage is optional here: Author: 'Mirantis, Inc',
thus they are omitted in the code extract below.

Tags

Is an array of tags. You can search an application by its tag.
You may want to specify several tags for one application:

Tags: [HTTP, Server, WebServer, HTML, Apache]

Besides, YAML allows tag specification using another syntax,
which is an equivalent to the one given above:

Tags:
 - HTTP
 - Server
 - WebServer
 - HTML
 - Apache

Classes

Is a mapping between all classes present in ApacheHttpServer application
and the file names where these classes are defined in. This is one-to-one relationship,
which means that there is one and the only class per a single file.

The line io.murano.apps.apache.ApacheHttpServer: ApacheHttpServer.yaml says that the class io.murano.apps.apache.ApacheHttpServer is defined in the file ApacheHttpServer.yaml:

Classes:
 io.murano.apps.apache.ApacheHttpServer: ApacheHttpServer.yaml

Step 3. Create the execution plan template

The execution plan template contains the instructions understandable to the murano
agent on what should be executed to deploy an application. It is the file with the
.template extension located in the /APP_NAME/Resources directory.

The ApacheHTTPServer’s DeployApache.template:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	FormatVersion: 2.0.0
Version: 1.0.0
Name: Deploy Apache

Parameters:
 enablePHP: $enablePHP

Body: |
 return apacheDeploy('{0}'.format(args.enablePHP)).stdout

Scripts:
 apacheDeploy:
 Type: Application
 Version: 1.0.0
 EntryPoint: runApacheDeploy.sh
 Files: []
 Options:
 captureStdout: true
 captureStderr: true

As it can be viewed from the source code, besides specifying versions of different items,
ApacheHTTPServer execution plan accepts the enablePHP parameter. This parameter is
an input parameter to the apacheDeploy.sh script. This script initiates runApacheDeploy.sh
execution, which is also located at the Resources directory and installs apache app and php
if selected.

For the detailed information regarding the execution plan template, its sections and syntax,
please refer to the Execution plan template.

Step 4. Create the dynamic UI form definition

ApacheHTTPServer’s ui.yaml source code:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56

	Version: 2

Application:
 ?:
 type: io.murano.apps.apache.ApacheHttpServer
 name: $.appConfiguration.name
 enablePHP: $.appConfiguration.enablePHP
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: generateHostname($.instanceConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage
 keyname: $.instanceConfiguration.keyPair
 availabilityZone: $.instanceConfiguration.availabilityZone
 assignFloatingIp: $.appConfiguration.assignFloatingIP

Forms:
 - appConfiguration:
 fields:
 - name: license
 type: string
 description: Apache License, Version 2.0
 hidden: true
 required: false
 - name: name
 type: string
 label: Application Name
 initial: 'ApacheHttpServer'
 description: >-
 Enter a desired name for the application. Just A-Z, a-z, 0-9, dash and
 underline are allowed
 - name: enablePHP
 label: Enable PHP
 type: boolean
 description: >-
 Add php support to the Apache WebServer
 initial: false
 required: false
 widgetMedia:
 css: {all: ['muranodashboard/css/checkbox.css']}
 - name: assignFloatingIP
 type: boolean
 label: Assign Floating IP
 description: >-
 Select to true to assign floating IP automatically
 initial: false
 required: false
 widgetMedia:
 css: {all: ['muranodashboard/css/checkbox.css']}
 - name: dcInstances
 type: integer
 hidden: true
 initial: 1

 ...

Now, let’s inspect it line-by-line.

Application

Defines the object model by which engine deploys the ApacheHTTPServer
application, and includes YAQL expressions.

The section contains the reference to the Apache class,
the one that is provided in the manifest, named with the ?
symbol. This indicates system information:

	1
2
3

	 Application:
 ?:
 type: io.murano.apps.apache.ApacheHttpServer

For ApacheHTTPServer application it is defined that the user should input the application name,
some instance parameters and decide whether PHP should be enabled or not:

enablePHP: $.appConfiguration.enablePHP

The instance section assumes that the value, entered by the user in the first form
named appConfiguration is stored in an application object module. The same applies
for the instance parameter. Providing the question mark with the defined type
io.murano.resources.LinuxMuranoInstance indicates an instance of MuranoPl object.

	1
2
3

	instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance

Note

This parameter is named instance here because its class definition
property has the instance name. You can specify any name in
the class definition file,
and then use it in the UI form definition.

Forms

Contains UI forms prototypes that are merged to the application
creation wizard.

Each form field will be translated to the Django field and most of
the parameters correspond to parameters in the Django form field.
All fields are required by default. Hidden fields are used to print
extra information in the form description.

After the upload, the section content will be browsed on the left
side of the form and its description on the right.

Please take a look at the Configure Application: Apache HTTP Server dialog:

[image: ../../_images/step_1.png]

Note

The assignFloatingIP and enablePHP
boolean fields are shown as checkboxes.

Here is how the second dialog looks like:

[image: ../../_images/step_2.png]
For more information about Dynamic UI, please refer to
the main reference.

Step 5: Define MuranoPL class definitions

All application classes are located in the Classes folder. As ApacheHttpServer
uses only one class, just one file can be found in this directory.

Here is how it looks like:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

	Namespaces:
 =: io.murano.apps.apache
 std: io.murano
 res: io.murano.resources
 sys: io.murano.system

Name: ApacheHttpServer

Extends: std:Application

Properties:
 name:
 Contract: $.string().notNull()

 enablePHP:
 Contract: $.bool()
 Default: false

 instance:
 Contract: $.class(res:Instance).notNull()

Methods:
 initialize:
 Body:
 - $._environment: $.find(std:Environment).require()

 deploy:
 Body:
 - If: not $.getAttr(deployed, false)
 Then:
 - $._environment.reporter.report($this, 'Creating VM for Apache Server.')
 - $securityGroupIngress:
 ...
 - $._environment.securityGroupManager.addGroupIngress($securityGroupIngress)
 - $.instance.deploy()
 - $resources: new(sys:Resources)
 - $template: $resources.yaml('DeployApache.template').bind(dict(enablePHP => $.enablePHP))
 - $._environment.reporter.report($this, 'Instance is created. Deploying Apache')
 - $.instance.agent.call($template, $resources)
 - $._environment.reporter.report($this, 'Apache is installed.')
 - $.setAttr(deployed, true)

Now, let’s inspect it line-by-line.

Namespaces

Can be named shortcuts since this is an additional section
which enables short names instead of the long ones:

	1
2
3
4
5

	Namespaces:
 =: io.murano.apps.apache
 std: io.murano
 res: io.murano.resources
 sys: io.murano.system

Note

=: refers to the current namespace

Name

Contains the class name that is defined in this file.
So full class name will be current namespace and name, provided by corresponding key: io.murano.apps.apache.ApacheHttpServer:

Name: ApacheHttpServer

Note

One .yaml file should contain only one class definition.

Extends

Determines inheritance, and io.murano.Application should be a parent
for all the murano applications.

This class has defined deploy method and only instances of that class can be used in Environment class.
Environment class, in its turn, is responsible for the deployment configurations. Definition of both
classes are located at meta/io.murano folder of murano repository.

Thus, if you want to have some modifications of ApacheHttpServer, you can set io.murano.apps.apache.ApacheHttpServer
in the Extends section of a new Application class:

Extends: std:Application

Properties

Defines the dictionary.
Apache HTTP Server application has three properties: name, enablePHP and instance.
For each of them certain Contract is defined.

Only enablePHP is optional, and its default value equals to false.

Instance is the required parameter and should be an instance of the predefined in core library io.murano.resources.Instance class.

Methods

The initialize method is like __init__ in Python, and executes together with properties
initialization.

It accesses the environment, which the application belongs to, and is used only for
sending reports about the deployment state.

Private variable _environment is defined as follows:

	1
2
3

	initialize:
 Body:
 - $._environment: $.find(std:Environment).require()

The deploy method sets up instance spawning and configuration. This method should be executed
only once. So in the first order deployed variable is checked to be false in the
current scope.

It performs the following actions:

	configures securityGroups;

	initiates new virtual machine spawning: $.instance.deploy()

	loads the execution plan template, located in the Resources directory to the
instance of resources class: $resources.yaml('DeployApache.template')

	updates the plan with parameters taken from the user: bind(dict(enablePHP => $.enablePHP))

	sends ready-to-execute-plan to murano agent: $.instance.agent.call($template, $resources)

Step 6. Add the application logo (optional)

Download or create your own .png image associated with your application.

The recommended size is 70x70 px, and the square shape is preferable.
There are no limits regarding the image filename. In Apache HTTP Server we
use the default name logo.png:

[image: ../../_images/logo.png]

Step 7. Compose a zip archive

Select all the files prepared for the package and create an archive in zip format.
If the command is executed from the console, do not forget to add the -r option
to include all the attachments.

Note

The manifest file should not contain the root folder. In other words, the manifest
should be located in the archive root directory.

Congratulations! Your application is ready to be uploaded to the application catalog.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Execution plan template

An execution plan template is a set of metadata that describes
the installation process of an application on a virtual
machine. It is a minimal executable unit that can be
triggered in Murano workflows and is understandable to
the Murano agent, which is responsible for receiving,
correctness verification and execution of the statements
included in the template.

The execution plan template is able to trigger any type of script
that executes commands and installs application components
as the result. Each script included in the execution
plan template may consist of a single file or a set of interrelated
files. A single script can be reused across several execution
plans.

This section is devoted to the structure and syntax of an execution
plan template. For different configurations of templates, please
refer to the Examples section.

Template sections

The table below contains the list of the sections that can be
included in the execution plan template with the description of
their meaning and the default attributes which are used by the
agent if any of the listed parameters is not specified.

	Section name
	Meaning and default value

	FormatVersion
	a version of the execution plan template syntax
format. Default is 1.0.0. Optional

	Name
	a human-readable name for the execution plan to
be used for logging. Optional

	Version
	a version of the execution plan itself, is used
for logging and tracing. Each time the content
of the template content changes (main script,
attached scripts, properties, etc.), the version
value should be incremented.
This is in contrast with FormatVersion,
which is used to distinguish the execution plan
format.
The default value is 0.0.0. Optional

	Body
	string that represents the Python statement and is
executed by the murano-agent. Scripts defined in
the Scripts section are invoked from here.
Required

	Parameters
	a dictionary of the String->JsonObject type
that maps parameter names to their values.
Optional.

	Scripts
	a dictionary that maps script names to their
script definitions. Required

FormatVersion property

FormatVersion is a property that all other depend on.
That is why it is very important to specify it correctly.

FormatVersion 1.0.0 (default) is still used by Windows murano-agent.
New features that are introduced in Kilo, such as Chef or Puppet,
and downloadable files require version 2.1.0, while nearly all the applications
in murano-apps repository work with FormatVersion 2.0.0. And if you omit
the FormatVersion property or put something like <2.0.0, it will
lead to the incorrect behaviour. The same happens if, for example,
FormatVersion=2.1.0, and a VM has the pre-Kilo agent.

Scripts section

Scripts are the building blocks of execution plan templates. As
the name implies those are the scripts for different deployment
platforms.

Each script may consists of one or more files. Those files are
script’s program modules, resource files, configs, certificates etc.

Scripts may be executed as a whole (like a single piece of code),
expose some functions that can be independently called in an execution
plan script or both. This depends on deployment platform and executor
capabilities.

Scripts are specified using Scripts attribute of execution plan.
This attribute maps script name to a structure (document) that describes
the script. It has the following properties:

	Type

	the name of a deployment platform the script is targeted to.
The available alternative options for version>=2.1.0 are
Application, Chef, Puppet, and for version<2.1.0 is
Application only. String, required.

	Version

	the minimum version of the deployment platform/executor required
by the script. String, optional.

	EntryPoint

	the name of the script file that is an entry point for this
execution plan template. String, required.

	Files

	the filenames of the additional files required for the script. Thus,
if the script specified in the EntryPoint section imports other
scripts, they should be provided in this section.

The filenames may include slashes that the agent preserve on VM.
If a filename is enclosed in the angle brackets (<...>) it will be
base64-encoded. Otherwise, it will be treated as a plain-text that
may affect line endings.

In Kilo, entries for this property may be not just strings but also
dictionaries (for example, filename: URL) to specify downloadable files
or git repositories.

The default value is [] that means that no extra files are used.
Array, optional.

	Options

	an optional dictionary of type String->JsonObject that contains
additional options for the script executor. If not provided, an
empty dictionary is assumed.

Available alternatives are: captureStdout, captureStderr,
verifyExitcode (raise an exception if result is not positive).
As Options are executor-dependent, these three alternatives
are available for the Application executor, but may have no sense for
other types. captureStdout, captureStderr and verifyExitcode
require boolean values, and have True as their default values.

Dictionary, optional.

Please make sure the files specified in EntryPoint and Files sections exist.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

HOT packages

Compose a package

Murano is an Application catalog which intends to support applications defined in different formats. As a first step to universality, support of a heat orchestration template was added.
It means that any heat template could be added as a separate application into the Application Catalog. This could be done in two ways: manual and automatic.

Automatic package composing

Before uploading an application into the catalog, it should be prepared and archived.
A Murano command line will do all preparation for you.
Just choose the desired Heat Orchestration Template and perform the following command:

murano package-create –template wordpress/template.yaml

Note, that optional parameters could be specified:

	–name:	an application name, copied from a template by default

	–logo:	an application square logo, by default the heat logo will be used

	–description:	text information about an application, by default copied from a template

	–author:	a name of an application author

	–output:	a name of an output file archive to save locally

	–full-name:	a fully qualified domain name that specifies exact application location

Note

To performing this command python-muranoclient should be installed in the system

As the result, an application definition archive will be ready for uploading.

Manual package composing

Application package could be composed manually. Follow the 5 steps below.

	Step 1. Choose the desired heat orchestration template

For this example
chef-server.yaml [https://github.com/openstack/heat-templates/blob/master/hot/chef-server.yaml]
template will be used.

	Step 2. Rename it to template.yaml

	Step 3. Prepare an application logo (optional step)

It could be any picture associated with the application.

	Step 4. Create manifest.yaml file

All service information about the application is contained here. Specify the following parameters:

	Format:	defines an application definition format; should be set to Heat.HOT/1.0

	Type:	defines a manifest type, should be set to Application

	FullName:	a unique name which will be used to identify the application in Murano Catalog

	Description:	text information about an application

	Author:	a name of an application author or a company

	Tags:	keywords associated with the application

	Logo:	a name of a logo file for an application

Take a look at the example:

Format: Heat.HOT/1.0
Type: Application
FullName: io.murano.apps.Chef-Server
Name: Chef Server
Description: "Heat template to deploy Open Source CHEF server on a VM"
Author: Kate
Tags:
 - hot-based
Logo: logo.png

	Step 5. Create a zip archive, containing the specified files: template.yaml, manifest.yaml, logo.png

Applications page looks like:

[image: ../../_images/chef_server.png]
The configuration form, where you can enter template parameters, will be generated automatically and looks as follows:

[image: ../../_images/chef_server_form.png]
After filling the form the application is ready to be deployed.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

MuranoPL Reference

To develop applications, murano project refers to Murano Programming
Language (MuranoPL). It is represented by easily readable YAML and
YAQL languages. The sections below describe these languages.

YAML

YAML is an easily readable data serialization format that is a superset
of JSON. Unlike JSON, YAML is designed to be read and written by humans
and relies on visual indentation to denote nesting of data structures.
This is similar to how Python uses indentation for block structures
instead of curly brackets in most C-like languages. Also YAML may
contain more data types as compared to JSON. See http://yaml.org/
for a detailed description of YAML.

MuranoPL is designed to be representable in YAML so that MuranoPL code could
remain readable and structured. Usually MuranoPL files are YAML encoded documents.
But MuranoPL engine itself does not deal directly with YAML documents, and it is up to
the hosting application to locate and deserialize the definitions of particular classes.
This gives the hosting application the ability to control where those definitions can be
found (a file system, a database, a remote repository, etc.) and possibly use some other
serialization formats instead of YAML.

MuranoPL engine relies on a host deserialization code when detecting YAQL
expressions in a source definition. It provides them as instances of the YaqlExpression
class rather than plain strings. Usually, YAQL expressions can be distinguished by the
presence of $ (the dollar sign) and operators, but in YAML, a developer can always
state the type by using YAML tags explicitly. For example:

	1
2
3
4
5

	 Some text - a string
 $.something() - a YAQL expression
 "$.something()" - a string because quotes are used
 !!str $ - a string because a YAML tag is used
 !yaql "text" - a YAQL expression because a YAML tag is used

YAQL

YAQL (Yet Another Query Language) is a query language that was also
designed as a part of the murano project. MuranoPL makes an extensive
use of YAQL. A description of YAQL can be found here [https://yaql.readthedocs.org].

Simply speaking, YAQL is the language for expression evaluation.
The following examples are all valid YAQL expressions:
2 + 2, foo() > bar(), true != false.

The interesting thing in YAQL is that it has no built in list of
functions. Everything YAQL can access is customizable. YAQL cannot call
any function that was not explicitly registered to be accessible by YAQL.
The same is true for operators. So the result of the expression 2 *
foo(3, 4) completely depends on explicitly provided implementations
of “foo” and “operator_*”.

YAQL uses a dollar sign ($) to access external variables, which are also
explicitly provided by the host application, and function arguments.
$variable is a syntax to get a value of the variable “$variable”,
$1, $2, etc. are the names for function arguments. “$” is a name for current object:
data on which an expression is evaluated, or a name of a single argument. Thus,
“$” in the beginning of an expression and “$” in the middle of it can refer
to different things.

By default, YAQL has a lot of functions that can be registered in a YAQL
context. This is very similar to how SQL works but uses more Python-like
syntax. For example: $.where($.myObj.myScalar > 5,
$.myObj.myArray.len() > 0, and $.myObj.myArray.any($ = 4)).select($.myObj.myArray[0]) can be executed on $ = array of objects,
and result in another array that is a filtration and projection of a source data.

Note

There is no assignment operator in YAQL, and = means
comparison, the same what == means in Python.

As YAQL has no access to underlying operating system resources and
is fully controllable by the host, it is secure to execute YAQL expressions
without establishing a trust to the executed code. Also, because functions
are not predefined, different methods can be accessible in different
context. So, YAQL expressions that are used to specify property
contracts are not necessarily valid in workflow definitions.

Common class structure

Here is a common template for class declarations. Note, that it is in the YAML
format.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	Name: class name
Namespaces: namespaces specification
Extends: [list of parent classes]
Properties: properties declaration
Methods:
 methodName:
 Arguments:
 - list
 - of
 - arguments
 Body:
 - list
 - of
 - instructions

Thus MuranoPL class is a YAML dictionary with predefined key names, all keys except
for Name are optional and can be omitted (but must be valid if specified).

Class name

Class names are alphanumeric names of the classes. Traditionally, all class names
begin with an upper-case letter symbol and are written in PascalCasing.

In MuranoPL all class names are unique. At the same time, MuranoPL
supports namespaces. So, in different namespaces you can have classes
with the same name. You can specify a namespace explicitly, like
ns:MyName. If you omit the namespace specification, MyName is
expanded using the default namespace =:. Therefore, MyName
equals =:MyName if = is a valid namespace.

Namespaces

Namespaces declaration specifies prefixes that can be used in the class body
to make long class names shorter.

Namespaces:
 =: io.murano.services.windows
 srv: io.murano.services
 std: io.murano

In the example above, the srv: Something class name is automatically
translated to io.murano.services.Something.

= means the current namespace, so that MyClass means
io.murano.services.windows.MyClass.

If the class name contains the period (.) in its name, then it is assumed
to be already fully namespace qualified and is not expanded.
Thus ns.Myclass remains as is.

Note

To make class names globally unique, we recommend specifying a developer’s
domain name as a part of the namespace.

Extends

MuranoPL supports multiple inheritance. If present, the Extends section
shows base classes that are extended. If the list consists of a single entry,
then you can write it as a scalar string instead of an array. If you
do not specify any parents or omit the key, then the class extends
io.murano.Object. Thus, io.murano.Object is the root class
for all class hierarchies.

Properties

Properties are class attributes that together with methods create public
class interface. Usually, but not always, properties are the values, and
reference other objects that have to be entered in an environment
designer prior to a workflow invocation.

Properties have the following declaration format:

propertyName:
 Contract: property contract
 Usage: property usage
 Default: property default

Contract

Contract is a YAQL expression that says what type of the value is expected for
the property as well as additional constraints imposed on a property. Using
contracts you can define what value can be assigned to a property or argument.
In case of invalid input data it may be automatically transformed to confirm
to the contract. For example, if bool value is expected and user passes any
not null value it will be converted to True. If converting is impossible
exception ContractViolationException will be raised.

The following contracts are available:

	Operation
	Definition

	
$.int()

	
an integer value (may be null). String values consisting of digits are converted to integers

	
$.int().notNull()

	
a mandatory integer

	
$.string()

$.string().notNull()

	
a string. If the value is not a string, it is converted to a string

	
$.bool()

$.bool().notNull()

	
bools are true and false. 0 is converted to false, other integers to true

	
$.class(ns:ClassName)

$.class(ns:ClassName).notNull()

	
value must be a reference to an instance of specified class name

	
$.class(ns:ClassName, ns:DefaultClassName)

	
create instance of the ns:DefaultClassName class if no instance provided

	
$.class(ns:Name).check($.p = 12)

	
the value must be of the ns:Name type and have the p property equal to 12

	
$.class(ns:Name).owned()

	
a current object must be direct or indirect owner of the value

	
$.class(ns:Name).notOwned()

	
the value must be owned by any object except current one

	
[$.int()]

[$.int().notNull()]

	
an array of integers. Similar to other types.

	
[$.int().check($ > 0)]

	
an array of the positive integers (thus not null)

	
[$.int(), $.string()]

	
an array that has at least two elements, first is int and others are strings

	
[$.int(), 2]

[$.int(), 2, 5]

	
an array of ints with at least 2 items

an array of ints with at least 2 items, and maximum of 5 items

	
{ A: $.int(), B: [$.string()] }

	
the dictionary with the A key of the int type and B - an array of strings

	
$

[]

{}

	
any scalar or data structure as is

any array

any dictionary

	
{ $.string().notNull(): $.int().notNull() }

	
dictionary string -> int

	
A: StringMap

$.string().notNull(): $

	
the dictionary with the A key that must be equal to StringMap, and other keys be

any scalar or data structure

In the example above property port must be int value greater than 0 and
less than 65536; scope must be a string value and one of ‘public’, ‘cloud’,
‘host’ or ‘internal’, and protocol must be a string value and either
‘TCP’ or ‘UDP’. When user passes some values to these properties it will be checked
that values confirm to the contracts.

Namespaces:
 =: io.murano.apps.docker
 std: io.murano

Name: ApplicationPort

Properties:
 port:
 Contract: $.int().notNull().check($ > 0 and $ < 65536)

 scope:
 Contract: $.string().notNull().check($ in list(public, cloud, host, internal))
 Default: private

 protocol:
 Contract: $.string().notNull().check($ in list(TCP, UDP))
 Default: TCP

Methods:
 getRepresentation:
 Body:
 Return:
 port: $.port
 scope: $.scope
 protocol: $.protocol

Usage

Usage states the purpose of the property. This implies who and how can
access it. The following usages are available:

	
Property

	
Explanation

	
In

	
Input property. Values of such properties are obtained from a user
and cannot be modified in MuranoPL workflows. This is the default
value for the Usage key.

	
Out

	
A value is obtained from executing MuranoPL workflow and cannot be
modified by a user.

	
InOut

	
A value can be modified both by user and by workflow.

	
Const

	
The same as In but once workflow is executed a property cannot be
changed neither by a user nor by a workflow.

	
Runtime

	
A property is visible only from within workflows. It is neither read
from input nor serialized to a workflow output.

The usage attribute is optional and can be omitted (which implies In).

If the workflow tries to write to a property that is not declared with
one of the types above, it is considered to be private and accessible
only to that class (and not serialized to output and thus would be
lost upon the next deployment). An attempt to read the property that was
not initialized results in an exception.

Default

Default is a value that is used if the property value is not mentioned in
the input object model, but not when it is set to null.
Default, if specified, must conform to a declared property contract.
If Default is not specified, then null is the default.

For properties that are references to other classes, Default can modify
a default value of the referenced objects. For example:

p:
 Contract: $.class(MyClass)
 Default: {a: 12}

This overrides default for the a property of MyClass for instance
of MyClass that is created for this property.

Workflow

Workflows are the methods that describe how the entities that are
represented by MuranoPL classes are deployed.

In a typical scenario, the root object in an input data model is of
the io.murano.Environment type, and has the deploy method.
This method invocation causes a series of infrastructure activities
(typically, a Heat stack modification) and the deployment scripts
execution initiated by VM agents commands. The role of the workflow
is to map data from the input object model, or a result of previously
executed actions, to the parameters of these activities and to
initiate these activities in a correct order.

Methods

Methods have input parameters, and can return a value to a caller.
Methods are defined in the Workflow section of the class using the
following template:

methodName:
 Usage: Action
 Arguments:
 - list
 - of
 - arguments
 Body:
 - list
 - of
 - instructions

Action is an optional parameter that specifies methods to be executed
by direct triggering after deployment.

Arguments are optional too, and are declared using the same syntax
as class properties, except for the Usage attribute that is meaningless
for method parameters. For example, arguments also have a contract and
optional default:

scaleRc:
 Arguments:
 - rcName:
 Contract: $.string().notNull()
 - newSize:
 Contract: $.int().notNull()

The Method body is an array of instructions that get executed sequentially.
There are 3 types of instructions that can be found in a workflow body:

	expressions,

	assignments,

	block constructs.

Expressions

Expressions are YAQL expressions that are executed for their side effect.
All accessible object methods can be called in the expression using
the $obj.methodName(arguments) syntax.

	Expression
	Explanation

	
$.methodName()

$this.methodName()

	
invoke method ‘methodName’ on this (self) object

	
$.property.methodName()

$this.property.methodName()

	
invocation of method on object that is in property

	
$.method(1, 2, 3)

	
methods can have arguments

	
$.method(1, 2, thirdParameter => 3)

	
named parameters also supported

	
list($.foo().bar($this.property), $p)

	
complex expressions can be constructed

Assignment

Assignments are single key dictionaries with a YAQL expression as a key
and arbitrary structure as a value. Such a construct is evaluated
as an assignment.

	Assignment
	Explanation

	
$x: value

	
assigns value to the local variable $x

	
$.x: value

$this.x: value

	
assign the value to the object’s property

	
$.x: $.y

	
copies the value of the property y to the property x

	
$x: [$a, $b]

	
sets $x to the array of two values: $a and $b

	
$x:

SomeKey:

NestedKey: $variable

	
structures of any level of complexity can be evaluated

	
$.x[0]: value

	
assigns the value to the first array entry of the x property

	
$.x.append(): value

	
appends the value to an array in the x property

	
$.x.insert(1): value

	
inserts the value into the position 1

	
$x: [$a, $b].delete(0)

	
sets $x to the array without 0 index item

	
$.x.key.subKey: value

$.x[key][subKey]: value

	
deep dictionary modification

Block constructs

Block constructs control a program flow. They are dictionaries that have
strings as all their keys.

The following block constructs are available:

	Assignment
	Explanation

	
Return: value

	
Returns value from a method

	
If: predicate()

Then:

- code

- block

Else:

- code

- block

	
predicate() is a YAQL expression that must be evaluated to True or False

The Else section is optional

One-line code blocks can be written as scalars rather than an array.

	
While: predicate()

Do:

- code

- block

	
predicate() must be evaluated to True or False

	
For: variableName

In: collection

Do:

- code

- block

	
collection must be a YAQL expression returning iterable collection or
evaluatable array as in assignment instructions, for example, [1, 2, $x]

Inside a code block loop, a variable is accessible as $variableName

	
Repeat:

Do:

- code

- block

	
Repeats the code block specified number of times

	
Break:

	
Breaks from loop

	
Match:

case1:

- code

- block

case2:

- code

- block

Value: $valExpression()

Default:

- code

- block

	
Matches the result of $valExpression() against a set of possible values
(cases). The code block of first matched case is executed.

If no case matched and the default key is present
than the Default code block get executed.

The case values are constant values (not expressions).

	
Switch:

$predicate1():

- code

- block

$predicate2():

- code

- block

Default:

- code

- block

	
All code blocks that have their predicate evaluated to True are executed,
but the order of predicate evaluation is not fixed.

The Default key is optional.

If no predicate evaluated to True, the Default code block get executed.

	
Parallel:

- code

- block

Limit: 5

	
Executes all instructions in code block in a separate green threads in parallel.

The limit is optional and means the maximum number of concurrent green threads.

	
Try:

- code

- block

Catch:

With: keyError

As: e

Do:

- code

- block

Else:

- code

- block

Finally:

- code

- block

	
Try and Catch are keywords that represent the handling of exceptions due to data
or coding errors during program execution. A Try block is the block of code in
which exceptions occur. A Catch block is the block of code, that is executed if
an exception occurred.

Exceptions are not declared in Murano PL. It means that exceptions of any types can
be handled and generated. Generating of exception can be done with construct:
Throw: keyError.

The Else is optional block. Else block is executed if no exception occurred.

The Finally also is optional. It’s a place to put any code that will
be executed, whether the try-block raised an exception or not.

Notice, that if you have more then one block construct in your workflow, you
need to insert dashes before each construct. For example:

Body:
 - If: predicate1()
 Then:
 - code
 - block
 - While: predicate2()
 Do:
 - code
 - block

Object model

Object model is a JSON serialized representation of objects and their
properties. Everything you do in the OpenStack dashboard is reflected
in an object model. The object model is sent to the Application catalog engine
when the user decides to deploy the built environment. On the engine
side, MuranoPL objects are constructed and initialized from the received
Object model, and a predefined method is executed on the root object.

Objects are serialized to JSON using the following template:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

	{
 "?": {
 "id": "globally unique object ID (UUID)",
 "type": "fully namespace-qualified class name",

 "optional designer-related entries can be placed here": {
 "key": "value"
 }
 },

 "classProperty1": "propertyValue",
 "classProperty2": 123,
 "classProperty3": ["value1", "value2"],

 "reference1": {
 "?": {
 "id": "object id",
 "type": "object type"
 },

 "property": "value"
 },

 "reference2": "referenced object id"
}

Objects can be identified as dictionaries that contain the ? entry.
All system fields are hidden in that entry.

There are two ways to specify references:

	reference1 as in the example above. This method allows inline
definition of an object. When the instance of the referenced object
is created, an outer object becomes its parent/owner that is responsible
for the object. The object itself may require that its parent
(direct or indirect) be of a specified type, like all applications
require to have Environment somewhere in a parent chain.

	Referring to an object by specifying other object ID. That object must
be defined elsewhere in an object tree. Object references distinguished
from strings having the same value by evaluating property contracts.
The former case would have $.class(Name) while the later - the
$.string() contract.

MuranoPL Core Library

Some objects and actions can be used in several application deployments.
All common parts are grouped into MuranoPL libraries.
Murano core library is a set of classes needed in each deployment.
Class names from core library can be used in the application definitions.
This library is located under the meta [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano]
directory.

Classes included in the Murano core library are as follows:

io.murano

	Class: Object

	Class: Application

	Class: SecurityGroupManager

	Class: Environment

io.murano.resources

	Class: Instance

	Class: Network

io.murano.system

	Class: Logger

Class: Object

A parent class for all MuranoPL classes. It implements the initialize,
setAttr, and getAttr methods defined in the pythonic part of the Object class.
All MuranoPL classes are implicitly inherited from this class.

See also

Source Object.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Object.yaml]
file.

Class: Application

Defines an application itself. All custom applications must be derived from
this class.

See also

Source Application.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Application.yaml]
file.

Class: SecurityGroupManager

Manages security groups during an application deployment.

See also

Source SecurityGroupManager.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/SecurityGroupManager.yaml]
file.

Class: Environment

Defines an environment in terms of the deployment process and
groups all Applications and their related infrastructures. It also able
to deploy them at once.

Environments is intent to group applications to manage them easily.

Environment class properties

	Property
	Description
	Default usage

	name
	An environment name.
	In

	applications
	A list of applications belonging to an environment.
	In

	agentListener
	A property containing the io.murano.system.AgentListener object
that can be used to interact with Murano Agent.
	Runtime

	stack
	A property containing a HeatStack object that can be used to interact
with Heat.
	Runtime

	instanceNotifier
	A property containing the io.murano.system.InstanceNotifier object
that can be used to keep track of the amount of deployed instances.
	Runtime

	defaultNetworks
	A property containing user-defined Networks
(io.murano.resources.Network) that can be used as default networks
for the instances in this environment.
	In

	securityGroupManager
	A property containing the SecurityGroupManager object that can
be used to construct a security group associated with this environment.
	Runtime

See also

Source Environment.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Environment.yaml]
file.

Class: Instance

Defines virtual machine parameters and manages an instance lifecycle: spawning,
deploying, joining to the network, applying security group, and deleting.

Instance class properties

	Property
	Description
	Default usage

	name
	An instance name.
	In

	flavor
	An instance flavor defining virtual machine hardware parameters.
	In

	image
	An instance image defining operation system.
	In

	keyname
	Optional. A key pair name used to connect easily to the instance.
	In

	agent
	Configures interaction with the Murano agent using
io.murano.system.Agent.
	Runtime

	ipAddresses
	A list of all IP addresses assigned to an instance.
	Out

	networks
	Specifies the networks that an instance will be joined to.
Custom networks that extend Network class can be
specified. An instance will be connected to them and for the default
environment network or flat network if corresponding values are set
to True. Without additional configuration, instance will be joined
to the default network that is set in the current environment.
	In

	assignFloatingIp
	Determines if floating IP is required. Default is False.
	In

	floatingIpAddress
	IP addresses assigned to an instance after an application deployment.
	Out

	securityGroupName
	Optional. A security group that an instance will be joined to.
	In

See also

Source Instance.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/resources/Instance.yaml]
file.

Resources

Instance class uses the following resources:

	Agent-v2.template

	Python Murano Agent template.

Note

This agent is supposed to be unified. Currently, only Linux-based
machines are supported. Windows support will be added later.

	linux-init.sh

	Python Murano Agent initialization script that sets up an agent with
valid information containing an updated agent template.

	Agent-v1.template

	Windows Murano Agent template.

	windows-init.sh

	Windows Murano Agent initialization script.

Class: Network

The basic abstract class for all MuranoPL classes representing networks.

See also

Source Network.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/resources/Network.yaml]
file.

Class: Logger

Logging API is the part of core library since Liberty release. It was
introduced to improve debuggability of MuranoPL programs.

You can get a logger instance by calling a logger function which
is located in io.murano.system namespace. The logger function takes
a logger name as the only parameter. It is a common recommendation to use full
class name as a logger name within that class. This convention avoids names
conflicts in logs and ensures a better logging subsystem configurability.

Logger class instantiation:

$log: logger('io.murano.apps.activeDirectory.ActiveDirectory')

Log levels prioritized in order of severity

	Level
	Description

	CRITICAL
	Very severe error events that will presumably lead the application
to abort.

	ERROR
	Error events that might not prevent the application from running.

	WARNING
	Events that are potentially harmful but will allow the application
to continue running.

	INFO
	Informational messages highlighting the progress of the application
at the coarse-grained level.

	DEBUG
	Detailed informational events that are useful when debugging an
application.

	TRACE
	Even more detailed informational events comparing to the DEBUG level.

There are several methods that fully correspond to the log levels you can use
for logging events. They are debug, trace, info, warning,
error, and critical.

Logging example:

$log.info('print my info message {message}', message=>message)

Logging methods use the same format rules as the YAQL format
function. Thus the line above is equal to the:

$log.info('print my info message {message}'.format(message=>message))

To print an exception stacktrace, use the exception method.
This method uses the ERROR level:

Try:
 - Throw: exceptionName
 Message: exception message
Catch:
With: exceptionName
As: e
Do:
 - $log.exception($e, 'something bad happen "{message}"', message=>message)

Note

You can configure the logging subsystem through the logging.conf file
of the Murano Engine.

See also

	Source Logger.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/Logger.yaml]
file.

	OpenStack networking logging
configuration [http://docs.openstack.org/liberty/config-reference/content/networking-options-logging.html].

Murano actions

Murano action is a type of MuranoPL method. The differences from a regular
MuranoPL method are:

	Action is executed on deployed objects.

	Action execution is initiated by API request, you do not have to call
the method manually.

So murano action allows performing any operations on objects:

	Getting information from the VM, like a config that is generated during the
deployment

	VM rebooting

	Scaling

A list of available actions is formed during the environment deployment.
Right after the deployment is finished, you can call action asynchronously.
Murano engine generates a task for every action. Therefore, the action status
can be tracked.

Note

Actions may be called against any MuranoPL object, including Environment,
Application, and any other objects.

To mark a method as an action, use Usage: Action.

The following example shows an action that returns an archive with a
configuration file:

exportConfig:
 Usage: Action
 Body:
 - $._environment.reporter.report($this, 'Action exportConfig called')
 - $resources: new(sys:Resources)
 - $template: $resources.yaml('ExportConfig.template')
 - $result: $.masterNode.instance.agent.call($template, $resources)
 - $._environment.reporter.report($this, 'Got archive from Kubernetes')
 - Return: new(std:File, base64Content => $result.content,
 filename => 'application.tar.gz')

List of available actions can be found with environment details or application
details API calls. It’s located in object model special data.
Take a look at the following example:

Request:
http://localhost:8082/v1/environments/<id>/services/<id>

Response:

{
 "name": "SimpleVM",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "SimpleApp"
 },
 "type": "io.murano.apps.Simple",
 "id": "e34c317a-f5ee-4f3d-ad2f-d07421b13d67",
 "_actions": {
 "e34c317a-f5ee-4f3d-ad2f-d07421b13d67_exportConfig": {
 "enabled": true,
 "name": "exportConfig"
 }
 }
 }
}

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano packages

Package structure

The structure of the Murano application package is predefined. An
application could be successfully uploaded to an application catalog.

The application package root folder should contain the following:

	manifest.yaml file

	is an application entry point.

Note

the filename is fixed, do not use any custom names.

	Classes folder

	contains MuranoPL class definitions.

	Resources folder

	contains execution plan templates and the scripts
folder with all the files required for an application
deployment located in it.

	UI folder

	contains the dynamic UI yaml definitions.

	logo.png file (optional)

	is an image file associated to your application.

Note

There are no any special limitations regarding an image filename.
Though, if it differs from the default logo.png, specify it
in an application manifest file.

	images.lst file (optional)

	contains a list of images required by an application.

Here is the visual representation of the Murano application
package structure:

[image: ../../_images/structure.png]

Dynamic UI definition specification

The main purpose of Dynamic UI is to generate application creation
forms “on-the-fly”. The Murano dashboard does not know anything about
applications that will be presented in the catalog and which web forms are
required to create an application instance. So all application definitions
should contain an instruction, which tells the dashboard how to create an
application and what validations need to be applied. This document will help
you to compose a valid UI definition for your application.

The UI definition should be a valid YAML file and may contain the following
sections (for version 2.x):

	
	Version

	Points out the syntax version in use. Optional

	
	Templates

	An auxiliary section, used together with an Application section
to help with object model composing. Optional

	
	Application

	Object model description passed to murano engine and used for application
deployment. Required

	
	Forms

	Web form definitions. Required

Version

The syntax and format of dynamic UI definitions may change over time, so the
concept of format versions is introduced. Each UI definition file may contain
a top-level section called Version to indicate the minimum version of Murano
Dynamic UI platform which is capable to process it.
If the section is missing, the format version is assumed to be latest supported.

The version consists of two non-negative integer segments, separated by a dot,
i.e. has a form of MAJOR.MINOR.
Dynamic UI platforms having the same MAJOR version component are compatible:
i.e. the platform having the higher version may process UI definitions with
lower versions if their MAJOR segments are the same.
For example, Murano Dynamic UI platform of version 2.2 is able to process UI
definitions of versions 2.0, 2.1 and 2.2, but is unable to process 3.0 or
1.9.

Currently, the latest version of Dynamic UI platform is 2.3. It is incompatible
with UI definitions of Version 1.0, which were used in Murano releases before
Juno.

Note

Although the Version field is considered to be optional, its default
value is the latest supported version. So if you intent to use applications
with the previous stable murano version, verify that the version
is set correctly.

Version history

	Version
	Changes
	OpenStack Version

	1.0
	
	Initial Dymanic UI implementation

	Icehouse

	2.0
	
	instance field support is dropped

	New Application section that describes engine object model

	New Templates section for keeping reusable pieces of Object

	Juno, Kilo

	2.1
	
	New network field provides a selection of networks and
their subnetworks as a dropdown populated with those which are
available to the current tenant.

	Liberty

	2.2
	
	Now application name is added automatically to the last
service form. It is needed for a user to recognize one
created application from another in the UI. Previously all
application definitions contained the name property. So to
support backward compatibility, you need to manually remove
name field from class properties.

	Liberty

	2.3
	
	Now password field supports confirmInput flag and
validator overloading with single regexValidator or
multiple validators attribute.

	Mitaka

Application and Templates

The Application section describes an application object model.
This model will be translated into json, and an application will be
deployed according to that json. The application section should
contain all necessary keys that are required by the murano-engine to
deploy an application. Note that the system section of the object model goes
under the ?. So murano recognizes that instead of simple value,
MuranoPL object is used. You can pick parameters you got from a user
(they should be described in the Forms section) and pick the right place
where they should be set. To do this YAQL [https://git.openstack.org/cgit/openstack/yaql/tree/README.rst] is
used. Below is an example of how two YAQL functions are used for object model
generation:

	generateHostname is used for a machine hostname template generation;
it accepts two arguments: name pattern (string) and index (integer). If ‘#’
symbol is present in name pattern, it will be replaced with the index
provided. If pattern is not given, a random name will be generated.

	repeat is used to produce a list of data snippets, given the template
snippet (first argument) and number of times it should be reproduced (second
argument). Inside that template snippet current step can be referenced as
$index.

Note

While evaluating YAQL expressions referenced from
Application section (as well as almost all attributes inside
Forms section, see later), $ root object is set to the list of
dictionaries with cleaned validated forms’ data. For example, to obtain
a cleaned value of field name of form appConfiguration , you should reference it
as $.appConfiguration.name. This context will be called as a
standard context throughout the text.

Example:

Templates:
 primaryController:
 ?:
 type: io.murano.windows.activeDirectory.PrimaryController
 host:
 ?:
 type: io.murano.windows.Host
 adminPassword: $.appConfiguration.adminPassword
 name: generateHostname($.appConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

 secondaryController:
 ?:
 type: io.murano.windows.activeDirectory.SecondaryController
 host:
 ?:
 type: io.murano.windows.Host
 adminPassword: $.appConfiguration.adminPassword
 name: generateHostname($.appConfiguration.unitNamingPattern, $index + 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

Application:
 ?:
 type: io.murano.windows.activeDirectory.ActiveDirectory
 primaryController: $primaryController
 secondaryControllers: repeat($secondaryController, $.appConfiguration.dcInstances - 1)

Forms

This section describes markup elements for defining forms, which are currently
rendered and validated with Django. Each form has a name, field definitions
(mandatory), and validator definitions (optionally).

Note that each form is splitted into 2 parts:

	input area - left side, where all the controls are located

	description area - right side, where descriptions of the controls are located

Each field should contain:

	name - system field name, could be any

	type - system field type

Currently supported options for type attribute are:

	string - text field (no inherent validations) with one-line text input

	boolean - boolean field, rendered as a checkbox

	text - same as string, but with a multi-line input

	integer - integer field with an appropriate validation, one-line text input

	password - text field with validation for strong password, rendered as two
masked text inputs (second one is for password confirmation)

	clusterip - specific text field, used for entering cluster IP address
(validations for valid IP address syntax and for that IP to belong to a fixed
subnet)

	databaselist - specific field, a list of databases (comma-separated list of
databases’ names, where each name has the following syntax first symbol
should be latin letter or underscore; subsequent symbols can be latin
letter, numeric, underscore, at the sign, number sign or dollar sign),
rendered as one-line text input

	image - specific field, used for filtering suitable images by image type
provided in murano metadata in glance properties.

	flavor - specific field, used for selection instance flavor from a list

	keypair - specific field, used for selecting a keypair from a list

	azone - specific field, used for selecting instance availability zone from
a list

	network - specific field, used to select a network and subnet from a list
of the ones available to the current user

	any other value is considered to be a fully qualified name for some
Application package and is rendered as a pair of controls: one for selecting
already existing Applications of that type in an Environment, second - for
creating a new Application of that type and selecting it

Other arguments (and whether they are required or not) depends on a
field’s type and other attributes values. Most of them are standard Django
field attributes. The most common attributes are the following:

	label - name, that will be displayed in the form; defaults to name
being capitalized.

	description - description, that will be displayed in the description area.
Use yaml line folding character >- to keep the correct formatting during
data transferring.

	descriptionTitle - title of the description, defaults to label;
displayed in the description area

	hidden whether field should be visible or not in the input area.
Note that hidden field’s description will still be visible in the
descriptions area (if given). Hidden fields are used storing some data to be
used by other, visible fields.

	minLength, maxLength (for string fields) and minValue,
maxValue (for integer fields) are transparently translated into django
validation properties.

	regexValidator - regular expression to validate user input. Used with
string field.

	errorMessages - dictionary with optional ‘invalid’ and ‘required’ keys
that set up what message to show to the user in case of errors.

	validators is a list of dictionaries, each dictionary should at least
have expr key, under that key either some
YAQL [https://git.openstack.org/cgit/openstack/yaql/tree/README.rst]
expression is stored, either one-element dictionary with regexValidator key
(and some regexp string as value).
Another possible key of a validator dictionary is message, and although
it is not required, it is highly desirable to specify it - otherwise, when
validator fails (i.e. regexp doesn’t match or YAQL expression evaluates to
false) no message will be shown. Note that field-level validators use YAQL
context different from all other attributes and section: here $ root object
is set to the value of field being validated (to make expressions shorter).

- name: someField
 type: string
 label: Domain Name
 validators:
 - expr:
 regexpValidator: '(^[^.]+$|^[^.]{1,15}\..*$)'
 message: >-
 NetBIOS name cannot be shorter than 1 symbol and
 longer than 15 symbols.
 - expr:
 regexpValidator: '(^[^.]+$|^[^.]*\.[^.]{2,63}.*$)'
 message: >-
 DNS host name cannot be shorter than 2 symbols and
 longer than 63 symbols.
 helpText: >-
 Just letters, numbers and dashes are allowed.
 A dot can be used to create subdomains

	widgetMedia sets some custom CSS and JavaScript used for the field’s
widget rendering. Note, that files should be placed to Django static folder
in advance. Mostly they are used to do some client-side field
enabling/disabling, hiding/unhiding etc.

	requirements is used only with flavor field and prevents user to pick
unstable for a deployment flavor.
It allows to set minimum ram (in MBs), disk space (in GBs) or virtual CPU
quantity.

Example that shows how to hide items smaller than regular small flavor
in a flavor select field:

- name: flavor
 type: flavor
 label: Instance flavor
 requirements:
 min_disk: 20
 min_vcpus: 2
 min_memory_mb: 2048

	include_subnets is used only with network field. True by default.
If True, the field list includes all the possible combinations of network
and subnet. E.g. if there are two available networks X and Y, and X has two
subnets A and B, while Y has a single subnet C, then the list will include 3
items: (X, A), (X, B), (Y, C). If set to False only network names will be
listed, without their subnets.

	filter is used only with network field. None by default. If set to a
regexp string, will be used to display only the networks with names matching
the given regexp.

	murano_networks is used only with network field. None by default. May
have values None, exclude or translate. Defines the handling of
networks which are created by murano.
Such networks usually have very long randomly generated names, and thus look
ugly when displayed in the list. If this value is set to exclude then these
networks are not shown in the list at all. If set to translate the
names of such networks are replaced by a string Network of %env_name%.

Note

This functionality is based on the simple string matching of the
network name prefix and the names of all the accessible murano
environments. If the environment is renamed after the initial deployment
this feature will not be able to properly translate or exclude its network
name.

	allow_auto is used only with network field. True by default. Defines if
the default value of the dropdown (labeled “Auto”) should be present in the
list. The default value is a tuple consisting of two None values. The logic
on how to treat this value is up to application developer. It is suggested to
use this field to indicate that the instance should join default environment
network. For use-cases where such behavior is not desired, this parameter
should be set to False.

Besides field-level validators, form-level validators also exist. They
use standard context for YAQL evaluation and are required when
there is a need to validate some form’s constraint across several
fields.

Example

Forms:
 - appConfiguration:
 fields:
 - name: dcInstances
 type: integer
 hidden: true
 initial: 1
 required: false
 maxLength: 15
 helpText: Optional field for a machine hostname template
 - name: unitNamingPattern
 type: string
 label: Instance Naming Pattern
 required: false
 maxLength: 64
 regexpValidator: '^[a-zA-Z][-_\w]*$'
 errorMessages:
 invalid: Just letters, numbers, underscores and hyphens are allowed.
 helpText: Just letters, numbers, underscores and hyphens are allowed.
 description: >-
 Specify a string that will be used in a hostname instance.
 Just A-Z, a-z, 0-9, dash, and underline are allowed.

 - instanceConfiguration:
 fields:
 - name: title
 type: string
 required: false
 hidden: true
 descriptionTitle: Instance Configuration
 description: Specify some instance parameters based on which service will be created.
 - name: flavor
 type: flavor
 label: Instance flavor
 description: >-
 Select a flavor registered in OpenStack. Consider that service performance
 depends on this parameter.
 required: false
 - name: osImage
 type: image
 imageType: windows
 label: Instance image
 description: >-
 Select valid image for a service. Image should already be prepared and
 registered in glance.
 - name: availabilityZone
 type: azone
 label: Availability zone
 description: Select an availability zone, where service will be installed.
 required: false

Murano package repository

Murano client and dashboard can install both packages and bundles of packages from murano repository. To do so you should set MURANO_REPO_URL settings in murano dashboard or MURANO_REPO_URL env variable for the CLI client, and use a respective command to import the package. These commands automatically import all the prerequisites required to install the application along with any images mentioned in the applications.

Setting up your own repository

	It is fairly easy to set up your own murano package repository. To do so you need a web server that would serve 3 directories:

	
	/apps/

	/bundles/

	/images/

When importing an application by name, the client appends any version info, if present to the application name, .zip file extension and searches for that file in the apps directory.

When importing a bundle by name, the client appends .bundle file extension to the bundle name and searches it in the bundles directory. A bundle file is a json or a yaml file with the following structure:

{"Packages":
 [
 {"Name": "io.murano.apps.ApacheHttpServer"},
 {"Version": "", "Name": "io.murano.apps.Nginx"},
 {"Version": "0.0.1", "Name": "io.murano.apps.Lighttpd"}
]
}

Glance images can be auto-imported by the client, when mentioned in images.lst inside the package. Please see Step-by-Step for more information about package composition.
When importing images from the image.lst file, the client simply searches for a file with the same name as the name attribute of the image in the images directory of the repository.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Migrating applications between releases

This document describes how a developer of murano application can update
existing packages to make them synchronized with all implemented features
and requirements.

Migrate applications from Murano v0.5 to Stable/Juno

Applications created for murano v0.5, unfortunately, are not supported in Murano
stable/juno. This document provides the application code changes required for
compatibility with the stable/juno murano version.

Rename ‘Workflow’ to ‘Methods’

In stable/juno the name of section containing class methods is renamed to
Methods, as the latter is more OOP and doesn’t cause confusion with Mistral. So,
you need to change it in app.name/Classes in all classes describing workflow
of your app.

For example:

Workflow:
 deploy:
 Body:
 - $._environment.reporter.report($this, 'Creating VM')

Should be changed to:

Methods:
 deploy:
 Body:
 - $._environment.reporter.report($this, 'Creating VM')

Change the Instance type in the UI definition ‘Application’ section

The Instance class was too generic and contained some dirty workarounds to
differently handle Windows and Linux images, to bootstrap an instance in a
number of ways, etc. To solve these problems more classes were added to the
Instance inheritance hierarchy.

Now, base Instance class is abstract and agnostic of the desired OS and agent
type. It is inherited by two classes: LinuxInstance and WindowsInstance.

	LinuxInstance adds a default security rule for Linux, opening a standard
SSH port;

	WindowsInstance adds a default security rule for Windows, opening an RDP
port. At the same time WindowsInstance prepares a user-data allowing to use
Murano v1 agent.

LinuxInstance is inherited by two other classes, having different software
config method:

	LinuxMuranoInstance adds a user-data preparation to configure Murano
v2 agent;

	LinuxUDInstance adds a custom user-data field allowing the services to
supply their own user data.

You need to specify the instance type which is required by your app. It
specifies a field in UI, where user can select an image matched to the instance
type. This change must be added to UI form definition in app.name/UI/ui.yaml.

For example, if you are going to install your application on Ubuntu, you need to
change:

Application:
 ?:
 instance:
 ?:
 type: io.murano.resources.Instance

to:

Application:
 ?:
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance

Migrate applications to Stable/Kilo

In Kilo, there are no breaking changes that affect backward compatibility.
But there are two new features which you can use since Kilo.

1. Pluggable Pythonic classes for murano

Now you can create plug-ins for MuranoPL. A plug-in (extension) is an
independent Python package implementing functionality which you want
to add to the workflow of your application.

For a demo application demonstrating the usage of plug-ins, see the
murano/contrib/plugins/murano_exampleplugin folder.

The application consist of the following components:

	An ImageValidatorMixin class that inherits the generic instance class
(io.murano.resources.Instance) and adds a method capable of validating
the instance image for having an appropriate murano metadata type. This
class may be used as a mixin when added to inheritance hierarchy of
concrete instance classes.

	A concrete class called DemoInstance that inherits from
io.murano.resources.LinuxMuranoInstance and ImageValidatorMixin
to add the image validation logic to a standard, murano-enabled and
Linux-based instance.

	An application that deploys a single VM using the DemoInstance
class if the tag on the user-supplied image matches the user-supplied
constant.

The ImageValidatorMixin demonstrates the instantiation of plug-in provided
class and its usage, as well as handling of exception which may be thrown if
the plug-in is not installed in the environment.

2. Murano mistral integration

The core library has a new system class for mistral client that allows to call
Mistral APIs from the murano application model.

The system class allows you to:

	Upload a mistral workflow to mistral.

	Trigger the mistral workflow that is already deployed, wait for completion
and return the execution output.

To use this feature, add some mistral workflow to Resources folder
of your package. For example, create file TestEcho_MistralWorkflow.yaml:

version: '2.0'

test_echo:
 type: direct
 input:
 - input_1
 output:
 out_1: <% $.task1_output_1 %>
 out_2: <% $.task2_output_2 %>
 out_3: <% $.input_1 %>
 tasks:
 my_echo_test:
 action: std.echo output='just a string'
 publish:
 task1_output_1: 'task1_output_1_value'
 task1_output_2: 'task1_output_2_value'
 on-success:
 - my_echo_test_2

 my_echo_test_2:
 action: std.echo output='just a string'
 publish:
 task2_output_1: 'task2_output_1_value'
 task2_output_2: 'task2_output_2_value'

And provide workflow to use the mistral client:

Namespaces:
=: io.murano.apps.test
std: io.murano
sys: io.murano.system

Name: MistralShowcaseApp

Extends: std:Application

Properties:
 name:
 Contract: $.string().notNull()

 mistralClient:
 Contract: $.class(sys:MistralClient)
 Usage: Runtime

Methods:
 initialize:
 Body:
 - $this.mistralClient: new(sys:MistralClient)

 deploy:
 Body:
 - $resources: new('io.murano.system.Resources')
 - $workflow: $resources.string('TestEcho_MistralWorkflow.yaml')
 - $.mistralClient.upload(definition => $workflow)
 - $output: $.mistralClient.run(name => 'test_echo', inputs => dict(input_1 => input_1_value))
 - $this.find(std:Environment).reporter.report($this, $output.get('out_3'))

Migrate applications to Stable/Liberty

In Liberty a number of useful features that can be used by developers creating
their murano applications were implemented. This document describes these
features and steps required to include them to new apps.

1. Versioning

Package version

Now murano packages have a new optional attribute in their manifest called
Version - a standard SemVer format version string. All MuranoPL classes have
the version of the package they contained in.
To specify the version of your package, add a new section to the manifest file:

Version: 0.1.0

If no version specified, the package version will be equal to 0.0.0.

Package requirements

There are cases when packages may require other packages for their work.
Now you need to list such packages in the Require section of the manifest
file:

Require:
 package1_FQN: version_spec_1
 ...
 packageN_FQN: version_spec_N

version_spec here denotes the allowed version range. It can be either in
semantic_version specification pip-like format or as partial version string.
If you do not want to specify the package version, leave this value empty:

Require:
 package1_FQN: >=0.0.3
 package2_FQN:

In this case, the last dependency 0.x.y is used.

Note

All packages depend on the io.murano package (core library). If you do not
specify this requirement in the list (or the list is empty or even there is
no Require key in package manifest), then dependency io.murano: 0 will
be automatically added.

Object version

Now you can specify the version of objects in UI definition when your
application requires specific version of some class. To do this, add new key
classVersion to section ? describing object:

?:
 type: io.test.apps.TestApp
 classVersion: 0.0.1

classVersion of all classes included to package equals Version of this
package.

2. YAQL

In Liberty, murano was updated to use yaql 1.0.0.
The new version of yaql allows you to use a number of new functions and
features that help to increase the speed of developing new applications.

Note

Usage of these features makes your applications incompatible with
older versions of murano.

Also, in Liberty you can change Format in the manifest of package from
1.0 to 1.1 or 1.2.

	1.0 - supported by all versions of murano.

	1.1 - supported by Liberty+. Specify it, if you want to use features
from yaql 0.2 and yaql 1.0.0 at the same time in your application.

	1.2 - supported by Liberty+. A number of features from yaql 0.2 do not
work with this format (see the list below). We recommend you to use it for
new applications where compatibility with Kilo is not required.

Some examples of yaql 0.2 features that are not compatible with the 1.2 format

	Several functions now cannot be called as MuranoObject methods:
id(), cast(), super(), psuper(), type().

	Now you do not have the ability to compare non-comparable types.
For example “string != false”

	Dicts are not iterable now, so you cannot do this:
If: $key in $dict. Use $key in $dict.keys()
or $v in $dict.values()

	Tuples are not available. => always means keyword argument.

3. Simple software configuration

Previously, you always had to create execution plans even when some short
scripts had to be executed on a VM. This process included creating a template
file, creating a script, and describing the sending of the execution plan to
the murano agent.

Now you can use a new class io.murano.configuration.Linux from murano
core-library. This allows sending short commands to the VM and putting files
from the Resources folder of packages to some path on the VM without the
need of creating execution plans.

To use this feature you need to:

	Declare a namespace (for convenience)

Namespaces:
 conf: io.murano.configuration
 ...

	Create object of io.murano.configuration.Linux class in workflow of
your application:

$linux: new(conf:Linux)

	Run one of the two feature methods: runCommand or putFile:

first agrument is agent of instance, second - your command
$linux.runCommand($.instance.agent, 'service apache2 restart')

or:

getting content of file from 'Resources' folder
- $resources: new(sys:Resources)
- $fileContent: $resources.string('your_file.name')
put this content to some directory on VM
- $linux.putFile($.instance.agent, $fileContent, '/tmp/your_file.name')

Note

At the moment, you can use this feature only if your app requires an
instance of LinuxMuranoInstance type.

4. UI network selection element

Since Liberty, you can provide users with the ability to choose where to join
their VM: to a new network created during the deployment, or to an already
existing network.
Dynamic UI now has a new type of field - NetworkChoiseField. This field
provides a selection of networks and their subnetworks as a dropdown populated
with those which are available to the current tenant.

To use this feature, you should make the following updates in the Dynamic UI of
an application:

	Add network field:

fields:
 - name: network
 type: network
 label: Network
 description: Select a network to join. 'Auto' corresponds to a default environment's network.
 required: false
 murano_networks: translate

To see the full list of the network field arguments, refer to the UI
forms specification.

	Add template:

Templates:
 customJoinNet:
 - ?:
 type: io.murano.resources.ExistingNeutronNetwork
 internalNetworkName: $.instanceConfiguration.network[0]
 internalSubnetworkName: $.instanceConfiguration.network[1]

	Add declaration of networks instance property:

Application:
 ?:
 type: io.murano.apps.exampleApp
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 networks:
 useEnvironmentNetwork: $.instanceConfiguration.network[0]=null
 useFlatNetwork: false
 customNetworks: switch($.instanceConfiguration.network[0], $=null=>list(), $!=null=>$customJoinNet)

For more details about this feature, see use-cases

Note

To use this feature, the version of UI definition must be 2.1+

5. Remove name field from fields and object model in dynamic UI

Previously, each class of an application had a name property. It had no
built-in predefined meaning for MuranoPL classes and mostly used for dynamic UI
purposes.

Now you can create your applications without this property in classes and
without a corresponding field in UI definitions. The field for app name will be
automatically generated on the last management form before start of deployment.
Bonus of deleting this - to remove unused property from muranopl class that is
needed for dashboard only.

So, to update existing application developer should make 3 steps:

	remove name field and property declaration from UI definition;

	remove name property from class of application and make sure that it is
not used anywhere in workflow

	set version of UI definition to 2.2 or higher

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Application unit tests

Murano applications are written in MuranoPL.
To make the development of applications easier and enable application
testing, a special framework was created. So it is possible to add
unit tests to an application package and check if the application is in
actual state. Also, application deployment can be simulated with unit tests,
so you do not need to run the murano engine.

A separate service that is called murano-test-runner is used to run
MuranoPL unit tests.

All application test cases should be:

	Specified in the MuranoPL class, inherited from
io.murano.test.testFixture [https://git.openstack.org/cgit/openstack/murano/tree/murano/engine/system/test_fixture.py]

This class supports loading object model with the corresponding load(json)
function. Also it contains a minimal set of assertions such as
assertEqual and etc.

Note, that test class has the following reserved methods are:

	initialize is executed once, like in any other murano application

	setUp is executed before each test case

	tearDown is executed after each test case

	Named with test prefix

usage: murano-test-runner [-h] [--config-file CONFIG_FILE]
 [--os-auth-url OS_AUTH_URL]
 [--os-username OS_USERNAME]
 [--os-password OS_PASSWORD]
 [--os-project-name OS_PROJECT_NAME]
 [-l [</path1, /path2> [</path1, /path2> ...]]] [-v]
 [--version]
 <PACKAGE_FQN>
 [<testMethod1, className.testMethod2> [<testMethod1, className.testMethod2> ...]]

positional arguments:
 <PACKAGE_FQN>
 Full name of application package that is going to be
 tested
 <testMethod1, className.testMethod2>
 List of method names to be tested

optional arguments:
 -h, --help show this help message and exit
 --config-file CONFIG_FILE
 Path to the murano config
 --os-auth-url OS_AUTH_URL
 Defaults to env[OS_AUTH_URL]
 --os-username OS_USERNAME
 Defaults to env[OS_USERNAME]
 --os-password OS_PASSWORD
 Defaults to env[OS_PASSWORD]
 --os-project-name OS_PROJECT_NAME
 Defaults to env[OS_PROJECT_NAME]
 -l [</path1 /path2> [</path1 /path2> ...]], --load_packages_from [</path1 /path2> [</path1 /path2> ...]]
 Directory to search packages from. Will be used instead of
 directories, provided in the same option in murano configuration file.
 -v, --verbose increase output verbosity
 --version show program's version number and exit

The fully qualified name of a package is required to specify the test location.
It can be an application package that contains one or several classes with all
the test cases, or a separate package. You can specify a class name to
execute all the tests located in it, or specify a particular test case name.

Authorization parameters can be provided in the murano configuration file, or
with higher priority -os- parameters.

Consider the following example of test execution for the Tomcat application.
Tests are located in the same package with application, but in a separate class
called io.murano.test.TomcatTest. It contains testDeploy1 and
testDeploy2 test cases.
The application package is located in the /package/location/directory
(murano-apps repository e.g). As the result of the following command, both
test cases from the specified package and class will be executed.

murano-test-runner io.murano.apps.apache.Tomcat io.murano.test.TomcatTest -l /package/location/directory /io.murano/location -v

The following command runs a single testApacheDeploy test case from the
application package.

murano-test-runner io.murano.apps.apache.Tomcat io.murano.test.TomcatTest.testDeploy1

The main purpose of MuranoPL unit test framework is to enable mocking.
Special YAQL functions are registered for that:

	def inject(target, target_method, mock_object, mock_name)

	inject to set up mock for class or object, where mock definition is a name of the test class method

	def inject(target, target_method, yaql_expr)

	inject to set up mock for a class or object, where mock definition is a YAQL expression

Parameters description:

	target

	MuranoPL class name (namespaces can be used or full class name
in quotes) or MuranoPL object

	target_method

	Method name to mock in target

	mock_object

	Object, where mock definition is contained

	mock_name

	Name of method, where mock definition is contained

	yaql_expr

	YAQL expression, parameters are allowed

So the user is allowed to specify mock functions in the following ways:

	Specify a particular method name

	Provide a YAQL expression

Consider how the following functions may be used in the MuranoPL class with
unit tests:

Namespaces:
 =: io.murano.test
 sys: io.murano.system

Extends: TestFixture

Name: TomcatTest

Methods:
 initialize:
 Body:
 # Object model can be loaded from json file, or provided
 # directly in MuranoPL code as a yaml insertion.
 - $.appJson: new(sys:Resources).json('tomcat-for-mock.json')
 - $.heatOutput: new(sys:Resources).json('output.json')
 - $.log: logger('test')
 - $.agentCallCount: 0

 # Mock method to replace the original one
 agentMock:
 Arguments:
 - template:
 Contract: $
 - resources:
 Contract: $
 - timeout:
 Contract: $
 Default: null
 Body:
 - $.log.info('Mocking murano agent')
 - $.assertEqual('Deploy Tomcat', $template.Name)
 - $.agentCallCount: $.agentCallCount + 1

 # Mock method, that returns predefined heat stack output
 getStackOut:
 Body:
 - $.log.info('Mocking heat stack')
 - Return: $.heatOutput

 testDeploy1:
 Body:
 # Loading object model
 - $.env: $this.load($.appJson)

 # Set up mock for the push method of *io.murano.system.HeatStack* class
 - inject(sys:HeatStack, push, $.heatOutput)

 # Set up mock for the concrete object with mock method name
 - inject($.env.stack, output, $.heatOutput)

 # Set up mock with YAQL function
 - inject('io.murano.system.Agent', call, $this, agentMock)

 # Mocks will be called instead of original function during the deployment
 - $.env.deploy()

 # Check, that mock worked correctly
 - $.assertEqual(1, $.agentCallCount)

 testDeploy2:
 Body:
 - inject(sys:HeatStack, push, $this, getStackOut)
 - inject(sys:HeatStack, output, $this, getStackOut)

 # Mock is defined with YAQL function and it will print the original variable (agent template)
 - inject(sys:Agent, call, withOriginal(t => $template) -> $.log.info('{0}', $t))

 - $.env: $this.load($.appJson)
 - $.env.deploy()

 - $isDeployed: $.env.applications[0].getAttr(deployed, false, 'io.murano.apps.apache.Tomcat')
 - $.assertEqual(true, $isDeployed)

Provided methods are test cases for the Tomcat application. Object model and
heat stack output are predefined and located in the package Resources
directory. By changing some object model or heat stack parameters, different
cases may be tested without a real deployment. Note, that some asserts are used
in those example. The first one is checked, that agent call function was called
only once as needed. And assert from the second test case checks for a variable
value at the end of the application deployment.

Test cases examples can be found in TomcatTest.yaml class of the
Apache Tomcat application located at murano-apps repository [https://git.openstack.org/cgit/openstack/murano-apps/tree/Tomcat/package/Classes/TomcatTest.yaml].
You can run test cases with the commands provided above.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Examples

	Application name
	Description

	
Zabbix Agent [https://github.com/openstack/murano-apps/tree/master/ZabbixAgent/package]

	Zabbix Agent is a simple application. It doesn’t deploy a VM by itself,
but is installed on a specific VM that may contain any other
applications. This VM is tracked by Zabbix and by its configuration.

So Murano performs the Zabbix agent configuration based on the user
input. The user chooses the way of instance tracking - HTTP or ICMP that may
perform some modifications in the application package.

It is worth noting that application scripts are written in Python, not
in Bash as usual. This application does not work without Zabbix server
application since it’s a required property, determined in the
application definition.

	
Zabbix Server [https://github.com/openstack/murano-apps/tree/master/ZabbixServer/package]

	Zabbix Server application interacts with Zabbix Agent by calling its
setUpAgent method and providing information about itself: IP and hostname
of VM on which the server is installed.

Server installs MySQL database and requests database name, password and
some other parameters from the user.

	
Docker Crate [https://github.com/openstack/murano-apps/tree/master/Docker/Applications/Crate/package]

	This is a good example on how difficult logic may be simplified with
the inheritance that is supported by MuranoPL. Definition of this app is
simple, but the opportunity it provides is fantastic.

Crate is a distributed database, in the Murano Application catalog it
looks like a regular application. It may be deployed on Google Kubernetes
or regular Docker server. The user picks the desired option while filling in
the form since these options are set in the UI definition. The form field
has a list of possible options:

...
type:
- io.murano.apps.docker.kubernetes.KubernetesPod
- io.murano.apps.docker.DockerStandaloneHost

Information about the application itself (docker image and port that is
needed to be opened) is contained in the getContainer method. All other
actions for the application configuration are located at the
DockerStandaloneHost definition and its dependencies. Note that this
application doesn’t have a filename:Resources folder at all since the
installation is made by Docker itself.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Use-cases

Performing application interconnections

Murano can handle application interconnections installed on virtual machines.
The decision of how to combine applications is made by the author of
an application.

To illustrate the way such interconnection can be configured,
let’s analyze the mechanisms applied in WordPress application, which
uses MySql.

MySql is a very popular database and can be used in quite a number of various
applications. Instead of the creation of a database inside definition of the
WordPress application, it calls the methods from the MySQL class. At the same
time MySQL remains an independent application.

MySql has a number of methods:

	deploy

	createDatabase

	createUser

	assignUser

	getConnectionString

In the io.murano.apps.WordPress class definition the database property is a
contact for the io.murano.databases.MySql class. So, the database
configuration methods can be called with the parameters passed by the user
in the main method:

- $.database.createDatabase($.dbName)
- $.database.createUser($.dbUser, $.dbPassword)
- $.database.assignUser($.dbUser, $.dbName)

Any other methods of any other class can be invoked the same way to
make the proposal application installation algorithm clear and
constructive. Also, it allows not to duplicate the code in new applications.

Using application already installed on the image

Suppose you have everything already prepared on image. And you want to share this
image with others. This problem can be solved in several ways.

Let’s use the
HDPSandbox [https://github.com/openstack/murano-apps/tree/master/HDPSandbox/package]
application to illustrate how this can be done with Murano.

Note

An image may not contain murano-agent at all.

Prepare an application package of the structure:

|_ Classes
| |_ HDPSandbox.yaml
|
|_ UI
| |_ ui.yaml
|
|_ logo.png

Note

The Resources folder is not included in the package since the image
contains everything that user expects. So no extra instructions are needed
to be executed on murano-agent.

UI is provided for specifying the application name, which is used for the application
recognition in logging. And what is more, it contains the image name as a deployment
instruction template (object model) in the Application section:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11

	Application:
?:
 type: io.murano.apps.HDPSandbox
name: $.appConfiguration.name
instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 name: generateHostname($.instanceConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: 'hdp-sandbox'
 assignFloatingIp: true

Moreover, the unsupported flavors can be specified here, so that the user can
select only from the valid ones. Provide the requirements in the
corresponding section to do this:

requirements:
 min_disk: 50 (Gb)
 min_memory_mb: 4096 (Mb)
 min_vcpus: 1

After the UI form creation, and the HDPSandbox application deployment,
the VM with the predefined image is spawned. Such type of applications may
interact with regular applications. Thus, if you have an image with Puppet,
you can call the deploy method of the Puppet application and then puppet
manifests or any shell scripts on the freshly spawned VM.

The presence of the logo.png should never be underestimated, since it helps to make
your application recognizable among other applications included in the catalog.

Interacting with non-OpenStack services

This section tells about the interaction between an application and any non-OpenStack
services, that have an API.

External load-balancer

Suppose, you have powerful load-balancer on a real server. And you want to run
the application on an OpenStack VM. Murano can set up new applications to be managed
by that external load-balancer (LB). Let’s go into more details.

To implement this case the following apps are used:

	LbApp: its class methods call LB API

	WebApp: runs on the real LB

Several instances of WebApp are deployed with each of them calling
two methods:

- $.loadBalancer.createPool()
- $.loadBalancer.addMember($instance)
where $.loadBalancer is an instance of the LbApp class

The first method creates a pool and associates it with a virtual server.
This happens once only. The second one registers a member in the newly created pool.

It is also possible to perform other modifications to the LB configuration,
which are only restricted by the LB API functionality.

So, you need to specify the maximum instance number in the UI form related to the
WebApp application. All of them are subsequently added to the LB pool.
After the deployment, the LB virtual IP, by which an application is accessible,
is displayed.

Configuring Network Access for VMs

By default, each VM instance deployed by io.murano.resources.Instance class
or its descendants joins an environment’s default network. This network gets
created when the Environment is deployed for the first time, a subnet is
created in it and is uplinked to a router which is detected automatically based
on its name.

This behavior may be overridden in two different ways.

Using existing network as environment’s default

This option is available for users when they create a new environment in the
Dashboard. A dropdown control is displayed next to the input field prompting
for the name of environment. By default this control provides to create a new
network, but the user may opt to choose some already existing network to be the
default for the environment being created. If the network has more than one
subnet, the list will include all the available options with their CIDRs
shown. The selected network will be used as environment’s default, so no new
network will be created.

Note

Murano does not check the configuration or topology of the network selected
this way. It is up to the user to ensure that the network is uplinked to some
external network via a router - otherwise the murano engine will not be able
to communicate with the agents on the deployed VMs. If the Applications being
deployed require internet connectivity it is up to the user to ensure that
this net provides it, than DNS nameservers are set and accessible etc.

Modifying the App UI to prompt user for network

The application package may be designed to ask user about the network they want
to use for the VMs deployed by this particular application. This allows to
override the default environment’s network setting regardless of its value.

To do this, application developer has to include a network field into the
Dynamic UI definition of the app. The value returned by this field is a tuple
of network_id and a subnet_id. This values may be passed as the
input properties for io.murano.resources.ExistingNeutronNetwork object
which may be in its turn passed to an instance of
io.murano.resources.Instance as its network configuration.

The UI definition may look like this:

Templates:
 customJoinNet:
 - ?:
 type: io.murano.resources.ExistingNeutronNetwork
 internalNetworkName: $.instanceConfiguration.network[0]
 internalSubnetworkName: $.instanceConfiguration.network[1]
Application:
 ?:
 type: com.example.someApplicationName
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 networks:
 useEnvironmentNetwork: $.instanceConfiguration.network[0]=null
 useFlatNetwork: false
 customNetworks: switch($.instanceConfiguration.network[0], $=null=>list(), $!=null=>$customJoinNet)
Forms:
 - instanceConfiguration:
 fields:
 - name: network
 type: network
 label: Network
 description: Select a network to join. 'Auto' corresponds to a default environment's network.
 required: false
 murano_networks: translate

For more details on the Dynamic UI its controls and templates please refer to
its specification.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

FAQ

There are too many files in Murano package, why not to use a single
Heat Template?

To install a simple Apache service to a new VM, Heat Template is
definitely simpler. But the Apache service is useless without its
applications running under it. Thus, a new Heat Template is necessary
for every application that you want to run with Apache. In Murano,
you can compose a result software to install it on a VM on-the-fly:
it is possible to select an application that can run under Apache
dynamically. Or you can set a VM where Apache is installed as a
parameter. This way, the files in the application package allow
to compose compound applications with multiple configuration options.
For any single combination you need a separate Heat Template.

The Application section is defined in the UI form. Can I remove it?

No. The Application section is a template for Murano object model
which is the instruction that helps you to understand the
environment structure that you deploy. While filling the forms that
are auto-generated from the UI.yaml file, object model is
updated with the values entered by the user. Eventually, the Murano
engine receives the resulted object model (.json file) after the
environment is sent to the deploy.

The Templates section is defined in the UI form. What’s the purpose?

Sometimes, the user needs to create several instances with the same
configuration. A template defined by a variable in the
Templates section is multiplied by the value of the number of
instances that are set by the user. A YAQL repeat function is
used for this operation.

Some properties have Usage, others do not. What does this affect?

Usage indicates how a particular property is used. The default
value is In, so sometimes it is omitted. The Out property
indicates that it is not set from outside, but is calculated in
the class methods and is available for the read operation from
other classes. If you don’t want to initialize in the class
constructor, and the property has no default value, you specify
Out in the Usage.

Can I use multiple inheritance in my classes?

Yes. You can specify a list of parent classes instead of a single
string in the regular YAML notation. The list with one element is
also acceptable.

There are FullName and Name properties in the manifest file. What’s
the difference between them?

Name is displayed in the web UI catalog, and FullName is a
system name used by the engine to get the class definition and
resolve the class interconnections.

How does Murano know which class is the main one?

There is no main class term in the MuranoPL. Everything depends
on a particular object model and an instance class representing the
instance. Usually, an entry-point class has exactly the same name
as the package FullName, and it uses other classes.

What is the difference between $variable and $.variable in the class
definitions?

By default, $ represents a current object (similar to self
in Python or this in C++/Java/C#), so $.variable accesses
the object field/property. In contrast, $variable (without a dot)
means a local method variable. Note that $ can change its value
during execution of some YAQL functions like select, where it means
a current value. A more safe form is to use a reserved variable
$this instead of $. $this.variable always refers to an
object-level value in any context.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano Installation Guide

Content

	Prepare A Lab For Murano
	System prerequisites

	Lab Requirements

	Test Your Lab Host Performance

	Baseline Data

	Host Optimizations

	Installing and Running the Development Version

	Enabling in Devstack

	Installing and Running Manually
	Prepare Environment

	Install the API service and Engine

	Install Murano Dashboard

	Import Murano Applications

	SSL configuration
	HTTPS for Murano API

	SSL for RabbitMQ

	SSL for Murano Dashboard

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Installation Guide

Prepare A Lab For Murano

This section provides basic information about lab’s system requirements.
It also contains a description of a test which you may use to check if
your hardware fits the requirements. To do this, run the test and
compare the results with baseline data provided.

System prerequisites

Supported Operating Systems

	Ubuntu Server 12.04 LTS

	RHEL/CentOS 6.4

System packages are required for Murano

Ubuntu

	gcc

	python-pip

	python-dev

	libxml2-dev

	libxslt-dev

	libffi-dev

	libpq-dev

	python-openssl

	mysql-client

CentOS

	gcc

	python-pip

	python-devel

	libxml2-devel

	libxslt-devel

	libffi-devel

	postgresql-devel

	pyOpenSSL

	mysql

Lab Requirements

	Criteria
	Minimal
	Recommended

	CPU
	4 core @ 2.4 GHz
	24 core @ 2.67 GHz

	RAM
	8 GB
	24 GB or more

	HDD
	2 x 500 GB (7200 rpm)
	4 x 500 GB (7200 rpm

	RAID
	Software RAID-1 (use mdadm as
it will improve read
performance almost two times)
	Hardware RAID-10

Table: Hardware requirements

There are a few possible storage configurations except the shown above.
All of them were tested and were working well.

	1x SSD 500+ GB

	
	1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto

	the HDD and mount the SSD drive to folder where VM images are)

	1x HDD (15000 rpm) 500+ GB

Test Your Lab Host Performance

We have measured time required to boot 1 to 5 instances of Windows
system simultaneously. You can use this data as the baseline to check if
your system is fast enough.

You should use sysprepped images for this test, to simulate VM first
boot.

Steps to reproduce test:

	Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let’s
assume that its name is ws-2012-std.qcow2

	Ensure that there is NO KVM PROCESSES on the host. To do this, run
command:

ps aux | grep kvm

	Make 5 copies of Windows image file:

for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

	Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

	Start ONE instance with command below (as root) and measure time
between VM’s launch and the moment when Server Manager window
appears. To view VM’s desktop, connect with VNC viewer to your host
to VNC screen :1 (port 5901):

sudo ./start-vm.sh 1

	Turn VM off. You may simply kill all KVM processes by

sudo killall kvm

	Start FIVE instances with command below (as root) and measure time
interval between ALL VM’s launch and the moment when LAST Server Manager
window appears. To view VM’s desktops, connect with VNC viewer to your
host to VNC screens :1 thru :5 (ports 5901-5905):

sudo ./start-vm.sh 5

	Turn VMs off. You may simply kill all KVM processes by

sudo killall kvm

Baseline Data

The table below provides baseline data which we’ve got in our
environment.

Avg. Time refers to the lab with recommended hardware configuration,
while Max. Time refers to minimal hardware configuration.

	
	Boot ONE instance
	Boot FIVE instances

	Avg. Time
	3m:40s
	8m

	Max. Time
	5m
	20m

Host Optimizations

Default KVM installation could be improved to provide better
performance.

The following optimizations may improve host performance up to 30%:

	change default scheduler from CFQ to Deadline

	use ksm

	use vhost-net

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Installation Guide

Installing and Running the Development Version

The devstack [http://docs.openstack.org/developer/devstack/] directory contains the files necessary to integrate
Murano with Devstack [http://docs.openstack.org/developer/devstack/].

Enabling in Devstack

	Download DevStack [http://docs.openstack.org/developer/devstack/]:

git clone https://git.openstack.org/openstack-dev/devstack
cd devstack

	Edit local.conf to enable murano devstack plugin:

> cat local.conf
[[local|localrc]]
enable_plugin murano git://git.openstack.org/openstack/murano

	If you want Murano Cloud Foundry Broker API service enabled, add the
following line to local.conf:

enable_service murano-cfapi

	(Optional) To import Murano packages when DevStack is up, define an ordered
list of packages FQDNs in local.conf. Make sure to list all package
dependencies. These packages will by default be imported from the murano-apps
git repository.

Example:

MURANO_APPS=io.murano.apps.apache.Tomcat,io.murano.apps.Guacamole

You can also use the variables MURANO_APPS_REPO and MURANO_APPS_BRANCH
to configure the git repository which will be used as the source for the
imported packages.

	Install DevStack:

./stack.sh

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Installation Guide

Installing and Running Manually

Prepare Environment

Install Prerequisites

First you need to install a number of packages with your OS package manager.
The list of packages depends on the OS you use.

Ubuntu

sudo apt-get install python-pip python-dev \
 libmysqlclient-dev libpq-dev \
 libxml2-dev libxslt1-dev \
 libffi-dev

Fedora

Note

Fedora support wasn’t thoroughly tested. We do not guarantee that murano
will work on Fedora.

sudo yum install gcc python-setuptools python-devel python-pip

CentOS

sudo yum install gcc python-setuptools python-devel
sudo easy_install pip

Install tox

sudo pip install tox

Install And Configure Database

Murano can use various database types on the back end. For development purposes
SQLite is enough in most cases. For production installations you should use
MySQL or PostgreSQL databases.

Warning

Although murano could use a PostgreSQL database on the back end, it wasn’t
thoroughly tested and should be used with caution.

To use a MySQL database you should install it and create an empty database first:

apt-get install python-mysqldb mysql-server

mysql -u root -p

mysql> CREATE DATABASE murano;
mysql> GRANT ALL PRIVILEGES ON murano.* TO 'murano'@'localhost' \
 IDENTIFIED BY 'MURANO_DBPASS';
mysql> exit;

Install the API service and Engine

	Create a folder which will hold all Murano components.

mkdir ~/murano

	Clone the murano git repository to the management server.

cd ~/murano
git clone git://git.openstack.org/openstack/murano

	Set up the murano config file

Murano has a common config file for API and Engine services.

First, generate a sample configuration file, using tox

cd ~/murano/murano
tox -e genconfig

And make a copy of it for further modifications

cd ~/murano/murano/etc/murano
ln -s murano.conf.sample murano.conf

	Edit murano.conf with your favorite editor. Below is an example
which contains basic settings your are likely need to configure.

Note

The example below uses SQLite database. Edit [database] section
if you want to use other database type.

[DEFAULT]
debug = true
verbose = true
rabbit_host = %RABBITMQ_SERVER_IP%
rabbit_userid = %RABBITMQ_USER%
rabbit_password = %RABBITMQ_PASSWORD%
rabbit_virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%
driver = messagingv2

...

[database]
backend = sqlalchemy
connection = sqlite:///murano.sqlite

...

[keystone]
auth_url = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'

...

[keystone_authtoken]
auth_uri = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'
auth_host = '%OPENSTACK_HOST_IP%'
auth_port = 5000
auth_protocol = http
admin_tenant_name = %OPENSTACK_ADMIN_TENANT%
admin_user = %OPENSTACK_ADMIN_USER%
admin_password = %OPENSTACK_ADMIN_PASSWORD%

...

[murano]
url = http://%YOUR_HOST_IP%:8082

[rabbitmq]
host = %RABBITMQ_SERVER_IP%
login = %RABBITMQ_USER%
password = %RABBITMQ_PASSWORD%
virtual_host = %RABBITMQ_SERVER_VIRTUAL_HOST%

[networking]
default_dns = 8.8.8.8 # In case openstack neutron has no default
 # DNS configured

	Create a virtual environment and install Murano prerequisites. We will use
tox for that. Virtual environment will be created under .tox directory.

cd ~/murano/murano
tox

	Create database tables for Murano.

cd ~/murano/murano
tox -e venv -- murano-db-manage \
 --config-file ./etc/murano/murano.conf upgrade

	Open a new console and launch Murano API. A separate terminal is
required because the console will be locked by a running process.

cd ~/murano/murano
tox -e venv -- murano-api --config-file ./etc/murano/murano.conf

	Import Core Murano Library.

cd ~/murano/murano
pushd ./meta/io.murano
zip -r ../../io.murano.zip *
popd
tox -e venv -- murano --murano-url http://localhost:8082 \
 package-import --is-public io.murano.zip

	Open a new console and launch Murano Engine. A separate terminal is
required because the console will be locked by a running process.

cd ~/murano/murano
tox -e venv -- murano-engine --config-file ./etc/murano/murano.conf

Register in Keystone

To make the murano API available to all OpenStack users, you need to register the
Application Catalog service within the Identity service.

	Add application-catalog service:

openstack service create --name murano --description "Application Catalog for OpenStack" application-catalog

	Provide an endpoint for that service:

openstack endpoint create --region RegionOne --publicurl http://<murano-ip>:8082 --internalurl http://<murano-ip>:8082 --adminurl http://<murano-ip>:8082 <MURANO-SERVICE-ID>

where MURANO-SERVICE-ID is the unique service number that you can find
in the openstack service create output.

Note

URLs (publicurl, internalurl and adminurl) may be different
depending on your environment.

Install Murano Dashboard

Murano API & Engine services provide the core of Murano. However, your need a
control plane to use it. This section describes how to install and run Murano
Dashboard.

	Clone the repository with Murano Dashboard.

cd ~/murano
git clone git://git.openstack.org/openstack/murano-dashboard

	Clone horizon repository

git clone git://git.openstack.org/openstack/horizon

	Create venv and install muranodashboard as editable module.

cd horizon
tox -e venv -- pip install -e ../murano-dashboard

	Copy muranodashboard plugin file.

This step enables murano panel in horizon dashboard.

cp ../murano-dashboard/muranodashboard/local/_50_murano.py openstack_dashboard/local/enabled/

	Prepare local settings.

To get more information, check out official
horizon documentation [http://docs.openstack.org/developer/horizon/topics/settings.html#openstack-settings-partial].

cp openstack_dashboard/local/local_settings.py.example openstack_dashboard/local/local_settings.py

	Customize local settings according to OpenStack installation.

...
ALLOWED_HOSTS = '*'

Provide OpenStack Lab credentials
OPENSTACK_HOST = '%OPENSTACK_HOST_IP%'

...

Set secret key to prevent it's generation
SECRET_KEY = 'random_string'

...

DEBUG_PROPAGATE_EXCEPTIONS = DEBUG

Also, it’s better to change default session backend from browser cookies to database to avoid
issues with forms during creating applications:

...
DATABASES = {
 'default': {
 'ENGINE': 'django.db.backends.sqlite3',
 'NAME': 'murano-dashboard.sqlite',
 }
}

SESSION_ENGINE = 'django.contrib.sessions.backends.db'

If you do not plan to get murano service from keystone application catalog,
provide where murano-api service is running:

...
MURANO_API_URL = 'http://localhost:8082'

	Perform database synchronization.

Optional step. Needed in case you set up database as a session backend.

tox -e venv -- python manage.py migrate --noinput

You can reply ‘no’ since for development purpose separate user is not needed.

	Run Django server at 127.0.0.1:8000 or provide different IP and PORT parameters.

tox -e venv -- python manage.py runserver <IP:PORT>

Development server will be restarted automatically on every code change.

	Open dashboard using url http://localhost:8000

Import Murano Applications

Applications need to be imported
to fill the catalog. This can be done via the dashboard, and via CLI:

	Clone the murano apps repository.

cd ~/murano
git clone git://git.openstack.org/openstack/murano-apps

	Import every package you need from this repository, using the command
below.

cd ~/murano/murano
pushd ../murano-apps/Docker/Applications/%APP-NAME%/package
zip -r ~/murano/murano/app.zip *
popd
tox -e venv -- murano --murano-url http://localhost:8082 package-import app.zip

Network Configuration

Murano may work in various networking environments and is capable to detect the
current network configuration and choose the appropriate settings automatically.
However, some additional actions are required to support advanced scenarios.

Nova network support

Nova Network is simplest networking solution, which has limited capabilities
but is available on any OpenStack deployment without the need to deploy any
additional components.

When a new Murano Environment is created, Murano checks if a dedicated
networking service (i.e. Neutron) exists in the current OpenStack deployment.
It relies on Keystone’s service catalog for that.
If such a service is not present, Murano automatically falls back to Nova
Network. No further configuration is needed in this case, all the VMs spawned
by Murano will be joining the same Network.

Neutron support

If Neutron is installed, Murano enables its advanced networking features that
give you ability to not care about configuring networks for your application.

By default it will create an isolated network for each environment and join
all VMs needed by your application to that network. To install and configure application in
just spawned virtual machine Murano also requires a router connected to the external network.

Automatic Neutron network configuration

To create router automatically, provide the following parameters in config file:

[networking]

external_network = %EXTERNAL_NETWORK_NAME%
router_name = %MURANO_ROUTER_NAME%
create_router = true

To figure out the name of the external network, perform the following command:

openstack network list --external

During the first deploy, required networks and router with specified name will be created and set up.

Manual neutron network configuration

	Step 1. Create public network

	First, you need to check for existence of external networks. Login as admin and go to
Project -> Network -> Network Topology. And check network type in network details at Admin -> Networks -> Network name page.
The same action can be done via CLI by running openstack network list –external. To create new external network examine OpenStack documentation [http://docs.openstack.org/cli-reference/openstack.html#openstack-network-create].

[image: ../_images/1.png]

	Step 2. Create local network

	Go to Project -> Network -> Networks.

	Click Create Network and fill the form.

[image: ../_images/2.png]
[image: ../_images/3.png]

	Step 3. Create router

	Go to Project -> Network -> Routers

	Click “Create Router”

	In the “Router Name” field, enter the murano-default-router

[image: ../_images/4_1.png]
If you specify a name other than murano-default-router, it will be necessary to change the following settings in the config file:

[networking]

router_name = %SPECIFIED_NAME%
create_router = false

	Click on the specified router name

	In the opened view click “Add interface”

	Specify the subnet and IP address

[image: ../_images/4_2.png]
And check the result in Network Topology tab.

[image: ../_images/5.png]

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Installation Guide

SSL configuration

Murano components are able to work with SSL. This chapter will help you
to make proper settings with SSL configuration.

HTTPS for Murano API

SSL for Murano API service can be configured in ssl section in
/etc/murano/murano.conf. Just point to a valid SSL certificate.
See the example below:

[ssl]
cert_file = PATH
key_file = PATH
ca_file = PATH

	cert_file Path to the certificate file the server should use when binding to an SSL-wrapped socket.

	key_file Path to the private key file the server should use when binding to an SSL-wrapped socket.

	ca_file Path to the CA certificate file the server should use to validate client certificates provided during an SSL handshake. This is ignored if cert_file and “key_file” are not set.

The use of SSL is automatically started after point to HTTPS protocol
instead of HTTP during registration Murano API service in endpoints
(Change publicurl argument to start with https://).
SSL for Murano API is implemented like in any other OpenStack component.
This realization is based on ssl python module so more information about
it can be found here [https://docs.python.org/2/library/ssl.html].

SSL for RabbitMQ

All Murano components communicate with each other by RabbitMQ. This
interaction can be encrypted with SSL. By default all messages in Rabbit
MQ are not encrypted. Each RabbitMQ Exchange should be configured
separately.

Murano API <-> Rabbit MQ exchange <-> Murano Engine

Edit ssl parameters in default section of /etc/murano/murano.conf. Set rabbit_use_ssl option to true and configure ssl kombu parameters.
Specify the path to the SSL keyfile and SSL CA certificate in a regular format: /path/to/file without quotes or leave it empty to
allow self-signed certificates.

connect over SSL for RabbitMQ (boolean value)
#rabbit_use_ssl=false

SSL version to use (valid only if SSL enabled). valid values
are TLSv1, SSLv23 and SSLv3. SSLv2 may be available on some
distributions (string value)
#kombu_ssl_version=

SSL key file (valid only if SSL enabled) (string value)
#kombu_ssl_keyfile=

SSL cert file (valid only if SSL enabled) (string value)
#kombu_ssl_certfile=

SSL certification authority file (valid only if SSL enabled)
(string value)
#kombu_ssl_ca_certs=

Murano Agent -> Rabbit MQ exchange

In main murano configuration file there is a section ,named rabbitmq, that is responsible for set up communication between Murano Agent and Rabbit MQ.
Just set ssl parameter to True to enable ssl.

[rabbitmq]
host = localhost
port = 5672
login = guest
password = guest
virtual_host = /
ssl = True

If you want to configure Murano Agent in a different way change
the default template. It can be found in Murano Core Library, located at http://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Resources/Agent-v1.template. Take
a look at appSettings section:

<appSettings>
 <add key="rabbitmq.host" value="%RABBITMQ_HOST%"/>
 <add key="rabbitmq.port" value="%RABBITMQ_PORT%"/>
 <add key="rabbitmq.user" value="%RABBITMQ_USER%"/>
 <add key="rabbitmq.password" value="%RABBITMQ_PASSWORD%"/>
 <add key="rabbitmq.vhost" value="%RABBITMQ_VHOST%"/>
 <add key="rabbitmq.inputQueue" value="%RABBITMQ_INPUT_QUEUE%"/>
 <add key="rabbitmq.resultExchange" value=""/>
 <add key="rabbitmq.resultRoutingKey" value="%RESULT_QUEUE%"/>
 <add key="rabbitmq.durableMessages" value="true"/>

 <add key="rabbitmq.ssl" value="%RABBITMQ_SSL%"/>
 <add key="rabbitmq.allowInvalidCA" value="true"/>
 <add key="rabbitmq.sslServerName" value=""/>

 </appSettings>

Desired parameter should be set directly to the value of the key that
you want to change. Quotes are need to be kept. Thus you can change
“rabbitmq.ssl” and “rabbitmq.port” values to make Rabbit MQ work with
this exchange in a different from Murano-Engine way.
After modification, don’t forget to zip and re-upload core library.

SSL for Murano Dashboard

If you are going not to use self-signed certificates additional
configuration do not need to be done. Just point https in the URL.
Otherwise, set MURANO_API_INSECURE = True on horizon config. You can
find it in /etc/openstack-dashboard/local_settings.py..

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano workflow

What happens when a component is being created in an environment? This document
will use the Telnet package referenced elsewhere as an example. It assumes the
package has been previously uploaded to Murano.

Step 1. Begin deployment

The API sends a message that instructs murano-engine, the workflow component of
Murano, to deploy an environment. The message consists of a JSON document
containing the class types required to create the environment, as well as any
parameters the user selected prior to deployment. Examples are:

	An Class: Environment object (io.murano.Environment) with a name

	An object (or objects) referring to networks that need to be created
or that already exist

	A list of Applications (e.g. io.murano.apps.linux.Telnet). Each Application
will contain, or will reference, anything it requires. The Telnet example,
has a property called instance whose contract states it must be of type
io.murano.resources.Instance. In turn the Instance has properties it requires
(like a name, a flavor, a keypair name).

Each object in this model has an ID so that the state of each can be tracked.

The classes that are required are determined by the application’s manifest. In
the Telnet example only one class is explicitly
required; the telnet application definition.

The Telnet class definition refers to several other
classes. It extends Class: Application and it requires an Class: Instance.
It also refers to the Class: Environment in which it will be contained,
sends reports through the environment’s io.murano.system.StatusReporter
and adds security group rules to the SecurityGroupManager.

Step 2. Load definitions

The engine makes a series of requests to the API to download packages it
needs. These requests pass the class names the environment will require, and
during this stage the engine will validate that all the required classes exist
and are accessible, and will begin creating them. All Classes whose workflow
sections contain an initialize fragment are then initialized. A typical initialization
order would be (defined by the ordering in the model sent to the murano-engine):

	Class: Network

	Class: Instance

	Class: Object

	Class: Environment

Step 3. Deploy resources

The workflow defined in Environment.deploy is now executed. The first step
typically is to initialize the messaging component that will pay attention
to murano-agent (see later). The next stage is to deploy each application the
environment knows about in turn, by running deploy() for each application.
This happens concurrently for all the applications belonging to an instance.

In the Telnet example (under Workflow), the workflow
dictates sending a status message (via the environment’s reporter, and
configuring some security group rules. It is at this stage that the engine
first contacts Heat to request information about any pre-existing resources
(and there will be none for a fresh deploy) before updating the new Heat
template with the security group information.

Next it instructs the engine to deploy the instance it relies on. A large
part of the interaction with Heat is carried out at this stage; the first
thing an Instance does is add itself to the environment’s network. Since the
network doesn’t yet exist, murano-engine runs the neutron network workflow
which pushes template fragments to Heat. These fragments can define:
* Networks
* Subnets
* Router interfaces

Once this is done the Instance itself constructs a Heat template fragment and
again pushes it to Heat. The Instance will include a userdata script that
is run when the instance has started up, and which will configure and run
murano-agent.

Step 4. Software configuration via murano-agent

If the workflow includes murano-agent components (and the telnet example does),
typically the application workflow will execute them as the next step.

In the telnet example, the workflow instructs the engine to load
DeployTelnet.yaml as YAML, and pass it to the murano-agent running on the
configured instance. This causes the agent to execute the EntryPoint defined
in the agent script (which in this case deploys some packages and sets some
iptables rules).

Step 5. Done

After execution is finished, the engine sends a last message indicating that
fact; the API receives it and marks the environment as deployed.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano Policy Enforcement

	Murano Policy Enforcement Example
	Introduction

	Example

	Murano Policy Based Modification of Environment Example
	Introduction

	Example

	Murano Policy Enforcement Setup Guide
	Introduction

	Setup

	Murano Policy Enforcement - Developer Guide
	Model Decomposition

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Policy Enforcement

Murano Policy Enforcement Example

Introduction

As a part of the policy guided fulfillment, we need to enforce policies on the Murano environment deployment.
If the policy enforcement failed, deployment fails. Policies are defined and evaluated in the Congress [https://wiki.openstack.org/wiki/Congress] project.
The policy language for Congress is Datalog. The congress policy consists of Datalog rules and facts.
The cloud administrator defines policies in Congress. Examples of such policies:

	all VM instances must have at least 2GB of RAM

	all Apache server instances must have given certified version

	data placement policy: all DB instances must be deployed at given geo location (enforcing some law restriction on data placement)

These policies are evaluated over data in the form of tables (Congress data structures). A deployed Murano environment must be
decomposed to Congress data structures. The decomposed environment is sent to congress for simulation. Congress simulates
whether the resulting state does not violate any defined policy. Deployment is aborted in case of policy violation.
Murano uses two predefined policies in Congress:

	murano_system contains rules and facts of policies defined by cloud admin.

	murano contains only facts/records reflecting resulting state after deployment of an environment.

Records in the murano policy are queried by rules from the murano_system policy. The congress simulation does not create any
records in the murano policy. Congress will only give feedback on whether the resulting state violates the policy or not.

Example

In this example we will create rules that prohibit creating VM instances with flavor with more than 2048 MB ram.

Prior creating rules your OpenStack installation has to be configured as described in Setting up policy enforcement.

Example rules

	Create predeploy_errors rule

Policy validation engine checks rule predeploy_errors and rules referenced inside this rule are evaluated by congress engine.

We create example rule which references flavor_ram rule we create afterwards. It disables flavors with ram higher than 2048 MB and constructs message returned to the user in msg variable.

predeploy_errors(eid, obj_id, msg) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "flavor", flavor_name),
 flavor_ram(flavor_name, ram),
 gt(ram, 2048),
 murano:properties(obj_id, "name", obj_name),
 concat(obj_name, ": instance flavor has RAM size over 2048MB", msg)

Use this command to create the rule:

congress policy rule create murano_system "predeploy_errors(eid, obj_id, msg) :- murano:objects(obj_id, pid, type), murano:objects(eid, tid, \"io.murano.Environment\"), murano:connected(eid, pid), murano:properties(obj_id, \"flavor\", flavor_name), flavor_ram(flavor_name, ram), gt(ram, 2048), murano:properties(obj_id, \"name\", obj_name), concat(obj_name, \": instance flavor has RAM size over 2048MB\", msg)"

In this example we used data from policy murano which is represented by murano:properties. There are stored rows with decomposition of model representing murano application. We also used built-in functions of congress - gt - greater-than, and concat which joins two strings into variable.

	Create flavor_ram rule

We create the rule that resolves parameters of flavor by flavor name and returns ram parameter. It uses rule flavors from nova policy. Data in this policy is filled by nova datasource driver.

Use this command to create the rule:

congress policy rule create murano_system "flavor_ram(flavor_name, ram) :- nova:flavors(id, flavor_name, cpus, ram)"

Example rules in murano app deployment

	Create environment with simple application

	Choose Git application from murano applications

	Create with “m1.medium” instance flavor which uses 4096MB so validation will fail

[image: ../_images/new-instance.png]

	Deploy environment

	Environment is in Status: Deploy FAILURE

	Check deployment log:

[image: ../_images/deployment-log.png]

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Policy Enforcement

Murano Policy Based Modification of Environment Example

Introduction

Goal is to be able to define modification of an environment by Congress policies prior
deployment. This allows to add components (for example monitoring), change/set properties
(for example to enforce given zone, flavors, ...) and relationships into environment,
so modified environment is after that deployed.

Example Use Cases:

	
	install monitoring agent on each VM instance (adding component with the agent and creating relationship between

	agent and instance)

	
	all Apache server instances must have given certified version (version property is set on all Apache applications

	within environment to given version)

These policies are evaluated over data in the form of tables (Congress data structures). A deployed Murano environment must be
decomposed to Congress data structures. The decomposed environment is sent to congress for simulation. Congress simulates
whether the resulting state needs to be modified. In case that modifications of deployed environment are needed congress returns
list of actions which needs to be performed on given environment prior the deployment. Actions and its parameters are returned
from congress in YAML format.

Example of action specification returned from congress:

	set keyname property on instance identified by object_id to value production-key

set-property: {object_id: c46770dec1db483ca2322914b842e50f, prop_name: keyname, value: production-key}

Administrator can use above one line action specification as output of congress rules. This action specification
is parsed in murano. Given action class is loaded. Action instance is created. Parsed parameters are supplied to action
__init__ method. Then action is performed on given environment (modify method).

Example

In this example assume that we are in production environment. Administrator needs to enforce that all VM instances
will be deployed with secure key pair used for production environment.

Prior creating rules your OpenStack installation has to be configured as described in Setting up policy enforcement.

Example rules

	Create predeploy_modify rule

Policy validation engine checks rule predeploy_modify and rules referenced inside this rule are evaluated by congress engine.

predeploy_modify(eid, obj_id, action) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "keyname", kn),
 concat("set-property: {object_id: ", obj_id, first_part),
 concat(first_part, ", prop_name: keyname, value: production-key}", action)

Use this command to create the rule:

congress policy rule create murano_system 'predeploy_modify(eid, obj_id, action):-murano:objects(obj_id, pid, type), murano_env_of_object(obj_id, eid), murano:properties(obj_id, "keyname", kn), concat("set-property: {object_id: ", obj_id, first_part), concat(first_part, ", prop_name: keyname, value: production-key}", action)'

Key pair production-key must exists or change it to any existing key pair.

	Deploy environment and check modification

Deploy any environment and check that instances within the environment were deployed with the key pair specified above.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Policy Enforcement

Murano Policy Enforcement Setup Guide

Introduction

Before policy enforcement feature will be used, it has to be configured. It has
to be enabled in Murano configuration, and Congress has to have created policy
and rules used during policy evaluation.

This document does not cover Murano and Congress configuration options useful
for Murano application deployment (e.g., DNS setup, floating IPs, ...).

Setup

This setup uses openstack command. You can use copy-paste for commands.

If you are using DevStack installation, you can setup environment using
following command.

source devstack/openrc admin admin

	Murano

Enable policy enforcement in Murano:

	edit /etc/murano/murano.conf to enable enable_model_policy_enforcer
option:

[engine]
Enable model policy enforcer using Congress (boolean value)
enable_model_policy_enforcer = true

	restart murano-engine

	Congress

Policy enforcement uses following policies:

	murano policy

Policy is created by Congress’ murano datasource driver, which is part of
Congress. It has to be configured for the OpenStack tenant where Murano
application will be deployed. Datasource driver retrieves deployed Murano
environments and populates Congress’ murano policy tables
(Murano policy enforcement internals).

Following commands removes existing murano policy, and creates new
murano policy configured for tenant demo.

. ~/devstack/openrc admin admin # if you are using devstack, otherwise you have to setup env manually

remove default murano datasource configuration, because it is using 'admin' tenant. We need 'demo' tenant to be used.
openstack congress datasource delete murano
openstack congress datasource create murano murano --config username="$OS_USERNAME" --config tenant_name="demo" --config password="$OS_PASSWORD" --config auth_url="$OS_AUTH_URL"

	
	murano_system policy

	Policy holds user defined rules for policy enforcement. Rules typically
uses tables from other policies (e.g., murano, nova, keystone, ...).
Policy enforcement expects predeploy_errors table here which is created
by creating predeploy_errors rules.

Following command creates murano_system rule

create murano_system policy
openstack congress policy create murano_system

resolves objects within environment
openstack congress policy rule create murano_system 'murano_env_of_object(oid,eid):-murano:connected(eid,oid), murano:objects(eid,tid,"io.murano.Environment")'

	
	murano_action policy with internal management rules

	Following rules are used internally in policy enforcement request.
These rules are stored in dedicated murano_action policy which is
created here.
They are important for case when an environment is deployed again.

create murano_action policy
openstack congress policy create murano_action --kind action

register action deleteEnv
openstack congress policy rule create murano_action 'action("deleteEnv")'

states
openstack congress policy rule create murano_action 'murano:states-(eid, st) :- deleteEnv(eid), murano:states(eid, st)'

parent_types
openstack congress policy rule create murano_action 'murano:parent_types-(tid, type) :- deleteEnv(eid), murano:connected(eid, tid),murano:parent_types(tid,type)'
openstack congress policy rule create murano_action 'murano:parent_types-(eid, type) :- deleteEnv(eid), murano:parent_types(eid,type)'

properties
openstack congress policy rule create murano_action 'murano:properties-(oid, pn, pv) :- deleteEnv(eid), murano:connected(eid, oid), murano:properties(oid, pn, pv)'
openstack congress policy rule create murano_action 'murano:properties-(eid, pn, pv) :- deleteEnv(eid), murano:properties(eid, pn, pv)'

objects
openstack congress policy rule create murano_action 'murano:objects-(oid, pid, ot) :- deleteEnv(eid), murano:connected(eid, oid), murano:objects(oid, pid, ot)'
openstack congress policy rule create murano_action 'murano:objects-(eid, tnid, ot) :- deleteEnv(eid), murano:objects(eid, tnid, ot)'

relationships
openstack congress policy rule create murano_action 'murano:relationships-(sid, tid, rt) :- deleteEnv(eid), murano:connected(eid, sid), murano:relationships(sid, tid, rt)'
openstack congress policy rule create murano_action 'murano:relationships-(eid, tid, rt) :- deleteEnv(eid), murano:relationships(eid, tid, rt)'

connected
openstack congress policy rule create murano_action 'murano:connected-(tid, tid2) :- deleteEnv(eid), murano:connected(eid, tid), murano:connected(tid,tid2)'
openstack congress policy rule create murano_action 'murano:connected-(eid, tid) :- deleteEnv(eid), murano:connected(eid,tid)'

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Murano Policy Enforcement

Murano Policy Enforcement - Developer Guide

This document describes internals of murano policy enforcement.

Model Decomposition

Models of Murano applications are transformed to set of rules that are processed by congress. This represent data for policy validation.

There are several “tables” created in murano policy for different kind of rules:

	murano:objects(object_id, parent_id, type_name)

	murano:properties(object_id, property_name, property_value)

	murano:relationships(source, target, name)

	murano:connected(source, target)

	murano:parent_types(object_id, parent_type_name)

	murano:states(environment_id, state)

murano:objects(object_id, parent_id, type_name)

This rule is used for representation of all objects in Murano model (environment, applications, instances, ...).
Value of property type is used as type_name parameter:

name: wordpress-env
'?': {type: io.murano.Environment, id: 83bff5ac}
applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}

Transformed to these rules:

	murano:objects+("83bff5ac", "tenant_id", "io.murano.Environment")

	murano:objects+("83bff5ac", "e7a13d3c", "io.murano.databases.MySql")

Note

The owner of the environment is a tenant

murano:properties(object_id, property_name, property_value)

Each object can have properties. In this example we have application with one property:

applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}
database: wordpress

Transformed to this rule:

	murano:properties+("e7a13d3c", "database", "wordpress")

Inner properties are also supported using dot notation:

instance:
'?': {id: 825dc61d, type: io.murano.resources.LinuxMuranoInstance}
networks:
 useFlatNetwork: false

Transformed to this rule:

	murano:properties+("825dc61d", "networks.useFlatNetwork", "False")

If model contains list of values it is represented as set of multiple rules:

instances:
- '?': {id: be3c5155, type: io.murano.resources.LinuxMuranoInstance}
networks:
 customNetworks: [10.0.1.0, 10.0.2.0]

Transformed to these rules:

	murano:properties+("be3c5155", "networks.customNetworks", "10.0.1.0")

	murano:properties+("be3c5155", "networks.customNetworks", "10.0.2.0")

murano:relationships(source, target, name)

Murano app models can contain references to other applications. In this example WordPress application references MySQL in property “database”:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
- '?':
 id: 50fa68ff
 type: io.murano.apps.WordPress
 database: 0aafd67e

Transformed to this rule:

	murano:relationships+("50fa68ff", "0aafd67e", "database")

Note

For property “database” we do not create rule murano:properties+.

Also if we define inner object inside other object, they will have relationship between them:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}

Transformed to this rule:

	murano:relationships+("0aafd67e", "ed8df2b0", "instance")

There are special relationships “services” from the environment to its applications:

	murano:relationships+("env_id", "app_id", "services")

murano:connected(source, target)

This table stores both direct and indirect connections between instances. It is derived from the murano:relationships:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}
- '?':
 id: 50fa68ff
 type: io.murano.apps.WordPress
 database: 0aafd67e

Transformed to rules:

	murano:connected+("50fa68ff", "0aafd67e") # WordPress to MySql

	murano:connected+("50fa68ff", "ed8df2b0") # WordPress to LinuxMuranoInstance

	murano:connected+("0aafd67e", "ed8df2b0") # MySql to LinuxMuranoInstance

murano:parent_types(object_id, parent_name)

Each object in murano has a class type and these classes can inherit from one or more parents:

e.g. LinuxMuranoInstance > LinuxInstance > Instance

So this model:

instances:
- '?': {id: be3c5155, type: LinuxMuranoInstance}

Transformed to these rules:

	murano:objects+("...", "be3c5155", "LinuxMuranoInstance")

	murano:parent_types+("be3c5155", "LinuxMuranoInstance")

	murano:parent_types+("be3c5155", "LinuxInstance")

	murano:parent_types+("be3c5155", "Instance")

Note

Type of object is also repeated among parent types (LinuxMuranoInstance in example) for easier handling of user-created rules.

Note

If type inherits from more than one parent and those parents inherit from one common type, parent_type rule is included only once for common type.

murano:states(environment_id, state)

Currently only one record for environment is created:

	murano:states+("uugi324", "pending")

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Building Murano Image

	MS Windows image builder for OpenStack Murano
	Introduction

	MS Windows Versions

	Getting Started

	Run

	Use cases

	Linux Image

	Upload image into glance
	Murano image types

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Building Murano Image

MS Windows image builder for OpenStack Murano

Introduction

This repository contains MS Windows templates, powershell scripts and bash scripted logic used to create qcow2 images
for QEMU/KVM based virtual machines used in OpenStack.

MS Windows Versions

Supported by builder versions with en_US localization:

	Windows 2012 R2

	Windows 2012 R2 Core

	Windows 2008 R2

	Windows 2008 R2 Core

Getting Started

Trial versions of Windows 2008 R2 / 2012 R2 used by default. You could use these images for 180 days without activation.
You could download evaluation versions from official Microsoft website:

	[Windows 2012 R2 - download] [https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2012-r2]

	[Windows 2008 R2 - download] [https://www.microsoft.com/en-us/download/details.aspx?id=11093]

System requirements

	Debian based Linux distribution, like Ubuntu, Mint and so on.

	Packages required:
qemu-kvm virt-manager virt-goodies virtinst bridge-utils libvirt-bin
uuid-runtime samba samba-common cifs-utils

	User should be able to run sudo without password prompt!

sudo echo "${USER} ALL = NOPASSWD: ALL" > /etc/sudoers.d/${USER}
sudo chmod 440 /etc/sudoers.d/${USER}

	Free disk space > 50G on partition where script will spawn virtual machines because of 40G required by virtual
machine HDD image.

	Internet connectivity.

	Samba shared resource.

Configuring builder

Configuration parameters to tweak:

[default]

	workdir - place where script would prepare all software required by build scenarios. By default is not set,
i.e. script directory would used as root of working space.

	vmsworkdir - must contain valid path, this parameter tells script where it should spawn virtual machines.

	runparallel - true of false, false set by default. This parameter describes how to start virtual machines,
one by one or in launch them in background.

[samba]

	mode - local or remote. In local mode script would try to install and configure Samba server locally. If set
to remote, you should also provide information about connection.

	host - in local mode - is 192.168.122.1, otherwise set proper ip address.

	user - set to guest by default in case of guest rw access.

	domain - Samba server user domain, if not set host value used.

	password - Samba server user password.

	image-builder-share - Samba server remote directory.

MS Windows install preparation:

[win2k12r2] or [win2k8r2] - shortcuts for 2012 R2 and 2008 R2.

	enabled - true of false, include or exclude release processing by script.

	editions - standard, core or both(space used as delimiter).

	iso - local path to iso file

By default [win2k8r2] - disabled, if you need you can enable this release in config.ini file.

Run

Preparation

Run chmod +x *.sh in builder directory to make script files executable.

Command line parameters:

runme.sh - the main script

	--help - shows usage

	--forceinstall-dependencies - Runs dependencies install.

	--check-smb - Run checks or configuration of Samba server.

	--download-requirements - Download all required and configures software except MS Windows ISO.

	--show-configured - Shows configured and available to use MS Windows releases.

	--run - normal run

Experimental options:

	--config-file - Set configuration file location instead of default.

Use cases

All examples below describes changes in config.ini file

	I want to build one image for specific version and edition. For example: version - 2012 R2 and edition -
standard. Steps to reach the goal:

	Disable [win2k8r2] from script processing.

[win2k8r2]
enabled=false

	Update [win2k12r2] with desired edition(standard).

[win2k12r2]
enabled=true
editions=standard

	Execute runme.sh --run

	I want to build two images for specific version with all supported by script editions. For example: 2012 R2 and
editions - standard and core. Steps to reach the goal:

	Disable [win2k8r2] from script processing.

[win2k8r2]
enabled=false

	Update [win2k12r2] with desired editions(standard and core).

[win2k12r2]
enabled=true
editions=standard core

	Execute runme.sh --run

	I want to build two images for all supported by script versions with specific editions. For example: versions -
2012 R2 and 2008 R2 and edition - core. Steps to reach the goal:

	Update [win2k8r2] with desired edition(core).

[win2k8r2]
enabled=true
editions=core

	Update [win2k12r2] with desired edition(core).

[win2k12r2]
enabled=true
editions=core

	Execute runme.sh --run

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Building Murano Image

Linux Image

At the moment the best way to build a Linux image with the murano agent is
to use disk image builder.

Note

Disk image builder requires sudo rights

The process is quite simple. Let’s assume that you use a directory ~/git
for cloning git repositories:

export GITDIR=~/git
mkdir -p $GITDIR

Clone the components required to build an image to that directory:

cd $GITDIR
git clone git://git.openstack.org/openstack/murano
git clone git://git.openstack.org/openstack/murano-agent
git clone git://git.openstack.org/openstack/diskimage-builder

Checkout a change request that allows to build an image using disk image builder
completely installed to virtual environment:

cd $GITDIR/diskimage-builder
git fetch https://review.openstack.org/openstack/diskimage-builder refs/changes/02/168002/2 && git checkout FETCH_HEAD

Install additional packages required by disk image builder:

sudo apt-get install qemu-utils curl python-tox

Export paths where additional dib elements are located:

export ELEMENTS_PATH=$GITDIR/murano/contrib/elements:$GITDIR/murano-agent/contrib/elements

Add passenv = ELEMENTS_PATH at testenv:venv section in tox.ini.
And build Ubuntu-based image with the murano agent:

cd $GITDIR/diskimage-builder
tox -e venv -- disk-image-create vm ubuntu murano-agent -o ../murano-agent.qcow2

If you need a Fedora based image, replace ‘ubuntu’ to ‘fedora’ in the last command.

It’ll take a while (up to 30 minutes if your hard drive and internet connection are slow).

When you are done upload the murano-agent.qcow2 image to glance and play :)

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

 	Building Murano Image

Upload image into glance

To deploy applications with murano, virtual machine images should be uploaded into glance in a special way - murano_image_info property should be set.

	Use the openstack client image create command to import your disk image to glance:

openstack image create --public \
> --disk-format qcow2 --container-format bare \
> --file <IMAGE_FILE> --property <IMAGE_METADATA> <NAME>

Replace the command line arguments to openstack image create with the appropriate values for your environment and disk image:

	Replace <IMAGE_FILE> with the local path to the image file to upload. E.g. ws-2012-std.qcow2.

	Replace <IMAGE_METADATA> with the following property string

	Replace <NAME> with the name that users will refer to the disk image by. E.g. ws-2012-std

murano_image_info='{"title": "Windows 2012 Standard Edition", "type": "windows.2012"}'

where:

	title - user-friendly description of the image

	type - murano image type, see Murano image types

	To update metadata of the existing image run the command:

openstack image set --property <IMAGE_MATADATA> <IMAGE_ID>

	Replace <IMAGE_METADATA> with murano_image_info property, e.g.

	Replace <IMAGE_ID> with image id from the previous command output.

murano_image_info='{"title": "Windows 2012 Standard Edition", "type": "windows.2012"}'

Warning

The value of the –property argument (named murano_image_info) is a JSON string.
Only double quotes are valid in JSON, so please type the string exactly as in the example above.

Note

Existing images could be marked in a simple way in the horizon UI with the murano dashboard installed.
Navigate to Murano -> Manage -> Images -> Mark Image and fill up a form:

	Image - ws-2012-std

	Title - My Prepared Image

	Type - Windows Server 2012

After these steps desired image can be chosen in application creation wizard.

Murano image types

	Type Name
	Description

	windows.2012
	Windows Server 2012

	linux
	Generic Linux images, Ubuntu / Debian, RedHat / Centos, etc

	cirros.demo
	Murano demo image, based on CirrOS

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano automated tests description

This page describes automated tests for a Murano project:

	where tests are located

	how they are run

	how execute tests on a local machine

	how to find the root of problems with FAILed tests

Murano continuous integration service

Murano project has separate CI server, which runs tests for all commits and verifies that new code does not break anything.

Murano CI uses OpenStack QA cloud for testing infrastructure.

Murano CI url: https://murano-ci.mirantis.com/jenkins/ Anyone can login to that server, using launchpad credentials.

There you can find each job for each repository: one for the murano and another one for murano-dashboard.

	“gate-murano-dashboard-selenium*” verifies each commit to murano-dashboard repository

	“gate-murano-integration*” verifies each commit to murano repository

Other jobs allow to build and test Murano documentation and perform another useful work to support Murano CI infrastructure.
All jobs are run on fresh installation of operating system and all components are installed on each run.

Murano automated tests: UI tests

The murano project has a web user interface and all possible user scenarios should be tested.
All UI tests are located at the https://git.openstack.org/cgit/openstack/murano-dashboard/tree/muranodashboard/tests/functional

Automated tests for Murano Web UI are written in Python using special Selenium library. This library is used to automate web browser interaction from Python.
For more information please visit https://selenium-python.readthedocs.org/

Prerequisites:

	Install Python module, called nose performing one of the following commands easy_install nose or pip install nose
This will install the nose libraries, as well as the nosetests script, which you can use to automatically discover and run tests.

	Install external Python libraries, which are required for Murano Web UI tests: testtools and selenium

Download and run tests:

First of all make sure that all additional components are installed.

	Clone murano-dashboard git repository:
	git clone git://git.openstack.org/openstack/murano-dashboard*

	Change default settings:
	Copy muranodashboard/tests/functional/config/config.conf.example to config.conf

	Set appropriate urls and credentials for your OpenStack lab. Only admin users are appropriate.

[murano]

horizon_url = http://localhost/horizon
murano_url = http://localhost:8082
user = ***
password = ***
tenant = ***
keystone_url = http://localhost:5000/v2.0/

All tests are kept in sanity_check.py and divided into 5 test suites:

	TestSuiteSmoke - verification of Murano panels; check, that could be open without errors.

	TestSuiteEnvironment - verification of all operations with environment are finished successfully.

	TestSuiteImage - verification of operations with images.

	TestSuiteFields - verification of custom fields validators.

	TestSuitePackages - verification of operations with Murano packages.

	TestSuiteApplications - verification of Application Catalog page and of application creation process.

To specify which tests/suite to run, pass test/suite names on the command line:

	to run all tests: nosetests sanity_check.p

	to run a single suite: nosetests sanity_check.py:<test suite name>

	to run a single test: nosetests sanity_check.py:<test suite name>.<test name>

In case of SUCCESS execution, you should see something like this:

.........................

Ran 34 tests in 1.440s

OK

In case of FAILURE, folder with screenshots of the last operation of tests that finished with errors would be created.
It’s located in muranodashboard/tests/functional folder.

There are also a number of command line options that can be used to control the test execution and generated outputs. For more details about nosetests, try:

nosetests -h

Murano Automated Tests: Tempest Tests

All Murano services have tempest-based automated tests, which allow to verify API interfaces and deployment scenarios.

Tempest tests for Murano are located at the: https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional

The following Python files contains basic tests suites for different Murano components.

API Tests

Murano API tests are run on devstack gate and located at https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/api

	test_murano_envs.py contains test suite with actions on murano’s environments(create, delete, get and etc.)

	test_murano_sessions.py contains test suite with actions on murano’s sessions(create, delete, get and etc.)

	test_murano_services.py contains test suite with actions on murano’s services(create, delete, get and etc.)

	test_murano_repository.py contains test suite with actions on murano’s package repository

Engine Tests

Murano Engine Tests are run on murano-ci : https://git.openstack.org/cgit/openstack/murano/tree/murano/tests/functional/engine

	base.py contains base test class and tests with actions on deploy Murano services such as ‘Telnet’ and ‘Apache’.

Command Line Tests

Murano CLI tests case are currently in the middle of creation. The current scope is read only operations on a cloud that are hard to test via unit tests.

All tests have description and execution steps in there docstrings.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano client

Module python-muranoclient comes with CLI murano utility, that interacts with
Murano application catalog

Installation

To install latest murano CLI client run the following command in your shell:

pip install python-muranoclient

Alternatively you can checkout the latest version from
https://git.openstack.org/cgit/openstack/python-muranoclient

Using CLI client

In order to use the CLI, you must provide your OpenStack username, password,
tenant name or id, and auth endpoint. Use the corresponding arguments
(--os-username, --os-password, --os-tenant-name or
--os-tenant-id, --os-auth-url and --murano-url) or
set corresponding environment variables:

export OS_USERNAME=user
export OS_PASSWORD=password
export OS_TENANT_NAME=tenant
export OS_AUTH_URL=http://auth.example.com:5000/v2.0
export MURANO_URL=http://murano.example.com:8082/

Once you’ve configured your authentication parameters, you can run murano
help to see a complete listing of available commands and arguments and
murano help <sub_command> to get help on specific subcommand.

Bash completion

To get the latest bash completion script download murano.bash_completion [https://git.openstack.org/cgit/openstack/python-muranoclient/plain/tools/murano.bash_completion]
from the source repository and add it to your completion scripts.

Listing currently installed packages

To get list of currently installed packages run:

murano package-list

To show details about specific package run:

murano package-show <PKG_ID>

Importing packages in Murano

	package-import subcommand can install packages in several different ways:

	
	from a locall file

	from a http url

	from murano app repository

When creating a package you can specify it’s categories with
-c/--categories and set it’s publicity with --public

To import a local package run:

murano package-import /path/to/package.zip

To import a package from http url run:

murano package-import http://example.com/path/to/package.zip

And finally you can import a package from Murano repository. To do so you have
to specify base url for the repository with --murano-repo-url or with the
corresponding MURANO_REPO_URL environment variable. After doing so,
running:

murano --murano-repo-url="http://example.com/" package-import io.app.foo

would access specified repository and download app io.app.foo from it’s
app directory. This option supports an optional --package-version
parameter, that would instruct murano client to download package of a
specific version.

package-import inspects package requirements specified in the package’s
manifest under Require section and attempts to import them from
Murano Repository.
package-import also inspects any image prerequisites, mentioned in the
images.lst file in the package. If there are any image requirements client
would inspect images already present in the image database. Unless image with
the specific name and hash is present client would attempt to download it.

For more info about specifying images and requirements for the package see
package creation docs: Step-by-Step.

If any of the packages, being installed is already registered in Murano, client
would ask you what do do with it. You can specify the default action with
--exists-action, passing s for skip, u for update, and a for abort.

Importing bundles of packages in Murano

	package-import subcommand can install packages in several different ways:

	
	from a local file

	from a http url

	from murano app repository

When creating a package you can specify it’s categories with
-c/--categories and set it’s publicity with --public

To import a local bundle run:

murano bundle-import /path/to/bundle

To import a bundle from http url run:

murano bundle-import http://example.com/path/to/bundle

To import a bundle from murano repository run:

murano bundle-import bundle_name

Note: When importing from a local file packages would first be searched in a
directory, relative to the directory containing the bundle file itself. This
is done to facilitate installing bundles in an environment with no access to
the repository itself.

Deleting packages from murano

To delete a package run:

murano package-delete <PKG_ID>

Downloading package file

Running:

murano package-download <PKG_ID> > file.zip

would download the zip archive with specified package

Creating a package

Murano client is able to create application packages from package source
files/directories. To find out more about this command run:

murano help package-create

This command is useful, when application package files are spread across
several directories, and for auto-generating packages from heat templates
For more info about package composition please see package creation docs:
Step-by-Step.

Managing Environments

It is possible to create/update/delete environments with following commands:

murano environment-create <NAME>
murano environment-delete <NAME_OR_ID>
murano environment-list
murano environment-rename <OLD_NAME_OR_ID> <NEW_NAME>
murano environment-show <NAME_OR_ID>

You can get list of deployments for environment with:

murano deployment-list <NAME_OR_ID>

Managing Categories

It is possible to create/update/delete categories with following commands:

murano category-create <NAME>
murano category-delete <ID> [<ID> ...]
murano category-list
murano category-show <ID>

Managing environment templates

It is possible to manage environment templates with following commands:

murano env-template-create <NAME>
murano env-template-add-app <NAME> <FILE>
murano env-template-del-app <NAME> <FILE>
murano env-template-delete <ID>
murano env-template-list
murano env-template-show <ID>
murano env-template-update <ID> <NEW_NAME>

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Contributing to Murano

If you’re interested in contributing to the Murano project,
the following will help get you started.

Contributor License Agreement

In order to contribute to the Murano project, you need to have
signed OpenStack’s contributor’s agreement:

	http://docs.openstack.org/infra/manual/developers.html

	http://wiki.openstack.org/CLA

Project Hosting Details

	
	Bug trackers

	
	General murano tracker: https://launchpad.net/murano

	Python client tracker: https://launchpad.net/python-muranoclient

	Tracker for bugs related to specific apps: https://launchpad.net/murano-apps

	
	Mailing list (prefix subjects with [Murano] for faster responses)

	http://lists.openstack.org/cgi-bin/mailman/listinfo/openstack-dev

	
	Wiki

	https://wiki.openstack.org/wiki/Murano

	
	IRC channel

	
	#murano at FreeNode

	https://wiki.openstack.org/wiki/Meetings#Murano_meeting

	
	Code Hosting

	
	https://git.openstack.org/cgit/openstack/murano

	https://git.openstack.org/cgit/openstack/murano-agent

	https://git.openstack.org/cgit/openstack/murano-dashboard

	https://git.openstack.org/cgit/openstack/python-muranoclient

	
	Code Review

	
	https://review.openstack.org/#/q/murano+AND+status:+open,n,z

	http://docs.openstack.org/infra/manual/developers.html#development-workflow

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Development Guidelines

Coding Guidelines

For all the code in Murano we have a rule - it should pass PEP 8 [http://www.python.org/dev/peps/pep-0008/].

To check your code against PEP 8 run:

tox -e pep8

See also

	https://pep8.readthedocs.org/en/latest/

	https://flake8.readthedocs.org

	http://docs.openstack.org/developer/hacking/

Testing Guidelines

Murano has a suite of tests that are run on all submitted code,
and it is recommended that developers execute the tests themselves to
catch regressions early. Developers are also expected to keep the
test suite up-to-date with any submitted code changes.

Unit tests are located at murano/tests.

Murano’s suite of unit tests can be executed in an isolated environment
with Tox [http://tox.testrun.org/]. To execute the unit tests run the following from the root of
Murano repo on Python 2.7:

tox -e py27

Documentation Guidelines

Murano dev-docs are written using Sphinx / RST and located in the main repo
in doc directory.

The documentation in docstrings should follow the PEP 257 [http://www.python.org/dev/peps/pep-0257/] conventions
(as mentioned in the PEP 8 [http://www.python.org/dev/peps/pep-0008/] guidelines).

More specifically:

	Triple quotes should be used for all docstrings.

	If the docstring is simple and fits on one line, then just use
one line.

	For docstrings that take multiple lines, there should be a newline
after the opening quotes, and before the closing quotes.

	Sphinx [http://sphinx.pocoo.org/markup/index.html] is used to build documentation, so use the restructured text
markup to designate parameters, return values, etc. Documentation on
the sphinx specific markup can be found here:

Run the following command to build docs locally.

tox -e docs

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Murano

Murano TroubleShooting and Debug Tips

During installation and setting environment of new projects you can run into different problems.
This section intends to reduce the time spent on the solution of these problems.

Problems during configuration

Log location

Murano is a multi component project, there several places where logs could be found.

The location of the log file completely depends on the setting in the config file of the corresponding component.
log_file parameter points to the log file, and if it’s omitted or commented logging will be sent to stdout.

Possible problem list

	murano-db-manage failed to execute
	Check connection parameter in provided config file. It should be a connection string [http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html].

	Murano Dashboard is not working
	Make sure, that prepare_murano.sh script was executed and murano file located in enabled folder under openstack_dashboard repository.

	Check, that murano data is not inserted twice in the settings file and as a plugin.

Problems during deployment

Besides identifying errors from log files, there is another and more flexible way to browse deployment errors - directly from UI.
After Deploy Failed status is appeared navigate to environment components and open Deployment History page.
Click on the Show details button located at the corresponding deployment row of the table. Then go to the Logs tab.
You can see steps of the deployments and the one that failed would have red color.

	Deployment freeze after Begin execution: io.murano.system.Agent.call problem with connection between Murano Agent and spawned instance.

	Need to check transport access to the virtual machine (check router has gateway).

	Check for rabbitMq settings: verify that agent has been obtained valid rabbit parameters.
Go to the spawned virtual machine and open /etc/murano/agent.conf or C:MuranoAgentagent.conf on Windows-based machine.
Also, you can examine agent logs, located by default at /var/log/murano-agent.log
The first part of the log file will contain reconnection attempts to the rabbit - since the valid rabbit address and queue have not been obtained yet.

	Check that driver option is set to messagingv2

	Check that linux image name is not starts with ‘w’ letter

	[exceptions.EnvironmentError]: Unexpected stack state NOT_FOUND - problem with heat stack creation, need to examine Heat log file.
If you are running the deployment on a new tenant check that the router exists and it has gateway to the external network.

	Router could not be created, no external network found - Find external_network parameter in config file and check
that specified external network is really exist via UI or by executing openstack network list –external command.

	NoPackageForClassFound: Package for class io.murano. Environment is not found - Check that murano core package is uploaded.
If no, the content of meta/io.murano folder should be zipped and uploaded to Murano.

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	
 previous |

 	Murano

Murano API v1 specification

General information

	Introduction

The murano service API is a programmatic interface used for interaction with
murano. Other interaction mechanisms like the murano dashboard or the murano CLI
should use the API as an underlying protocol for interaction.

	Allowed HTTPs requests

	POST : To create a resource

	GET : Get a resource or list of resources

	DELETE : To delete resource

	PATCH : To update a resource

	Description Of Usual Server Responses

	200 OK - the request was successful.

	201 Created - the request was successful and a resource was created.

	204 No Content - the request was successful but there is no representation to return (i.e. the response is empty).

	400 Bad Request - the request could not be understood or required parameters were missing.

	401 Unauthorized - authentication failed or user didn’t have permissions for requested operation.

	403 Forbidden - access denied.

	404 Not Found - resource was not found

	405 Method Not Allowed - requested method is not supported for resource.

	406 Not Acceptable - the requested resource is only capable of generating content not acceptable
according to the Accept headers sent in the request.

	409 Conflict - requested method resulted in a conflict with the current state of the resource.

	Response of POSTs and PUTs

All POST and PUT requests by convention should return the created object
(in the case of POST, with a generated ID) as if it was requested by
GET.

	Authentication

All requests include a keystone authentication token header
(X-Auth-Token). Clients must authenticate with keystone before
interacting with the murano service.

Glossary

	Environment

The environment is a set of applications managed by a single tenant. They could be related logically with each other or not.
Applications within a single environment may comprise of complex configuration while applications in different environments are always
independent from one another. Each environment is associated with a single
OpenStack project (tenant).

	Session

Since murano environments are available for local modification for different users and from different locations, it’s needed to store local modifications somewhere.
Sessions were created to provide this opportunity. After a user adds an application to the environment - a new session is created.
After a user sends an environment to deploy, a session with a set of applications changes status to deploying and all other open sessions for that environment become invalid.
One session could be deployed only once.

	Object Model

Applications are defined in MuranoPL object model, which is defined as a JSON object.
The murano API doesn’t know anything about it.

	Package

A .zip archive, containing instructions for an application deployment.

	
	Environment-Template

	The environment template is the specification of a set of applications managed by a single tenant, which are
related to each other. The environment template is stored in an environment template catalog, and it can be
managed by the user (creation, deletion, updating). Finally, it can be deployed on OpenStack by translating
into an environment.

Environment API

	Attribute
	Type
	Description

	id
	string
	Unique ID

	name
	string
	User-friendly name

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	tenant_id
	string
	OpenStack tenant ID

	version
	int
	Current version

	networking
	string
	Network settings

	acquired_by
	string
	Id of a session that acquired this
environment (for example is deploying it)

	status
	string
	Deployment status: ready, pending,
deploying

Common response codes

	Code
	Description

	200
	Operation completed successfully

	403
	User is not authorized to perform the operation

List environments

Request

	Method
	URI
	Description

	GET
	/environments
	Get a list of existing
Environments

Parameters:

	all_tenants - boolean, indicates whether environments from all tenants are listed.
True environments from all tenants are listed. Admin user required.
False environments only from current tenant are listed (default like option unspecified).

Response

This call returns a list of environments. Only the basic properties are
returned.

{
 "environments": [
 {
 "status": "ready",
 "updated": "2014-05-14T13:02:54",
 "networking": {},
 "name": "test1",
 "created": "2014-05-14T13:02:46",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "2fa5ab704749444bbeafe7991b412c33"
 },
 {
 "status": "ready",
 "updated": "2014-05-14T13:02:55",
 "networking": {},
 "name": "test2",
 "created": "2014-05-14T13:02:51",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "id": "744e44812da84e858946f5d817de4f72"
 }
]
}

Create environment

	Attribute
	Type
	Description

	name
	string
	Environment name; at least one non-white space symbol

Request

	Method
	URI
	Description

	POST
	/environments
	Create new Environment

	Content-Type
application/json

	
	Example

	{“name”: “env_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
 "version": 0
}

Update environment

	Attribute
	Type
	Description

	name
	string
	Environment name; at least one non-white space symbol

Request

	Method
	URI
	Description

	PUT
	/environments/<env_id>
	Update an existing Environment

	Content-Type
application/json

	Example
{“name”: “env_name_changed”}

Response

	Content-Type

	application/json

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_name_changed",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:45:54Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
 "version": 0
}

	Code
	Description

	200
	Edited environment

	400
	Environment name must contain at least one non-white space
symbol

	403
	User is not authorized to access environment

	404
	Environment not found

	409
	Environment with specified name already exists

Get environment details

Request

Return information about the environment itself and about applications, including this environment.

	Method
	URI
	Header
	Description

	GET
	/environments/{id}
	X-Configuration-Session (optional)
	Response detailed information
about Environment including
child entities

Response

	Content-Type

	application/json

{
 "status": "ready",
 "updated": "2014-05-14T13:12:26",
 "networking": {},
 "name": "quick-env-2",
 "created": "2014-05-14T13:09:55",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 1,
 "services": [
 {
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "name": "exgchhv6nbika2",
 "ipAddresses": [
 "10.0.0.200"
],
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "14cce9d9-aaa1-4f09-84a9-c4bb859edaff"
 }
 },
 "name": "rewt4w56",
 "?": {
 "status": "ready",
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "446373ef-03b5-4925-b095-6c56568fa518"
 }
 }
],
 "id": "20d4a012628e4073b48490a336a8acbf"
}

Delete environment

Request

	Method
	URI
	Description

	DELETE
	/environments/{id}?abandon
	Remove specified Environment.

Parameters:

	abandon - boolean, indicates how to delete environment. False is used if
all resources used by environment must be destroyed; True is used when just
database must be cleaned

Response

	Code
	Description

	200
	OK. Environment deleted successfully

	403
	User is not allowed to delete this resource

	404
	Not found. Specified environment doesn`t exist

Environment configuration API

Multiple sessions could be opened for one environment simultaneously, but only one session going
to be deployed. First session that starts deploying is going to be deployed; other ones become invalid and could not be deployed at all.
User could not open new session for environment that in
deploying state (that’s why we call it “almost lock free” model).

	Attribute
	Type
	Description

	id
	string
	Session unique ID

	environment_id
	string
	Environment that going to be modified
during this session

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	user_id
	string
	Session owner ID

	version
	int
	Environment version for which
configuration session is opened

	state
	string
	Session state. Could be: open, deploying,
deployed

Configure environment / open session

During this call new working session is created, and session ID should be sent in a request header with name X-Configuration-Session.

Request

	Method
	URI
	Description

	POST
	/environments/<env_id>/configure
	Creating new configuration
session

Response

	Content-Type

	application/json

{
 "updated": datetime.datetime(2014, 5, 14, 14, 17, 58, 949358),
 "environment_id": "744e44812da84e858946f5d817de4f72",
 "ser_id": "4e91d06270c54290b9dbdf859356d3b3",
 "created": datetime.datetime(2014, 5, 14, 14, 17, 58, 949305),
 "state": "open", "version": 0L, "id": "257bef44a9d848daa5b2563779714820"
 }

	Code
	Description

	200
	Session created successfully

	401
	User is not authorized to access this session

	403
	Could not open session for environment, environment has
deploying status

Deploy session

With this request all local changes made within the environment start to deploy on OpenStack.

Request

	Method
	URI
	Description

	POST
	/environments/<env_id>/sessions/
<session_id>/deploy
	
	Deploy changes made in session

	with specified session_id

Response

	Code
	Description

	200
	Session status changes to deploying

	401
	User is not authorized to access this session

	403
	Session is already deployed or deployment is in progress

	404
	Not found. Specified session doesn`t exist

Get session details

Request

	Method
	URI
	Description

	GET
	/environments/<env_id>/sessions/
<session_id>
	Get details about session
with specified session_id

Response

{
 "id": "4aecdc2178b9430cbbb8db44fb7ac384",
 "environment_id": "4dc8a2e8986fa8fa5bf24dc8a2e8986fa8",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:54Z",
 "user_id": "d7b501094caf4daab08469663a9e1a2b",
 "version": 0,
 "state": "deploying"
}

	Code
	Description

	200
	Session details information received

	401
	User is not authorized to access this session

	403
	Session is invalid

	404
	Not found. Specified session doesn`t exist

Delete session

Request

	Method
	URI
	Description

	DELETE
	/environments/<env_id>/sessions/
<session_id>
	Delete session with specified
session_id

Response

	Code
	Description

	200
	Session is deleted successfully

	401
	User is not authorized to access this session

	403
	Session is in deploying state and could not be deleted

	404
	Not found. Specified session doesn`t exist

Environment deployments API

Environment deployment API allows to track changes of environment status, deployment events and errors.
It also allows to browse deployment history.

List Deployments

Returns information about all deployments of the specified environment.

Request

	Method
	URI
	Description

	GET
	/environments/<env_id>/deployments
	Get list of environment deployments

Response

	Content-Type

	application/json

{
 "deployments": [
 {
 "updated": "2014-05-15T07:24:21",
 "environment_id": "744e44812da84e858946f5d817de4f72",
 "description": {
 "services": [
 {
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "ef729199-c71e-4a4c-a314-0340e279add8"
 },
 "name": "xkaduhv7qeg4m7"
 },
 "name": "teslnet1",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "6e437be2-b5bc-4263-8814-6fd57d6ddbd5"
 }
 }
],
 "defaultNetworks": {
 "environment": {
 "name": "test2-network",
 "?": {
 "type": "io.murano.lib.networks.neutron.NewNetwork",
 "id": "b6a1d515434047d5b4678a803646d556"
 }
 },
 "flat": null
 },
 "name": "test2",
 "?": {
 "type": "io.murano.Environment",
 "id": "744e44812da84e858946f5d817de4f72"
 }
 },
 "created": "2014-05-15T07:24:21",
 "started": "2014-05-15T07:24:21",
 "finished": null,
 "state": "running",
 "id": "327c81e0e34a4c93ad9b9052ef42b752"
 }
]
}

	Code
	Description

	200
	Deployments information received successfully

	401
	User is not authorized to access this environment

Application management API

All applications should be created within an environment and all environment modifications are held within the session.
Local changes apply only after successful deployment of an environment session.

Get application details

Using GET requests to applications endpoint user works with list containing all
applications for specified environment. A user can request a whole list,
specific application, or specific attribute of a specific application using tree
traversing. To request a specific application, the user should add to endpoint part
an application id, e.g.: /environments/<env_id>/services/<application_id>. For
selection of specific attribute on application, simply appending part with
attribute name will work. For example to request application name, user
should use next endpoint: /environments/<env_id>/services/<application_id>/name

Request

	Method
	URI
	Header

	GET
	/environments/<env_id>/services/<app_id>
	X-Configuration-Session (optional)

Parameters:

	env_id - environment ID, required

	app_id - application ID, optional

Response

	Content-Type

	application/json

{
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "060715ff-7908-4982-904b-3b2077ff55ef"
 },
 "name": "hbhmyhv6qihln3"
 },
 "name": "dfg34",
 "?": {
 "status": "pending",
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "6e7b8ad5-888d-4c5a-a498-076d092a7eff"
 }
}

POST applications

New application can be added to the murano environment using session.
Result JSON is calculated in Murano dashboard, which based on UI definition

Request

	Content-Type

	application/json

	Method
	URI
	Header

	POST
	/environments/<env_id>/services
	X-Configuration-Session

{
 "instance": {
 "flavor": "m1.medium",
 "image": "clod-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"
 },
 "name": "nhekhv6r7mhd4"
 },
 "name": "sdf34sadf",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "190c8705-5784-4782-83d7-0ab55a1449aa"
 }
}

Response

Created application returned

	Content-Type

	application/json

{
 "instance": {
 "flavor": "m1.medium",
 "image": "cloud-fedora-v3",
 "?": {
 "type": "io.murano.resources.Instance",
 "id": "bce8308e-5938-408b-a27a-0d3f0a2c52eb"
 },
 "name": "nhekhv6r7mhd4"
 },
 "name": "sdf34sadf",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "Telnet"
 },
 "type": "io.murano.apps.linux.Telnet",
 "id": "190c8705-5784-4782-83d7-0ab55a1449a1"
 }
}

	Code
	Description

	200
	Session is deleted successfully

	401
	User is not authorized to access this session

	403
	Session is in deploying state and could not be deleted

	404
	Not found. Specified session doesn`t exist

	400
	Required header or body are not provided

Delete application from environment

Delete one or all applications from the environment

Request

	Method
	URI
	Header

	DELETE
	/environments/<env_id>/services/<app_id>
	X-Configuration-Session(optional)

Parameters:

	env_id - environment ID, required

	app_id - application ID, optional

Statistic API

Statistic API intends to provide billing feature

Instance environment statistics

Request

Get information about all deployed instances in the specified environment

	Method
	URI

	GET
	/environments/<env_id>/instance-statistics/raw/<instance_id>

Parameters:

	env_id - environment ID, required

	instance_id - ID of the instance for which need to provide statistic information, optional

Response

	Attribute
	Type
	Description

	type
	int
	Code of the statistic object; 200 - instance, 100 - application

	type_name
	string
	Class name of the statistic object

	instance_id
	string
	Id of deployed instance

	active
	bool
	Instance status

	type_title
	string
	User-friendly name for browsing statistic in UI

	duration
	int
	Seconds of instance uptime

	Content-Type

	application/json

[
 {
 "type": 200,
 "type_name": "io.murano.resources.Instance",
 "instance_id": "ef729199-c71e-4a4c-a314-0340e279add8",
 "active": true,
 "type_title": null,
 "duration": 1053,
 }
]

Request

	Method
	URI

	GET
	/environments/<env_id>/instance-statistics/aggregated

Response

	Attribute
	Type
	Description

	type
	int
	Code of the statistic object; 200 - instance, 100 - application

	duration
	int
	Amount uptime of specified type objects

	count
	int
	Quantity of specified type objects

	Content-Type

	
application/json

[
 {
 "duration": 720,
 "count": 2,
 "type": 200
 }
]

General Request Statistics

Request

	Method
	URI

	GET
	/stats

Response

	Attribute
	Type
	Description

	requests_per_tenant
	int
	Number of incoming requests for user tenant

	errors_per_second
	int
	Class name of the statistic object

	errors_count
	int
	Class name of the statistic object

	requests_per_second
	float
	Average number of incoming request received in one second

	requests_count
	int
	Number of all requests sent to the server

	cpu_percent
	bool
	Current cpu usage

	cpu_count
	int
	Available cpu power is cpu_count * 100%

	host
	string
	Server host-name

	average_response_time
	float
	Average time response waiting, seconds

	Content-Type

	application/json

[
 {
 "updated": "2014-05-15T08:26:17",
 "requests_per_tenant": "{\"726ed856965f43cc8e565bc991fa76c3\": 313}",
 "created": "2014-04-29T13:23:59",
 "cpu_count": 2,
 "errors_per_second": 0,
 "requests_per_second": 0.0266528,
 "cpu_percent": 21.7,
 "host": "fervent-VirtualBox",
 "error_count": 0,
 "request_count": 320,
 "id": 1,
 "average_response_time": 0.55942
 }
]

Actions API

Murano actions are simple MuranoPL methods, that can be called on deployed applications.
Application contains a list with available actions. Actions may return a result.

Execute an action

Generate task with executing specified action. Input parameters may be provided.

Request

	Content-Type

	application/json

	Method
	URI
	Header

	POST
	/environments/<env_id>/actions/<action_id>
	

Parameters:

	env_id - environment ID, required

	actions_id - action ID to execute, required

"{<action_property>: value}"

or

"{}" in case action has no properties

Response

Task ID that executes specified action is returned

	Content-Type

	application/json

{
 "task_id": "620e883070ad40a3af566d465aa156ef"
}

GET action result

Request result value after action execution finish. Not all actions have return values.

Request

	Method
	URI
	Header

	GET
	/environments/<env_id>/actions/<task_id>
	

Parameters:

	env_id - environment ID, required

	task_id - task ID, generated on desired action execution

Response

Json, describing action result is returned. Result type and value are provided.

	Content-Type

	application/json

{
 "isException": false,
 "result": ["item1", "item2"]
}

Application catalog API

Manage application definitions in the Application Catalog.
You can browse, edit and upload new application packages (.zip.package archive with all data that required for a service deployment).

Packages

Methods for application package management

Package Properties

	id: guid of a package (fully_qualified_name can also be used for some API functions)

	fully_qualified_name: fully qualified domain name - domain name that specifies exact application location

	name: user-friendly name

	type: package type, “library” or “application”

	description: text information about application

	author: name of application author

	tags: list of short names, connected with the package, which allows to search applications easily

	categories: list of application categories

	class_definition: list of class names used by a package

	is_public: determines whether the package is shared for other tenants

	enabled: determines whether the package is browsed in the Application Catalog

	owner_id: id of a tenant that owns the package

List packages

/v1/catalog/packages?{marker}{limit}{order_by}{type}{category}{fqn}{owned}{id}{catalog}{class_name}{name} [GET]

This is the compound request to list and search through application catalog.
If there are no search parameters all packages that is_public, enabled and belong to the user’s tenant will be listed.
Default order is by ‘created’ field.
For an admin role all packages are available.

Parameters

Response 200 (application/json)

{"packages": [
 {
 "id": "fed57567c9fa42c192dcbe0566f8ea33",
 "fully_qualified_name" : "com.example.murano.services.linux.telnet",
 "is_public": false,
 "name": "Telnet",
 "type": "linux",
 "description": "Installs Telnet service",
 "author": "OpenStack, Inc.",
 "created": "2014-04-02T14:31:55",
 "enabled": true,
 "tags": ["linux", "telnet"],
 "categories": ["Utility"],
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
 },
 {
 "id": "fed57567c9fa42c192dcbe0566f8ea31",
 "fully_qualified_name": "com.example.murano.services.windows.WebServer",
 "is_public": true,
 "name": "Internet Information Services",
 "type": "windows",
 "description": "The Internet Information Service sets up an IIS server and joins it into an existing domain",
 "author": "OpenStack, Inc.",
 "created": "2014-04-02T14:31:55",
 "enabled": true,
 "tags": ["windows", "web"],
 "categories": ["Web"],
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
 }]
 }

Upload a new package[POST]

/v1/catalog/packages

See the example of multipart/form-data request, It should contain two parts - text (json string) and file object

Request (multipart/form-data)

Content-type: multipart/form-data, boundary=AaB03x
Content-Length: $requestlen

--AaB03x
content-disposition: form-data; name="submit-name"

--AaB03x
Content-Disposition: form-data; name="JsonString"
Content-Type: application/json

{"categories":["web"] , "tags": ["windows"], "is_public": false, "enabled": false}
`categories` - array, required
`tags` - array, optional
`name` - string, optional
`description` - string, optional
`is_public` - bool, optional
`enabled` - bool, optional

--AaB03x
content-disposition: file; name="file"; filename="test.tar"
Content-Type: targz
Content-Transfer-Encoding: binary

$binarydata
--AaB03x--

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Get package details

/v1/catalog/packages/{id} [GET]

Display details for a package.

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Response 403

	In attempt to get a non-public package by a user whose tenant is not an owner of this package.

Response 404

	In case the specified package id doesn’t exist.

Update a package

/v1/catalog/packages/{id} [PATCH]

Allows to edit mutable fields (categories, tags, name, description, is_public, enabled).
See the full specification here [http://tools.ietf.org/html/rfc6902].

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Content type

application/murano-packages-json-patch

Allowed operations:

[
 { "op": "add", "path": "/tags", "value": ["foo", "bar"] },
 { "op": "add", "path": "/categories", "value": ["foo", "bar"] },
 { "op": "remove", "path": "/tags", ["foo"] },
 { "op": "remove", "path": "/categories", ["foo"] },
 { "op": "replace", "path": "/tags", "value": [] },
 { "op": "replace", "path": "/categories", "value": ["bar"] },
 { "op": "replace", "path": "/is_public", "value": true },
 { "op": "replace", "path": "/enabled", "value": true },
 { "op": "replace", "path": "/description", "value":"New description" },
 { "op": "replace", "path": "/name", "value": "New name" }
]

Request 200 (application/murano-packages-json-patch)

[
 { "op": "add", "path": "/tags", "value": ["windows", "directory"] },
 { "op": "add", "path": "/categories", "value": ["Directory"] }
]

Response 200 (application/json)

{
 "updated": "2014-04-03T13:00:13",
 "description": "A domain service hosted in Windows environment by using Active Directory Role",
 "tags": ["windows", "directory"],
 "is_public": true,
 "id": "8f4f09bd6bcb47fb968afd29aacc0dc9",
 "categories": ["test1"],
 "name": "Active Directory",
 "author": "Mirantis, Inc",
 "created": "2014-04-03T13:00:13",
 "enabled": true,
 "class_definition": [
 "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "com.mirantis.murano.windows.activeDirectory.SecondaryController",
 "com.mirantis.murano.windows.activeDirectory.Controller",
 "com.mirantis.murano.windows.activeDirectory.PrimaryController"
],
 "fully_qualified_name": "com.mirantis.murano.windows.activeDirectory.ActiveDirectory",
 "type": "Application",
 "owner_id": "fed57567c9fa42c192dcbe0566f8ea40"
}

Response 403

	An attempt to update immutable fields

	An attempt to perform operation that is not allowed on the specified path

	An attempt to update non-public package by user whose tenant is not an owner of this package

Response 404

	An attempt to update package that doesn’t exist

Delete application definition from the catalog

/v1/catalog/packages/{id} [DELETE]

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package to delete

Response 404

	An attempt to delete package that doesn’t exist

Get application package

/v1/catalog/packages/{id}/download [GET]

Get application definition package

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octetstream)

The sequence of bytes representing package content

Response 404

Specified package id doesn’t exist

Get UI definition

/v1/catalog/packages/{id}/ui [GET]

Retrieve UI definition for a application which described in a package with provided id

Parameters

	id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing UI definition

Response 404

Specified package id doesn’t exist

Response 403

Specified package is not public and not owned by user tenant, performing the request

Response 404

	Specified package id doesn’t exist

Get logo

Retrieve application logo which described in a package with provided id

/v1/catalog/packages/{id}/logo [GET]

Parameters

id (required) Hexadecimal id (or fully qualified name) of the package

Response 200 (application/octet-stream)

The sequence of bytes representing application logo

Response 403

Specified package is not public and not owned by user tenant,
performing the request

Response 404

Specified package is not public and not owned by user tenant,
performing the request

Categories

Provides category management. Categories are used in the Application Catalog
to group application for easy browsing and search.

List categories

	/v1/catalog/packages/categories [GET]

!DEPRECATED (Plan to remove in L release) Retrieve list of all available application categories

Response 200 (application/json)

A list, containing category names

	Content-Type

	application/json

{
 "categories": ["Web service", "Directory", "Database", "Storage"]
}

	/v1/catalog/categories [GET]

	Method
	URI
	Description

	GET
	/catalog/categories
	Get list of existing categories

Retrieve list of all available application categories

Response 200 (application/json)

A list, containing detailed information about each category

	Content-Type

	application/json

{"categories": [
 {
 "id": "0420045dce7445fabae7e5e61fff9e2f",
 "updated": "2014-12-26T13:57:04",
 "name": "Web",
 "created": "2014-12-26T13:57:04",
 "package_count": 1
 },
 {
 "id": "3dd486b1e26f40ac8f35416b63f52042",
 "updated": "2014-12-26T13:57:04",
 "name": "Databases",
 "created": "2014-12-26T13:57:04",
 "package_count": 0
 }]
}

Get category details

/catalog/categories/<category_id> [GET]

Return detailed information for a provided category

Request

	Method
	URI
	Description

	GET
	/catalog/categories/<category_id>
	Get category detail

Parameters

	category_id - required, category ID, required

Response

	Content-Type

	application/json

{
 "id": "b308f7fa8a2f4a5eb419970c827f4466",
 "updated": "2015-01-28T17:00:19",
 "packages": [
 {
 "fully_qualified_name": "io.murano.apps.ZabbixServer",
 "id": "4dfb566e69e6445fbd4aea5099fe95e9",
 "name": "Zabbix Server"
 }
],
 "name": "Web",
 "created": "2015-01-28T17:00:19",
 "package_count": 1
}

	Code
	Description

	200
	OK. Category deleted successfully

	401
	User is not authorized to access this session

	404
	Not found. Specified category doesn`t exist

Add new category

/catalog/categories [POST]

Add new category to the Application Catalog

Parameters

	Attribute
	Type
	Description

	name
	string
	Environment name; only alphanumeric characters and ‘-‘

Request

	Method
	URI
	Description

	POST
	/catalog/categories
	Create new category

	Content-Type

	application/json

	Example

	{“name”: “category_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "category_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "package_count": 0
}

	Code
	Description

	200
	OK. Category created successfully

	401
	User is not authorized to access this session

	409
	Conflict. Category with specified name already exist

Delete category

/catalog/categories [DELETE]

Request

	Method
	URI
	Description

	DELETE
	/catalog/categories/<category_id>
	Delete category with specified id

Parameters:

	category_id - required, category ID, required

Response

	Code
	Description

	200
	OK. Category deleted successfully

	401
	User is not authorized to access this session

	404
	Not found. Specified category doesn`t exist

	403
	Forbidden. Category with specified name is assigned to
the package, presented in the catalog

Environment template API

Manage environment template definitions in murano. It is possible to create, update, delete, and deploy into OpenStack by translating
it into an environment. In addition, applications can be added to or deleted from the environment template.

Environment Template Properties

	Attribute
	Type
	Description

	id
	string
	Unique ID

	name
	string
	User-friendly name

	created
	datetime
	Creation date and time in ISO format

	updated
	datetime
	Modification date and time in ISO format

	tenant_id
	string
	OpenStack tenant ID

	version
	int
	Current version

	networking
	string
	Network settings

	description
	string
	The environment template specification

Common response codes

	Code
	Description

	200
	Operation completed successfully

	401
	User is not authorized to perform the operation

Methods for Environment Template API

List Environments Templates

Request

	Method
	URI
	Description

	GET
	/templates
	Get a list of existing
environment templates

Parameters:

	is_public - boolean, indicates whether public environment templates are listed or not.
True public environments templates from all tenants are listed.
False private environments templates from current tenant are listed
empty all tenant templates plus public templates from all tenants are listed

Response

This call returns a list of environment templates. Only the basic properties are
returned.

{
 "templates": [
 {
 "updated": "2014-05-14T13:02:54",
 "networking": {},
 "name": "test1",
 "created": "2014-05-14T13:02:46",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "is_public": false,
 "id": "2fa5ab704749444bbeafe7991b412c33"
 },
 {
 "updated": "2014-05-14T13:02:55",
 "networking": {},
 "name": "test2",
 "created": "2014-05-14T13:02:51",
 "tenant_id": "123452452345346345634563456345346",
 "version": 0,
 "is_public": true,
 "id": "744e44812da84e858946f5d817de4f72"
 }
]
}

Create environment template

	Attribute
	Type
	Description

	name
	string
and ‘-‘
	Environment template name; only alphanumeric characters

Request

	Method
	URI
	Description

	POST
	/templates
	Create a new environment template

	Content-Type

	application/json

	Example

	{“name”: “env_temp_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_temp_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
}

	Code
	Description

	200
	Operation completed successfully

	401
	User is not authorized to perform the operation

	409
	The environment template already exists

Get environment templates details

Request

Return information about environment template itself and about applications, including to this
environment template.

	Method
	URI
	Description

	GET
	/templates/{env-temp-id}
	Obtains the environment template information

	env-temp-id - environment template ID, required

Response

	Content-Type

	application/json

 {
 "updated": "2015-01-26T09:12:51",
 "networking":
 {
 },
 "name": "template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Delete environment template

Request

	Method
	URI
	Description

	DELETE
	/templates/<env-temp-id>
	Delete the template id

Parameters:

	env-temp_id - environment template ID, required

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Adding application to environment template

Request

	Method
	URI
	Description

	POST
	/templates/{env-temp-id}/services
	Create a new application

Parameters:

	env-temp-id - The environment-template id, required

	payload - the service description

	Content-Type

	application/json

Example

{
 "instance": {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "port": "8080",
 "?": {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
}

Response

{
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
}

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Get applications information from an environment template

Request

	Method
	URI | Description

	GET
	/templates/{env-temp-id}/services | It obtains the service description

Parameters:

	env-temp-id - The environment template ID, required

	Content-Type

	application/json

Response

[
 {
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "tomcat",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
 },
 {
 "instance": "ef984a74-29a4-45c0-b1dc-2ab9f075732e",
 "password": "XXX",
 "name": "mysql",
 "?":
 {
 "type": "io.murano.apps.database.MySQL",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
 }
]

	Code
	Description

	200
	OK. Environment Template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

Create an environment from an environment template

Request

	Method
	URI | Description

	POST
	/templates/{env-temp-id}/create-environment| Create an environment

Parameters:

	env-temp-id - The environment template ID, required

Payload:

	‘environment name’: The environment name to be created.

	Content-Type

	application/json

Example

{
 "name": "environment_name"
}

Response

{
 "environment_id": "aa90fadfafca10e38e1c8c4bbf7",
 "name": "environment_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "session_id": "adf4dadfaa9033ca7ce245fca10e38e1c8c4bbf7",
}

	Code
	Description

	200
	OK. Environment template created successfully

	401
	User is not authorized to access this session

	404
	The environment template does not exist

	409
	The environment already exists

POST /templates/{env-temp-id}/clone

Request

	Method
	URI
	Description

	POST
	/templates/{env-temp-id}/clone
	It clones a public template from one tenant
to another

Parameters:

	env-temp-id - environment template ID, required

Example Payload

{
 'name': 'cloned_env_template_name'
}

	Content-Type

	application/json

Response

{
 "updated": "2015-01-26T09:12:51",
 "name": "cloned_env_template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "is_public": False,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

	Code
	Description

	200
	OK. Environment Template cloned successfully

	401
	User is not authorized to access this session

	403
	User has no access to these resources

	404
	The environment template does not exist

	409
	Conflict. The environment template name already exists

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 Navigation

 	
 index

 	Murano

Index

 Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

 _static/up-pressed.png

_static/down.png

_static/up.png

_images/deploy_env.png
B3 openstack

Project
Identity v
Murano A
Application Catalog ~
Environments.

Applications

Manage v

B demo-box +

Environments > Environment Env-1

Components | Topology

Deployment History

Application Components App category | All~

-
< Apache
Apache HTTP S,

Component List
Name Type
Tomcat Apache Tomeat

Dispiaying 1 fem

ﬂ Qi A

[o] [o]
Apache Tomeat Docker Jenkins Docker MariaDB

® Drop Components here

Status. Last operation

Ready to deploy Component araft created

& demo-box v

docker
Docker Standab. Kubernetes Cluster

+Add Component

Time updated

_images/env-component-logs.png
28 openstack kate v axate~

Froleet " Environments > Environment Demo > Component
— ApacheHttpServer
) 5
= T component | togs
feelesiencaies ~ | Component Logs

Environments 2015-10-23 12:57:03 - Creating VM for Apache Server.

S o e e
P s o oot b CATB e

2015-10-23 12:58:04 - Apache is installed.

Manage

_images/logs.png
88 openstack Skate v akate~

Project v

Environments > Environment Demo > Deployment at
— ~ 2015-10-23 12:57:00

entity -
Murano N Configuration | Logs
Application Catalog N
Deployment Logs
Environments 2015-10:23 12:57:00 — Action deploy is scheduled
20151023 12:57:03 — Creating VM for Apache Server.
Applcations | 20151023 1257:03 — Creating VM for Tomeat
20151023 12:57:33 — Instance s created. Deploying Apache
— . 20151020 12:57:52 — Instance is createa. Deploying Tomeat

20151023 12:56:04 — Apache Is available at hifp:/10.0.95.2
20151023 12:56:04 — Apache s installed.

20151023 12:56:42 — Tomeat s installed

20151023 12:56:43 — Tomeat Is avalable at hifp:/10.0.95.4
20151023 12:56:44 — Deployment finished

specification/murano-env-temp.html

 Navigation

 		
 index

 		Murano »

Environment template API

Manage environment template definitions in murano. It is possible to create, update, delete, and deploy into OpenStack by translating
it into an environment. In addition, applications can be added to or deleted from the environment template.

Environment Template Properties

		Attribute
		Type
		Description

		id
		string
		Unique ID

		name
		string
		User-friendly name

		created
		datetime
		Creation date and time in ISO format

		updated
		datetime
		Modification date and time in ISO format

		tenant_id
		string
		OpenStack tenant ID

		version
		int
		Current version

		networking
		string
		Network settings

		description
		string
		The environment template specification

Common response codes

		Code
		Description

		200
		Operation completed successfully

		401
		User is not authorized to perform the operation

Methods for Environment Template API

List Environments Templates

Request

		Method
		URI
		Description

		GET
		/templates
		Get a list of existing
environment templates

Parameters:

		is_public - boolean, indicates whether public environment templates are listed or not.
True public environments templates from all tenants are listed.
False private environments templates from current tenant are listed
empty all tenant templates plus public templates from all tenants are listed

Response

This call returns a list of environment templates. Only the basic properties are
returned.

{
 "templates": [
 {
 "updated": "2014-05-14T13:02:54",
 "networking": {},
 "name": "test1",
 "created": "2014-05-14T13:02:46",
 "tenant_id": "726ed856965f43cc8e565bc991fa76c3",
 "version": 0,
 "is_public": false,
 "id": "2fa5ab704749444bbeafe7991b412c33"
 },
 {
 "updated": "2014-05-14T13:02:55",
 "networking": {},
 "name": "test2",
 "created": "2014-05-14T13:02:51",
 "tenant_id": "123452452345346345634563456345346",
 "version": 0,
 "is_public": true,
 "id": "744e44812da84e858946f5d817de4f72"
 }
]
}

Create environment template

		Attribute
		Type
		Description

		name
		string
and ‘-‘
		Environment template name; only alphanumeric characters

Request

		Method
		URI
		Description

		POST
		/templates
		Create a new environment template

		Content-Type

		application/json

		Example

		{“name”: “env_temp_name”}

Response

{
 "id": "ce373a477f211e187a55404a662f968",
 "name": "env_temp_name",
 "created": "2013-11-30T03:23:42Z",
 "updated": "2013-11-30T03:23:44Z",
 "tenant_id": "0849006f7ce94961b3aab4e46d6f229a",
}

		Code
		Description

		200
		Operation completed successfully

		401
		User is not authorized to perform the operation

		409
		The environment template already exists

Get environment templates details

Request

Return information about environment template itself and about applications, including to this
environment template.

		Method
		URI
		Description

		GET
		/templates/{env-temp-id}
		Obtains the environment template information

		env-temp-id - environment template ID, required

Response

		Content-Type

		application/json

 {
 "updated": "2015-01-26T09:12:51",
 "networking":
 {
 },
 "name": "template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

		Code
		Description

		200
		OK. Environment Template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exist

Delete environment template

Request

		Method
		URI
		Description

		DELETE
		/templates/<env-temp-id>
		Delete the template id

Parameters:

		env-temp_id - environment template ID, required

		Code
		Description

		200
		OK. Environment Template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exist

Adding application to environment template

Request

		Method
		URI
		Description

		POST
		/templates/{env-temp-id}/services
		Create a new application

Parameters:

		env-temp-id - The environment-template id, required

		payload - the service description

		Content-Type

		application/json

Example

{
 "instance": {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "port": "8080",
 "?": {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
}

Response

{
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "orion",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
}

		Code
		Description

		200
		OK. Environment Template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exist

Get applications information from an environment template

Request

		Method
		URI | Description

		GET
		/templates/{env-temp-id}/services | It obtains the service description

Parameters:

		env-temp-id - The environment template ID, required

		Content-Type

		application/json

Response

[
 {
 "instance":
 {
 "assignFloatingIp": "true",
 "keyname": "mykeyname",
 "image": "cloud-fedora-v3",
 "flavor": "m1.medium",
 "?":
 {
 "type": "io.murano.resources.LinuxMuranoInstance",
 "id": "ef984a74-29a4-45c0-b1dc-2ab9f075732e"
 }
 },
 "name": "tomcat",
 "?":
 {
 "type": "io.murano.apps.apache.Tomcat",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 },
 "port": "8080"
 },
 {
 "instance": "ef984a74-29a4-45c0-b1dc-2ab9f075732e",
 "password": "XXX",
 "name": "mysql",
 "?":
 {
 "type": "io.murano.apps.database.MySQL",
 "id": "54cea43d-5970-4c73-b9ac-fea656f3c722"
 }
 }
]

		Code
		Description

		200
		OK. Environment Template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exist

Create an environment from an environment template

Request

		Method
		URI | Description

		POST
		/templates/{env-temp-id}/create-environment| Create an environment

Parameters:

		env-temp-id - The environment template ID, required

Payload:

		‘environment name’: The environment name to be created.

		Content-Type

		application/json

Example

{
 "name": "environment_name"
}

Response

{
 "environment_id": "aa90fadfafca10e38e1c8c4bbf7",
 "name": "environment_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "session_id": "adf4dadfaa9033ca7ce245fca10e38e1c8c4bbf7",
}

		Code
		Description

		200
		OK. Environment template created successfully

		401
		User is not authorized to access this session

		404
		The environment template does not exist

		409
		The environment already exists

POST /templates/{env-temp-id}/clone

Request

		Method
		URI
		Description

		POST
		/templates/{env-temp-id}/clone
		It clones a public template from one tenant
to another

Parameters:

		env-temp-id - environment template ID, required

Example Payload

{
 'name': 'cloned_env_template_name'
}

		Content-Type

		application/json

Response

{
 "updated": "2015-01-26T09:12:51",
 "name": "cloned_env_template_name",
 "created": "2015-01-26T09:12:51",
 "tenant_id": "00000000000000000000000000000001",
 "version": 0,
 "is_public": False,
 "id": "aa9033ca7ce245fca10e38e1c8c4bbf7",
}

		Code
		Description

		200
		OK. Environment Template cloned successfully

		401
		User is not authorized to access this session

		403
		User has no access to these resources

		404
		The environment template does not exist

		409
		Conflict. The environment template name already exists

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appdev-guide/muranopackages/package_structure.html

 Navigation

 		
 index

 		Murano »

Package structure

The structure of the Murano application package is predefined. An
application could be successfully uploaded to an application catalog.

The application package root folder should contain the following:

		manifest.yaml file

		is an application entry point.

Note

the filename is fixed, do not use any custom names.

		Classes folder

		contains MuranoPL class definitions.

		Resources folder

		contains execution plan templates and the scripts
folder with all the files required for an application
deployment located in it.

		UI folder

		contains the dynamic UI yaml definitions.

		logo.png file (optional)

		is an image file associated to your application.

Note

There are no any special limitations regarding an image filename.
Though, if it differs from the default logo.png, specify it
in an application manifest file.

		images.lst file (optional)

		contains a list of images required by an application.

Here is the visual representation of the Murano application
package structure:

[image: draft/appdev-guide/muranopackages/muranopackages/structure.png]

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/logo.png
Apache

draft/index.html

 Navigation

 		
 index

 		Murano »

Welcome to Murano Documentation (BETA)

Murano is an open source OpenStack project that
combines an application catalog with versatile
tooling to simplify and accelerate packaging and
deployment. It can be used with almost any application
and service in OpenStack.

This documentation guides application developers
through the process of composing an application
package to get it ready for uploading to Murano.

Besides the deployment rules and requirements,
it contains information on how to manage images,
categories, and repositories using the murano client that
will surely be helpful for cloud administrators.

It also explains to end users how they can use the catalog
directly from the dashboard. These include guidance on how
to manage applications and environments.

And of course, it provides information on how to contribute
to the project.

Introduction to Murano

		Key features
		Application catalog

		Application catalog management

		Application lifecycle management

		Target Users
		Cloud administrators

		Cloud end users

		Architecture

		Use cases

Using Murano

This guide provides murano end users with information on how they can use the
Application Catalog directly from the Dashboard and through the command-line
interface (CLI). The screenshots provided in this guide are of the Liberty
release.

		Quickstart
		Upload an application

		Deploy an application

		Delete an application

		Managing environments
		Create an environment

		Edit an environment

		Review an environment

		Managing applications
		Import an application package

		Search for an application in the catalog

		Delete an application package

		Add an application to environment

		Deploy an environment

		Delete an application

		Log into murano-spawned instance

		Using CLI
		Manage environments

		Manage packages

		Manage categories

		Deploying environments using CLI
		Create an environment

		Create a configuration session

		Add applications to an environment

		Verify your object model

		Deploy your environment

Deploying Murano

		Prepare A Lab For Murano
		System prerequisites

		Test Your Lab Host Performance

		Baseline Data

		Host Optimizations

		Installation
		Network configuration

		Policy configuration

		Managing packages
		Managing packages on engine side

		Managing images
		Build an image

		Manage images

		Managing categories

		Murano repository
		Use an existing repository

		Set up a custom repository

		Murano agent
		Murano-agent on a new VM

		Interaction with murano-engine

		Execution plans and execution plan templates

		Policy enforcement
		Setting up policy enforcement

		Creating policy enforcement rules

		Murano policy enforcement internals

		Using policy for the base modification of an environment

		Murano service broker for Cloud Foundry
		Service broker overview

		Configure service broker

		How to use service broker

		Known issues

		Useful links

		Troubleshooting
		Log location

		Problems during configuration

		Problems during deployment

Developing Applications

		Step-by-Step
		Step 1. Create the structure of the package

		Step 2. Create the manifest file

		Step 3. Create the execution plan template

		Step 4. Create the dynamic UI form definition

		Step 5: Define MuranoPL class definitions

		Step 6. Add the application logo (optional)

		Step 7. Compose a zip archive

		Execution plan template
		Template sections

		FormatVersion property

		Scripts section

		HOT packages
		Compose a package

		MuranoPL Reference
		YAML

		YAQL

		Common class structure

		MuranoPL Core Library

		Murano actions

		Murano packages
		Package structure

		Dynamic UI definition specification

		Version history

		Murano package repository

		Migrating applications between releases
		Migrate applications from Murano v0.5 to Stable/Juno

		Migrate applications to Stable/Kilo

		Migrate applications to Stable/Liberty

		Application unit tests

		Examples

		Use-cases
		Performing application interconnections

		Using application already installed on the image

		Interacting with non-OpenStack services

		Configuring Network Access for VMs

		FAQ

Contributing

		How to contribute

		Development guidelines
		Conventions

		High-level overview of Murano components

		Coding guidelines

		Debug tips

		Murano plug-ins
		MuranoPL extension plug-ins

		MuranoPL package type plug-ins

		Testing
		Testing guidelines

		Continuous Integration service

		UI testing

		Tempest tests

		Automated testing machinery

		Documentation guidelines

Appendix

		Glossary

		High-level definitions of Murano concepts

		Tutorials
		Integration with Docker

		Integration with Kubernetes

		HA and autoscaling

		REST API specification

		Murano command-line client
		Subcommands

		Murano optional arguments

		Application catalog API v1 commands

		murano package-delete

		murano package-import

		murano package-show

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/app_details.png
B3 openstack hate v

Frofeet Environments > Environment quick-env-1 > Component GitChefKate9
Admin .
aontty [pr—
e -
Component Details
Applentoncaao _~ |70
Environments Name
GiCnetkates
pr——
5030272169554 100-2455-612501 9552
Manage .
Type
Gl
stas
Romay

Instance name
murano-seprpif42jcji2-gmyhif28042-m2bgt2occxas

Heat Orchestration stack name
murano-seprpif42icji2

draft/appdev-guide/muranopackages/dynamic_ui.html

 Navigation

 		
 index

 		Murano »

Dynamic UI definition specification

The main purpose of Dynamic UI is to generate application creation
forms “on-the-fly”. The Murano dashboard does not know anything about
applications that will be presented in the catalog and which web forms are
required to create an application instance. So all application definitions
should contain an instruction, which tells the dashboard how to create an
application and what validations need to be applied. This document will help
you to compose a valid UI definition for your application.

The UI definition should be a valid YAML file and may contain the following
sections (for version 2.x):

		
		Version

		Points out the syntax version in use. Optional

		
		Templates

		An auxiliary section, used together with an Application section
to help with object model composing. Optional

		
		Application

		Object model description passed to murano engine and used for application
deployment. Required

		
		Forms

		Web form definitions. Required

Version

The syntax and format of dynamic UI definitions may change over time, so the
concept of format versions is introduced. Each UI definition file may contain
a top-level section called Version to indicate the minimum version of Murano
Dynamic UI platform which is capable to process it.
If the section is missing, the format version is assumed to be latest supported.

The version consists of two non-negative integer segments, separated by a dot,
i.e. has a form of MAJOR.MINOR.
Dynamic UI platforms having the same MAJOR version component are compatible:
i.e. the platform having the higher version may process UI definitions with
lower versions if their MAJOR segments are the same.
For example, Murano Dynamic UI platform of version 2.2 is able to process UI
definitions of versions 2.0, 2.1 and 2.2, but is unable to process 3.0 or
1.9.

Currently, the latest version of Dynamic UI platform is 2.3. It is incompatible
with UI definitions of Version 1.0, which were used in Murano releases before
Juno.

Note

Although the Version field is considered to be optional, its default
value is the latest supported version. So if you intent to use applications
with the previous stable murano version, verify that the version
is set correctly.

Version history

		Version
		Changes
		OpenStack Version

		1.0
		
		Initial Dymanic UI implementation

		Icehouse

		2.0
		
		instance field support is dropped

		New Application section that describes engine object model

		New Templates section for keeping reusable pieces of Object

		Juno, Kilo

		2.1
		
		New network field provides a selection of networks and
their subnetworks as a dropdown populated with those which are
available to the current tenant.

		Liberty

		2.2
		
		Now application name is added automatically to the last
service form. It is needed for a user to recognize one
created application from another in the UI. Previously all
application definitions contained the name property. So to
support backward compatibility, you need to manually remove
name field from class properties.

		Liberty

		2.3
		
		Now password field supports confirmInput flag and
validator overloading with single regexValidator or
multiple validators attribute.

		Mitaka

Application and Templates

The Application section describes an application object model.
This model will be translated into json, and an application will be
deployed according to that json. The application section should
contain all necessary keys that are required by the murano-engine to
deploy an application. Note that the system section of the object model goes
under the ?. So murano recognizes that instead of simple value,
MuranoPL object is used. You can pick parameters you got from a user
(they should be described in the Forms section) and pick the right place
where they should be set. To do this YAQL [https://git.openstack.org/cgit/openstack/yaql/tree/README.rst] is
used. Below is an example of how two YAQL functions are used for object model
generation:

		generateHostname is used for a machine hostname template generation;
it accepts two arguments: name pattern (string) and index (integer). If ‘#’
symbol is present in name pattern, it will be replaced with the index
provided. If pattern is not given, a random name will be generated.

		repeat is used to produce a list of data snippets, given the template
snippet (first argument) and number of times it should be reproduced (second
argument). Inside that template snippet current step can be referenced as
$index.

Note

While evaluating YAQL expressions referenced from
Application section (as well as almost all attributes inside
Forms section, see later), $ root object is set to the list of
dictionaries with cleaned validated forms’ data. For example, to obtain
a cleaned value of field name of form appConfiguration , you should reference it
as $.appConfiguration.name. This context will be called as a
standard context throughout the text.

Example:

Templates:
 primaryController:
 ?:
 type: io.murano.windows.activeDirectory.PrimaryController
 host:
 ?:
 type: io.murano.windows.Host
 adminPassword: $.appConfiguration.adminPassword
 name: generateHostname($.appConfiguration.unitNamingPattern, 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

 secondaryController:
 ?:
 type: io.murano.windows.activeDirectory.SecondaryController
 host:
 ?:
 type: io.murano.windows.Host
 adminPassword: $.appConfiguration.adminPassword
 name: generateHostname($.appConfiguration.unitNamingPattern, $index + 1)
 flavor: $.instanceConfiguration.flavor
 image: $.instanceConfiguration.osImage

Application:
 ?:
 type: io.murano.windows.activeDirectory.ActiveDirectory
 primaryController: $primaryController
 secondaryControllers: repeat($secondaryController, $.appConfiguration.dcInstances - 1)

Forms

This section describes markup elements for defining forms, which are currently
rendered and validated with Django. Each form has a name, field definitions
(mandatory), and validator definitions (optionally).

Note that each form is splitted into 2 parts:

		input area - left side, where all the controls are located

		description area - right side, where descriptions of the controls are located

Each field should contain:

		name - system field name, could be any

		type - system field type

Currently supported options for type attribute are:

		string - text field (no inherent validations) with one-line text input

		boolean - boolean field, rendered as a checkbox

		text - same as string, but with a multi-line input

		integer - integer field with an appropriate validation, one-line text input

		password - text field with validation for strong password, rendered as two
masked text inputs (second one is for password confirmation)

		clusterip - specific text field, used for entering cluster IP address
(validations for valid IP address syntax and for that IP to belong to a fixed
subnet)

		databaselist - specific field, a list of databases (comma-separated list of
databases’ names, where each name has the following syntax first symbol
should be latin letter or underscore; subsequent symbols can be latin
letter, numeric, underscore, at the sign, number sign or dollar sign),
rendered as one-line text input

		image - specific field, used for filtering suitable images by image type
provided in murano metadata in glance properties.

		flavor - specific field, used for selection instance flavor from a list

		keypair - specific field, used for selecting a keypair from a list

		azone - specific field, used for selecting instance availability zone from
a list

		network - specific field, used to select a network and subnet from a list
of the ones available to the current user

		any other value is considered to be a fully qualified name for some
Application package and is rendered as a pair of controls: one for selecting
already existing Applications of that type in an Environment, second - for
creating a new Application of that type and selecting it

Other arguments (and whether they are required or not) depends on a
field’s type and other attributes values. Most of them are standard Django
field attributes. The most common attributes are the following:

		label - name, that will be displayed in the form; defaults to name
being capitalized.

		description - description, that will be displayed in the description area.
Use yaml line folding character >- to keep the correct formatting during
data transferring.

		descriptionTitle - title of the description, defaults to label;
displayed in the description area

		hidden whether field should be visible or not in the input area.
Note that hidden field’s description will still be visible in the
descriptions area (if given). Hidden fields are used storing some data to be
used by other, visible fields.

		minLength, maxLength (for string fields) and minValue,
maxValue (for integer fields) are transparently translated into django
validation properties.

		regexValidator - regular expression to validate user input. Used with
string field.

		errorMessages - dictionary with optional ‘invalid’ and ‘required’ keys
that set up what message to show to the user in case of errors.

		validators is a list of dictionaries, each dictionary should at least
have expr key, under that key either some
YAQL [https://git.openstack.org/cgit/openstack/yaql/tree/README.rst]
expression is stored, either one-element dictionary with regexValidator key
(and some regexp string as value).
Another possible key of a validator dictionary is message, and although
it is not required, it is highly desirable to specify it - otherwise, when
validator fails (i.e. regexp doesn’t match or YAQL expression evaluates to
false) no message will be shown. Note that field-level validators use YAQL
context different from all other attributes and section: here $ root object
is set to the value of field being validated (to make expressions shorter).

- name: someField
 type: string
 label: Domain Name
 validators:
 - expr:
 regexpValidator: '(^[^.]+$|^[^.]{1,15}\..*$)'
 message: >-
 NetBIOS name cannot be shorter than 1 symbol and
 longer than 15 symbols.
 - expr:
 regexpValidator: '(^[^.]+$|^[^.]*\.[^.]{2,63}.*$)'
 message: >-
 DNS host name cannot be shorter than 2 symbols and
 longer than 63 symbols.
 helpText: >-
 Just letters, numbers and dashes are allowed.
 A dot can be used to create subdomains

		widgetMedia sets some custom CSS and JavaScript used for the field’s
widget rendering. Note, that files should be placed to Django static folder
in advance. Mostly they are used to do some client-side field
enabling/disabling, hiding/unhiding etc.

		requirements is used only with flavor field and prevents user to pick
unstable for a deployment flavor.
It allows to set minimum ram (in MBs), disk space (in GBs) or virtual CPU
quantity.

Example that shows how to hide items smaller than regular small flavor
in a flavor select field:

- name: flavor
 type: flavor
 label: Instance flavor
 requirements:
 min_disk: 20
 min_vcpus: 2
 min_memory_mb: 2048

		include_subnets is used only with network field. True by default.
If True, the field list includes all the possible combinations of network
and subnet. E.g. if there are two available networks X and Y, and X has two
subnets A and B, while Y has a single subnet C, then the list will include 3
items: (X, A), (X, B), (Y, C). If set to False only network names will be
listed, without their subnets.

		filter is used only with network field. None by default. If set to a
regexp string, will be used to display only the networks with names matching
the given regexp.

		murano_networks is used only with network field. None by default. May
have values None, exclude or translate. Defines the handling of
networks which are created by murano.
Such networks usually have very long randomly generated names, and thus look
ugly when displayed in the list. If this value is set to exclude then these
networks are not shown in the list at all. If set to translate the
names of such networks are replaced by a string Network of %env_name%.

Note

This functionality is based on the simple string matching of the
network name prefix and the names of all the accessible murano
environments. If the environment is renamed after the initial deployment
this feature will not be able to properly translate or exclude its network
name.

		allow_auto is used only with network field. True by default. Defines if
the default value of the dropdown (labeled “Auto”) should be present in the
list. The default value is a tuple consisting of two None values. The logic
on how to treat this value is up to application developer. It is suggested to
use this field to indicate that the instance should join default environment
network. For use-cases where such behavior is not desired, this parameter
should be set to False.

Besides field-level validators, form-level validators also exist. They
use standard context for YAQL evaluation and are required when
there is a need to validate some form’s constraint across several
fields.

Example

Forms:
 - appConfiguration:
 fields:
 - name: dcInstances
 type: integer
 hidden: true
 initial: 1
 required: false
 maxLength: 15
 helpText: Optional field for a machine hostname template
 - name: unitNamingPattern
 type: string
 label: Instance Naming Pattern
 required: false
 maxLength: 64
 regexpValidator: '^[a-zA-Z][-_\w]*$'
 errorMessages:
 invalid: Just letters, numbers, underscores and hyphens are allowed.
 helpText: Just letters, numbers, underscores and hyphens are allowed.
 description: >-
 Specify a string that will be used in a hostname instance.
 Just A-Z, a-z, 0-9, dash, and underline are allowed.

 - instanceConfiguration:
 fields:
 - name: title
 type: string
 required: false
 hidden: true
 descriptionTitle: Instance Configuration
 description: Specify some instance parameters based on which service will be created.
 - name: flavor
 type: flavor
 label: Instance flavor
 description: >-
 Select a flavor registered in OpenStack. Consider that service performance
 depends on this parameter.
 required: false
 - name: osImage
 type: image
 imageType: windows
 label: Instance image
 description: >-
 Select valid image for a service. Image should already be prepared and
 registered in glance.
 - name: availabilityZone
 type: azone
 label: Availability zone
 description: Select an availability zone, where service will be installed.
 required: false

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/topology_element_1.png

draft/appdev-guide/muranopackages/repository.html

 Navigation

 		
 index

 		Murano »

Murano package repository

Murano client and dashboard can install both packages and bundles of packages from murano repository. To do so you should set MURANO_REPO_URL settings in murano dashboard or MURANO_REPO_URL env variable for the CLI client, and use a respective command to import the package. These commands automatically import all the prerequisites required to install the application along with any images mentioned in the applications.

Setting up your own repository

		It is fairly easy to set up your own murano package repository. To do so you need a web server that would serve 3 directories:

		
		/apps/

		/bundles/

		/images/

When importing an application by name, the client appends any version info, if present to the application name, .zip file extension and searches for that file in the apps directory.

When importing a bundle by name, the client appends .bundle file extension to the bundle name and searches it in the bundles directory. A bundle file is a json or a yaml file with the following structure:

{"Packages":
 [
 {"Name": "io.murano.apps.ApacheHttpServer"},
 {"Version": "", "Name": "io.murano.apps.Nginx"},
 {"Version": "0.0.1", "Name": "io.murano.apps.Lighttpd"}
]
}

Glance images can be auto-imported by the client, when mentioned in images.lst inside the package. Please see Step-by-Step for more information about package composition.
When importing images from the image.lst file, the client simply searches for a file with the same name as the name attribute of the image in the images directory of the repository.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/configure_app.png
Configure Application: Apache Tomcat

Application Name *

Tomeat

@ Assign Floating IP

Apache Tomcat
Apache Licenss, Version 2.0

Application Name: Enter a desired name for the
‘application. Just A-Z, a2, 0-9, dash and underline are
allowed

Assign Floating IP: Select to true to assign floating
1P automatically

draft/appdev-guide/app_migrating/app_migrate_to_liberty.html

 Navigation

 		
 index

 		Murano »

Migrate applications to Stable/Liberty

In Liberty a number of useful features that can be used by developers creating
their murano applications were implemented. This document describes these
features and steps required to include them to new apps.

1. Versioning

Package version

Now murano packages have a new optional attribute in their manifest called
Version - a standard SemVer format version string. All MuranoPL classes have
the version of the package they contained in.
To specify the version of your package, add a new section to the manifest file:

Version: 0.1.0

If no version specified, the package version will be equal to 0.0.0.

Package requirements

There are cases when packages may require other packages for their work.
Now you need to list such packages in the Require section of the manifest
file:

Require:
 package1_FQN: version_spec_1
 ...
 packageN_FQN: version_spec_N

version_spec here denotes the allowed version range. It can be either in
semantic_version specification pip-like format or as partial version string.
If you do not want to specify the package version, leave this value empty:

Require:
 package1_FQN: >=0.0.3
 package2_FQN:

In this case, the last dependency 0.x.y is used.

Note

All packages depend on the io.murano package (core library). If you do not
specify this requirement in the list (or the list is empty or even there is
no Require key in package manifest), then dependency io.murano: 0 will
be automatically added.

Object version

Now you can specify the version of objects in UI definition when your
application requires specific version of some class. To do this, add new key
classVersion to section ? describing object:

?:
 type: io.test.apps.TestApp
 classVersion: 0.0.1

classVersion of all classes included to package equals Version of this
package.

2. YAQL

In Liberty, murano was updated to use yaql 1.0.0.
The new version of yaql allows you to use a number of new functions and
features that help to increase the speed of developing new applications.

Note

Usage of these features makes your applications incompatible with
older versions of murano.

Also, in Liberty you can change Format in the manifest of package from
1.0 to 1.1 or 1.2.

		1.0 - supported by all versions of murano.

		1.1 - supported by Liberty+. Specify it, if you want to use features
from yaql 0.2 and yaql 1.0.0 at the same time in your application.

		1.2 - supported by Liberty+. A number of features from yaql 0.2 do not
work with this format (see the list below). We recommend you to use it for
new applications where compatibility with Kilo is not required.

Some examples of yaql 0.2 features that are not compatible with the 1.2 format

		Several functions now cannot be called as MuranoObject methods:
id(), cast(), super(), psuper(), type().

		Now you do not have the ability to compare non-comparable types.
For example “string != false”

		Dicts are not iterable now, so you cannot do this:
If: $key in $dict. Use $key in $dict.keys()
or $v in $dict.values()

		Tuples are not available. => always means keyword argument.

3. Simple software configuration

Previously, you always had to create execution plans even when some short
scripts had to be executed on a VM. This process included creating a template
file, creating a script, and describing the sending of the execution plan to
the murano agent.

Now you can use a new class io.murano.configuration.Linux from murano
core-library. This allows sending short commands to the VM and putting files
from the Resources folder of packages to some path on the VM without the
need of creating execution plans.

To use this feature you need to:

		Declare a namespace (for convenience)

Namespaces:
 conf: io.murano.configuration
 ...

		Create object of io.murano.configuration.Linux class in workflow of
your application:

$linux: new(conf:Linux)

		Run one of the two feature methods: runCommand or putFile:

first agrument is agent of instance, second - your command
$linux.runCommand($.instance.agent, 'service apache2 restart')

or:

getting content of file from 'Resources' folder
- $resources: new(sys:Resources)
- $fileContent: $resources.string('your_file.name')
put this content to some directory on VM
- $linux.putFile($.instance.agent, $fileContent, '/tmp/your_file.name')

Note

At the moment, you can use this feature only if your app requires an
instance of LinuxMuranoInstance type.

4. UI network selection element

Since Liberty, you can provide users with the ability to choose where to join
their VM: to a new network created during the deployment, or to an already
existing network.
Dynamic UI now has a new type of field - NetworkChoiseField. This field
provides a selection of networks and their subnetworks as a dropdown populated
with those which are available to the current tenant.

To use this feature, you should make the following updates in the Dynamic UI of
an application:

		Add network field:

fields:
 - name: network
 type: network
 label: Network
 description: Select a network to join. 'Auto' corresponds to a default environment's network.
 required: false
 murano_networks: translate

To see the full list of the network field arguments, refer to the UI
forms specification.

		Add template:

Templates:
 customJoinNet:
 - ?:
 type: io.murano.resources.ExistingNeutronNetwork
 internalNetworkName: $.instanceConfiguration.network[0]
 internalSubnetworkName: $.instanceConfiguration.network[1]

		Add declaration of networks instance property:

Application:
 ?:
 type: io.murano.apps.exampleApp
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance
 networks:
 useEnvironmentNetwork: $.instanceConfiguration.network[0]=null
 useFlatNetwork: false
 customNetworks: switch($.instanceConfiguration.network[0], $=null=>list(), $!=null=>$customJoinNet)

For more details about this feature, see use-cases

Note

To use this feature, the version of UI definition must be 2.1+

5. Remove name field from fields and object model in dynamic UI

Previously, each class of an application had a name property. It had no
built-in predefined meaning for MuranoPL classes and mostly used for dynamic UI
purposes.

Now you can create your applications without this property in classes and
without a corresponding field in UI definitions. The field for app name will be
automatically generated on the last management form before start of deployment.
Bonus of deleting this - to remove unused property from muranopl class that is
needed for dashboard only.

So, to update existing application developer should make 3 steps:

		remove name field and property declaration from UI definition;

		remove name property from class of application and make sure that it is
not used anywhere in workflow

		set version of UI definition to 2.2 or higher

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/component-details.png
88 openstack demo ~ & demobox +

Froleet " Environments > Environment Demo > Component Tomcat
e >
) | [component | togs
— “ Component Details
el ..
Namo
Ervromens T

Appications | 1
be152ccb-ac81-4326-0562 508166965774
Manage v

Type
Apache Tomcat

Status.
Ready

Instance name
murano-bevonihiudrzp1-0eqifihiu0n332-z6sdiosjicda

Heat Orchestration stack name
murano-bevonihiuorzpt

draft/appdev-guide/app_migrating/app_migrate_to_juno.html

 Navigation

 		
 index

 		Murano »

Migrate applications from Murano v0.5 to Stable/Juno

Applications created for murano v0.5, unfortunately, are not supported in Murano
stable/juno. This document provides the application code changes required for
compatibility with the stable/juno murano version.

Rename ‘Workflow’ to ‘Methods’

In stable/juno the name of section containing class methods is renamed to
Methods, as the latter is more OOP and doesn’t cause confusion with Mistral. So,
you need to change it in app.name/Classes in all classes describing workflow
of your app.

For example:

Workflow:
 deploy:
 Body:
 - $._environment.reporter.report($this, 'Creating VM')

Should be changed to:

Methods:
 deploy:
 Body:
 - $._environment.reporter.report($this, 'Creating VM')

Change the Instance type in the UI definition ‘Application’ section

The Instance class was too generic and contained some dirty workarounds to
differently handle Windows and Linux images, to bootstrap an instance in a
number of ways, etc. To solve these problems more classes were added to the
Instance inheritance hierarchy.

Now, base Instance class is abstract and agnostic of the desired OS and agent
type. It is inherited by two classes: LinuxInstance and WindowsInstance.

		LinuxInstance adds a default security rule for Linux, opening a standard
SSH port;

		WindowsInstance adds a default security rule for Windows, opening an RDP
port. At the same time WindowsInstance prepares a user-data allowing to use
Murano v1 agent.

LinuxInstance is inherited by two other classes, having different software
config method:

		LinuxMuranoInstance adds a user-data preparation to configure Murano
v2 agent;

		LinuxUDInstance adds a custom user-data field allowing the services to
supply their own user data.

You need to specify the instance type which is required by your app. It
specifies a field in UI, where user can select an image matched to the instance
type. This change must be added to UI form definition in app.name/UI/ui.yaml.

For example, if you are going to install your application on Ubuntu, you need to
change:

Application:
 ?:
 instance:
 ?:
 type: io.murano.resources.Instance

to:

Application:
 ?:
 instance:
 ?:
 type: io.murano.resources.LinuxMuranoInstance

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appdev-guide/app_migrating/app_migrate_to_kilo.html

 Navigation

 		
 index

 		Murano »

Migrate applications to Stable/Kilo

In Kilo, there are no breaking changes that affect backward compatibility.
But there are two new features which you can use since Kilo.

1. Pluggable Pythonic classes for murano

Now you can create plug-ins for MuranoPL. A plug-in (extension) is an
independent Python package implementing functionality which you want
to add to the workflow of your application.

For a demo application demonstrating the usage of plug-ins, see the
murano/contrib/plugins/murano_exampleplugin folder.

The application consist of the following components:

		An ImageValidatorMixin class that inherits the generic instance class
(io.murano.resources.Instance) and adds a method capable of validating
the instance image for having an appropriate murano metadata type. This
class may be used as a mixin when added to inheritance hierarchy of
concrete instance classes.

		A concrete class called DemoInstance that inherits from
io.murano.resources.LinuxMuranoInstance and ImageValidatorMixin
to add the image validation logic to a standard, murano-enabled and
Linux-based instance.

		An application that deploys a single VM using the DemoInstance
class if the tag on the user-supplied image matches the user-supplied
constant.

The ImageValidatorMixin demonstrates the instantiation of plug-in provided
class and its usage, as well as handling of exception which may be thrown if
the plug-in is not installed in the environment.

2. Murano mistral integration

The core library has a new system class for mistral client that allows to call
Mistral APIs from the murano application model.

The system class allows you to:

		Upload a mistral workflow to mistral.

		Trigger the mistral workflow that is already deployed, wait for completion
and return the execution output.

To use this feature, add some mistral workflow to Resources folder
of your package. For example, create file TestEcho_MistralWorkflow.yaml:

version: '2.0'

test_echo:
 type: direct
 input:
 - input_1
 output:
 out_1: <% $.task1_output_1 %>
 out_2: <% $.task2_output_2 %>
 out_3: <% $.input_1 %>
 tasks:
 my_echo_test:
 action: std.echo output='just a string'
 publish:
 task1_output_1: 'task1_output_1_value'
 task1_output_2: 'task1_output_2_value'
 on-success:
 - my_echo_test_2

 my_echo_test_2:
 action: std.echo output='just a string'
 publish:
 task2_output_1: 'task2_output_1_value'
 task2_output_2: 'task2_output_2_value'

And provide workflow to use the mistral client:

Namespaces:
=: io.murano.apps.test
std: io.murano
sys: io.murano.system

Name: MistralShowcaseApp

Extends: std:Application

Properties:
 name:
 Contract: $.string().notNull()

 mistralClient:
 Contract: $.class(sys:MistralClient)
 Usage: Runtime

Methods:
 initialize:
 Body:
 - $this.mistralClient: new(sys:MistralClient)

 deploy:
 Body:
 - $resources: new('io.murano.system.Resources')
 - $workflow: $resources.string('TestEcho_MistralWorkflow.yaml')
 - $.mistralClient.upload(definition => $workflow)
 - $output: $.mistralClient.run(name => 'test_echo', inputs => dict(input_1 => input_1_value))
 - $this.find(std:Environment).reporter.report($this, $output.get('out_3'))

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/import_bundle.png
B openstack

Project
Identity
Murano

Application Catalog

Manage

Images

Package Definitions

& demo-box ~ demo-box & ‘Sign Out

Package Definitions

+ import Package ||| 4 Import Bundle
Package Name Active Public Type Author Actions

No items to display.

Displaying 0 tems

_images/app_filter.png
88 openstack @ demo~ & demo-box ~

Applications

Project v
dentity o o
Recent Activity
Murano ~
Application Catalog ~ WordPress Zabbix Agent Zabbix Server
WordPress is a free BT Zaboix is the utimate BZXEEIRA Zabbix server s the
Emmm=s and open source open source central process of
blogging tool and a availabilty and Zabbix software.
Apolcations content management performance e
Detais » Detais »
Manage ©
©Create Env | 4 Quick Deploy ©Create Env | Quick Deploy ©Create Env | 4 Quick Deploy
App Category: | Alv Environment: Create Environment rally Q [Fiter
Rally
Rally Rallyis an official
Openstack
benchmarking and

performance analysis

Details »

©Create Env | o Quick Deploy

draft/appdev-guide/hotpackages/compose.html

 Navigation

 		
 index

 		Murano »

Compose a package

Murano is an Application catalog which intends to support applications defined in different formats. As a first step to universality, support of a heat orchestration template was added.
It means that any heat template could be added as a separate application into the Application Catalog. This could be done in two ways: manual and automatic.

Automatic package composing

Before uploading an application into the catalog, it should be prepared and archived.
A Murano command line will do all preparation for you.
Just choose the desired Heat Orchestration Template and perform the following command:

murano package-create –template wordpress/template.yaml

Note, that optional parameters could be specified:

		–name:		an application name, copied from a template by default

		–logo:		an application square logo, by default the heat logo will be used

		–description:		text information about an application, by default copied from a template

		–author:		a name of an application author

		–output:		a name of an output file archive to save locally

		–full-name:		a fully qualified domain name that specifies exact application location

Note

To performing this command python-muranoclient should be installed in the system

As the result, an application definition archive will be ready for uploading.

Manual package composing

Application package could be composed manually. Follow the 5 steps below.

		Step 1. Choose the desired heat orchestration template

For this example
chef-server.yaml [https://github.com/openstack/heat-templates/blob/master/hot/chef-server.yaml]
template will be used.

		Step 2. Rename it to template.yaml

		Step 3. Prepare an application logo (optional step)

It could be any picture associated with the application.

		Step 4. Create manifest.yaml file

All service information about the application is contained here. Specify the following parameters:

		Format:		defines an application definition format; should be set to Heat.HOT/1.0

		Type:		defines a manifest type, should be set to Application

		FullName:		a unique name which will be used to identify the application in Murano Catalog

		Description:		text information about an application

		Author:		a name of an application author or a company

		Tags:		keywords associated with the application

		Logo:		a name of a logo file for an application

Take a look at the example:

Format: Heat.HOT/1.0
Type: Application
FullName: io.murano.apps.Chef-Server
Name: Chef Server
Description: "Heat template to deploy Open Source CHEF server on a VM"
Author: Kate
Tags:
 - hot-based
Logo: logo.png

		Step 5. Create a zip archive, containing the specified files: template.yaml, manifest.yaml, logo.png

Applications page looks like:

[image: draft/appdev-guide/hotpackages/hotpackages/chef_server.png]
The configuration form, where you can enter template parameters, will be generated automatically and looks as follows:

[image: draft/appdev-guide/hotpackages/hotpackages/chef_server_form.png]
After filling the form the application is ready to be deployed.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appdev-guide/murano_pl/actions.html

 Navigation

 		
 index

 		Murano »

Murano actions

Murano action is a type of MuranoPL method. The differences from a regular
MuranoPL method are:

		Action is executed on deployed objects.

		Action execution is initiated by API request, you do not have to call
the method manually.

So murano action allows performing any operations on objects:

		Getting information from the VM, like a config that is generated during the
deployment

		VM rebooting

		Scaling

A list of available actions is formed during the environment deployment.
Right after the deployment is finished, you can call action asynchronously.
Murano engine generates a task for every action. Therefore, the action status
can be tracked.

Note

Actions may be called against any MuranoPL object, including Environment,
Application, and any other objects.

To mark a method as an action, use Usage: Action.

The following example shows an action that returns an archive with a
configuration file:

exportConfig:
 Usage: Action
 Body:
 - $._environment.reporter.report($this, 'Action exportConfig called')
 - $resources: new(sys:Resources)
 - $template: $resources.yaml('ExportConfig.template')
 - $result: $.masterNode.instance.agent.call($template, $resources)
 - $._environment.reporter.report($this, 'Got archive from Kubernetes')
 - Return: new(std:File, base64Content => $result.content,
 filename => 'application.tar.gz')

List of available actions can be found with environment details or application
details API calls. It’s located in object model special data.
Take a look at the following example:

Request:
http://localhost:8082/v1/environments/<id>/services/<id>

Response:

{
 "name": "SimpleVM",
 "?": {
 "_26411a1861294160833743e45d0eaad9": {
 "name": "SimpleApp"
 },
 "type": "io.murano.apps.Simple",
 "id": "e34c317a-f5ee-4f3d-ad2f-d07421b13d67",
 "_actions": {
 "e34c317a-f5ee-4f3d-ad2f-d07421b13d67_exportConfig": {
 "enabled": true,
 "name": "exportConfig"
 }
 }
 }
}

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

_static/plus.png

_images/4_2.png
Add Interface

‘Subnet *

Select Subnet

IP Address (optional) @

E| Description:
You can connect a speciied subnet o the router.
“The efaut P adress of the iterface created s a

19216021

| gatoway o the selctad sutt. vou can specty anctrer
1P adress of the inteface here. You must select a subnet

Router Name *

murano-default-router

Router ID *
'37025290-163e-4fba-aabb-ceBIS65(dd14.

1o which the specified IP address belongs to from the.
above list.

_images/qs_package_details.png
Import Package

Name Description:
\ apache HTTP Sever \ Name: Set up for Igentifying a package.
Tags: Used for identfying and ftering packages.
Tags@
Public: Defines whether or ot a package can be used
HTTP, Server, WebServer, HTMIL, Apache by othe tenants. (Applies to package dspendencies)
Active: Allows to fide & package from the catalog.
O Pulic (Applies to package dependencies)
@ Active Description: Allows adding acdtional inomation
avout a package.
Description

The Apache HTTP Server Project is an effort to
develop and maintain an

open-source HTTP server for modem operating
systems including UNIX and

Windows NT. The goal of this project is to
provide a secure, efficient and

extensible server that provides HTTP services
in sync with the current HTTP.

standards.

Apache hitpd has been the most popular web
server on the Infemet since

_images/chef_server_form.png
& Configure Application: Chef Server
Step 1

Appiication Name *

[oersew

Heat lempate 1 deploy Open Source CHEF sarver on
Ssh Koy Name * awm

© Application Name: Enter a desied name for the.
applcation. Just AZ. a2, 09, and dash are alowed

Chet Flavor Name * ‘S8 Key Name: Nama of Key Pai o onabie SSH
accass to the nstance

Chet Flavor Name: Nama Fiavor o usa or saver

Chet Port Chet Port: Port Nurmber
4000 Chet Server Name: The Instance Nams.
cher server Name Chet image Name: Narme of mags to uss for server
~Rabbit Password: Password for RabbING.
OpenSourceChefserver

‘chot image Name *

bt Password

secrate

_images/drag_and_drop.png
88 openstack

Project
Identity v
Murano ~
Application Catalog ~
Environments.

Applications

Manage v

B demo-box +

Environments > Environment Environment-3

Components | Deployment History

Application Components

App category | All~

& demo-box v

< (o] ez dockaq >
Apache HTTP S. Apache Tomcat Docker Jenkins Docker MariaDB Docker Standalo.
© Drop Components here
Component List +Add Component
Name Type Status Last operation Time updated Actions
No components

Displaying 0 tems

_images/add_key_pair.png
GitChef

gt Configure Applicatiol

Instance flavor

m1.medium v
Instance image *
Select Image v

‘Avallability zone

nova v
Network
Auto v

Instance Naming Pattern @

GitChef

‘Specify some instance parameters on which the
application would be created

Instance flavor: Select registered in Openstack flavor.
Consider that application performance depends on this.
parameter.

Instance image: Select valid image for the appiication.
Image should already be prepared and registered in
glance.

© Key Pair: Select the Key Pair to control access to

instances. You can login to instances using this.
KeyPair after the deployment of application.

Avallability zone: Select availability zone where.
application would be installed.

Network: Select a network to join. ‘Auto’ corresponds.
10 a default environment's network.

Instance Naming Pattern: Specify a string, that will be
used in instance hostname. Just A-Z, a-z, 0-9, dash
and underline are allowed.

_images/qs_quick_deploy.png
== Configure Application

Application Name *
ApacheHtipServer
() Enable PHP

Assign Floating IP

: Apache HTTP Server

Apache HTTP Server

Apache License, Version 2.0

Application Name: Enter a desired name for the
‘application. Just A-Z, a2, 0-9, dash and underline are
allowed

Enable PHP: Ad php support to the Apache
WebServer

© Assign Floating IP: Select to true to assign floating
1P automatically

_images/5.png
B openstack [2
Project - Network Topology

D " [Wsmat | 5 noma
Network -

[o ety

Orchestration ,
Admin ,

_images/chef_server.png
Applications

Project v
Admin o
Recent Activity
Identity
Murano, - % Chef Server
R Heat template to deploy
Application Catalog L e
CHEF' sneronawm
Environments
Details »
Applcations
Manage v ©Addto Env | Quick Deploy

_images/qs_quick_deploy_2.png
= Configure Application: Apache HTTP Server

Instance flavor

oo 9

Instance image *

s]]

Key Pair

No keypair

Availability zone

s 9

Instance Naming Pattern @

Apache HTTP Server

‘Specify some instance parameters on which the
‘application would be created

Instance flavor: Select registered In Openstack flavor.
‘Consider that application performance depends on this
parameter.

© Instance image: Select valid image for the
‘application. Image should already be prepared and
registered In glance.

Key Palr: Select the Key Palr to control access to
Instances. You can login to Instances using this
KeyPair after the deployment of application.

Avallability zone: Select availability zone where
‘application would be installed.

Instance Naming Pattern: Specify a string, that will
be used in instance hostname. Just A-Z, a2, 0-9, dash
and underiine are allowed.

Back [EET

draft/appdev-guide/murano_pl/core_lib.html

 Navigation

 		
 index

 		Murano »

MuranoPL Core Library

Some objects and actions can be used in several application deployments.
All common parts are grouped into MuranoPL libraries.
Murano core library is a set of classes needed in each deployment.
Class names from core library can be used in the application definitions.
This library is located under the meta [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano]
directory.

Classes included in the Murano core library are as follows:

io.murano

		Class: Object

		Class: Application

		Class: SecurityGroupManager

		Class: Environment

io.murano.resources

		Class: Instance

		Class: Network

io.murano.system

		Class: Logger

Class: Object

A parent class for all MuranoPL classes. It implements the initialize,
setAttr, and getAttr methods defined in the pythonic part of the Object class.
All MuranoPL classes are implicitly inherited from this class.

See also

Source Object.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Object.yaml]
file.

Class: Application

Defines an application itself. All custom applications must be derived from
this class.

See also

Source Application.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Application.yaml]
file.

Class: SecurityGroupManager

Manages security groups during an application deployment.

See also

Source SecurityGroupManager.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/SecurityGroupManager.yaml]
file.

Class: Environment

Defines an environment in terms of the deployment process and
groups all Applications and their related infrastructures. It also able
to deploy them at once.

Environments is intent to group applications to manage them easily.

Environment class properties

		Property
		Description
		Default usage

		name
		An environment name.
		In

		applications
		A list of applications belonging to an environment.
		In

		agentListener
		A property containing the io.murano.system.AgentListener object
that can be used to interact with Murano Agent.
		Runtime

		stack
		A property containing a HeatStack object that can be used to interact
with Heat.
		Runtime

		instanceNotifier
		A property containing the io.murano.system.InstanceNotifier object
that can be used to keep track of the amount of deployed instances.
		Runtime

		defaultNetworks
		A property containing user-defined Networks
(io.murano.resources.Network) that can be used as default networks
for the instances in this environment.
		In

		securityGroupManager
		A property containing the SecurityGroupManager object that can
be used to construct a security group associated with this environment.
		Runtime

See also

Source Environment.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/Environment.yaml]
file.

Class: Instance

Defines virtual machine parameters and manages an instance lifecycle: spawning,
deploying, joining to the network, applying security group, and deleting.

Instance class properties

		Property
		Description
		Default usage

		name
		An instance name.
		In

		flavor
		An instance flavor defining virtual machine hardware parameters.
		In

		image
		An instance image defining operation system.
		In

		keyname
		Optional. A key pair name used to connect easily to the instance.
		In

		agent
		Configures interaction with the Murano agent using
io.murano.system.Agent.
		Runtime

		ipAddresses
		A list of all IP addresses assigned to an instance.
		Out

		networks
		Specifies the networks that an instance will be joined to.
Custom networks that extend Network class can be
specified. An instance will be connected to them and for the default
environment network or flat network if corresponding values are set
to True. Without additional configuration, instance will be joined
to the default network that is set in the current environment.
		In

		assignFloatingIp
		Determines if floating IP is required. Default is False.
		In

		floatingIpAddress
		IP addresses assigned to an instance after an application deployment.
		Out

		securityGroupName
		Optional. A security group that an instance will be joined to.
		In

See also

Source Instance.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/resources/Instance.yaml]
file.

Resources

Instance class uses the following resources:

		Agent-v2.template

		Python Murano Agent template.

Note

This agent is supposed to be unified. Currently, only Linux-based
machines are supported. Windows support will be added later.

		linux-init.sh

		Python Murano Agent initialization script that sets up an agent with
valid information containing an updated agent template.

		Agent-v1.template

		Windows Murano Agent template.

		windows-init.sh

		Windows Murano Agent initialization script.

Class: Network

The basic abstract class for all MuranoPL classes representing networks.

See also

Source Network.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/resources/Network.yaml]
file.

Class: Logger

Logging API is the part of core library since Liberty release. It was
introduced to improve debuggability of MuranoPL programs.

You can get a logger instance by calling a logger function which
is located in io.murano.system namespace. The logger function takes
a logger name as the only parameter. It is a common recommendation to use full
class name as a logger name within that class. This convention avoids names
conflicts in logs and ensures a better logging subsystem configurability.

Logger class instantiation:

$log: logger('io.murano.apps.activeDirectory.ActiveDirectory')

Log levels prioritized in order of severity

		Level
		Description

		CRITICAL
		Very severe error events that will presumably lead the application
to abort.

		ERROR
		Error events that might not prevent the application from running.

		WARNING
		Events that are potentially harmful but will allow the application
to continue running.

		INFO
		Informational messages highlighting the progress of the application
at the coarse-grained level.

		DEBUG
		Detailed informational events that are useful when debugging an
application.

		TRACE
		Even more detailed informational events comparing to the DEBUG level.

There are several methods that fully correspond to the log levels you can use
for logging events. They are debug, trace, info, warning,
error, and critical.

Logging example:

$log.info('print my info message {message}', message=>message)

Logging methods use the same format rules as the YAQL format
function. Thus the line above is equal to the:

$log.info('print my info message {message}'.format(message=>message))

To print an exception stacktrace, use the exception method.
This method uses the ERROR level:

Try:
 - Throw: exceptionName
 Message: exception message
Catch:
With: exceptionName
As: e
Do:
 - $log.exception($e, 'something bad happen "{message}"', message=>message)

Note

You can configure the logging subsystem through the logging.conf file
of the Murano Engine.

See also

		Source Logger.yaml [https://git.openstack.org/cgit/openstack/murano/tree/meta/io.murano/Classes/system/Logger.yaml]
file.

		OpenStack networking logging
configuration [http://docs.openstack.org/liberty/config-reference/content/networking-options-logging.html].

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appdev-guide/murano_pl/class_templ.html

 Navigation

 		
 index

 		Murano »

Common class structure

Here is a common template for class declarations. Note, that it is in the YAML
format.

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

		Name: class name
Namespaces: namespaces specification
Extends: [list of parent classes]
Properties: properties declaration
Methods:
 methodName:
 Arguments:
 - list
 - of
 - arguments
 Body:
 - list
 - of
 - instructions

Thus MuranoPL class is a YAML dictionary with predefined key names, all keys except
for Name are optional and can be omitted (but must be valid if specified).

Class name

Class names are alphanumeric names of the classes. Traditionally, all class names
begin with an upper-case letter symbol and are written in PascalCasing.

In MuranoPL all class names are unique. At the same time, MuranoPL
supports namespaces. So, in different namespaces you can have classes
with the same name. You can specify a namespace explicitly, like
ns:MyName. If you omit the namespace specification, MyName is
expanded using the default namespace =:. Therefore, MyName
equals =:MyName if = is a valid namespace.

Namespaces

Namespaces declaration specifies prefixes that can be used in the class body
to make long class names shorter.

Namespaces:
 =: io.murano.services.windows
 srv: io.murano.services
 std: io.murano

In the example above, the srv: Something class name is automatically
translated to io.murano.services.Something.

= means the current namespace, so that MyClass means
io.murano.services.windows.MyClass.

If the class name contains the period (.) in its name, then it is assumed
to be already fully namespace qualified and is not expanded.
Thus ns.Myclass remains as is.

Note

To make class names globally unique, we recommend specifying a developer’s
domain name as a part of the namespace.

Extends

MuranoPL supports multiple inheritance. If present, the Extends section
shows base classes that are extended. If the list consists of a single entry,
then you can write it as a scalar string instead of an array. If you
do not specify any parents or omit the key, then the class extends
io.murano.Object. Thus, io.murano.Object is the root class
for all class hierarchies.

Properties

Properties are class attributes that together with methods create public
class interface. Usually, but not always, properties are the values, and
reference other objects that have to be entered in an environment
designer prior to a workflow invocation.

Properties have the following declaration format:

propertyName:
 Contract: property contract
 Usage: property usage
 Default: property default

Contract

Contract is a YAQL expression that says what type of the value is expected for
the property as well as additional constraints imposed on a property. Using
contracts you can define what value can be assigned to a property or argument.
In case of invalid input data it may be automatically transformed to confirm
to the contract. For example, if bool value is expected and user passes any
not null value it will be converted to True. If converting is impossible
exception ContractViolationException will be raised.

The following contracts are available:

		Operation
		Definition

		
$.int()

		
an integer value (may be null). String values consisting of digits are converted to integers

		
$.int().notNull()

		
a mandatory integer

		
$.string()

$.string().notNull()

		
a string. If the value is not a string, it is converted to a string

		
$.bool()

$.bool().notNull()

		
bools are true and false. 0 is converted to false, other integers to true

		
$.class(ns:ClassName)

$.class(ns:ClassName).notNull()

		
value must be a reference to an instance of specified class name

		
$.class(ns:ClassName, ns:DefaultClassName)

		
create instance of the ns:DefaultClassName class if no instance provided

		
$.class(ns:Name).check($.p = 12)

		
the value must be of the ns:Name type and have the p property equal to 12

		
$.class(ns:Name).owned()

		
a current object must be direct or indirect owner of the value

		
$.class(ns:Name).notOwned()

		
the value must be owned by any object except current one

		
[$.int()]

[$.int().notNull()]

		
an array of integers. Similar to other types.

		
[$.int().check($ > 0)]

		
an array of the positive integers (thus not null)

		
[$.int(), $.string()]

		
an array that has at least two elements, first is int and others are strings

		
[$.int(), 2]

[$.int(), 2, 5]

		
an array of ints with at least 2 items

an array of ints with at least 2 items, and maximum of 5 items

		
{ A: $.int(), B: [$.string()] }

		
the dictionary with the A key of the int type and B - an array of strings

		
$

[]

{}

		
any scalar or data structure as is

any array

any dictionary

		
{ $.string().notNull(): $.int().notNull() }

		
dictionary string -> int

		
A: StringMap

$.string().notNull(): $

		
the dictionary with the A key that must be equal to StringMap, and other keys be

any scalar or data structure

In the example above property port must be int value greater than 0 and
less than 65536; scope must be a string value and one of ‘public’, ‘cloud’,
‘host’ or ‘internal’, and protocol must be a string value and either
‘TCP’ or ‘UDP’. When user passes some values to these properties it will be checked
that values confirm to the contracts.

Namespaces:
 =: io.murano.apps.docker
 std: io.murano

Name: ApplicationPort

Properties:
 port:
 Contract: $.int().notNull().check($ > 0 and $ < 65536)

 scope:
 Contract: $.string().notNull().check($ in list(public, cloud, host, internal))
 Default: private

 protocol:
 Contract: $.string().notNull().check($ in list(TCP, UDP))
 Default: TCP

Methods:
 getRepresentation:
 Body:
 Return:
 port: $.port
 scope: $.scope
 protocol: $.protocol

Usage

Usage states the purpose of the property. This implies who and how can
access it. The following usages are available:

		
Property

		
Explanation

		
In

		
Input property. Values of such properties are obtained from a user
and cannot be modified in MuranoPL workflows. This is the default
value for the Usage key.

		
Out

		
A value is obtained from executing MuranoPL workflow and cannot be
modified by a user.

		
InOut

		
A value can be modified both by user and by workflow.

		
Const

		
The same as In but once workflow is executed a property cannot be
changed neither by a user nor by a workflow.

		
Runtime

		
A property is visible only from within workflows. It is neither read
from input nor serialized to a workflow output.

The usage attribute is optional and can be omitted (which implies In).

If the workflow tries to write to a property that is not declared with
one of the types above, it is considered to be private and accessible
only to that class (and not serialized to output and thus would be
lost upon the next deployment). An attempt to read the property that was
not initialized results in an exception.

Default

Default is a value that is used if the property value is not mentioned in
the input object model, but not when it is set to null.
Default, if specified, must conform to a declared property contract.
If Default is not specified, then null is the default.

For properties that are references to other classes, Default can modify
a default value of the referenced objects. For example:

p:
 Contract: $.class(MyClass)
 Default: {a: 12}

This overrides default for the a property of MyClass for instance
of MyClass that is created for this property.

Workflow

Workflows are the methods that describe how the entities that are
represented by MuranoPL classes are deployed.

In a typical scenario, the root object in an input data model is of
the io.murano.Environment type, and has the deploy method.
This method invocation causes a series of infrastructure activities
(typically, a Heat stack modification) and the deployment scripts
execution initiated by VM agents commands. The role of the workflow
is to map data from the input object model, or a result of previously
executed actions, to the parameters of these activities and to
initiate these activities in a correct order.

Methods

Methods have input parameters, and can return a value to a caller.
Methods are defined in the Workflow section of the class using the
following template:

methodName:
 Usage: Action
 Arguments:
 - list
 - of
 - arguments
 Body:
 - list
 - of
 - instructions

Action is an optional parameter that specifies methods to be executed
by direct triggering after deployment.

Arguments are optional too, and are declared using the same syntax
as class properties, except for the Usage attribute that is meaningless
for method parameters. For example, arguments also have a contract and
optional default:

scaleRc:
 Arguments:
 - rcName:
 Contract: $.string().notNull()
 - newSize:
 Contract: $.int().notNull()

The Method body is an array of instructions that get executed sequentially.
There are 3 types of instructions that can be found in a workflow body:

		expressions,

		assignments,

		block constructs.

Expressions

Expressions are YAQL expressions that are executed for their side effect.
All accessible object methods can be called in the expression using
the $obj.methodName(arguments) syntax.

		Expression
		Explanation

		
$.methodName()

$this.methodName()

		
invoke method ‘methodName’ on this (self) object

		
$.property.methodName()

$this.property.methodName()

		
invocation of method on object that is in property

		
$.method(1, 2, 3)

		
methods can have arguments

		
$.method(1, 2, thirdParameter => 3)

		
named parameters also supported

		
list($.foo().bar($this.property), $p)

		
complex expressions can be constructed

Assignment

Assignments are single key dictionaries with a YAQL expression as a key
and arbitrary structure as a value. Such a construct is evaluated
as an assignment.

		Assignment
		Explanation

		
$x: value

		
assigns value to the local variable $x

		
$.x: value

$this.x: value

		
assign the value to the object’s property

		
$.x: $.y

		
copies the value of the property y to the property x

		
$x: [$a, $b]

		
sets $x to the array of two values: $a and $b

		
$x:

SomeKey:

NestedKey: $variable

		
structures of any level of complexity can be evaluated

		
$.x[0]: value

		
assigns the value to the first array entry of the x property

		
$.x.append(): value

		
appends the value to an array in the x property

		
$.x.insert(1): value

		
inserts the value into the position 1

		
$x: [$a, $b].delete(0)

		
sets $x to the array without 0 index item

		
$.x.key.subKey: value

$.x[key][subKey]: value

		
deep dictionary modification

Block constructs

Block constructs control a program flow. They are dictionaries that have
strings as all their keys.

The following block constructs are available:

		Assignment
		Explanation

		
Return: value

		
Returns value from a method

		
If: predicate()

Then:

- code

- block

Else:

- code

- block

		
predicate() is a YAQL expression that must be evaluated to True or False

The Else section is optional

One-line code blocks can be written as scalars rather than an array.

		
While: predicate()

Do:

- code

- block

		
predicate() must be evaluated to True or False

		
For: variableName

In: collection

Do:

- code

- block

		
collection must be a YAQL expression returning iterable collection or
evaluatable array as in assignment instructions, for example, [1, 2, $x]

Inside a code block loop, a variable is accessible as $variableName

		
Repeat:

Do:

- code

- block

		
Repeats the code block specified number of times

		
Break:

		
Breaks from loop

		
Match:

case1:

- code

- block

case2:

- code

- block

Value: $valExpression()

Default:

- code

- block

		
Matches the result of $valExpression() against a set of possible values
(cases). The code block of first matched case is executed.

If no case matched and the default key is present
than the Default code block get executed.

The case values are constant values (not expressions).

		
Switch:

$predicate1():

- code

- block

$predicate2():

- code

- block

Default:

- code

- block

		
All code blocks that have their predicate evaluated to True are executed,
but the order of predicate evaluation is not fixed.

The Default key is optional.

If no predicate evaluated to True, the Default code block get executed.

		
Parallel:

- code

- block

Limit: 5

		
Executes all instructions in code block in a separate green threads in parallel.

The limit is optional and means the maximum number of concurrent green threads.

		
Try:

- code

- block

Catch:

With: keyError

As: e

Do:

- code

- block

Else:

- code

- block

Finally:

- code

- block

		
Try and Catch are keywords that represent the handling of exceptions due to data
or coding errors during program execution. A Try block is the block of code in
which exceptions occur. A Catch block is the block of code, that is executed if
an exception occurred.

Exceptions are not declared in Murano PL. It means that exceptions of any types can
be handled and generated. Generating of exception can be done with construct:
Throw: keyError.

The Else is optional block. Else block is executed if no exception occurred.

The Finally also is optional. It’s a place to put any code that will
be executed, whether the try-block raised an exception or not.

Notice, that if you have more then one block construct in your workflow, you
need to insert dashes before each construct. For example:

Body:
 - If: predicate1()
 Then:
 - code
 - block
 - While: predicate2()
 Do:
 - code
 - block

Object model

Object model is a JSON serialized representation of objects and their
properties. Everything you do in the OpenStack dashboard is reflected
in an object model. The object model is sent to the Application catalog engine
when the user decides to deploy the built environment. On the engine
side, MuranoPL objects are constructed and initialized from the received
Object model, and a predefined method is executed on the root object.

Objects are serialized to JSON using the following template:

		 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

		{
 "?": {
 "id": "globally unique object ID (UUID)",
 "type": "fully namespace-qualified class name",

 "optional designer-related entries can be placed here": {
 "key": "value"
 }
 },

 "classProperty1": "propertyValue",
 "classProperty2": 123,
 "classProperty3": ["value1", "value2"],

 "reference1": {
 "?": {
 "id": "object id",
 "type": "object type"
 },

 "property": "value"
 },

 "reference2": "referenced object id"
}

Objects can be identified as dictionaries that contain the ? entry.
All system fields are hidden in that entry.

There are two ways to specify references:

		reference1 as in the example above. This method allows inline
definition of an object. When the instance of the referenced object
is created, an outer object becomes its parent/owner that is responsible
for the object. The object itself may require that its parent
(direct or indirect) be of a specified type, like all applications
require to have Environment somewhere in a parent chain.

		Referring to an object by specifying other object ID. That object must
be defined elsewhere in an object tree. Object references distinguished
from strings having the same value by evaluating property contracts.
The former case would have $.class(Name) while the later - the
$.string() contract.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/topology_element_2.png

draft/appdev-guide/murano_pl/yaml.html

 Navigation

 		
 index

 		Murano »

YAML

YAML is an easily readable data serialization format that is a superset
of JSON. Unlike JSON, YAML is designed to be read and written by humans
and relies on visual indentation to denote nesting of data structures.
This is similar to how Python uses indentation for block structures
instead of curly brackets in most C-like languages. Also YAML may
contain more data types as compared to JSON. See http://yaml.org/
for a detailed description of YAML.

MuranoPL is designed to be representable in YAML so that MuranoPL code could
remain readable and structured. Usually MuranoPL files are YAML encoded documents.
But MuranoPL engine itself does not deal directly with YAML documents, and it is up to
the hosting application to locate and deserialize the definitions of particular classes.
This gives the hosting application the ability to control where those definitions can be
found (a file system, a database, a remote repository, etc.) and possibly use some other
serialization formats instead of YAML.

MuranoPL engine relies on a host deserialization code when detecting YAQL
expressions in a source definition. It provides them as instances of the YaqlExpression
class rather than plain strings. Usually, YAQL expressions can be distinguished by the
presence of $ (the dollar sign) and operators, but in YAML, a developer can always
state the type by using YAML tags explicitly. For example:

		1
2
3
4
5

		 Some text - a string
 $.something() - a YAQL expression
 "$.something()" - a string because quotes are used
 !!str $ - a string because a YAML tag is used
 !yaql "text" - a YAQL expression because a YAML tag is used

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appdev-guide/murano_pl/yaql.html

 Navigation

 		
 index

 		Murano »

YAQL

YAQL (Yet Another Query Language) is a query language that was also
designed as a part of the murano project. MuranoPL makes an extensive
use of YAQL. A description of YAQL can be found here [https://yaql.readthedocs.org].

Simply speaking, YAQL is the language for expression evaluation.
The following examples are all valid YAQL expressions:
2 + 2, foo() > bar(), true != false.

The interesting thing in YAQL is that it has no built in list of
functions. Everything YAQL can access is customizable. YAQL cannot call
any function that was not explicitly registered to be accessible by YAQL.
The same is true for operators. So the result of the expression 2 *
foo(3, 4) completely depends on explicitly provided implementations
of “foo” and “operator_*”.

YAQL uses a dollar sign ($) to access external variables, which are also
explicitly provided by the host application, and function arguments.
$variable is a syntax to get a value of the variable “$variable”,
$1, $2, etc. are the names for function arguments. “$” is a name for current object:
data on which an expression is evaluated, or a name of a single argument. Thus,
“$” in the beginning of an expression and “$” in the middle of it can refer
to different things.

By default, YAQL has a lot of functions that can be registered in a YAQL
context. This is very similar to how SQL works but uses more Python-like
syntax. For example: $.where($.myObj.myScalar > 5,
$.myObj.myArray.len() > 0, and $.myObj.myArray.any($ = 4)).select($.myObj.myArray[0]) can be executed on $ = array of objects,
and result in another array that is a filtration and projection of a source data.

Note

There is no assignment operator in YAQL, and = means
comparison, the same what == means in Python.

As YAQL has no access to underlying operating system resources and
is fully controllable by the host, it is secure to execute YAQL expressions
without establishing a trust to the executed code. Also, because functions
are not predefined, different methods can be accessible in different
context. So, YAQL expressions that are used to specify property
contracts are not necessarily valid in workflow definitions.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/qs_package_import.png
88 openstack demo+ & demorbox +

e . Package Definitions
o .
Py | E——] ——,
T >
[Package Name Active Public Type Author Actions
e o
[Corelibrary & True True Library ‘murano.io Modify Package =
— >
U Rt e | Fase | Applcaton | wrants,nc | ModlyPackage | -
Package Definitions] Docker Standalone Host True False Application Mirantis, Inc Modify Package =

) Dockerinterface Lbary ~ True Faise Library Mirantis, Inc | Modiy Package | +

_images/3.png
Create Network

Network Address:
1921682024

1P Version

i

Gatoway 1P
w2821

Disable Gatonay

«Back

Subnet Detal

You can create a subnet associlod W he new neuwor,
i which case “Network Address” must be speciied. I
You wsh 0 create a network WITHOUT a subnet,
incheck the “Creste Subnet checkbax,

_images/step_2.png
= Configure Application: Apache HTTP Server

Step2

Instance flavor

B

Instance image *

‘Select Image

Key Pair

No keypair

Availability zone

nova

Instance Naming Pattern @

’ j Apache HTTP Server

‘Specify some instance parameters on which the

‘application would be created

+]* @ nstanca navor: Soect rgstarea n openstacc
flavor. Consider hat appiiation performance depends

J’l-

on this parameter.

Instance image: Select valid image for the application.
Image should already be prepared and registered in

glance.

Key Pair: Select the Key Pair to control access to
instances. You can login to instances using this
KeyPalr aiter the deployment of application.

Avallability zone: Select availability zone where

‘application would be installed.

Instance Naming Pattern: Specify a string, that will
be used in instance hostname. Just A-Z, a2, 0-9, dash

and underline are allowed.

- B

_images/deployment-log.png
88 openstack & demo ~

Froieet * Deployment information
Admin o
Identity . environments > environment quick-env-2 > deployment at 2015-01-20 04:24:13
Murano o
coniguration [JIS

Application Catalog o

coomens DEPIOYmMenNt Logs

Rrecaloe 3 - Action deploy is scheduled

:24:15 - Motel validation failed:
Manage © ftcenisastywbi: instance Tlavor has RAM size over Z043MB
2015-61-20 04324115 - Deployment finished with errors

_images/qs_apps.png
B3 openstack

Project v
Identity v
Murano A
Application Catalog ~

Environments.

Applications
Manage v

demo v

Applications

Recent Activity

Apache

App Category:

Alw

Apache

Apache HTTP Ser...
The Apache HTTP Server
Project is an effort to
develop and maintain an
open-source HTTP server

Details »

©Create Env | o Quick Deploy

Environment:
Create Environment

Apache HTTP Ser...
The Apache HTTP Server
Project is an effort to
develop and maintain an
open-source HTTP server

Details »

©Creale Env | o Quick Deploy

&

& demo-box v

Q Filter

Apache Tomcat
Apache Tomeat is an
open source software
implementation o the
Java Servet and

Details »

©Creale Env | o Quick Deploy

_images/app_logs.png
B3 openstack Siate ~

Environments > Environment quick-env-1

Project -
Admin -
Identity -
o - Components Topology Deployment History Latest Deployment Log
Application Catak
P = Deployment Logs
Envirenments 2015-09-28 — Action deploy is scheduled
2015-09-28 — Creating VM for Git Chef example
Applications. 2015-09-28 — Instance is created. Deploying Git Chef
2015-09-28 — Git Chef is installed at 10.6.15.2
Manage N 2015-09-28 — Deployment finished

_images/select_packages.png
B openstack B cemorox - domoboxd - Senout

Project » Package Definitions
Identity »
+ ImportPackage | |+ ImportBundle | | Toggle Active | | Toggle Public
Murano - -
1 package Name v publc Type Author Aotions
Application Catalog a
O saL Library True False Library Mirantis, Inc Modify Package | +
Manage
0 wmysaL True False Application Mirantis, Inc Modify Package | +
mages
@ PostgresaL Te Faise Applcation Miranti, Inc Modiy Package | ~
Package Defritons
) Docker Interface Library True False Library Mirantis, Inc Modify Package | +
@ Kubemetes Cluster Te Faise Applcation Miranti, Inc Modiy Package | ~
) Docker Standalone Host True False Application Mirantis, Inc Modify Package | +
[Kubemetes Pod True False Application Mirantis, Inc Modify Package | +
) Docker Jenkins True False Application Mirantis, Inc Modify Package | +
[Zabbix Server True False Application Mirantis, Inc Modify Package | +
1 Zabbix Agent True False Application Mirantis, Inc Modify Package | +
O WordPress True False Application Mirantis, Inc Modify Package | +
) Apache HTTP Server True False Application Mirantis, Inc Modify Package | +
) Docker MariaDB True False Application Mirantis, Inc Modify Package | +

Displaying 13 fems.

_images/import_package.png
B openstack

Project
Identity
Murano

Application Catalog

Manage

Images

Package Definitions

& demo-box ~ demo-box & ‘Sign Out

Package Definitions

+ mport Package ||+ ImportBundle.
Package Name Acive Public Type Autior Actions

No items to display.

Displaying 0 tems

_images/app_category.png
88 openstack @ demo~ & demo-box ~

Applications

Project v
dentity v L
Recent Activity
Murano ~
Application Catalog ~ WordPress Zabbix Agent Zabbix Server
WordPress is a free BT Zaboix is the utimate Zabbix server s the
Emmm=s and open source open source central process of
blogging tool and a availabilty and Zabbix software.
Apolcations content management performance e
Detais » Detais »
Manage ©
©Create Env | 4 Quick Deploy ©Create Env | 4 Quick Deploy ©Create Env | 4 Quick Deploy
All~ Environment: | Create Environment Q | Filter
Al
Application Servers Apache Tomcat Docker MariaDB
oy Ve Soage K o T
Apache open source software community-developed
SAP implementation of the fork of the MySQL
Microsolt Services Java Servet and relational database
Databases Detais » Detais »
©cr Message Queue ©Create Env | 4 Quick Deploy ©Create Env | 4 Quick Deploy
Web
Big Data
N Load Balancers Docker Nginx Docker Redis
MysQL MySaLis afresly NGINX nginx (pronounced Redis Is an
available open source “engine-x’)is an open open-source,
i Relational Database T8 source reverse proxy networked, in-memory,
Management System Server for HTTP, Key-value data store
Detais » Detais » Detais »
©Create Env | 4 Quick Deploy ©Create Env | 4 Quick Deploy ©Create Env | 4 Quick Deploy

Next Page

_images/deploy_env_2.png
88 openstack

demo-box v & demo-box v

Projoct - Environments

centy .
+orese Envronmen
urano 5
Name staus Actons
Application Cataog -
Emvionment Reacy todeioy Wanage componens [<
Envionments
e T—
- Reacy todeioy
Aeptcaions P —
sanege o e Ready toconiure Waage Conporers | =

Environment-2 Ready to deploy Manage Components | +

Displaying 4 tems

_images/4_1.png
Create Router

Router Name *

[murano-detaut routeq

Cancel

_images/architecture.png
keystone

|
murano-agent |

murano-client CLI

horizon
dashboard
RabbitMQ

RESTAPI OPTIONAL DATA FLOW

AMQP MANDATORY DATA FLOW

_images/2.png
Create Network

Sunets SubnetDetal

orktame From here you can create a new network.

[Local | in agdtion a subnet associated with the network can be
created in the next panel.

Admin State
@

_images/qs_package_url.png
Import Package

Description:
Package URL: HTTR/HTTPS URL of the package fe.

Note: I the package depends upon other packages
Package URL * @ andlor requires specific glance images, those are going
to be installed with t from murano repository

Package Source
URL

\ tp//storage. apps.openstack.org/apps/io.murano. \

_images/new-instance.png
Add Application to “quick-env-3"

Instance favor
‘ [mimedium , j Git Application

‘Specify some instance parameters on which the
Instance image ‘application would be created

Select Image +| stance navor: soictregtera n Openstack iavor
Consider that appication performance depends on this

Key Pair parameter.
Instance image: Select valid image for the application.

Image should have Murano agent installed and
registered in Glance.

No keypair

Availability zone
Key Pair: Select the Key Pair to control access to
instances. You can login to instances using this
KeyPalr aiter application deployment

nova

Avallability zone: Select availability zone where the
‘application would be installed.

- £

_images/deploy-log.png
88 openstack & demo ~

Froieet * Deployment information
Admin o
Identity . environments > environment quick-env-2 > deployment at 2015-01-20 04:24:13
Murano o
coniguration [JIS

Application Catalog o

coomens DEPIOYmMenNt Logs

Rrecaloe 3 - Action deploy is scheduled

:24:15 - Motel validation failed:
Manage © ftcenisastywbi: instance Tlavor has RAM size over Z043MB
2015-61-20 04324115 - Deployment finished with errors

_images/1.png
B openstack
Pt
compute

Network

Networ Topioay

Orchestration

Admin

Network Topology

Setrea

_images/structure.png
contains MuranoPL cass definions (*yam fes)

contains sl the scrpt fles require for an
applcation deployment

execution_plan.template

ﬂ contains dynamic Ul yami defintions.

an appiicaion entry poin. The fl name is fixec.

i animage 0 be used as an appicaion logo

fogopng.

i lsts images f required
st

—

_images/add_from_cat.png
B openstack

Project .

Identty .

Murano N

Application Catalog B
Environments
Appliations

Manage .

B demo-box +

Applications
Recent Activity

WordPress
WordPress s a free
and open source
blogging tool and a
content management

Details »

©Addi0Env | Quick Deploy

App Category: = All~

Apache HTTP ..
The Apache HTTP

Apache sorerprojectis an
effort to develop and
maintain an

Details »

©Addi0Env | Quick Deploy

{ Docker MariaDB
MariaDB is a
community-developed

L= fork of the MySQL
relational database

Details »

©Addi0Env | Quick Deploy

Next Page

MysaL
MySqlis a relational
MySQL. e memegamen
system (RDEMS), and
Ships with no GUI tools

Details »

©Addi0Env | Quick Deploy

Environment:

open source software
implementation of the
Java Serviet and

Details »

©Addi0Env | Quick Deploy

Docker Standal...
* Standalone docker
Jocker Implementation;

employs single VM
running docker service.

Details »

©Addi0Env | Quick Deploy

& demo-box v

Zabbix Agent

PEEIEd Zebvix is the ultimate
open source
avallability and

performance
Details »

©Addi0Env | Quick Deploy

Q Filter

Docker Jenkins
@ Jenkins Jerkins 15 an awara-
winring appiiation that
montors execuions of
repeated jobs, such as

Details »

©Addi0Env | Quick Deploy

Kubernetes Clu...
Kubemetes is an open
source system for
managing
containerized

&

Details »

©Addi0Env | Quick Deploy

_images/env_default_network.png
88 openstack B demobox + & demobox +

Projoct - Environments

. =
— :
lication log Environment Name * @ Environment Default Network * @
e - E=
—

Manage

_images/murano_actions.png
B3 openstack gemo-box +

& demo-box v
Project - Environments > Environment quick-env-3
dentity °
. T | Componens | Topoogy Deployment History LatestDeployment Log
Applcation Catalog ~ -
Application Components App category | All~ Q
Envtonments
o & ()
rpptcaions | ¢ P N
ke oms Docer St ot bemets it bemets o P Opeaons Manager E—
Manage o
© Drop Components here
Component List + Add Component
Name Type Stas Last operation Time updated Actons
Kubernetes Cluser Ready Kubernetescuser1s up and runing Nov. 18,2015, 11:2 aim
Diloing 1
scaGatswaysLp
scahadespoun

scaleNodesUp

_images/add_pkg_info.png
Import Package

Name Description:
wysaL Name is a human readable name of a packags.
Categories are a precefined set of valuss used to fter the
Application Category packages.
Weo
e e Tags are an arbitary commarseparated values also used
prisi o fiter the packages.
Databases

Public Defines whether or not a package is avalable for
use by other tenants. (Applies to package dependencies)

Kev-Value Storage

Tags @ Active Allows the status of a package o be changed.
to package dependenci
Database, MySal, SQL, RDEMS (Apples to pac)
Description consists of several sentences abou the
0 Public package's purpose.
@ Active
Description

MySql is a relational database management system
(RDBMS), and ships with

o GUI tools to administer MySQL databases or
‘manage data contained within

the databases.

= -]

_images/add_more_apps.png
Configure Application: Apache Tomcat

If checked, you will be retumed to the Application
Catalog page. If not - to the Environment page, where
you can deploy the application.

7] Add more applications to the environment

_images/add_to_env.png
B openstack

Project .

Identty .

Murano N

Application Catalog B
Environments
Appliations

Manage .

B demo-box +

Applications
Recent Activity

WordPress
WordPress s a free
and open source
blogging tool and a
content management

Details »

©Addi0Env | Quick Deploy

App Category: | Alv

Apache HTTP ..
The Apache HTTP

Apache sorerprojectis an
effort to develop and
maintain an

Details »

©Addi0Env | Quick Deploy

Docker MariaDB
MariaDB is a

MariaDB
community-developed
T (o of the MysQL

relational database

Details »

©Addi0Env | Quick Deploy

Next Page

MysQL
MySQL. Mysds arsiatona

database management
system (RDBMS), and

ships with no GUI tools.

Details »

©Addi0Env | Quick Deploy

Environment: = Environment3 v

&

Apache Tomcat
Apache Tomcat is an
open source software
implementation of the
Java Serviet and

Details »

 Quick Deploy

Docker Standal...
* Standalone docker
Jocker Implementation;

o

running docker service.

Details »

©Addi0Env | Quick Deploy

& demo-box v

Zabbix Agent

PEEIEd Zebvix is the ultimate
open source availability

and performance.
‘monitoring solution.

Details »

©Addi0Env | Quick Deploy

Q Filter

Docker Jenkins
@ Jenkins Jerkins 15 an awara-

winning application that
T monitors executions of

repeated jobs, such as
Details »

©Addi0Env | Quick Deploy

Kubernetes Clu...
Kubemetes is an open
source system for
managing
containerized

&

Details »

©Addi0Env | Quick Deploy

_images/browse_zip_file.png
Import Package

Package Source

File

Application Package * @

No e solcted

Description:

Choose a Zip archive to upload into the catalog.

Packages should contain:
* Manifest file

* Ul definition folder

* Classes definition folder
* Execution plans folder

Note: If the package depends upon other packages and/or
requires specific glance images, those are going to be

installed with it from murano repository.

_images/step_1.png
= Configure Application: Apache HTTP Server
Step1 Step2

Appllcation Name *
| ppacneritpsener ‘ Apache HTTP Server

Apache License, Version 2.0

) Enable PHP
© Application Name: Enter a desired name for the
) Assign Fioating IP ‘application. Just AZ, a2, 0-9, dash and underine are
allowed

Enable PHP: Ad php support to the Apache
WebServer

Assign Floating IP: Select to true to assign floating
1P automatically

_images/new-inst.png
Add Application to “quick-env-3"

Instance flavor

B E

Instance image

Select Image o

Key Pair

No keypair

Availability zone

nova

Git Application

‘Specify some instance parameters on which the
‘application would be created

Instance flavor: Select registered in Openstack flavor.
‘Consider that application performance depends on this.

parameter.
Instance image: Select valid image for the application.

Image should have Murano agent installed and
registered in Glance.

Key Pair: Select the Key Pair to control access to
instances. You can login to instances using this
KeyPalr aiter application deployment

Avallability zone: Select availability zone where the
‘application would be installed.

_images/app_filter_example.png
B3 openstack demo ~ & demorbox +

Applications

Project v
Identity o o
Recent Activity
Murano ~
Application Catalog ~ WordPress Zabbix Agent Zabbix Server
WordPress is a free PR Zabboix is the utimate BZXEEIRA Zabbix server s the
Emmm=s and open source open source central process of
blogging tool and a availabilty and Zabbix software.
Apolcations content management performance e
Detais » Detais »
Manage ©
©Create Env | 4 Quick Deploy ©Create Env |+ Quick Deploy ©Create Env | 4 Quick Deploy

o Cotegory. - Emveormant: (o

Docker MariaDB
MariaDB is a

MariaDB
community-developed
fork of the MySQL

relational database

Details »

©Create Env | o Quick Deploy

_images/add_component.png
88 openstack

Project
Identity v
Murano A
Application Catalog ~
Environments.

Applications

Manage v

B demo-box +

Environments > Environment Environment-3

Components

Topology

Deployment History

Application Components

< s

Apache HTTP s.

Component List

Displaying 0 tems

Type

&

Apache Tomeat

Status.

App category | All~

deskins
o 15008

[o] [o]
Docker Jerkins Docker MariaDB

® Drop Components here

Last operation

No components

& demo-box v

docker >
Docker Standalo. Kubernetes s

+Add Component
Time updated Actions

draft/admin-guide/policy_enforcement/policy_enf_setup.html

 Navigation

 		
 index

 		Murano »

Setting up policy enforcement

Before you use the policy enforcement feature, configure Murano and Congress
properly.

Note

This article does not cover Murano and Congress configuration options
useful for Murano application deployment, for example, DNS setup,
floating IPs, and so on.

To enable policy enforcement, complete the following tasks:

		In Murano:

		Enable the enable_model_policy_enforcer option
in the murano.conf file:

[engine]
Enable model policy enforcer using Congress (boolean value)
enable_model_policy_enforcer = true

		Restart murano-engine.

		Verify that Congress is installed and available in your OpenStack
environment. See the details in the Congress official documentation [http://congress.readthedocs.org/en/latest/].

		Install the congress command-line client [http://docs.openstack.org/user-guide/common/cli_install_openstack_command_line_clients.html]
as any other OpenStack command-line client.

		For Congress, configure the following policies that policy enforcement uses
during the evaluation:

		murano policy

It is created by the Congress` murano datasource driver, which is a part
of Congress. Configure it for the OpenStack tenant where you plan to
deploy your Murano application. Datasource driver retrieves deployed
Murano environments and populates Congress’ murano policy tables.
See Murano policy enforcement internals for details.

Remove the existing murano policy and create a new murano policy
configured for the demo tenant, by running:

remove default murano datasource configuration, because it is using 'admin' tenant. We need 'demo' tenant to be used.
openstack congress datasource delete murano
openstack congress datasource create murano murano --config username="$OS_USERNAME" --config tenant_name="demo" --config password="$OS_PASSWORD" --config auth_url="$OS_AUTH_URL"

		murano_system policy

It holds the user-defined rules for policy enforcement. Typically,
the rules use tables from other policies, for example, murano, nova,
keystone, and others. Policy enforcement expects the predeploy_errors
table here that is available on the predeploy_errors rules creation.

Create the murano_system rule, by running:

create murano_system policy
openstack congress policy create murano_system

resolves objects within environment
openstack congress policy rule create murano_system 'murano_env_of_object(oid,eid):-murano:connected(eid,oid), murano:objects(eid,tid,"io.murano.Environment")'

		murano_action policy with internal management rules.

These rules are used internally in the policy enforcement request
and stored in a dedicated murano_action policy that is
created here. They are important in case an environment is redeployed.

create murano_action policy
openstack congress policy create murano_action --kind action

register action deleteEnv
openstack congress policy rule create murano_action 'action("deleteEnv")'

states
openstack congress policy rule create murano_action 'murano:states-(eid, st) :- deleteEnv(eid), murano:states(eid, st)'

parent_types
openstack congress policy rule create murano_action 'murano:parent_types-(tid, type) :- deleteEnv(eid), murano:connected(eid, tid),murano:parent_types(tid,type)'
openstack congress policy rule create murano_action 'murano:parent_types-(eid, type) :- deleteEnv(eid), murano:parent_types(eid,type)'

properties
openstack congress policy rule create murano_action 'murano:properties-(oid, pn, pv) :- deleteEnv(eid), murano:connected(eid, oid), murano:properties(oid, pn, pv)'
openstack congress policy rule create murano_action 'murano:properties-(eid, pn, pv) :- deleteEnv(eid), murano:properties(eid, pn, pv)'

objects
openstack congress policy rule create murano_action 'murano:objects-(oid, pid, ot) :- deleteEnv(eid), murano:connected(eid, oid), murano:objects(oid, pid, ot)'
openstack congress policy rule create murano_action 'murano:objects-(eid, tnid, ot) :- deleteEnv(eid), murano:objects(eid, tnid, ot)'

relationships
openstack congress policy rule create murano_action 'murano:relationships-(sid, tid, rt) :- deleteEnv(eid), murano:connected(eid, sid), murano:relationships(sid, tid, rt)'
openstack congress policy rule create murano_action 'murano:relationships-(eid, tid, rt) :- deleteEnv(eid), murano:relationships(eid, tid, rt)'

connected
openstack congress policy rule create murano_action 'murano:connected-(tid, tid2) :- deleteEnv(eid), murano:connected(eid, tid), murano:connected(tid,tid2)'
openstack congress policy rule create murano_action 'murano:connected-(eid, tid) :- deleteEnv(eid), murano:connected(eid,tid)'

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/bundle_name.png
Import Bundle

Description:
Bundie Name: Bundi's ful name.

The bunde is going to be installed from
hitp:/storage. apps.openstack.org/ repository.

Note: Youl have to configure each package installed from
this bundle separately.

If packages depend upon other packages andlor require
specific glance images, those are going to be installed with

them from murano repository.

draft/admin-guide/policy_enforcement/policy_enf_modify.html

 Navigation

 		
 index

 		Murano »

Using policy for the base modification of an environment

Congress policies enables a user to define modification of an environment
prior to its deployment. This includes:

		Adding components, for example, monitoring.

		Changing and setting properties, for example enforcing a given zone,
flavors, and others.

		Configuring relationships within an environment.

Use cases examples:

		Installation of the monitoring agent on each VM instance
by adding a component with the agent and creating relationship
between the agent and instance.

		Enabling a certified version to all Apache server instances:
setting the version property to all Apache applications within
an environment to a particular version.

These policies are evaluated over data in the form of tables that are Congress
data structures. A deployed murano environment must be decomposed to Congress
data structures. The further workflow is as follows:

		The decomposed environment is sent to Congress for simulation.

		Congress simulates whether the resulting state requires modification.

		In case the modification of a deployed environment is required,
Congress returns a list of actions in the YAML format
to be performed on the environment prior to the deployment.

For example:

set-property: {object_id: c46770dec1db483ca2322914b842e50f, prop_name: keyname, value: production-key}

The example above sets the keyname property to the production-key
value on the instance identified by object_id. An administrator can use
it as an output of the Congress rules.

		The action specification is parsed in murano. The given action class is
loaded, and the action instance is created.

		The parsed parameters are supplied to the action __init__ method.

		The action is performed on a given environment (the modify method).

Creating base modification rules

This example illustrates how to configure the rule enforcing all VM instances
to deploy with a secure key pair. This may be required in a production
environment.

Warning

Before you create rules, configure your OpenStack environment as described
in Setting up policy enforcement.

Procedure:

		To create the predeploy_modify rule, run:

congress policy rule create murano_system 'predeploy_modify(eid, obj_id, action):-murano:objects(obj_id, pid, type), murano_env_of_object(obj_id, eid), murano:properties(obj_id, "keyname", kn), concat("set-property: {object_id: ", obj_id, first_part), concat(first_part, ", prop_name: keyname, value: production-key}", action)'

The command above contains the following information:

predeploy_modify(eid, obj_id, action) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "keyname", kn),
 concat("set-property: {object_id: ", obj_id, first_part),
 concat(first_part, ", prop_name: keyname, value: production-key}", action)

Policy validation engine checks the predeploy_modify rule.
And the Congress engine evaluates the rules referenced inside this rule.

Note

The production-key key pair must already exist, though you can use
any other existing key pair.

		Deploy the environment.

Instances within the environment are deployed with the specified key pair.

See also

		Creating policy enforcement rules

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/policy_enforcement/policy_enf_rules.html

 Navigation

 		
 index

 		Murano »

Creating policy enforcement rules

This article illustrates how you can create policy enforcement rules.
For testing purposes, create rules that prohibit the creation
of instances with the flavor with over 2048 MB of RAM following
the procedure below.

Procedure:

		Verify that you have configured your OpenStack environment as described
in Setting up policy enforcement.

		To create the predeploy_errors rule, run:

congress policy rule create murano_system "predeploy_errors(eid, obj_id, msg) :- murano:objects(obj_id, pid, type), murano:objects(eid, tid, \"io.murano.Environment\"), murano:connected(eid, pid), murano:properties(obj_id, \"flavor\", flavor_name), flavor_ram(flavor_name, ram), gt(ram, 2048), murano:properties(obj_id, \"name\", obj_name), concat(obj_name, \": instance flavor has RAM size over 2048MB\", msg)"

The command above contains the following information:

predeploy_errors(eid, obj_id, msg) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "flavor", flavor_name),
 flavor_ram(flavor_name, ram),
 gt(ram, 2048),
 murano:properties(obj_id, "name", obj_name),
 concat(obj_name, ": instance flavor has RAM size over 2048MB", msg)

Policy validation engine checks the predeploy_errors rule, and rules
referenced within this rule are evaluated by the Congress engine.

In this example, we create the rule that references the flavor_ram
rule we create afterwards. It disables flavors with RAM more than
2048 MB and constructs the message returned to the user
in the msg variable.

In this example we use data from policy murano which is represented by
murano:properties. There are stored rows with decomposition of model
representing murano application. We also use built-in functions of Congress:

		gt stands for ‘greater-than’

		concat joins two strings into one variable

		To create the flavor_ram rule, run:

congress policy rule create murano_system "flavor_ram(flavor_name, ram) :- nova:flavors(id, flavor_name, cpus, ram)"

This rule resolves parameters of flavor by flavor name and returns
the ram parameter. It uses the flavors rule from nova policy.
Data in this policy is filled by the nova datasource driver.

		Check the rule usage.

		Create an environment with a simple application:

		Select an application from the murano applications.

		Create a m1.medium instance, which uses 4096 MB RAM.

[image: Create new instance]

		Deploy the environment.

Deployment fails as the rule is violated: environment is in the Deploy
FAILURE status. Check the deployment logs for details:

[image: Deployment log]

See also

		Creating base modification rules

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/contributor-guide/doc_guidelines.html

 Navigation

 		
 index

 		Murano »

Documentation guidelines

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/policy_enforcement/policy_enf_dev.html

 Navigation

 		
 index

 		Murano »

Murano policy enforcement internals

This section describes internals of the murano policy enforcement
feature.

Model decomposition

The data for the policy validation comes from the models of Murano
applications. These models are transformed to a set of rules that are
processed by Congress.

There are several tables created in murano policy for different kinds
of rules that are as follows:

		murano:objects(object_id, parent_id, type_name)

		murano:properties(object_id, property_name, property_value)

		murano:relationships(source, target, name)

		murano:connected(source, target)

		murano:parent_types(object_id, parent_type_name)

		murano:states(environment_id, state)

murano:objects(object_id, parent_id, type_name)

This rule is used for representation of all objects in Murano model,
such as environment, application, instance, and other.

Value of the type property is used as the type_name parameter:

name: wordpress-env
'?': {type: io.murano.Environment, id: 83bff5ac}
applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}

The model above transforms to the following rules:

		murano:objects+("83bff5ac", "tenant_id", "io.murano.Environment")

		murano:objects+("83bff5ac", "e7a13d3c", "io.murano.databases.MySql")

Note

The owner of the environment is a tenant.

murano:properties(object_id, property_name, property_value)

Each object may have properties. In this example we have an application
with one property:

applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}
database: wordpress

The model above transforms to the following rule:

		murano:properties+("e7a13d3c", "database", "wordpress")

Inner properties are also supported using dot notation:

instance:
'?': {id: 825dc61d, type: io.murano.resources.LinuxMuranoInstance}
networks:
 useFlatNetwork: false

The model above transforms to the following rule:

		murano:properties+("825dc61d", "networks.useFlatNetwork", "False")

If a model contains list of values, it is represented as a set of multiple
rules:

instances:
 - '?': {id: be3c5155, type: io.murano.resources.LinuxMuranoInstance}
 networks:
 customNetworks: [10.0.1.0, 10.0.2.0]

The model above transforms to the following rules:

		murano:properties+("be3c5155", "networks.customNetworks", "10.0.1.0")

		murano:properties+("be3c5155", "networks.customNetworks", "10.0.2.0")

murano:relationships(source, target, name)

Murano application models may contain references to other applications.
In this example, the WordPress application references MySQL in
the database property:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
- '?':
 id: 50fa68ff
 type: io.murano.apps.WordPress
 database: 0aafd67e

The model above transforms to the following rule:

		murano:relationships+("50fa68ff", "0aafd67e", "database")

Note

For the database property we do not create
the murano:properties+ rule.

If we define an object within other object, they will have relationships
between them:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}

The model above transforms to the following rule:

		murano:relationships+("0aafd67e", "ed8df2b0", "instance")

There are special relationships of services from the environment
to its applications: murano:relationships+("env_id", "app_id",
"services")

murano:connected(source, target)

This table stores both direct and indirect connections between instances.
It is derived from murano:relationships:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}
- '?':
 id: 50fa68ff
 type: io.murano.apps.WordPress
 database: 0aafd67e

The model above transforms to the following rules:

		murano:connected+("50fa68ff", "0aafd67e") # WordPress to MySql

		murano:connected+("50fa68ff", "ed8df2b0") # WordPress to LinuxMuranoInstance

		murano:connected+("0aafd67e", "ed8df2b0") # MySql to LinuxMuranoInstance

murano:parent_types(object_id, parent_name)

Each object in murano has a class type. These classes may inherit from one
or more parents. For example, LinuxMuranoInstance > LinuxInstance >
Instance:

instances:
- '?': {id: be3c5155, type: LinuxMuranoInstance}

The model above transforms to the following rules:

		murano:objects+("...", "be3c5155", "LinuxMuranoInstance")

		murano:parent_types+("be3c5155", "LinuxMuranoInstance")

		murano:parent_types+("be3c5155", "LinuxInstance")

		murano:parent_types+("be3c5155", "Instance")

Note

The type of an object is also repeated in its parent types
(LinuxMuranoInstance in the example) for easier handling of
user-created rules.

Note

If a type inherits from more than one parent, and these parents inherit
from one common type, the parent_type rule is included only once in
the common type.

murano:states(environment_id, state)

Currently only one record for environment is created:

		murano:states+("uugi324", "pending")

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/admin_troubleshooting.html

 Navigation

 		
 index

 		Murano »

Troubleshooting

Log location

By default, logs are sent to stdout.
Let’s consider how log files can be set up.

Murano API + Engine

To define a file where to store logs, use the log_file option in the
murano.conf file. You can provide an absolute or relative path.

To enable detailed log file configuration, set up logging.conf.
The example is provided in etc/murano directory. The log configuration
file location is set with the log_config_append option in the murano
configuration file.

Murano applications

Murano applications have a separate logging handler and a separate file
where all logs from application definitions should be provided.
Open the logging.conf file and check the
args: ('applications.log',) option in the handler_applications section.

Verify that log_config_append is not empty and set to the
logging.conf location.

Problems during configuration

If any problems occur, first of all verify that:

		All murano components have consistent versions: murano-dashboard and
murano-engine should use the same or compatible python-muranoclient version.
Dependent component versions can be found in requirements.txt file.

		The database is synced with code by running:

Failed to execute `murano-db-manage`

		Make sure --config-file option is provided.

		Check connection parameter in provided configuration file. It should be a
connection string [http://docs.sqlalchemy.org/en/rel_0_8/core/engines.html].

		Check that MySQL or PostgreSQL (depending of what you provided in
connection string) Python modules are installed on the system.

Murano panel is not seen in horizon

		Make sure that _50_murano.py file is copied to
openstack-dashboard/local/enabled directory and there is no other file,
starting with _50.

		Check that murano data is not inserted twice in the settings file and as a
plugin.

Murano panel can be browsed, but ‘Unable to communicate to murano-api server.’ appears

If you have murano registered in keystone, verify the endpoint URL is valid
and service has application-catalog name. If you don’t want to register
murano service in keystone, just add MURANO_API_URL option to the horizon
local setting.

Problems during deployment

Besides identifying errors from log files, there is another and more flexible
way to browse deployment errors - directly from UI. When the Deploy Failed
status appears, navigate to Environment Components and click
the Latest Deployment Log tab. You can see steps of the deployment and the one
that failed would have red color.

while scanning a simple key in “<string>”, line 32, column 3: ...

There is an error in YAML file format.
Before uploading a package, validate your file in an online yaml validator
like YAMLint [http://www.yamllint.com/].
Later validation tool [https://blueprints.launchpad.net/murano/+spec/murano-package-verification-tool]
to check package closely while uploading will be added.

NoPackageForClassFound: Package for class io.murano.Environment is not found

Verify that murano core package is uploaded.
If not, the content of meta/io.murano folder should be zipped and
uploaded to Murano.

[keystoneclient.exceptions.AuthorizationFailure]:
Authorization failed: You are not authorized to perform the requested action. (HTTP 403)

Token expires during the deployment. Usually the default standard token lifetime
is one hour. The error occurs frequently as, in most cases, a deployment takes
longer than that or does not start right after token is generated.

Workarounds:

		Use trusts. Only possible in the v3 version. Read more in the
official documentation [https://wiki.openstack.org/wiki/Keystone/Trusts]
or here [http://docs.openstack.org/admin-guide-cloud/orchestration-auth-model.html].
Do not forget to check corresponding heat and murano settings. Trusts are
enabled by default in murano and heat since Kilo release.

In murano the corresponding configuration option is located in engine
section:

[engine]

...

Create resources using trust token rather than user's token (boolean
value)
use_trusts = true

If your Keystone runs v2 version, check out the solutions below.

		Make logout/login to compose a new token and start the deployment again.
Would not help for long deployment or if token lifetime is too small.

		Increase the token lifetime in the keystone configuration file.

The murano-agent did not respond within 3600 seconds

		Need to check transport access to the virtual machine (verify that the
router has a gateway).

		Check the RabbitMQ settings: verify that the agent has valid RabbitMQ
parameters.
Go to the spawned virtual machine and open */etc/murano/agent.conf on the
Linux-based machine or C:\Murano\Agent\agent.conf on Windows-based
machine. Also, you can examine agent logs, located by default at
/var/log/murano-agent.log The first part of the log file contains
reconnection attempts to the RabbitMQ since the valid RabbitMQ address
and queue have not been obtained yet.

		Verify that the driver option is set to messagingv2

murano.engine.system.agent.AgentException

Agent started the execution plan, but something went wrong. Examine agent logs
(see the previous paragraph for the logs placement information). Also, try to
manually execute the application scripts.

[exceptions.EnvironmentError]: Unexpected stack state NOT_FOUND or UPDATE_FAILED

A problem with heat stack creation, examine the heat log file. Try to
manually spawn the instance. If in the reason of stack creation fail is
no valid host was found, probably there is not enough resources or
something is wrong with nova-scheduler.

Router could not be created, no external network found

Find the external_network parameter in the networking section of
murano configuration file and verify that the specified external network does exist
through Web UI or by executing the openstack network list –external command.

Deployment log in the UI contains incomplete reports

Sometimes logs contain only two messages after the application deployment.
There are no messages, provided in applications themselves:

2015-09-21 11:14:58 — Action deploy is scheduled
2015-09-21 11:16:43 — Deployment finished successfully

To fix the problem, set the driver option in the murano.config
file to messagingv2.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/configure_cloud_foundry_service_broker.html

 Navigation

 		
 index

 		Murano »

Murano service broker for Cloud Foundry

Service broker overview

Service broker is a new murano component which implements Cloud Foundry [https://www.cloudfoundry.org/] Service Broker API.

This lets users build ‘hybrid’ infrastructures that are services like databases, message
queues, key/value stores, and so on. This services can be uploaded and deployed with
murano and made available to Cloud Foundry apps on demand. The result is lowered cost,
shorter timetables, and quicker access to required tools — developers can ‘self serve’
by building any required service, then make it instantly available in Cloud Foundry.

Configure service broker

Manual installation

If you use local murano installation, you can configure and run murano service
broker in a few simple steps:

		Add new entry to the murano configuration file.

[cfapi]
tenat = %TENANT_NAME%
bind_host = %HOST_IP%
bind_port = 8083
auth_url = 'http://%OPENSTACK_HOST_IP%:5000/v2.0'

Note

bind_host IP should be in the same network as Cloud Foundry instance

		Open a new console and launch service broker.

cd ~/murano/murano
tox -e venv -- murano-api --config-file ./etc/murano/murano.conf

Devstack installation

It is really easy to enable service broker in your devstack installation.
You need simply update your local.conf with the following:

[[local|localrc]]
enable_plugin murano git://git.openstack.org/openstack/murano
enable_service murano-cfapi

How to use service broker

After service broker is configured and started you have nothing to do with service
broker from murano side - it is an adapter which is used by Cloud Foundry PaaS.

To access and use murano packages through Cloud Foundry, you need to perform following steps:

		Log in to Cloud Foundry instance via ssh.

ssh -i <key_name> <username>@<hostname>

		Log in to Cloud Foundry itself.

cf login -a https://api.<smthg>.xip.io -u <user_name> -p <password>

		Add murano service broker.

cf create-service-broker <broker_name> <OS_USERNAME> <OS_PASSWORD> http://<service_broker_ip>:8083

		Enable access to murano packages.

cf enable-service-access <service_name>

Warning

By default, access to all services is prohibited.

Note

You can use service-access command to see human-readable list of packages.

		Provision murano service through Cloud Foundry.

cf create-service 'Apache HTTP Server' default -c apache.json

{
 "instance": {
 "flavor": "m1.medium",
 "?": {
 "type": "io.murano.resources.LinuxMuranoInstance"
 },
 "keyname": "nstarodubtsev",
 "assignFloatingIp": "True",
 "name": <name_pattern>,
 "availabilityZone": "nova",
 "image": "1b9ff37e-dff3-4308-be08-9185705dad91"
 },
 "enablePHP": "True"
}

Known issues

		Hard to deploy complex apps [https://bugs.launchpad.net/murano/+bug/1500777]

Useful links

Here is the list of the links for Cloud Foundry documentation which you might need:

		Cloud Foundry development version launcher [https://github.com/yudai/cf_nise_installer]

		How to manage Cloud Foundry service brokers [https://docs.cloudfoundry.org/services/managing-service-brokers.html]

		Cloud Foundry CLI docs [http://docs.cloudfoundry.org/devguide/#cf]

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/prepare_lab.html

 Navigation

 		
 index

 		Murano »

Prepare A Lab For Murano

This section provides basic information about lab’s system requirements.
It also contains a description of a test which you may use to check if
your hardware fits the requirements. To do this, run the test and
compare the results with baseline data provided.

System prerequisites

Supported Operating Systems

		Ubuntu Server 12.04 LTS

		RHEL/CentOS 6.4

System packages are required for Murano

Ubuntu

		gcc

		python-pip

		python-dev

		libxml2-dev

		libxslt-dev

		libffi-dev

		libpq-dev

		python-openssl

		mysql-client

Install all the requirements on Ubuntu by running:

sudo apt-get install gcc python-pip python-dev \
libxml2-dev libxslt-dev libffi-dev \
libpq-dev python-openssl mysql-client

CentOS

		gcc

		python-pip

		python-devel

		libxml2-devel

		libxslt-devel

		libffi-devel

		postgresql-devel

		pyOpenSSL

		mysql

Install all the requirements on CentOS by running:

sudo yum install gcc python-pip python-devel libxml2-devel \
libxslt-devel libffi-devel postgresql-devel pyOpenSSL \
mysql

Lab Requirements

		Criteria
		Minimal
		Recommended

		CPU
		4 core @ 2.4 GHz
		24 core @ 2.67 GHz

		RAM
		8 GB
		24 GB or more

		HDD
		2 x 500 GB (7200 rpm)
		4 x 500 GB (7200 rpm

		RAID
		Software RAID-1 (use mdadm as
it will improve read
performance almost two times)
		Hardware RAID-10

Table: Hardware requirements

There are a few possible storage configurations except the shown above.
All of them were tested and were working well.

		1x SSD 500+ GB

		
		1x HDD (7200 rpm) 500+ GB and 1x SSD 250+ GB (install the system onto

		the HDD and mount the SSD drive to folder where VM images are)

		1x HDD (15000 rpm) 500+ GB

Test Your Lab Host Performance

We have measured time required to boot 1 to 5 instances of Windows
system simultaneously. You can use this data as the baseline to check if
your system is fast enough.

You should use sysprepped images for this test, to simulate VM first
boot.

Steps to reproduce test:

		Prepare Windows 2012 Standard (with GUI) image in QCOW2 format. Let’s
assume that its name is ws-2012-std.qcow2

		Ensure that there is NO KVM PROCESSES on the host. To do this, run
command:

ps aux | grep kvm

		Make 5 copies of Windows image file:

for i in $(seq 5); do \
cp ws-2012-std.qcow2 ws-2012-std-$i.qcow2; done

		Create script start-vm.sh in the folder with .qcow2 files:

#!/bin/bash
[-z $1] || echo "VM count not provided!"; exit 1
for i in $(seq $1); do
echo "Starting VM $i ..."
kvm -m 1024 -drive file=ws-2012-std-$i.qcow2,if=virtio -net user -net nic,model=virtio -nographic -usbdevice tablet -vnc :$i & done

		Start ONE instance with command below (as root) and measure time
between VM’s launch and the moment when Server Manager window
appears. To view VM’s desktop, connect with VNC viewer to your host
to VNC screen :1 (port 5901):

sudo ./start-vm.sh 1

		Turn VM off. You may simply kill all KVM processes by

sudo killall kvm

		Start FIVE instances with command below (as root) and measure time
interval between ALL VM’s launch and the moment when LAST Server Manager
window appears. To view VM’s desktops, connect with VNC viewer to your
host to VNC screens :1 thru :5 (ports 5901-5905):

sudo ./start-vm.sh 5

		Turn VMs off. You may simply kill all KVM processes by

sudo killall kvm

Baseline Data

The table below provides baseline data which we’ve got in our
environment.

		
		Boot 1 instance
		Boot 5 instances

		Avg. Time
		3m:40s
		8m

		Max. Time
		5m
		20m

Avg. Time refers to the lab with recommended hardware configuration,
while Max. Time refers to minimal hardware configuration.

Host Optimizations

Default KVM installation could be improved to provide better
performance.

The following optimizations may improve host performance up to 30%:

		change default scheduler from CFQ to Deadline

		use ksm

		use vhost-net

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/manage_categories.html

 Navigation

 		
 index

 		Murano »

Managing categories

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/policy_enf.html

 Navigation

 		
 index

 		Murano »

Policy enforcement

Policies are defined and evaluated in the Congress [https://wiki.openstack.org/wiki/Congress] project.
The policy language for Congress is Datalog. The congress policy consists
of the Datalog rules and facts.

Examples of policies are as follows:

		Minimum 2 GB of RAM for all VM instances.

		A certified version for all Apache server instances.

		Data placement policy: all database instances must be deployed at a given
geographic location enforcing some law restriction on data placement.

These policies are evaluated over data in the form of tables (Congress data
structures). A deployed Murano environment must be decomposed to the Congress
data structures. The decomposed environment is sent to Congress for simulation.
Congress simulates whether the resulting state violates any defined
policy: deployment is aborted in case of policy violation.

Murano uses two predefined policies in Congress:

		murano_system contains rules and facts of policies defined by the cloud
administrator.

		murano contains only facts/records reflecting the resulting state after
the deployment of an environment.

Records in the murano policy are queried by rules from
the murano_system policy. The Congress simulation does not create any
records in the murano policy, and only provides the feedback on whether
the resulting state violates the policy or not.

As a part of the policy guided fulfillment, you need to enforce policies
on a murano environment deployment. If the policy enforcement fails,
the deployment fails as well.

Setting up policy enforcement

Before you use the policy enforcement feature, configure Murano and Congress
properly.

Note

This article does not cover Murano and Congress configuration options
useful for Murano application deployment, for example, DNS setup,
floating IPs, and so on.

To enable policy enforcement, complete the following tasks:

		In Murano:

		Enable the enable_model_policy_enforcer option
in the murano.conf file:

[engine]
Enable model policy enforcer using Congress (boolean value)
enable_model_policy_enforcer = true

		Restart murano-engine.

		Verify that Congress is installed and available in your OpenStack
environment. See the details in the Congress official documentation [http://congress.readthedocs.org/en/latest/].

		Install the congress command-line client [http://docs.openstack.org/user-guide/common/cli_install_openstack_command_line_clients.html]
as any other OpenStack command-line client.

		For Congress, configure the following policies that policy enforcement uses
during the evaluation:

		murano policy

It is created by the Congress` murano datasource driver, which is a part
of Congress. Configure it for the OpenStack tenant where you plan to
deploy your Murano application. Datasource driver retrieves deployed
Murano environments and populates Congress’ murano policy tables.
See Murano policy enforcement internals for details.

Remove the existing murano policy and create a new murano policy
configured for the demo tenant, by running:

remove default murano datasource configuration, because it is using 'admin' tenant. We need 'demo' tenant to be used.
openstack congress datasource delete murano
openstack congress datasource create murano murano --config username="$OS_USERNAME" --config tenant_name="demo" --config password="$OS_PASSWORD" --config auth_url="$OS_AUTH_URL"

		murano_system policy

It holds the user-defined rules for policy enforcement. Typically,
the rules use tables from other policies, for example, murano, nova,
keystone, and others. Policy enforcement expects the predeploy_errors
table here that is available on the predeploy_errors rules creation.

Create the murano_system rule, by running:

create murano_system policy
openstack congress policy create murano_system

resolves objects within environment
openstack congress policy rule create murano_system 'murano_env_of_object(oid,eid):-murano:connected(eid,oid), murano:objects(eid,tid,"io.murano.Environment")'

		murano_action policy with internal management rules.

These rules are used internally in the policy enforcement request
and stored in a dedicated murano_action policy that is
created here. They are important in case an environment is redeployed.

create murano_action policy
openstack congress policy create murano_action --kind action

register action deleteEnv
openstack congress policy rule create murano_action 'action("deleteEnv")'

states
openstack congress policy rule create murano_action 'murano:states-(eid, st) :- deleteEnv(eid), murano:states(eid, st)'

parent_types
openstack congress policy rule create murano_action 'murano:parent_types-(tid, type) :- deleteEnv(eid), murano:connected(eid, tid),murano:parent_types(tid,type)'
openstack congress policy rule create murano_action 'murano:parent_types-(eid, type) :- deleteEnv(eid), murano:parent_types(eid,type)'

properties
openstack congress policy rule create murano_action 'murano:properties-(oid, pn, pv) :- deleteEnv(eid), murano:connected(eid, oid), murano:properties(oid, pn, pv)'
openstack congress policy rule create murano_action 'murano:properties-(eid, pn, pv) :- deleteEnv(eid), murano:properties(eid, pn, pv)'

objects
openstack congress policy rule create murano_action 'murano:objects-(oid, pid, ot) :- deleteEnv(eid), murano:connected(eid, oid), murano:objects(oid, pid, ot)'
openstack congress policy rule create murano_action 'murano:objects-(eid, tnid, ot) :- deleteEnv(eid), murano:objects(eid, tnid, ot)'

relationships
openstack congress policy rule create murano_action 'murano:relationships-(sid, tid, rt) :- deleteEnv(eid), murano:connected(eid, sid), murano:relationships(sid, tid, rt)'
openstack congress policy rule create murano_action 'murano:relationships-(eid, tid, rt) :- deleteEnv(eid), murano:relationships(eid, tid, rt)'

connected
openstack congress policy rule create murano_action 'murano:connected-(tid, tid2) :- deleteEnv(eid), murano:connected(eid, tid), murano:connected(tid,tid2)'
openstack congress policy rule create murano_action 'murano:connected-(eid, tid) :- deleteEnv(eid), murano:connected(eid,tid)'

Creating policy enforcement rules

This article illustrates how you can create policy enforcement rules.
For testing purposes, create rules that prohibit the creation
of instances with the flavor with over 2048 MB of RAM following
the procedure below.

Procedure:

		Verify that you have configured your OpenStack environment as described
in Setting up policy enforcement.

		To create the predeploy_errors rule, run:

congress policy rule create murano_system "predeploy_errors(eid, obj_id, msg) :- murano:objects(obj_id, pid, type), murano:objects(eid, tid, \"io.murano.Environment\"), murano:connected(eid, pid), murano:properties(obj_id, \"flavor\", flavor_name), flavor_ram(flavor_name, ram), gt(ram, 2048), murano:properties(obj_id, \"name\", obj_name), concat(obj_name, \": instance flavor has RAM size over 2048MB\", msg)"

The command above contains the following information:

predeploy_errors(eid, obj_id, msg) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "flavor", flavor_name),
 flavor_ram(flavor_name, ram),
 gt(ram, 2048),
 murano:properties(obj_id, "name", obj_name),
 concat(obj_name, ": instance flavor has RAM size over 2048MB", msg)

Policy validation engine checks the predeploy_errors rule, and rules
referenced within this rule are evaluated by the Congress engine.

In this example, we create the rule that references the flavor_ram
rule we create afterwards. It disables flavors with RAM more than
2048 MB and constructs the message returned to the user
in the msg variable.

In this example we use data from policy murano which is represented by
murano:properties. There are stored rows with decomposition of model
representing murano application. We also use built-in functions of Congress:

		gt stands for ‘greater-than’

		concat joins two strings into one variable

		To create the flavor_ram rule, run:

congress policy rule create murano_system "flavor_ram(flavor_name, ram) :- nova:flavors(id, flavor_name, cpus, ram)"

This rule resolves parameters of flavor by flavor name and returns
the ram parameter. It uses the flavors rule from nova policy.
Data in this policy is filled by the nova datasource driver.

		Check the rule usage.

		Create an environment with a simple application:

		Select an application from the murano applications.

		Create a m1.medium instance, which uses 4096 MB RAM.

[image: Create new instance]

		Deploy the environment.

Deployment fails as the rule is violated: environment is in the Deploy
FAILURE status. Check the deployment logs for details:

[image: Deployment log]

See also

		Creating base modification rules

Murano policy enforcement internals

This section describes internals of the murano policy enforcement
feature.

Model decomposition

The data for the policy validation comes from the models of Murano
applications. These models are transformed to a set of rules that are
processed by Congress.

There are several tables created in murano policy for different kinds
of rules that are as follows:

		murano:objects(object_id, parent_id, type_name)

		murano:properties(object_id, property_name, property_value)

		murano:relationships(source, target, name)

		murano:connected(source, target)

		murano:parent_types(object_id, parent_type_name)

		murano:states(environment_id, state)

murano:objects(object_id, parent_id, type_name)

This rule is used for representation of all objects in Murano model,
such as environment, application, instance, and other.

Value of the type property is used as the type_name parameter:

name: wordpress-env
'?': {type: io.murano.Environment, id: 83bff5ac}
applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}

The model above transforms to the following rules:

		murano:objects+("83bff5ac", "tenant_id", "io.murano.Environment")

		murano:objects+("83bff5ac", "e7a13d3c", "io.murano.databases.MySql")

Note

The owner of the environment is a tenant.

murano:properties(object_id, property_name, property_value)

Each object may have properties. In this example we have an application
with one property:

applications:
- '?': {id: e7a13d3c, type: io.murano.databases.MySql}
database: wordpress

The model above transforms to the following rule:

		murano:properties+("e7a13d3c", "database", "wordpress")

Inner properties are also supported using dot notation:

instance:
'?': {id: 825dc61d, type: io.murano.resources.LinuxMuranoInstance}
networks:
 useFlatNetwork: false

The model above transforms to the following rule:

		murano:properties+("825dc61d", "networks.useFlatNetwork", "False")

If a model contains list of values, it is represented as a set of multiple
rules:

instances:
 - '?': {id: be3c5155, type: io.murano.resources.LinuxMuranoInstance}
 networks:
 customNetworks: [10.0.1.0, 10.0.2.0]

The model above transforms to the following rules:

		murano:properties+("be3c5155", "networks.customNetworks", "10.0.1.0")

		murano:properties+("be3c5155", "networks.customNetworks", "10.0.2.0")

murano:relationships(source, target, name)

Murano application models may contain references to other applications.
In this example, the WordPress application references MySQL in
the database property:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
- '?':
 id: 50fa68ff
 type: io.murano.apps.WordPress
 database: 0aafd67e

The model above transforms to the following rule:

		murano:relationships+("50fa68ff", "0aafd67e", "database")

Note

For the database property we do not create
the murano:properties+ rule.

If we define an object within other object, they will have relationships
between them:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}

The model above transforms to the following rule:

		murano:relationships+("0aafd67e", "ed8df2b0", "instance")

There are special relationships of services from the environment
to its applications: murano:relationships+("env_id", "app_id",
"services")

murano:connected(source, target)

This table stores both direct and indirect connections between instances.
It is derived from murano:relationships:

applications:
- '?':
 id: 0aafd67e
 type: io.murano.databases.MySql
 instance:
 '?': {id: ed8df2b0, type: io.murano.resources.LinuxMuranoInstance}
- '?':
 id: 50fa68ff
 type: io.murano.apps.WordPress
 database: 0aafd67e

The model above transforms to the following rules:

		murano:connected+("50fa68ff", "0aafd67e") # WordPress to MySql

		murano:connected+("50fa68ff", "ed8df2b0") # WordPress to LinuxMuranoInstance

		murano:connected+("0aafd67e", "ed8df2b0") # MySql to LinuxMuranoInstance

murano:parent_types(object_id, parent_name)

Each object in murano has a class type. These classes may inherit from one
or more parents. For example, LinuxMuranoInstance > LinuxInstance >
Instance:

instances:
- '?': {id: be3c5155, type: LinuxMuranoInstance}

The model above transforms to the following rules:

		murano:objects+("...", "be3c5155", "LinuxMuranoInstance")

		murano:parent_types+("be3c5155", "LinuxMuranoInstance")

		murano:parent_types+("be3c5155", "LinuxInstance")

		murano:parent_types+("be3c5155", "Instance")

Note

The type of an object is also repeated in its parent types
(LinuxMuranoInstance in the example) for easier handling of
user-created rules.

Note

If a type inherits from more than one parent, and these parents inherit
from one common type, the parent_type rule is included only once in
the common type.

murano:states(environment_id, state)

Currently only one record for environment is created:

		murano:states+("uugi324", "pending")

Using policy for the base modification of an environment

Congress policies enables a user to define modification of an environment
prior to its deployment. This includes:

		Adding components, for example, monitoring.

		Changing and setting properties, for example enforcing a given zone,
flavors, and others.

		Configuring relationships within an environment.

Use cases examples:

		Installation of the monitoring agent on each VM instance
by adding a component with the agent and creating relationship
between the agent and instance.

		Enabling a certified version to all Apache server instances:
setting the version property to all Apache applications within
an environment to a particular version.

These policies are evaluated over data in the form of tables that are Congress
data structures. A deployed murano environment must be decomposed to Congress
data structures. The further workflow is as follows:

		The decomposed environment is sent to Congress for simulation.

		Congress simulates whether the resulting state requires modification.

		In case the modification of a deployed environment is required,
Congress returns a list of actions in the YAML format
to be performed on the environment prior to the deployment.

For example:

set-property: {object_id: c46770dec1db483ca2322914b842e50f, prop_name: keyname, value: production-key}

The example above sets the keyname property to the production-key
value on the instance identified by object_id. An administrator can use
it as an output of the Congress rules.

		The action specification is parsed in murano. The given action class is
loaded, and the action instance is created.

		The parsed parameters are supplied to the action __init__ method.

		The action is performed on a given environment (the modify method).

Creating base modification rules

This example illustrates how to configure the rule enforcing all VM instances
to deploy with a secure key pair. This may be required in a production
environment.

Warning

Before you create rules, configure your OpenStack environment as described
in Setting up policy enforcement.

Procedure:

		To create the predeploy_modify rule, run:

congress policy rule create murano_system 'predeploy_modify(eid, obj_id, action):-murano:objects(obj_id, pid, type), murano_env_of_object(obj_id, eid), murano:properties(obj_id, "keyname", kn), concat("set-property: {object_id: ", obj_id, first_part), concat(first_part, ", prop_name: keyname, value: production-key}", action)'

The command above contains the following information:

predeploy_modify(eid, obj_id, action) :-
 murano:objects(obj_id, pid, type),
 murano:objects(eid, tid, "io.murano.Environment"),
 murano:connected(eid, pid),
 murano:properties(obj_id, "keyname", kn),
 concat("set-property: {object_id: ", obj_id, first_part),
 concat(first_part, ", prop_name: keyname, value: production-key}", action)

Policy validation engine checks the predeploy_modify rule.
And the Congress engine evaluates the rules referenced inside this rule.

Note

The production-key key pair must already exist, though you can use
any other existing key pair.

		Deploy the environment.

Instances within the environment are deployed with the specified key pair.

See also

		Creating policy enforcement rules

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/murano_repository.html

 Navigation

 		
 index

 		Murano »

Murano repository

Use an existing repository

Set up a custom repository

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/delete_application.png
B3 openstack demo-box v & demorbox +

Frolect Environments > Environment Env-1
entity .
Murano B
Components | Topology Deployment History
Application Catalog -
Eovironments Application Components App category | All~ a
Appicat)
— - & Gt A, b
Manage v < ez ez jocker >
Apache HTTP S. ‘Apache Tomcat Docker Jenkins Docker MariaDB Docker Standalo. Kubemnetes Cius.
® Drop Components here
Component List +Add Component | Deploy This Environment

Name Type Status. Last operation Time updated Actions

Tomeat Apache Tomcat Ready to deploy Component araft created -

Dispiaying 1 fem

_images/repository.png
Import Package

Package Source
Repository

Package Name * @

Package version
Optional

Description:
Package Name: Fully qualfied package name.
Package Version: Version of the package (optona).

The package s going to be imported from
hitp:/storage. apps.openstack.org/ repository.

Note: If the package depends upon other packages and/or
requires specific glance images, those are going to be
installed with it from murano repository.

_images/qs_quick_env.png
88 openstack

Project
Identity v
Murano A
Application Catalog ~
Environments.

Applications

Manage v

Bdemo~

Components | Topology Deployment History

Application Components

docker
Docker Standab.

Component List

Name Type

ApacheHitpServer Apache HTTP Server

Dispiaying 1 fem

Environments > Environment quick-env-1

App category All~

i
[o]

Kubernetes Pod Docker MysQL
Status. Last operation

® Drop component here to add it

Ready to deploy Component araft created

& demo-box v

Rally }‘

+Add Component

Time updated

_images/quick_deploy.png
B3 openstack

Project o

deniity o

Murano ~

Application Catalog ~
Environments
Appliations

Manage o

= demo-box v
Applications
Recent Activity

WordPress
WordPress s a free
and open source
blogging tool and a
content management

Details »

©Create Env | o Quick Deploy

App Category: | Alv

Apache HTTP .
The Apache HITP
Apache sererprojectis an
effort to develop and
maintain an

Details »

©Create Env | o Quick Deploy

Docker MariaDB
MariaDB is a

MariaDB
community-developed
fork of the MySQL

relational database

Details »

©Create Env | o Quick Deploy

Next Page

Zabbix Server
PZNEEIEd Zebvix server s the

central process of
Zabbix software.

Details »

©Create Env | o Quick Deploy

Environment: Create Environment

&

Apache Tomcat
Apache Tomeat is an
open source software
implementation o the
Java Servet and

Details »

©Create Env

Docker Standal...
A creso
Jotker moemenaion

cpio shge

running docker service.

Details »

©Create Env | o Quick Deploy

& demo-box v

Apache HTTP ...
The Apache HITP

Apache sererprojectis an
effort to develop and
maintain an

Details »

©Create Env | o Quick Deploy

Q Filter

Docker Jenkins
@ Jenkins Jerkins 15 an awara-

winning appication that
monitors execuions of

repeated jobs, such as

Details »

©Create Env | o Quick Deploy

Kubernetes Clu...
% Kuametes i an opon
oo

managing
containerized

Details »

©Create Env | o Quick Deploy

_images/topology_wordpress.png
88 openstack Kate

Environments > Environment quick-env-1

Project -
Admin B
[B Gomponents | Topology | Deployment History Latest Deployment Log
Murano o
Environment: quick-env-1
lication Catal &
Application Catalog Status: Deployed
Environments
Applications a
Name: yquidiigy70d45
Manage -

Avallabilityzone: nova
‘Openstackid: a4187¢a9-0943-4509-8109-
36892003981

‘Securitygroupname: None
Image: 1b91f37e-0if3-4308-be08-9185705dadg1

10:1079939a-1cf2-4050-8477-0b41b086C336.
Keyname:
Floatingipaddress: None

Flavor: m1.medium
Type: io.murano.resources LinuxMuranolnstance
Assignfoatingip: False.

_images/environments.png
B3 openstack

Project v
Identity v
Murano A
Application Catalog ~

Environments.

Applications
Manage v

demo-box v

Environments

Environment-2

Environment-3

quick-env-1

Displaying 4 tems

Status.

Ready to deploy

Ready to deploy

Ready to deploy

Ready to deploy

& demo-box v

+Create Environment

Actions

Manage Components | +

Manage Components | +

Manage Components | +

Manage Components | +

_images/quick_env.png
88 openstack gemo-box +

‘Success: The ‘Apache Tomcat'

application successfully added to

Project . . .
ol Environments > Environment quick-env-1 environment.
1dentity 5
Murano B
Gomponents | Topology Deployment History
Application Catalog ~
Eovironments Application Components App category | All~ a
Applications . 5‘ Qe A,
p— fac
Manage v < . e e docker >
Apache HTTP S. Apache Tomcat Docker Jenkins Docker MariaDB Docker Standalo. Kubernetes Cluster
® Drop Components here
Component List +Add Component | Deploy This Environment
Name Type Status. Last operation Time updated
Tomcai | Apache Tomeat Ready to deploy ‘Gomponent aatt oreated -

Dispiaying 1 fem

_images/qs_app_category.png
Import Package

Application Category Description:
Apploation Severs -] categories Setect one or more categories for a
Key-Value Storage 3 package
sap
ot Services Speaitying a category helps to fiter applcations inthe
=l catalog

- -]

search.html

 Navigation

 		
 index

 		Murano »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/manage_packages.html

 Navigation

 		
 index

 		Murano »

Managing packages

Managing packages on engine side

To get access to the contents of murano packages, murano-engine queries
murano-api. However, it is also possible to specify a list of directories
that may contain packages locally. This option is useful to speed up
debugging and development of packages and/or to save bandwidth between the API
and the engine. If local directories are specified, they are examined before
querying the API.

Local package directories

To define a list of directories where the engine would look for package files,
set the load_packages_from option in the packages_opts section
of the murano.conf configuration file. This option can be set to a
comma-separated list of directory paths. Whenever an engine needs to access a
package, it would inspect these directories first, before accessing
murano-api.

API package cache

If the package was not found in any of the load_packages_from directories,
or if none were specified, then murano-engine queries API for package
contents.
Whenever murano-engine downloads a package from API, it stores and unpacks
it locally. The engine uses the directory defined in the packages_cache
option in the packages_opts section of the murano.conf
configuration file. If it is not used, a temporary directory is created.

The enable_packages_cache option in the same section defines whether the
packages would persist on disk or not. When set to False, each package
downloaded from API is stored in a separate directory, that will be deleted
after the deployment (or action) is over. This means that every deployment
or action execution needs to download all the packages it requires,
regardless of any packages previously downloaded by the engine. When set to
True (default), the engine shares downloaded packages between deployments
and action executions. This means that packages persist on disk and have to be
eventually deleted. Therefore, whenever the engine requires a package and that
package is not found locally, the engine downloads the package. Afterwards, it
checks all the previously cached packages with the same FQN and same version.
If the cached package is not required by any ongoing deployment, it gets
deleted. Otherwise, it stays on disk until a new version is downloaded.

Note

On UNIX-based operating systems, murano uses fcntl for IPC locks that
support both shared and exclusive locking. On Windows, msvcrt is used.
It does not support shared file locks. Therefore, enabling package cache
mechanism under Windows might result in performance decrease, since only
one process would be able to use one package at the same time.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/manage_images.html

 Navigation

 		
 index

 		Murano »

Managing images

Build an image

Manage images

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/murano_agent.html

 Navigation

 		
 index

 		Murano »

Murano agent

Murano easily installs and configures necessary software on new virtual
machines. Murano agent is one of the main participants of these processes.

Usually, it is enough to execute a single script to install a simple
application. A more complex installation requires a deep script result
analysis. For example, we have a cross-platform application. The first script
determines the operation system and the second one calls an appropriate
installation script. Note, that installation script may be written in different
languages (the shell for Linux and PowerShell for Windows). Murano agent can
easily handle this situation and even more complicated ones.

So murano agent operates not with scripts, but with execution plans, which are
minimum units of the installation workflow.

Murano-agent on a new VM

Currently, most of the application deployments are possible only on images with
pre-installed murano agent. You can refer to
corresponding documentation [http://murano.readthedocs.org/en/latest/image_builders/index.html#building-murano-image]
on building an image with murano-agent.

To make deployment with murano easier, the murano team is working on the
murano-agent automatic installation with cloud-init.

Interaction with murano-engine

First of all, communication between murano-agent and murano engine should be
established. The communication is performed through AMQP protocol. This type of
communication is preferable (for example, compared to SSH) because it is:

		Durable

		To establish the connection, there is no need to wait until the
instance is spawned. Murano-agent, on its turn, does not need
to wait for a murano-engine task.

		Messages can be sent to RabbitMQ asynchronously.

		The connection does not depend on network issues. And moreover, there is no
way to physically connect to the virtual machine if floating IP is not set.

		It is possible to reload the instance and change network parameters during
the deployment.

		Reliable

If one instance of murano-engine fails in the middle of the deployment,
another one picks up the messages from the queue and continue the deployment.

Right after application author calls the deploy method of the class, inherited from
io.murano.resources.Instance, new murano-agent configuration file starts
forming in accordance with the values specified in the [rabbitmq] murano
configuration file section. A script that runs through cloud-init copies a
new file to the right place during the instance booting.

Execution plans and execution plan templates

It was already mentioned that murano-agent recognizes execution plans.
These instructions contain scripts with all the required parameters
The application package author provides the execution plan templates together
with scripts code. During the deployment it is complemented with all required
parameters (including user-input).

For more information on execution plan templates, refer to
Execution plan template.

Take a look at the muranoPL code snippet. The``EtcdAddMember`` template expects
name and ip parameters. The first line shows that these parameters are
passed to the template, and the second one shows that the template is sent to
the agent:

- $template: $resources.yaml('EtcdAddMember.template').bind(dict(
 name => $.instance.name,
 ip => $.getIp()
))
- $clusterConfig: $._cluster.masterNode.instance.agent.call($template, $resources)

Beside the simple agent call, there is a method that enables sending an already
prepared execution plan (not a template). The main difference between template
and full execution plan is in the files section. Prepared execution plan contains
file contents and name by which they are reachable. So it is not required to
provide the resources argument:

..instance.agent.callRaw($plan)

Also, there are instance.agent.call($template, $resources) and
..instance.agent.sendRaw($plan) methods which have the same meaning but
indicate the engine not to wait for the script execution result. The default
agent call response time (with the corresponding method call) is set in
murano configuration file and equals to one hour. Take a look at the engine
section:

[engine]
Time for waiting for a response from murano-agent during the
deployment (integer value)
agent_timeout = 3600

Note

Murano-agent is able to run different types of scripts,
such as powershell, python, bash, chef, and puppets. Moreover, it has
a mechanism for extending supported formats and that is why murano
agent is called unified

To use puppet a deployment workflow, configure an execution plan as follows:

		Set correct version of format:

FormatVersion >=2.1.0. Previous formats does not support puppet execution.

		Use corresponding type

In the script section, script item should have Type: Puppet

		Provide entry-point class

Use puppet syntax EntryPoint: mysql::server

Note

You can use scripts directly from git or svn repositories:

Files:
 - mysql: https://github.com/nanliu/puppet-staging.git

A script output is available in the murano-agent log file. This file is located
on the spawned instance at /etc/murano/agent.conf on a Linux-based
machine, or C:\Murano\Agent\agent.conf on a Windows-based machine.
You can also refer to murano-agent log if there is no connectivity with
murano-engine (check if RabbitMQ settings are updated) or to track
deployment execution.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/admin-guide/installation.html

 Navigation

 		
 index

 		Murano »

Installation

Network configuration

Policy configuration

Like each service in OpenStack, murano has its own role-based access policies
that determine who and how can access objects. These policies are defined
in the service’s policy.json file.

On each API call corresponding policy check is performed.
policy.json file can be changed whiteout interrupting the API service.

For detailed information on policy.json syntax, please refer to the
OpenStack official documentation [http://docs.openstack.org/kilo/config-reference/content/policy-json-file.html]

With this file you can set who may upload packages and perform other operations.

The policy.json example is:

{
 // Rule declaration
 "context_is_admin": "role:admin",
 "admin_api": "is_admin:True",
 "default": "",

 // Package operations
 "get_package": "rule:default",
 "upload_package": "rule:default",
 "modify_package": "rule:default",
 "publicize_package": "rule:admin_api",
 "manage_public_package": "rule:default",
 "delete_package": "rule:default",
 "download_package": "rule:default",

 // Category operations
 "get_category": "rule:default",
 "delete_category": "rule:admin_api",
 "add_category": "rule:admin_api",

 // Deployment read operations
 "list_deployments": "rule:default",
 "statuses_deployments": "rule:default",

 // Environment operations
 "list_environments": "rule:default",
 "list_environments_all_tenants": "rule:admin_api",
 "show_environment": "rule:default",
 "update_environment": "rule:default",
 "create_environment": "rule:default",
 "delete_environment": "rule:default",

 // Environment template operations
 "list_env_templates": "rule:default",
 "create_env_template": "rule:default",
 "show_env_template": "rule:default",
 "update_env_template": "rule:default",
 "delete_env_template": "rule:default",

 // Control on executing actions on deployment environments
 "execute_action": "rule:default"
}

So, changing "upload_package": "rule:default" to "rule:admin_api"
will forbid regular users to upload packages.

Uploading package wizard in murano dashboard consists of several steps.
Upload package API call requested from the first form and modify from
the second one. It provides modifying package parameters on time of
uploading. So, please modify both configuration together. Otherwise it
will not be possible to browse package details on the second step
of the wizard.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_images/topology_kubernetes.png
Projoct - Environments > Environment MyEnv

Admin v
= - Components Topology Deployment History Latest Deployment Log.

Murano -
Environment: MyEnv

Application Catalog N
A Status: Deployment aed

Environments

Applicatons.

Sreds

articles/multi_region.html

 Navigation

 		
 index

 		Murano »

Support for OpenStack regions

Murano supports multi-region deployment. If OpenStack setup has several regions
it is possible to choose the region to deploy an application.

There is the new option in the murano configuration file:

		home_region - default region name used to get services
endpoints. The region where murano-api resides.

Now murano has two possible ways to deploy apps in different regions:

		Deploy an application in the current murano region.

		Associate environments with regions.

Deploy an app in the current region

Each region has a copy of murano services and its own RabbitMQ for api to
engine communication. In this case application will be deployed to the same
region that murano run in.

Associate environments with regions

Murano services are in one region but environments can be associated with
different regions. There are two new properties in the class
io.murano.Environment:

		regionConfigs - a dict with RabbitMQ settings for each region. The
structure of the agentRabbitMq part of the dict is identical to [rabbitmq]
section in the murano.conf file. For example:

regionConfigs:
 RegionOne:
 agentRabbitMq:
 host: 192.1.1.1
 login: admin
 password: admin

User can store such configs as YAML or JSON files. These config files must
be stored in a special folder that is configured in [engine] section of
murano.conf file under class_configs key and must be named using
%FQ class name%.json or %FQ class name%.yaml pattern.

		region - region name to deploy an app. It can be passed when creating
environment via CLI:

murano environment-create environment_name --region RegionOne

If it is not specified a value from home_region option of murano.conf
file will be used.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appendix/glossary.html

 Navigation

 		
 index

 		Murano »

Glossary

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appendix/cli_ref.html

 Navigation

 		
 index

 		Murano »

Murano command-line client

The murano client is the command-line
interface (CLI) for the Application catalog API and its extensions.

For help on a specific murano command, enter:

murano help COMMAND

murano usage
usage: murano \[--version] \[-d] \[-v] \[-k] \[--os-cacert <ca-certificate>]
\[--cert-file CERT_FILE] \[--key-file KEY_FILE]
\[--ca-file CA_FILE] \[--api-timeout API_TIMEOUT]
\[--os-username OS_USERNAME] \[--os-password OS_PASSWORD]
\[--os-tenant-id OS_TENANT_ID] \[--os-tenant-name OS_TENANT_NAME]
\[--os-auth-url OS_AUTH_URL] \[--os-region-name OS_REGION_NAME]
\[--os-auth-token OS_AUTH_TOKEN] \[--os-no-client-auth]
\[--murano-url MURANO_URL] \[--glance-url GLANCE_URL]
\[--murano-api-version MURANO_API_VERSION]
\[--os-service-type OS_SERVICE_TYPE]
\[--os-endpoint-type OS_ENDPOINT_TYPE] \[--include-password]
\[--murano-repo-url MURANO_REPO_URL]
<subcommand> ...

Subcommands

		bundle-import Import a bundle.

		category-create Create a category.

		category-delete Delete a category.

		category-list List all available categories.

		*category-show

		deployment-list List deployments for an environment.

		env-template-add-app Add application to the environment template.

		env-template-create Create an environment template.

		env-template-del-app Delete application to the environment template.

		env-template-delete Delete an environment template.

		env-template-list List the environments templates.

		env-template-show Display environment template details.

		env-template-update Update an environment template.

		environment-create Create an environment.

		environment-delete Delete an environment.

		environment-list List the environments.

		environment-rename Rename an environment.

		environment-show Display environment details.

		package-create Create an application package.

		package-delete Delete a package.

		package-download Download a package to a filename or stdout.

		package-import Import a package.

		package-list List available packages.

		package-show Display details for a package.

		service-show

		bash-completion Prints all of the commands and options to stdout.

		help Display help about this program or one of its subcommands.

Murano optional arguments

		–version

		show program’s version number and exit

		-d, –debug

		Defaults to env[MURANOCLIENT_DEBUG]

		-v, –verbose

		Print more verbose output

		-k, –insecure

		Explicitly allow muranoclient to perform “insecure” SSL (https) requests.
The server’s certificate willnot be verified against any certificate
authorities. This option should be used with caution.

		–os-cacert <ca-certificate>

		Specify a CA bundle file to use in verifying a TLS (https) server
certificate. Defaults to env[OS_CACERT]

		–cert-file CERT_FILE

		Path of certificate file to use in SSL connection. This file can optionally
be prepended with the private key.

		–key-file KEY_FILE

		Path of client key to use in SSL connection. This option is not necessary
if your key is prepended to your cert file.

		–ca-file CA_FILE

		Path of CA SSL certificate(s) used to verify the remote server certificate.
Without this option glance looks for the default system CA certificates.

		**–api-timeout API_TIMEOUT

		Number of seconds to wait for an API response, defaults to system socket
timeout

		–os-username OS_USERNAME

		Defaults to env[OS_USERNAME]

		–os-password OS_PASSWORD

		Defaults to env[OS_PASSWORD]

		–os-tenant-id OS_TENANT_ID

		Defaults to env[OS_TENANT_ID]

		–os-tenant-name OS_TENANT_NAME

		Defaults to env[OS_TENANT_NAME]

		–os-auth-url OS_AUTH_URL

		Defaults to env[OS_AUTH_URL]

		–os-region-name OS_REGION_NAME

		Defaults to env[OS_REGION_NAME]

		–os-auth-token OS_AUTH_TOKEN

		Defaults to env[OS_AUTH_TOKEN]

		–os-no-client-auth

		Do not contact keystone for a token. Defaults to env[OS_NO_CLIENT_AUTH].

		–murano-url MURANO_URL

		Defaults to env[MURANO_URL]**

		–glance-url GLANCE_URL

		Defaults to env[GLANCE_URL]

		–murano-api-version MURANO_API_VERSION

		Defaults to env[MURANO_API_VERSION] or 1

		–os-service-type OS_SERVICE_TYPE

		Defaults to env[OS_SERVICE_TYPE]

		–os-endpoint-type OS_ENDPOINT_TYPE

		Defaults to env[OS_ENDPOINT_TYPE]

		–include-password

		Send os-username and os-password to murano.

		–murano-repo-url MURANO_REPO_URL

		Defaults to env[MURANO_REPO_URL] or
`http://storage.apps.openstack.org_ `

Application catalog API v1 commands

murano bundle-import

Import a bundle. FILE can be either a path to a zip file, URL or name from
repo. if FILE is a local file does not attempt to parse requirements and
treat Names of packages in a bundle as file names, relative to location of
bundle file.

Positional arguments

		<FILE>

		Bundle URL, bundle name, or path to the bundle file

Optional arguments

		–is-public

		Make packages available to users from other tenants

		–exists-action {a,s,u}

		Default action when a package already exists

murano category-create

Create a category.

Positional arguments

		<CATEGORY_NAME>

		Category name

murano category-delete

Delete a category.

Positional arguments

		<ID>

		ID of a category(s) to delete

murano category-list

List all available categories.

murano category-show

Positional arguments

		<ID>

		ID of a category(s) to show

murano deployment-list

List deployments for an environment.

Positional arguments

		<ID>

		Environment ID for which to list deployments

murano env-template-add-app

Add application to the environment template.

Positional arguments

		<ENV_TEMPLATE_NAME>

		Environment template name

		<FILE>

		Path to the template.

murano env-template-create

Create an environment template.

Positional arguments

		<ENV_TEMPLATE_NAME>

		Environment template name

murano env-template-del-app
.. code-block::console

usage: murano env-template-del-app <ENV_TEMPLATE_ID> <ENV_TEMPLATE_APP_ID>

Delete application to the environment template.

Positional arguments

		<ENV_TEMPLATE_ID>

		Environment template ID

		<ENV_TEMPLATE_APP_ID>

		Application ID

murano env-template-delete

Delete an environment template.

Positional arguments

		<ID>

		ID of environment(s) template to delete

murano env-template-list

List the environments templates.

murano env-template-show

Display environment template details.

Positional arguments

		<ID>

		Environment template ID

murano env-template-update

Update an environment template.

Positional arguments

		<ID>

		Environment template ID

		<ENV_TEMPLATE_NAME>

		Environment template name

murano environment-create

Create an environment.

Positional arguments

		<ENVIRONMENT_NAME>

		Environment name

murano environment-delete

Delete an environment.

Positional arguments

		<NAME or ID>

		ID or name of environment(s) to delete

Optional arguments

		–abandon

		If set will abandon environment without deleting any of its resources

murano environment-list

List the environments.

murano environment-rename

Rename an environment.

Positional arguments

		<NAME or ID>

		Environment ID or name

		<ENVIRONMENT_NAME>

		A name to which the environment will be renamed

murano environment-show

Display environment details.

Positional arguments

		<NAME or ID>

		Environment ID or name

murano package-create

Create an application package.

Optional arguments

		-t <HEAT_TEMPLATE>, –template <HEAT_TEMPLATE>

		Path to the Heat template to import as an Application Definition

		-c <CLASSES_DIRECTORY>, –classes-dir <CLASSES_DIRECTORY>

		Path to the directory containing application classes

		-r <RESOURCES_DIRECTORY>, –resources-dir <RESOURCES_DIRECTORY>

		Path to the directory containing application resources

		-n <DISPLAY_NAME>, –name <DISPLAY_NAME>

		Display name of the Application in Catalog

		-f <full-name>, –full-name <full-name>

		Fully-qualified name of the Application in Catalog

		-a <AUTHOR>, –author <AUTHOR>

		Name of the publisher

		–tags [<TAG1 TAG2> [<TAG1 TAG2> ...]]

		A list of keywords connected to the application

		-d <DESCRIPTION>, –description <DESCRIPTION>

		Detailed description for the Application in Catalog

		-o <PACKAGE_NAME>, –output <PACKAGE_NAME>

		The name of the output file archive to save locally

		-u <UI_DEFINITION>, –ui <UI_DEFINITION>

		Dynamic UI form definition

		–type TYPE

		Package type. Possible values: Application or Library

		-l <LOGO>, –logo <LOGO>

		Path to the package logo

murano package-delete

Delete a package.

		<ID>

		Package ID to delete

murano package-download

Download a package to a filename or stdout.

Positional arguments

		<ID>

		Package ID to download

		file

		Filename for download (defaults to stdout)

murano package-import

Import a package. FILE can be either a path to a zip file, URL or a FQPN.
categories can be separated by a comma.

		<FILE>

		URL of the murano zip package, FQPN, or path to zip package

		-c [<CAT1 CAT2 CAT3> [<CAT1 CAT2 CAT3> ...]], –categories [<CAT1 CAT2 CAT3> [<CAT1 CAT2 CAT3> ...]]

		Category list to attach

		–is-public

		Make the package available for user from other tenants

		–package-version VERSION

		Version of the package to use from repository (ignored when importing with
multiple packages)

		–exists-action {a,s,u}

		Default action when package already exists

murano package-list

List available packages.

Optional arguments

–include-disabled

murano package-show

Display details for a package.

		<ID>

		Package ID to show

murano service-show

Positional arguments

		<ID>

		Environment ID to show applications from

Optional arguments

-p <PATH>, –path <PATH>

Level of detalization to show. Leave empty to browse
all services in the environment

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appendix/tutorials.html

 Navigation

 		
 index

 		Murano »

Tutorials

Integration with Docker

Integration with Kubernetes

HA and autoscaling

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appdev-guide/packages.html

 Navigation

 		
 index

 		Murano »

Packages

HOT-based packages

Murano native packages

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appendix/murano_concepts.html

 Navigation

 		
 index

 		Murano »

High-level definitions of Murano concepts

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/appendix/rest_api_spec.html

 Navigation

 		
 index

 		Murano »

REST API specification

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

_static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

draft/contributor-guide/plugins/package_type_plugins.html

 Navigation

 		
 index

 		Murano »

MuranoPL package type plug-ins

The only package type natively supported by Murano is MuranoPL. However, it is
possible to extend Murano with support for other formats of application
definitions. TOSCA CSARs and HOT templates are the two examples of alternate
ways to define applications.

Package structure

The only assumptions Murano makes about package format are:

		It is a ZIP archive

		There is a manifest.yaml file in the root folder of that archive

		Manifest must be a valid YAML file representing key-value associative array

		There should be a “Format” key in manifest - format identifier. If it is
not present, “MuranoPL/1.0” is used.

Murano uses the “Format” attribute of the manifest file to find an appropriate
plug-in for a particular package type. All interactions between the rest of
Murano and package file contents are done through the plug-in interface alone.

Because Murano never directly accesses files inside the packages, it is
possible for plug-ins to dynamically generate MuranoPL classes on the fly.
Those classes will be served as adapters between Murano and 3rd party systems
responsible for deployment of particular package types. Thus for Murano all
packages remain to be of MuranoPL type though some of them are “virtual”.

The format identifier has the following format: Name/Version.
For example, “Heat.HOT/1.0”. If name is not present, it is assumed to be
“MuranoPL” (thus “1.0” becomes “MuranoPL/1.0”). Version strings are in SemVer
3-component format (major.minor.patch). Missing version components are assumed
to be zero (thus 1.0 becomes 1.0.0).

Package type plug-ins

Package types plug-ins are normal Python packages that can be distributed
through PyPI and installed using pip or its alternatives. It is
important that the plug-in be installed to the same Python instance that is
used to run Murano API and Murano Engine. For multi-node Murano deployments,
plug-ins need to be installed on each node.

To associate a plug-in with a particular package format, it needs to have a
special record in [entry_points] section of setup.cfg file:

io.murano.plugins.packages =
 Name/Version = namespace:Class

For example:

[entry_points]
io.murano.plugins.packages =
 Cloudify.TOSCA/1.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage

This declaration maps particular pair of format-name/version to Python class
that implements Package API interface for the package type. It is possible
to specify several different format names or versions and map them to single
or different Python classes. For example, it is possible to specify

[entry_points]
io.murano.plugins.packages =
 Cloudify.TOSCA/1.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage
 Cloudify.TOSCA/1.1 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage
 Cloudify.TOSCA/2.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage_v2

Note

A single Python plug-in package may contain several Murano plug-ins
including of different types. For example, it is possible to combine
MuranoPL extension and package type plug-ins into a single package.

Tooling for package preparation

Some package formats may require additional tooling to prepare package ZIP
archive of desired structure. In such cases it is expected that those tools
will be provided by plug-in authors either as part of the same Python package
(by exposing additional shell entry points) or as a separate package or
distribution.

The only two exceptions to this rule are native MuranoPL packages and HOT
packages that are built into Murano (there is no need to install additional
plug-ins for them). Tooling for those two formats is a part of
python-muranoclient.

Package API interface reference

Plug-ins expose API for the rest of Murano to interact with the package
by implementing murano.packages.package.Package interface.

Class initializer:

def __init__(self, format_name, runtime_version, source_directory, manifest):

		format_name: name part of the format identifier (string)

		runtime_version: version part of the format identifier (instance of
semantic_version.Version)

		source_directory: path to the directory where package content was
extracted (string)

		manifest: contents of the manifest file (string->string dictionary)

Note: implementations must call base class (Package) initializer
passing the first three of these arguments.

Abstract properties that must be implemented by the plug-in:

def full_name(self):

		Fully qualified name of the package. Must be unique within package
scope of visibility (string)

def version(self):

		Package version (not to confuse with format version!). An instance of
semantic_version.Version

def classes(self):

		List (or tuple) of MuranoPL class names (FQNs) that package contains

def requirements(self):

		Dictionary of requirements (dependencies on other packages) in a form
of key-value mapping from required package FQN string to SemVer
version range specifier (instance of semantic_version.Spec or string
representation supported by Murano versioning scheme)

def package_type(self):

		Package type: “Application” or “Library”

def display_name(self):

		Human-readable name of the package as presented to the user (string)

def description(self):

		Package description (string or None)

def author(self):

		Package author (string or None)

def supplier(self):

		Package supplier (string or None)

def tags(self):

		List or tags for the package (list of strings)

def logo(self):

		Package (application) logo file content (str or None)

def supplier_logo(self):

		Package (application) supplier logo file content (str or None)

def ui(self):

		YAML-encoded string containing application’s form definition (string or
None)

Abstract methods that must be implemented by the plug-in:

def get_class(self, name):

		Returns string containing MuranoPL code (YAML-encoded string) for the
class whose fully qualified name is in “name” parameter (string)

def get_resource(self, name):

		Returns path for resource file whose name is in “name” parameter (string)

Properties that can be overridden in the plug-in:

def format_name(self):

		Canonical format name for the plug-in. Usually the same value that was
passed to class initializer

def runtime_version(self):

		Format version. Usually the same value that was passed to class
initializer (semantic_version.Version)

def blob(self):

		Package file (.zip) content (str)

PackageBase class

Usually, there is no need to manually implement all the methods and properties
described. There is a murano.packages.package.PackageBase class that provides
typical implementation of most of required properties by obtaining
corresponding value from manifest file.

When inheriting from PackageBase class, plug-in remains responsible for
implementation of:

		ui property

		classes property

		get_class method

This allows plug-in developers to concentrate on dynamic aspects of the package
type plug-in while keeping all static aspects (descriptions, logos and so on)
consistent across all package types (at least those who inherit from
PackageBase).

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/contributor-guide/plugins/muranopl_extensions.html

 Navigation

 		
 index

 		Murano »

MuranoPL extension plug-ins

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/enduser-guide/use_cli.html

 Navigation

 		
 index

 		Murano »

Using CLI

Manage environments

An environment is a set of logically connected applications that are grouped
together for an easy management. By default, each environment has a single
network for all its applications, and the deployment of the environment is
defined in a single heat stack. Applications in different environments are
always independent from one another.

An environment is a single unit of deployment. This means that you deploy not
an application but an environment that contains one or multiple applications.

Using CLI, you can easily perform such actions with an environment as
creating, renaming, viewing, and others.

Create an environment

To create an environment, use the following command specifying the
environment name:

murano environment-create <NAME>

Rename an environment

To rename an environment, use the following command specifying the old name of
the environment or its ID and the new name:

murano environment-rename <OLD_NAME_OR_ID> <NEW_NAME>

Delete an environment

To delete an environment, use the following command specifying the
environment name or ID:

murano environment-delete <NAME_OR_ID>

List deployments for an environment

To get a list of deployments for a particular environment, use the following
command specifying the environment name or ID:

murano deployment-list <NAME_OR_ID>

List the environments

To get a list of all existing environments, run:

murano environment-list

Manage packages

This section describes how to manage packages using the command line
interface. You can easily:

		import a package or bundles of packages

		list the existing packages

		display details for a package

		download a package

		delete a package

		create a package

Import a package

With the package-import command you can import packages
into murano in several different ways:

		from a local .zip file

		from murano app repository

		from an http URL

From a local .zip file

To import a package from a local .zip file, run:

murano package-import /path/to/PACKAGE.zip

where PACKAGE is the name of the package stored on your
computer.

For example:

murano package-import /home/downloads/mysql.zip
Importing package io.murano.databases.MySql
+---------------------------------+------+--------------------------+--------------+---------+
| ID | Name | FQN | Author |Is Public|
+---------------------------------+------+--------------------------+--------------+---------+
| 83e4038885c248e3a758f8217ff8241f| MySQL| io.murano.databases.MySql| Mirantis, Inc| |
+---------------------------------+------+--------------------------+--------------+---------+

To make the package available for users from other tenants, use the
--is-public parameter. For example:

murano package-import --is-public mysql.zip

Note

The package-import command supports multiple positional
arguments. This means that you can import several packages at once.

From murano app repository

To import a package from murano applications repository, specify
the URL of the repository with --murano-repo-url and a fully
qualified package name. For package names, go to murano applications repository,
and click on the desired package to see its full name.

Note

You can also specify the URL of the repository with the
corresponding MURANO_REPO_URL environment variable.

The following example shows how to import the MySQL package from the
murano applications repository:

murano --murano-repo-url=http://storage.apps.openstack.org \
package-import io.murano.databases.MySql

This command supports an optional --package-version parameter that instructs
murano client to download a specified package version.

The package-import command inspects package requirements
specified in the package’s manifest under the Require section, and
attempts to import them from murano repository. The package-import
command also inspects any image prerequisites mentioned in the
images.lst file in the package. If there are any image
requirements, client would inspect images already present in the image
database. Unless image with the specific name is present, client would
attempt to download it.

If any of the packages being installed is already registered in murano,
the client asks you what to do with it. You can specify the default action
with --exists-action, passing s - for skip, u - for update, and
a - for abort.

From an URL

To import an application package from an URL, use the following command:

murano package-import http://example.com/path/to/PACKAGE.zip

The example below shows how to import a MySQL package from the
murano applications repository using the package URL:

murano package-import http://storage.apps.openstack.org/apps/io.murano.databases.MySql.zip
Inspecting required images
Importing package io.murano.databases.MySql
+----------------------------------+-------+--------------------------+--------------+----------+
| ID | Name | FQN | Author | Is Public|
+----------------------------------+-------+---+----------+
| 1aa62196595f411399e4e48cc2f6a512 | MySQL | io.murano.databases.MySql| Mirantis, Inc| |
+----------------------------------+-------+---+----------+

Import bundles of packages

With the bundle-import command you can install packages in
several different ways:

		from a local bundle

		from an URL

		from murano app repository

When importing bundles, you can specify their categories with
-c/--categories and set their publicity with --public.

From a local bundle

To import a bundle from the a local file system, use the following
command:

murano bundle-import /path/to/bundle/BUNDLE_NAME

This command imports all the requirements of packages and
images.

When importing a bundle from a file system, the murano client
searches for packages in a directory relative to the bundle location
before attempting to download a package from repository. This facilitates
cases with no Internet access.

The following example shows the import of a monitoring bundle:

murano bundle-import /home/downloads/monitoring.bundle
Inspecting required images
Importing package io.murano.apps.ZabbixServer
Importing package io.murano.apps.ZabbixAgent
+----------------------------------+---------------+-----------------------------+---------------+-----------+
| ID | Name | FQN | Author | Is Public |
+----------------------------------+---------------+-----------------------------+---------------+-----------+
| fb0b35359e384fe18158ff3ed8f969b5 | Zabbix Agent | io.murano.apps.ZabbixAgent | Mirantis, Inc | |
| 00a77e302a65420c8080dc97cc0f2723 | Zabbix Server | io.murano.apps.ZabbixServer | Mirantis, Inc | |
+----------------------------------+---------------+-----------------------------+---------------+-----------+

Note

The bundle-import command supports multiple positional
arguments. This means that you can import several bundles at once.

From an URL

To import a bundle from an URL, use the following command:

murano bundle-import http://example.com/path/to/bundle/BUNDLE_NAME

Where http://example.com/path/to/bundle/BUNDLE_NAME is any external http/https
URL to load the bundle from.

For example:

murano bundle-import http://storage.apps.openstack.org/bundles/monitoring.bundle

From murano applications repository

To import a bundle from murano applications repository, use the
following command, where bundle_name stands for the bundle name:

murano bundle-import BUNDLE_NAME

For example:

murano bundle-import monitoring

Note

For bundle names, go to murano applications repository, click the
Format tab to show bundles first, and then click on
the desired bundle to see its name.

List packages

To list all the existing packages you have, use the
package-list command. The result will show you the package
ID, name, author and if it is public or not. For example:

murano package-list
+----------------------------------+--------------------+--+---------------+-----------+
| ID | Name | FQN | Author | Is Public |
+----------------------------------+--------------------+--+---------------+-----------+
daa46cfd78c74c11bcbe66d3239e546e	Apache HTTP Server	io.murano.apps.apache.ApacheHttpServer	Mirantis, Inc	
5252c9897e864c9f940e08500056f155	Cloud Foundry	io.murano.apps.paas.CloudFoundry	Mirantis, Inc	
1aa62196595f411399e4e48cc2f6a512	MySQL	io.murano.databases.MySql	Mirantis, Inc	
11d73cfdc6d7447a910984d95090463b	SQL Library	io.murano.databases	Mirantis, Inc	
fb0b35359e384fe18158ff3ed8f969b5	Zabbix Agent	io.murano.apps.ZabbixAgent	Mirantis, Inc	
00a77e302a65420c8080dc97cc0f2723	Zabbix Server	io.murano.apps.ZabbixServer	Mirantis, Inc	
+----------------------------------+--------------------+--+---------------+-----------+

Show packages

To get full information about a package, use the package-show
command. For example:

murano package-show 1aa62196595f411399e4e48cc2f6a512
+----------------------+---+
| Property | Value |
+----------------------+---+
categories	
class_definitions	io.murano.databases.MySql
description	MySql is a relational database management system
	(RDBMS), and ships with no GUI tools to administer
	MySQL databases or manage data contained within the
	databases.
enabled	True
fully_qualified_name	io.murano.databases.MySql
id	1aa62196595f411399e4e48cc2f6a512
is_public	False
name	MySQL
owner_id	1ddb2c610d4e4c5dab5185e32554560a
tags	Database, MySql, SQL, RDBMS
type	Application
+----------------------+---+

Delete a package

To delete a package, use the following command:

murano package-delete PACKAGE_ID

Download a package

With the following command you can download a .zip archive
with a specified package:

murano package-download PACKAGE_ID > FILE.zip

You need to specify the package ID and enter the .zip file name
under which to save the package.

For example:

murano package-download e44a3f526dfb4e08b3c1018c9968d911 > Wordpress.zip

Create a package

With the murano client you can create application packages from package
source files or directories. The package-create command is
useful when application package files are spread across several directories.
This command has the following required parameters:

-r RESOURCES_DIRECTORY
-c CLASSES_DIRECTORY
--type TYPE
-o PACKAGE_NAME.zip
-f FULL_NAME
-n DISPLAY_NAME

Example:

murano package-create -c Downloads/Folder1/Classes -r Downloads/Folder2/Resources \
-n mysql -f io.murano.MySQL -d Package -o MySQL.zip --type Library
Application package is available at /home/Downloads/MySQL.zip

After this, the package is ready to be imported to the application
catalog.

The package-create command is also useful for autogenerating
packages from heat templates. In this case you do not need to manually
specify so many parameters. For more information on automatic package
composition, please see Automatic package composing.

Manage categories

In murano, applications can belong to a category or multiple categories.
Administrative users can create and delete a category as well as list
available categories and view details for a particular category.

Create a category

To create a category, use the following command specifying the category name:

murano category-create <NAME>

List available categories

To get a list of all existing categories, run:

murano category-list

Show category details

To see packages that belong to a particular category, use the following
command specifying the category ID:

murano category-show <ID>

Delete a category

To delete a category, use the following command specifying the ID of a
category or multiple categories to delete:

murano category-delete <ID> [<ID> ...]

Note

Verify that no packages belong to the category to be deleted, otherwise an
error appears. For this, use the murano category-show <ID>
command.

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/contributor-guide/testing.html

 Navigation

 		
 index

 		Murano »

Testing

Testing guidelines

Continuous Integration service

UI testing

Tempest tests

Automated testing machinery

CI design

CI jobs

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/contributor-guide/dev_guidelines.html

 Navigation

 		
 index

 		Murano »

Development guidelines

Conventions

High-level overview of Murano components

Coding guidelines

Debug tips

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/contributor-guide/how_to_contribute.html

 Navigation

 		
 index

 		Murano »

How to contribute

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/contributor-guide/plugins.html

 Navigation

 		
 index

 		Murano »

Murano plug-ins

MuranoPL extension plug-ins

MuranoPL package type plug-ins

The only package type natively supported by Murano is MuranoPL. However, it is
possible to extend Murano with support for other formats of application
definitions. TOSCA CSARs and HOT templates are the two examples of alternate
ways to define applications.

Package structure

The only assumptions Murano makes about package format are:

		It is a ZIP archive

		There is a manifest.yaml file in the root folder of that archive

		Manifest must be a valid YAML file representing key-value associative array

		There should be a “Format” key in manifest - format identifier. If it is
not present, “MuranoPL/1.0” is used.

Murano uses the “Format” attribute of the manifest file to find an appropriate
plug-in for a particular package type. All interactions between the rest of
Murano and package file contents are done through the plug-in interface alone.

Because Murano never directly accesses files inside the packages, it is
possible for plug-ins to dynamically generate MuranoPL classes on the fly.
Those classes will be served as adapters between Murano and 3rd party systems
responsible for deployment of particular package types. Thus for Murano all
packages remain to be of MuranoPL type though some of them are “virtual”.

The format identifier has the following format: Name/Version.
For example, “Heat.HOT/1.0”. If name is not present, it is assumed to be
“MuranoPL” (thus “1.0” becomes “MuranoPL/1.0”). Version strings are in SemVer
3-component format (major.minor.patch). Missing version components are assumed
to be zero (thus 1.0 becomes 1.0.0).

Package type plug-ins

Package types plug-ins are normal Python packages that can be distributed
through PyPI and installed using pip or its alternatives. It is
important that the plug-in be installed to the same Python instance that is
used to run Murano API and Murano Engine. For multi-node Murano deployments,
plug-ins need to be installed on each node.

To associate a plug-in with a particular package format, it needs to have a
special record in [entry_points] section of setup.cfg file:

io.murano.plugins.packages =
 Name/Version = namespace:Class

For example:

[entry_points]
io.murano.plugins.packages =
 Cloudify.TOSCA/1.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage

This declaration maps particular pair of format-name/version to Python class
that implements Package API interface for the package type. It is possible
to specify several different format names or versions and map them to single
or different Python classes. For example, it is possible to specify

[entry_points]
io.murano.plugins.packages =
 Cloudify.TOSCA/1.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage
 Cloudify.TOSCA/1.1 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage
 Cloudify.TOSCA/2.0 = murano_cloudify_plugin.cloudify_tosca_package:CloudifyToscaPackage_v2

Note

A single Python plug-in package may contain several Murano plug-ins
including of different types. For example, it is possible to combine
MuranoPL extension and package type plug-ins into a single package.

Tooling for package preparation

Some package formats may require additional tooling to prepare package ZIP
archive of desired structure. In such cases it is expected that those tools
will be provided by plug-in authors either as part of the same Python package
(by exposing additional shell entry points) or as a separate package or
distribution.

The only two exceptions to this rule are native MuranoPL packages and HOT
packages that are built into Murano (there is no need to install additional
plug-ins for them). Tooling for those two formats is a part of
python-muranoclient.

Package API interface reference

Plug-ins expose API for the rest of Murano to interact with the package
by implementing murano.packages.package.Package interface.

Class initializer:

def __init__(self, format_name, runtime_version, source_directory, manifest):

		format_name: name part of the format identifier (string)

		runtime_version: version part of the format identifier (instance of
semantic_version.Version)

		source_directory: path to the directory where package content was
extracted (string)

		manifest: contents of the manifest file (string->string dictionary)

Note: implementations must call base class (Package) initializer
passing the first three of these arguments.

Abstract properties that must be implemented by the plug-in:

def full_name(self):

		Fully qualified name of the package. Must be unique within package
scope of visibility (string)

def version(self):

		Package version (not to confuse with format version!). An instance of
semantic_version.Version

def classes(self):

		List (or tuple) of MuranoPL class names (FQNs) that package contains

def requirements(self):

		Dictionary of requirements (dependencies on other packages) in a form
of key-value mapping from required package FQN string to SemVer
version range specifier (instance of semantic_version.Spec or string
representation supported by Murano versioning scheme)

def package_type(self):

		Package type: “Application” or “Library”

def display_name(self):

		Human-readable name of the package as presented to the user (string)

def description(self):

		Package description (string or None)

def author(self):

		Package author (string or None)

def supplier(self):

		Package supplier (string or None)

def tags(self):

		List or tags for the package (list of strings)

def logo(self):

		Package (application) logo file content (str or None)

def supplier_logo(self):

		Package (application) supplier logo file content (str or None)

def ui(self):

		YAML-encoded string containing application’s form definition (string or
None)

Abstract methods that must be implemented by the plug-in:

def get_class(self, name):

		Returns string containing MuranoPL code (YAML-encoded string) for the
class whose fully qualified name is in “name” parameter (string)

def get_resource(self, name):

		Returns path for resource file whose name is in “name” parameter (string)

Properties that can be overridden in the plug-in:

def format_name(self):

		Canonical format name for the plug-in. Usually the same value that was
passed to class initializer

def runtime_version(self):

		Format version. Usually the same value that was passed to class
initializer (semantic_version.Version)

def blob(self):

		Package file (.zip) content (str)

PackageBase class

Usually, there is no need to manually implement all the methods and properties
described. There is a murano.packages.package.PackageBase class that provides
typical implementation of most of required properties by obtaining
corresponding value from manifest file.

When inheriting from PackageBase class, plug-in remains responsible for
implementation of:

		ui property

		classes property

		get_class method

This allows plug-in developers to concentrate on dynamic aspects of the package
type plug-in while keeping all static aspects (descriptions, logos and so on)
consistent across all package types (at least those who inherit from
PackageBase).

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

draft/contributor-guide/dev_env.html

 Navigation

 		
 index

 		Murano »

Development environment

 © Copyright .
 Last updated on 'Fri Feb 26 15:12:51 2016, commit 4d82e2f'.
 Created using Sphinx 1.2.3.

