

Welcome to Munin’s documentation!

Contents:

	Munin installation
	Prerequisites

	Installing Munin

	Initial configuration

	Getting help

	Upgrading Munin from 1.x to 2.x

	The Munin master
	Role

	Components

	Configuration

	Other documentation

	The Munin node
	Role

	Configuration

	Other documentation

	The Munin plugin
	Role

	Other documentation

	Documenting Munin
	Nomenclature

	Reference
	Man pages

	Other reference material

	Examples
	Apache virtualhost configuration

	lighttpd configuration

	nginx configuration

	Graph aggregation by example

	multiple master data aggregation

Indices and tables

	Index

	Search Page

Munin installation

This document explains how to get Munin onto your system, where to get
help, and how to report bugs.

	Prerequisites
	Building munin

	Running munin

	Installing Munin
	Master and node

	Source or packages?

	Installing Munin from source

	Initial configuration
	Node

	Master

	Configure web server

	Getting help
	IRC Channel

	Upgrading Munin from 1.x to 2.x
	FastCGI

	Logging

Prerequisites

In order for you to install Munin you must have the following:

Building munin

In order to build munin, you need:

	GNU Make — Please do not attempt to use any other make.

	A reasonable Perl 5 (Version 5.8 or newer)

	Perl modules: Module::Build

Developers / packagers need

	Test::MockModule

	Test::MockObject

	Test::Pod::Coverage

	Test::Perl::Critic 1.096 or later

	Test::Exception

	Directory::Scratch (err, wherefrom?)

In order to build the documentation, you need:
* sphinx

Running munin

In order to run munin, you need:

	A reasonable perl 5 (Version 5.8 or newer)

The munin node needs:

	Perl modules

	Net::Server

	Net::Server::Fork

	Time::HiRes

	Net::SNMP (Optional, if you want to use SNMP plugins)

	Java JRE (Optional, if you want to use java plugins)

	Anything the separate plugins may need. These have diverse
requirements, not documented here.

The munin master needs

	Perl modules:

	CGI::Fast

	Digest::MD5,

	File::Copy::Recursive

	Getopt::Long

	HTML::Template

	IO::Socket::INET6

	Log::Log4perl 1.18 or later

	Net::SSLeay (Optional, if you want to use SSL/TLS)

	Params::Validate

	Storable

	Text::Balanced

	Time::HiRes

	TimeDate

	A web server capable of CGI or FastCGI

Installing Munin

With open source software, you can choose to install binary packages
or install from source-code. To install a package or install from
source is a matter of personal taste. If you don’t know which method
too choose read the whole document and choose the method you are most
comfortable with.

Master and node

Munin is split into two distinct roles.

Node

The “munin node” is a daemon which runs on all servers being
monitored.

Master

The “munin master” connects to all munin nodes, collects data, and
stores it in RRD [http://oss.oetiker.ch/rrdtool/]

You will need to install “munin-master” on the server which will
collect data from all nodes, and graph the results. When starting with
munin, it should be enough to install the munin master on one server.

On the munin master, you will need a web server capable of running CGI
or FastCGI. Apache HTTD should be suitable. Also reported to be
working is nginx and lighttpd.

Source or packages?

Installing Munin on most relevant operating systems can usually be
done with with the systems package manager, typical examples being:

FreeBSD

From source:

cd /usr/ports/sysutils/munin-master && make install clean
cd /usr/ports/sysutils/munin-node && make install clean

Binary packages:

pkg_add -r munin-master
pkg_add -r munin-node

Debian/Ubuntu

Munin is distributed with both Debian and Ubuntu.

In order to get Munin up and running type

sudo apt-get install munin-node

on all nodes, and

sudo apt-get install munin

on the master.

Please note that this might not be the latest version of Munin. On
Debian you have the option of enabling “backports”, which may give
access to later versions of Munin.

RedHat / CentOS / Fedora

At time of writing, only the 1.x version of munin is available in
EPEL [http://dl.fedoraproject.org/pub/epel/6/SRPMS/repoview/munin.html].

If you want 2.x, your best option is probably to install from source.

Other systems

On other systems, you are probably best off compiling your own code.
See Installing Munin from source.

Installing Munin from source

If there are no binary packages available for your system, or if you
want to install Munin from source for other reasons, follow these
steps:

We recommend downloading a release tarball, which you can find on
sourceforge.net [http://sourceforge.net/projects/munin/files/stable/].

Alternatively, if you want to hack on Munin, you should clone our git
repository by doing.

git clone git://github.com/munin-monitoring/munin

Please note that a git checkout will need some more build-dependencies
than listed below, in particular the Python Docutils and Sphinx.

Build dependencies on Debian / Ubuntu

In order to build Munin from source you need a number of packages
installed. On a Debian or Ubuntu system these are:

	perl

	htmldoc

	html2text

	default-jdk

Configuring and installing

Warning for NFS users

If you’re using NFS please note that the “make install” process is
slightly problematic in that it (Module::Build actually) writes files
under $CWD. Since “make install” is usually run by root and root
usually cannot write files on a NFS volume, this will fail. If you use
NFS please install munin from /var/tmp, /tmp or some such to work
around this.

Running make

There are make targets for node, master, documentation and man files.
Generally you want to install everything on the master, and just the
node and plugiuns on the nodes.

	Edit Makefile.config to suit your needs.

	Create the user “munin” with the primary group “munin”.

The user needs no shell and no privileges. On most Linux systems the
munin user’s shell is the nologin shell (it has different paths on
different systems - but the user still needs to be able to run cron
jobs.

Node

For the node, you need only the common parts, the node and the plugins.

make
make install-common-prime install-node-prime install-plugins-prime

Master

For the master, this will install everything.

make
make install

Initial configuration

Node

Plugins

Decide which plugins to use. The munin node runs all plugins present
in CONFDIR/plugins/

The quick auto-plug-and-play solution:

munin-node-configure --shell --families=contrib,auto | sh -x

Access

The munin node listens on all interfaces by default, but has a
restrictive access list. You need to add your master’s IP address.

The “cidr_allow”, “cidr_deny”, “allow” and “deny” statements are used.

cidr_allow uses the following syntax (the /32 is not implicit, so for
a single host, you need to add it):

cidr_allow 127.0.0.0/8

cidr_allow 192.0.2.1/32

allow uses regular expression matching against the client IP address.

allow ‘^127.’

allow ‘^192.0.2.1$’

For specific information about the syntax, see Net::Server [http://search.cpan.org/dist/Net-Server/lib/Net/Server.pod]. Please
keep in mind that cidr_allow is a recent addition, and may not be
available on all systems.

Startup

Start the node agent (as root) SBINDIR/munin-node. Restart it it it
was already started. The node only discovers new plugins when it is
restarted.

You probably want to use an init-script instead and you might find a
good one under build/dists or in the build/resources directory (maybe
you need to edit the init script, check the given paths in the script
you might use).

Master

Add some nodes

Add some nodes to CONFDIR/munin.conf

	[node.example.com]

	address 192.0.2.4

	[node2.example.com]

	address node2.example.com

	[node3.example.com]

	address 2001:db8::de:caf:bad

Configure web server

On the master, you need to configure a web server.

If you have installed “munin” through distribution
packages, a webserver may have been configured for you already.

If you installed from source, there is a minimal configuration example
in the “resources” directory in the source tarball.

For a more complex example, see Apache virtualhost configuration

Getting help

IRC Channel

The most immediate way to get hold of us is to join our IRC channel:

#munin on server irc.oftc.net

The main timezone of the channel is Europe+America.

If you can explain your problem in a few clear sentences, without too
much copy&paste, IRC is a good way to try to get help. If you do need
to paste log files, configuration snippets, scripts and so on, please
use a pastebin [https://gist.github.com/].

If the channel is all quiet, try again some time later, we do have
lives, families and jobs to deal with also.

You are more than welcome to just hang out, and while we don’t mind
the occational intrusion of the real world into the flow, keep it
mostly on topic, and dont paste random links unless they are really
spectacular and intelligent.

Upgrading Munin from 1.x to 2.x

This is a compilation of items you need to pay attention to when
upgrading from Munin 1.x to munin 2.x

FastCGI

Munin graphing is now done with FastCGI.

Munin HTML generation is optionally done with FastCGI.

Logging

The web server needs write access to the munin-cgi-html and
munin-cgi-graph logs.

The Munin master

Role

The munin master is responsible for gathering data from munin nodes.
It stores this data in RRD, and graphs them on request.

Components

The following components are part of munin-master:

	
	munin-cron runs munin-graph, munin-html,
munin-limits and munin-update.

	munin-update is run by munin-cron. It is the munin
data collector, and it fetches data from munin nodes, which is then stored in RRD files.

	munin-graph is run by munin-cron. It generates
graphs in PNG format from the RRD files. See also
munin-cgi-graph.

	munin-limits is run by munin-cron. It notifies any
configured contacts if a value moves between “ok”, “warn” or
“crit”. Munin is commonly used in combination with Nagios, which
is then configured as a contact.

	
	munin-html is run by munin-cron. It generates HTML
pages. See also munin-cgi-html.

	munin-cgi-graph is run by a web server. If graph_strategy
is set to “cgi”, munin-cron will not run munin-graph, and assumes
that the web server runs munin-cgi-graph instead.

	munin-cgi-html is run by a web server. If html_strategy is
set to “cgi”, munin-cron will not run munin-html, and assumes
that the web server runs munin-cgi-html instead.

Configuration

The munin master has its primary configuration file at
/etc/munin/munin.conf.

Other documentation

	Scaling the munin master with rrdcached
	Configuring rrdcached

	Configuring munin to use rrdcached

	Is it working?

Scaling the munin master with rrdcached

When the master grows big, and has a lot of nodes, there is a risk of
disk IO becoming a bottleneck.

To reduce this disk IO, you can use the RRD Cache Daemon.

This will spool RRD changes in a queue, and flush changes on demand,
and periodically. This will replace lots of random writes with a much
smaller amount of sequential writes.

Configuring rrdcached

Parameters

RRDCached writes the spool data every 5 mintes by default. This is the
same as the munin master. To have an effect, change the flushing
intervals to allow more data to be spooled. Use the following
parameters, and tune to your liking:

	-w 1800

	Wait 30 minutes before writing data

	-z 1800

	Delay writes by a random factor of up to 30 minutes
(this should be equal to, or lower than, “-w”)

	-f 3600

	Flush all data every hour

Example

Create a directory for the rrdcached journal, and have the “munin”
user own it. (in this example: /var/lib/munin/rrdcached-journal).

Set up a separate RRDCached instance, run by the munin user. The
following command starts an RRDCached instance, and can be added to
/etc/rc.local.

sudo -u munin /usr/bin/rrdcached \
 -p /run/munin/rrdcached.pid \
 -B -b /var/lib/munin/ \
 -F -j /var/lib/munin/rrdcached-journal/ \
 -m 0660 -l unix:/run/munin/rrdcached.sock \
 -w 1800 -z 1800 -f 3600

Note: While testing, add “-g” to the command line to prevent rrdcached
from forking into the background.

The munin grapher also needs write access to this socket, in order for
it to tell the RRDCached to flush data needed for graphing. If you run
munin with CGI graphing, you will need to give the web server access.
For a common setup, run the following command, as root, after starting
rrdcached:

chgrp www-data /run/munin/rrdcached.sock

Recommended: If you have systemd installed, use a systemd service. If
you have upstart installed, write a daemon job configuration file. If
you use systemd, you can add “-g” to the rrdcached command line.

Configuring munin to use rrdcached

To enable rrdcached on the munin master, you will need to set the
“rrdcached_socket” line in /etc/munin/munin.conf

rrdcached_socket /run/munin/rrdcached.sock

Is it working?

If all goes well, you should see the following:

Munin logging

There should be no messages regarding rrdcached in
/var/log/munin/munin-update.log.

On failure to connect, there will be log lines like:

2012/06/26 18:56:12 [WARN] RRDCached feature ignored: rrdcached socket not writable

…and you should then check for permissions problems.

RRDCached spool

The rrdcached spool file should be in
/var/lib/munin/rrdcached-journal/, and it should grow for each run of
munin-update until it hits the flush time. The file looks like:

/var/lib/munin/rrdcached-journal/rrd.journal.1340869388.141124

For a munin master with 200 nodes, this could well grow to 100MiB,
depending on the number of plugins, and the spool file time
parameters.

The Munin node

Role

The munin node is installed on all monitored servers. It accepts
connections from the munin master, and runs plugins on demand.

By default, it is started at boot time, listens on port 4949/TCP,
accepts connections from the munin master, and
runs munin plugins on demand.

Configuration

The configuration file is munin-node.conf.

Other documentation

	Asynchronous proxy node
	munin-asyncd

	munin-async

	Example configuration

Asynchronous proxy node

The munin asynchronous proxy node (or “munin-async”) connects to the
local node periodically, and spools the results.

When the munin master connects, all the data is available instantly.

munin-asyncd

The Munin async daemon starts at boot, and connects to the local
munin-node periodically, like a munin master
would. The results are stored the results in a spool, tagged with
timestamp.

You can also use munin-asyncd to connect to several munin nodes. You
will need to use one spooldir for each node you connect to. This
enables you to set up a “fanout” setup, with one privileged node per
site, and site-to-site communication being protected by ssh.

munin-async

The Munin async client is invoked by the connecting master, and reads
from the munin-async spool using the “spoolfetch” command.

Example configuration

On the munin master

We use ssh encapsulated connections with munin async. In the the munin
master configuration you need to configure a host with a
“ssh://” address.

[random.example.org]
 address ssh://munin-async@random.example.org

You will need to create an SSH key for the “munin” user, and
distribute this to all nodes running munin-asyncd.

The ssh command and options can be customized in munin.conf
with the ssh_command and ssh_options configuration options.

On the munin node

Configure your munin node to only listen on “127.0.0.1”.

You will also need to add the public key of the munin user to the
authorized_keys file for this user.

	You must add a “command=” parameter to the key to run the command
specified instead of whatever command the connecting user tries to
use.

command="/usr/share/munin/munin-async --spoolfetch" ssh-rsa AAAA[...] munin@master

The following options are recommended for security, but are strictly
not necessary for the munin-async connection to work

	You should add a “from=” parameter to the key to restrict where it
can be used from.

	You should add hardening options. At the time of writing, these are
“no-X11-forwarding”, “no-agent-forwarding”, “no-port-forwarding”,
“no-pty” and “no-user-rc”.

Some of these may also be set globally in /etc/ssh/sshd_config.

no-port-forwarding,no-X11-forwarding,no-agent-forwarding,no-pty,no-user-rc,from="192.0.2.0/24",command="/usr/share/munin/munin-async --spoolfetch" ssh-rsa AAAA[...] munin@master

See the sshd_config (5) and authorized_keys(5) man pages for more information.

The Munin plugin

Role

The munin plugin is a simple executable, which role is to gather one
set of facts about the local server.

The plugin is called with the argument “config” to get metadata, and
with no arguments to get the values.

Other documentation

	Using munin plugins
	Installing

	Configuring

	Testing

	Writing a munin plugin
	Plugin output

	Example shell plugin

	Activating the plugin

	Debugging the plugin

	Supersampling
	Overview

	Protocol details

	Compatibility with 1.4

	Sample implementation

	Streaming plugins

	Undersampling

Using munin plugins

Installing

The default plugin directory is /etc/munin/plugins/.

To install a plugin, place it in the plugin directory, and make it
executable.

You can also place the plugin elsewhere, and install a symbolic link
in the plugin directory. All the plugins provided with munin are
installed in this way.

Configuring

The plugin configuration directory is /etc/munin/plugin-conf.d/. The
syntax is:

	user <username>

	The user the plugin will run as.

Default: munin

	group <groupname>

	The group the plugin will run as

Default: munin

	env.variablename <variable content>

	Defines and exports an environment variable called “variablename”
with the content set to <variable content>.

There is no need to quote the variable content.

Note

When configuring a munin plugin, add the least amount of extra
privileges needed to run the plugin. For instance, do not run a
plugin with “user root” to read syslogs, when it may be sufficient
to set “group adm” instead.

Example:

[pluginname]
user username
group groupname
env.variablename some content for the variable
env.critical 92
env.warning 95

Plugin configuration is optional.

Testing

To test if the plugin works when executed by munin, you can use the
munin-run command.

munin-run myplugin config

munin-run myplugin

Writing a munin plugin

A munin plugin is a small executable. Usually, it is written in some
interpreted language.

In its simplest form, when the plugin is executed with the argument
“config”, it outputs metadata needed for generating the graph. If it
is called with no arguments, it outputs the data which is to be
collected, and graphed later.

Plugin output

The minimum plugin output when called with “config” it must output the
graph title.

It should also output a label for at least one datasource.

graph_title Some title for our plugin
something.label Foobar per second

When the plugin is executed with no arguments, it should output a
value for the datasource labelled in “config”. It must not output
values for which there are no matching labels in the configuration
output.

something.value 42

For a complete description of the available fields, see the
Plugin reference.

Example shell plugin

The base of a plugin is a small option parser, ensuring the plugin is
called with the correct argument, if any.

Two main functions are defined: One for printing the configuration to
the standard output, and one for printing the data. In addition, we
have defined a function to generate the data itself, just to keep the
plugin readable.

The “output_usage” function is there just to be polite, it serves no
other function. :)

#!/bin/sh

output_config() {
 echo "graph_title Example graph"
 echo "plugins.label Number of plugins"
}

output_values() {
 printf "plugins.value %d\n" $(number_of_plugins)
}

number_of_plugins() {
 find /etc/munin/plugins -type l | wc -l
}

output_usage() {
 printf >&2 "%s - munin plugin to graph an example value\n" ${0##*/}
 printf >&2 "Usage: %s [config]\n" ${0##*/}
}

case $# in
 0)
 output_values
 ;;
 1)
 case $1 in
 config)
 output_config
 ;;
 *)
 output_usage
 exit 1
 ;;
 esac
 ;;
 *)
 output_usage
 exit 1
 ;;
esac

Activating the plugin

Place the plugin in the /etc/munin/plugins/ directory, and make it
executable.

Then, restart the munin-node.

Debugging the plugin

To see how the plugin works, as the munin node would run it, you can
use the command “munin-run”.

If the plugin is called “example”, you can run “munin-run example
config” to see the plugin configuration, and “munin-run example” to
see the data.

If you do not get the output you expect, check if your munin plugin
needs more privileges. Normally, it is run as the “munin” user, but
gathering some data may need more access.

If the munin plugin emits errors, they will be visible in
/var/log/munin/munin-node.log

Supersampling

Every monitoring software has a polling rate. It is usually 5 min,
because it’s the sweet spot that enables frequent updates yet still
having a low overhead.

Munin is not different in that respect: it’s data fetching routines
have to be launched every 5 min, otherwise you’ll face data loss.
And this 5 min period is deeply grained in the code. So changing it is
possible, but very tedious and error prone.

But sometimes we need a very fine sampling rate. Every 10 seconds
enables us to track fast changing metrics that would be averaged out
otherwise. Changing the whole polling process to cope with a 10s
period is very hard on hardware, since now every update has to finish
in these 10 seconds.

This triggered an extension in the plugin protocol, commonly known as
“supersampling”.

Overview

The basic idea is that fine precision should only be for selected
plugins only. It also cannot be triggered from the master, since the
overhead would be way too big.

So, we just let the plugin sample itself the values at a rate it feels
adequate. Then each polling round, the master fetches all the samples
since last poll.

This enables various constructions, mostly around “streaming” plugins
to achieve highly detailed sampling with a very small overhead.

Notes

This protocol is currently completely transparent to munin-node, and therefore it means that it can be used even on
older (1.x) nodes. Only a 2.0 master is
required.

Protocol details

The protocol itself is derived from the spoolfetch extension.

Config

A new plugin directive is used, update_rate. It enables the
master to create the rrd with an adequate step.

Omitting it would lead to rrd averaging the supersampled values onto
the default 5 min rate. This means data loss.

Note

Heartbeat

The heartbeat has always a 2 step size, so failure to send all the
samples will result with unknown values, as expected.

Note

Data size

The RRD file size is always the same in the default config, as all
the RRA are configured proportionally to the update_rate.
This means that, since you’ll keep as much data as with the default,
you keep it for a shorter time.

Fetch

When spoolfetching, the epoch is also sent in front of the value.
Supersampling is then just a matter of sending multiple epoch/value
lines, with monotonically increasing epoch.

Note

Note that since the epoch is an integer value for rrdtool [http://oss.oetiker.ch/rrdtool/doc/rrdtool.en.html], the
smallest granularity is 1 second. For the time being, the protocol
itself does also mandates integers. We can easily imagine that with
another database as backend, an extension could be hacked together.

Compatibility with 1.4

On older 1.4 masters, only the last sampled value gets into the RRD.

Sample implementation

The canonical sample implementation is multicpu1sec [https://github.com/munin-monitoring/contrib/tree/master/plugins/system/multicpu1sec], a contrib plugin
on github. It is also a so-called streaming plugin.

Streaming plugins

These plugins fork a background process when called that streams a
system tool into a spool file. In multicpu1sec [https://github.com/munin-monitoring/contrib/tree/master/plugins/system/multicpu1sec], it is the mpstat [https://en.wikipedia.org/wiki/Mpstat] tool
with a period of 1 second.

Undersampling

Some plugins are on the opposite side of the spectrum, as they only
need a lower precision.

It makes sense when :

	data should be kept for a very long time

	data is very expensive to generate and it varies only slowly.

Documenting Munin

This document is rather meta, it explains how to document Munin.

	Nomenclature
	Common terms

	Examples

Nomenclature

To be able to use Munin, to understand the documentation, and - not to
be neglected - to be able to write documentation that is consistent
with Munin behaviour, we need a common nomenclature.

Common terms

	Term

	Explanation

	Also referred to as as

	Munin Master

	The central host / server where Munin
gathers all data.
The machine runs munin-cron

	master, server, munin server

	Munin Node

	The daemon / network service running
on each host to be contacted by the

	In SNMP terms
it may be called an
agent.

	Plugin

	Each munin node handles one or more
plugins to monitor stuff on hosts

	service

	Host

	A machine monitored by Munin,
maybe by proxy on a munin node,
or via a SNMP plugin

	

	Field

	Each plugin presents data from one
or more data sources. Each found,
read or calculated value corresponds
to a field.attribute tuple.

	Data source

	Attribute

	Description found in output from plugins,
both general (global) to the plugin, and
also specific ot each Field.

	

	Environment
variable

	Set up by munin node, used to control
plugin behaviour. Found in the plugin
configuration directory.
(/etc/munin/plugin-conf.d/)

	

	Global
(plugin)
attribute

	Used in the global context in the
configuration output from a plugin.
(Note: The attribute is considered
“global” only to the plugin (and the
node), and only when executed.

	

	Datasource
specific
plugin
attribute

	Used in the datasource-specific context in
the output of a plugin

	

	Global
directive

	Used in munin.conf

	

	Node level
directive

	Used in munin.conf

	

	Group level
directive

	Used in munin.conf

	

	Field level
directive

	Used in munin.conf

	

Examples

To shed some light on the nomenclature, consider the examples below:

Global plugin attribute

Global plugin attributes are in the plugins output when run with the
config argument. The full list of these attributes is found on the
protocol config page. This output does not configure the plugin, it
configures the plugins graph.

graph_title Load average
----------- ------------
 | `------ value
 `------------------ attribute

Datasource specific plugin attribute

These are found both in the config outout of a plugin and in the
normal readings of a plugin. A plugin may provide data from one or
more data sources. Each data source needs its own set of
field.attribute tuples to define how the data source should be
presented.

load.warning 100
---- ------- ---
 | | `- value
 | `------- one of several attributes used in config output
 `------------- field

load.value 54
---- ----- --
 | | `- value
 | `------ only attribute when getting values from a plugin
 `----------- field

Configuration files

This one is from the global section of munin.conf:

dbdir /var/lib/munin/
----- ---------------
 | `--------- value
 `-------------------------- global directive

And then one from the node level section:

[foo.example.org]
 address localhost
 ------- ---------
 | `----- value
 `-------------- node level directive

Reference

This section contains man pages and other reference material

Man pages

	munin-async

	munin-asyncd

	munin-cgi-graph

	munin-cgi-html

	munin-check

	munin-cron

	munin-graph

	munin-html

	munin-limits

	munin-node

	munin-run

	munin-update

	munin.conf

	munin-node.conf

Other reference material

	Directories

	Plugin reference

munin-async

DESCRIPTION

The munin async clients reads from a spool directory written by
munin-asyncd.

It can optionally request a cleanup of this directory.

OPTIONS

	
--spooldir | -s <spooldir>

	Directory for spooled data [/var/lib/munin/spool]

	
--hostname <hostname>

	Overrides the hostname [The local hostname]

This is used to override the hostname used in the greeting
banner. This is used when using munin-async from the munin
master, and the data fetched is from another node.

	
--cleanup

	Clean up the spooldir after interactive session completes

	
--cleanupandexit

	Clean up the spooldir and exit (non-interactive)

	
--spoolfetch

	Enables the “spool” capability [no]

	
--vectorfetch

	Enables the “vectorized” fetching capability [no]

Note that without this flag, the “fetch” command is disabled.

	
--verbose | -v

	Be verbose

	
--help | -h

	View this message

EXAMPLES

munin-async --spoolfetch

This starts an interactive munin node session, enabling the
“spoolfetch” command. This does not connect to the local munin node.
Everything happens within munin-async, which reads from the spool
directory instead of connecting to the node.

SEE ALSO

See also Asynchronous proxy node for more information and examples of how to
configure munin-async.

munin-asyncd

DESCRIPTION

The munin async daemon connects to a munin node
periodically, and requests plugin configuration and data.

This is stored in a spool directory, which is read by
munin-async.

OPTIONS

	
--spool | -s <spooldir>

	Directory for spooled data [/var/lib/munin/spool]

	
--host <hostname:port>

	Connect a munin node running on this host name and port
[localhost:4949]

	
--interval <seconds>

	Set default interval size [86400 (one day)]

	
--retain <count>

	Number of interval files to retai [7]

	
--nocleanup

	Disable automated spool dir cleanup

	
--fork

	Fork one thread per plugin available on the node. [no forking]

	
--verbose | -v

	Be verbose

	
--help | -h

	View this message

SEE ALSO

See also Asynchronous proxy node for more information and examples of how to
configure munin-asyncd.

munin-cgi-graph

DESCRIPTION

The munin-cgi-graph program is intended to be run from a web server.
It can either run as CGI, or as FastCGI.

OPTIONS

munin-cgi-graph is controlled using environment variables. See
environment variables PATH_INFO and QUERY_STRING.

Note: The munin-cgi-graph script may be called with the command line
options of munin-graph. However, the existence of this should
not be relied upon.

ENVIRONMENT VARIABLES

The following environment variables are used to control the output of
munin-cgi-graph:

	
PATH_INFO

	This is the remaining part of the URI, after the path to the
munin-cgi-graph script has been removed.

The group, host, service and timeperiod values are extracted from
this variable. The group may be nested.

	
CGI_DEBUG

	If this variable is set, debug information is logged to STDERR, and
to /var/log/munin/munin-cgi-graph.log

	
QUERY_STRING

	A list of key=value parameters to control munin-cgi-graph. If
QUERY_STRING is set, even to an empty value, a no_cache header is
returned.

	
HTTP_CACHE_CONTROL

	If this variable is set, and includes the string “no_cache”, a
no_cache header is returned.

	
HTTP_IF_MODIFIED_SINCE

	Returns 304 if the graph is not changed since the timestamp in the
HTTP_IF_MODIFIED_SINCE variable.

EXAMPLES

When given an URI like the following:

http://munin/munin-cgi/munin-cgi-graph/example.org/client.example.org/cpu-week.png

munin-cgi-graph will be called with the following environment:

PATH_INFO=/example.org/client.example.org/cpu-week.png

To verify that munin is indeed graphing as it should, you can use the
following command line:

sudo -u www-data \
PATH_INFO=/example.org/client.example.org/irqstats-day.png \
/usr/lib/munin/cgi/munin-cgi-graph | less

The “less” is strictly not needed, but is recommended since
munin-cgi-graph will output binary data to your terminal.

You can add the CGI_DEBUG variable, to get more log
information. Content and debug information is logged to STDOUT and
STDERR, respectively. If you only want to see the debug information,
and not the HTTP headers or the content, you can redirect the file
descriptors:

sudo -u www-data \
CGI_DEBUG=yes \
PATH_INFO=/example.org/client.example.org/irqstats-day.png \
/usr/lib/munin/cgi/munin-cgi-graph 2>&1 >/dev/null | less

munin-cgi-html

DESCRIPTION

The munin-cgi-html program is intended to be run from a
web server. It can either run as CGI, or as FastCGI.

OPTIONS

munin-cgi-html takes no options. It is controlled using environment
variables.

ENVIRONMENT VARIABLES

The following environment variables are used to control the output of
munin-cgi-html:

	
PATH_INFO

	This is the remaining part of the URI, after the path to the
munin-cgi-html script has been removed.

The group, host, service and timeperiod values are extracted from
this variable. The group may be nested.

EXAMPLES

PATH_INFO

	“/”

	refers to the top page.

	“/example.com/”

	refers to the group page for “example.com” hosts.

	“/example.com/client.example.com/”

	refers to the host page for “client.example.com” in the
“example.com” group

COMMAND-LINE

When given an URI like the following:
http://munin.example.org/munin-cgi/munin-cgi-html/example.org

munin-cgi-html will be called with the following environment:

PATH_INFO=/example.org

To verify that munin is able to create HTML pages, you can use the
following command line:

sudo -u www-data \
PATH_INFO=/example.org \
/usr/lib/munin/cgi/munin-cgi-html

SEE ALSO

munin-cgi-graph.

munin-check

DESCRIPTION

munin-check is a utility that fixes the permissions of the munin
directories and files.

Note

munin-check needs superuser rights.

Note

Please don’t use this script if you are using ‘graph_strategy cgi’.
It doesn’t care about the right permissions for www-data yet.

OPTIONS

	
--fix-permissions | -f

	Fix the permissions of the munin files and directories.

	
--help | -h

	Display usage information

munin-cron

DESCRIPTION

Munin-cron is a part of the package Munin, which is used in
combination with munin-node.

Munin is a group of programs to gather data from Munin’s nodes, graph
them, create html-pages, and optionally warn Nagios about any
off-limit values.

“munin-cron” runs the following programs, in the given order:

	munin-update

	munin-limits

	munin-graph
(unless configured to run from CGI)

	munin-html
(unless configured to run from CGI)

Unless the munin master is configured otherwise, “munin-cron” should
run every 5 minutes.

OPTIONS

	
--service <service>

	Limit services to <service>. Multiple –service options may be
supplied. [unset]

	
--host <host>

	Limit hosts to <host>. Multiple –host options may be supplied.
[unset]

	
--config <file>

	Use <file> as configuration file. [/etc/munin/munin.conf]

SEE ALSO

munin-update, munin-graph, munin-limits,
munin-html, munin.conf,

munin-graph

DESCRIPTION

The munin-graph script is run by munin-cron, and creates graphs from
all RRD files in the munin database directory.

OPTIONS

Some options can be negated by prefixing them with “no”.
Example: –fork and –nofork

	
--fork

	By default munin-graph forks subprocesses for drawing graphs to
utilize available cores and I/O bandwidth. Can be negated
with –nofork [–fork]

	
--n <processes>

	Max number of concurrent processes [6]

	
--force

	Force drawing of graphs that are not usually drawn due to options
in the config file. Can be negated with –noforce [–noforce]

	
--lazy

	Only redraw graphs when needed. Can be negated with –nolazy
[–lazy]

	
--help

	View this message.

	
--version

	View version information.

	
--debug

	View debug messages.

	
--cron

	Behave as expected when run from cron. (Used internally in Munin.)
Can be negated with –nocron

	
--host <host>

	Limit graphed hosts to <host>. Multiple –host options may be
supplied.

	
--only-fqn <FQN>

	For internal use with CGI graphing. Graph only a single fully
qualified named graph,

For instance: –only-fqn
root/Backend/dafnes.example.com/diskstats_iops

Always use with the correct –host option.

	
--config <file>

	Use <file> as configuration file. [/etc/munin/munin.conf]

	
--list-images

	List the filenames of the images created. Can be negated with
–nolist-images. [–nolist-images]

	
--output-file | -o

	Output graph file. (used for CGI graphing)

	
--log-file | -l

	Output log file. (used for CGI graphing)

	
--day

	Create day-graphs. Can be negated with –noday. [–day]

	
--week

	Create week-graphs. Can be negated with –noweek. [–week]

	
--month

	Create month-graphs. Can be negated with –nomonth. [–month]

	
--year

	Create year-graphs. Can be negated with –noyear. [–year]

	
--sumweek

	Create summarised week-graphs. Can be negated with –nosumweek.
[–summweek]

	
--sumyear

	Create summarised year-graphs. Can be negated with –nosumyear.
[–sumyear]

	
--pinpoint <start,stop>

	Create custom-graphs. <start,stop> is the time in the standard unix
Epoch format. [not active]

	
--size_x <pixels>

	Sets the X size of the graph in pixels [175]

	
--size_y <pixels>

	Sets the Y size of the graph in pixels [400]

	
--lower_limit <lim>

	Sets the lower limit of the graph

	
--upper_limit <lim>

	Sets the upper limit of the graph

Note

--pinpoint and --only-fqn must not be combined
with any of --day, --week, --month or
--year (or their negating forms). The result of doing that
is undefined.

SEE ALSO

munin-cron, munin-cgi-graph

munin-html

DESCRIPTION

munin-html is one of the munin master components run from the
munin-cron script.

This script is responsible for generating static HTML pages.

If “html_strategy cgi” is set in munin.conf, munin-html will assume
HTML pages are generated by munin-cgi-html, and exit silently.

OPTIONS

munin-html has one significant option, which configuration file to
use.

Several other options are recognized and ignored as “compatibility
options”, since munin-cron passes all options through to the
underlying components, of which munin-html is one.

	
--config <file>

	Use <file> as configuration file. [/etc/munin/munin.conf]

	
--help

	View this message.

	
--debug

	View debug messages.

	
--version

	View version information.

	
--nofork

	Compatibility. No effect.

	
--service <service>

	Compatibility. No effect.

	
--host <host>

	Compatibility. No effect.

SEE ALSO

munin-cron, munin-cgi-html

munin-limits

DESCRIPTION

munin-limits is one of the processes regularly run from the
munin-cron script.

It reads the current and the previous collected values for each
plugin, and compares them to the plugin’s warning and critical values,
if it has any.

If the limits are breached, for instance, if a value moves from “ok”
to “warning”, or from “critical” to “ok”, it sends an event to any
configured contacts.

A common configured contact is “nagios”, which can use events from
munin-limits as a source of passive service check results.

OPTIONS

	
--config <file>

	Use <file> as configuration file. [/etc/munin/munin.conf]

	
--contact <contact>

	Limit contacts to those of <contact<gt>. Multiple –contact options
may be supplied. [unset]

	
--host <host>

	Limit hosts to those of <host<gt>. Multiple –host options may be
supplied. [unset]

	
--service <service>

	Limit services to those of <service>. Multiple –service options
may be supplied. [unset]

	
--always-send <severity list>

	Force sending of messages even if you normally wouldn’t.

The <severity list> can be a whitespace or comma separated list of
the values “ok”, “warning”, “critical” or “unknown”.

This option may be specified several times, to add more values.

Use of “–always-send” overrides the “always_send” value in
munin.conf for configured contacts. See also –force.

	
--force

	Alias for “–always-send ok,warning,critical,unknown”

	
--force-run-as-root

	munin-limits will normally prevent you from running as root. Use
this option to override this.

The use of this option is not recommended. You may have to clean up
file permissions in order for munin to run normally afterwards.

	
--help

	View help message.

	
--debug

	If set, view debug messages. Can be negated with –nodebug.
[–nodebug]

FILES

/etc/munin/munin.conf

/var/lib/munin/*

/var/run/munin/*

SEE ALSO

munin.conf

munin-node

DESCRIPTION

munin-node is a daemon for reporting statistics on system performance.

By default, it is started at boot time, listens on port 4949/TCP,
accepts connections from the munin master, and
runs munin plugins on demand.

OPTIONS

	
--config <configfile>

	Use <file> as configuration file. [/etc/munin/munin-node.conf]

	
--paranoia

	Only run plugins owned by root. Check permissions as well. Can be
negated with –noparanoia [–noparanoia]

	
--help

	View this help message.

	
--debug

	View debug messages.

Note

This can be very verbose.

	
--pidebug

	Plugin debug. Sets the environment variable MUNIN_DEBUG
to 1 so that plugins may enable debugging.

CONFIGURATION

The configuration file is munin-node.conf.

FILES

/etc/munin/munin-node.conf

/etc/munin/plugins/*

/etc/munin/plugin-conf.d/*

/var/run/munin/munin-node.pid

/var/log/munin/munin-node.log

SEE ALSO

munin-node.conf

Example configuration

/etc/munin/munin-node.conf - config-file for munin-node
#

host_name random.example.org
log_level 4
log_file /var/log/munin/munin-node.log
pid_file /var/run/munin/munin-node.pid
background 1
setsid 1

Which port to bind to;

host [::]
port 4949
user root
group root

Regexps for files to ignore

ignore_file ~$
ignore_file \.bak$
ignore_file %$
ignore_file \.dpkg-(tmp|new|old|dist)$
ignore_file \.rpm(save|new)$
ignore_file \.puppet-bak$

Hosts to allow

cidr_allow 127.0.0.0/8
cidr_allow 192.0.2.129/32

munin-run

DESCRIPTION

munin-run is a script to run Munin plugins from the command-line.

It is primarily used to debug plugins; munin-run runs these plugins in
the same conditions as they are under munin-node.

OPTIONS

	
--config <configfile>

	Use <file> as configuration file. [/etc/munin/munin-node.conf]

	
--servicedir <dir>

	Use <dir> as plugin dir. [/etc/munin/plugins/]

	
--sconfdir <dir>

	Use <dir> as plugin configuration dir. [/etc/munin/plugin-conf.d/]

	
--sconffile <file>

	Use <file> as plugin configuration. Overrides sconfdir. [undefined]

	
--paranoia

	Only run plugins owned by root and check permissions. [disabled]

	
--help

	View this help message.

	
--debug

	Print debug messages.

Debug messages are sent to STDOUT and are prefixed with “#” (this
makes it easier for other parts of munin to use munin-run and still
have –debug on). Only errors go to STDERR.

	
--pidebug

	Enable debug output from plugins. Sets the environment variable
MUNIN_DEBUG to 1 so that plugins may enable debugging.
[disabled]

	
--version

	Show version information.

FILES

/etc/munin/munin-node.conf

/etc/munin/plugins/*

/etc/munin/plugin-conf.d/*

/var/run/munin/munin-node.pid

/var/log/munin/munin-node.log

munin-update

DESCRIPTION

munin-update is the primary Munin component. It is run from the
munin-cron script.

This script is responsible for contacting all the agents
(munin-nodes) and collecting their data. Upon fetching the data,
munin-update stores everything in RRD files - one RRD files for
each field in each plugin.

Running munin-update with the –debug flag will often give plenty
of hints on what might be wrong.

munin-update is a component in the Munin server.

OPTIONS

	
--config_file <file>

	Use <file> as the configuration file. [/etc/munin/munin.conf]

	
--debug

	If set, log debug messages. Can be negated with –nodebug
[–nodebug]

	
--fork

	If set, will fork off one process for each host. Can be negated
with –nofork [–fork]

	
--host <host>

	Limit fetched data to those from <host<gt>. Multiple –host options
may be supplied. [unset]

	
--service <service>

	Limit fetched data to those of <service>. Multiple –service
options may be supplied. [unset]

	
--timeout <seconds>

	Set the network timeout to <seconds>. [180]

	
--help

	Print the help message then exit.

	
--version

	Print version information then exit.

SEE ALSO

munin-cron

munin.conf

DESCRIPTION

This is the configuration file for the munin master. It is used by
munin-update, munin-graph, munin-limits.
munin-html, munin-cgi-graph and munin-cgi-html.

GLOBAL DIRECTIVES

Global directives affect all munin master components unless specified
otherwise.

	
dbdir <path>

	The directory where munin stores its database files. Default:
/var/lib/munin

	
logdir <path>

	The directory where munin stores its logfiles. Default:
/var/log/munin

	
htmldir <path>

	The directory where munin-html stores generated HTML pages,
and where munin-graph stores graphs. Default:
/var/cache/munin/www

	
rundir <path>

	Directory for files tracking munin’s current running state.
Default: /var/run/munin

	
tmpldir <path>

	Directories for templates used by munin-html and
munin-cgi-html to generate HTML pages. Default
/etc/munin/templates

	
fork <yes|no>

	This directive determines whether munin-update fork when
gathering information from nodes. Default is “yes”.

If you set it to “no” munin-update will collect data from the nodes
in sequence. This will take more time, but use less resources. Not
recommended unless you have only a handful of nodes.

Affects: munin-update

	
palette <default|old>

	The palette used by munin-graph and munin-cgi-graph
to colour the graphs. The “default” palete has more colours and
better contrast than the “old” palette.

Affects: munin-graph

	
graph_data_size <normal|huge>

	This directive sets the resolution of the RRD files that are
created by munin-graph and munin-cgi-graph.

Default is “normal”.

“huge” saves the complete data with 5 minute resolution for 400
days.

Changing this directive has no effect on existing graphs

Affects: munin-graph

	
graph_strategy <cgi|cron>

	If set to “cron”, munin-graph will graph all services on all
nodes every run interval.

If set to “cgi”, munin-graph will do nothing. To generate
graphs you must then configure a web server to run
munin-cgi-graph instead.

Affects: munin-graph

	
html_strategy <strategy>

	Valid strategies are “cgi” and “cron”. Default is “cgi”.

If set to “cron”, munin-html will recreate all html pages
every run interval.

If set to “cgi”, munin-html will do nothing. To generate
html pages you must configure a web server to run
munin-cgi-graph instead.

	
ssh_command <command>

	The name of the secure shell command to use. Can be fully
qualified or looked up in $PATH.

Defaults to “ssh”.

	
ssh_options <options>

	The options for the secure shell command.

Defaults are “-o ChallengeResponseAuthentication=no -o
StrictHostKeyChecking=no”. Please adjust this according to your
desired security level.

With the defaults, the master will accept and store the node ssh
host keys with the first connection. If a host ever changes its ssh
host keys, you will need to manually remove the old host key from
the ssh known hosts file. (with: ssh-keygen -R <node-hostname>, as
well as ssh-keygen -R <node-ip-address>)

You can remove “StrictHostKeyChecking=no” to increase security, but
you will have to manually manage the known hosts file. Do so by
running “ssh <node-hostname>” manually as the munin user, for each
node, and accept the ssh host keys.

If you would like the master to accept all node host keys, even
when they change, use the options “-o
UserKnownHostsFile=/dev/null -o StrictHostKeyChecking=no -o
PreferredAuthentications=publickey”.

EXAMPLE

A minimal configuration file

[client.example.com]
 address client.example.com

munin-node.conf

DESCRIPTION

This is the configuration file for munin-node and munin-run.

The directives “host_name”, “paranoia” and “ignore_file” are munin
node specific.

All other directives in munin-node.conf are passed through to the Perl
module Net::Server. Depending on the version installed, you may have
different settings available.

DIRECTIVES

Native

	
host_name

	The hostname used by munin-node to present itself to the munin
master. Use this if the local node name differs from the name
configured in the munin master.

	
ignore_file

	Files to ignore when locating installed plugins. May be repeated.

	
paranoia

	If set to a true value, munin-node will only run plugins
owned by root.

Inherited

These are the most common Net::Server options used in
munin-node.

	
log_level

	Ranges from 0-4. Specifies what level of error will be logged. “0”
means no logigng, while “4” means very verbose. These levels
correlate to syslog levels as defined by the following key/value
pairs. 0=err, 1=warning, 2=notice, 3=info, 4=debug.

Default: 2

	
log_file

	Where the munin node logs its activity. If the value is
Sys::Syslog, logging is sent to syslog

Default: undef (STDERR)

	
port

	The TCP port the munin node listens on

Default: 4949

	
pid_file

	The pid file of the process

Default: undef (none)

	
background

	To run munin node in background set this to “1”. If you want
munin-node to run as a foreground process, comment this line out
and set “setsid” to “0”.

	
host

	The IP address the munin node process listens on

Default: * (All interfaces)

	
user

	The user munin-node runs as

Default: root

	
group

	The group munin-node runs as

Default: root

	
setsid

	If set to “1”, the server forks after binding to release itself
from the command line, and runs the POSIX::setsid() command to
daemonize.

Default: undef

	
ignore_file

	Files to ignore when locating installed plugins. May be repeated.

	
host_name

	The hostname used by munin-node to present itself to the munin
master. Use this if the local node name differs from the name
configured in the munin master.

	
allow

	A regular expression defining which hosts may connect to the munin
node.

Note

Use cidr_allow if available.

	
cidr_allow

	Allowed hosts given in CIDR notation (192.0.2.1/32). Replaces or
complements “allow”. Requires the precense of Net::Server, but is
not supported by old versions of this module.

	
cidr_deny

	Like cidr_allow, but used for denying host access

	
timeout

	Number of seconds after the last activity by the master until the
node will close the connection.

If plugins take longer to run, this may disconnect the master.

Default: 20 seconds

EXAMPLE

A pretty normal configuration file:

host *
port 4949

cidr_allow 127.0.0.0/8
cidr_allow 192.0.2.0/24

user root
group root
background 1
setsid 1

log_level 4
log_file /var/log/munin/munin-node.log
pid_file /var/run/munin-node.pid

ignore_file \.bak$
ignore_file ^README$
ignore_file \.dpkg-(old|new)$
ignore_file \.rpm(save|new)$
ignore_file \.puppet-new$

SEE ALSO

munin-node, munin-run

Directories

dbdir

This directory is used to store the munin master database.

It contains one subdirectory with RRD files per group of hosts, as
well as other variable state the munin master would need.

plugindir

This directory contains all the plugins the munin node should run.

pluginconfdir

This directory contains plugin configuration.

rundir

This directory contains files needed to track the munin run state. PID
files, lock files, and possibly sockets.

logdir

Contains the log files for each munin progam.

Plugin reference

Fields

On a configuration run, the plugin is called with the argument “config”. The
following fields are used.

	Field

	Value

	type

	Description

	See also

	Default

	graph_title

	string

	required

	Sets the title of the graph

	
	

	graph_args

	string

	optional

	Arguments for the rrd grapher. This is
used to control how the generated graph
looks, and how values are interpreted or
presented.

	rrdgraph [http://oss.oetiker.ch/rrdtool/doc/rrdgraph_graph.en.html]

	

	graph_vlabel

	string

	optional

	Label for the vertical axis of the graph

	
	

	graph_category

	lower case
string, no
whitespace

	optional

	Category used to sort the graph on the
generated index web page.

	
	misc

	graph_info

	html text

	optional

	Additional text for the generated graph
web page

	
	

	graph_scale

	yes|no

	optional

	If “yes”, the generated graph will be
scaled to the uppper and lower values of
the datapoints within the graph.

	
	no

	graph_order

	space separated
list of
graph.datapoints

	optional

	Ensures that the listed datapoints are
displayed in order. Any additional
datapoints are added in the order of
appearance after datapoitns appearing on
this list.

This field is also used for “borrowing”,
which is the practice of taking
datapoints from other graphs.

	
	

	update_rate

	integer
(seconds)

	optional

	Sets the update_rate used by the munin
master when it creates the RRD file.

The update rate is the interval at which
the RRD file expects to have data.

This field requires a munin master
version of at least 2.0.0

	
	

	datapoint.label

	lower case
string, no
whitespace

	required

	The label used in the graph for this
field

	
	

	datapoint.info

	html text

	optional

	Additional html text for the generated
graph web page, used in the field
description table

	
	

	datapoint.warning

	integer, or
integer:integer
(signed)

	optional

	This field defines a threshold value or
range. If the field value above the
defined warning value, or outside the
range, the service is considered to be in
a “warning” state.

	
	

	datapoint.critical

	integer, or
integer:integer
(signed)

	optional

	This field defines a threshold value or
range. If the field value is above the
defined critical value, or outside the
range, the service is considered to be in
a “critical” state.

	
	

	datapoint.graph

	yes|no

	optional

	Determines if this datapoint should be
visible in the generated graph.

	
	yes

	datapoint.cdef

	CDEF statement

	optional

	A CDEF statement is a Reverse Polish
Notation statement used to construct a
datapoint from other datapoints.

This is commonly used to calculate
percentages.

	cdeftutorial [http://oss.oetiker.ch/rrdtool/tut/cdeftutorial.en.html]

	

	datapoint.draw

	AREA, LINE,
LINE[n], STACK,
AREASTACK,
LINESTACK,
LINE[n]STACK

	
	Determines how the graph datapoints are
displayed in the graph. The “LINE” takes
an optional width suffix, commonly
“LINE1”, “LINE2”, etc…
The *STACK values are specific to munin
and makes the first a LINE, LINE[n] or
AREA datasource, and the rest as STACK.

	rrdgraph [http://oss.oetiker.ch/rrdtool/doc/rrdgraph_graph.en.html]

	LINE

On a data fetch run, the plugin is called with no arguments. the following
fields are used.

	Field

	Value

	type

	Description

	See
also

	Default

	datapoint.value

	integer, scientific
notation, or “U” (may
be signed)

	required

	The value to be
graphed.

	
	No default

Example

This is an example of the plugin fields used with the “df” plugin. The
“munin-run” command is used to run the plugin from the command line.

Configuration run

munin-run df config
graph_title Filesystem usage (in %)
graph_args --upper-limit 100 -l 0
graph_vlabel %
graph_category disk
graph_info This graph shows disk usage on the machine.
_dev_hda1.label /
_dev_hda1.info / (ext3) -> /dev/hda1
_dev_hda1.warning 92
_dev_hda1.critical 98

Data fetch run

munin-run df
_dev_hda1.value 83

Examples

Examples of munin and related configuration are gathered here.

	Apache virtualhost configuration
	Munin configuration

	Virtualhost configuration

	lighttpd configuration
	Munin configuration

	Webserver configuration

	nginx configuration
	Munin configuration

	FastCGI configuration

	Webserver configuration

	Authentication and group access

	Graph aggregation by example
	Plugins involved

	Extract from munin.conf

	Explanations, per line

	Result graphs

	Summary

	Further reading

	multiple master data aggregation
	Requirements

	Overview

	Running munin-update

	Merging data

	Running munin-html

Apache virtualhost configuration

This example describes how to set up munin on a separate apache httpd
virtual host. It uses FastCGI if this is available, and falls back to
CGI if it is not.

Munin configuration

This example assumes the following configuration in
/etc/munin/munin.conf

graph_strategy cgi
html_strategy cgi

Virtualhost configuration

Add a new virtualhost, using the following example:

<VirtualHost *:80>
 ServerName munin.example.org
 ServerAlias munin

 ServerAdmin info@example.org

 DocumentRoot /srv/www/munin.example.org

 ErrorLog /var/log/apache2/munin.example.org-error.log
 CustomLog /var/log/apache2/munin.example.org-access.log combined

 # Rewrites
 RewriteEngine On

 # Static content in /static
 RewriteRule ^/favicon.ico /etc/munin/static/favicon.ico [L]
 RewriteRule ^/static/(.*) /etc/munin/static/$1 [L]

 # HTML
 RewriteCond %{REQUEST_URI} .html$ [or]
 RewriteCond %{REQUEST_URI} =/
 RewriteRule ^/(.*) /usr/lib/munin/cgi/munin-cgi-html/$1 [L]

 # Images
 RewriteRule ^/(.*) /usr/lib/munin/cgi/munin-cgi-graph/$1 [L]

 # Ensure we can run (fast)cgi scripts
 <Directory "/usr/lib/munin/cgi">
 Options +ExecCGI
 <IfModule mod_fcgid.c>
 SetHandler fcgid-script
 </IfModule>
 <IfModule !mod_fcgid.c>
 SetHandler cgi-script
 </IfModule>
 </Directory>
</VirtualHost>

lighttpd configuration

This example describes how to set up munin on lighttpd. It spawns two
lighttpd processes, one for the graph rendering, and one for the html
generation.

You need to enable the “mod_rewrite” module in the main lighttpd
configuration.

Munin configuration

This example assumes the following configuration in
/etc/munin/munin.conf

Use cgi rendering for graph and html
graph_strategy cgi
html_strategy cgi

Webserver configuration

alias.url += ("/munin-static" => "/etc/munin/static")
alias.url += ("/munin" => "/var/cache/munin/www/")

fastcgi.server += ("/munin-cgi/munin-cgi-graph" =>
 (("socket" => "/var/run/lighttpd/munin-cgi-graph.sock",
 "bin-path" => "/usr/lib/munin/cgi/munin-cgi-graph",
 "check-local" => "disable",
)),
 "/munin-cgi/munin-cgi-html" =>
 (("socket" => "/var/run/lighttpd/munin-cgi-html.sock",
 "bin-path" => "/usr/lib/munin/cgi/munin-cgi-html",
 "check-local" => "disable",
))
)

url.rewrite-repeat += (
 "/munin/(.*)" => "/munin-cgi/munin-cgi-html/$1",
 "/munin-cgi/munin-cgi-html$" => "/munin-cgi/munin-cgi-html/",
 "/munin-cgi/munin-cgi-html/static/(.*)" => "/munin-static/$1"
)

nginx configuration

This example describes how to set up munin on nginx.

nginx does not spawn FastCGI processes by itself, but comes with an
external “spawn-fcgi” program.

We need one process for the graph rendering, and one for the html
generation.

Munin configuration

This example assumes the following configuration in
/etc/munin/munin.conf

graph_strategy should be commented out, if present
html_strategy cgi

FastCGI configuration

This will spawn two FastCGI processes trees. One for munin cgi
graphing and one for HTML generation. It will create a socket owned by
www-data, and run the processes as the “munin” user.

spawn-fcgi -s /var/run/munin/fastcgi-graph.sock -U www-data \
 -u munin -g munin /usr/lib/munin/cgi/munin-cgi-graph

spawn-fcgi -s /var/run/munin/fastcgi-html.sock -U www-data \
 -u munin -g munin /usr/lib/munin/cgi/munin-cgi-html

Note: Depending on your installation method, the “munin-*-graph”
programs may be in another directory. Check Makefile.config if you
installed from source, or your package manager if you used that to
install.

Note: If you installed using the package manager on Debian or Ubuntu,
the /var/log/munin/munin-cgi-*.log files may be owned by the
“www-data” user. This example runs the processes as the “munin” user,
so you need to chown the log files, and edit /etc/logrotate.d/munin.

Webserver configuration

location ^~ /munin-cgi/munin-cgi-graph/ {
 fastcgi_split_path_info ^(/munin-cgi/munin-cgi-graph)(.*);
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_pass unix:/var/run/munin/fastcgi-graph.sock;
 include fastcgi_params;
}

location /munin/static/ {
 alias /etc/munin/static/;
}

location /munin/ {
 fastcgi_split_path_info ^(/munin)(.*);
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_pass unix:/var/run/munin/fastcgi-html.sock;
 include fastcgi_params;
}

Authentication and group access

If you have munin statistics, and need to allow some user (ie:
customers) to access only graphs for a subset of nodes, the easiest way
might be to use groups, and authentication with the exact same name as
the node-group name.

Here is an example of how to redirect the users to the group that
matches their name, and prevent any access to other groups. It also has
allow an admin user to see it all.

Warning: If you don’t want users to get any information about the other
group names, you should also change the templates accordingly, and
remove any navigation part that might.

Here, the whole vhost has auth requirements.
You can duplicate it to the graph and html locations if you have
something else that doesn't need auth.
auth_basic "Restricted stats";
auth_basic_user_file /some/path/to/.htpasswd;

location ^~ /cgi-bin/munin-cgi-graph/ {
 # not authenticated => no rewrite (back to auth)
 if ($remote_user ~ ^$) { break; }

 # is on the right subtree ?
 set $ok "no";
 # admin can see it all
 if ($remote_user = 'admin') { set $ok "yes"; }
 # only allow given path
 if ($uri ~ /cgi-bin/munin-cgi-graph/([^/]*)) { set $path $1; }
 if ($path = $remote_user) { set $ok "yes"; }

 # not allowed here ? redirect them where they should land
 if ($ok != "yes") {
 # redirect to where they should be
 rewrite / /cgi-bin/munin-cgi-graph/$remote_user/ redirect;
 }

 fastcgi_split_path_info ^(/cgi-bin/munin-cgi-graph)(.*);
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_pass unix:/var/run/munin/fastcgi-graph.sock;
 include fastcgi_params;
}

location /munin/static/ {
 alias /etc/munin/static/;
}

location /munin/ {
 # not authenticated => no rewrite (back to auth)
 if ($remote_user ~ ^$) { break; }

 # is on the right subtree ?
 set $ok "no";
 # admin can see it all
 if ($remote_user = 'admin') { set $ok "yes"; }
 # only allow given path
 if ($uri ~ /munin/([^/]*)) { set $path $1; }
 if ($path = $remote_user) { set $ok "yes"; }

 # not allowed here ? redirect them where they should land
 if ($ok != "yes") {
 # redirect to where they should be
 rewrite / /munin/$remote_user/ redirect;
 }

 fastcgi_split_path_info ^(/munin)(.*);
 fastcgi_param PATH_INFO $fastcgi_path_info;
 fastcgi_pass unix:/var/run/munin/fastcgi-html.sock;
 include fastcgi_params;
}

Graph aggregation by example

This example covers creating aggregate graphs. The configuration reads
the current and power from two UPSes (i.e. two hosts with two plugins
each) and then creates one virtual host with two virtual plugins; one
for current and one for power.

Plugins involved

The example uses a plugin for monitoring UPSes through SNMP, where the
UPS address and the different aspects are defined through symlinks.
The two UPSes, called “ups-5a” and “ups-5b”, are monitored with
respect to “current” and “power”. Thus, the affected plugins are
called as:

snmp_ups_ups-5a_current
snmp_ups_ups-5b_current
snmp_ups_ups-5a_power
snmp_ups_ups-5b_power

The original plugin name is actually “snmp_ups__” - note the “two”
underscores at the end. The plugin is then symlinked to the given host
name(s) (e.g. ups-5a) and what we want to monitor (e.g. power). Let’s
just take one closer look at one of them:

snmp_ups_ups-5a_power
-------- ------ -----
 | | |
 | | `--- The function we want to monitor
 | `--------- The node name of the UPS
 `----------------- The plugin

Extract from munin.conf

The following extract from /etc/munin/munin.conf is explained in
detail, step by step, below the configuration.

 1 [UPS;ups-5a]
 2 address 127.0.0.1 # localhost fetches data
 3
 4 [UPS;ups-5b]
 5 address 127.0.0.1 # localhost fetches data
 6
 7 [UPS;Aggregated]
 8 update no
 9 contacts no
10
11 snmp_ups_current.update no
12 snmp_ups_current.graph_args --base 1000 -l 0
13 snmp_ups_current.graph_category UPS
14 snmp_ups_current.graph_title Aggregated input/output current
15 snmp_ups_current.graph_vlabel Ampere
16 snmp_ups_current.inputtotal.label Input current
17 snmp_ups_current.outputtotal.label Output current
18 snmp_ups_current.graph_order inputtotal outputtotal
19 snmp_ups_current.inputtotal.sum \
20 ups-5a:snmp_ups_ups-5a_current.inputcurrent \
21 ups-5b:snmp_ups_ups-5b_current.inputcurrent
22 snmp_ups_current.outputtotal.sum \
23 ups-5a:snmp_ups_ups-5a_current.outputcurrent \
24 ups-5b:snmp_ups_ups-5b_current.outputcurrent
25
26 snmp_ups_power.update no
27 snmp_ups_power.graph_args --base 1000 -l 0
28 snmp_ups_power.graph_category UPS
29 snmp_ups_power.graph_title Aggregated output power
30 snmp_ups_power.graph_vlabel Watts
31 snmp_ups_power.output.label Output power
32 snmp_ups_power.graph_order output
33 snmp_ups_power.output.sum \
34 ups-5a:snmp_ups_ups-5a_power.outputpower \
35 ups-5b:snmp_ups_ups-5b_power.outputpower

Explanations, per line

	1 - 2: The SNMP-based plugin for the UPS known as “ups-5a” is
defined. The group name is “UPS” and the node name is “ups-5a”. The
plugin is run from localhost.

	4 - 5: The SNMP-based plugin for the UPS known as “ups-5b” is
defined. The group name is “UPS” and the node name is “ups-5b”. The
plugin is run from localhost.

	7: The group and “virtual node name” for the aggregated graphs are
defined. The group name is “UPS” and the virtual node name is
“Aggregated”.

	8: Make sure that Munin (specifically, “munin-update”) does not try
to actively gather information for this node.

	9: Tell “munin-limits” not to send alerts if any limit is breached.

The above lines (1 - 9) have now established the fundament for three
different graph pages; one for each of the two UPSes and one for the
aggregate graphs.

	11 - 15: Define the basic information for the virtual plugin for
aggregated current. Note that “snmp_ups_current” is the virtual
plugin’s name.

	16 - 17: Simultaneously define and label “two” values to be graphed
in the virtual plugin: “inputtotal” and “outputtotal”.

	18: Order the values.

	19 - 21: Calculate the value for “inputtotal” by reading the
“inputcurrent” values from each of the two UPSes.

Let’s take a closer look at the components

snmp_ups_current.inputtotal.sum \
---------------- ---------- ---
 | | |
 | | `-- The sum mechanism
 | `--------- One of this virtual plugin's values
 `----------------------- The name of the virtual plugin

ups-5a:snmp_ups_ups-5a_current.inputcurrent \
ups-5b:snmp_ups_ups-5b_current.inputcurrent
------ ----------------------- ------------
 | | |
 | | `------ The "inputcurrent" value from the real plugin
 | `------------------------ The real plugin's name (symlink)
 `-- The host name from which to seek information

	22 - 24: Similarly for “outputtotal”.

	26 - 35: Like the above, but for power instead. Note that this
virtual plugin graphs only “one” value, and as such, only “one”
“sum” mechanism is used.

Result graphs

The graphs below show one of the UPSes, and the aggregated values. The
graphs used are by week, because they had a nice dip in the beginning
of the graphing period :-)

Source graphs for one of the UPSes:

[image: ../../_images/ups-5a_current.png]
[image: ../../_images/ups-5a_power.png]
Aggregate graphs:

[image: ../../_images/aggregate_current.png]
[image: ../../_images/aggregate_power.png]

Summary

We have now, in addition to the two real UPS nodes “ups-5a” and
“ups-5b” (lines 1 - 5), created one virtual host named “Aggregated”
(line 7) with two virtual plugins: “snmp_ups_current” (lines 11 - 24)
and “snmp_ups_power” (lines 26 - 35).

The “snmp_ups_current” virtual plugin outputs two field names:
“inputtotal” (lines 16 and 19 - 21) and “outputtotal” (lines 17 and
22 - 24), while the “snmp_ups_power” virtual plugin outputs only one
field name, namely “output” (lines 31 - 35).

Further reading

	[wiki:Using_SNMP_plugins Using SNMP plugins]

	[wiki:munin.conf munin.conf] directives explained

multiple master data aggregation

This example describes a way to have multiple master collecting
different information, and show all the data in a single presentation.

When you reach some size (probably several hundreds of nodes, several
tousands plugins), 5 minutes is not enough for your single master to
connect and gather data from all hosts, and you end up having holes in
your graph.

Requirements

This example requires a shared nfs space for the munin data between the
nodes.

Before going that road, you should make sure to check other options
first, like changing the number of update threads, and having rrdcached.

An other option you might consider, is using munin-async. It requires
modifications on all nodes, so it might not be an option, but I felt
compeled to mention it. If you can’t easily have shared nfs, or if you
might have connectivity issues between master and some node, async would
probably be a better approach.

Because there is some rrd path merge required, it is highly recommended
to have all nodes in groups.

Overview

Munin-Master runs differents scripts via the cron script (munin-cron).

	munin-update

	is the only part actualy connecting to the nodes. It gathers
information and updates the rrd (you’ll probably need rrdcached,
especialy via nfs).

	munin-limits

	checks what was collected, compared to the limits and places
warning and criticals.

	munin-html

	takes the informations gathered by update and limits, and
generate the actual html files (if don’t have cgi-html).
It currently still generate some data needed by the cgi.

	munin-graph

	generate the graphs. If you are thinking about getting many
masters, you probably have alot of graph, and don’t want to
generate them every 5 minutes, but you would rather use
cgi-graph.

The trick about having multiple master running to update is :

	run munin-update on different masters (called update-masters there
after), having dbdir on nfs

	run munin-limits on either each of the update-masters, or the
html-master (see next line)

	run munin-html on a single master (html-master), after merging
some data generated by the update processes

	have graph (cgi) and html (from file or cgi) served by either
html-master, or specific presentation hosts.

Of course, all hosts must have access to the shared nfs directory.

Exemples will consider the shared folder /nfs/munin.

Running munin-update

Cange the munin-cron to only run munin-update (and
munin-limits, if you have alerts you want to be managed directly on
those masters). The cron should NOT launch munin-html or munin-graph.

Change your munin.conf to use a dbdir within the shared nfs, (ie:
/nfs/munin/db/<hostname>).

To make it easier to see the configuration, you can also update the
configuration with an includedir on nfs, and declare all your nodes
there (ie: /nfs/munin/etc/<hostname>.d/).

If you configured at least one node, you should have
/nfs/munin/db/<hostname> that starts getting populated with
subdirectories (groups), and a few files, including datafile, and
datafile.storable (and limits if you also have munin-limits
running here).

Merging data

All our update-masters generate update their dbdir including:

	datafile and datafile.storable which contain information about
the collected plugins, and graphs to generate.

	directory tree with the rrd files

In order to have munin-html to run correctly, we need to merge those
dbdir into one.

Merging files

datafile is just plain text with lines of key value, so
concatenating all the files is enough.

datafile.storable is a binary representation of the data as loaded
by munin. It requires some munin internal structures knowledge to merge
them.

If you have munin-limits also running on update-masters, it generate
a limits files, those are also plain text.

In order to make that part easier, a munin-mergedb.pl is provided in
contrib.

Merging rrd tree

The main trick is about rrd. As we are using a shared nfs, we can use
symlinks to get them to point to one an other, and not have to duplicate
them. (Would be hell to keep in sync, that’s why we really need shared
nfs storage.)

As we deal with groups, we could just link top level groups to a common
rrd tree.

Exemple, if you have two updaters (update1 and update2), and 4 groups
(customer1, customer2, customer3, customer4), you could make something
like that:

/nfs/munin/db/shared-rrd/customer1/
/nfs/munin/db/shared-rrd/customer2/
/nfs/munin/db/shared-rrd/customer3/
/nfs/munin/db/shared-rrd/customer4/
/nfs/munin/db/update1/customer1 -> ../shared-rrd/customer1
/nfs/munin/db/update1/customer2 -> ../shared-rrd/customer2
/nfs/munin/db/update1/customer3 -> ../shared-rrd/customer3
/nfs/munin/db/update1/customer4 -> ../shared-rrd/customer4
/nfs/munin/db/update2/customer1 -> ../shared-rrd/customer1
/nfs/munin/db/update2/customer2 -> ../shared-rrd/customer2
/nfs/munin/db/update2/customer3 -> ../shared-rrd/customer3
/nfs/munin/db/update2/customer4 -> ../shared-rrd/customer4
/nfs/munin/db/html/customer1 -> ../shared-rrd/customer1
/nfs/munin/db/html/customer2 -> ../shared-rrd/customer2
/nfs/munin/db/html/customer3 -> ../shared-rrd/customer3
/nfs/munin/db/html/customer4 -> ../shared-rrd/customer4

At some point, an option to get the rrd tree separated from the dbdir,
and should avoid the need of such links.

Running munin-html

Once you have your update-masters running, and a merge ready to go, you
should place a cron on a html-master to :

	merge data as requested

	launch munin-limits, if not launched on update-masters and merged

	launch munin-html (required, even if you use cgi)

	launch munin-graph unless you use cgi-graph

Index

 Symbols
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | L
 | M
 | N
 | P
 | Q
 | R
 | S
 | T
 | U

Symbols

 	
 	
 --always-send <severity list>

 	munin-limits command line option

 	
 --cleanup

 	munin-async command line option

 	
 --cleanupandexit

 	munin-async command line option

 	
 --config <configfile>

 	munin-node command line option

 	munin-run command line option

 	
 --config <file>

 	munin-cron command line option

 	munin-graph command line option

 	munin-html command line option

 	munin-limits command line option

 	
 --config_file <file>

 	munin-update command line option

 	
 --contact <contact>

 	munin-limits command line option

 	
 --cron

 	munin-graph command line option

 	
 --day

 	munin-graph command line option

 	
 --debug

 	munin-graph command line option

 	munin-html command line option

 	munin-limits command line option

 	munin-node command line option

 	munin-run command line option

 	munin-update command line option

 	
 --fix-permissions | -f

 	munin-check command line option

 	
 --force

 	munin-graph command line option

 	munin-limits command line option

 	
 --force-run-as-root

 	munin-limits command line option

 	
 --fork

 	munin-asyncd command line option

 	munin-graph command line option

 	munin-update command line option

 	
 --help

 	munin-graph command line option

 	munin-html command line option

 	munin-limits command line option

 	munin-node command line option

 	munin-run command line option

 	munin-update command line option

 	
 --help | -h

 	munin-async command line option

 	munin-asyncd command line option

 	munin-check command line option

 	
 --host <host>

 	munin-cron command line option

 	munin-graph command line option

 	munin-html command line option

 	munin-limits command line option

 	munin-update command line option

 	
 --host <hostname:port>

 	munin-asyncd command line option

 	
 --hostname <hostname>

 	munin-async command line option

 	
 --interval <seconds>

 	munin-asyncd command line option

 	
 --lazy

 	munin-graph command line option

 	
 --list-images

 	munin-graph command line option

 	
 --log-file | -l

 	munin-graph command line option

 	
 	
 --lower_limit <lim>

 	munin-graph command line option

 	
 --month

 	munin-graph command line option

 	
 --n <processes>

 	munin-graph command line option

 	
 --nocleanup

 	munin-asyncd command line option

 	
 --nofork

 	munin-html command line option

 	
 --only-fqn <FQN>

 	munin-graph command line option

 	
 --output-file | -o

 	munin-graph command line option

 	
 --paranoia

 	munin-node command line option

 	munin-run command line option

 	
 --pidebug

 	munin-node command line option

 	munin-run command line option

 	
 --pinpoint <start,stop>

 	munin-graph command line option

 	
 --retain <count>

 	munin-asyncd command line option

 	
 --sconfdir <dir>

 	munin-run command line option

 	
 --sconffile <file>

 	munin-run command line option

 	
 --service <service>

 	munin-cron command line option

 	munin-html command line option

 	munin-limits command line option

 	munin-update command line option

 	
 --servicedir <dir>

 	munin-run command line option

 	
 --size_x <pixels>

 	munin-graph command line option

 	
 --size_y <pixels>

 	munin-graph command line option

 	
 --spool | -s <spooldir>

 	munin-asyncd command line option

 	
 --spooldir | -s <spooldir>

 	munin-async command line option

 	
 --spoolfetch

 	munin-async command line option

 	
 --sumweek

 	munin-graph command line option

 	
 --sumyear

 	munin-graph command line option

 	
 --timeout <seconds>

 	munin-update command line option

 	
 --upper_limit <lim>

 	munin-graph command line option

 	
 --vectorfetch

 	munin-async command line option

 	
 --verbose | -v

 	munin-async command line option

 	munin-asyncd command line option

 	
 --version

 	munin-graph command line option

 	munin-html command line option

 	munin-run command line option

 	munin-update command line option

 	
 --week

 	munin-graph command line option

 	
 --year

 	munin-graph command line option

A

 	
 	
 aggregate

 	plugin

 	Aggregating munin plugins

 	
 	
 allow

 	command line option

 	
 apache httpd configuration

 	example

B

 	
 	
 background

 	command line option

C

 	
 	CGI_DEBUG

 	
 cidr_allow

 	command line option

 	
 cidr_deny

 	command line option

 	
 command line option

 	allow

 	background

 	cidr_allow

 	cidr_deny

 	group

 	host

 	host_name, [1]

 	ignore_file, [1]

 	log_file

 	log_level

 	paranoia

 	pid_file

 	port

 	setsid

 	timeout

 	user

 	
 	
 configuration

 	example plugin

 	plugin

D

 	
 	
 dbdir <path>

 	munin.conf command line option

E

 	
 	
 environment variable

 	CGI_DEBUG, [1]

 	HTTP_CACHE_CONTROL

 	HTTP_IF_MODIFIED_SINCE

 	MUNIN_DEBUG, [1]

 	PATH_INFO, [1], [2]

 	QUERY_STRING, [1]

 	
 example

 	apache httpd configuration

 	lighttpd configuration

 	munin-cgi-graph invocation

 	munin-node.conf

 	munin.conf, [1], [2], [3]

 	nginx authentication group configuration

 	nginx configuration

 	plugin configuration

 	
 	
 executing

 	plugin

F

 	
 	
 fields

 	plugin

 	
 	
 fork <yes|no>

 	munin.conf command line option

G

 	
 	
 graph_data_size <normal|huge>

 	munin.conf command line option

 	
 graph_strategy <cgi|cron>

 	munin.conf command line option

 	
 	
 group

 	command line option

H

 	
 	
 host

 	command line option

 	
 host_name

 	command line option, [1]

 	
 	
 html_strategy <strategy>

 	munin.conf command line option

 	
 htmldir <path>

 	munin.conf command line option

I

 	
 	
 ignore_file

 	command line option, [1]

 	
 	
 installing

 	plugin

L

 	
 	
 lighttpd configuration

 	example

 	
 log_file

 	command line option

 	
 	
 log_level

 	command line option

 	
 logdir <path>

 	munin.conf command line option

M

 	
 	
 munin-async command line option

 	--cleanup

 	--cleanupandexit

 	--help | -h

 	--hostname <hostname>

 	--spooldir | -s <spooldir>

 	--spoolfetch

 	--vectorfetch

 	--verbose | -v

 	
 munin-asyncd command line option

 	--fork

 	--help | -h

 	--host <hostname:port>

 	--interval <seconds>

 	--nocleanup

 	--retain <count>

 	--spool | -s <spooldir>

 	--verbose | -v

 	
 munin-cgi-graph invocation

 	example

 	
 munin-check command line option

 	--fix-permissions | -f

 	--help | -h

 	
 munin-cron command line option

 	--config <file>

 	--host <host>

 	--service <service>

 	
 munin-graph command line option

 	--config <file>

 	--cron

 	--day

 	--debug

 	--force

 	--fork

 	--help

 	--host <host>

 	--lazy

 	--list-images

 	--log-file | -l

 	--lower_limit <lim>

 	--month

 	--n <processes>

 	--only-fqn <FQN>

 	--output-file | -o

 	--pinpoint <start,stop>

 	--size_x <pixels>

 	--size_y <pixels>

 	--sumweek

 	--sumyear

 	--upper_limit <lim>

 	--version

 	--week

 	--year

 	
 munin-html command line option

 	--config <file>

 	--debug

 	--help

 	--host <host>

 	--nofork

 	--service <service>

 	--version

 	
 	
 munin-limits command line option

 	--always-send <severity list>

 	--config <file>

 	--contact <contact>

 	--debug

 	--force

 	--force-run-as-root

 	--help

 	--host <host>

 	--service <service>

 	
 munin-node command line option

 	--config <configfile>

 	--debug

 	--help

 	--paranoia

 	--pidebug

 	
 munin-node.conf

 	example

 	
 munin-run command line option

 	--config <configfile>

 	--debug

 	--help

 	--paranoia

 	--pidebug

 	--sconfdir <dir>

 	--sconffile <file>

 	--servicedir <dir>

 	--version

 	
 munin-update command line option

 	--config_file <file>

 	--debug

 	--fork

 	--help

 	--host <host>

 	--service <service>

 	--timeout <seconds>

 	--version

 	
 munin.conf

 	example, [1], [2], [3]

 	
 munin.conf command line option

 	dbdir <path>

 	fork <yes|no>

 	graph_data_size <normal|huge>

 	graph_strategy <cgi|cron>

 	html_strategy <strategy>

 	htmldir <path>

 	logdir <path>

 	palette <default|old>

 	rundir <path>

 	ssh_command <command>

 	ssh_options <options>

 	tmpldir <path>

 	MUNIN_DEBUG, [1]

N

 	
 	
 nginx authentication group configuration

 	example

 	
 	
 nginx configuration

 	example

P

 	
 	
 palette <default|old>

 	munin.conf command line option

 	
 paranoia

 	command line option

 	PATH_INFO

 	
 pid_file

 	command line option

 	
 plugin

 	aggregate

 	configuration

 	configuration, example

 	executing

 	fields

 	installing

 	testing

 	
 	
 port

 	command line option

Q

 	
 	QUERY_STRING

R

 	
 	
 rundir <path>

 	munin.conf command line option

S

 	
 	
 setsid

 	command line option

 	
 ssh_command <command>

 	munin.conf command line option

 	
 	
 ssh_options <options>

 	munin.conf command line option

T

 	
 	
 testing

 	plugin

 	
 timeout

 	command line option

 	
 	
 tmpldir <path>

 	munin.conf command line option

 	
 tuple: munin-node.conf

 	example

U

 	
 	
 user

 	command line option

 _static/down.png

_static/comment.png

_static/down-pressed.png

_static/minus.png

_static/plus.png

_static/file.png

_static/logo-h.png

_static/up-pressed.png

_static/comment-bright.png

_images/ups-5a_power.png
vatts

ups-5a output power - by week

600

400

wed | Thu | Fri sat sn
59541 Min: 28.00 Avg: 576.25

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

nav.xhtml

 Table of Contents

 		
 Welcome to Munin’s documentation!

 		
 Munin installation

 		
 Prerequisites

 		
 Building munin

 		
 Running munin

 		
 Installing Munin

 		
 Master and node

 		
 Source or packages?

 		
 Installing Munin from source

 		
 Initial configuration

 		
 Node

 		
 Master

 		
 Configure web server

 		
 Getting help

 		
 IRC Channel

 		
 Upgrading Munin from 1.x to 2.x

 		
 FastCGI

 		
 Logging

 		
 The Munin master

 		
 Role

 		
 Components

 		
 Configuration

 		
 Other documentation

 		
 Scaling the munin master with rrdcached

 		
 The Munin node

 		
 Role

 		
 Configuration

 		
 Other documentation

 		
 Asynchronous proxy node

 		
 The Munin plugin

 		
 Role

 		
 Other documentation

 		
 Using munin plugins

 		
 Writing a munin plugin

 		
 Supersampling

 		
 Documenting Munin

 		
 Nomenclature

 		
 Common terms

 		
 Examples

 		
 Reference

 		
 Man pages

 		
 munin-async

 		
 munin-asyncd

 		
 munin-cgi-graph

 		
 munin-cgi-html

 		
 munin-check

 		
 munin-cron

 		
 munin-graph

 		
 munin-html

 		
 munin-limits

 		
 munin-node

 		
 munin-run

 		
 munin-update

 		
 munin.conf

 		
 munin-node.conf

 		
 Other reference material

 		
 Directories

 		
 Plugin reference

 		
 Examples

 		
 Apache virtualhost configuration

 		
 Munin configuration

 		
 Virtualhost configuration

 		
 lighttpd configuration

 		
 Munin configuration

 		
 Webserver configuration

 		
 nginx configuration

 		
 Munin configuration

 		
 FastCGI configuration

 		
 Webserver configuration

 		
 Authentication and group access

 		
 Graph aggregation by example

 		
 Plugins involved

 		
 Extract from munin.conf

 		
 Explanations, per line

 		
 Result graphs

 		
 Summary

 		
 Further reading

 		
 multiple master data aggregation

 		
 Requirements

 		
 Overview

 		
 Running munin-update

 		
 Merging data

 		
 Running munin-html

_images/aggregate_power.png
fggregated output power - by week

15k

1.0k

vatts

05k

0.0

B output pover

Tue

o

ved
1.0k

Th

Hin:

Fri
a76.00

fug

_images/ups-5a_current.png
ups-5a Lnput/output current - by week

8.0

6.0

fnpere.

4.0

2.0

0.0

T Ged | The

B input current Cur: 7.07 Min:
Boutput current Cur: 5.2 Min:

_images/aggregate_current.png
fggregated input/output

20

current - by week

s i il i :
i ow
s Db : : : : :
SRR
Tue
B tnput current Cur:

B output current Cur

