

Mumble Protocol Documentation

Contents

	Introduction

	Overview

	Protocol stack (TCP)

	Establishing a connection
	Connect

	Version exchange

	Authenticate

	Crypto setup

	Channel states

	User states

	Server sync

	Ping

	Voice data
	Packet format
	Ping packet

	Encoded audio data packet

	Codecs

	Whispering

	UDP connectivity checks

	Tunneling audio over TCP
	Implementation note

	Encryption

	Variable length integer encoding

Introduction

This document is meant to be a reference for the Mumble VoIP 1.2.X
server-client communication protocol. It reflects the state of the protocol
implemented in the Mumble 1.2.8 client and might be outdated by the time you
are reading this. Be sure to check for newer revisions of this document at
http://mumble-protocol.readthedocs.org/.

This document is a constant work in progress.

Overview

Mumble is based on a standard server-client communication model. It
utilizes two channels of communication, the first one is a TCP connection
which is used to reliably transfer control data between the client and the
server. The second one is a UDP connection which is used for unreliable,
low latency transfer of voice data.

[image: Mumble system overview]
Mumble system overview

Both are protected by strong cryptography, this encryption is mandatory and cannot be disabled. The TCP control channel uses TLSv1 AES256-SHA [1] while the voice channel is encrypted with OCB-AES128 [2].

[image: Mumble crypt types]
Mumble crypto types

While the TCP connection is mandatory the UDP connection can be compensated by tunnelling the UDP packets through the TCP connection as described in the protocol description later.

Footnotes

	[1]	http://en.wikipedia.org/wiki/Transport_Layer_Security

	[2]	http://www.cs.ucdavis.edu/~rogaway/ocb/ocb-back.htm

Protocol stack (TCP)

Mumble has a shallow and easy to understand stack. Basically it
uses Google’s Protocol Buffers [1] with simple prefixing to
distinguish the different kinds of packets sent through an TLSv1
encrypted connection. This makes the protocol very easily expandable.

[image: Mumble packet]
Mumble packet

The prefix consists out of the two bytes defining the type of the packet
in the payload and 4 bytes stating the length of the payload in bytes
followed by the payload itself. The following packet types are available
in the current protocol and all but UDPTunnel are simple protobuf messages.
If not mentioned otherwise all fields outside the protobuf encoding are big-endian.

Packet types

	Type
	Payload

	0
	Version

	1
	UDPTunnel

	2
	Authenticate

	3
	Ping

	4
	Reject

	5
	ServerSync

	6
	ChannelRemove

	7
	ChannelState

	8
	UserRemove

	9
	UserState

	10
	BanList

	11
	TextMessage

	12
	PermissionDenied

	13
	ACL

	14
	QueryUsers

	15
	CryptSetup

	16
	ContextActionModify

	17
	ContextAction

	18
	UserList

	19
	VoiceTarget

	20
	PermissionQuery

	21
	CodecVersion

	22
	UserStats

	23
	RequestBlob

	24
	ServerConfig

	25
	SuggestConfig

For raw representation of each packet type see the attached Mumble.proto [2] file.

Footnotes

	[1]	https://github.com/google/protobuf

	[2]	https://raw.github.com/mumble-voip/mumble/master/src/Mumble.proto

Establishing a connection

This section describes the communication between the server and the client
during connection establishing, note that only the TCP connection needs
to be established for the client to be connected. After this the client
will be visible to the other clients on the server and able to send other
types of messages.

Connect

As the basis for the synchronization procedure the client has to first
establish the TCP connection to the server and do a common TLSv1 handshake.
To be able to use the complete feature set of the Mumble protocol it is
recommended that the client provides a strong certificate to the server.
This however is not mandatory as you can connect to the server without
providing a certificate. However the server must provide the client with
its certificate and it is recommended that the client checks this.

[image: Mumble connection setup]
Mumble connection setup

Version exchange

Once the TLS handshake is completed both sides should transmit their version
information using the Version message. The message structure is described below.

Version message

	Version

	version
	uint32

	release
	string

	os
	string

	os_version
	string

The version field is a combination of major, minor and patch version numbers (e.g. 1.2.0)
so that major number takes two bytes and minor and patch numbers take one byte each.
The structure is shown in figure ref{fig:versionEncoding}. The release, os and os_version
fields are common strings containing additional information.

Version field encoding (uint32)

	Major
	Minor
	Patch

	2 bytes
	1 byte
	1 byte

The version information may be used as part of the SuggestConfig checks, which usually
refer to the standard client versions. The major changes between these versions are listed
in table below. The release, os and os_version information is not interpreted in
any way at the moment.

Mumble version differences

	Version
	Major changes

	1.2.0
	CELT 0.7.0 codec support

	1.2.2
	CELT 0.7.1 codec support

	1.2.3
	CELT 0.11.0 codec

	1.2.4
	Opus codec support, SuggestConfig message

Authenticate

Once the client has sent the version it should follow this with the Authenticate message.
The message structure is described in the figure below. This message may be sent immediately
after sending the version message. The client does not need to wait for the server version
message.

Authenticate message

	Authenticate

	username
	string

	password
	string

	tokens
	string

The username and password are UTF-8 encoded strings. While the client is free to accept any
username from the user the server is allowed to impose further restrictions. Furthermore
if the client certificate has been registered with the server the client is primarily
known with the username they had when the certificate was registered. For more
information see the server documentation.

The password must only be provided if the server is passworded, the client provided no
certificate but wants to authenticate to an account which has a password set, or to
access the SuperUser account.

The third field contains a list of zero or more token strings which act as passwords
that may give the client access to certain ACL groups without actually being a
registered member in them, again see the server documentation for more information.

Crypto setup

Once the Version packets are exchanged the server will send a CryptSetup packet to
the client. It contains the necessary cryptographic information for the OCB-AES128
encryption used in the UDP Voice channel. The packet is described in figure
below. The encryption itself is described in a later section.

CryptSetup message

	CryptSetup

	key
	bytes

	client_nonce
	bytes

	server_nonce
	bytes

Channel states

After the client has successfully authenticated the server starts listing the channels
by transmitting partial ChannelState message for every channel on this server. These
messages lack the channel link information as the client does not yet have full
picture of all the channels. Once the initial ChannelState has been transmitted
for all channels the server updates the linked channels by sending new packets for
these. The full structure of these ChanneLState messages is shown below:

ChannelState message

	ChannelState

	channel_id
	uint32

	parent
	uint32

	name
	string

	links
	repeated uint32

	description
	string

	links_add
	repeated uint32

	links_remove
	repeated uint32

	temporary
	optional bool

	position
	optional int32

The server must send a ChannelState for the root channel identified with ID 0.

User states

After the channels have been synchronized the server continues by listing the
connected users. This is done by sending a UserState message for each user
currently on the server, including the user that is currently connecting.

UserState message

	UserState

	session
	uint32

	actor
	uint32

	name
	string

	user_id
	uint32

	channel_id
	uint32

	mute
	bool

	deaf
	bool

	suppress
	bool

	self_mute
	bool

	self_deaf
	bool

	texture
	bytes

	plugin_context
	bytes

	plugin_identity
	string

	comment
	string

	hash
	string

	comment_hash
	bytes

	texture_hash
	bytes

	priority_speaker
	bool

	recording
	bool

Server sync

The client has now received a copy of the parts of the server state he
needs to know about. To complete the synchronization the server transmits
a ServerSync message containing the session id of the clients session,
the maximum bandwidth allowed on this server, the servers welcome text
as well as the permissions the client has in the channel he ended up.

For more information pease refer to the Mumble.proto file [1].

Ping

If the client wishes to maintain the connection to the server it is required
to ping the server. If the server does not receive a ping for 30 seconds it
will disconnect the client.

Footnotes

	[1]	https://raw.github.com/mumble-voip/mumble/master/src/Mumble.proto

Voice data

Mumble audio channel is used to transmit the actual audio packets over the
network. Unlike the TCP control channel, the audio channel uses a custom
encoding for the audio packets. The audio channel is transport independent and
features such as encryption are implemented by the transport layer. Integers
above 8-bits are encoded using the Variable length integer encoding.

Packet format

The mumble audio channel packets are variable length packets that begin with an
8-bit header field which describes the packet type and target. The most
significant 3 bits define the packet type while the remaining 5 bits define the
target. The header is followed by the packet payload. The maximum size for the
whole audio data packet is 1020 bytes. This allows applications to use 1024
byte buffers for receiving UDP datagrams with the 4-byte encryption header
overhead.

Audio packet structure

	Audio packet structure

	7
	6
	5
	4
	3
	2
	1
	0

	type
	target

	Payload...

	type

	The audio packet type. The packets transmitted over the audio channel are
either ping packets used to diagnose the transport layer connectivity or
audio packets encoded with different codecs. Different types are listed in
Audio packet types table.

Audio packet types

	Type
	Bitfield
	Description

	0
	000xxxxx
	CELT Alpha encoded voice data

	1
	001xxxxx
	Ping packet

	2
	010xxxxx
	Speex encoded voice data

	3
	011xxxxx
	CELT Beta encoded voice data

	4
	100xxxxx
	OPUS encoded voice data

	5-7
	
	Unused

	target

	The target portion defines the recipient for the audio data. The two constant
targets are Normal talking (0) and Server Loopback (31). The
range 1-30 is reserved for whisper targets. These targets are specified
separately in the control channel using the VoiceTarget packets. The
targets are listed in Audio targets table.

When a client registers a VoiceTarget on the server, it gives the target an
ID. This voice target ID can be used as a target in the voice packets to send
audio to specific users or channels. When receiving whisper-audio the server
uses target 1 to specify the audio results from a whisper to a channel and
target 2 to specify that the audio results from a direct whisper to the user.

Audio targets

	Target
	Description

	0
	Normal talking

	1-30
	Whisper target

	VoiceTarget ID when sending whisper from client.

	1 when receiving whisper to channel.

	2 when receiving direct whisper to user.

	31
	Server loopback

Ping packet

Audio channel ping packets are used as part of the connectivity checks on the
audio transport layer. These packets contain only varint encoded timestamp as
data. See UDP connectivity checks section below for the logic involved in
the connectivity checks.

Audio transport ping packet

	Field
	Type
	Description

	Header
	byte
	00100000b (0x20)

	Data
	varint
	Timestamp

	Header

	Common audio packet header. For ping packets this should have the value of
0x20.

	Data

	Timestamp. The packet should be echoed back so the timestamp format can be
decided by the original sender - the only limitation is that it must fit in a
64-bit integer for the varint encoding.

Encoded audio data packet

Encoded audio packets contain the actual user audio data for the voice
communication. Incoming audio data packets contain the common header byte
followed by varint encoded session ID of the source user and varint encoded
sequence number of the packet. Outgoing audio data packets contain only the
header byte and the sequence number of the packet. The server matches these to
the correct session using the transport layer information.

The remainder of the packet is made up of multiple encoded audio segments and
optional positional audio information. The audio segment format depends on the
codec of the whole audio packets. The audio segments contain codec
implementation specific information on where the audio segments end so the
possible positional audio data can be read from the end.

Incoming encoded audio packet

	Field
	Type
	Description

	Header
	byte
	Codec type/Audio target

	Session ID
	varint
	Session ID of the source user.

	Sequence Number
	varint
	Sequence number of the first audio data segment.

	Payload
	byte[]
	Audio payload

	Position Info
	float[3]
	Positional audio information

Outgoing encoded audio packet

	Field
	Type
	Description

	Header
	byte
	Codec type/Audio target

	Sequence Number
	varint
	Sequence number of the first audio data segment.

	Payload
	byte[]
	Audio payload

	Position Info
	float[3]
	Positional audio information

	Header

	The common audio packet header

	Session ID

	Session ID of the user to whom the audio packet belongs.

	Sequence Number

	Audio data sequence number. The sequence number is used to maintain the
packet order when the audio data is transported over unreliable transports
such as UDP.

The sequence number might increase by more than one between subsequent audio
packets in case the audio packets contain multiple audio segments. This
allows the packet loss concealment algorithms to figure out how many audio
frames were lost between two received packets.

	Payload

	Audio payload. Format depends on the audio codec defined in the Header. The
payload must be self-delimiting to determine whether the position info exists
at the end of the packet.

	Position Info

	The XYZ coordinates of the audio source. In addition to sending the position
information, the user must be using a positional plugin defined in the
UserState message. The plugins might define different contexts which
prevent voice communication between users in other contexts.

Speex and CELT audio frames

Encoded Speex and CELT audio is transported as individual encoded frames. Each
frame is prefixed with a single byte length and terminator header.

CELT encoded audio data

	Field
	Type
	Description

	Header
	byte
	length/continuation header

	Data
	byte[]
	Encoded voice frame

	Header

	The length of the Data field. The most significant bit (0x80) acts as the
continuation bit and is set for all but the last frame in the payload. The
remaining 7 bits of the header contain the actual length of the Data frame.

Note the length may be zero, which is used to signal the end of a voice
transmission. In this case the audio data is a single zero-byte which can be
interpreted normally as length of 0 with no continuation bit set.

	Data

	Single encoded audio frame. The encoding depends on the codec type header
of the whole audio packet

Opus audio frames

Encoded Opus audio is transported as a single Opus audio frame. The frame is prefixed with a variable byte header.

Opus encoded audio data

	Field
	Type
	Description

	Header
	varint
	length/terminator header

	Data
	byte[]
	Encoded voice frame

	Header

	The length of the Data field. 16-bit variable length integer encoded length
and terminator bit value. The varint encoding is the same as with 64-bit
values, but only 16-bit unencoded values are allowed.

The maximum voice frame size is 8191 (0x1FFF) bytes requiring the 13 least
significant bits of the header. The 14th bit (mask: 0x2000) is the terminator
bit which signals whether the packet is the last one in the voice
transmission.

Note: In CELT the “continuation bit” in the header defines whether there are
more audio frames in the current packet. Opus always contains only one frame
in the packet. In CELT the voice transmission end is signaled with a
zero-byte CELT packet while in Opus we have a dedicated termination bit in
the header.

	Data

	The encoded Opus data.

Codecs

Mumble supports three distinct codecs; Older Mumble versions use Speex for low
bitrate audio and CELT for higher quality audio while new Mumble versions
prefer Opus for all audio. When multiple clients with different capabilities
communicate together the server is responsible for resolving the codec to use.
The clients should respect the server resolution if they are capable.

If the server resolves a codec a client doesn’t support, that client is free to
use any codec it prefers. Usually this means the client will not be able to
decode incoming audio, but it can still send encoded audio out.

The CELT bitstream was never frozen which makes most CELT versions incompatible
with each other. The two CELT bitstreams supported by Mumble are: CELT 0.7.0
(CELT Alpha) and CELT 0.11.0 (CELT Beta). While CELT 0.7.0 should technically
be supported by most Mumble implementations, some servers might be configured
to force Opus codec for the users. Mumble has had Opus support since 1.2.4
(June 2013) so it should be safe to assume most clients in use support this
now.

Whispering

Normal talking can be heard by the users of the current channel and all linked
channels as long as the speaker has Talk permission on these channels. If the
speaker wishes to broadcast the voice to specific users or channels, he may
use whispering. This is achieved by registering a voice target using the
VoiceTarget message and specifying the target ID as the target in the first
byte of the UDP packet.

UDP connectivity checks

Since UDP is a connectionless protocol, it is heavily affected by network
topology such as NAT configuration. It should not be used for audio
transmission before the connectivity has been determined.

The client starts the connectivity checks by sending a Ping packet to the
server. When the server receives this packet it will respond by echoing it back
to the address it received it from. Once the client receives the response from
the server it can start using the UDP transport for audio data. When the server
receives incoming audio data over the UDP transport it can switch the outgoing
audio over to UDP transport as well.

If the client stops receiving replies to the UDP pings at some point, it should
start tunneling the voice communication through the TCP tunnel as described in
the Tunneling audio over TCP below. When the server receives a tunneled
packet over the TCP connection it must also stop using the UDP for
communication. The client should still continue sending audio ping packets over
the UDP transport in case the UDP connection is restored and the communication
can be switched back to it.

Tunneling audio over TCP

If the UDP channel isn’t available the voice packets can be transmitted through
the TCP transport used for the control channel. These messages use the normal
TCP prefixing, as shown in figure Mumble packet: 16-bit message type
followed by 32-bit message length. However unlike other TCP messages, the audio
packets are not encoded as protocol buffer messages but instead the raw audio
packet described in Packet format should be written to the TCP socket
verbatim.

When the packets are received it is safe to parse the type and length fields
normally. If the type matches that of the audio tunnel the rest of the message
should be processed as an UDP packet without attempting a protocol buffer
decoding.

Implementation note

When implementing the protocol it is easier to ignore the UDP transfer layer at
first and just tunnel the UDP data through the TCP tunnel. The TCP layer must
be implemented for authentication in any case. Making sure that the voice
transmission works before implementing the UDP protocol simplifies debugging
greatly.

Encryption

All the packets are encrypted once during transfer. The actual encryption
depends on the used transport layer. If the packets are tunneled through TCP
they are encrypted using the TLS that encrypts the whole control channel
connection and if they are sent directly using UDP they must be encrypted using
the OCB-AES128 encryption.

Variable length integer encoding

The variable length integer encoding (varint) is used to encode long,
64-bit, integers so that short values do not need the full 8 bytes to be
transferred. The basic idea behind the encoding is prefixing the value with a
length prefix and then removing the leading zeroes from the value. The positive
numbers are always right justified. That is to say that the least significant
bit in the encoded presentation matches the least significant bit in the
decoded presentation. The varint prefixes table contains the definitions of
the different length prefixes. The encoded x bits are part of the decoded
number while the _ signifies a unused bit. Encoding should be done by
searching the first decoded description that fits the number that should be
decoded, truncating it to the required bytes and combining it with the defined
encoding prefix.

See the quint64 shift operators in
https://github.com/mumble-voip/mumble/blob/master/src/PacketDataStream.h
for a reference implementation.

Varint prefixes

	Encoded
	Decoded

	0xxxxxxx
	7-bit positive number

	10xxxxxx + 1 byte
	14-bit positive number

	110xxxxx + 2 bytes
	21-bit positive number

	1110xxxx + 3 bytes
	28-bit positive number

	111100__ + int (32-bit)
	32-bit positive number

	111101__ + long (64-bit)
	64-bit number

	111110__ + varint
	Negative recursive varint

	111111xx
	Byte-inverted negative two bit number (~xx)

Index

 _static/comment-close.png

_static/up.png

_images/mumble_packet.png
Prefix Payload
Type Length ‘UDPTunnel/Protobuf message
2B 4B 0-(8 MiB - 1B)

_static/down-pressed.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_images/mumble_crypt_types.png
Mumble
Client

‘UDP voice channel
(OCB-AES128)

TCP control channel
(TLSv1-AES256-SHA)

P ———

Murmur
Server

_images/mumble_connection_setup.png
HZmHb=00

~ Connect
—
—

—
Version exchange ™

Authenticate

Channel states

User states

Server sync

Ping

A <R mHn

_images/mumble_system_overview.png
Mumble
Client

Mumble
Client

Murmur
Server

ZeroC Ice

<>

3 party tool

3 party tool

j SgL [
Database

_static/plus.png

nav.xhtml

 Table of Contents

 		Mumble Protocol Documentation

 		Introduction

 		Overview

 		Protocol stack (TCP)

 		Establishing a connection

 		Connect

 		Version exchange

 		Authenticate

 		Crypto setup

 		Channel states

 		User states

 		Server sync

 		Ping

 		Voice data

 		Packet format

 		Ping packet

 		Encoded audio data packet

 		Codecs

 		Whispering

 		UDP connectivity checks

 		Tunneling audio over TCP

 		Implementation note

 		Encryption

 		Variable length integer encoding

_static/up-pressed.png

_static/mumble.png

_static/comment-bright.png

_static/comment.png

_static/down.png

