

MultiScanner

	Overview
	Key Capabilities

	Architecture
	High-level Architecture

	Complete Workflow

	Analysis

	Analytics

	Reporting

	Use Cases
	Scalable Malware Analysis

	Manual Malware Analysis

	Analysis-Oriented Malware Repository

	Data Enrichment

	Data Analytics

	Installation
	System Requirements

	Installing Ansible

	Installing Analytic Machines

	Installing Elasticsearch

	Configuration

	Standalone Docker Installation

	Using MultiScanner
	Web UI

	Python API

	RESTful API

	Analysis Modules

	Analytics

	Custom Development
	Developing an Analysis Module

	Developing an Analytic

	Writing a Storage Module

	Example Module

	Testing
	Front-end Tests with Selenium

	Presentations

Overview

MultiScanner is a distributed file analysis framework that assists the user in evaluating a set
of files by automatically running a suite of tools and aggregating the output.
Tools can be custom Python scripts, web APIs, software running on another machine, etc.
Tools are incorporated by creating modules that run in the MultiScanner framework.

By design, modules can be quickly written and easily incorporated into the framework.
While current modules are related to malware analysis, the MultiScanner framework is not limited in
scope. For descriptions of current modules, see Analysis Modules.

MultiScanner supports a distributed workflow for sample storage, analysis, and report viewing. This functionality includes a web interface, a REST API, a distributed file system (GlusterFS), distributed report storage / searching (Elasticsearch), and distributed task management (Celery / RabbitMQ). See the Complete Workflow section for details.

MultiScanner is available as open source in GitHub [https://github.com/mitre/multiscanner/tree/feature-celery].

Key Capabilities

As illustrated in the diagram below, MultiScanner helps the malware analyst, enabling analysis with automated tools and manual tools, providing integration and scaling capabilities, and corrolating analysis results. It allows analysts to associate metadata with samples and also allows integration of data from external sources. MultiScanner is particularly useful because data is linked across tools and samples, allowing pivoting and analytics.

[image: Overview]
Key Capabilities

Architecture

High-level Architecture

There are seven primary components of the MultiScanner architecture, as described below and illustrated in the associated diagram.

[image: MultiScanner Architecture]
MultiScanner Architecture

Web Frontend

The web application runs on Flask [http://flask.pocoo.org/], uses Bootstrap [https://getbootstrap.com/] and jQuery [https://jquery.com/], and is served via Apache. It is essentially an aesthetic wrapper around the REST API. All data and services provided are also available by querying the REST API.

REST API

The REST API is also powered by Flask and served via Apache. It has an underlying PostgreSQL database to facilitate task tracking. Additionally, it acts as a gateway to the backend Elasticsearch document store. Searches entered into the web UI will be routed through the REST API and passed to the Elasticsearch cluster. This abstracts the complexity of querying Elasticsearch and gives the user a simple web interface to work with.

Task Queue

We use Celery as our distributed task queue.

Task Tracking

PostgreSQL is our task management database. It is here that we keep track of scan times, samples, and the status of tasks (pending, complete, failed).

Distributed File System

GlusterFS is our distributed file system. Each component that needs access to the raw samples mounts the share via FUSE. We selected GlusterFS because it is more performant in our use case – storing a large number of small samples – than a technology like HDFS would be.

Worker Nodes

The worker nodes are Celery clients running the MultiScanner Python application. Additionally, we implemented some batching within Celery to improve the performance of our worker nodes (which operate better at scale).

A worker node will wait until there are 100 samples in its queue or 60 seconds have passed (whichever happens first) before kicking off its scan (these values are configurable). All worker nodes have the GlusterFS mounted, which gives access to the samples for scanning. In our setup, we co-locate the worker nodes with the GlusterFS nodes in order to reduce the network load of workers pulling samples from GlusterFS.

Report Storage

We use Elasticsearch to store the results of our file scans. This is where the true power of this system lies. Elasticsearch allows for performant, full text searching across all our reports and modules. This allows fast access to interesting details from your malware analysis tools, pivoting between samples, and powerful analytics on report output.

Complete Workflow

Each step of the MultiScanner workflow is described below the diagram.

[image: MultiScanner Workflow]
MultiScanner Workflow

	The user submits a sample file through the Web UI (or REST API)

	The Web UI (or REST API):

	Stores the file in the distributed file system (GlusterFS)

	Places the task on the task queue (Celery)

	Adds an entry to the task management database (PostgreSQL)

	A worker node:

	Pulls the task from the Celery task queue

	Retrieves the corresponding sample file from the GlusterFS via its SHA256 value

	Analyzes the file

	Generates a JSON blob and indexes it into Elasticsearch

	Updates the task management database with the task status (“complete”)

	The Web UI (or REST API):

	Gets report ID associated with the Task ID

	Pulls analysis report from the Elasticsearch datastore

Analysis

Analysis tools are integrated into MultiScanner via modules running in the MultiScanner framework. Tools can be custom built Python scripts, web APIs, or software applications running on different machines. Catagories of existing modules include AV scanning, sandbox detonation, metadata extraction, and signature scanning. Modules can be enabled/disabled via a configuration file. Details are provided in the Analysis Modules section.

Analytics

Enabling analytics and advanced queries is the primary advantage of running several tools against a sample, extracting as much information as possible, and storing the output in a common datastore. For example, the following types of analytics and queries are possible:

	cluster samples

	outlier samples

	samples for deep-dive analysis

	gaps in current toolset

	machine learning analytics on tool outputs

Reporting

Analysis data captured or generated by MultiScanner is accessible in three ways:

	MultiScanner Web User Interface – Content in the Elasticsearch database is viewable through the Web UI. See Web UI section for details.

	MultiScanner Reports – MultiScanner reports reflect the content of the MultiScanner database and are provided in raw JSON and PDF formats. These reports capture all content associated with a sample.

	STIX-based reports will soon be available in multiple formats: JSON, PDF, HTML, and text.

Use Cases

MultiScanner is intended to be used by security operations centers, malware analysis centers, and other organizations involved with cyber threat intelligence (CTI) sharing. This section outlines associated use cases.

Scalable Malware Analysis

Every component of MultiScanner is designed with scaling in mind, enabling analysis of large malware data sets.

Note that scaling required for external analysis tools such as Cuckoo Sandbox is beyond the scope of MultiScanner code, as is auto-scaling (e.g., scaling required to auto-provision virtual machines). New worker nodes must be deployed manually and added to the Ansible playbook for proper configuration (see Installing Analytic Machines).

Manual Malware Analysis

MultiScanner can support manual malware analysis via modules that enable analyst interaction. For example, a module could be developed to allow an analyst to interact with IDA Pro to disassemble and analyze a binary file.

Analysis-Oriented Malware Repository

MultiScanner enables long term storage of binaries and metadata associated with malware analysis.

Data Enrichment

Malware analysis results can be enriched in support of CTI sharing objectives. In addition to data derived from analysis of submitted samples, other CTI sources can be integrated with MultiScanner, such as TAXII feeds, commercial CTI providers (FireEye, Proofpoint, CrowdStrike, etc.), and closed-source CTI providers.

Data Analytics

Data analytics can be performed on malware samples either by interacting with the Elasticsearch datastore or via the Web/REST UI.

Installation

Installation information for the different components of MultiScanner is provided below. To get an idea of how the system works without going through the full process of setting up the distributed architecture, refer to the section on Standalone Docker Installation.

The Docker standalone system is less scalable, robust, and feature-rich, but it enables easy stand up the web UI, the REST API, and an Elasticsearch node, allowing users to quickly see how the system works. The standalone container is intended as an introduction to the system and its capabilities, but is not designed for operational use.

System Requirements

Python 3.6 is recommended. Compatibility with Python 2.7+ and 3.5+ is supported but not thoroughly maintained and tested. Please submit an issue or a pull request fixing any issues found with other versions of Python.

An installer script is included in the project (install.sh [https://github.com/mitre/multiscanner/blob/feature-celery/install.sh]), which installs the prerequisites on most systems.

Currently, MultiScanner is deployed with Ansible, and we’re working to support distributed architecture deployment via Docker.

Installing Ansible

The installer script [https://github.com/mitre/multiscanner/blob/feature-celery/install.sh] should install the required Python packages for users of RedHat- or Debian-based Linux distributions. Users of other distributions should refer to requirements.txt [https://github.com/mitre/multiscanner/blob/feature-celery/requirements.txt].

MultiScanner requires a configuration file to run. After cloning the repository, generate the MultiScanner default
configuration by running python multiscanner.py init. The command can be used to rewrite the configuration file to its default state or, if new modules have been written, to add their configuration details to the configuration
file.

Installing Analytic Machines

Default modules have the option of being run locally or via SSH. The development team
runs MultiScanner on a Linux host and hosts the majority of analytical tools on
a separate Windows machine. The SSH server used in this environment is freeSSHd [http://www.freesshd.com/].

A network share accessible to both the MultiScanner and the analytic machines is
required for the multi-machine setup. Once configured, the network share path must
be identified in the configuration file, config.ini (an example can be found
here [https://github.com/mitre/multiscanner/blob/master/docker_utils/config.ini]).
To do this, set the copyfilesto option under [main] to be the mount point on the system running MultiScanner.
Modules can have a replacement path option, which is the network share mount point
on the analytic machine.

Installing Elasticsearch

Starting with Elasticsearch 2.x, field names can no longer contain ‘.’ (dot) characters. Thus, the MultiScanner elasticsearch_storage module adds a pipeline called “dedot” with a processor to replace dots in field names with underscores.

Add the following to the elasticsearch.yml configuration file for the dedot processor to work:

script.painless.regex.enabled: true

To use the Multiscanner web UI, also add the following:

http.cors.enabled: true
http.cors.allow-origin: "<yourOrigin>"

Configuration

MultiScanner and its modules are configured within the configuration file, config.ini. An example can be found
here [https://github.com/mitre/multiscanner/blob/master/docker_utils/config.ini].

The following parameters configure MultiScanner itself, and go in the [main]
section of the config file.

	Parameter

	Description

	copyfilesto

	This is where the script will copy each file that is to be scanned. This can be removed or set to False to disable this feature.

	group-types

	This is the type of analytics to group into sections for the report. This can be removed or set to False to disable this feature.

	storage-config

	Path to the storage config file.

	api-config

	Path to the API config file.

	web-config

	Path to the Web UI config file.

Modules are intended to be quickly written and incorporated into the framework. Note that:

	A finished module must be placed in the modules folder before it can be used.

	The configuration file does not need to be manually updated.

	Modules are configured within the same configuration file, config.ini.

See Analysis Modules for information about all current modules and their configuration parameters.

Standalone Docker Installation

To introduce new users to the power of the MultiScanner framework, web UI, and REST API, we have built a standalone docker application that is simple to run in new environments. Simply clone the top level directory and run:

$ docker-compose up

This will build the three necessary containers (one for the web application, one for the REST API, and one for the Elasticsearch backend).

Running this command will generate a lot of output and take some time. The system is not ready until you see the following output in your terminal:

api_1 | * Running on http://0.0.0.0:8080/ (Press CTRL+C to quit)

Now you can go to the web interface at http://localhost:8000.

Note

We are assuming that you are already running latest version of docker and have the latest version of docker-compose installed on your machine. Guides on how to do that are here [https://docs.docker.com/engine/installation/]. and here [https://docs.docker.com/compose/install/].

Note

Since this docker container runs two web applications and an ElasticSearch node, there is a fairly high requirement for RAM / computing power. We’d recommend running this on a machine with at least 4GB of RAM.

Warning

THIS CONTAINER IS NOT DESIGNED FOR PRODUCTION USE. This is simply a primer for using MultiScanner’s web interface. Users should not run this in production or at scale. The MultiScanner framework is highly scalable and distributed, but that requires a full install. Currently, we support installing the distributed system via ansible. More information about that process can be found in this repo [https://github.com/mitre/multiscanner-ansible].

Note

This container will only be reachable / functioning on localhost.

Note

Additionally, if you are installing this system behind a proxy, you must edit the docker-compose.yml file in four places. First, uncomment lines 18-20 and lines 35-37. Next, uncomment lines 25-28 and set the correct proxy variables there. Finally, do the same thing in lines 42-45. The docker-compose.yml file has comments to make clear where to make these changes.

Using MultiScanner

	Web UI

	Python API

	RESTful API

	Analysis Modules

	Analytics

Web UI

Submitting Files for Analysis

When you visit MultiScanner’s web interface in a web browser, you’ll be greeted by the file submission page. Drag files onto the large drop area in the middle of the page or click it or the “Select File(s)…” button to select one or more files to be uploaded and analyzed.

[image: MultiScanner Web Interface]
Click on the “Advanced Options” button to change default options and set metadata fields to be added to the scan results.

[image: Advanced Options]
Metadata fields can be added or removed by editing web_config.ini. Metadata field values can be set for individual files by clicking the small black button below and to the right of that filename in the staging area.

[image: File Options]
Change from “Scan” to “Import” to import JSON analysis reports into MultiScanner. This is intended only to be used with the JSON reports you can download from a report page in MultiScanner.

[image: Import]
By default, if you resubmit a sample that has already been submitted, MultiScanner will pull the latest report of that sample. If you want MultiScanner to re-scan the sample, set that option in Advanced Options.

[image: Re-scan]
If you have a directory of samples you wish to scan at once, we recommend zipping them and uploading the archive with the option to extract archives enabled. You can also specify a password, if the archive file is password- protected. Alternatively you can use the REST API for bulk uploads.

[image: Archive Files]
Click the “Scan it!” button to submit the sample to MultiScanner.

[image: Scan It]
The progress bars that appear in the file staging area do not indicate the progress of the scan; a full bar merely indicates that the file has been uploaded to MultiScanner. Click on the file to go to its report page.

[image: Submission Progress Bar]
If the analysis has not completed yet, you’ll see a “Pending” message.

[image: Pending]

Viewing Analyses

Reports can be listed and searched in two different ways. The Analyses page lists the most recent report per sample.

[image: Analyses Page]
The History page lists every report of each sample. So if a file is scanned multiple times, it will only show up once on the Analyses page, but all of the reports will show up on the History page.

[image: History Page]
Both pages display the list of reports and allow you to search them. Click the blue button in the middle to refresh the list of reports.

[image: Refresh Button]
Click on a row in the list to go to that report, and click the red “X” button to delete that report from MultiScanner’s Elasticsearch database.

[image: Delete Button]

Searching

Reports can be searched from any page, with a few options. You can search Analyses to get the most recent scan per file, or search History to get all scans recorded for each file.

[image: Navbar Search]

	Use the “Default” search type to have wildcards automatically appended to the beginning and end of your search term.

	Use the “Exact” search type to search automatically append quotes and search for the exact phrase.

	Use the “Advanced” search type to search with the full power of Lucene query string syntax. Nothing will be automatically appended and you will need to escape any reserved characters yourself.

When you click on a search result, the search term will be highlighted on the Report page and the report will be expanded and automatically scrolled to the first match.

[image: History Search]

Viewing Reports

Each report page displays the results of a single analysis.

[image: Report Page]
Some rows in the report can be expanded or collapsed to reveal more data by clicking on the row header or the “Expand” button. Shift-clicking will also expand or collapse all of it’s child rows.

[image: Expand Button]
The “Expand All” button will expand all rows at once. If they are all expanded, this will turn into a “Collapse All” button that will collapse them all again.

[image: Expand All Button]
As reports can contain a great deal of content, you can search the report to find the exact data you are looking for with the search field located under the report title. The search term, if found, will be highlighted, the matching fields will be expanded, and the page automatically scrolled to the first match.

[image: In-Page Search]
Reports can be tagged by entering text in the Tags input box and hitting the enter key. As you type, a dropdown will appear with suggestions from the tags already in the system. It will pull the list of tags from existing reports, but a pre-populated list of tags can also be provided in web_config.ini when the web interface is set up.

[image: Tags]
You can download the report in a number of different formats using the Download button on the right side. You can download a JSON-formatted version of the report containing all the same data shown on the page. You can also download a MAEC-formatted version of the reports from Cuckoo Sandbox. Finally, you can also download the original sample file as a password-protected ZIP file. The password will be “infected”.

[image: Download]
Click on “Notes” to open a sidebar where analysts may enter notes or comments.

[image: Notes]
These notes and comments can be edited and deleted. Click the “<” button to collapse this sidebar.

[image: Close Notes]

Viewing Analytics

The Analytics page displays various pieces of advanced analysis. For now, this is limited to ssdeep comparisons.

[image: Analytics Page]

The table lists samples, with those that have very similar ssdeep hashes grouped together. Other analytics will be added in the future. For more information, see the analytics section.

Python API

MultiScanner can be incorporated as a module in another project. Below is a simple example of how to import MultiScanner into a Python script.

import multiscanner
output = multiscanner.multiscan(file_list)
results = multiscanner.parse_reports(output, python=True)

results is a dictionary object where each key is a filename of a scanned file.

multiscanner.config_init(filepath) will create a default configuration file at the location defined by filepath.

RESTful API

The RESTful API is provided by a Flask app that supports the following operations:

	Method

	URI

	Description

	GET

	/

	Test functionality. Should produce: {'Message': 'True'}

	GET

	/api/v1/files/<sha256>?raw={t|f}

	Download sample, defaults to passwd protected zip

	GET

	/api/v1/modules

	Receive list of modules available

	GET

	/api/v1/tags

	Receive list of all tags in use

	GET

	/api/v1/tasks

	Receive list of tasks in MultiScanner

	POST

	/api/v1/tasks

	POST file and receive report id.
Sample POST usage:
curl -i -X POST http://localhost:8080/api/v1/tasks -F file=@/bin/ls

	GET

	/api/v1/tasks/<task_id>

	Receive task in JSON format

	DELETE

	/api/v1/tasks/<task_id>

	Delete task_id

	GET

	/api/v1/tasks/search/

	Receive list of most recent report for matching samples

	GET

	/api/v1/tasks/search/history

	Receive list of most all reports for matching samples

	GET

	/api/v1/tasks/<task_id>/file?raw={t|f}

	Download sample, defaults to passwd protected zip

	GET

	/api/v1/tasks/<task_id>/maec

	Download the Cuckoo MAEC 5.0 report, if it exists

	GET

	/api/v1/tasks/<task_id>/notes

	Receive list of this tasks notes

	POST

	/api/v1/tasks/<task_id>/notes

	Add a note to task

	PUT

	/api/v1/tasks/<task_id>/notes/<note_id>

	Edit a note

	DELETE

	/api/v1/tasks/<task_id>/notes/<note_id>

	Delete a note

	GET

	/api/v1/tasks/<task_id>/report?d={t|f}

	Receive report in JSON, set d=t to download

	GET

	/api/v1/tasks/<task_id>/pdf

	Receive PDF report

	POST

	/api/v1/tasks/<task_id>/tags

	Add tags to task

	DELETE

	/api/v1/tasks/<task_id>/tags

	Remove tags from task

	GET

	/api/v1/analytics/ssdeep_compare

	Run ssdeep.compare analytic

	GET

	/api/v1/analytics/ssdeep_group

	Receive list of sample hashes grouped by ssdeep hash

The API endpoints all have Cross Origin Resource Sharing (CORS) enabled. By default it will allow requests from any port on localhost. Change this setting by modifying the cors setting in the api section of the api config file.

Analysis Modules

The analysis modules currently available in MultiScanner are listed by catagory below.

	AV Scans

	

	AVG 2014

	Scans sample with AVG 2014 anti-virus

	ClamAVScan

	Scans sample with ClamAV

	McAfeeScan

	Scans sample with McAfee AntiVirus Command Line

	Microsoft Security Essentials

	Scans sample with Microsoft Security Essentials

	Metadefender

	Interacts with OPSWAT Metadefender Core 4 Version 3.x, polling Metadefender for scan results.

	vtsearch

	Searches VirusTotal for sample’s hash and downloads the report if available

	VFind

	Runs the CyberSoft VFind anti-malware scanner, part of the VFind Security Toolkit [https://www.cybersoft.com/products/vstk/].

	Database

	

	NSRL

	Looks up a hash in the National Software Reference Library [https://www.nist.gov/software-quality-group/national-software-reference-library-nsrl].

	Sandbox Detonation

	

	Cuckoo Sandbox

	Submits a sample to Cuckoo Sandbox cluster for analysis.

	FireEye API

	Detonates the sample in FireEye AX via FireEye’s API.

	VxStream

	Submits a file to a VxStream Sandbox cluster for analysis.

	Machine Learning

	

	MaliciousMacroBot

	Triage office files with MaliciousMacroBot [https://github.com/egaus/MaliciousMacroBot].

	Metadata

	

	entropy

	Calculates the Shannon entropy of a file.

	ExifToolsScan

	Scans sample with Exif tools and returns the results.

	fileextensions

	Determines possible file extensions for a file.

	floss

	FireEye Labs Obfuscated String Solver uses static analysis techniques to deobfuscate strings from malware binaries.

	impfuzzy

	Calculates a fuzzy hash using impfuzzy on Windows PE imports.

	libmagic

	Runs libmagic against the files to identify filetype.

	MD5

	Generates the MD5 hash of the sample.

	officemeta

	Extracts metadata from Microsoft Office documents.

	pdfinfo

	Extracts feature information from PDF files using pdf-parser [http://blog.didierstevens.com/programs/pdf-tools/].

	PEFile

	Extracts features from EXE files.

	pehasher

	Computes pehash values using a variety of algorithms: totalhase, anymaster, anymaster_v1_0_1, endgame, crits, and pehashng.

	SHA1

	Generates the SHA1 hash of the sample.

	SHA256

	Generates the SHA256 hash of the sample.

	ssdeep

	Generates context triggered piecewise hashes (CTPH) for files. More information can be found on the ssdeep website [http://ssdeep.sourceforge.net/].

	Tika

	Extracts metadata from the sample using Tika [https://tika.apache.org/].

	TrID

	Runs TrID [http://mark0.net/soft-trid-e.html] against a file.

	UAD

	Runs the CyberSoft Universal Atomic Disintegrator (UAD) tool, part of the VFind Security Toolkit [https://www.cybersoft.com/products/vstk/].

	Signatures

	

	YaraScan

	Scans the sample with Yara and returns the results.

Configuration Options

Parameters common to all modules are listed in the next section, followed by notes and module-specific parameters for those that have them.

Common Parameters

The parameters below may be used by all modules.

	Parameter

	Description

	path

	Location of the executable.

	cmdline

	An array of command line options to be passed to the executable.

	host

	The hostname, port, and username of the machine that will be SSH’d into to run the analytic if the executable is not present on the local machine.

	key

	The SSH key to be used to SSH into the host.

	replacement path

	If the main config is set to copy the scanned files this will be what it replaces the path with. It should be where the network share is mounted.

	ENABLED

	When set to false, the module will not run.

[Cuckoo]

This module submits a file to a Cuckoo Sandbox cluster for analysis.

	Parameter

	Description

	API URL

	The URL to the API server.

	WEB URL

	The URL to the Web server.

	timeout

	The maximum time a sample will run.

	running timeout

	An additional timeout, if a task is in the running state this many seconds past timeout, the task is considered failed.

	delete tasks

	When set to True, tasks will be deleted from Cuckoo after detonation. This is to prevent filling up the Cuckoo machine’s disk with reports.

	maec

	When set to True, a MAEC [https://maecproject.github.io] JSON-based report is added to Cuckoo JSON report. NOTE: Cuckoo needs MAEC reporting enabled to produce results.

[ExifToolsScan]

This module scans the file with Exif tools and returns the results.

	Parameter

	Description

	remove-entry

	A Python list of ExifTool results that should not be included in the report. File system level attributes are not useful and stripped out.

[FireEyeAPI]

This module detonates the sample in FireEye AX via FireEye’s API. This “API” version replaces the “FireEye Scan” module.

	Parameter

	Description

	API URL

	The URL to the API server.

	fireeye images

	A Python list of the VMs in fireeye. These are used to generate where to copy the files.

	username

	Username on the FireEye AX.

	password

	Password for the FireEye AX.

	info level

	Options are concise, normal, and extended.

	timeout

	The maximum time a sample will run.

	force

	If set to True, will rescan if the sample matches a previous scan.

	analysis type

	0 = sandbox, 1 = live.

	application id

	For AX Series appliances (7.7 and higher) and CM Series appliances that manage AX Series appliances (7.7 and higher), setting the application value to -1 allows the AX Series appliance to choose the application. For other appliances, setting the application value to 0 allows the AX Series appliance to choose the application.

[floss]

This module extracts ASCII, UTF-8, stack and obfuscated strings from executable files. More information about module configuration can be found at the flare-floss [https://github.com/fireeye/flare-floss/blob/master/doc/usage.md] documentation.

[impfuzzy]

This module calculates a fuzzy hash using ssdeep where Windows PE imports is the input. This strategy was originally described in a blog post [http://blog.jpcert.or.jp/2016/05/classifying-mal-a988.html] from JPCERT/CC.

[libmagic]

This module runs libmagic against the files.

	Parameter

	Description

	magicfile

	The path to the compiled magic file you wish to use. If None it will use the default one.

[Metadefender]

This module runs Metadefender against the files.

	Parameter

	Description

	timeout

	The maximum time a sample will run.

	running timeout

	An additional timeout, if a task is in the running state this many seconds past timeout, the task is considered failed.

	fetch delay seconds

	The number of seconds for the module to wait between submitting all samples and polling for scan results. Increase this value if Metadefender is taking a long time to store the samples.

	poll interval

	The number of seconds between successive queries to Metadefender for scan results. Default is 5 seconds.

	user agent

	Metadefender user agent string, refer to your Metadefender server configuration for this value. Default is “user agent”.

[NSRL]

This module looks up hashes in the NSRL database. These two parameters are automatically generated. Users must run nsrl_parse.py tool in the utils/ directory before using this module.

	Parameter

	Description

	hash_list

	The path to the NSRL database on the local filesystem, containing the MD5 hash, SHA1 hash, and original file name.

	offsets

	A file that contains the pointers into hash_list file. This is necessary to speed up searching of the NSRL database file.

[officemeta]

This module extracts metadata from Microsoft Office documents.

Note: This module does not support OOXML [https://en.wikipedia.org/wiki/Office_Open_XML] documents (e.g., docx, pptx, xlsx).

[pdfinfo]

This module extracts out feature information from PDF files. It uses pdf-parser [http://blog.didierstevens.com/programs/pdf-tools/].

[PEFile]

This module extracts out feature information from EXE files. It uses pefile [https://code.google.com/p/pefile/] which is currently not available for python 3.

[ssdeeper]

This module generates context triggered piecewise hashes (CTPH) for the files. More information can be found on the ssdeep website [http://ssdeep.sourceforge.net/].

[Tika]

This module extracts metadata from the file using Tika [https://tika.apache.org/]. For configuration of the module see the tika-python [https://github.com/chrismattmann/tika-python/blob/master/README.md] documentation.

	Parameter

	Description

	remove-entry

	A Python list of Tika results that should not be included in the report.

[TrID]

This module runs TrID [http://mark0.net/soft-trid-e.html] against the files. The definition file should be in the same folder as the executable.

[vtsearch]

This module searches virustotal [https://www.virustotal.com/] for the files hash and download the report if available.

	Parameter

	Description

	apikey

	Public/private api key. Can optionally make it a list and the requests will be distributed across them. This is useful when two groups with private api keys want to share the load and reports.

[VxStream]

This module submits a file to a VxStream Sandbox cluster for analysis.

	Parameter

	Description

	BASE URL

	The base URL of the VxStream server.

	API URL

	The URL to the API server (include the /api/ in this URL).

	API Key

	The user’s API key to the API server.

	API Secret

	The user’s secret to the API server.

	Environment ID

	The environment in which to execute the sample (if you have different sandboxes configured).

	Verify

	Set to false to ignore TLS certificate errors when querying the VxStream server.

	timeout

	The maximum time a sample will run

	running timeout

	An additional timeout, if a task is in the running state this many seconds past timeout, the task is considered failed.

[YaraScan]

This module scans the files with yara and returns the results. You will need yara-python installed for this module.

	Parameter

	Description

	ruledir

	The directory to look for rule files in.

	fileextensions

	A Python array of all valid rule file extensions. Files not ending in one of these will be ignored.

	ignore-tags

	A Python array of yara rule tags that will not be included in the report.

Analytics

Currently, one analytic is available.

ssdeep Comparison

Fuzzy hashing is an effective method to identify similar files based on common byte strings despite changes in the byte order and structure of the files. ssdeep [https://ssdeep-project.github.io/ssdeep/index.html] provides a fuzzy hash implementation and provides the capability to compare hashes. Virus Bulletin [https://www.virusbulletin.com/virusbulletin/2015/11/optimizing-ssdeep-use-scale/] originally described a method for comparing ssdeep hashes at scale.

Comparing ssdeep hashes at scale is a challenge. Therefore, the ssdeep analytic computes ssdeep.compare for all samples where the result is non-zero and provides the capability to return all samples clustered based on the ssdeep hash.

Elasticsearch

When possible, it can be effective to push work to the Elasticsearch cluster which support horizontal scaling. For the ssdeep comparison, Elasticsearch NGram Tokenizers [https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-ngram-tokenizer.html] are used to compute 7-grams of the chunk and double-chunk portions of the ssdeep hash, as described here [http://www.intezer.com/intezer-community-tip-ssdeep-comparisons-with-elasticsearch/]. This prevents the comparison of two ssdeep hashes where the result will be zero.

Python

Because we need to compute ssdeep.compare, the ssdeep analytic cannot be done entirely in Elasticsearch. Python is used to query Elasticsearch, compute ssdeep.compare on the results, and update the documents in Elasticsearch.

Deployment

celery beat [http://docs.celeryproject.org/en/latest/userguide/periodic-tasks.html] is used to schedule and kick off the ssdeep comparison task nightly at 2am local time, when the system is experiencing less load from users. This ensures that the analytic will be run on all samples without adding an exorbinant load to the system.

Custom Development

	Developing an Analysis Module
	Mandatory Functions
	check()

	scan()

	Special Globals

	Module Interface
	Variables

	Functions

	Configuration

	Developing an Analytic

	Writing a Storage Module
	Required components

	Optional components

	Example Module

Developing an Analysis Module

Modules are intended to be quickly written and incorporated into the MultiScanner framework. A module must be in the modules folder for it to be used on the next run. The configuration file does not need to be manually updated.

See this Example Module.

Mandatory Functions

When writing a new module, two mandatory functions must be defined: check() and scan(). Additional functions can be written as required.

check()

The check() function tests whether or not the scan function should be run.

Inputs: There are two supported argument sets with this function: check() and check(conf=DEFAULTCONF). If a module has a global variable DEFAULTCONF, the second argument set is required.

Outputs: The return value of the check() function is a boolean (True or False). A True return value indicated the scan() function should be run; a False return value indicates the module should no longer be run.

scan()

The scan() function performs the analytic and returns the results.

Inputs: There are two supported argument sets with this function: scan(filelist) and scan(filelist, conf=DEFAULTCONF). If a module has a global variable DEFAULTCONF, the second argument set is required.

Outputs: There are two return values of the scan() function: Results and Metadata (i.e., return (Results, Metadata)).

	Results is a list of tuples, the tuple values being the filename and the corresponding scan results (e.g.,``[(“file1.exe”, “Executable”), (“file2.jpg”, “Picture”)]``).

	Metadata is a dictionary of metadata information from the module. There are two required pieces of metadata Name and Type. Name is the name in the module and will be used in the report. Type is what type of module it is (e.g., Antivirus, content detonation). This information is used for a grouping feature in the report generation and provides context to a newly written module. Optionally, metadata information can be disabled and not be included in the report by setting metadata["Include"] = False.

Special Globals

There are two global variables that when present, affect the way the module is called.

DEFAULTCONF - This is a dictionary of configuration settings. When set, the settings will be written to the configuration file, making it user editable. The configuration object will be passed to the module’s check and scan function and must be an argument in both functions.

REQUIRES - This is a list of analysis results required by a module. For example, REQUIRES = ['MD5'] will be set to the output from the module MD5.py. An Example Module is provided.

Module Interface

The module interface is a class that is put into each module as it is run. This allows for several features to be added for interacting with the framework at runtime. It is injected as multiscanner in the global namespace.

Variables

	write_dir - This is a directory path that the module can write to. This will be unique for each run.

	run_count - This is an integer that increments for each subscan that is called. It is useful for preventing infinite recursion.

Functions

	apply_async(func, args=(), kwds={}, callback=None) - This mirrors multiprocessing.Pool.apply_async and returns a multiprocessing.pool.AsyncResult [https://docs.python.org/2/library/multiprocessing.html#multiprocessing.pool.AsyncResult]. The pool is shared by all modules.

	scan_file(file_path, from_filename) - This will scan a file that was found inside another file. file_path should be the extracted file on the filesystem (you can write it in path at multiscanner.write_dir). from_filename is the file it was extracted from.

Configuration

If a module requires configuration, the DEFAULTCONF global variable must be defined. This variable is passed to both check() and scan(). The configuration will be read from the configuration file if it is present. If the file is not present, it will be written into the configuration file.

If replacement path is set in the configuration, the module will receive file names, with the folder path replaced with the variable’s value. This is useful for analytics which are run on a remote machine.

By default, ConfigParser reads everything in as a string, before options are passed to the module and ast.literal_eval() is run on each option. If a string is not returned when expected, this is why. This does mean that the correct Python type will be returned instead of all strings.

Developing an Analytic

Enabling analytics and advanced queries is the primary advantage of running several tools against a sample, extracting as much information as possible, and storing the output in a common datastore. For example, the following types of analytics and queries might be of interest:

	cluster samples

	outlier samples

	samples for deep-dive analysis

	gaps in current toolset

	machine learning analytics on tool outputs

Analytic development is currently ad hoc. Until interfaces are created to standardize development, the Analytics section might prove useful - it contains development details of the ssdeep analytic.

Here’s the ssdeep code [https://github.com/mitre/multiscanner/blob/feature-celery/analytics/ssdeep_analytics.py] to use as a reference for how one might implement an analytic.

Writing a Storage Module

Each storage object is a class which needs to be derived from storage.Storage. You can have more than one storage object per python file.

Required components

You will need to override store(self, results). results is a python dictionary that is one of two formats. It is either:

{
 "Files": {
 "file1": {},
 "file2": {}
 }
 "Metadata": {
 "module1": {},
 "module2": {}
 }
}

or

{
 "file1": {},
 "file2": {}
}

A storage module should support both, even if the metadata is discarded.

Optional components

	You can override DEFAULTCONF in your storage module. This is a dictionary of config options which will appear in the storage config file.

	You can override setup(self). This should be anything that can be done once to prepare for mutliple calls to store, e.g. opening a network connection or file handle.

	You can override teardown(self). This will be called when no more store calls are going to be made.

Example Module

from __future__ import (division, absolute_import, with_statement,
 print_function, unicode_literals)

TYPE = "Example"
NAME = "include example"
REQUIRES = ["libmagic", "MD5"]
DEFAULTCONF = {
 'ENABLED': True,
}

def check(conf=DEFAULTCONF):
 # If the config disabled the module don't run
 if not conf['ENABLED']:
 return False
 # If one of the required modules failed, don't run
 if None in REQUIRES:
 return False
 return True

def scan(filelist, conf=DEFAULTCONF):
 # Define our results array
 results = []
 # Pull out the libmagic results and metadata
 libmagicresults, libmagicmeta = REQUIRES[0]

 # Pull out the md5 results and metadata
 md5results, md5meta = REQUIRES[1]
 # Make the md5 results a dictionary
 md5dict = dict(md5results)

 # Run through each value in the libmagic results
 for filename, libmagicresult in libmagicresults:
 if libmagicresult.startswith('PDF document'):
 # If the file's md5 is present we will use that in the results
 if filename in md5dict:
 results.append((filename, md5dict[filename] + " is a pdf"))
 # If we don't know the md5 use the filename instead
 else:
 results.append((filename, "is a pdf"))

 # Create out metadata dictionary
 metadata = {}
 metadata["Name"] = NAME
 metadata["Type"] = TYPE

 # Return our super awesome results
 return (results, metadata)

Testing

Running the MultiScanner test suite is fairly straight forward. We use the pytest framework [https://docs.pytest.org/en/latest/], which you can install by running:

$ pip install pytest

After that, simply cd into the top level multiscanner directory and run the command:

$ pytest

This will automatically find all the tests in the tests/ directory and run them. We encourage developers of new modules and users to contribute to our testing suite!

Front-end Tests with Selenium

Running front-end tests with Selenium requires installation and configuration outside of the Python environment, namely
the installation of Firefox and geckodriver.

	Install Firefox.

	Download latest geckodriver release from GitHub [https://github.com/mozilla/geckodriver/releases].

	Add geckodriver to system path.

Additional information about geckodriver setup can be found
here [https://developer.mozilla.org/en-US/docs/Mozilla/QA/Marionette/WebDriver#Setting_up_the_geckodriver_executable].

If pytest is unable to find Firefox or geckodriver, the front-end tests will be skipped. This is indicated by a
‘s’ in the pytest output.

Tests have been run successfullly with Firefox 58 and geckodriver 0.19.1 on macOS and Ubuntu 14.04, 16.04.

CentOS

The Firefox version available in the base repo is too far out-of-date to be compatible with the tests. Manually update
Firefox to the latest version.

	Remove old version of Firefox:

$ yum remove firefox

	You may need to install these dependencies for Firefox:

$ yum install -y gtk3 glib-devel glib pango pango-devel

	Download latest version of Firefox:

$ cd /usr/local
$ curl -L http://ftp.mozilla.org/pub/firefox/releases/58.0/linux-x86_64/en-US/firefox-58.0.tar.bz2 | tar -xjf

	Add symlink to bin dir:

$ ln -s /usr/local/firefox/firefox /usr/bin/firefox

Presentations

An overview of MultiScanner architecture, use cases, and capabilities (with specific focus on data science applications) was presented at AnacondaCON 2018. The video can be found here [https://youtu.be/Jg8G-a6qKTw].

Index

 _static/img/Selection_003.png
How to handle resubmissions?

Archives
(1) Extract zip/.rar archives Archive
and analyze contents? Password

Metadata Fields
(These apply to all files In this submission.)

Submitter
Name

Submission
Description

Submitter
Email

Submitter
Organization

Submitter
Phone

_static/img/Selection_004.png
Taskmgr.exe
(1.07 H8)

_static/img/Selection_001.png
MultiScanner

Submit Files For Analysis

Drag & drop files here ...
(or click to select files)

_static/img/Selection_002.png
show| 25 +|entries

Showing 1 to 10 of 10 entries

SSDeep Groups

SHA256

) a3ff117ece49c4c351a2a0720c89d6e3ad06cd202250e1741c91e7fd264ceea
) Sbdae3b7beb940c a737e5d804966413F1eb003558044937020686ca98a8a43
) 28fb6c21847bd0ae78965885453e7bF555655a01bd7c7c5534d56075F31eccd
) 19e87656226e357ede76473b095887d F45edab65b076c8adc49a109eb2b424
) 0e29dbba783387995007329b7456b6470846c3dbT304c6a34db6363b21677da0
1 b2417de25ad9e6bed08229561eb96042e83ab634407<7601a0113ed193Fe84
1 7abf4247d57€49756307c07e0562747020d17000a3c8F cc422ea4391981 F6a2
1 Oce3bfad72ced61884ae7c1d77c7d4cd5e17c7d767e669610C F2e72b636b464
2 d710a861447ab77ee5d661b603Fe2d36abc7b76d184b7d180083a35c712ad8
2 bc6779b25a139fed5213c3aede1c8526ec31b1c975841733F08c79F2a962d7

Search:

Previous

1

Next

_images/Selection_005.png
How to handle resubmissions?

Archives

_static/img/Selection_007.png
Archives

() Extract .zip/.rar archives Archive
and analyze contents? Password

_images/Selection_006.png
How to handle resubmissions?

Archives

~ . . rchi

_static/img/Selection_008.png
Scan

_images/Selection_003.png
How to handle resubmissions?

Archives
(1) Extract zip/.rar archives Archive
and analyze contents? Password

Metadata Fields
(These apply to all files In this submission.)

Submitter
Name

Submission
Description

Submitter
Email

Submitter
Organization

Submitter
Phone

_static/img/Selection_005.png
How to handle resubmissions?

Archives

_images/Selection_004.png
Taskmgr.exe
(1.07 H8)

_static/img/Selection_006.png
How to handle resubmissions?

Archives

~ . . rchi

_images/Selection_009.png
Submit Files For Analysis

B Taskmgr.exe
(1.07 H8)

WiTaskmgr.exe

_images/Selection_010.png
LRl search scans

Task 4 Report

()

Scan results pending...

_images/Selection_007.png
Archives

() Extract .zip/.rar archives Archive
and analyze contents? Password

_static/img/Selection_009.png
Submit Files For Analysis

B Taskmgr.exe
(1.07 H8)

WiTaskmgr.exe

_images/Selection_008.png
Scan

_static/img/Selection_010.png
LRl search scans

Task 4 Report

()

Scan results pending...

_images/Selection_011.png
Analyses
show| 10 entries [=] Search:

Task

D sample

4 ae0d7a5395a1472159e523061dca881cof260ecdd148edadadacd f4586aa9244
3 e28dddd5ed68589d627812550ae90e52beed162d8de0dsd612fabs 5abc6add
1 2c0b615ad6374493b0581a45662593044389d1ba66b21dc946cba39c6 b5 T4d8

Showing 1to 3 of 3 entries

Task Status
Complete
Complete

Complete

Previous

1

8
DOD |}

Next

_images/Selection_012.png
Show

Task.
)

10

History
:Ienlrles H

sample

ae0d7a5395a1472159e523061dcas81co260ecdd148edadadacd
4586229244

e28dddd5ed68589d62812550ae90e52beed 162d8de0dsd612fa
b8fSabceadd

ae0d7a5395a1472159e523061dcas81co260ecdd148edadadacd
4586229244

2c0b615ad634493b058124566259304d389d1ba66b21dc946cba
39c6bST4ds

Showing 1to 4 of 4 entries

Search:

Task Status

Complete

Complete

Complete

Complete

Timestamp

2017-11-16
14:31:08.595022

2017-11-14
16:41:42.284535

2017-10-23
13:14:27.280065

2017-10-23
13:14:27.280065

Previous

1 Next

_images/Selection_001.png
MultiScanner

Submit Files For Analysis

Drag & drop files here ...
(or click to select files)

_images/Selection_002.png
show| 25 +|entries

Showing 1 to 10 of 10 entries

SSDeep Groups

SHA256

) a3ff117ece49c4c351a2a0720c89d6e3ad06cd202250e1741c91e7fd264ceea
) Sbdae3b7beb940c a737e5d804966413F1eb003558044937020686ca98a8a43
) 28fb6c21847bd0ae78965885453e7bF555655a01bd7c7c5534d56075F31eccd
) 19e87656226e357ede76473b095887d F45edab65b076c8adc49a109eb2b424
) 0e29dbba783387995007329b7456b6470846c3dbT304c6a34db6363b21677da0
1 b2417de25ad9e6bed08229561eb96042e83ab634407<7601a0113ed193Fe84
1 7abf4247d57€49756307c07e0562747020d17000a3c8F cc422ea4391981 F6a2
1 Oce3bfad72ced61884ae7c1d77c7d4cd5e17c7d767e669610C F2e72b636b464
2 d710a861447ab77ee5d661b603Fe2d36abc7b76d184b7d180083a35c712ad8
2 bc6779b25a139fed5213c3aede1c8526ec31b1c975841733F08c79F2a962d7

Search:

Previous

1

Next

_static/img/Selection_014.png
Task.
)

sample
ae0d7a5395a1472159e523061dcas81cof260ecdd148edadadacd 4586aa9244

e28dddd5fed68589d627812550ae90e52beed162d8de0d8d612fabs 5abc6agd

Task Status
Complete

Complete

Delete

_images/Selection_013.png
Ana

yses

_static/img/Selection_015.png
Search Type: Default ~Exact Advanced

History Analytics

Search Target: Analyses | History

nav.xhtml

 Table of Contents

 		
 MultiScanner

 		
 Overview

 		
 Key Capabilities

 		
 Architecture

 		
 High-level Architecture

 		
 Complete Workflow

 		
 Analysis

 		
 Analytics

 		
 Reporting

 		
 Use Cases

 		
 Scalable Malware Analysis

 		
 Manual Malware Analysis

 		
 Analysis-Oriented Malware Repository

 		
 Data Enrichment

 		
 Data Analytics

 		
 Installation

 		
 System Requirements

 		
 Installing Ansible

 		
 Installing Analytic Machines

 		
 Installing Elasticsearch

 		
 Configuration

 		
 Standalone Docker Installation

 		
 Using MultiScanner

 		
 Web UI

 		
 Submitting Files for Analysis

 		
 Viewing Analyses

 		
 Searching

 		
 Viewing Reports

 		
 Viewing Analytics

 		
 Python API

 		
 RESTful API

 		
 Analysis Modules

 		
 Configuration Options

 		
 Analytics

 		
 ssdeep Comparison

 		
 Custom Development

 		
 Developing an Analysis Module

 		
 Mandatory Functions

 		
 Special Globals

 		
 Module Interface

 		
 Configuration

 		
 Developing an Analytic

 		
 Writing a Storage Module

 		
 Required components

 		
 Optional components

 		
 Example Module

 		
 Testing

 		
 Front-end Tests with Selenium

 		
 CentOS

 		
 Presentations

_static/img/Selection_012.png
Show

Task.
)

10

History
:Ienlrles H

sample

ae0d7a5395a1472159e523061dcas81co260ecdd148edadadacd
4586229244

e28dddd5ed68589d62812550ae90e52beed 162d8de0dsd612fa
b8fSabceadd

ae0d7a5395a1472159e523061dcas81co260ecdd148edadadacd
4586229244

2c0b615ad634493b058124566259304d389d1ba66b21dc946cba
39c6bST4ds

Showing 1to 4 of 4 entries

Search:

Task Status

Complete

Complete

Complete

Complete

Timestamp

2017-11-16
14:31:08.595022

2017-11-14
16:41:42.284535

2017-10-23
13:14:27.280065

2017-10-23
13:14:27.280065

Previous

1 Next

_static/img/Selection_013.png
Ana

yses

_images/Selection_016.png
History
a

Search:

Search Type:

_static/img/Selection_018.png
‘ Search within th)

filename Taskmgr.exe

Scan 2017-11-16T14:31:08.595022

o

Tags |

_images/Selection_017.png
filename

Scan
Time

MDs

SHAT

SHA256

ibmagic
pefile
pehash

ssdeep®

Task 4 Report

‘ Search within this report

Tags | J

Taskmgrexe

2017-11-16T14:31:08.595022

Sbfabba71e442ch34{e54069ef9c306
9fcB5022695094a78191 edfcdfBfbBadocacasaa
26007a539521472159€523061ca881cOR260ecdd 148edasadacdfse6aaszdd
PE32 executable (GUI) Intel 80386, for MS Windows
Expand @
Expand @

analyzed false

matches @

ssdeep_hash 12288:NIWYPOHSH/YpXQhA+OCIHICISKISXpvAYEVIWEW3AS6IUC3WQOSBXETGAICBNGQO+OXN+OCJFC
V4Nx4mQOsBe7qdI8

(=]

_static/img/Selection_019.png
filename
scan
mD5
SHA1
SHA256

libmagic

pefile @

Task 4 Report

‘ Directul|

Tags

Taskmgr.exe

2017-11-16T1431:08.595022

Sbefabba71e442cb34fe54069ef9c306
9fc85022e95094a78191edfcdfBfb8adIcaca9aa
ae0d7a5395a1472159523061dca881c0f260ecdd 148edadadacdf4586aad244

PE32 executable (GUI) Intel 80386, for MS Windows.

debug info Expand ©

exports None

import_hash ebd01d8C0a6939e562708a83720372a9

imports @ 720AutoLocke ITTAN] @ @QAE@PAU RTL CRITICAL_
SECTION@@@Z

Meeqacexz

720CCListVieweITIRIl@ @ QAE@XZ

Expand @

Expand @

Expand ©

_images/Selection_014.png
Task.
)

sample
ae0d7a5395a1472159e523061dcas81cof260ecdd148edadadacd 4586aa9244

e28dddd5fed68589d627812550ae90e52beed162d8de0d8d612fabs 5abc6agd

Task Status
Complete

Complete

Delete

_static/img/Selection_016.png
History
a

Search:

Search Type:

_images/Selection_015.png
Search Type: Default ~Exact Advanced

History Analytics

Search Target: Analyses | History

_static/img/Selection_017.png
filename

Scan
Time

MDs

SHAT

SHA256

ibmagic
pefile
pehash

ssdeep®

Task 4 Report

‘ Search within this report

Tags | J

Taskmgrexe

2017-11-16T14:31:08.595022

Sbfabba71e442ch34{e54069ef9c306
9fcB5022695094a78191 edfcdfBfbBadocacasaa
26007a539521472159€523061ca881cOR260ecdd 148edasadacdfse6aaszdd
PE32 executable (GUI) Intel 80386, for MS Windows
Expand @
Expand @

analyzed false

matches @

ssdeep_hash 12288:NIWYPOHSH/YpXQhA+OCIHICISKISXpvAYEVIWEW3AS6IUC3WQOSBXETGAICBNGQO+OXN+OCJFC
V4Nx4mQOsBe7qdI8

(=]

_images/Selection_020.png
Task 4 Report

Search within this report

M

} Malware
filename Taskmgr.exe

ScanTime 2017-11-16T14:31:08.595022

MDs Sbafabba71e442ch34fe54069efac306

_images/Selection_021.png
k 4 Report

JSON
sample
MAEC

_images/Selection_018.png
‘ Search within th)

filename Taskmgr.exe

Scan 2017-11-16T14:31:08.595022

o

Tags |

_static/img/Selection_020.png
Task 4 Report

Search within this report

M

} Malware
filename Taskmgr.exe

ScanTime 2017-11-16T14:31:08.595022

MDs Sbafabba71e442ch34fe54069efac306

_images/Selection_019.png
filename
scan
mD5
SHA1
SHA256

libmagic

pefile @

Task 4 Report

‘ Directul|

Tags

Taskmgr.exe

2017-11-16T1431:08.595022

Sbefabba71e442cb34fe54069ef9c306
9fc85022e95094a78191edfcdfBfb8adIcaca9aa
ae0d7a5395a1472159523061dca881c0f260ecdd 148edadadacdf4586aad244

PE32 executable (GUI) Intel 80386, for MS Windows.

debug info Expand ©

exports None

import_hash ebd01d8C0a6939e562708a83720372a9

imports @ 720AutoLocke ITTAN] @ @QAE@PAU RTL CRITICAL_
SECTION@@@Z

Meeqacexz

720CCListVieweITIRIl@ @ QAE@XZ

Expand @

Expand @

Expand ©

_images/Selection_022.png
Multi

filename

Taskmgrexe

ScanTime 2017-11-16T14:31:08.59502:

_static/img/Selection_011.png
Analyses
show| 10 entries [=] Search:

Task

D sample

4 ae0d7a5395a1472159e523061dca881cof260ecdd148edadadacd f4586aa9244
3 e28dddd5ed68589d627812550ae90e52beed162d8de0dsd612fabs 5abc6add
1 2c0b615ad6374493b0581a45662593044389d1ba66b21dc946cba39c6 b5 T4d8

Showing 1to 3 of 3 entries

Task Status
Complete
Complete

Complete

Previous

1

8
DOD |}

Next

_images/Selection_023.png
Hello World

Add a Note/Comment:

Hello World

filename

Sear|

Tags

Taskmgrexe
2017-11-16T14:31:08.5
Sbfabba71ed42ch3a
9fcB5022695094a78191

ae0d7a5395a1472159¢}

PE32 execytable (GUN

_static/img/arch1.png
Distributed File System
(GlusterFS)

Data Storage

T Samples

* Reports

Task Management

* Assignment

* Tracking

Task
Management
(Quleue/ Worker Nodes
Celery, Python a
RabbitMQ) vt PPl

REST Ul
(Flask)

Task Tracking
Database

User Interface (Postgresql)

;

Task Execution

Backend Datastore

(Elasticsearch) - Components co-located

_images/Selection_024.png
Scan Time
mD5

SHA1
SHA256
libmagic
pefile

pehash

2017-11-16T1431:08.595022
Sbafabba71ed42ch34fes4069fo|
9fc85022695094a78191 edfcdlfafh)
ae0d7a5395a1472159e523061d(]

PE32 executable (GUI) Intel 803:

Expand @

Expand @

_static/img/arch2.png
Distributed File System
(GlusterFS)

[WELEEE
Queue t Worker Nodes

(Celery/ Pyth:
RabbitMQ) (Python app)

REST UI

Task Tracking
Database
(PostgresSQL)

Backend Datastore
(Elasticsearch)

_static/img/Selection_023.png
Hello World

Add a Note/Comment:

Hello World

filename

Sear|

Tags

Taskmgrexe
2017-11-16T14:31:08.5
Sbfabba71ed42ch3a
9fcB5022695094a78191

ae0d7a5395a1472159¢}

PE32 execytable (GUN

_static/img/Selection_024.png
Scan Time
mD5

SHA1
SHA256
libmagic
pefile

pehash

2017-11-16T1431:08.595022
Sbafabba71ed42ch34fes4069fo|
9fc85022695094a78191 edfcdlfafh)
ae0d7a5395a1472159e523061d(]

PE32 executable (GUI) Intel 803:

Expand @

Expand @

_images/overview.png
N 4
Malware Samples

o ‘@‘

Automated A:Ialysis Tools

® 3 ‘ /
- '
1 ———
w_‘\ Manual Analysis Tools

0 Data Analytics

External Queries

_static/ajax-loader.gif

_images/arch1.png
Distributed File System
(GlusterFS)

Data Storage

T Samples

* Reports

Task Management

* Assignment

* Tracking

Task
Management
(Quleue/ Worker Nodes
Celery, Python a
RabbitMQ) vt PPl

REST Ul
(Flask)

Task Tracking
Database

User Interface (Postgresql)

;

Task Execution

Backend Datastore

(Elasticsearch) - Components co-located

_static/img/overview.png
N 4
Malware Samples

o ‘@‘

Automated A:Ialysis Tools

® 3 ‘ /
- '
1 ———
w_‘\ Manual Analysis Tools

0 Data Analytics

External Queries

_images/arch2.png
Distributed File System
(GlusterFS)

[WELEEE
Queue t Worker Nodes

(Celery/ Pyth:
RabbitMQ) (Python app)

REST UI

Task Tracking
Database
(PostgresSQL)

Backend Datastore
(Elasticsearch)

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/img/Selection_021.png
k 4 Report

JSON
sample
MAEC

_static/img/Selection_022.png
Multi

filename

Taskmgrexe

ScanTime 2017-11-16T14:31:08.59502:

_static/down.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up.png

_static/up-pressed.png

