

MULTIPLY - Prior Engine

[image: buildstatus] [https://travis-ci.org/multiply-org/prior-engine] [image: Documentation Status] [https://multiply-prior-engine.readthedocs.io/en/latest/?badge=latest]

Scope of MULTIPLY

The MULTIPLY project will “develop a new platform for joint and consistent retrieval of Copernicus
SENTINEL data and beyond”.

This documentation covers the prior engine for the MULTIPLY main platform.
This module provides a priori information to the Inference Engine [https://github.com/multiply-org/KaFKA-InferenceEngine] to support land surface parameter retrieval.

The prior engine specific documentation [https://multiply-prior-engine.readthedocs.io/en/latest/] is hosted on ReadTheDocs. It is part of the MULTIPLY core documentation [http://multiply.readthedocs.io/en/latest/].
Please find the latest pdf version of this documentation here [https://readthedocs.org/projects/multiply-prior-engine/downloads/pdf/latest/].

First Steps

Getting Started

Please find instructions on how to download and install the prior engine in the Installation section.

Note

TBD: Getting started with python, bayes theorem, ..

Testing and Contribution

You are welcome to test and contribute to the MULTIPLY Prior Engine.

Please find corresponding guidelines and further information on how to do so in the How to contribute section and on the project GitHub page [https://github.com/multiply-org/prior-engine].

Content

	Introduction
	Background

	Goal

	Prior Data
	Vegetation Prior Data

	Soil Moisture Prior Data

	Installation
	Download

	Installation procedure

	Module requirements

	Usage
	Python Package

	User defined priors

	Command Line Interface

	Logging

	Processing Flow
	Description of Prior Generation

	Technical Description

	References

Developer Documentation

	Changelog
	Version 0.5.0 - 2019-09-19

	Version 0.4.2 - 2018-11-05

	Version 0.4.1 - 2018-11-02

	Version 0.4 - 2018-09-01

	Version 0.3 - 2018-03-07

	How to contribute
	Introduction to git and Github

	Getting Started

	General Information on pull requests

	Contributing to Issues

	Contributing to Code

	Contributing to Documentation

	Testing

	Module documentation
	prior_engine module

	prior module

	soilmoisture_prior module

	vegetation_prior module

	License

Indices and tables

	Module Index

	Index

	Search Page

Introduction

Priors are an essential component in the MULTIPLY inference engine as they provide a priori information
on different components of the unknown state vector of the system, helping to constrain the ill-posed problem given that the information content from the observations alone is insufficient. A series of prior models with different levels of complexity is therefore required and will be developed and implemented as part of the MULTIPLY platform.

The priors to be implemented are:

	Differential characterisation of the traits of vegetation types or (crop) species

	Vegetation phenology

	Surface soil moisture dynamics

	Surface disturbances

Background

A seamless and gap free integration of SENTINEL data streams requires the transfer of information across temporal and spatial scales. Typically data gaps are filled using low pass filters and different interpolation techniques (e.g. Savitzky-Golay filter; Savitzky & Golay, 1964) directly on parameter space (e.g. Yuan et al., 2011; Kandasamy et al. 2013). However, this approach is inconsistent, as the ill-posed nature of the inversion problem results in strong correlations between parameters: smoothing one parameter breaks that relationship with other retrieved parameters. Additionally, the role of uncertainty is usually ignored in filtering. Given that filtering methods originate from a prior belief in the smoothness of the processes that control the evolution of the parameters, it makes sense to implement these smoothness constraints consistently as priors within the retrieval process. These so-called regularisation constraints encompass our prior belief in the spatial and temporal correlation of the parameter fields. These constraints are implemented within the MULTIPLY platform as a weak constraint. The added benefit of having these constraints is that they not only result in smoother and more consistent series (an added benefit is an important reduction in parameter uncertainty), but also in spatially and temporally gap free estimates of biophysical parameters.

However, other prior information should be used to better constrain the inversion, and make sure that the inferences on the parameters are consistent with our understanding of biogeochemical processes and their effect on the state of the land surface.

Goal

The major objectives of this software are i) to implement the required technical infrastructures to
provide the prior information at appropriate temporal and spatial scales in relation to the SENTINEL
observations, and ii) implement a flexible user interface which allows user to integrate own prior
models as a MULTIPLY plugin.

Prior Data

Vegetation Prior Data

Note

TBD

Soil Moisture Prior Data

The provided prior data for the soil moisture domain is twofold. Mattia et al. [Mattia] show that the usage of climatological mean soil moisture information significantly improves soil moisture estimates from active microwave observations. Therefore, a soil moisture climatology is used as prior to get a general idea of the amplitude, variability and seasonal behaviour of the in situ soil moisture. Furthermore, a dynamic daily coarse resolution product is consulted for an a priori estimation of the current state.

The climatological prior data set has been generated from the global ESA CCI SM v04.4 COMBINED product which is derived from a combination of active and passive satellite sensors over the period 1978 - 2018. Originally, the data set provides daily surface soil moisture with a spatial resolution of 0.25 degree ([Dorigo]; [Gruber]; [Liu]). The data was aggregated to monthly means. Uncertainty is given by the intra-monthly standard deviation.

Data from the Soil Moisture Active Passive (SMAP) project is used as dynamic prior ([Reichle]). Specifically, the model-derived value-added Level 4 data product with 3-hourly estimates of soil moisture and respective error estimates at a 9 km resolution are averaged to daily values as the MULTIPLY platform assimilates data at this temporal resolution.

[image: Climatological Soil Moisture July]
Climatological Soil Moisture July

	Mattia

	Mattia, F. et al. (2006) Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions. IEEE Trans. Geosci. Remote Sens. 44: 900–912.

	Dorigo

	Dorigo, W. A., et al., 2017, ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sensing of Environment, 203, 185-215, 2017, doi:10.1016/j.rse.2017.07.001.

	Gruber

	Gruber, A., et al., 2017, Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals, Transactions on Geoscience and Remote Sensing, 55(12), 1-13. doi:10.1109/TGRS.2017.2734070.

	Liu

	Liu, Y. Y., et al., 2012, Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297.

	Reichle

	Reichle, R. et al. 2014. SMAP Algorithm Theoretical Basis Document: L4 Surface and Root-Zone Soil Moisture Product. SMAP Project, JPL D-66483, Jet Propulsion Laboratory, Pasadena, CA, USA.

Installation

Download

If not already done so, the first step is to clone the latest code and change directory:

	1
2

	git clone https://github.com/multiply-org/prior-engine.git
cd prior-engine

Note

The MULTIPLY platform has been developed against Python 3.6.
It cannot be guaranteed to work with previous Python versions.

Installation procedure

The MULTIPLY prior engine can be run from sources directly.
To install the MULTIPLY prior engine into an existing Python environment just for the current user, use

python setup.py install --user

To install the MULTIPLY Core for development and for the current user, use

python setup.py develop --user

Using Conda

Note

TBD

Module requirements

from requirements.txt:

numpy==1.16
shapely==1.6
h5py==2.8
pandas==0.22
scipy==0.22
setuptools==40.8
matplotlib==2.2
pytest==4.6
gdal==2.4
netCDF4==1.5
PyYAML==3.12
typing
python_dateutil
recommonmark

Usage

Python Package

MULTIPLY prior engine is available as Python Package.
To import it into your python application, use

import multiply_prior_engine

User defined priors

Users are provided the possibility to choose between prior-types, using the configuration file. This configuration file can be modified by both the users directly (using simple text editors), as well as the user-interface described below and in the upcoming MULTIPLY platform user-interface.

The user has three options to add prior data to the retrieval (in addition to choosing priors already made available by MULTIPLY).

	The user can choose to define single values for the prior in terms of transformed ‘mu’ and ‘unc’ values.

	The user can choose to provide a single geolocated tiff file, with both mean and uncertainty values. Here, the mean value should be provided as the first band, while the uncertainty of these values should be provided as the second band.

	Finally, the user can choose to provide a directory with multiple files, following a similar structure as the previous choice. Here, the files should be given a 8 digit date stamp in the filename.

The configuration file then could look like:

Prior
 General:
 directory_data: ‘path 2 prior engine’
 LAI:
 database
 static_dir: same as general directory_data
 SM:
 user:
 mu: 0.5
 unc: 0.02
 CWC:
 user:
 file: ‘path to geotiff-file’
 ALA:
 user:
 dir: ‘path to directory with geotiff-files (sorted on date)’

 ...

 output_directory: ‘path to outputdirectory’

Command Line Interface

There is a Command Line Interface (CLI) integrated to allow for the following actions:

	add user defined prior data,

	import user defined prior data,

	remove/un-select prior data from configuration,

	show configuration.

The CLI’s help can be accessed via -h flag:

user_prior -h

and will show:

usage: user_prior.py [-h] {show,S,add,A,remove,R,import,I} ...

Utility to integrate User Prior data in MULTIPLY Prior Engine

positional arguments:
{show,S,add,A,remove,R,import,I}
 show (S) Show current prior config.
 add (A) Add prior directory to configuration.
 remove (R) Remove prior information from configuration.
 import (I) Import user prior data.

optional arguments:
-h, --help show this help message and exit

The help and description of the above mentioned sub-commands can be accessed via, e.g.:

user_prior add -h

Note

If installed for the current user only, make sure the directory the prior engine gets installed to is in your PATH variable.

Logging

For now the Prior Engine has its own logging setup. To set the logging level please adjust the level accordingly in the multiply_prior_engine/__init__.py file. Available options are: NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL.

Processing Flow

Priors are provided by the MULTIPLY prior engine for the respective forward operators. The relationships are shown in following figure:

[image: prior to forward operator relationship]
Figure 1: Relationship of priors to their respective forward operators.

Note

For information on user defined prior files please see the section on Usage.

Description of Prior Generation

This prototype is capable of delivering for both vegetation priors as well as soil priors spanning all variables required in the forward operators. The overall processing chain is divided up to two parts (dealing with the soil prior and the vegetation prior).

The optical prior engine is designed to deliver prior information to the inference engine specifically for the leaves and vegetation. The overall flow of the prior-engine is illustrated by Figure 2.

The ‘microwave’ prior engine is designed to deliver prior information for soil parameters. The overall flow of this part of the prior-engine is illustrated by Figure 3.

In these flowcharts a distinction is made between the current implementation of the prototype (green) and the final foreseen version of the prior engine (red).
In order for completeness a place-holder (orange) process is embedded into the flowchart. In addition, in the final version of the prior engine the users themselves can choose between how the specific prior are used (see Usage). User-selections are obtained from the configuration-file with which the MULTIPLY framework is run. This is represented in the flowchart by orange selection boxes.
Prior data specified by the User is currently not visualized for every prior generator.

Vegetation Priors

Within the prototype version of the module, the values of the priors are consistent with @peak biomass; no dynamical component is integrated into the prototype module.

[image: flow of 'optical' prior engine]
Figure 2: Flow in ‘optical’ prior engine

Soil Priors

The included priors for soil moisture are currently twofold:

	a climatological prior based on ESA CCI SM v04.4 [https://esa-soilmoisture-cci.org/] data

	a dynamic prior based on SMAP [https://smap.jpl.nasa.gov/data/] data

Please see the overall flow of this prior creator sub-engine below:

[image: flow of 'microwave' prior engine]
Figure 3: Flow in ‘microwave’ prior engine

Climatologic Priors

Mattia et al. [Mattia] show that the usage of climatological mean soil moisture information significantly improves soil moisture estimates from active microwave observations. Therefore, a soil moisture climatology is used as prior to get a general idea of the amplitude, variability and seasonal behaviour of the in situ soil moisture. Furthermore, a dynamic daily coarse resolution product is consulted for an a priori estimation of the current state.

The climatological prior data set has been generated from the global ESA CCI SM v04.4 COMBINED product which is derived from a combination of active and passive satellite sensors over the period 1978 - 2018 [GRUBER2019]. Originally, the data set provides daily surface soil moisture with a spatial resolution of 0.25 degree ([Dorigo]; [Gruber]; [Liu]). The data was aggregated to monthly means. Uncertainty is given by the intra-monthly standard deviation.
There is also a interpolation routine included to allow for smooth inter monthly transitions.

[image: Climatology soil moisture (bars) at point-scale with interpolated values (line)]
Figure 4: Climatology soil moisture (bars) at point-scale with interpolated values (line)

[image: Exemplary climatological soil moisture prior (mean) for April]
Figure 5: Exemplary climatological soil moisture prior (mean) for April

Dynamic Priors

Data from the Soil Moisture Active Passive (SMAP) project is used as dynamic prior ([Reichle]). Specifically, the model-derived value-added Level 4 data product with 3-hourly estimates of soil moisture and respective error estimates at a 9 km resolution are averaged to daily values as the MULTIPLY platform assimilates data at this temporal resolution.

“SMAP measurements provide direct sensing of soil moisture in the top 5 cm of the soil column. However, several of the key applications targeted by SMAP require knowledge of root zone soil moisture in the top 1 m of the soil column, which is not directly measured by SMAP. As part of its baseline mission, the SMAP project will produce model-derived value-added Level 4 data products to fill this gap and provide estimates of root zone soil moisture that are informed by and consistent with SMAP surface observations. Such estimates are obtained by merging SMAP observations with estimates from a land surface model in a data assimilation system. The land surface model component of the assimilation system is driven with observations-based meteorological forcing data, including precipitation, which is the most important driver for soil moisture. The model also encapsulates knowledge of key land surface processes, including the vertical transfer of soil moisture between the surface and root zone reservoirs. Finally, the model interpolates and extrapolates SMAP observations in time and in space, producing 3-hourly estimates of soil moisture at a 9 km resolution. The SMAP L4_SM product thus provides a comprehensive and consistent picture of land surface hydrological conditions based on SMAP observations and complementary information from a variety of sources.” [JPL]

The prior engine will rely on the MULTIPLY data-access component [https://github.com/multiply-org/data-access] to download the appropriate data sets. These are then converted to be used by the inference engine.
A valid registration on NASA’s Earthdata Service [https://urs.earthdata.nasa.gov/] is necessary.

Technical Description

The processing chain in the prior engine is defined in a config file.
For now this looks like:

General:
 roi: POLYGON ((48.0 11.3, 48.2 11.300, 48.1 11.1, 48.0 11, 48.0 11.3))
 start_time: 2017-01-01
 end_time: 2017-12-31
 time_interval: 1 # 1 day
 spatial_resolution : 10 # metres
 state_mask: /path/to/my/state_mask.tif # Or shape?
 output_directory_root: /some/where/
 # output_prefix: my_test_33

Inference: # inference config
 - parameters:
 - LAI
 - soil_moisture
 - optical_operator_library: some_operator.nc # Optional
 - sar_operator_library: some_other_operator.nc # Optional
 - a: identity
 - inflation: 1e3

Prior:
Prior section conventions

- 1. sub-level contains all potential variables (sm, roughness, lai, ..)
which are asked for/being inferred from Orchestrator/Inferrence Engine
and for which prior information is provided.
- 2. sub-level contains prior type (ptype). These can be commented out
to be omitted.

 General:
 directory_data: ./aux_data/Static/Vegetation/
 sm:
 climatology:
 dir: ./aux_data/Climatology/SoilMoisture/
 coarse:
 dir: ./aux_data/Coarse/SoilMoisture/
 clay_fraction:
 soil_map:
 file: ./aux_data/Static/SoilTexture/CLYPPT_M_sl1_250m_ll.tif
 sand_fraction:
 soil_map:
 file: ./aux_data/Static/SoilTexture/SNDPPT_M_sl1_250m_ll.tif

recent:
dir: ""
user1:
dir: "."
 # dynamic:
 # type: dynamic
 # model:
 # - API
 # - other
 # recent:
 # aux_data = ...
 # static:
 # type: static
 lai:
 database:
 cab:
 database:
 #climatology:
 # database: ../aux_data/new_geotiff
 # model:
 # veg:
 # veg_pft:
 # type: pft
 # database: /aux_data/some_DB
 # veg_spec:
 # type: species
 # database: /user_data/some_DB
 # -

Internal Flow

The internal flow and relations can be seen in figure 4.

[image: prior engine]Figure 6: Prior Engine relationships

References

	GRUBER2019

	Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate data records and their underlying merging methodology, Earth Syst. Sci. Data, 11, 717-739, https://doi.org/10.5194/essd-11-717-2019, 2019

	JPL

	https://smap.jpl.nasa.gov/data/

	Mattia

	Mattia, F. et al. (2006) Using a priori information to improve soil moisture retrieval from ENVISAT ASAR AP data in semiarid regions. IEEE Trans. Geosci. Remote Sens. 44: 900–912.

	Dorigo

	Dorigo, W. A., et al., 2017, ESA CCI Soil Moisture for improved Earth system understanding: State-of-the art and future directions, Remote Sensing of Environment, 203, 185-215, 2017, doi:10.1016/j.rse.2017.07.001.

	Gruber

	Gruber, A., et al., 2017, Triple Collocation-Based Merging of Satellite Soil Moisture Retrievals, Transactions on Geoscience and Remote Sensing, 55(12), 1-13. doi:10.1109/TGRS.2017.2734070.

	Liu

	Liu, Y. Y., et al., 2012, Trend-preserving blending of passive and active microwave soil moisture retrievals, Remote Sensing of Environment, 123, 280-297.

	Reichle

	Reichle, R. et al. 2014. SMAP Algorithm Theoretical Basis Document: L4 Surface and Root-Zone Soil Moisture Product. SMAP Project, JPL D-66483, Jet Propulsion Laboratory, Pasadena, CA, USA.

Changelog

All notable changes to this project will be documented in this file.

Unreleased changes [https://github.com/multiply-org/prior-engine/compare/v0.5.0...HEAD]

Version 0.5.0 [https://github.com/multiply-org/prior-engine/compare/v0.4.2...v0.5.0] - 2019-09-19

Added

	User defined vegetation priors from the TRYdatabase

	User prior generation CLI

	helper functions to manually create soil moisture prior data from SMAP and ESA CCI data

Changed

	Documentation and README update

	documentation requirements integrated in module requirements.txt file (necessary for building on RTD)

	Bugfixes

Version 0.4.2 [https://github.com/multiply-org/prior-engine/compare/v0.4.1...v0.4.2] - 2018-11-05

Changed

	minor fixes in README and documentation

Version 0.4.1 [https://github.com/multiply-org/prior-engine/compare/v0.4...v0.4.1] - 2018-11-02

Added

	In code documentation Vegetation Prior

Changed

	big update on general documentation

	config file is read from package_ressources

	prior .vrt files are now always global

Version 0.4 [https://github.com/multiply-org/prior-engine/compare/v0.3...v0.4] - 2018-09-01

Added

	command line interface to allow user to add prior data

	first implementation of coarse resolution soil moisture prior based on SMAP L4 data

	averaging and aggregation of output if multiple rasters are available for one date or variable

	logging in prior engine

Changed

	prior engine framework

	sub-engine from entry points in setup.py

	conventions through abstract base class implementation in prior creator

	in-code documentation

	fixed travis installation

Removed

	
	

Version 0.3 [https://github.com/multiply-org/prior-engine/compare/c76e059...v0.3] - 2018-03-07

Added

	get_mean_state_vector returns path to prior files and routes to specific submodule for soil and vegetation related priors respectively to produce/provide information.

	Vegetation prior:

	global vegetation trait maps as static prior implemented

	Soil moisture prior:

	basic implementation of ESA CCI soil moisture climatology based prior

Changed

	
	

Removed

	
	

The format is based on `Keep a Changelog <http://keepachangelog.com/en/1.0.0/>`_
and this project adheres to `Semantic Versioning <http://semver.org/spec/v2.0.0.html>`_.

How to contribute

You are very welcome to contribute to the MULTIPLY prior engine and we would love to see your ideas.
Wether you want to make changes, allowing the engine to work in your environment or to extend the functionality of it, it should be straightforward and as easy as possible.
The few guidelines which need to be followed by the contributor are listed below.
To keep it simple we follow the ‘standard procedure’ on github.

Introduction to git and Github

Resources for learning git:

	Git Handbook [https://guides.github.com/introduction/git-handbook/]

	Understanding the GitHub Flow [https://guides.github.com/introduction/flow/]

	Further Git and GitHub learning resources [https://help.github.com/articles/git-and-github-learning-resources/]

Getting Started

	Make sure you have a GitHub account [https://github.com/signup/free].

	Fork (guide [https://guides.github.com/activities/forking/]) the repository on GitHub (and git clone your fork locally).

	Check out the repository.

	Read How to submit a contribution [https://opensource.guide/how-to-contribute/#how-to-submit-a-contribution].

General Information on pull requests

from https://opensource.guide:

You should usually open a pull request in the following situations:

	Submit trivial fixes (for example, a typo, a broken link or an obvious error)

	Start work on a contribution that was already asked for, or that you’ve already discussed, in an issue

Tips and guidelines:

	sync your fork (guide [https://help.github.com/articles/syncing-a-fork/]) often with the upstream repository to avoid merge conflicts.

	adhere to the GitHub Flow and create a meaningful branch for your changes

	reference relevant issues in your pull request (e.g. ‘Closes #21.’)

Contributing to Issues

You can contribute either by helping to solve existing issues [https://github.com/multiply-org/prior-engine/issues] and provide the code updates via pull request or by filing new issues.

from https://opensource.guide:

You should usually open an issue in the following situations:

	Report an error you can’t solve yourself

	Discuss a high-level topic or idea (for example, community, vision or policies)

	Propose a new feature or other project idea

In any case:

	Check if the issue you are going to file already exists in our open issues [https://github.com/multiply-org/prior-engine/issues] .

	If you can’t find your issue already, open a new one [https://github.com/multiply-org/prior-engine/issues/new].

Contributing to Code

New features and bug fixes are very welcome. But, pull requests can only be accepted if:

	all continuous integration builds pass and

	tests for new code sections are included.

Contributing to Documentation

Contributions to the documentation of the MULTIPLY prior engine are always welcome. The current version can be found at http://multiply.readthedocs.io/.

After forking the repo, please find the documentation files inside the /doc folder in the root path of the repository. Adjust and file a pull request like you would do with code updates.

Testing

We use PyTest in the MULTIPLY software. The test files are located in the test folder in the source directory.

They can be run e.g. via:

pytest -vs

Note

This section will describe testing routines used in the prior engine necessary for development.

Module documentation

prior_engine module

Prior Engine for MULTIPLY.

Copyright (C) 2019 Thomas Ramsauer

	
class multiply_prior_engine.prior_engine.PriorEngine(**kwargs)

	Bases: object

Prior Engine for MULTIPLY.

holds prior initialization methods (e.g. config loading).
calls specific submodules (soilmoisture_prior, vegetation_prior, ..)

	
_check()

	initial check for passed values of
- config
- datestr
- variables

	Returns

	
	

	Return type

	
	

	
_concat_priors(prior_dict)

	Concatenate individual state vectors and covariance matrices
for sm, veg, ..

	Returns

	dictionary with keys beeing superordinate prior name (sm, ..)

	Return type

	dictionary

	
_get_prior(var)

	Called by get_priors for all variables to be inferred. For specific variable/prior (e.g. sm climatology) get prior info and calculate/provide prior.

	Parameters

	var – prior name (e.g. sm, lai, ..)

	Returns

	
	

	Return type

	
	

	
default_config = '/home/docs/checkouts/readthedocs.org/user_builds/multiply-prior-engine/checkouts/latest/docs/../multiply_prior_engine/sample_config_prior.yml'

	

	
get_priors()

	Get prior data.
calls _get_prior for all variables (e.g. sm, lai, ..) passed on to
get_mean_state_vector method.

	Returns

	dictionary with prior names/prior types/filenames as
{key/{key/values}}.

	Return type

	dictionary of dictionary

	
multiply_prior_engine.prior_engine._get_config(configfile)

	Load config from self.configfile.
writes to self.config.

	Returns

	
	

	
multiply_prior_engine.prior_engine.get_mean_state_vector(datestr: str, variables: list, config: str = './sample_config_prior.yml') → dict

	Return dictionary with variable dependent sub dictionary with prior type
(key) and filenames of prior files (values).

	Parameters

	
	datestr – The date (time?) for which the prior needs to be derived

	variables – A list of variables (sm, lai, roughness, ..)

for which priors need to be available

	Returns

	dictionary with keys being the variables and

values being a dictionary of prior type and filename of prior file.

prior module

Prior Class for MULTIPLY.

Copyright (C) 2018 Thomas Ramsauer

	
class multiply_prior_engine.prior_creator.PriorCreator(**kwargs)

	Bases: object

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 211

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_check()

	

	
_create_datetime()

	

	
_create_time_vector()

	Creates a time vector dependent on start & end time and time interval
from config file.
A vector containing datetime objects is written to self.time_vector.
A vector containing months ids (1-12) for each timestep is written to
self.time_vector_months.

	Returns

	
	

	Return type

	
	

	
abstract compute_prior_file() → str

	Might perform some computation, then retrieves the path to a file containing the prior info
:return:

	
abstract classmethod get_variable_names() → List[str]

	
	Returns

	A list of the variables that this prior creator is able to create priors for

soilmoisture_prior module

Soil Priors for Prior Engine in MULTIPLY.

Copyright (C) 2019 Thomas Ramsauer

	
class multiply_prior_engine.soilmoisture_prior_creator.MapPriorCreator(**kwargs)

	Bases: multiply_prior_engine.prior_creator.PriorCreator

Not Implemented
Prior which is based on a LC map and a LUT

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 211

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
classmethod get_variable_names()

	
	Returns

	A list of the variables that this prior creator is able to create priors for

	
class multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator(**kwargs)

	Bases: multiply_prior_engine.soilmoisture_prior_creator.MapPriorCreator

Not Implemented
Roughness Prior Creator which is based on a LC map and a LUT

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 211

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_map_lut()

	should do the mapping of s, l, ACL type

	
_read_lc()

	

	
_read_lut()

	

	
calc()

	

	
compute_prior_file()

	Might perform some computation, then retrieves the path to a file containing the prior info
:return:

	
classmethod get_variable_names()

	
	Returns

	A list of the variables that this prior creator is able to create priors for

	
save()

	save mapped roughness data to file

	
class multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator(**kwargs)

	Bases: multiply_prior_engine.prior_creator.PriorCreator

Soil moisture prior class.
Calculation of climatological prior.

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 211

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
_calc_climatological_prior()

	Calculate climatological prior.
Reads climatological file and extracts proper values for given
timespan and -interval.
Then converts the means and stds to state vector and covariance
matrices.

	Returns

	state vector and covariance matrix

	Return type

	tuple

	
_check_gdal_compliance(fn)

	

	
_create_global_vrt(fn, local=True)

	Create VRT file for file.

By default, the .vrt-file will be written to a local temporary
directory. If local is set to False, the file is written to the
directory the input file (fn) currently lives in.

	Parameters

	
	fn – file name

	local – create temporary local vrt.

	Returns

	file name of created vrt, or initial file name if no success.

	Return type

	string

	
_extract_climatology()

	Extract climatology values for ROI.
Part of _clac_climatological_prior().

	
_get_climatology_file()

	Load pre-processed climatology into self.clim_data.
Part of prior._calc_climatological_prior().

	
_get_prior_file_from_dir(directory, return_vrt=True)

	Get filename(s) of prior file(s) from directory.
If multiple files are found self._merge_multiple_prior_files is called.

Currently, the following prior types are supported:
- climatology (calculated from ESA CCI data, standard)
- coarse (daily aggregated SMAP L4 data, standard)
- soil_map (gloabal soil texture map data from soilgrids.org)
- user prior, provided through user_prior_creator

	Parameters

	directory – directory containing the files (from config)

	Returns

	filename

	Return type

	string

	
_get_recent_sm_proxy()

	

	
_merge_multiple_prior_files(fn_list)

	Merge files if more than one is available for current time step.
should be obsolete.

	Parameters

	fn_list – file list to process

	Returns

	file name of merged file

	Return type

	string

	
_provide_prior_file()

	Provide variable and prior type specific prior file name to Prior Engine.

	Returns

	absolute path to prior file for requested prior.

The file is gdal-compatible to be used in inference engine - either
GeoTiff or VRT format.
It includes 2 bands:

	mean value raster

	uncertainty raster

	Return type

	string

	
compute_prior_file()

	Initialize prior specific (climatological, …) calculation.

	Returns

	filename of prior file

	Return type

	string

	
classmethod get_variable_names()

	
	Returns

	A list of the variables that this prior creator is able to create priors for

vegetation_prior module

	
class multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator(**kwargs)

	Bases: multiply_prior_engine.prior_creator.PriorCreator

Description

	
AssignPFTTraits2Map(PFT, PFT_ids, varnames)

	Create Vegetation trait Prior map, using the Trait-database and PFT distribution maps
This function sets up a parallel processing chain around
- processespercore: here the actual assignment of traits to PFT distributions is performed

	Parameters

	
	PFT – arrays containing global Maps of PFT distributions

	PFT_ids – a list containing PFT ids

	varnames – list of variables to be converted into global file

	Returns

	map of vegetation trait-averages per PFT id, map of vegetation trait-uncertainties per PFT id

	Return type

	

	
Combine2PFT(LCC_map, CLM_map_i)

	Create PFT maps using CCI Landcover and Koppen Climate zone information
:param LCC_map: CCI Landcover map
:param CLM_map_i: Regridded Koppen Climate Zone map
:returns: PFT occurrence map, PFT classes, Number of PFTs, PFT ids
:rtype:

	
CombineTiles2Virtualfile(variable, doystr, directory_data)

	Combine all geotiff files into a virtual global file

	Parameters

	
	variable – variable to be converted into global file

	doystr – string containing date&time ‘2007-12-31 04:23’ for which global file needs to be created

	Returns

	the filename of the global VRT file

	Return type

	

	
CreateDummyDatabase()

	create netcdf Database files to hold database values

	Returns

	
	

	Return type

	

	
CreateRealDatabase()

	

	
DownloadCrossWalkingTable()

	Download Crosswalking table
Here the Cross walking table is downloaded to create the CCI landcover map. At the moment this is simply
a placeholder for future functionality.

	Returns

	
	

	Return type

	

	
DynamicProcessing(varnames, LCC_lon, LCC_lat, Prior_pbm_avg, Prior_pbm_unc, doystr, write_output=True)

	Extending Peak Biomass (PBM) traits to seasonal Priors
At this moment, this function is only a placeholder for the later
implementations. The final implementation will be modelled using
- covariances between traits and (seasonal) meteorological variables
- phenological evolution (trained using plant growth models)

	Parameters

	
	varnames – list of variables to be converted into global file

	LCC_lon – array with longitude values of (subsetted tile of) study area

	LCC_lat – array with latitude values of (subsetted tile of) study area

	Prior_pbm_avg – Vegetation Traits mean value at PBM

	doystr – string containing date&time ‘2007-12-31 04:23’ for processing needs to be performed

	Prior_pbm_unc – Vegetation Traits uncertainty value at PBM

	write_output – Binary Value (TRUE/FALSE) controlling the writing of outputfiles

	Returns

	
	

	Return type

	

	
ExtractPFT4TryDatabaseEntries(Lat_, Lon_, Plantgroup_, Crop_, LeafType_, C3C4_, LeafPhen_)

	

	
OfflineProcessing()

	Creation of LCC landcover map
This
:returns:
:rtype:

	
PhenologicalEvolution(Prior_pbm_avg, Prior_pbm_unc, doystr, Meteo_map_i=None)

	Model the Phenological Evolution of Vegetation traits
This function is a placeholder to be used when the dynamic functionality is created.

	Parameters

	
	Prior_pbm_avg – Vegetation trait-averages at Peak Biomass

	Prior_pbm_unc – Vegetation trait-uncertainty (@PBM)

	doystr – string containing date&time ‘2007-12-31 04:23’ for processing needs to be performed

	Meteo_map_i – Place_holder for meteorological data-files

	Returns

	Temporal Prior-averages, Temporal Prior-uncertainties

	Return type

	

	
ProcessData(variables=None, state_mask=None, timestr='2005-05-05 05:55', logger=None, file_prior=None, file_lcc=None, file_biome=None, file_meteo=None)

	Process Data
Apriori Calculation of prior using Databases of Vegetation Traits.
This function is split into two parts (which are run for all Tiles over the study are)
- OfflineProcessing: This only has to be performed once (to make sure all the input data is available)
- StaticProcessing: Creating Peak Biomass (PBM) Priors
- DynamicProcessing: Extending PBM traits to seasonal priors (a placeholder for the later implementations)

	Parameters

	
	variables – list of variables to be converted into global file

	state_mask – place holder for spatial mask (not implemented)

	timestr – string containing date&time ‘2007-12-31 04:23’ for which global file needs to be created

	logger – log-file for capturing message from the scripts

	file_prior – place-holder for prior (TRY) database - filename (at the moment hardcoded)

	file_lcc – place-holder for landcover data - filename (at the moment hardcoded)

	file_biome – place-holder for biome data - filename (at the moment hardcoded)

	file_meteo – place-holder for meteorological data - filename (at the moment hardcoded)

	Returns

	filenames to global VRT prior files

	Return type

	

	
ReadClimate()

	Read Climate Zone information
A Climate Zone map (created on basis of the Koppen Climatic Zone classification)is read.

	Returns

	climate zone map, longitude, latitude, climate zone classes

	Return type

	

	
ReadLCC()

	Read Landcover information
The Landcover map from the Climate Change Initiaive (CCI) is read.

	Returns

	landcover map, longitude, latitude, landcover class names

	Return type

	

	
ReadMeteorologicalData(doystr)

	Read Meteorological Variables
This function is a placeholder to be used when the dynamic functionality is created.

	Parameters

	doystr – string containing date&time ‘2007-12-31 04:23’ for processing needs to be performed

	Returns

	Meteorological data (to be used for upscaling Peak Biomass traits to seasonal priors)

	Return type

	

	
ReadTraitDatabase(varnames, pft_id=1)

	Read Traits from Database
A local (modified) version of the Try Database (containing vegetation traits) is read.

	Parameters

	
	varnames – list of variables to be converted into global file

	pft_id – list of pft id numbers for which the traits needs to be read.

	Returns

	an array of Traits per PFT group

	Returns

	an array of Traits per PFT group

	Return type

	

	
ReadTryDatabase()

	

	
ReadTryFile()

	

	
RescaleCLM(CLM_lon, CLM_lat, CLM_map, LCC_lon, LCC_lat)

	Collocate Climate Zone map with landcover coordinates
The Climate Zone map has a different resolution/grid than the Landcover map. This preprocessing is performed
to collocate both (in order to facilitate the merging downstream.)

	Parameters

	
	CLM_lon – array containing the longitude values of the Climate Zone map

	CLM_lat – array containing the latitude values of the Climate Zone map

	CLM_map – array containing the Climate Zone map

	LCC_lon – array containing the longitude values of the CCI Landcover map

	LCC_lat – array containing the latitude values of the CCI Landcover map

	Returns

	array containing the Regridded Climate Zone map

	Return type

	

	
RunCrossWalkingTable(Path2CWT_tool=None, Path2LC=None)

	Creating CCI landcover maps (using crosswalking table).

please note that to run the crosswalking tool, the specific requirements for BEAM need
to be met (java64bit + …)

	Parameters

	
	Path2CWT_tool –

	Path2LC –

	Returns

	
	

	Return type

	

	
StaticProcessing(varnames, write_output=False)

	Creating Peak Biomass (PBM) Priors
Priors are created by upscaling vegetation traits obtained through the TRY database. Within the TRY database
vegetation traits are provided per PFT group. In order to upscale these values, a global PFT map is required.
This is created by merging a global Landcover map (from Climate Change Initiative, CCI) with a climate zone
map (using the Koppen classification). This is accomplished by
-ReadLCC: Reading the CCI Landcover map
-ReadClimate: Reading the Koppen Climate zone map
-RescaleCLM: Rescaling Climate zone map to collocate with Landcover CCI.
-Combine2PFT: Combining Climate zone + Landcover maps into PFTs
Using this global PFT map, the values from the TRY database are afterwards spatially distributed by
-AssignPFTTraits2Map: assigning and aggregating traits to PFT maps.

	Parameters

	
	varnames – list of variables to be converted into global file

	write_output – Binary value (TRUE/FALSE) controlling the writing of outputfiles

	Returns

	longitude, latitude, Prior_avg, Prior_unc

	Return type

	

	
WriteGeoTiff(LCC_lon, LCC_lat, Prior_avg, Prior_unc, doystr='static')

	Write Vegetation Prior data (mean/unc) to GEOTIFF outputfiles.
:param LCC_lon: longitude of the Prior data (same as used Landcover map)
:param LCC_lat: latitude of the Prior data (same as used Landcover map)
:param Prior_avg: Vegetation prior average values
:param Prior_unc: Vegetation prior uncertainty values
:param doystr: string containing date&time ‘2007-12-31 04:23’ for data to be written
:returns: -

	
WriteOutput(LCC_lon, LCC_lat, Prior_avg, Prior_unc, doystr='static')

	Write Vegetation Prior data (mean/unc) to NETCDF outputfiles. This functionality is obsolete as all outputs
are written to GeoTiff files

	Parameters

	
	LCC_lon – longitude of the Prior data (same as used Landcover map)

	LCC_lat – latitude of the Prior data (same as used Landcover map)

	Prior_avg – Vegetation prior average values

	Prior_unc – Vegetation prior uncertainty values

	doystr – string containing date&time ‘2007-12-31 04:23’ for data to be written

	Returns

	
	

	Return type

	

	
_abc_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache = <_weakrefset.WeakSet object>

	

	
_abc_negative_cache_version = 212

	

	
_abc_registry = <_weakrefset.WeakSet object>

	

	
compute_prior_file()

	Combine Tiles into single Prior VRT file

	Returns

	filename of specific VRT file

	Return type

	

	
classmethod get_variable_names()

	
	Returns

	A list of the variables that this prior creator is able to create priors for

	
multiply_prior_engine.vegetation_prior_creator._get_config(configfile)

	Load config from self.configfile.
writes to self.config.

	Returns

	
	

	
multiply_prior_engine.vegetation_prior_creator.fun(f, q_in, q_out)

	

	
multiply_prior_engine.vegetation_prior_creator.parmap(f, X, nprocs=4)

	Enable Parallel processing
This code is created to enable parallel processing with python

	Parameters

	
	f – function to be called

	X – input to the function

	nprocs – number of cores to be used

	Returns

	output of function

	Return type

	

	
multiply_prior_engine.vegetation_prior_creator.processespercore(varname, PFT, PFT_ids, VegetationPriorCreator)

	Create Prior values from PFT distributions and Vegetation traits
For each PFT the specific trait (according to varname) are read from the Trait-Database. These traits are
then statistically analysed to produce the mean and standard deviations. These trait values are then evaluated
against the PFT distribution (occurrence) map and joint together to create a single Prior (mean&uncertainty)
estimate for each spatial location

Please note that: This function is encapsulated within the parmap method to run in parallel on different cores

	Parameters

	
	varname – variable to be processed

	PFT – arrays containing global Maps of PFT distributions

	PFT_ids – a list containing PFT ids

	VegetationPriorCreator – class containing all the functionality to be run (per core)

	Returns

	Vegetation Prior average values, Vegetation Prior uncertainty values

	Return type

	

License

	GNU GENERAL PUBLIC LICENSE
	
Version 3, 29 June 2007

Copyright (C) 2007 Free Software Foundation, Inc. http://fsf.org/
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

 Preamble

The GNU General Public License is a free, copyleft license for

software and other kinds of works.

The licenses for most software and other practical works are designed

to take away your freedom to share and change the works. By contrast,
the GNU General Public License is intended to guarantee your freedom to
share and change all versions of a program–to make sure it remains free
software for all its users. We, the Free Software Foundation, use the
GNU General Public License for most of our software; it applies also to
any other work released this way by its authors. You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not

price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.

To protect your rights, we need to prevent others from denying you

these rights or asking you to surrender the rights. Therefore, you have
certain responsibilities if you distribute copies of the software, or if
you modify it: responsibilities to respect the freedom of others.

For example, if you distribute copies of such a program, whether

gratis or for a fee, you must pass on to the recipients the same
freedoms that you received. You must make sure that they, too, receive
or can get the source code. And you must show them these terms so they
know their rights.

Developers that use the GNU GPL protect your rights with two steps:

(1) assert copyright on the software, and (2) offer you this License
giving you legal permission to copy, distribute and/or modify it.

For the developers’ and authors’ protection, the GPL clearly explains

that there is no warranty for this free software. For both users’ and
authors’ sake, the GPL requires that modified versions be marked as
changed, so that their problems will not be attributed erroneously to
authors of previous versions.

Some devices are designed to deny users access to install or run

modified versions of the software inside them, although the manufacturer
can do so. This is fundamentally incompatible with the aim of
protecting users’ freedom to change the software. The systematic
pattern of such abuse occurs in the area of products for individuals to
use, which is precisely where it is most unacceptable. Therefore, we
have designed this version of the GPL to prohibit the practice for those
products. If such problems arise substantially in other domains, we
stand ready to extend this provision to those domains in future versions
of the GPL, as needed to protect the freedom of users.

Finally, every program is threatened constantly by software patents.

States should not allow patents to restrict development and use of
software on general-purpose computers, but in those that do, we wish to
avoid the special danger that patents applied to a free program could
make it effectively proprietary. To prevent this, the GPL assures that
patents cannot be used to render the program non-free.

The precise terms and conditions for copying, distribution and

modification follow.

TERMS AND CONDITIONS

	Definitions.

“This License” refers to version 3 of the GNU General Public License.

“Copyright” also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.

“The Program” refers to any copyrightable work licensed under this
License. Each licensee is addressed as “you”. “Licensees” and
“recipients” may be individuals or organizations.

To “modify” a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a “modified version” of the
earlier work or a work “based on” the earlier work.

A “covered work” means either the unmodified Program or a work based
on the Program.

To “propagate” a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.

To “convey” a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.

An interactive user interface displays “Appropriate Legal Notices”
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.

	Source Code.

The “source code” for a work means the preferred form of the work
for making modifications to it. “Object code” means any non-source
form of a work.

A “Standard Interface” means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.

The “System Libraries” of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
“Major Component”, in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.

The “Corresponding Source” for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work’s
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.

The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.

The Corresponding Source for a work in source code form is that
same work.

	Basic Permissions.

All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.

You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.

Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.

	Protecting Users’ Legal Rights From Anti-Circumvention Law.

No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.

When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work’s
users, your or third parties’ legal rights to forbid circumvention of
technological measures.

	Conveying Verbatim Copies.

You may convey verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.

You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.

	Conveying Modified Source Versions.

You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:

a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.

b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section

	This requirement modifies the requirement in section 4 to
“keep intact all notices”.

c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.

d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.

A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
“aggregate” if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation’s users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.

	Conveying Non-Source Forms.

You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:

a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.

b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.

c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.

d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.

e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.

A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.

A “User Product” is either (1) a “consumer product”, which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, “normally used” refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.

“Installation Information” for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.

If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).

The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.

Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.

	Additional Terms.

“Additional permissions” are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.

When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.

Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:

a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or

b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or

c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or

d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or

e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or

f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.

All other non-permissive additional terms are considered “further
restrictions” within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.

If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.

Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.

	Termination.

You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).

However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.

Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.

	Acceptance Not Required for Having Copies.

You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.

	Automatic Licensing of Downstream Recipients.

Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.

An “entity transaction” is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party’s predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.

You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.

	Patents.

A “contributor” is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor’s “contributor version”.

A contributor’s “essential patent claims” are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, “control” includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.

Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor’s essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.

In the following three paragraphs, a “patent license” is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To “grant” such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.

If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. “Knowingly relying” means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient’s use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.

If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.

A patent license is “discriminatory” if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.

Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.

	No Surrender of Others’ Freedom.

If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.

	Use with the GNU Affero General Public License.

Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU Affero General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the special requirements of the GNU Affero General Public License,
section 13, concerning interaction through a network will apply to the
combination as such.

	Revised Versions of this License.

The Free Software Foundation may publish revised and/or new versions of
the GNU General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU General
Public License “or any later version” applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU General Public License, you may choose any version ever published
by the Free Software Foundation.

If the Program specifies that a proxy can decide which future
versions of the GNU General Public License can be used, that proxy’s
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.

Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.

	Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS” WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

	Limitation of Liability.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

	Interpretation of Sections 15 and 16.

If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.

 END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the “copyright” line and a pointer to where the full notice is found.

<one line to give the program’s name and a brief idea of what it does.>
Copyright (C)

 Python Module Index

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 multiply_prior_engine	

 	
 	
 multiply_prior_engine.prior_creator	

 	
 	
 multiply_prior_engine.prior_engine	

 	
 	
 multiply_prior_engine.soilmoisture_prior_creator	

 	
 	
 multiply_prior_engine.vegetation_prior_creator	

 Index

Index

 _
 | A
 | C
 | D
 | E
 | F
 | G
 | M
 | O
 | P
 | R
 | S
 | V
 | W

_

 	
 	_abc_cache (multiply_prior_engine.prior_creator.PriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.MapPriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator attribute)

 	(multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator attribute)

 	_abc_negative_cache (multiply_prior_engine.prior_creator.PriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.MapPriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator attribute)

 	(multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator attribute)

 	_abc_negative_cache_version (multiply_prior_engine.prior_creator.PriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.MapPriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator attribute)

 	(multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator attribute)

 	_abc_registry (multiply_prior_engine.prior_creator.PriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.MapPriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator attribute)

 	(multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator attribute)

 	(multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator attribute)

 	
 	_calc_climatological_prior() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_check() (multiply_prior_engine.prior_creator.PriorCreator method)

 	(multiply_prior_engine.prior_engine.PriorEngine method)

 	_check_gdal_compliance() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_concat_priors() (multiply_prior_engine.prior_engine.PriorEngine method)

 	_create_datetime() (multiply_prior_engine.prior_creator.PriorCreator method)

 	_create_global_vrt() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_create_time_vector() (multiply_prior_engine.prior_creator.PriorCreator method)

 	_extract_climatology() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_get_climatology_file() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_get_config() (in module multiply_prior_engine.prior_engine)

 	(in module multiply_prior_engine.vegetation_prior_creator)

 	_get_prior() (multiply_prior_engine.prior_engine.PriorEngine method)

 	_get_prior_file_from_dir() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_get_recent_sm_proxy() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_map_lut() (multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator method)

 	_merge_multiple_prior_files() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_provide_prior_file() (multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	_read_lc() (multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator method)

 	_read_lut() (multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator method)

A

 	
 	AssignPFTTraits2Map() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

C

 	
 	calc() (multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator method)

 	Combine2PFT() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	CombineTiles2Virtualfile() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	compute_prior_file() (multiply_prior_engine.prior_creator.PriorCreator method)

 	(multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator method)

 	(multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator method)

 	(multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	
 	CreateDummyDatabase() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	CreateRealDatabase() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

D

 	
 	default_config (multiply_prior_engine.prior_engine.PriorEngine attribute)

 	
 	DownloadCrossWalkingTable() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	DynamicProcessing() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

E

 	
 	ExtractPFT4TryDatabaseEntries() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

F

 	
 	fun() (in module multiply_prior_engine.vegetation_prior_creator)

G

 	
 	get_mean_state_vector() (in module multiply_prior_engine.prior_engine)

 	get_priors() (multiply_prior_engine.prior_engine.PriorEngine method)

 	get_variable_names() (multiply_prior_engine.prior_creator.PriorCreator class method)

 	(multiply_prior_engine.soilmoisture_prior_creator.MapPriorCreator class method)

 	(multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator class method)

 	(multiply_prior_engine.soilmoisture_prior_creator.SoilMoisturePriorCreator class method)

 	(multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator class method)

M

 	
 	MapPriorCreator (class in multiply_prior_engine.soilmoisture_prior_creator)

 	multiply_prior_engine.prior_creator (module)

 	
 	multiply_prior_engine.prior_engine (module)

 	multiply_prior_engine.soilmoisture_prior_creator (module)

 	multiply_prior_engine.vegetation_prior_creator (module)

O

 	
 	OfflineProcessing() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

P

 	
 	parmap() (in module multiply_prior_engine.vegetation_prior_creator)

 	PhenologicalEvolution() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	PriorCreator (class in multiply_prior_engine.prior_creator)

 	
 	PriorEngine (class in multiply_prior_engine.prior_engine)

 	ProcessData() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	processespercore() (in module multiply_prior_engine.vegetation_prior_creator)

R

 	
 	ReadClimate() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	ReadLCC() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	ReadMeteorologicalData() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	ReadTraitDatabase() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	
 	ReadTryDatabase() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	ReadTryFile() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	RescaleCLM() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	RoughnessPriorCreator (class in multiply_prior_engine.soilmoisture_prior_creator)

 	RunCrossWalkingTable() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

S

 	
 	save() (multiply_prior_engine.soilmoisture_prior_creator.RoughnessPriorCreator method)

 	
 	SoilMoisturePriorCreator (class in multiply_prior_engine.soilmoisture_prior_creator)

 	StaticProcessing() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

V

 	
 	VegetationPriorCreator (class in multiply_prior_engine.vegetation_prior_creator)

W

 	
 	WriteGeoTiff() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

 	
 	WriteOutput() (multiply_prior_engine.vegetation_prior_creator.VegetationPriorCreator method)

_images/flow_prior_opt.png
Defined for PFT & for Species

=

Default Processing

User

f

Legend

Static

Process

i Data (Map) /

Perennail Annual Deciduous || Evergreen .

/
Database (j

Vv

Temporal

_images/Clim_SM_4.png
lat

Climatological Soil Moisture (month: 4)

—80 A

—-150 -100 -50 0 50 100 150
lon

©
I

o
w

o
N

©
=

o
o

sSm_mean

_images/Clim_SM_7.png
lat

Climatological Soil Moisture (month: 7)

0.40

0.35

0.30

0.25

0.20

0.15

0.10

—80 - 0.05

—-150 -100 -50 0 50 100 150
lon

sm_mean

_images/prior_forward.png
Variables

Albedo

Bsoil

Cab

Car

Cdm

Cw

Psoil

SM

SR

VWC

Multiply-Priors

Tip

Prosail Watercloud Oh
Models

Global

Database

Literature

No

