
multinorm Documentation
Release 0.2

Christoph Deil

Oct 26, 2018

Contents:

1 Install 3

2 Getting started 5

3 Create 9

4 Analyse 11

5 Plot 13

6 Theory 15

7 API 19

8 References 23

9 Changes 25

10 Contribute 27

Python Module Index 31

i

ii

multinorm Documentation, Release 0.2

Multivariate Normal Distributions for Humans.

A Python class to work with model fit results (parameters and the covariance matrix).

• Code: https://github.com/cdeil/multinorm

• Tutorial: multinorm.ipynb

• Documentation: https://multinorm.readthedocs.io

• License: BSD-3-Clause

Contents: 1

https://github.com/cdeil/multinorm
https://nbviewer.jupyter.org/github/cdeil/multinorm/blob/master/multinorm.ipynb
https://multinorm.readthedocs.io

multinorm Documentation, Release 0.2

2 Contents:

CHAPTER 1

Install

This package supports Python 3.6 or later. Python 3.5 or 2.7 or older versions are not supported.

There’s nothing platform-specific; Linux, MacOS and Windows are supported.

The required dependencies are numpy, scipy and pandas.

To install multinorm use pip:

pip install multinorm

This will install the required dependencies if you don’t have them already:

• numpy

• scipy

• pandas

There are some built-in methods for plotting using matplotlib. That optionally dependency has to be installed sepa-
rately, pip install multinorm will not install matplotlib.

This package consists of a single Python file multinorm.py. Most users will not care about this implementation detail,
but if you’d like to copy and “vendor” it for some reason, you can bundle a copy and avoid the extra dependency for
just one file and class.

3

https://docs.scipy.org/doc/numpy/reference/
https://docs.scipy.org/doc/scipy/reference/
https://pandas.pydata.org/
https://docs.scipy.org/doc/numpy/reference/
https://docs.scipy.org/doc/scipy/reference/
https://pandas.pydata.org/
https://matplotlib.org/
https://github.com/cdeil/multinorm/blob/master/multinorm.py

multinorm Documentation, Release 0.2

4 Chapter 1. Install

CHAPTER 2

Getting started

Note: For a quick and hands-on introduction, start with the multinorm.ipynb Jupyter notebook tutorial, then continue
reading here.

2.1 Import

The multinorm package offers a single class MultiNorm, so you always start like this:

from multinorm import MultiNorm

2.2 Create

To create a MultiNorm object, pass a mean vector, a covariance matrix (both as Numpy arrays) and optionally a
list of parameter names:

from multinorm import MultiNorm
mean = [10, 20, 30]
covariance = [[1, 0, 0], [0, 4, 0], [0, 0, 9]]
names = ["a", "b", "c"]
mn = MultiNorm(mean, covariance, names)

Sometimes the mean and covariance are given directly, e.g. in a publication, and you would define them in Python
code as shown here, or read them from a file.

However, often you obtain these values as the result of a fit of a parametrised model to data, or estimate them in some
other way.

Further examples to create MultiNorm objects are here: Create

5

https://nbviewer.jupyter.org/github/cdeil/multinorm/blob/master/multinorm.ipynb

multinorm Documentation, Release 0.2

2.3 Read only

MultiNorm objects should be used read-only objects!

If you need to change something (mean, covariance, names), make a new object!

TODO: make read-only as much as possible, the document remaining caveats!

2.4 Analyse

Once you have a MultiNorm object representing a multivariate normal distribution, you can access the following
properties and methods to analyse it.

The object repr only shows the number of dimensions (number of parameters) n of the distribution:

>>> mn
MultiNorm(n=3)

To see the contents, print the object:

>>> print(mn)
MultiNorm(n=3)
names: ['a', 'b', 'c']
mean: [10. 20. 30.]
err: [1. 2. 3.]
cov:
[[1. 0. 0.]
[0. 4. 0.]
[0. 0. 9.]]

You can access the attributes like this:

>>> mn.n
3
>>> mn.mean
array([10., 20., 30.])
>>> mn.cov
array([[1., 0., 0.],

[0., 4., 0.],
[0., 0., 9.]])

>>> mn.names
['a', 'b', 'c']

The mean and covar are numpy.ndarray objects. To be as accurate as possible, we always cast to 64-bit float on
MultiNorm initialisation and do all computations with 64-bit floating point precision, even if 32-bit float or integer
numbers are passed in.

>>> type(mn.mean)
numpy.ndarray
>>> mn.mean.dtype
dtype('float64')

The mean is a 1-dimensional array, and cov is a 2-dimensional array:

6 Chapter 2. Getting started

multinorm Documentation, Release 0.2

>>> mn.mean.shape
(3,)
>>> mn.cov.shape
(3, 3)

Parameter error vector err():

>>> mn.err
array([1., 2., 3.])

Precision matrix (the inverse covariance) precision():

>>> mn.precision
array([[1. , 0. , 0.],

[0. , 0.25 , 0.],
[0. , 0. , 0.11111111]])

Correlation matrix correlation():

>>> mn.correlation
array([[1., 0., 0.],

[0., 1., 0.],
[0., 0., 1.]])

These are just the basic attributes and properties.

We continue with this example on the Analyse page and show how to really do some analysis with MultiNorm
objects and methods.

2.5 Plot

Plot ellipse using to_matplotlib_ellipse():

import matplotlib.pyplot as plt
mn2 = mn.marginal()
mn2.plot()

Further examples to plot MultiNorm objects are here: Plot

2.6 What next?

The Create, Analyse and Plot tutorial pages contain further examples. The Theory and References pages contain
background information and definitions, as well as links to other documents and codes.

The full API documentation is here: MultiNorm. Note that you can click on “source” on the right for any method
or property, and read the implementation to see what exactly it does. It’s usually a few lines of straightforward code
using Python and Numpy, so reading the source is recommended.

2.5. Plot 7

multinorm Documentation, Release 0.2

8 Chapter 2. Getting started

CHAPTER 3

Create

As we saw in Getting started, to create a MultiNorm object, you pass a mean vector, a covariance matrix (both as
Numpy arrays) and optionally a list of parameter names:

from multinorm import MultiNorm
mean = [10, 20, 30]
covariance = [[1, 0, 0], [0, 4, 0], [0, 0, 9]]
names = ["a", "b", "c"]
mn = MultiNorm(mean, covariance, names)

But where do these things come from?

On this page, we look at the most common scenarios.

3.1 From fit

TODO: show example using scipy.optimise.curve_fit‘

To use multinorm, we first need to fit some parameterised model to obtain a best-fit parameter vector and covariance
matrix.

Let’s use scipy.optimize_curve_fit to fit some data.

TODO: show example using iminuit

http://www.statsmodels.org/devel/examples/notebooks/generated/chi2_fitting.html https://github.com/cdeil/
pyfit/blob/master/fitting_tutorial/src/tests/chi2_example.py https://lmfit.github.io https://iminuit.readthedocs.io
https://sherpa.readthedocs.io

3.2 From points

A common way to analyse likelihood or in Bayesian analyses the posterior probability distributions is to use MCMC
methods that sample the distribution. E.g. emcee or pymc are Python packages that generate this kind of output.

9

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.curve_fit.html
http://www.statsmodels.org/devel/examples/notebooks/generated/chi2_fitting.html
https://github.com/cdeil/pyfit/blob/master/fitting_tutorial/src/tests/chi2_example.py
https://github.com/cdeil/pyfit/blob/master/fitting_tutorial/src/tests/chi2_example.py
https://lmfit.github.io
https://iminuit.readthedocs.io
https://sherpa.readthedocs.io
https://dfm.io/emcee
https://docs.pymc.io

multinorm Documentation, Release 0.2

Estimating the multivariate normal distribution from samples well can be difficult, there are many methods with
different trade-offs. We recommend using a different package for this task, e.g. sklearn.covariance.

That said, there is a method MultiNorm.from_points() that calls numpy.std() to compute the mean vector,
and numpy.cov() to compute what’s sometimes called the “empirical” multivariate normal estimate.

Points should always be given as 2-dimensional arrays with shape (n_dim, n_points).

>>> points = mn.sample(size=100, random_state=0)
>>> MultiNorm.from_points(points)
MultiNorm(n=3)
names: ['par_0', 'par_1', 'par_2']
mean: [9.87581591 20.21250462 30.30156153]
err: [0.98090098 1.97394775 3.09360932]
cov:
[[0.96216674 -0.04439635 0.33802118]
[-0.04439635 3.89646972 -0.45369176]
[0.33802118 -0.45369176 9.57041861]]

3.3 From publication

TODO: show example how to take covar (or par errors) from a publication or blog post, i.e. as inputs.

3.4 From product

TODO: document MultiNorm.from_product()

3.5 Make example

TODO: document MultiNorm.make_example()

10 Chapter 3. Create

http://scikit-learn.org/stable/modules/covariance.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.std.html#numpy.std
https://docs.scipy.org/doc/numpy/reference/generated/numpy.cov.html#numpy.cov

CHAPTER 4

Analyse

4.1 Example

A basic example and properties of MultiNorm were shown in Getting started.

On this page we continue with analysis methods using same example:

from multinorm import MultiNorm
mean = [10, 20, 30]
covariance = [[1, 0, 0], [0, 4, 0], [0, 0, 9]]
names = ["a", "b", "c"]
mn = MultiNorm(mean, covariance, names)

4.2 Scipy

For most computations, Multinorm uses scipy. The scipy() property is a frozen scipy.stats.multivariate_normal
object. It is cached, accessing it multiple times doesn’t incur any extra computations. Note that
scipy.stats.multivariate_normal has a cov_info object, which contains a covariance matrix decomposition which
is computed once and cached. It is at this time undocumented, but it is a public property and is what powers most
computations in the scipy and in this class.

>>> s = mn.scipy
>>> type(s)
scipy.stats._multivariate.multivariate_normal_frozen

To present a consistent and complete API, MultiNorm re-exposes the functionality of scipy.stats.multivariate_normal,
it is a wrapper.

Draw random samples from the distribution using sample():

11

https://docs.scipy.org/doc/scipy/reference/
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html

multinorm Documentation, Release 0.2

>>> points = mn.sample(size=2, random_state=0)
>>> points
array([[10.97873798, 20.80031442, 35.29215704],

[9.02272212, 23.73511598, 36.7226796]])

Points are always given as arrays with shape (n_dim, n_points).

Evaluate the probability density function (PDF), call pdf():

>>> mn.pdf(points)
array([1.27661616e-03, 9.31966590e-05])

For log(pdf) (natural logarithm), call logpdf():

>>> mn.logpdf(points)
array([-6.66354232, -9.28079868])

There is also a cdf and logcdf method for the cumulative distribution function, as well as entropy. Since these
are rarely needed, we didn’t wrap them. But you can still access them via the scipy() property.

4.3 Marginal

TODO: marginal

4.4 Conditional

TODO: conditional

4.5 Error propagation

TODO: to_uncertainties, to_soerp, to_mcerp

4.6 Sigmas

TODO: sigma_distance

12 Chapter 4. Analyse

CHAPTER 5

Plot

The multinorm package contains a few plot methods using matplotlib.

This page shows examples of those, as well as how to do some common plots by computing the relevant numpy arrays
and passing them to matplotlib directly.

tbd

See https://stackoverflow.com/questions/29432629/correlation-matrix-using-pandas

13

https://matplotlib.org/
https://stackoverflow.com/questions/29432629/correlation-matrix-using-pandas

multinorm Documentation, Release 0.2

14 Chapter 5. Plot

CHAPTER 6

Theory

In this section, we give a bit of theory background concerning the methods used in multinorm. We give the formulae
used, and a reference to where the formula and a derivation and discussion can be found.

Note: The multivariate normal distribution has very nice mathematical properties. Every derived quantity follows
either again a multivariate normal distribution or a chi-squared distribution.

6.1 Marginal distribution

The marginal distribution can be obtained with the marginal() method.

You can think of the marginal distribution as the distribution obtained by simply ignoring some of the parameters, or
by “projecting” the 𝑁 -dimensional distribution onto the lower-dimensional subspace of parameters of interest.

The marginal distribution of the multivariate normal is again a multivariate normal distribution.

It can be obtained simply by keeping only the parameters of interest in the mean vector and covariance matrix (drop
the parameters that are being marginalised out).

See here.

6.2 Conditional distribution

The conditional distribution can be obtained with the conditional() method.

The conditional distribution is given by the “slice” in the 𝑁 -dimensional distribution when fixing some of the param-
eters.

The conditional distribution of the multivariate normal is again a multivariate normal distribution.

It can be obtained by partitioning the mean 𝜇 and covariance Σ of the 𝑁 -dimensional distribution into two part,
corresponding to the parameters that are fixed, and that are kept free.

15

https://en.wikipedia.org/wiki/Marginal_distribution
https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Marginal_distributions
https://en.wikipedia.org/wiki/Conditional_probability_distribution

multinorm Documentation, Release 0.2

The formulae to obtain the mean and covariance of the conditional distribution are given here.

6.3 Fix parameters

This method is used e.g. in MINUIT, see Section 1.3.1 here: http://lmu.web.psi.ch/docu/manuals/software_manuals/
minuit2/mnerror.pdf

As far as I can tell, it gives the same results as conditional (see test_conditional_vs_fix).

TODO: work out the math of why that is the case and document it here.

Add note that for MVN the covar matrix for conditional doesn’t depend on parameter values.

TODO: document and make example in the analyse section using iminuit.

6.4 Product distribution

TODO: improve this section: https://github.com/cdeil/multinorm/issues/13

We should give the full equations, the ones below are the special case for distributions without correlations.

The approximation we will use can be found in many textbooks, e.g. Section 5.6.1 stats book. given 𝑛 Gaussian
likelihood estimates with parameter estimates 𝑥𝑖 and known parameter errors 𝜎𝑖:

𝑝(𝜇|𝑥𝑖, 𝜎𝑖),

if we define “weights” as inverse square of errors

𝑤𝑖 = 1/𝜎2
𝑖 , 𝜎𝑖 = 1/

√
𝑤𝑖,

then the from_product maximum likelihood estimate error is given by (Equation 5.50):

𝜇0 =

∑︀
𝑤𝑖𝑥𝑖∑︀
𝑤𝑖

and the from_product measurement parameter error is given by

𝑤 =
∑︁

𝑤𝑖.

6.5 Sigmas

For the one-dimensional normal distribution 𝑁(𝜇, 𝜎) the probability content within 𝑛 * 𝜎 is given by roughly 68% for
𝑛 = 1, 95% for 𝑛 = 2 and 99.7% for 𝑛 = 3.

What’s the equivalent for the 𝑁 -dimensional normal distribution?

For a given mean 𝜇 and covariance Σ and point 𝑝 one can define a distance 𝑑 via

𝑑 =
√︁

(𝑝− 𝜇)𝑇 Σ−1(𝑝− 𝜇).

The set of equal-distance points is an ellipsoidal surface and has the property that all points on it have equal probability
density. It is the equivalent of the distance 𝑑 = (𝑝− 𝜇)/𝜎, i.e. the number of standard deviations 𝑑 = 𝑛 * 𝜎 from the
mean.

16 Chapter 6. Theory

https://en.wikipedia.org/wiki/Multivariate_normal_distribution#Conditional_distributions
http://lmu.web.psi.ch/docu/manuals/software_manuals/minuit2/mnerror.pdf
http://lmu.web.psi.ch/docu/manuals/software_manuals/minuit2/mnerror.pdf
https://github.com/cdeil/multinorm/issues/13
https://press.princeton.edu/titles/10159.html

multinorm Documentation, Release 0.2

However, the probability content for a given 𝑛 * 𝜎 is lower for the 𝑁 -dimensional distribution. It turns out that 𝑑2 has
a 𝜒2 distribution with 𝑁 degrees of freedom:

𝑃 (𝑑2) = 𝜒2(𝑑2, 𝑁)

That means you can compute the probability content using scipy.stats.chi2 like this:

>>> import numpy as np
>>> from scipy.stats import chi2
>>> n_sigma = np.array([1, 2, 3])
>>> chi2.cdf(n_sigma ** 2, 1)
array([0.68268949, 0.95449974, 0.9973002])
>>> chi2.cdf(n_sigma ** 2, 2)
array([0.39346934, 0.86466472, 0.988891])
>>> chi2.cdf(n_sigma ** 2, 3)
array([0.19874804, 0.73853587, 0.97070911])

Note that the 1 sigma ellipse in 2D has probability content 39%, in 3D it’s only 20%, and it gets smaller and smaller
for higher dimensions.

Also see https://stats.stackexchange.com/questions/331283

For further information see the Wikipedia Mahalanobis distance page.

The MultiNorm.to_matplotlib_ellipse takes an n_sigma option, and will return an ellipse that matches the points
with Mahalanobis distance 𝑑2 = 𝑛 * 𝜎.

See also sigma in the corner.py docs.

6.5. Sigmas 17

https://stats.stackexchange.com/questions/331283
https://en.wikipedia.org/wiki/Mahalanobis_distance
https://corner.readthedocs.io/en/latest/pages/sigmas.html

multinorm Documentation, Release 0.2

18 Chapter 6. Theory

CHAPTER 7

API

class multinorm.MultiNorm(mean=None, cov=None, names=None)
Multivariate normal distribution.

Given n parameters, the mean and names should be one-dimensional with size n, and cov should be a two-
dimensional matrix of shape (n, n).

Documentation for this class:

• Tutorial Jupyter notebook: multinorm.ipynb

• Documentation: Getting started, Create, Analyse

• Equations and statistics: Theory

Note that MultiNorm objects should be used read-only, almost all properties are cached. If you need to modify
values, make a new MultiNorm object.

Parameters

• mean (numpy.ndarray) – Mean vector

• cov (numpy.ndarray) – Covariance matrix

• names (list) – Python list of parameter names (str). Default: use “par_i” with i = 0
.. N - 1.

conditional(pars, values=None)
Conditional MultiNormal distribution.

Resulting lower-dimensional distribution obtained by fixing pars to values. The output distribution is
for the other parameters, the complement of pars.

See Conditional distribution.

Parameters

• pars (list) – Fixed parameters (indices or names)

• values (list) – Fixed parameters (values). Default is to use the values from mean.

Returns MultiNorm – Conditional distribution

19

https://nbviewer.jupyter.org/github/cdeil/multinorm/blob/master/multinorm.ipynb
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list

multinorm Documentation, Release 0.2

correlation
Correlation matrix (pandas.DataFrame).

Correlation 𝐶 is related to covariance Σ via:

𝐶𝑖𝑗 =
Σ𝑖𝑗√︀
Σ𝑖𝑖Σ𝑗𝑗

cov
Covariance matrix (pandas.DataFrame).

drop(pars)
Drop parameters.

This simply removes the entry from the mean vector, and the corresponding column and row from the cov
matrix.

The computation is the same as MultiNorm.marginal(), only here the parameters to drop are given,
and there the parameters to keep are given.

Parameters pars (list) – Parameters to fix (indices or names)

err
Error vector (pandas.DataFrame).

Defined as 𝜎𝑖 =
√

Σ𝑖𝑖.

fix(pars)
Fix parameters.

See Fix parameters.

Parameters pars (list) – Parameters to fix (indices or names)

classmethod from_err(mean=None, err=None, correlation=None, names=None)
Create MultiNorm from parameter errors.

With errors 𝜎𝑖 this will create a diagonal covariance matrix with

Σ𝑖𝑖 = 𝜎2
𝑖

For a given correlation, or in general: this will create a MultiNormal with a covariance matrix such
that it’s err and correlation match the one specified here (up to rounding errors).

Parameters

• mean (numpy.ndarray) – Mean vector

• err (numpy.ndarray) – Error vector

• correlation (numpy.ndarray) – Correlation matrix

• names (list) – Parameter names

classmethod from_points(points, names=None)
Create MultiNorm from parameter points.

Usually the points are samples from some distribution and creating this MultiNorm distribution is an esti-
mate / approximation of that distribution of interest.

See: From points.

Parameters points (numpy.ndarray) – Array of data points with shape (n, 2).

20 Chapter 7. API

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray

multinorm Documentation, Release 0.2

classmethod from_product(distributions)
Create MultiNorm as product distribution.

This represents the joint likelihood distribution, assuming the individual distributions are from independent
measurements.

See Product distribution .

Parameters distributions (list) – Python list of MultiNorm distributions.

Returns MultiNorm – Product distribution

logpdf(points)
Natural log of PDF.

Calls scipy.stats.multivariate_normal.

classmethod make_example(n_par=3, n_fix=0, random_state=42)
Create example MultiNorm for testing.

This is a factory method that allows the quick creation of example MultiNormal with any number of
parameters for testing.

See: Make example.

Parameters

• n_par (int) – Number of parameters

• n_fix (int) – Number of fixed parameters in addition to n_par.

• random_state – Seed (int) - default: 42 Put None to choose random seed. Can also
pass numpy.random.RandomState object.

marginal(pars)
Marginal MultiNormal distribution.

See Marginal distribution.

Parameters pars (list) – List of parameters (integer indices)

Returns MultiNorm – Marginal distribution

mean
Mean vector (pandas.Series).

n
Number of dimensions of the distribution (int).

Given by the number of parameters.

names
Parameter names (list of str).

parameters
Parameter table (pandas.DataFrame).

Index is “name”, columns are “mean” and “err”

pdf(points)
Probability density function.

Calls scipy.stats.multivariate_normal.

precision
Precision matrix (pandas.DataFrame).

21

https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html

multinorm Documentation, Release 0.2

The inverse of the covariance matrix.

Sometimes called the “information matrix” or “Hesse matrix”.

sample(size=1, random_state=None)
Draw random samples.

Calls scipy.stats.multivariate_normal.

scipy
Frozen scipy.stats.multivariate_normal distribution object.

A cached property. Used for many computations internally.

sigma_distance(point)
Number of standard deviations from the mean (float).

Also called the Mahalanobis distance. See Sigmas.

to_matplotlib_ellipse(n_sigma=1, **kwargs)
Create matplotlib.patches.Ellipse.

See examples in Plot.

Parameters n_sigma (int) – Number of standard deviations. See Sigmas.

to_uncertainties()
Convert to uncertainties objects.

A tuple of numbers with uncertainties (one for each parameter) is returned.

The uncertainties package makes it easy to do error propagation on derived quantities.

See examples in Analyse.

22 Chapter 7. API

https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html
https://matplotlib.org/api/_as_gen/matplotlib.patches.Ellipse.html
https://docs.python.org/3/library/functions.html#int
https://pythonhosted.org/uncertainties/
https://pythonhosted.org/uncertainties/

CHAPTER 8

References

8.1 Definitions

In the multinorm package, we use the following variable names:

• MultiNorm - the multivariate normal (a.k.a. Gaussian) distribution

• n - the number of dimensions, i.e. number of parameters. Math: 𝑛

• mean - the vector of mean values of the distribution. Math: 𝜇

• cov - covariance matrix of the distribution. Math: Σ

• precision - precision matrix. Math: Σ−1

8.2 Documents

Some useful references for multivariate normal distributions:

• Wikipedia multivariate normal

• Wikipedia Mahalanobis distance

8.3 Codes

Other codes related to multivariate normal distributions:

• Wolfram MultinormalDistribution

• numpy.random.multivariate_normal

• scipy.stats.multivariate_normal

• sklearn.covariance

23

https://en.wikipedia.org/wiki/Multivariate_normal_distribution
https://en.wikipedia.org/wiki/Mahalanobis_distance
https://reference.wolfram.com/language/ref/MultinormalDistribution.html
https://docs.scipy.org/doc/numpy/reference/generated/numpy.random.multivariate_normal.html
https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.multivariate_normal.html
http://scikit-learn.org/stable/modules/covariance.html

multinorm Documentation, Release 0.2

• uncertainties

• statsmodels

24 Chapter 8. References

https://pythonhosted.org/uncertainties/
http://www.statsmodels.org/

CHAPTER 9

Changes

This is the changelog for multinorm.

You can always find the latest release and all previous versions at https://pypi.org/project/multinorm/

9.1 0.3.dev

• In development, coming soon . . .

• Goal: first complete version of the tutorial notebook and docs

9.2 0.2

• Released Oct 26, 2018

• API now mostly uses pandas objects, pandas is now a core dependency

• MultiNorm is now full of cached properties, must be used read-only

• Many methods added and improved, more tests and docs

• Added a tutorial notebook multinorm.ipynb

• Dropped Python 2 support, require Python 3.6 or later

9.3 0.1

• Released Oct 19, 2018

• First version

25

https://pypi.org/project/multinorm/

multinorm Documentation, Release 0.2

26 Chapter 9. Changes

CHAPTER 10

Contribute

This package is very new, there hasn’t been any user feedback or review yet. Very likely the API and implementation
can be improved.

Please give feedback to help make it better!

10.1 Github

Contributions to multinorm are welcome any time on Github: https://github.com/cdeil/multinorm

• If you find an issue, please file a bug report.

• If you’re missing a feature, please file a request.

• If you have the skills and time, please send a pull request.

Pull requests should be small and easy to review. If the work takes more than an hour, please open an issue describing
what you plan to do first to get some feedback.

10.2 Develop

To work on multinorm, first get the latest version:

git clone https://github.com/cdeil/multinorm.git
cd multinorm

Everything is where you’d expect it, i.e. the files to edit are:

• Code: multinorm.py

• Tests: test_multinorm.py

• Docs: RST files in docs

27

https://github.com/cdeil/multinorm
https://github.com/cdeil/multinorm/blob/master/multinorm.py
https://github.com/cdeil/multinorm/blob/master/test_multinorm.py
https://github.com/cdeil/multinorm/tree/master/docs

multinorm Documentation, Release 0.2

10.3 Install

To hack on multinorm, you need to have a development environment with all packages and tools installed.

If you’re using conda, use this:

conda env create -f environment.yml
conda activate multinorm

If you’re using pip, you can use pipenv like this:

pip install pipenv
pipenv install
pipenv shell

With the virtual environment active, run this command:

pip install -e .

This installs multinorm in editable mode, meaning a pointer is put in your site-packages to the current source folder,
so that after editing the code you only have to re-start python and re-run to get this new version, and not run an install
command again.

10.4 Tests

Run all tests:

pytest -v

Run tests and check coverage:

pytest -v --cov=multinorm --cov-report=html
open htmlcov/index.html

10.5 Code style

We use the black code style. To apply it in-place to all files:

black .

10.6 Docs

To build the docs:

cd docs
make clean && make html
open _build/html/index.html

Then for any other tasks go back to the top level of the package:

28 Chapter 10. Contribute

https://github.com/ambv/black

multinorm Documentation, Release 0.2

cd ..

10.7 Release

To make a release for this package, follow the following steps

1. check that the tests and docs build are OK

2. check via git tag or at https://pypi.org/project/multinorm what the next version should be

3. git clean -fdx

4. git tag v0.1 (substitute actual version number here and in the following steps)

5. python setup.py build sdist

6. check the package in dist (should automate somehow)

7. twine upload dist/*

8. git push --tags

We should automate this. I didn’t have time yet to try them out, but these look interesting:

• https://github.com/pyscaffold/pyscaffold

• https://github.com/regro/rever

• https://github.com/noirbizarre/bumpr

10.7. Release 29

https://pypi.org/project/multinorm
https://github.com/pyscaffold/pyscaffold
https://github.com/regro/rever
https://github.com/noirbizarre/bumpr

multinorm Documentation, Release 0.2

30 Chapter 10. Contribute

Python Module Index

m
multinorm, 13

31

multinorm Documentation, Release 0.2

32 Python Module Index

Index

C
conditional() (multinorm.MultiNorm method), 19
correlation (multinorm.MultiNorm attribute), 19
cov (multinorm.MultiNorm attribute), 20

D
drop() (multinorm.MultiNorm method), 20

E
err (multinorm.MultiNorm attribute), 20

F
fix() (multinorm.MultiNorm method), 20
from_err() (multinorm.MultiNorm class method), 20
from_points() (multinorm.MultiNorm class method), 20
from_product() (multinorm.MultiNorm class method), 20

L
logpdf() (multinorm.MultiNorm method), 21

M
make_example() (multinorm.MultiNorm class method),

21
marginal() (multinorm.MultiNorm method), 21
mean (multinorm.MultiNorm attribute), 21
MultiNorm (class in multinorm), 19
multinorm (module), 1, 3, 7, 10, 12, 13, 17, 22, 25

N
n (multinorm.MultiNorm attribute), 21
names (multinorm.MultiNorm attribute), 21

P
parameters (multinorm.MultiNorm attribute), 21
pdf() (multinorm.MultiNorm method), 21
precision (multinorm.MultiNorm attribute), 21

S
sample() (multinorm.MultiNorm method), 22

scipy (multinorm.MultiNorm attribute), 22
sigma_distance() (multinorm.MultiNorm method), 22

T
to_matplotlib_ellipse() (multinorm.MultiNorm method),

22
to_uncertainties() (multinorm.MultiNorm method), 22

33

	Install
	Getting started
	Create
	Analyse
	Plot
	Theory
	API
	References
	Changes
	Contribute
	Python Module Index

