

Multicorn

Multicorn is a PostgreSQL 9.1+ extension meant to make Foreign Data Wrapper [http://www.postgresql.org/docs/current/static/ddl-foreign-data.html]
development easy, by allowing the programmer to use the Python programming
language.

If you just wanto use it as soon as possible, jump straight to the
installation section.

Contents:

	Installation

	Usage

	Included Foreign Data Wrappers

	Writing an FDW

	Third-Party-FDWs

	Multicorn Internal Design

	Contribute

Indices and tables

	Index

	Module Index

	Search Page

Installation

Requirements

	Postgresql 9.1+

	Postgresql development packages

	Python development packages

	python 2.6 or >= python 3.3 as your default python

If you are using PostgreSQL 9.1, you should use the 0.9.1 release.

If you are using PostgreSQL 9.2 or superior, you should use the 1.0.0 series. (Currently
1.0.1).

If you are using Debian, a packaging effort is ongoing for PostgreSQL 9.4. You can install it from
here [https://packages.debian.org/unstable/database/postgresql-9.4-python-multicorn].

With the pgxn client [http://pgxnclient.projects.postgresql.org/]:

pgxn install multicorn

From pgxn:

wget http://api.pgxn.org/dist/multicorn/1.1.1/multicorn-1.1.1.zip
unzip multicorn-1.1.1
cd multicorn-1.1.1
make && sudo make install

From source:

git clone git://github.com/Kozea/Multicorn.git
cd Multicorn
make && make install

Usage

The multicorn foreign data wrapper is not different from other foreign data
wrappers.

To use it, you have to:

	Create the extension in the target database.
As a PostgreSQL super user, run the following SQL:

CREATE EXTENSION multicorn;

	Create a server.
In the SQL OPTIONS clause, you must provide an options named wrapper,
containing the fully-qualified class name of the concrete python foreign data
wrapper you wish to use. want to use:

CREATE SERVER multicorn_imap FOREIGN DATA WRAPPER multicorn
options (
 wrapper 'multicorn.imapfdw.ImapFdw'
);

You can then proceed on with the actual foreign tables creation, and pass them
the needed options.

Each foreign data wrapper supports its own set of options, and may interpret the
columns definitions differently.

You should look at the documentation for the specific Foreign Data Wraper documentation

Included Foreign Data Wrappers

Multicorn is bundled with a small set of Foreign Data Wrappers, which you can
use or customize for your needs.

	SQLAlchemy Foreign Data Wrapper

	FileSystem Foreign Data Wrapper
	Purpose

	Dependencies

	Options

	Usage Example

	ReStructuredText FDW

	Imap Foreign Data Wrapper
	Purpose

	Dependencies

	Options

	Server side filtering

	LDAP Foreign Data Wrapper
	Purpose

	Dependencies

	Required options

	Optional options

	Usage Example

	CSV Foreign Data Wrapper
	Purpose

	Dependencies

	Options

	Usage example

	RSS foreign data wrapper
	Purpose

	Dependencies

	Required options

	Usage Example

	Process Foreign Data Wrapper

SQLAlchemy Foreign Data Wrapper

FileSystem Foreign Data Wrapper

Purpose

This fdw can be used to access data stored in various files, in a filesystem.
The files are looked up based on a pattern, and parts of the file’s path are
mapped to various columns, as well as the file’s content itself.

Supports: ✓✓✓✗

Dependencies

No dependency outside the standard python distribution.

Options

	root_dir (required)

	The base directory from which the pattern is evaluated. The files in this
directory should be readable by the PostgreSQL user. Ex: /var/www/.

	pattern (required)

	A pattern defining which files to match, and wich parts of the file path are
used as columns. A column name between braces defines a mapping from a path
part to a column. Ex: {artist}/{album}/{trackno} - {trackname}.ogg.

	content_column

	If set, defines which column will contain the actual file content.

	filename_column

	If set, defines which column will contain the full filename.

	file_mode (default: 700)

	The unix permission mask to be used when creating files.

Usage Example

Supposing you want to access files in a directory structured like this:

base_dir/
 artist1/
 album1/
 01 - title1.ogg
 02 - title2.ogg
 album2/
 01 - title1.ogg
 02 - title2.ogg
 artist2/
 album1/
 01 - title1.ogg
 02 - title2.ogg
 album2/
 01 - title1.ogg
 02 - title2.ogg

You can access those files using a foreign table like this:

CREATE SERVER filesystem_srv foreign data wrapper multicorn options (
 wrapper 'multicorn.fsfdw.FilesystemFdw'
);

CREATE FOREIGN TABLE musicfilesystem (
 artist character varying,
 album character varying,
 track integer,
 title character varying,
 content bytea,
 filename character varying
) server filesystem_srv options(
 root_dir 'base_dir',
 pattern '{artist}/{album}/{track} - {title}.ogg',
 content_column 'content',
 filename_column 'filename')

Example:

SELECT count(track), artist, album from musicfilesystem group by artist, album;

 count | artist | album
-------+---------+--------
 2 | artist1 | album2
 2 | artist1 | album1
 2 | artist2 | album2
 2 | artist2 | album1
(4 lines)

A filesystem foreign data wrapper.

This foreign data wrapper is based on StructuredDirectory, see
https://github.com/Kozea/StructuredFS.

ReStructuredText FDW

Purpose

This fdw can be used to access metadata stored in ReStructured Text files,
in a filesystem.
The files are looked up based on a pattern, and parts of the file’s path are
mapped to various columns, as well as the file’s content itself.

The options are exactly the same as multicorn.fsfdw itself.

If a column name is prefixed by rest_, it will not be mapped to
a part of the pattern but looked up in the metadata from the ReST document.

Imap Foreign Data Wrapper

Purpose

This fdw can be used to access mails from an IMAP mailbox.
Column names are mapped to IMAP headers, and two special columns may contain the
mail payload and its flags.

Supports: ✓✗✗✗

Dependencies

imaplib

Options

	host (required)

	The IMAP host to connect to.

	port (required)

	The IMAP host port to connect to.

	login (required)

	The login to connect with.

	password (required)

	The password to connect with.

The login and password options should be set as a user mapping options, so as
not to be stored in plaintext. See the create user mapping documentation [http://www.postgresql.org/docs/9.1/static/sql-createusermapping.html]

	payload_column

	The name of the column which will store the payload.

	flags_column

	The name of the column which will store the IMAP flags, as an array of
strings.

	ssl

	Wether to use ssl or not

	imap_server_charset

	The name of the charset used for IMAP search commands. Defaults to UTF8. For
the cyrus IMAP server, it should be set to “utf-8”.

	internal_date_column

	The column to use as the INTERNALDATE imap header.

Server side filtering

The imap fdw tries its best to convert postgresql quals into imap filters.

	The following quals are pushed to the server:

	
	equal, not equal, like, not like comparison

	= ANY, = NOT ANY

ntThese conditions are matched against the headers, or the body itself.

The imap FDW will fetch only what is needed by the query: you should thus avoid
requesting the payload_column if you don’t need it.

LDAP Foreign Data Wrapper

Purpose

This fdw can be used to access directory servers via the LDAP protocol.
Tested with OpenLDAP.
It supports: simple bind, multiple scopes (subtree, base, etc)

Dependencies

If using Multicorn >= 1.1.0, you will need the ldap3 [http://pythonhosted.org/python3-ldap/] library:

For prior version, you will need the ldap [http://www.python-ldap.org/] library:

Required options

uri (string)
The URI for the server, for example “ldap://localhost”.

path (string)
The base in which the search is performed, for example “dc=example,dc=com”.

objectclass (string)
The objectClass for which is searched, for example “inetOrgPerson”.

scope (string)
The scope: one, sub or base.

Optional options

binddn (string)
The binddn for example ‘cn=admin,dc=example,dc=com’.

bindpwd (string)
The credentials for the binddn.

Usage Example

To search for a person
definition:

CREATE SERVER ldap_srv foreign data wrapper multicorn options (
 wrapper 'multicorn.ldapfdw.LdapFdw'
);

CREATE FOREIGN TABLE ldapexample (
 mail character varying,
 cn character varying,
 description character varying
) server ldap_srv options (
 uri 'ldap://localhost',
 path 'dc=lab,dc=example,dc=com',
 scope 'sub',
 binddn 'cn=Admin,dc=example,dc=com',
 bindpwd 'admin',
 objectClass '*'
);

select * from ldapexample;

 mail | cn | description
-----------------------+----------------+--------------------
 test@example.com | test |
 admin@example.com | admin | LDAP administrator
 someuser@example.com | Some Test User |
(3 rows)

CSV Foreign Data Wrapper

Purpose

This fdw can be used to access data stored in CSV files [http://en.wikipedia.org/wiki/Comma-separated_values]. Each column defined
in the table will be mapped, in order, against columns in the CSV file.

Supports: ✓✗✗✗

Dependencies

No dependency outside the standard python distribution.

Options

	filename (required)

	The full path to the CSV file containing the data. This file must be readable
to the postgres user.

	delimiter

	The CSV delimiter (defaults to ,).

	quotechar

	The CSV quote character (defaults to ").

	skip_header

	The number of lines to skip (defaults to 0).

Usage example

Supposing you want to parse the following CSV file, located in /tmp/test.csv:

Year,Make,Model,Length
1997,Ford,E350,2.34
2000,Mercury,Cougar,2.38

You can declare the following table:

CREATE SERVER csv_srv foreign data wrapper multicorn options (
 wrapper 'multicorn.csvfdw.CsvFdw'
);

create foreign table csvtest (
 year numeric,
 make character varying,
 model character varying,
 length numeric
) server csv_srv options (
 filename '/tmp/test.csv',
 skip_header '1',
 delimiter ',');

select * from csvtest;

 year | make | model | length
------+---------+--------+--------
 1997 | Ford | E350 | 2.34
 2000 | Mercury | Cougar | 2.38
(2 lines)

RSS foreign data wrapper

Purpose

This fdw can be used to access items from an rss feed.
The column names are mapped to the elements inside an item.
An rss item has the following strcture:

<item>
 <title>Title</title>
 <pubDate>2011-01-02</pubDate>
 <link>http://example.com/test</link>
 <guid>http://example.com/test</link>
 <description>Small description</description>
</item>

You can access every element by defining a column with the same name. Be
careful to match the case! Example: pubDate should be quoted like this:
pubDate to preserve the uppercased D.

Supports: ✓✗✗✗

Dependencies

You will need the lxml [http://lxml.de/] library.

Required options

	url (string)

	The RSS feed URL.

Usage Example

If you want to parse the radicale [http://radicale.org] rss feed, you can use the following
definition:

CREATE SERVER rss_srv foreign data wrapper multicorn options (
 wrapper 'multicorn.rssfdw.RssFdw'
);

CREATE FOREIGN TABLE radicalerss (
 "pubDate" timestamp,
 description character varying,
 title character varying,
 link character varying
) server rss_srv options (
 url 'http://radicale.org/rss/'
);

select "pubDate", title, link from radicalerss limit 10;

 pubDate | title | link
---------------------+----------------------------------+--
 2011-09-27 06:07:42 | Radicale 0.6.2 | http://radicale.org/news#2011-09-27@06:07:42
 2011-08-28 13:20:46 | Radicale 0.6.1, Changes, Future | http://radicale.org/news#2011-08-28@13:20:46
 2011-08-01 08:54:43 | Radicale 0.6 Released | http://radicale.org/news#2011-08-01@08:54:43
 2011-07-02 20:13:29 | Feature Freeze for 0.6 | http://radicale.org/news#2011-07-02@20:13:29
 2011-05-01 17:24:33 | Ready for WSGI | http://radicale.org/news#2011-05-01@17:24:33
 2011-04-30 10:21:12 | Apple iCal Support | http://radicale.org/news#2011-04-30@10:21:12
 2011-04-25 22:10:59 | Two Features and One New Roadmap | http://radicale.org/news#2011-04-25@22:10:59
 2011-04-10 20:04:33 | New Features | http://radicale.org/news#2011-04-10@20:04:33
 2011-04-02 12:11:37 | Radicale 0.5 Released | http://radicale.org/news#2011-04-02@12:11:37
 2011-02-03 23:35:55 | Jabber Room and iPhone Support | http://radicale.org/news#2011-02-03@23:35:55
(10 lignes)

Process Foreign Data Wrapper

Writing an FDW

If you want to write an FDW, we recommend you start with the
Tutorial: Writing an FDW.

	API

	Tutorial: Writing an FDW

API

The API is split into two modules: the multicorn module and the
utils module:

	The multicorn module contains the whole API needed for implementing
a Foreign Data Wrapper.

	The utils module contains logging and error reporting functions,
which are ultimately implemented as calls to the PostgreSQL API.

Implementing an FDW

Implementing an FDW is as simple as implementing the
ForeignDataWrapper class.

Required API

This subset of the API allows your ForeignDataWrapper to be used for read-only
queries.

You have to implement the following methods:

	__init__()

	execute()

Note

In the documentation, FDWs implementing this API will be marked with:

Supports: ✓✗✗✗

Write API

To implement full write capabilites, the following property must be implemented:

	
ForeignDataWrapper.rowid_column

	Returns – A column name which will act as a rowid column,
for delete/update operations.

One can think of it as a primary key.

This can be either an existing column name, or a made-up one.
This column name should be subsequently present in every
returned resultset.

In addition to that, you should implement each DML operation as you see fit:

	insert()

	update()

	delete()

Note

In the documentation, FDWs implementing this API will be marked with:

Supports: ✗✓✗✗

Transactional API

Transactional Capabilities can be implemented with the following methods:

	
ForeignDataWrapper.begin(serializable)

	Hook called at the beginning of a transaction.

	
ForeignDataWrapper.pre_commit()

	Hook called just before a commit is issued, on PostgreSQL >=9.3.
This is where the transaction should tentatively commited.

	
ForeignDataWrapper.rollback()

	Hook called when the transaction is rollbacked.

	
ForeignDataWrapper.sub_begin(level)

	Hook called at the beginning of a subtransaction.

	
ForeignDataWrapper.sub_commit(level)

	Hook called when a subtransaction is committed.

	
ForeignDataWrapper.sub_rollback(level)

	Hook called when a subtransaction is rollbacked.

Note

In the documentation, FDWs implementing this API will be marked with:

Supports: ✗✗✓✗

Full API

	
class multicorn.ForeignDataWrapper(fdw_options, fdw_columns)

	Base class for all foreign data wrapper instances.

Though not required, ForeignDataWrapper implementation should
inherit from this class.

	
__init__(fdw_options, fdw_columns)

	The foreign data wrapper is initialized on the first query.

	Parameters:	
	fdw_options (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The foreign data wrapper options. It is a dictionary
mapping keys from the sql “CREATE FOREIGN TABLE”
statement options. It is left to the implementor
to decide what should be put in those options, and what
to do with them.

	fdw_columns (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The foreign datawrapper columns. It is a dictionary
mapping the column names to their ColumnDefinition.

	
begin(serializable)

	Hook called at the beginning of a transaction.

	
can_sort(sortkeys)

	Method called from the planner to ask the FDW what are the sorts it can
enforced, to avoid PostgreSQL to sort the data after retreiving all the
rows. These sorts can come from explicit ORDER BY clauses, but also GROUP
BY and DISTINCT clauses.

The FDW has to inspect every sort, and respond which one are handled.
The sorts are cumulatives. For example:

col1 ASC
col2 DESC

means that the FDW must render the tuples sorted by col1 ascending and
col2 descending.

	Parameters:	sortkeys (list) – A list of SortKey
representing all the sorts the query must enforce.

	Returns:	The list of cumulative SortKey, for which the FDW can
enforce the sort.

	
commit()

	Hook called at commit time. On PostgreSQL >= 9.3, the pre_commit
hook should be preferred.

	
delete(oldvalues)

	Delete a tuple identified by oldvalues

	Parameters:	oldvalues (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – a dictionary mapping from column names to
previously known values for the tuple.

	Returns:	None

	
end_modify()

	Hook called at the end of a foreign modify (DML operations)

	
end_scan()

	Hook called at the end of a foreign scan.

	
execute(quals, columns, sortkeys=None)

	Execute a query in the foreign data wrapper.

This method is called at the first iteration.
This is where the actual remote query execution takes place. Multicorn
makes no assumption about the particular behavior of a
ForeignDataWrapper, and will NOT remove any qualifiers from the
PostgreSQL quals list. That means the quals will be rechecked anyway.

Typically, an implementation would:

	initialize (or reuse) some sort of connection to the
remote system

	transform the quals and columns arguments to a representation
suitable for the remote system

	fetch the data according to this query

	return it to the C-extension.

Although any iterable can be returned, it is strongly advised to
implement this method as a generator to prevent loading the whole
dataset in memory.

	Parameters:	
	quals (list) – A list of Qual instances, containing the basic
where clauses in the query.

	columns (list) – A list of columns that postgresql is going to need.
You should return AT LEAST those columns when returning a
dict. If returning a sequence, every column from the table
should be in the sequence.

	sortkeys (list) – A list of SortKey
that the FDW said it can enforce.

	Returns:	An iterable of python objects which can be converted back to PostgreSQL.
Currently, such objects are:
- sequences containing exactly as much columns as the
underlying tables
- dictionaries mapping column names to their values.
If the sortkeys wasn’t empty, the FDW has to return the data in the
expected order.

	
explain(quals, columns, sortkeys=None, verbose=False)

	Hook called on explain.

The arguments are the same as the execute(), with the addition of
a “verbose” keyword arg for when the EXPLAIN is called with the VERBOSE
option.
:returns: An iterable of strings to display in the EXPLAIN output.

	
get_path_keys()

	Method called from the planner to add additional Path to the planner.
By default, the planner generates an (unparameterized) path, which
can be reasoned about like a SequentialScan, optionally filtered.

This method allows the implementor to declare other Paths,
corresponding to faster access methods for specific attributes.
Such a parameterized path can be reasoned about like an IndexScan.

For example, with the following query:

select * from foreign_table inner join local_table using(id);

where foreign_table is a foreign table containing 100000 rows, and
local_table is a regular table containing 100 rows.

The previous query would probably be transformed to a plan similar to
this one:

┌──┐
│ QUERY PLAN │
├──┤
│ Hash Join (cost=57.67..4021812.67 rows=615000 width=68) │
│ Hash Cond: (foreign_table.id = local_table.id) │
│ -> Foreign Scan on foreign_table (cost=20.00..4000000.00 rows=100000 width=40) │
│ -> Hash (cost=22.30..22.30 rows=1230 width=36) │
│ -> Seq Scan on local_table (cost=0.00..22.30 rows=1230 width=36) │
└──┘

But with a parameterized path declared on the id key, with the knowledge that this key
is unique on the foreign side, the following plan might get chosen:

┌───┐
│ QUERY PLAN │
├───┤
│ Nested Loop (cost=20.00..49234.60 rows=615000 width=68) │
│ -> Seq Scan on local_table (cost=0.00..22.30 rows=1230 width=36) │
│ -> Foreign Scan on remote_table (cost=20.00..40.00 rows=1 width=40)│
│ Filter: (id = local_table.id) │
└───┘

	Returns:	(key_columns, expected_rows),
where key_columns is a tuple containing the columns on which
the path can be used, and expected_rows is the number of rows
this path might return for a simple lookup.
For example, the return value corresponding to the previous scenario would be:[(('id',), 1)]

	Return type:	A list of tuples of the form

	
get_rel_size(quals, columns)

	Method called from the planner to estimate the resulting relation
size for a scan.

It will help the planner in deciding between different types of plans,
according to their costs.

	Parameters:	
	quals (list) – A list of Qual instances describing the filters
applied to this scan.

	columns (list) – The list of columns that must be returned.

	Returns:	A tuple of the form (expected_number_of_rows, avg_row_width (in bytes))

	
classmethod import_schema(schema, srv_options, options, restriction_type, restricts)

	Hook called on an IMPORT FOREIGN SCHEMA command.

	Parameters:	
	schema (str [https://docs.python.org/2/library/functions.html#str]) – the foreign schema to import

	srv_options (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – options defined at the server level

	options (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – options defined at the IMPORT FOREIGN SCHEMA
statement level

	restriction_type (str [https://docs.python.org/2/library/functions.html#str]) – One of ‘limit’, ‘except’ or None

	restricts (list) – a list of tables as passed to the LIMIT TO or EXCEPT clause

	Returns:	a list of multicorn.TableDefinition

	Return type:	list

	
insert(values)

	Insert a tuple defined by ‘’values’’ in the foreign table.

	Parameters:	values (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – a dictionary mapping column names to column values

	Returns:	A dictionary containing the new values. These values can differ
from the values argument if any one of them was changed
or inserted by the foreign side. For example, if a key is auto
generated.

	
pre_commit()

	Hook called just before a commit is issued, on PostgreSQL >=9.3.
This is where the transaction should tentatively commited.

	
rollback()

	Hook called when the transaction is rollbacked.

	
rowid_column

	Returns – A column name which will act as a rowid column,
for delete/update operations.

One can think of it as a primary key.

This can be either an existing column name, or a made-up one.
This column name should be subsequently present in every
returned resultset.

	
sub_begin(level)

	Hook called at the beginning of a subtransaction.

	
sub_commit(level)

	Hook called when a subtransaction is committed.

	
sub_rollback(level)

	Hook called when a subtransaction is rollbacked.

	
update(oldvalues, newvalues)

	Update a tuple containing ‘’oldvalues’’ to the ‘’newvalues’‘.

	Parameters:	
	oldvalues (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – a dictionary mapping from column
names to previously known values for the tuple.

	newvalues (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – a dictionary mapping from column names to new
values for the tuple.

	Returns:	A dictionary containing the new values. See :method:insert
for information about this return value.

	
class multicorn.SortKey(attname, attnum, is_reversed, nulls_first, collate)

	A SortKey describes the sort of one column an SQL query requested.

A query can request the sort of zero, one or multiple columns. Therefore, a list
of SortKey is provided to the ForeignDataWrapper, containing zero, one or more
SortKey.

	
attname

	str – The name of the column to sort as defined in the postgresql
table.

	
attnum

	int – The position of the column to sort as defined in the
postgresql table.

	
is_reversed

	bool – True is the query requested a DESC order.

	
nulls_first

	bool – If True, NULL values must appears at the beginning.
Otherwise, they must appear at the end.

	
collate

	str – The collation name to use to sort the data, as appearing
in the postgresql cluster.

	
class multicorn.Qual(field_name, operator, value)

	A Qual describes a postgresql qualifier.

A qualifier is here defined as an expression of the type:

col_name operator value

For example:

mycolumn > 3
mycolumn = ANY(1,2,3)
mycolumn ~~ ALL('A%','AB%', '%C')

	
field_name

	str – The name of the column as defined in the postgresql
table.

	
operator

	str or tuple – The name of the operator if a string.
Example: =, <=, ~~ (for a like clause)

If it is a tuple, then the tuple is of the form (operator name, ANY or ALL).

The tuple represents a comparison of the form WHERE field = ANY(1, 2, 3), which
is the internal representation of WHERE field IN (1, 2, 3)

	
value

	object – The constant value on the right side

	
is_list_operator

	Returns – True if this qual represents an array expr, False otherwise

	
list_any_or_all

	Returns –

	ANY if and only if:

	
	this qual is a list operator

	the operator applies as an ‘ANY’ clause (eg, = ANY(1,2,3))

	ALL if and only if:

	
	this is a list operator

	the operator applies as an ‘ALL’ clause (eg, > ALL(1, 2, 3))

None if this is not a list operator.

	
class multicorn.ColumnDefinition(column_name, type_oid=0, typmod=0, type_name='', base_type_name='', options=None)

	Definition of Foreign Table Column.

	
column_name

	str – the name of the column

	
type_oid

	int – the internal OID of the PostgreSQL type

	
typmod

	int – the type modifier (ex: VARCHAR(12))

	
type_name

	str – the formatted type name, with the modifier (ex: VARCHAR(12))

	
base_type_name

	str – the base type name, withou modifier (ex: VARCHAR)

	
options

	dict – a mapping of option names to option values, as strings.

	
class multicorn.TableDefinition(table_name, schema=None, columns=None, options=None)

	Definition of a Foreign Table.

	
table_name

	str – the name of the table

	
columns

	str – a list of ColumnDefinition objects

	
options

	dict – a dictionary containing the table-level options.

	
to_statement(schema_name, server_name)

	Generates the CREATE FOREIGN TABLE statement associated with this
definition.

Tutorial: Writing an FDW

Multicorn provides a simple interface for writing foreign data wrappers: the
multicorn.ForeignDataWrapper interface.

Implementing a foreign data wrapper is as simple as inheriting from multicorn.ForeignDataWrapper and implemening the execute method.

What are we trying to achieve ?

Supposing we want to implement a foreign data wrapper which only returns a set
of 20 rows, containing in each column the name of the column itself concatenated
with the number of the line.

The goal of this tutorial is to be able to execute this:

CREATE FOREIGN TABLE constanttable (
 test character varying,
 test2 character varying
) server multicorn_srv options (
 wrapper 'myfdw.ConstantForeignDataWrapper'
)

SELECT * from constanttable;

And obtain this as a result:

 test | test2
---------+----------
 test 0 | test2 0
 test 1 | test2 1
 test 2 | test2 2
 test 3 | test2 3
 test 4 | test2 4
 test 5 | test2 5
 test 6 | test2 6
 test 7 | test2 7
 test 8 | test2 8
 test 9 | test2 9
 test 10 | test2 10
 test 11 | test2 11
 test 12 | test2 12
 test 13 | test2 13
 test 14 | test2 14
 test 15 | test2 15
 test 16 | test2 16
 test 17 | test2 17
 test 18 | test2 18
 test 19 | test2 19
(20 lignes)

How do we do that ?

The fdw described above is pretty simple, implementing it should be easy !

First things first, we have to create a new python module.

This can be achieved with the most simple setup.py file:

import subprocess
from setuptools import setup, find_packages, Extension

setup(
 name='myfdw',
 version='0.0.1',
 author='Ronan Dunklau',
 license='Postgresql',
 packages=['myfdw']
)

But let’s see the whole code. To be usable with the above CREATE FOREIGN
TABLE statement, this module should be named myfdw.

from multicorn import ForeignDataWrapper

class ConstantForeignDataWrapper(ForeignDataWrapper):

 def __init__(self, options, columns):
 super(ConstantForeignDataWrapper, self).__init__(options, columns)
 self.columns = columns

 def execute(self, quals, columns):
 for index in range(20):
 line = {}
 for column_name in self.columns:
 line[column_name] = '%s %s' % (column_name, index)
 yield line

You should have the following directory structure:

.
|-- myfdw/
| `-- __init__.py
`-- setup.py

To install it, just run python setup.py install, and the file will be copied
to your global python installation, which should be the one your PostgreSQL
instance is using.

And that’s it !
You just created your first foreign data wrapper. But let’s look a bit more
thoroughly to the class...

The first thing to do (although optional, since you can implement the interface
via duck-typing), is to import the base class and subclass it:

from multicorn import ForeignDataWrapper

class ConstantForeignDataWrapper(ForeignDataWrapper):

The init method must accept two arguments

	options

	A dictionary of options given in the OPTIONS clause of the
CREATE FOREIGN TABLE statement, minus the wrapper option.

	columns

	A mapping of the columns names given during the table creation, associated
to their types.
Ex: {‘test’: ‘character varying’}

Our access point do not need any options, thus we will only need to keep a
reference to the columns:

def __init__(self, options, columns):
 super(ConstantForeignDataWrapper, self).__init__(options, columns)
 self.columns = columns

The execute method is the core of the API.
It is called with a list of Qual objects, and a list column names, which we will ignore
for now but more on that later.

This method must return an iterable of the resulting lines.
Each line can be either a list containing an item by column,
or a dictonary mappning the column names to their value.

For this example, we chose to build a dictionary.
Each column contains the concatenation of the column name and
the line index.

def execute(self, quals):
 for index in range(20):
 line = {}
 for column_name in self.columns:
 line[column_name] = '%s %s' % (column_name, index)
 yield line

And that’s it !

Write API

Since PostgreSQL 9.3, foreign data wrappers can implement a write API.

In multicorn, this involves defining which column will be used as a primary key (mandatory) and implementing the following methods at your
discretion:

def insert(self, new_values)
def update(self, old_values, new_values)
def delete(self, old_values)

Each of these arguments will be dictionaries, containing at least the column you
defined as a primary key, and the values to insert or those which have changed
(for an update). In addition, other values may be present depending on the query
involved.

These methods should return a dictionary containing the new values (after
insertion or update). This will be used in the case of RETURNING clauses of the
form:

INSERT INTO my_ft VALUES (some_value) RETURNING *;

You can return new values if the values that were given in sql are not the ones
that are actually stored (think about default values, triggers...).

The row_id_column attribute must be set to the name of a column acting as a
primary key. For example:

class MyFDW(ForeignDataWrapper):

 def __init__(self, fdw_options, fdw_columns):
 self.row_id_column = fdw_columns.keys()[0]

If you want to handle transaction hooks, you can implement the following
methods:

def commit(self)
def rollback(self)
def pre_commit(self)

The pre_commit method will be called just before the local transaction commits.
You can raise an exception here to abort the current transaction were your
remote commit to fail.

The commit method will be called just at commit time, while the rollback method
will be called whenever the local transaction is rollbacked.

Optimizations

As was noted in the code commentaries, the execute methods accept a quals argument.
This argument is a list of quals object, which are defined in multicorn/__init__.py [https://github.com/Kozea/Multicorn/blob/master/python/multicorn/__init__.py].
A Qual object defines a simple condition wich can be used by the foreign data
wrapper to restrict the number of the results.
The Qual class defines three instance’s attributes:

	field_name: the name of the column concerned by the condition.

	operator: the name of the operator.

	value: the value expressed in the condition.

Let’s suppose we write the following query:

SELECT * from constanttable where test = 'test 2' and test2 like '%3%';

The method execute would be called with the following quals:

[Qual('test', '=', 'test 2'), Qual('test', '~~', '3')]

Now you can use this information to reduce the set of results to return to the
postgresql server.

Note

You don’t HAVE to enforce those quals, Postgresql will check them anyway.
It’s nonetheless useful to reduce the amount of results you fetch over the
network, for example.

Similarly, the columns argument contains the list of needed columns.
You can use this information to reduce the amount of data that has to be
fetched.

For example, the following query:

select test, test2 from constanttable;

would result in the following columns argument:

['test', 'test2']

Once again, if you returns more than these columns everything should be fine.

Parameterized paths

The python FDW implementor can affect the planner by implementing the
get_path_keys and get_rel_size methods.

def get_rel_size(self, quals, columns):

This method must return a tuple of the form (expected_number_of_row,
expected_mean_width_of_a_row (in bytes)).

The quals and columns arguments can be used to compute those estimates.

For example, the imapfdw computes a huge width whenever the payload column is
requested.

def get_path_keys(self):

This method must return a list of tuple of the form (column_name,
expected_number_of_row).

The expected_number_of_row must be computed as if a “where column_name =
some_value” filter were applied.

This helps the planner to estimate parameterized paths cost, and change the plan
accordingly.

For example, informing the planner that a filter on a column may return exactly
one row, instead of the full billion, may help it on deciding to use a
nested-loop instead of a full sequential scan.

Error reporting

In the multicorn.utils [https://github.com/Kozea/Multicorn/blob/master/python/multicorn/utils.py] module lies a simple utility function,
log_to_postgres.

This function is mapped to the Postgresql function erreport.

It accepts three arguments:

	message (required)

	A python string containing the message to report.

	level (optional, defaults to logging.INFO)

	
	The severity of the message. The following values are accepted:

	
	logging.DEBUG

	Maps to a postgresql DEBUG1 message. In most configurations, it won’t
show at all.

	logging.INFO

	Maps to a postgresql NOTICE message. A NOTICE message is passed to the
client, as well as in the server logs.

	logging.WARNING

	Maps to a postgresql WARNING message. A WARNING message is passed to the
client, as well as in the server logs.

	logging.ERROR

	Maps to a postgresql ERROR message. An ERROR message is passed to the
client, as well as in the server logs.

Important

An ERROR message results in the current transaction being aborted.
Think about the consequences when you use it !

	logging.CRITICAL

	Maps to a postgresql FATAL message. Causes the current server process
to abort.

Important

A CRITICAL message results in the current server process to be aborted
Think about the consequences when you use it !

	hint (optional)

	An hint given to the user to resolve the cause of the message (ex:Try
adding the missing option in the table creation statement)

Foreign Data Wrapper lifecycle

The foreign data wrapper associated to a table is instantiated on a per-process
basis, and it happens when the first query is run against it.

Usually, postgresql server processes are spawned on a per-connection basis.

During the life time of a server process, the instance is cached.
That means that if you have to keep references to resources such as connections,
you should establish them in the __init__ method and cache them as instance
attributes.

Third-Party-FDWs

In addition to the built-in fdws shipped with Multicorn, there are some
third-party modules available on the net.

rethinkdb-multicorn-postgresql-fdw

A FDW for accessing RethinkDB databases

Supports: ✓✓✗✗
	repository:

	https://github.com/wilsonrmsorg/rethinkdb-multicorn-postgresql-fdw/

Hive FDW

Access data stored in Apache Hive tables.

Supports: ✓✗✗✗
	repository:

	https://github.com/youngwookim/hive-fdw-for-postgresql

dockerfdw

A FDW for interacting with docker containers

Supports: ✓✓✗✗
	repository

	https://github.com/paultag/dockerfdw

fb-psql

Access data using Facebook FQL API

Supports: ✓✗✗✗
	repository

	https://github.com/mrwilson/fb-psql

telemetry-fdw

Reads data from OpenStack / Telemetry.

Supports: ✓✗✗✗
	repository

	https://github.com/hhamalai/telemetry-fdw

s3csv_fdw

Reads data from CSV files stored on Amazon S3.

Supports: ✓✗✗✗
	repository

	https://github.com/eligoenergy/s3csv_fdw.git

S3Fdw

Reads data from JSON files stored on Amazon S3

Supports: ✓✗✗✗
	repository

	https://github.com/blakedw/s3fdw.git

Database.com FDW

Supports: ✓✗✗✗
	repository

	https://github.com/metadaddy-sfdc/Database.com-FDW-for-PostgreSQL.git

Multicorn Internal Design

This part is more geared toward those who may want to hack on Multicorn itself.

PostgreSQL C API

The PostgreSQL C API follows a pretty simple workflow.

Contribute

Send Us an Mail

Want to write kind words? You can send a mail on our Librelist
mailing-list <mailto:multicorn@librelist.com> and even take a look at .. meta: mailarchives_`the archives`.

If you use Multicorn in production, we would love to hear about your use-case !

Report Bugs

Found a bug? Want a new feature? Report a new issue on the Multicorn
bug-tracker on GitHub <https://github.com/Kozea/Multicorn/issues/>.

Hack

Interested in hacking? Feel free to clone the git repository on
GitHub <https://github.com/Kozea/Multicorn> if you want to add new features, fix bugs or update documentation.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 multicorn	

 	
 	
 multicorn.csvfdw	

 	
 	
 multicorn.fsfdw	

 	
 	
 multicorn.fsfdw.restfsfdw	

 	
 	
 multicorn.imapfdw	

 	
 	
 multicorn.ldapfdw	

 	
 	
 multicorn.rssfdw	

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V

_

 	
 	__init__() (multicorn.ForeignDataWrapper method)

A

 	
 	attname (multicorn.ForeignDataWrapper.SortKey attribute)

 	
 	attnum (multicorn.ForeignDataWrapper.SortKey attribute)

B

 	
 	base_type_name (multicorn.ForeignDataWrapper.ColumnDefinition attribute)

 	
 	begin() (multicorn.ForeignDataWrapper method), [1]

C

 	
 	can_sort() (multicorn.ForeignDataWrapper method)

 	collate (multicorn.ForeignDataWrapper.SortKey attribute)

 	column_name (multicorn.ForeignDataWrapper.ColumnDefinition attribute)

 	
 	ColumnDefinition (class in multicorn)

 	columns (multicorn.ForeignDataWrapper.TableDefinition attribute)

 	commit() (multicorn.ForeignDataWrapper method)

D

 	
 	delete() (multicorn.ForeignDataWrapper method)

E

 	
 	end_modify() (multicorn.ForeignDataWrapper method)

 	end_scan() (multicorn.ForeignDataWrapper method)

 	
 	execute() (multicorn.ForeignDataWrapper method)

 	explain() (multicorn.ForeignDataWrapper method)

F

 	
 	field_name (multicorn.ForeignDataWrapper.Qual attribute)

 	
 	ForeignDataWrapper (class in multicorn)

G

 	
 	get_path_keys() (multicorn.ForeignDataWrapper method)

 	
 	get_rel_size() (multicorn.ForeignDataWrapper method)

I

 	
 	import_schema() (multicorn.ForeignDataWrapper class method)

 	insert() (multicorn.ForeignDataWrapper method)

 	
 	is_list_operator (multicorn.Qual attribute)

 	is_reversed (multicorn.ForeignDataWrapper.SortKey attribute)

L

 	
 	list_any_or_all (multicorn.Qual attribute)

M

 	
 	multicorn.csvfdw (module)

 	multicorn.fsfdw (module)

 	multicorn.fsfdw.restfsfdw (module)

 	
 	multicorn.imapfdw (module)

 	multicorn.ldapfdw (module)

 	multicorn.rssfdw (module)

N

 	
 	nulls_first (multicorn.ForeignDataWrapper.SortKey attribute)

O

 	
 	operator (multicorn.ForeignDataWrapper.Qual attribute)

 	
 	options (multicorn.ForeignDataWrapper.ColumnDefinition attribute)

 	(multicorn.ForeignDataWrapper.TableDefinition attribute)

P

 	
 	pre_commit() (multicorn.ForeignDataWrapper method), [1]

Q

 	
 	Qual (class in multicorn)

R

 	
 	rollback() (multicorn.ForeignDataWrapper method), [1]

 	
 	rowid_column (multicorn.ForeignDataWrapper attribute), [1]

S

 	
 	SortKey (class in multicorn)

 	sub_begin() (multicorn.ForeignDataWrapper method), [1]

 	
 	sub_commit() (multicorn.ForeignDataWrapper method), [1]

 	sub_rollback() (multicorn.ForeignDataWrapper method), [1]

T

 	
 	table_name (multicorn.ForeignDataWrapper.TableDefinition attribute)

 	TableDefinition (class in multicorn)

 	to_statement() (multicorn.TableDefinition method)

 	
 	type_name (multicorn.ForeignDataWrapper.ColumnDefinition attribute)

 	type_oid (multicorn.ForeignDataWrapper.ColumnDefinition attribute)

 	typmod (multicorn.ForeignDataWrapper.ColumnDefinition attribute)

U

 	
 	update() (multicorn.ForeignDataWrapper method)

V

 	
 	value (multicorn.ForeignDataWrapper.Qual attribute)

 _static/comment.png

_static/plus.png

_static/img/glyphicons-142-database-plus.png

_static/img/glyphicons-419-disk-import.png

_static/img/glyphicons-151-edit.png

_static/img/glyphicons-352-book-open.png

_static/minus.png

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		Multicorn

 		Installation

 		Requirements

 		Usage

 		Included Foreign Data Wrappers

 		SQLAlchemy Foreign Data Wrapper

 		FileSystem Foreign Data Wrapper

 		Purpose

 		Dependencies

 		Options

 		Usage Example

 		ReStructuredText FDW

 		Imap Foreign Data Wrapper

 		Purpose

 		Dependencies

 		Options

 		Server side filtering

 		LDAP Foreign Data Wrapper

 		Purpose

 		Dependencies

 		Required options

 		Optional options

 		Usage Example

 		CSV Foreign Data Wrapper

 		Purpose

 		Dependencies

 		Options

 		Usage example

 		RSS foreign data wrapper

 		Purpose

 		Dependencies

 		Required options

 		Usage Example

 		Process Foreign Data Wrapper

 		Writing an FDW

 		API

 		Implementing an FDW

 		Full API

 		Tutorial: Writing an FDW

 		What are we trying to achieve ?

 		How do we do that ?

 		Write API

 		Optimizations

 		Error reporting

 		Foreign Data Wrapper lifecycle

 		Third-Party-FDWs

 		rethinkdb-multicorn-postgresql-fdw

 		Hive FDW

 		dockerfdw

 		fb-psql

 		telemetry-fdw

 		s3csv_fdw

 		S3Fdw

 		Database.com FDW

 		Multicorn Internal Design

 		PostgreSQL C API

 		Contribute

 		Send Us an Mail

 		Report Bugs

 		Hack

_static/ajax-loader.gif

_static/up.png

_static/comment-bright.png

_static/file.png

_static/comment-close.png

_static/down.png

_static/down-pressed.png

