
The Mu Micro VM Tutorial
Release 2.2

Kunshan Wang

Nov 23, 2017

Contents

1 Language Implementor’s Tutorial 3
1.1 Introduction . 3
1.2 Getting Started . 5
1.3 Basic Interaction . 6
1.4 Mu Intermediate Representation . 13
1.5 Type System . 14
1.6 Simple Functions . 22

i

ii

The Mu Micro VM Tutorial, Release 2.2

This tutorial is about the Mu micro virtual machine.

A micro VM is a minimalist virtual machine as an underlying substrate for high-level programming language imple-
mentations. Mu is designed for languages that are concurrent, JIT compiled and use garbage collection.

Contents 1

http://microvm.org/

The Mu Micro VM Tutorial, Release 2.2

2 Contents

CHAPTER 1

Language Implementor’s Tutorial

This part is suitable for those who wish to implement a programming language on top of Mu.

1.1 Introduction

The Mu project addresses the difficulties in implementing managed languages, which include those languages that
have a garbage collector and likely run on a virtual machine.

1.1.1 What Makes Language Implementation Difficult?

We identify three major concerns that make language implementation difficult, namely concurrency, just-in-time
compiling and garbage collection.

Each of them is already difficult enough individually. But when handling all three at the same time, their combined
complexity will multiply.

For example, in a multi-threaded JIT-compiled garbage-collected program, when GC is triggered, the GC
thread needs to ask all mutator threads running in JIT-compiled machine code to pause at the nearest GC-
safe points (or “yieldpoints”), where stack maps are available to identify all references held by variables
in the stack. In this task, the yieldpoints are inserted by the JIT-compiler, which is aware of GC. The
stack maps are generated by the JIT-compiler, too. The handshake between mutators and the GC is very
difficult to get right, too. Yieldpoints involve all three concerns mentioned above.

Because they are difficult, language implementations either omit them or implement them naively.

Take CPython, the official Python implementation, as an example:

• lack of concurrency: In CPython, there is a global interpreter lock (GIL) which must be obtained
for any Python thread to run. This makes the execution of all multi-threaded Python programs
sequential.

• lack of JIT-compiling: CPython is interpreter-only and does not perform run-time optimisation based
on JIT-compiling and type inference. A simple computation-intensive program may be up to 20

3

https://docs.python.org/3.4/glossary.html#term-global-interpreter-lock

The Mu Micro VM Tutorial, Release 2.2

times slower than an equivalent C program. For comparison, PyPy, a Python implementation that
does JIT-based optimisation, can run as fast as unoptimised C (GCC with -O0) in some cases.

• naive garbage collector: CPython uses a naive reference counting garbage collector. It increments
or decrements the count every time a reference is created or destroyed. This naive algorithm is
known to be more than 30% slower than a naive mark-sweep GC in total execution time.

In reality, many languages designs are implementation driven. Difficulties in implementation will result in bad
decisions being baked into the design and hamper the evolution of the language in the future.

Take PHP as an example. PHP was never supposed to be a programming language, but a set of pre-
processing macros for personal home pages. As it evolves, it uses naive reference counting GC, copy-by-
value semantic for arrays, and has reference types. An optimisation was also made to use copy-on-write
to avoid copying. In 2002, a user found a problem involving arrays and references. Fives days later,
the PHP developers decided that properly fixing the bug will put a considerably slowdown on the PHP
performance and this behaviour is documented.

Up till now in 2015, it has been 12 years since the problem was spotted. The problem can still be repro-
duced in today’s PHP.

In conclusion, concurrency, JIT and GC are difficult. The difficulties lead to bad language designs and implementa-
tions, and should be abstracted out in a layer.

1.1.2 Why Micro Virtual Machines?

There are basically two ways to implement a managed language.

1. Building a VM from scratch. This is difficult because the developers have to address all of the three concerns.
In reality, there are many successful projects taking this approach, such as PyPy, HHVM, V8 and so on. Most
don’t address all three concerns, and no code is shared between those projects.

2. Targeting an existing virtual machine, such as the JVM or the .NET CLR, which has high-quality implemen-
tations. The problems are semantic gaps and huge dependencies. Existing VMs are designed for particular
kinds of languages. For example, the JVM is designed for static object-oriented languages. Optimisations usu-
ally done by JVM do not work for dynamic languages like Python. Jython, for example, still performs in the
same order of magnitude as CPython. Moreover, using JVM introduces many unnecessary dependencies on
Java-related packages.

Both approaches use monolithic virtual machines. Each such VM handles all aspects of the runtime of the language.
For example, the JVM handles concurrency, JIT and GC, but also class loading, run-time type information, object-
oriented programming (including virtual methods), and it comes with a comprehensive Java standard library. Since
the VM is huge, it is difficult to build from scratch. Since it is monolithic, it is difficult to reuse its parts for other
languages.

We propose an alternative concept: micro virtual machines. Analogous to microkernels in the operating system
literature, a micro virtual machine only contains the parts that are absolutely necessary to be handled in the core of
the VM. We suppose those parts are concurrency, JIT and GC. There is a separate program, called a client, sitting on
the top of a micro virtual machine, interacting with the micro virtual machine and handling other (mostly language-
specific) parts, in a similar fashion as servers interacting with the microkernel.

A micro virtual machine must be low-level and minimal.

• Being low-level means being close to the machine and thus minimise the semantic gap.

• Being minimal means it must push jobs that are not essential to the higher level, that is, the client. This is a
separation of concern.

– The micro virtual machine itself will be easier to design and implement. The minimalism also makes it
practical to create a formally verified VM.

4 Chapter 1. Language Implementor’s Tutorial

http://users.cecs.anu.edu.au/~steveb/downloads/pdf/rc-ismm-2012.pdf
http://en.wikipedia.org/wiki/PHP#cite_ref-itconversations_16-0
https://bugs.php.net/bug.php?id=20993
https://bugs.php.net/bug.php?id=20993#1040181945
https://bugs.php.net/bug.php?id=20993#1040181945
http://www.pypy.org/
http://hhvm.com
https://developers.google.com/v8/
http://www.jython.org/

The Mu Micro VM Tutorial, Release 2.2

– The client is not bound to the assumptions made by the low-level VM and can implement the language
with maximum flexibility. The client has more responsibility, too, but it can still rely on the micro virtual
machine for the three major concerns that are extremely difficult.

The minimalism pushes as much job as possible to the client side, potentially making the language implementer’s
job harder than targeting traditional VMs like JVM. To mitigate this limitation, libraries can be provided to assist the
implementation of certain kinds of languages, like dynamic languages, functional languages, object-oriented languages
and so on. Libraries are not part of the micro virtual machine. The library can be a framework or a package that is part
of the client; it can also be pre-written code snippets.

The Mu project is a concrete micro virtual machine, in the same way seL4 is a concrete microkernel.

1.1.3 Separating the Specification and the Implementation

Mu separates its specification and its implementations, making it possible to create many different implementations for
different purposes. In theory, there may be a simple proof-of-concept implementation, a high-performance implemen-
tation for productional use, an extensible modular implementation for researching, a formally verified implementation
for highly-assured applications, and so on.

The Mu specification defines the behaviour and the interface of Mu.

Currently, Mu has two implementations:

• Holstein, the reference implementation, is a simple Mu implementation and allow early evaluators to do experi-
ment with the interface of Mu. The simplicity allows Mu reference implementation to be agilely changed when
the specification changes. It is not a high-performance implementation.

• Zebu, the fast implementation, is developed from the first day to be fast. It is written in Rust, and has a
optimizing compiler and a high-performance garbage collector. It is currently implemented as an ahead-of-time
compiler. Some functionalities are still in development.

1.2 Getting Started

1.2.1 Where is Everything?

The specification is the canonical source of information about the implementation-neutral parts of Mu.

This tutorial will use Holstein, the current reference implementation. Keep in mind that it is not high-performance. It
is interpreted and single-threaded, does excessive checking and is very slow.

1.2.2 Get Mu

Go to https://gitlab.anu.edu.au/mu/mu-impl-ref2 and follow the README file. That repository also contains a sample
factorial program compiled from an RPython client and a loader to run it. Read the README file.

1.2.3 Pick your language

The client of the reference implementation can be written in Scala or in C. If you use Scala, you can just use the classes
in the microvm-refimpl2 repository since the reference implementation is already written in Scala. If you use
C, there is a C binding in the cbinding directory. Read the README file for instructions. There is also a sample
client program test_client.

The following part of the tutorial assume you use Scala. Don’t worry if you use C because the interface is quite similar.

1.2. Getting Started 5

http://sel4.systems/
https://gitlab.anu.edu.au/mu/mu-spec
https://gitlab.anu.edu.au/mu/mu-impl-ref2
https://gitlab.anu.edu.au/mu/mu-impl-fast/
https://gitlab.anu.edu.au/mu/mu-spec
https://gitlab.anu.edu.au/mu/mu-impl-ref2
https://gitlab.anu.edu.au/mu/mu-impl-ref2

The Mu Micro VM Tutorial, Release 2.2

1.3 Basic Interaction

You are writing a Mu client, which controls the Mu micro VM via the Mu client interface, usually simply called “the
API”.

In Scala, the class uvm.refimpl.MicroVM, which implements the MuVM struct in the specification, represents a
micro VM instance. You can start Mu by creating a MicroVM instance:

val microVM = MicroVM()

Just as simple as this. The instance also internally allocates memory for its heap. The default heap size is quite big,
and is usually enough for experiment.

1.3.1 Mu Contexts

The client more often interacts with the micro VM via “Mu context”. They are called “MuCtx” in the spec, and uvm.
refimpl.MuCtx in Holstein. A MuCtx is a context created from a MicroVM instance. It can hold Mu values for
the client, access the Mu memory, load bundles and let the client perform many tasks on Mu.

Why not directly do these things on the MicroVM instance? Why add another layer? There are two reasons.

Reason 1: because Mu is designed to be multi-threaded. By design, multiple client threads can interact with the Mu
micro VM concurrently.

Caution: In fact, unfortunately, the reference implementation is based on a single-thread interpreter. The program
itself is not thread safe. Do not run more than one client threads in the reference implementation.

But Mu is designed for multi-threaded envirionments. The limitation in the implementation does not change the
fact that Mu and its clients need to think in a multi-threaded way. A carefully designed interface will eventually
allow a more efficient implementation.

Despite this limitation, the reference implementation can still run multiple Mu threads. Mu threads are interpreted
one instruction for each thread on a round robin scheduler.

If multiple client threads were accessing the single MicroVM object concurrently, synchronisation (such as locks) must
be employed to guarantee thread safety. This is where the “context” comes in. In Mu’s design, MuCtx instances are
not allowed to be used by two threads concurrently, thus avoided many cases where synchronisation were necessary.
For example, accessing the garbage-collected Mu memory via MuCtx does not need locking. A MuCtx instance can
also hold a thread-local memory pool so that a client thread can allocate memory in the garbage-collected Mu heap
without having to deal with the shared global memory pool every time unless the local pool is exhausted.

Reason 2: because the type system of Mu is usually very different from the client’s. Notably, the Mu’s type system
contain object reference types which points to the Mu heap and must be traced by the garbage collector. MuCtx
can hold Mu references for the client so that whenever garbage collection happens, it always knows what objects are
still kept alive by a reference held for the client.

If you used JNI before, you may find this design familiar. In fact, this design is inspired by the JNI. JNI uses opaque
“handles” to refer to Java object, so does the Mu API. However, for performance reason, opaque handles are not
the only way to expose garbage-collected Mu objects to native programs. Mu has a more efficient but unsafe native
interface which supports “object pinning”. That is an advanced topic.

Note: There is a difference between a Mu client and a native program.

6 Chapter 1. Language Implementor’s Tutorial

https://gitlab.anu.edu.au/mu/mu-spec/blob/master/api.rst
https://gitlab.anu.edu.au/mu/mu-spec/blob/master/native-interface.rst
https://gitlab.anu.edu.au/mu/mu-spec/blob/master/native-interface.rst

The Mu Micro VM Tutorial, Release 2.2

A Mu client is a program that controls the Mu micro VM. In theory, a Mu client can be written in any languages, from
C to Scala, Python, JavaScript, etc. The Mu API is the interface between the client and the micro VM. It includes the
IR and the API, and the purpose is to control the micro VM.

A native program is a program that does not run in the Mu micro VM, and is usually written in C or other unmanaged
languages. libc is one such example. The native interface involves pointer-based raw memory access and calling
conventions that allow Mu programs to call C programs and vice versa in some specific ways. The main purpose is to
make system calls (obviously a VM that cannot read or write is almost useless), and to interact with programs that
do not run on Mu, including C programs and those written in other languages.

Using Mu Contexts

You can create a MuCtx instance by invoking the newContext() method on the MicroVM instance:

val ctx = microVM.newContext()

and you need to close the context in order to release the resources it is holding inside:

ctx.closeContext()

The API, i.e. the methods of MicroVM and MuCtx, are defined by the API chapter of the specification. The scala
binding matches the spec.

Let’s see what MuCtx can do. You don’t need to understand all of them now, since they will be covered in more depth
in later chapters.

Create contexts from MicroVM instance:

val microVM = MicroVM()
val ctx = microVM.newContext()

Holstein can load Mu bundles from the text form. This method of loading bundle is deprecated in favour for the IR
building API which avoids the text-form IR parser.

ctx.loadBundle("""
.typedef @i64 = int<64>
// more Mu IR code here

""")

MuCtx can hold Mu values for the client. Mu values have a specific int size.

val handle1 = ctx.handleFromInt(0x123456789abcdef0L, 64)
val handle2 = ctx.handleFromInt(0x12345678L, 32)
val handle3 = ctx.handleFromInt(0x1234L, 16)
val handle4 = ctx.handleFromDouble(3.14)
val handle5 = ctx.handleFromPtr(ctx.idOf("@someType"), 0x7fff0000018L)

It can allocate objects in the Mu heap. The handle is held in ctx so that GC can find all of them.

val handle6 = ctx.newFixed(ctx.idOf("@someType"))

It can create Mu stacks and Mu threads

val hFunc = ctx.handleFromFunc(ctx.idOf("@some_function"))
val hStack = ctx.newStack(hFunc)
val hArg0 =

1.3. Basic Interaction 7

https://gitlab.anu.edu.au/mu/mu-spec/blob/master/api.rst
https://gitlab.anu.edu.au/mu/mu-impl-ref2/blob/master/src/main/scala/uvm/refimpl/clientInterface.scala
https://gitlab.anu.edu.au/mu/mu-impl-ref2/blob/master/src/main/scala/uvm/refimpl/clientInterface.scala
https://gitlab.anu.edu.au/mu/mu-spec/blob/master/irbuilder.rst
https://gitlab.anu.edu.au/mu/mu-spec/blob/master/irbuilder.rst

The Mu Micro VM Tutorial, Release 2.2

val hArg1 =
val hArg2 =
val hThread = ctx.newThread(hFunc, PassValues(Seq(hArg0, hArg1, hArg2)))

It can access the Mu memory

val hObjRef = ctx.newFixed(ctx.idOf("@int_of_64_bits"))
val hIRef = ctx.getIRef(hObjRef)
val hValue = ctx.load(MemoryOrder.SEQ_CST, hIRef)

It can introspect the stack states

val hStack2 =
val hCursor = ctx.newCursor(hStack2)
val funcID = ctx.curFunc(hCursor) // function ID
val hVars = ctx.dumpKeepalives(hCursor) // local variables

It can modify the stack states (a.k.a. on-stack replacement, OSR)

ctx.nextFrame(hCursor)
ctx.popFramesTo(hCursor)
val hFunc2 = ctx.handleFromFunc(...)
ctx.pushFrame(hFunc2)

1.3.2 Threads and Stacks

Mu programs are executed on Mu threads. A thread is the unit of CPU scheduling, and Mu threads are usually
implemented mirroring operating system threads. Multiple Mu threads may execute concurrently.

Each Mu thread runs on a Mu stack. A stack, commonly known as a control stack, is the state of execution, represented
in Mu as a list of frames. Each frame corresponds to a Mu function version, and records which instruction should be
executed next and what are the values of local variables.

Mu clearly distinguish between threads and stacks. If you used traditional thread APIs, such as the Java or the PThread
API, you may already have the mental model that “a thread has a stack, which has many frames, so threads and stacks
are interchangeable”. But in Mu, the relation of stacks and threads is much more flexible. A thread can stop executing
on one stack and resume another stack, which gives “coroutine” behaviours. Multiple threads can also share a much
bigger stack pool and implement the M*N threading model.

In order to start executing a Mu program, the client should create a Mu stack and a Mu thread. In order to stop
executing, the Mu thread should execute the @uvm.thread_exit instruction.

1.3.3 Trap Handling

There is one special instruction, TRAP, that needs special attention since the beginning. During the execution of Mu
programs, if a Mu thread executes a TRAP instruction, the thread temporarily detaches from its stack and gives control
back to the client. At any moment, there is one trap handler registered in a Mu instance. A trap handler is a client
function that will be called whenever a TRAP instruction is executed. The trap handler gains access to the thread and
the stack that caused the TRAP.

Using the API, the client can to introspect the execution state of each of its frames, see the values of local variables,
and even replace existing frames with new frames for new functions (this is called on-stack replacement, or OSR).

The trap handler is a great opportunity for the client to do many things. The clever placement of TRAP instructions and
the implementation of the trap handler is key to a good language implementation. Traps can be placed after sufficient

8 Chapter 1. Language Implementor’s Tutorial

The Mu Micro VM Tutorial, Release 2.2

run-time statistics are collected so that the client can optimise the program. Traps can also be used for lazy code
loading, de-optimising speculatively generated code, and debugging.

Scala API

The trap handler is registered by the setTrapHandler method on the MicroVM instance.

microVM.setTrapHandler(theTrapHandler)

The trap handler is an instance of the uvm.refimpl.TrapHandler trait.

trait TrapHandler {
def handleTrap(ctx: MuCtx, thread: MuThreadRefValue, stack: MuStackRefValue,

→˓watchPointID: Int): TrapHandlerResult
}

A new MuCtx instance is created for this particular trap event. It is passed to the trap handler as the first argument
ctx. The thread and the stack argument are handles of the thread that executed the TRAP, and the stack it was
bound to, respectively. These two handles are held by ctx. The watchPointID argument is about “watch points”,
which will be discussed later.

You probably only need one trap handler per program, so it is recommended to register it after created the Mu instance.

Inside the trap handler, you can use any API functions.

The return value of the trap handler tells Mu “how the current thread should continue”. There are three options:

• Terminate the current thread.

• Rebind the thread to a stack.

– When rebinding, pass some values to the top frame and let it continue normally.

– When rebinding, raise an exception and continue exceptionally.

When rebinding, the stack could be the previous stack, i.e. the stack argument of the trap handler, or a totally
different stack. In the former case, it will continue after the TRAP instruction. In the latter case, the trap handler swaps
the thread to a different stack, so the thread will continue in a totally different context.

The return type uvm.refimpl.TrapHandlerResult has several cases:

abstract class TrapHandlerResult
object TrapHandlerResult {
case class ThreadExit() extends TrapHandlerResult
case class Rebind(newStack: MuStackRefValue, htr: HowToResume) extends

→˓TrapHandlerResult
}

abstract class HowToResume
object HowToResume {

case class PassValues(values: Seq[MuValue]) extends HowToResume
case class ThrowExc(exc: MuRefValue) extends HowToResume

}

So you can return one of the cases from the trap handler:

// Just for convenience
import TrapHandlerResult._
import HowToResume._

1.3. Basic Interaction 9

The Mu Micro VM Tutorial, Release 2.2

// Terminate the thread.
return ThreadExit()

// Rebind to the old stack, pass some values and contunue normally
// Assume "stack" is the argument of the handleTrap method
val v1 = ctx.handleFrom......(...)
val v2 = ctx.handleFrom......(...)
val v3 = ctx.handleFrom......(...)
return Rebind(stack, PassValues(Seq(v1, v2, v3)))

// Rebind to the old stack, pass an empty list of values and contunue normally
// Assume "stack" is the argument of the handleTrap method
return Rebind(stack, PassValues(Seq()))

// Rebind to the old stack, throw an exception.
// Assume "stack" is the argument of the handleTrap method
// In Mu, an exception is just an object reference.
val e = ctx.newFixed(......)
return Rebind(stack, ThrowExc(e))

// Rebind to a different stack, passing 0 values.
val func = ctx.handleFromFunc(...)
val stack2 = ctx.newStack(func)
return Rebind(stack2, PassValues(Seq()))

C API

In the C API, you should use mvm->set_trap_handler(mvm, handler, user_data) to register the trap
handler.

The signature of the trap handler is a bit complicated:

typedef void (*MuTrapHandler)(MuCtx *ctx, MuThreadRefValue thread,
MuStackRefValue stack, int wpid, MuTrapHandlerResult *result,
MuStackRefValue *new_stack, MuValue **values, int *nvalues,
MuValuesFreer *freer, MuCPtr *freerdata, MuRefValue *exception,
MuCPtr userdata);

The first four arguments ctx, thread, stack and wpid are the same as Scala. The next seven arguments result,
new_stack, values, nvalues, freer, freedata and exception are output arguments. They allow the C
program to encode the counterpart of TrapHandlerResult. Since the client in C needs to pass an array of values
to Mu, it also needs to tell Mu how to de-allocate that array because there is not a standard way to de-allocate C
objects. The userdata is an arbitrary pointer the client provided when registering the trap handler. This allows the
trap handler to depend on extra client-decided contexts, because C does not have closures.

See the trap handling section of the Mu Specification for more information about trap handling in C.

1.3.4 Working Example

The following Scala program will create a Mu micro VM and execute a simple Mu IR program. You can ignore
details of the Mu IR now (except the TRAP instruction), but instead focus on the interaction between the client, the
Mu thread, and the trap handler.

The order of execution is labelled from #1 to #26.

10 Chapter 1. Language Implementor’s Tutorial

https://gitlab.anu.edu.au/mu/mu-spec/blob/master/api.rst#trap-handling

The Mu Micro VM Tutorial, Release 2.2

1 package tutorial
2

3 import uvm.refimpl._
4

5 object Interact extends App {
6

7 // Create the Mu instance
8 val microVM = MicroVM() // #1
9

10 // Implicitly convert names to IDs
11 implicit def idOf(name: String) = microVM.idOf(name) // #2
12

13 // Create the context
14 val ctx = microVM.newContext() // #3
15

16 ctx.loadBundle(""" // #4
17 .typedef @i64 = int<64>
18

19 .const @I64_1 <@i64> = 1
20

21 .funcsig @main.sig = (@i64) -> ()
22

23 .funcdef @main VERSION %v1 <@main.sig> { // #12
24 %entry(<@i64> %n):
25 %n2 = ADD <@i64> %n @I64_1 // #13
26 [%trap] TRAP <> KEEPALIVE (%n2) // #14
27 COMMINST @uvm.thread_exit // #21
28 }
29 """)
30

31 // Create the trap handler
32 val myTrapHandler = new TrapHandler {
33 def handleTrap(ctx: MuCtx, thread: MuThreadRefValue,
34 stack: MuStackRefValue, watchPointID: Int): TrapHandlerResult = {
35

36 // Create a cursor to introspect the stack
37 val cursor = ctx.newCursor(stack) // #15
38 val curInstID = ctx.curInst(cursor) // #16
39

40 ctx.nameOf(curInstID) match {
41 case "@main.v1.entry.trap" => { // #17
42 // Dump the keep-alive variables
43 val Seq(n2: MuIntValue) = ctx.dumpKeepalives(cursor) // #18
44 ctx.closeCursor(cursor)
45

46 // Print the value
47 val n2Int = ctx.handleToSInt(n2) // #19
48 printf("The value of n2 is %d.\n", n2Int)
49

50 // Return to Mu from the trap handler
51 TrapHandlerResult.Rebind(stack, HowToResume.PassValues(Seq())) // #20
52 }
53 }
54 }
55 }
56

57 // Set the trap handler
58 microVM.setTrapHandler(myTrapHandler) // #5

1.3. Basic Interaction 11

The Mu Micro VM Tutorial, Release 2.2

59

60 // Create the stack and the thread
61 val mainFunc = ctx.handleFromFunc("@main") // #6
62 val st = ctx.newStack(mainFunc) // #7
63

64 val fortyTwo = ctx.handleFromInt(42, 64) // #8
65

66 val th = ctx.newThread(st, None, HowToResume.PassValues(Seq(fortyTwo))) // #9
67

68 // Close the context
69 ctx.closeContext() // #10
70

71 // Let the reference implementation run
72 microVM.execute() // #11
73

74 // #22
75 }

There are some key steps:

• #1 and #3 creates the Mu instance and a context, respectively.

• #4 loads the initial bundle using the MuCtx. You can directly embed the text-form Mu IR in your source code.

• #5 registers the trap handler. This handler will handle all traps in the future.

• Using the MuCtx, #6-9 creates a Mu thread from a given Mu function, whose name happens to be @main.
“main” is not a special name. When creating the thread, the initial argument, the 64-bit integer 42, is passed to
the @main function. At #10, the MuCtx ctx is no longer useful and can be closed.

• Once created, the Mu thread can execute. But the reference implementation needs to call the microVM.
execute() method #11 to execute all Mu threads in the only Scala (JVM) thread.

• During the execution of the Mu thread, it hits the trap at line #14. The control then transfers to the trap handler.
Note that the KEEPALIVE clause specifies which local variables are eligible for introspection. In this case, it is
only %n2.

• In the trap handler, the value of client-specified local variables (keep-alive variables) are dumped at #18 and
printed. Since the previous ADD instruction #13 adds one to the number, it should print “43” here.

• Then at #20, the trap handler re-binds the thread with the old stack, passing an empty list of values back to the
TRAP.

• Then it continues from the Mu function after TRAP #14. The thread_stop instruction at #21 stops the Mu
thread.

• In the reference implementation, the execute() function at #11 ends when the last Mu thread stopped. Then
the example program quits. The specification does not specify how a Mu micro VM should end.

1.3.5 Summary

• A MicroVM instance is the heart of the Mu micro VM.

• The client interacts with the micro VM mostly via MuCtx. A context serves only one client thread. It holds Mu
values, including garbage-collected object references.

• In Mu, threads and stacks are loosely coupled. Threads can swap from one stack to another.

• The TRAP instruction gives the control back to the client from an executing Mu thread.

12 Chapter 1. Language Implementor’s Tutorial

The Mu Micro VM Tutorial, Release 2.2

• To start everything: create a MicroVM, create a MuCtx, load a bundle, create a stack and create a thread. The
MicroVM.execute() API function is specific to the reference implementation.

1.4 Mu Intermediate Representation

The client generates code in the format of Mu Intermediate Representation, or Mu IR for short. The IR is the
language in which programs are represented in the Mu micro VM. The Mu IR is defined by the Mu IR chapter of the
Mu specification.

The structure of the Mu IR is an AST. Mu bundle has a text form for human readability. A bundle can also be built
using the IR building API which calls into Mu to build an AST inside Mu. The IR building API is designed for
productional setting. This tutorial will use the text-form API.

1.4.1 Bundle

The client submits one bundle (a piece of Mu IR code) at a time to the Mu micro VM.

ctx.loadBundle("""
// insert your bundle here

""")

A bundle defines many types, function signatures, constants, global cell and functions. The client may submit multiple
bundles one after another.

After submitting, Mu knows about those things. Types can be used, global cells are allocated, and functions are
callable.

A bundle looks like this:

// Type
.typedef @i64 = int<64>

// Function signature
.funcsig @i_to_i = (@i64) -> (@i64)

// Constant
.const @I64_1 <@i64> = 1
.const @I64_2 <@i64> = 2

// Global cell
.global @g_foo <@i64>

// Function declaration (no body)
.funcdecl @factorial <@i_to_i>

// Function definition (with body)
.funcdef @fibonacci VERSION %v1 <@i_to_i> {

%entry(<@i64> %n): // Basic block
%lt = SLT <@i64> %n @I64_2 // Instructions
BRANCH2 %lt %small(%n) %big(%n) // Instructions

%small(<@i64> %n): // Basic block
RET %n // Interaction

%big(<@i64> %n): // Basic block
%nm1 = SUB <@i64> %n @I64_1 // Instruction

1.4. Mu Intermediate Representation 13

https://gitlab.anu.edu.au/mu/mu-spec/blob/master/ir.rst
https://gitlab.anu.edu.au/mu/mu-spec/blob/master/irbuilder.rst

The Mu Micro VM Tutorial, Release 2.2

%nm2 = SUB <@i64> %n @I64_2 // Instruction
%v1 = CALL <@i_to_i> @fibonacci (%nm1) // Instruction
%v2 = CALL <@i_to_i> @fibonacci (%nm2) // Instruction
%rv = ADD <@i64> %v1 %v2 // Instruction
RET %rv // Instruction

}

If you have used LLVM before, the Mu IR is the counterpart of LLVM modules.

1.4.2 Names

You may have noticed that there are names for almost all entities. In the Mu IR, there are two kinds of names: global
names and local names. Global names start with @ and local names start with %. The allowed characters in names are
[a-zA-Z0-9_.].

In fact, local names are just syntax sugars of some global names, that is, anything that has a name has a global name.
This will be discussed later.

At this moment, you only need to know what a bundle may contain. Their details will be discussed in the following
chapters.

1.5 Type System

The Mu type system is defined in the specification.

Like many programming languages and frameworks, Mu also has a type system.

The Mu type system is low level. There is no object-oriented programming concepts, such as class, inheritance,
polymorphism. There is no high-level concepts such as strings, either. The language implementer is responsible to
implement these high-level concepts.

But the Mu type system is also not too low level. Notably, unlike C, C++ or LLVM, the Mu type system still has object
reference types in it, and the garbage collector is fully aware of the presence of them. The main idea is, as long as you
use the Mu type system, and refer to heap objects using references, you can forget about garbage collection details,
such as stack maps, GC-safe points, and read/write barriers.

1.5.1 Overview

Some of the types (actually type constructors, explained later) contain angular brackets. These are parameters to these
types which may be integer literals, other types or function signatures.

The types in the Mu type system can be put into several categories:

1. Scalar value types: int<n>, float, double, uptr<T> and ufuncptr<sig>. These types represent plain
values.

2. Scalar reference types: ref<T>, iref<T>, weakref<T>, funcref<sig>, threadref, stackref,
framecursorref, irbuilderref and tagref64. These types refer to “things” in the Mu micro VM.
All such references are opaque in the sense that their representation is implementation dependent.

3. Composite types: struct<F1 F2 ...>, array<T n>, hybrid<F1 F2 ... V> and vector<T n>.
These types combine simpler types into more complex types.

4. The void type void. It has only one use case: when used as the “referenced type” of references or pointers, it
conveys the meaning of “reference/pointer to anything”.

14 Chapter 1. Language Implementor’s Tutorial

https://gitlab.anu.edu.au/mu/mu-spec/blob/master/type-system.rst

The Mu Micro VM Tutorial, Release 2.2

This is a complete list of Mu types. All values of Mu come from one of these types.

1.5.2 Define Types and Function Signatures

Type definition

To define a type in Mu, you use the top-level type definition: .typedef.

.typedef @i1 = int<1>

.typedef @i8 = int<8>

.typedef @i16 = int<16>

.typedef @i32 = int<32>

.typedef @i64 = int<64>

.typedef @float = float

.typedef @double = double

.typedef @ptri32 = uptr<@i32>

.typedef @foo.fp = ufuncptr<@foo_sig>

.typedef @refi32 = ref <@i32>

.typedef @irefi64 = iref<@i64>

.typedef @weakreffloat = weakref<@float>

.funcsig @foo.sig = (@i32) -> (@i32)

.typedef @foo.fr = funcref<@foo_sig>

.typedef @stackref = stackref

.typedef @threadref = threadref

.typedef @stkref = stackref

.typedef @thrref = threadref

.typedef @fcref = framecursorref

.typedef @ibref = irbuilderref

.typedef @struct1 = struct<@i32 @i32 @i32>

.typedef @struct2 = struct<@i64 @double>

.typedef @array1 = array<@i32 10>

.typedef @array2 = array<@i32 4096>

.typedef @hybrid1 = hybrid<@i64 @i32>

.typedef @hybrid2 = hybrid<@i8>

.typedef @hybrid3 = hybrid<@i64 @i64 @i64 @float>

.typedef @4xi32 = vector<@i32 4>

.typedef @void = void

Every type defined in the Mu IR has a name, which is on the left side of the equal sign. All characters in
[a-zA-Z0-9_.] are legal. You can use the dot . arbitrarily in the name. So the dot in @foo.sig does not
mean anything special to Mu. On the right side of the equal sign is the type constructor: it constructs a type. Some
type constructors take parameters while others do not.

What are type constructors?

If we imagine a Mu type as a Java or C++ object, then the type constructor is like the constructor of such an object.
int is just the abstract concept of integer, but int<32> is a concrete 32-bit integer type. Similarly ref<@i32>
constructs a reference type to @i32:

.typedef @i32 = int<32>

.typedef @refi32 = ref<@i32>

1.5. Type System 15

The Mu Micro VM Tutorial, Release 2.2

Some type constructors, such as float, double, threadref or void, do not take any parameters. You can
consider them as C++/Java constructors with an empty parameter list. You may have written new Object() or
new StringBuilder() before. Similarly you define a concrete instance of float type in this way:

.typedef @float = float

.typedef @blahblah = float

, where the name @float or @blahblah are just names.

When types or function signatures are taken as argument, their names (such as @i32, @float and @void, not
int<32>, float or void) are used. So the following are not accepted by Holstein:

.typedef @refi32 = ref<int<32>> // ERROR! int<32> must be defined separately.

.typedef @refvoid = ref<void> // ERROR! void must be defined separately.

.typedef @bar.ref = funcref<(@i32) -> (@float)> // ERROR! The signature must be
→˓defined separately.

But these are right:

.typedef @i32 = int<32>

.typedef @refi32 = ref<@i32> // Correct.

.typedef @void = void

.typedef @refvoid = ref<@void> // Correct.

.typedef @float = float

.funcsig @bar.sig = (@i32) -> (@float)

.typedef @bar.ref = funcref<@bar.sig> // Correct.

Note: So why does Mu force all types to be “constructed” at the top level? Well, that’s what Holstein accepts now.
There are alternative text Mu IR parsers that accept in-line types such as ref<int<32>>.

Actually, productional Mu and client implementations will use the IR building API. It will skip the text parsing phase
completely.

The reason why Holstein was designed like that was to let the text match the actual data structure of the IR. In the IR
building API, each type is a “node”. Types that have parameters (such as ref<T>) refer to other nodes by their IDs.
Similarly, in the text form, such type constructors refer to other types by names.

If you have used LLVM before, you may find that you can write types “directly”, “inline”, in the LLVM IR, such as:

%c = add i32 %a, %b
%f = fadd double %d, %e
%g = load i32* %x

But have a look at the C++ API of the LLVM:

Type *i32 = Type::getInt32Ty(ctx);
Type *i64 = IntegerType::get(ctx, 64); // alternative method
Type *floatTy = Type::getFloatTy(ctx);
Type *doubleTy = Type::getDoubleTy(ctx);
Type *voidTy = Type::getVoidTy(ctx);

Type *blahblah = Type::getFloatTy(ctx);

Type *ptri32 = Type::getInt32PtrTy(ctx);
Type *ptri64 = PointerType::getUnqual(i64);

16 Chapter 1. Language Implementor’s Tutorial

https://gitlab.anu.edu.au/mu/mu-tool-compiler
https://gitlab.anu.edu.au/mu/mu-spec/blob/master/irbuilder.rst

The Mu Micro VM Tutorial, Release 2.2

In this API, the programmer still needs to refer to types by pointers to the types. So this API is more similar to having
to define (or, at least, make pointers to) the types separately.

On the other hand, there is only 19 types in the Mu type system, among which only 6 do not take arguments. Even if
the client programmer has to define each and every types, all common types can be defined in about 20 lines as above,
and his/her pain ends there.

Function signature definition

A function signature defines the parameter types and the return types of a function. It is defined by the .funcsig
top-level definition:

.typedef @i32 = int<32>

.typedef @float = float

.funcsig @sig1 = (@i32) -> (@float)

.funcsig @sig2 = (@i32 @i32 @i32) -> (@i32 @float)

.funcsig @sig3 = () -> (@i32)

.funcsig @sig4 = (@i32) -> ()

.funcsig @sig5 = () -> ()

.typedef @funcref1 = funcref <@sig1>

.typedef @ufuncptr1 = ufuncptr<@sig1>

On the left side of = is the name of the signature. On the right side is the function signature constructor. In Mu, a
function takes 0 or more parameters and return 0 or more values. It is written in the form (parameter types)
-> (return types).

A function signature is not a type. Unlike the C or C++ programming language, there is no “function type” in Mu.
In fact, in C, if an expression has function type, it is implicitly converted to the pointer of that function. Mu takes the
explicit approach: there are two types that use function signatures:

• The funcref<sig> type refers to a Mu function which has signature sig.

• The ufuncptr<sig> type is a pointer that points to a native function that has signature sig.

When defining or declaring functions, such as:

.funcdecl @foo <@sig1>

.funcdef @bar VERSION %v1 <@sig2> {
...

%rv = CALL <@sig1> @foo (...) // arguments omitted

...
}

The names of the functions @foo and @bar has the funcref<@sig1> and the funcref<@sig2> type, respec-
tively, when used as a value.

1.5.3 Details

This section will only discuss the most important types. For more details, you can read the Type System section of the
specification.

1.5. Type System 17

https://gitlab.anu.edu.au/mu/mu-spec/blob/master/type-system.rst

The Mu Micro VM Tutorial, Release 2.2

Integer and FP types

int<n> is the integer type of n bits. Like LLVM, the int type is fixed-length. For example, int<32> is the 32-bit
integer type.

.typedef @i32 = int<32>

.typedef @i64 = int<64>

It is also signedness-neutral: whether an integer is signed or not depends on the operation, not the type. Most instruc-
tions, such as ADD, SUB, MUL, work correctly for both signed and unsigned integers. Some instructions have signed
and unsigned variants, such as SDIV/UDIV, FPTOSI/FPTOUI.

Like LLVM, int<1> is returned by most instructions that return Boolean results, such as EQ and SLT.

.typedef @i1 = int<1>

float and double are the IEEE 754 single and double-precision floating point number types, respectively.

.typedef @float = float

.typedef @double = double

Like LLVM but unlike some intermediate languages such as C minus minus, Mu does not use a single type (such as
“bits32”) to hold both integers and FP numbers, because in modern machines integers and FP numbers are usually
held in different kinds of registers.

References to the memory

ref<T> is the object reference type. It refers to objects in the garbage-collected Mu heap.

iref<T> is the internal reference type. It refers to a memory location, that is, a place in the Mu memory that can
be loaded or stored. A field of a heap object is a memory location.

Attention: “Memory location” does not mean “address”. Do not assume a Mu heap object or any other memory
locations have addresses. This is very important in Mu. This will discussed in details in later chapters. The
specification contains some explanation

Both ref and iref may be NULL.

Note: Sorry for the billion-dollar mistake, but NULL is really easy to implement, and Mu is closer to the machine.
The client, on the other hand, should implement a decent language and help the programmers prevent such mistakes.)

The <T> type parameter is the type of the heap object it refers to.

For ref<T>, the T means it refers to a heap object of type T. For example, ref<@i32> refers to a heap object of
@i32 type, which we previously defined as int<32>:

.typedef @refi32 = ref<@i32>

.typedef @refdouble = ref<@double>

.typedef @link = ref<@link>

In the last line, @link is recursively defined as ref<@link>. It means it refers to a heap object, whose entire
content is an object reference to the same type, or NULL. It is very similar to the C definition: struct Link {
struct Link *next; }. Mu does not need struct to construct recursive types.

18 Chapter 1. Language Implementor’s Tutorial

https://en.wikipedia.org/wiki/C--
https://gitlab.anu.edu.au/mu/mu-spec/blob/master/memory.rst#basic-concepts
https://en.wikipedia.org/wiki/Null_pointer#History

The Mu Micro VM Tutorial, Release 2.2

For iref<T>, the T means it refers to a memory location of type T. So if you use the LOAD instruction on an
iref<@i32>, you get a value of type @i32. You can also STORE an @i64 value to a memory location referred by
an iref<@i64>.

.typedef @irefi32 = iref<@i32>

.typedef @irefi64 = iref<@i64>

References to Mu functions

funcref<sig> is the function reference type. It refers to a Mu function. Whenever you call a Mu function, you
call it with its function reference. sig is the function signature.

.funcsig @sig1 = (@i32) -> (@float)

.typedef @funcref1 = funcref <@sig1>

funcref only refers to Mu functions. It cannot refer to C functions (that is what ufuncptr is for).

Like other references, funcref can also be NULL (sorry).

Aggregate types

Among all aggregate types, hybrid is the only “variable-length” types. All others are “fixed-length”.

Fixed-length aggregate types

struct<F1 F2 ...> is the structure type. Like the struct type in C, it has many fields of types F1, F2, ...

.typedef @struct1 = struct<@i32 @i32 @i32>

.typedef @struct2 = struct<@i64 @double>

Structs may contain other structs, arrays or vectors, but cannot contain themselves (otherwise it will be infinitely big).
It must have at least one field. But it may contain references so that you can allocate many structs in the Mu heap,
each refer to another object.

.typedef @ListNode = struct<@i64 @ListNodeRef>

.typedef @ListNodeRef = ref<@ListNode>

array<T n> is the fixed-size array type. T is the element type. n is an integer literal and it is part of the type. A
particular array<T n> holds exactly n instances of T. For example, array<@i32 10> contains exactly 10 @i32
values:

.typedef @array1 = array<@i32 10>

.typedef @array2 = array<@i32 4096>

Like structs, arrays may contain other structs, arrays or vectors, but not itself. It must have at least one element. Arrays
of references are allowed.

vector<T n> is the vector type. It is designed for single-instruction multiple-data (SIMD) operations. Most
modern desktop processors have SIMD capabilities. Vectors are used in very different ways compared to arrays.
Vectors are usually small and are usually similar to the vector sizes supported by the machine.

Even today, architectures still do not agree upon any particular vector sizes. Mu only mandate the following three
vector types to be implemented:

1.5. Type System 19

The Mu Micro VM Tutorial, Release 2.2

.typedef @4xi32 = vector<@i32 4>

.typedef @4xfloat = vector<@float 4>

.typedef @2xdouble = vector<@double 2>

The hybrid

hybrid<F1 F2 ... V> is a hybrid of a struct and an array. It starts with a fixed part: F1, F2, ... which is like a
struct. It is followed by a variable part: an array of many elements of type V.

.typedef @hybrid1 = hybrid<@i64 @i32>

.typedef @hybrid2 = hybrid<@i8>

.typedef @hybrid3 = hybrid<@i64 @i64 @i64 @float>

In the above example, @hybrid1 has one @i64 field in its fixed part, and many @i32 elements in its variable part.
@hybrid2 has an empty fixed part, and its variable parts are many @i8 elements. @hybrid3 has three @i64 fields
in its fixed part, and many @float elements in the variable part.

hybrid is the only variable-size type type in Mu whose size is determined at allocation site rather than the type itself.
A hybrid must be allocated by special instructions, such as NEWHYBRID, which takes not only the type but also the
length as its arguments.

%length1 =

%length2 =
%r1 = NEWHYBRID <@hybrid1 @i64> %length1 // @i64 is the length of %length1
%r2 = NEWHYBRID <@hybrid1 @i64> %length2 // @i64 is the length of %length2

In the above example, %r1 and %r2 refers to two different objects. Both have type @hybrid1, but the length of their
variable parts are %length1 and %length2, respectively.

Since the length cannot be determined by the type itself, it cannot be embedded in other aggregate types, not even
other hybrids:

.typedef @some_struct = struct<@i64 @hybrid1 @hybrid2> // ERROR! cannot embed hybrids

Hybrid is the counterpart of the C99 structs with “flexible array elements”. In C99, you can write something like:

struct hybrid1 { int64_t f1; int32_t v[]; };
struct hybrid2 { int32_t v[]; };
struct hybrid3 { int64_t f1, f2, f3; float v[]; };

struct hybrid1 *p1 = malloc(sizeof(int64_t) + 1000*sizeof(int32_t));
struct hybrid1 *p2 = malloc(sizeof(int64_t) + 2000*sizeof(int32_t));

Once malloc-ed with enough memory, C can access the dynamically allocated “tail” elements.

The void type

void means “anything”, and can only be used as the target of references or pointers. For example:

.typedef @void = void

.typedef @refvoid = ref<@void>

.typedef @irefvoid = iref<@void>

.typedef @uptrvoid = uptr<@void>

20 Chapter 1. Language Implementor’s Tutorial

The Mu Micro VM Tutorial, Release 2.2

ref<@void> means the object reference can refer to any object. iref<@void> means the internal reference can
refer to any memory location. uptr<@void> means it is... err... just a pointer, and has not been assigned a type yet.

Mu does not have the concept of “inheritance”, but there are some “prefix rules” so that a reference may refer to some
more complex objects than its <T> parameter. void is just the “simplest” type: no content at all.

You can allocate heap objects of the void type.

%r = NEW <@void>

Such objects have no contents, but each allocated void object is different, and compares equal (EQ) to only itself.

In Java, such use is like Object o1 = new Object();. There are some corner cases where such objects can be
used as a “key” to identify something.

Other types

stackref, threadref and framecursorref refers to “special things” in Mu: stacks, threads and frame cur-
sors. You will need the first two to start a Mu program, and need the third to perform stack introspection and on-stack
replacement.

weakref<T> is the weak object reference type.

tagref64 is the tagged reference type. It uses some clever bit-magic to reuse the NaN space of double to
represent a tagged union of double, int<52> and a struct of ref<void> and int<6>.

uptr<T> and ufuncptr<sig> are untraced (raw) pointers. They are defined to be represented as integers of the
pointer size, which is implementation-specific. For example, on a 64-bit implementation, it is 64 bits. But if you want
to perform pointer arithmetic, you need to convert them to integers first.

You are unlikely to use raw pointers unless your program interacts with native programs (usually written in C). The
garbage collector will not trace them: they are treated just like integers.

If you worked with x86 before, you may ask: Wait! Pointer is not just the address, but also its segment. Sorry, x86.
But we see the trend is to move away from segmented architecture (x86_64 moved away from segments, too). For
embedded systems that may have multiple address spaces, Mu is not designed for such systems, but supporting such
architectures is an open topic.

1.5.4 Bonus section

Note: These contents should be moved to other chapters in the future. But if you are interested and patient enough,
you can keep reading.

In fact, an internal reference refers to a “memory location” (discussed in later chapters) of type T. Memory location
is a very important concept in Mu. It is a location in the Mu memory that can hold a Mu value. A field of an object is
one kind of memory location. All memory accessing operations, such as LOAD and STORE directly work on internal
references. This is different from JVM, where there are getfield and setfield instructions that work on object
references.

If you worked with C before, it is the counterpart of the concept of “object”. (What? You say C does not have “objects”
but C++ does? Go ahead and read the C specification. In C, “object” means “a region of data storage” and does not
mean object-oriented programming.) But the word “object” is used as a synonym of “heap object” in Mu. To avoid
ambiguity, we use the word “memory location” instead.

1.5. Type System 21

http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf

The Mu Micro VM Tutorial, Release 2.2

1.6 Simple Functions

The constant and function syntax is defined in the Intermediate Representation chapter of the specification.

The Mu IR uses a variant of the static single assignment (SSA) or static single information (SSI) form. Mu IR has
control flow graphs (CFG), each has many basic blocks, each then has many parameters and instructions. The main
difference is that basic blocks take parameters, which are the counterpart of the PHI-nodes in SSA. At the end of a
basic block, if it branches to another basic block, it must also specify the arguments to the destination, which are the
counterpart of the SIGMA-nodes in SSI. There is no explicit PHI- or SIGMA-node. Instructions can only use global
variables, the parameters of the basic block it is in, or the variables evaluated before that instruction in the same basic
block. In other words, each basic block is a local scope and is like a single-exit “straight-line” function.

1.6.1 SSA Variable

In the Mu IR, as in SSA, a variable is defined in exactly one place and never redefined. For this reason, we still call
them SSA variables since they are only assigned in one place.

In the Mu IR, variables are referred to by names, such as @foo or %bar.

Variables can be global or local. Global SSA variables are globally valid and never change. (Sorry but we still call
them “variables”.) Local SSA variables are only valid within a basic block and gets a value every time it is evaluated.
Oh, did I say variables are defined in one place? Yes, they are, but this does not prevent them from being assigned
multiple times. That is what “static” single assignment means.

1.6.2 Constant Definitions

Constant definitions, i.e. .const, are a kind of top-level definition. They construct values using literals.

.typedef @i8 = int<8>

.typedef @i16 = int<16>

.typedef @i32 = int<32>

.typedef @i64 = int<64>

.typedef @float = float

.typedef @double = double

.typedef @refi64 = ref<@i64>

.const @I8_10 <@i8> = 10

.const @I16_10 <@i16> = 10

.const @I32_10 <@i32> = 10

.const @I64_10 <@i64> = 10

.const @MAGIC_NUMBER1 <@i64> = 0x123456789abcdef0

.const @MAGIC_NUMBER2 <@i64> = 0xfedcba9876543210

.const @MAGIC_NUMBER3 <@i64> = -0x8000000000000000

.const @F_PI <@float> = 3.14f

.const @D_2PI <@double> = 6.28d

.const @MY_CONSTANT_REF <@refi64> = NULL

On the left side of =, there are the name of the constant (such as @I8_10) and its type (such as @i8). On the right
side it is, as you can guess, the constant constructor.

To construct an integer, you can write it in the decimal form or the hexadecimal form (add 0x before). It may also
have a sign. Since integers themselves in Mu do not have signs, the integer literal is just used to encode the bit pattern.

22 Chapter 1. Language Implementor’s Tutorial

https://gitlab.anu.edu.au/mu/mu-spec/blob/master/ir.rst
https://en.wikipedia.org/wiki/Static_single_assignment_form
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-801.pdf

The Mu Micro VM Tutorial, Release 2.2

Mu uses the 2’s complement representation for negative numbers, so 0xffffffff and -1 are the same if both are
32-bit.

To construct a floating point number, you can write it in the decimal form, with a decimal point (that is, 1.0, not 1), and
append an f for float or a d for double. nanf, +inff and -inff will construct NaN, positive infinity and negative
infinity of the float type. Replace the last f with d and it will be the double type.

.const @F_NAN <@float> = nanf // Mu will interpret it as an arbitrary NaN

.const @F_PINF <@float> = +inff // positive infinity

.const @F_NINF <@float> = -inff // negative infinity

If you are an FP number wizard, you can also explicitly specify the bit layout of an FP constant:

.const @D_1 <@double> = bitsd(0x3ff0000000000000) // +1.0

.const @D_2 <@double> = bitsd(0x400c000000000000) // +3.5

.const @D_PINF <@double> = bitsd(0x7ff0000000000000) // +inf

.const @D_NAN <@double> = bitsd(0x7ff0000000000001) // nan (one possible encoding)

You can define constants of general reference types (ref, iref, funcref, threadref, stackref and
framecursorref), too. But the only possible constant value is NULL.

.typedef @refi64 = ref<@i64>

.typedef @irefi64 = iref<@i64>

.funcsig @foo.sig = () -> ()

.typedef @foo.fr = funcref<@foo.sig>

.typedef @tr = threadref

.typedef @sr = stackref

.typedef @fcr = framecursorref

.const @NULLREF <@refi64> = NULL

.const @NULLIREF <@irefi64> = NULL

.const @NULLFR <@foo.fr> = NULL

.const @NULLTR <@tr> = NULL

.const @NULLSR <@sr> = NULL

.const @NULLFCR <@fcr> = NULL

That is, you cannot define a constant reference to any heap object.

Note: Why there is no constant references to objects?

First of all, constants, as the name suggests, never change. If a constant refers to an object, the object is immortal! But
the reason why we use the heap is to use GC, which eventually recycles the object.

Secondly, from the implementation’s point of view, the advantage of using constants is that they can exist as immediate
values in machine instructions, or be created by some machine code idioms (e.g. xor rax, rax makes rax 0, and
the instruction decoder in modern processors (since IvyBridge) can eliminate such “idioms” in the front end), rather
than being stored in the memory and loaded when needed (memory is slow nowadays compared to 20 years ago). But
if the type is object reference, perhaps the only feasible way to implement such constant is to store it in the memory
so that copying GC can update it when the referenced object is moved. Non-copying GC sucks, because the VM
will eventually die of heap fragmentation. (R.I.P. lighttpd. You know, C programmers are responsible for memory
management. If C’s malloc cannot manage the memory well and kills long-running servers, we should use a VM with
copying GC, instead. If usual VMs perform too bad, that’s why we build the Mu micro VM.) But if the GC ends up
modifying the machine code to fix the reference, it will be too painful.

If we really need some permanent global memory space, Mu has another top-level definition: global cells, i.e. .
global (it will be discussed in details when we talk about memory access). Global cells are memory locations: they
are mutable. They can be loaded and stored, and they are permanent. Just store an object reference in a global cell and
it has all the benefits of constant references.

1.6. Simple Functions 23

http://redmine.lighttpd.net/issues/758

The Mu Micro VM Tutorial, Release 2.2

For other references, constant function reference is unnecessary because the name of the function is already a constant
function reference. Stacks are similar to heap objects. Threads and frame cursors have their own lifecycles, so you
can’t possibly create such constants that remain valid.

However, pointers are not references. They are just integers and can be constructed as integers.

.typedef @i64 = int<64>

.typedef @ptri64 = uptr<@i64>

.const @MY_POINTER <@ptri64> = 0x123456789000

.funcsig @bar.sig = () -> ()

.typedef @bar.fp = ufuncptr<@bar.sig>

// The address can be looked up by dlsym.
.const @MY_FUNCTION_POINTER <@bar.fp> = 0x7fff00001230

Mu support constants of non-hybrid composite types, too. A composite constant is constructed by referring to other
constants. Please put as many fields/elements as there should be.

.typedef @i32 = int<32>

.typedef @struct1 = struct<@i32 @i32 @i32>

.typedef @array1 = array<@i32 2>

.typedef @vector1 = vector<@i32 4>

.const @I32_1 <@i32> = 1

.const @I32_2 <@i32> = 2

.const @I32_3 <@i32> = 3

.const @I32_4 <@i32> = 4

.const @S1 <@struct1> = { @I32_1 @I32_2 @I32_3 }

.const @A1 <@array1> = { @I32_1 @I32_2 }

.const @V1 <@vector1> = { @I32_1 @I32_2 @I32_3 @I32_4 }

.typedef @struct2 = struct<@struct1 @i64>

.const @S2 <@struct2> = { @S1 @I32_4 } // correct

.const @WRONG <@struct2> = { {@I32_1 @I32_2 @I32_3} @I32_4 } // ERROR: cannot nest
→˓braces. Define separately

But it is not recommended to use constants of composite types, unless they are small. Mu may not be able to allocate
big values into registers, in which case it may perform stupid copying. The micro VM may not be smart enough to do
too much optimisation.

1.6.3 Function definition

TODO

24 Chapter 1. Language Implementor’s Tutorial

	Language Implementor's Tutorial
	Introduction
	Getting Started
	Basic Interaction
	Mu Intermediate Representation
	Type System
	Simple Functions

