

The Mu Micro VM

This tutorial is about the Mu micro virtual machine [http://microvm.org/].

A micro VM is a minimalist virtual machine as an underlying substrate for
high-level programming language implementations. Mu is designed for languages
that are concurrent, JIT compiled and use garbage collection.

Language Implementor’s Tutorial

This part is suitable for those who wish to implement a programming language on
top of Mu.

	1. Introduction
	1.1. What Makes Language Implementation Difficult?

	1.2. Why Micro Virtual Machines?

	1.3. Separating the Specification and the Implementation

	2. Getting Started
	2.1. Where is Everything?

	2.2. Get Mu

	2.3. Pick your language

	3. Basic Interaction
	3.1. Mu Contexts

	3.2. Threads and Stacks

	3.3. Trap Handling

	3.4. Working Example

	3.5. Summary

	4. Mu Intermediate Representation
	4.1. Bundle

	4.2. Names

	5. Type System
	5.1. Overview

	5.2. Define Types and Function Signatures

	5.3. Details

	5.4. Bonus section

	6. Simple Functions
	6.1. SSA Variable

	6.2. Constant Definitions

	6.3. Function definition

1. Introduction

The Mu project addresses the difficulties in implementing managed languages,
which include those languages that have a garbage collector and likely run on a
virtual machine.

1.1. What Makes Language Implementation Difficult?

We identify three major concerns that make language implementation difficult,
namely concurrency, just-in-time compiling and garbage collection.

Each of them is already difficult enough individually. But when handling all
three at the same time, their combined complexity will multiply.

For example, in a multi-threaded JIT-compiled garbage-collected program,
when GC is triggered, the GC thread needs to ask all mutator threads running
in JIT-compiled machine code to pause at the nearest GC-safe points (or
“yieldpoints”), where stack maps are available to identify all references
held by variables in the stack. In this task, the yieldpoints are inserted
by the JIT-compiler, which is aware of GC. The stack maps are generated by the
JIT-compiler, too. The handshake between mutators and the GC is very
difficult to get right, too. Yieldpoints involve all three concerns
mentioned above.

Because they are difficult, language implementations either omit them or
implement them naively.

Take CPython, the official Python implementation, as an example:

	lack of concurrency: In CPython, there is a global interpreter lock
(GIL) [https://docs.python.org/3.4/glossary.html#term-global-interpreter-lock]
which must be obtained for any Python thread to run. This makes the
execution of all multi-threaded Python programs sequential.

	lack of JIT-compiling: CPython is interpreter-only and does not perform
run-time optimisation based on JIT-compiling and type inference. A simple
computation-intensive program may be up to 20 times slower than an
equivalent C program. For comparison, PyPy, a Python implementation that
does JIT-based optimisation, can run as fast as unoptimised C (GCC with
-O0) in some cases.

	naive garbage collector: CPython uses a naive reference counting garbage
collector. It increments or decrements the count every time a reference is
created or destroyed. This naive algorithm is known to be more than 30%
slower than a naive mark-sweep GC in total execution time [http://users.cecs.anu.edu.au/~steveb/downloads/pdf/rc-ismm-2012.pdf].

In reality, many languages designs are implementation driven. Difficulties
in implementation will result in bad decisions being baked into the design
and hamper the evolution of the language in the future.

Take PHP as an example. PHP was never supposed to be a programming language [http://en.wikipedia.org/wiki/PHP#cite_ref-itconversations_16-0], but a
set of pre-processing macros for personal home pages. As it evolves, it uses
naive reference counting GC, copy-by-value semantic for arrays, and has
reference types. An optimisation was also made to use copy-on-write to avoid
copying. In 2002, a user found a problem involving arrays and references [https://bugs.php.net/bug.php?id=20993]. Fives days later, the PHP
developers decided that properly fixing the bug will put a considerably
slowdown on the PHP performance [https://bugs.php.net/bug.php?id=20993#1040181945] and this behaviour is
documented.

Up till now in 2015, it has been 12 years since the problem was spotted. The
problem can still be reproduced in today’s PHP.

In conclusion, concurrency, JIT and GC are difficult. The difficulties lead to
bad language designs and implementations, and should be abstracted out in a
layer.

1.2. Why Micro Virtual Machines?

There are basically two ways to implement a managed language.

	Building a VM from scratch. This is difficult because the developers have to
address all of the three concerns. In reality, there are many successful
projects taking this approach, such as PyPy [http://www.pypy.org/], HHVM [http://hhvm.com], V8 [https://developers.google.com/v8/] and so on.
Most don’t address all three concerns, and no code is shared between those
projects.

	Targeting an existing virtual machine, such as the JVM or the .NET CLR, which
has high-quality implementations. The problems are semantic gaps and huge
dependencies. Existing VMs are designed for particular kinds of languages.
For example, the JVM is designed for static object-oriented languages.
Optimisations usually done by JVM do not work for dynamic languages like
Python. Jython [http://www.jython.org/], for example, still performs in
the same order of magnitude as CPython. Moreover, using JVM introduces many
unnecessary dependencies on Java-related packages.

Both approaches use monolithic virtual machines. Each such VM handles all
aspects of the runtime of the language. For example, the JVM handles
concurrency, JIT and GC, but also class loading, run-time type information,
object-oriented programming (including virtual methods), and it comes with a
comprehensive Java standard library. Since the VM is huge, it is difficult to
build from scratch. Since it is monolithic, it is difficult to reuse its parts
for other languages.

We propose an alternative concept: micro virtual machines. Analogous to
microkernels in the operating system literature, a micro virtual machine only
contains the parts that are absolutely necessary to be handled in the core of
the VM. We suppose those parts are concurrency, JIT and GC. There is a separate
program, called a client, sitting on the top of a micro virtual machine,
interacting with the micro virtual machine and handling other (mostly
language-specific) parts, in a similar fashion as servers interacting with the
microkernel.

A micro virtual machine must be low-level and minimal.

	Being low-level means being close to the machine and thus minimise the
semantic gap.

	Being minimal means it must push jobs that are not essential to the higher
level, that is, the client. This is a separation of concern.
	The micro virtual machine itself will be easier to design and implement. The
minimalism also makes it practical to create a formally verified VM.

	The client is not bound to the assumptions made by the low-level VM and can
implement the language with maximum flexibility. The client has more
responsibility, too, but it can still rely on the micro virtual machine for
the three major concerns that are extremely difficult.

The minimalism pushes as much job as possible to the client side, potentially
making the language implementer’s job harder than targeting traditional VMs like
JVM. To mitigate this limitation, libraries can be provided to assist the
implementation of certain kinds of languages, like dynamic languages, functional
languages, object-oriented languages and so on. Libraries are not part of the
micro virtual machine. The library can be a framework or a package that is part
of the client; it can also be pre-written code snippets.

The Mu project is a concrete micro virtual machine, in the same way seL4 [http://sel4.systems/] is a concrete microkernel.

1.3. Separating the Specification and the Implementation

Mu separates its specification and its implementations, making it possible to
create many different implementations for different purposes. In theory, there
may be a simple proof-of-concept implementation, a high-performance
implementation for productional use, an extensible modular implementation for
researching, a formally verified implementation for highly-assured
applications, and so on.

The Mu specification [https://gitlab.anu.edu.au/mu/mu-spec] defines the
behaviour and the interface of Mu.

Currently, Mu has two implementations:

	Holstein [https://gitlab.anu.edu.au/mu/mu-impl-ref2], the reference
implementation, is a simple Mu implementation and allow early evaluators
to do experiment with the interface of Mu. The simplicity allows Mu reference
implementation to be agilely changed when the specification changes. It is
not a high-performance implementation.

	Zebu [https://gitlab.anu.edu.au/mu/mu-impl-fast/], the fast
implementation, is developed from the first day to be fast. It is written
in Rust, and has a optimizing compiler and a high-performance garbage
collector. It is currently implemented as an ahead-of-time compiler. Some
functionalities are still in development.

2. Getting Started

2.1. Where is Everything?

The specification [https://gitlab.anu.edu.au/mu/mu-spec] is the canonical
source of information about the implementation-neutral parts of Mu.

This tutorial will use Holstein [https://gitlab.anu.edu.au/mu/mu-impl-ref2],
the current reference implementation. Keep in mind that it is not
high-performance. It is interpreted and single-threaded, does excessive checking
and is very slow.

2.2. Get Mu

Go to https://gitlab.anu.edu.au/mu/mu-impl-ref2 and follow the README file.
That repository also contains a sample factorial program compiled from an
RPython client and a loader to run it. Read the README file.

2.3. Pick your language

The client of the reference implementation can be written in Scala or in C. If
you use Scala, you can just use the classes in the microvm-refimpl2
repository since the reference implementation is already written in Scala. If
you use C, there is a C binding in the cbinding directory. Read the README
file for instructions. There is also a sample client program test_client.

The following part of the tutorial assume you use Scala. Don’t worry if you use
C because the interface is quite similar.

3. Basic Interaction

You are writing a Mu client, which controls the Mu micro VM via the Mu client
interface [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/api.rst], usually
simply called “the API”.

In Scala, the class uvm.refimpl.MicroVM, which implements the MuVM
struct in the specification, represents a micro VM instance. You can start Mu by
creating a MicroVM instance:

val microVM = MicroVM()

Just as simple as this. The instance also internally allocates memory for its
heap. The default heap size is quite big, and is usually enough for experiment.

3.1. Mu Contexts

The client more often interacts with the micro VM via “Mu context”. They are
called “MuCtx” in the spec, and uvm.refimpl.MuCtx in Holstein. A MuCtx is
a context created from a MicroVM instance. It can hold Mu values for the client,
access the Mu memory, load bundles and let the client perform many tasks on Mu.

Why not directly do these things on the MicroVM instance? Why add another layer?
There are two reasons.

Reason 1: because Mu is designed to be multi-threaded. By design, multiple
client threads can interact with the Mu micro VM concurrently.

Caution

In fact, unfortunately, the reference implementation is based on a
single-thread interpreter. The program itself is not thread safe. Do not
run more than one client threads in the reference implementation.

But Mu is designed for multi-threaded envirionments. The limitation in the
implementation does not change the fact that Mu and its clients need to
think in a multi-threaded way. A carefully designed interface will
eventually allow a more efficient implementation.

Despite this limitation, the reference implementation can still run multiple
Mu threads. Mu threads are interpreted one instruction for each thread
on a round robin scheduler.

If multiple client threads were accessing the single MicroVM object
concurrently, synchronisation (such as locks) must be employed to guarantee
thread safety. This is where the “context” comes in. In Mu’s design, MuCtx
instances are not allowed to be used by two threads concurrently, thus avoided
many cases where synchronisation were necessary. For example, accessing the
garbage-collected Mu memory via MuCtx does not need locking. A MuCtx instance
can also hold a thread-local memory pool so that a client thread can allocate
memory in the garbage-collected Mu heap without having to deal with the shared
global memory pool every time unless the local pool is exhausted.

Reason 2: because the type system of Mu is usually very different from the
client’s. Notably, the Mu’s type system contain object reference types which
points to the Mu heap and must be traced by the garbage collector. MuCtx can
hold Mu references for the client so that whenever garbage collection happens,
it always knows what objects are still kept alive by a reference held for the
client.

If you used JNI before, you may find this design familiar. In fact, this design
is inspired by the JNI. JNI uses opaque “handles” to refer to Java object, so
does the Mu API. However, for performance reason, opaque handles are not the
only way to expose garbage-collected Mu objects to native programs. Mu has a
more efficient but unsafe native interface [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/native-interface.rst]
which supports “object pinning”. That is an advanced topic.

Note

There is a difference between a Mu client and a native program.

A Mu client is a program that controls the Mu micro VM. In theory, a Mu
client can be written in any languages, from C to Scala, Python, JavaScript,
etc. The Mu API is the interface between the client and the micro VM. It
includes the IR and the API, and the purpose is to control the micro VM.

A native program is a program that does not run in the Mu micro VM, and is
usually written in C or other unmanaged languages. libc is one such example.
The native interface involves pointer-based raw memory access and calling
conventions that allow Mu programs to call C programs and vice versa in some
specific ways. The main purpose is to make system calls (obviously a VM
that cannot read or write is almost useless), and to interact with
programs that do not run on Mu, including C programs and those written in
other languages.

3.1.1. Using Mu Contexts

You can create a MuCtx instance by invoking the newContext() method on
the MicroVM instance:

val ctx = microVM.newContext()

and you need to close the context in order to release the resources it is
holding inside:

ctx.closeContext()

The API, i.e. the methods of MicroVM and MuCtx, are defined by the API
chapter [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/api.rst] of the
specification. The scala binding [https://gitlab.anu.edu.au/mu/mu-impl-ref2/blob/master/src/main/scala/uvm/refimpl/clientInterface.scala]
matches the spec.

Let’s see what MuCtx can do. You don’t need to understand all of them now,
since they will be covered in more depth in later chapters.

Create contexts from MicroVM instance:

val microVM = MicroVM()
val ctx = microVM.newContext()

Holstein can load Mu bundles from the text form. This method of loading bundle
is deprecated in favour for the IR building API [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/irbuilder.rst] which avoids
the text-form IR parser.

ctx.loadBundle("""
 .typedef @i64 = int<64>
 // more Mu IR code here
""")

MuCtx can hold Mu values for the client. Mu values have a specific int size.

val handle1 = ctx.handleFromInt(0x123456789abcdef0L, 64)
val handle2 = ctx.handleFromInt(0x12345678L, 32)
val handle3 = ctx.handleFromInt(0x1234L, 16)
val handle4 = ctx.handleFromDouble(3.14)
val handle5 = ctx.handleFromPtr(ctx.idOf("@someType"), 0x7fff0000018L)

It can allocate objects in the Mu heap.
The handle is held in ctx so that GC can find all of them.

val handle6 = ctx.newFixed(ctx.idOf("@someType"))

It can create Mu stacks and Mu threads

val hFunc = ctx.handleFromFunc(ctx.idOf("@some_function"))
val hStack = ctx.newStack(hFunc)
val hArg0 =
val hArg1 =
val hArg2 =
val hThread = ctx.newThread(hFunc, PassValues(Seq(hArg0, hArg1, hArg2)))

It can access the Mu memory

val hObjRef = ctx.newFixed(ctx.idOf("@int_of_64_bits"))
val hIRef = ctx.getIRef(hObjRef)
val hValue = ctx.load(MemoryOrder.SEQ_CST, hIRef)

It can introspect the stack states

val hStack2 =
val hCursor = ctx.newCursor(hStack2)
val funcID = ctx.curFunc(hCursor) // function ID
val hVars = ctx.dumpKeepalives(hCursor) // local variables

It can modify the stack states (a.k.a. on-stack replacement, OSR)

ctx.nextFrame(hCursor)
ctx.popFramesTo(hCursor)
val hFunc2 = ctx.handleFromFunc(...)
ctx.pushFrame(hFunc2)

3.2. Threads and Stacks

Mu programs are executed on Mu threads. A thread is the unit of CPU scheduling,
and Mu threads are usually implemented mirroring operating system threads.
Multiple Mu threads may execute concurrently.

Each Mu thread runs on a Mu stack. A stack, commonly known as a control
stack, is the state of execution, represented in Mu as a list of frames. Each
frame corresponds to a Mu function version, and records which instruction should
be executed next and what are the values of local variables.

Mu clearly distinguish between threads and stacks. If you used traditional
thread APIs, such as the Java or the PThread API, you may already have the
mental model that “a thread has a stack, which has many frames, so threads and
stacks are interchangeable”. But in Mu, the relation of stacks and threads is
much more flexible. A thread can stop executing on one stack and resume another
stack, which gives “coroutine” behaviours. Multiple threads can also share a
much bigger stack pool and implement the M*N threading model.

In order to start executing a Mu program, the client should create a Mu stack
and a Mu thread. In order to stop executing, the Mu thread should execute the
@uvm.thread_exit instruction.

3.3. Trap Handling

There is one special instruction, TRAP, that needs special attention since
the beginning. During the execution of Mu programs, if a Mu thread executes a
TRAP instruction, the thread temporarily detaches from its stack and gives
control back to the client. At any moment, there is one trap handler registered
in a Mu instance. A trap handler is a client function that will be called
whenever a TRAP instruction is executed. The trap handler gains access to
the thread and the stack that caused the TRAP.

Using the API, the client can to introspect the execution state of each of its
frames, see the values of local variables, and even replace existing frames with
new frames for new functions (this is called on-stack replacement, or OSR).

The trap handler is a great opportunity for the client to do many things. The
clever placement of TRAP instructions and the implementation of the trap
handler is key to a good language implementation. Traps can be placed after
sufficient run-time statistics are collected so that the client can optimise the
program. Traps can also be used for lazy code loading, de-optimising
speculatively generated code, and debugging.

3.3.1. Scala API

The trap handler is registered by the setTrapHandler method on the
MicroVM instance.

microVM.setTrapHandler(theTrapHandler)

The trap handler is an instance of the uvm.refimpl.TrapHandler trait.

trait TrapHandler {
 def handleTrap(ctx: MuCtx, thread: MuThreadRefValue, stack: MuStackRefValue, watchPointID: Int): TrapHandlerResult
}

A new MuCtx instance is created for this particular trap event. It is passed
to the trap handler as the first argument ctx. The thread and the
stack argument are handles of the thread that executed the TRAP, and the
stack it was bound to, respectively. These two handles are held by ctx. The
watchPointID argument is about “watch points”, which will be discussed
later.

You probably only need one trap handler per program, so it is recommended to
register it after created the Mu instance.

Inside the trap handler, you can use any API functions.

The return value of the trap handler tells Mu “how the current thread should
continue”. There are three options:

	Terminate the current thread.

	Rebind the thread to a stack.
	When rebinding, pass some values to the top frame and let it continue
normally.

	When rebinding, raise an exception and continue exceptionally.

When rebinding, the stack could be the previous stack, i.e. the stack
argument of the trap handler, or a totally different stack. In the former case,
it will continue after the TRAP instruction. In the latter case, the trap
handler swaps the thread to a different stack, so the thread will continue in a
totally different context.

The return type uvm.refimpl.TrapHandlerResult has several cases:

abstract class TrapHandlerResult
object TrapHandlerResult {
 case class ThreadExit() extends TrapHandlerResult
 case class Rebind(newStack: MuStackRefValue, htr: HowToResume) extends TrapHandlerResult
}

abstract class HowToResume
object HowToResume {
 case class PassValues(values: Seq[MuValue]) extends HowToResume
 case class ThrowExc(exc: MuRefValue) extends HowToResume
}

So you can return one of the cases from the trap handler:

// Just for convenience
import TrapHandlerResult._
import HowToResume._

// Terminate the thread.
return ThreadExit()

// Rebind to the old stack, pass some values and contunue normally
// Assume "stack" is the argument of the handleTrap method
val v1 = ctx.handleFrom......(...)
val v2 = ctx.handleFrom......(...)
val v3 = ctx.handleFrom......(...)
return Rebind(stack, PassValues(Seq(v1, v2, v3)))

// Rebind to the old stack, pass an empty list of values and contunue normally
// Assume "stack" is the argument of the handleTrap method
return Rebind(stack, PassValues(Seq()))

// Rebind to the old stack, throw an exception.
// Assume "stack" is the argument of the handleTrap method
// In Mu, an exception is just an object reference.
val e = ctx.newFixed(......)
return Rebind(stack, ThrowExc(e))

// Rebind to a different stack, passing 0 values.
val func = ctx.handleFromFunc(...)
val stack2 = ctx.newStack(func)
return Rebind(stack2, PassValues(Seq()))

3.3.2. C API

In the C API, you should use mvm->set_trap_handler(mvm, handler, user_data)
to register the trap handler.

The signature of the trap handler is a bit complicated:

typedef void (*MuTrapHandler)(MuCtx *ctx, MuThreadRefValue thread,
 MuStackRefValue stack, int wpid, MuTrapHandlerResult *result,
 MuStackRefValue *new_stack, MuValue **values, int *nvalues,
 MuValuesFreer *freer, MuCPtr *freerdata, MuRefValue *exception,
 MuCPtr userdata);

The first four arguments ctx, thread, stack and wpid are the
same as Scala. The next seven arguments result, new_stack, values,
nvalues, freer, freedata and exception are output arguments.
They allow the C program to encode the counterpart of TrapHandlerResult.
Since the client in C needs to pass an array of values to Mu, it also needs to
tell Mu how to de-allocate that array because there is not a standard way to
de-allocate C objects. The userdata is an arbitrary pointer the client
provided when registering the trap handler. This allows the trap handler to
depend on extra client-decided contexts, because C does not have closures.

See the trap handling section [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/api.rst#trap-handling] of
the Mu Specification for more information about trap handling in C.

3.4. Working Example

The following Scala program will create a Mu micro VM and execute a simple Mu IR
program. You can ignore details of the Mu IR now (except the TRAP instruction),
but instead focus on the interaction between the client, the Mu thread, and the
trap handler.

The order of execution is labelled from #1 to #26.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

	package tutorial

import uvm.refimpl._

object Interact extends App {

 // Create the Mu instance
 val microVM = MicroVM() // #1

 // Implicitly convert names to IDs
 implicit def idOf(name: String) = microVM.idOf(name) // #2

 // Create the context
 val ctx = microVM.newContext() // #3

 ctx.loadBundle(""" // #4
.typedef @i64 = int<64>

.const @I64_1 <@i64> = 1

.funcsig @main.sig = (@i64) -> ()

.funcdef @main VERSION %v1 <@main.sig> { // #12
 %entry(<@i64> %n):
 %n2 = ADD <@i64> %n @I64_1 // #13
 [%trap] TRAP <> KEEPALIVE (%n2) // #14
 COMMINST @uvm.thread_exit // #21
}
""")

 // Create the trap handler
 val myTrapHandler = new TrapHandler {
 def handleTrap(ctx: MuCtx, thread: MuThreadRefValue,
 stack: MuStackRefValue, watchPointID: Int): TrapHandlerResult = {

 // Create a cursor to introspect the stack
 val cursor = ctx.newCursor(stack) // #15
 val curInstID = ctx.curInst(cursor) // #16

 ctx.nameOf(curInstID) match {
 case "@main.v1.entry.trap" => { // #17
 // Dump the keep-alive variables
 val Seq(n2: MuIntValue) = ctx.dumpKeepalives(cursor) // #18
 ctx.closeCursor(cursor)

 // Print the value
 val n2Int = ctx.handleToSInt(n2) // #19
 printf("The value of n2 is %d.\n", n2Int)

 // Return to Mu from the trap handler
 TrapHandlerResult.Rebind(stack, HowToResume.PassValues(Seq())) // #20
 }
 }
 }
 }

 // Set the trap handler
 microVM.setTrapHandler(myTrapHandler) // #5

 // Create the stack and the thread
 val mainFunc = ctx.handleFromFunc("@main") // #6
 val st = ctx.newStack(mainFunc) // #7

 val fortyTwo = ctx.handleFromInt(42, 64) // #8

 val th = ctx.newThread(st, None, HowToResume.PassValues(Seq(fortyTwo))) // #9

 // Close the context
 ctx.closeContext() // #10

 // Let the reference implementation run
 microVM.execute() // #11

 // #22
}

There are some key steps:

	#1 and #3 creates the Mu instance and a context, respectively.

	#4 loads the initial bundle using the MuCtx. You can directly embed the
text-form Mu IR in your source code.

	#5 registers the trap handler. This handler will handle all traps in the
future.

	Using the MuCtx, #6-9 creates a Mu thread from a given Mu function, whose
name happens to be @main. “main” is not a special name. When creating the
thread, the initial argument, the 64-bit integer 42, is passed to the
@main function. At #10, the MuCtx ctx is no longer useful and can
be closed.

	Once created, the Mu thread can execute. But the reference implementation
needs to call the microVM.execute() method #11 to execute all Mu
threads in the only Scala (JVM) thread.

	During the execution of the Mu thread, it hits the trap at line #14. The
control then transfers to the trap handler. Note that the KEEPALIVE clause
specifies which local variables are eligible for introspection. In this case,
it is only %n2.

	In the trap handler, the value of client-specified local variables (keep-alive
variables) are dumped at #18 and printed. Since the previous ADD
instruction #13 adds one to the number, it should print “43” here.

	Then at #20, the trap handler re-binds the thread with the old stack,
passing an empty list of values back to the TRAP.

	Then it continues from the Mu function after TRAP #14. The thread_stop
instruction at #21 stops the Mu thread.

	In the reference implementation, the execute() function at #11 ends
when the last Mu thread stopped. Then the example program quits. The
specification does not specify how a Mu micro VM should end.

3.5. Summary

	A MicroVM instance is the heart of the Mu micro VM.

	The client interacts with the micro VM mostly via MuCtx. A context serves only
one client thread. It holds Mu values, including garbage-collected object
references.

	In Mu, threads and stacks are loosely coupled. Threads can swap from one stack
to another.

	The TRAP instruction gives the control back to the client from an
executing Mu thread.

	To start everything: create a MicroVM, create a MuCtx, load a bundle, create a
stack and create a thread. The MicroVM.execute() API function is specific
to the reference implementation.

4. Mu Intermediate Representation

The client generates code in the format of Mu Intermediate Representation,
or Mu IR for short. The IR is the language in which programs are represented
in the Mu micro VM. The Mu IR is defined by the Mu IR chapter [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/ir.rst] of the Mu
specification.

The structure of the Mu IR is an AST. Mu bundle has a text form for human
readability. A bundle can also be built using the IR building API [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/irbuilder.rst] which calls
into Mu to build an AST inside Mu. The IR building API is designed for
productional setting. This tutorial will use the text-form API.

4.1. Bundle

The client submits one bundle (a piece of Mu IR code) at a time to the Mu
micro VM.

ctx.loadBundle("""
 // insert your bundle here
""")

A bundle defines many types, function signatures, constants, global cell
and functions. The client may submit multiple bundles one after another.

After submitting, Mu knows about those things. Types can be used, global cells
are allocated, and functions are callable.

A bundle looks like this:

// Type
.typedef @i64 = int<64>

// Function signature
.funcsig @i_to_i = (@i64) -> (@i64)

// Constant
.const @I64_1 <@i64> = 1
.const @I64_2 <@i64> = 2

// Global cell
.global @g_foo <@i64>

// Function declaration (no body)
.funcdecl @factorial <@i_to_i>

// Function definition (with body)
.funcdef @fibonacci VERSION %v1 <@i_to_i> {
 %entry(<@i64> %n): // Basic block
 %lt = SLT <@i64> %n @I64_2 // Instructions
 BRANCH2 %lt %small(%n) %big(%n) // Instructions

 %small(<@i64> %n): // Basic block
 RET %n // Interaction

 %big(<@i64> %n): // Basic block
 %nm1 = SUB <@i64> %n @I64_1 // Instruction
 %nm2 = SUB <@i64> %n @I64_2 // Instruction
 %v1 = CALL <@i_to_i> @fibonacci (%nm1) // Instruction
 %v2 = CALL <@i_to_i> @fibonacci (%nm2) // Instruction
 %rv = ADD <@i64> %v1 %v2 // Instruction
 RET %rv // Instruction
}

If you have used LLVM before, the Mu IR is the counterpart of LLVM modules.

4.2. Names

You may have noticed that there are names for almost all entities. In the Mu IR,
there are two kinds of names: global names and local names. Global names start
with @ and local names start with %. The allowed characters in names are
[a-zA-Z0-9_.].

In fact, local names are just syntax sugars of some global names, that is,
anything that has a name has a global name. This will be discussed later.

At this moment, you only need to know what a bundle may contain. Their details
will be discussed in the following chapters.

5. Type System

The Mu type system is defined in the specification [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/type-system.rst].

Like many programming languages and frameworks, Mu also has a type system.

The Mu type system is low level. There is no object-oriented programming
concepts, such as class, inheritance, polymorphism. There is no high-level
concepts such as strings, either. The language implementer is responsible to
implement these high-level concepts.

But the Mu type system is also not too low level. Notably, unlike C, C++ or
LLVM, the Mu type system still has object reference types in it, and the garbage
collector is fully aware of the presence of them. The main idea is, as long as
you use the Mu type system, and refer to heap objects using references, you can
forget about garbage collection details, such as stack maps, GC-safe points, and
read/write barriers.

5.1. Overview

Some of the types (actually type constructors,
explained later) contain angular brackets. These are parameters to these types
which may be integer literals, other types or function signatures.

The types in the Mu type system can be put into several categories:

	Scalar value types: int<n>, float, double, uptr<T> and
ufuncptr<sig>. These types represent plain values.

	Scalar reference types: ref<T>, iref<T>, weakref<T>,
funcref<sig>, threadref, stackref, framecursorref,
irbuilderref and tagref64. These types refer to “things” in the Mu
micro VM. All such references are opaque in the sense that their
representation is implementation dependent.

	Composite types: struct<F1 F2 ...>, array<T n>, hybrid<F1 F2 ...
V> and vector<T n>. These types combine simpler types into more complex
types.

	The void type void. It has only one use case: when used as the
“referenced type” of references or pointers, it conveys the meaning of
“reference/pointer to anything”.

This is a complete list of Mu types. All values of Mu come from one of these
types.

5.2. Define Types and Function Signatures

5.2.1. Type definition

To define a type in Mu, you use the top-level type definition: .typedef.

.typedef @i1 = int<1>
.typedef @i8 = int<8>
.typedef @i16 = int<16>
.typedef @i32 = int<32>
.typedef @i64 = int<64>
.typedef @float = float
.typedef @double = double

.typedef @ptri32 = uptr<@i32>
.typedef @foo.fp = ufuncptr<@foo_sig>

.typedef @refi32 = ref <@i32>
.typedef @irefi64 = iref<@i64>
.typedef @weakreffloat = weakref<@float>

.funcsig @foo.sig = (@i32) -> (@i32)
.typedef @foo.fr = funcref<@foo_sig>

.typedef @stackref = stackref
.typedef @threadref = threadref
.typedef @stkref = stackref
.typedef @thrref = threadref
.typedef @fcref = framecursorref
.typedef @ibref = irbuilderref

.typedef @struct1 = struct<@i32 @i32 @i32>
.typedef @struct2 = struct<@i64 @double>
.typedef @array1 = array<@i32 10>
.typedef @array2 = array<@i32 4096>
.typedef @hybrid1 = hybrid<@i64 @i32>
.typedef @hybrid2 = hybrid<@i8>
.typedef @hybrid3 = hybrid<@i64 @i64 @i64 @float>
.typedef @4xi32 = vector<@i32 4>

.typedef @void = void

Every type defined in the Mu IR has a name, which is on the left side of the
equal sign. All characters in [a-zA-Z0-9_.] are legal. You can use the dot
. arbitrarily in the name. So the dot in @foo.sig does not mean anything
special to Mu.

On the right side of the equal sign is the type constructor: it constructs a
type. Some type constructors take parameters while others do not.

What are type constructors?

If we imagine a Mu type as a Java or C++ object, then the type constructor
is like the constructor of such an object. int is just the abstract concept
of integer, but int<32> is a concrete 32-bit integer type. Similarly
ref<@i32> constructs a reference type to @i32:

.typedef @i32 = int<32>
.typedef @refi32 = ref<@i32>

Some type constructors, such as float, double, threadref or
void, do not take any parameters. You can consider them as C++/Java
constructors with an empty parameter list. You may have written new Object()
or new StringBuilder() before. Similarly you define a concrete instance of
float type in this way:

.typedef @float = float
.typedef @blahblah = float

, where the name @float or @blahblah are just names.

When types or function signatures are taken as argument, their names (such as
@i32, @float and @void, not int<32>, float or void) are
used. So the following are not accepted by Holstein:

.typedef @refi32 = ref<int<32>> // ERROR! int<32> must be defined separately.
.typedef @refvoid = ref<void> // ERROR! void must be defined separately.
.typedef @bar.ref = funcref<(@i32) -> (@float)> // ERROR! The signature must be defined separately.

But these are right:

.typedef @i32 = int<32>
.typedef @refi32 = ref<@i32> // Correct.

.typedef @void = void
.typedef @refvoid = ref<@void> // Correct.

.typedef @float = float
.funcsig @bar.sig = (@i32) -> (@float)
.typedef @bar.ref = funcref<@bar.sig> // Correct.

Note

So why does Mu force all types to be “constructed” at the top level? Well,
that’s what Holstein accepts now. There are alternative text Mu IR parsers [https://gitlab.anu.edu.au/mu/mu-tool-compiler] that accept in-line types
such as ref<int<32>>.

Actually, productional Mu and client implementations will use the IR
building API [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/irbuilder.rst]. It
will skip the text parsing phase completely.

The reason why Holstein was designed like that was to let the text match the
actual data structure of the IR. In the IR building API, each type is a
“node”. Types that have parameters (such as ref<T>) refer to other
nodes by their IDs. Similarly, in the text form, such type constructors
refer to other types by names.

If you have used LLVM before, you may find that you can write types
“directly”, “inline”, in the LLVM IR, such as:

%c = add i32 %a, %b
%f = fadd double %d, %e
%g = load i32* %x

But have a look at the C++ API of the LLVM:

Type *i32 = Type::getInt32Ty(ctx);
Type *i64 = IntegerType::get(ctx, 64); // alternative method
Type *floatTy = Type::getFloatTy(ctx);
Type *doubleTy = Type::getDoubleTy(ctx);
Type *voidTy = Type::getVoidTy(ctx);

Type *blahblah = Type::getFloatTy(ctx);

Type *ptri32 = Type::getInt32PtrTy(ctx);
Type *ptri64 = PointerType::getUnqual(i64);

In this API, the programmer still needs to refer to types by pointers to the
types. So this API is more similar to having to define (or, at least, make
pointers to) the types separately.

On the other hand, there is only 19 types in the Mu type system, among which
only 6 do not take arguments. Even if the client programmer has to define
each and every types, all common types can be defined in about 20 lines as
above, and his/her pain ends there.

5.2.2. Function signature definition

A function signature defines the parameter types and the return types of a
function. It is defined by the .funcsig top-level definition:

.typedef @i32 = int<32>
.typedef @float = float

.funcsig @sig1 = (@i32) -> (@float)
.funcsig @sig2 = (@i32 @i32 @i32) -> (@i32 @float)
.funcsig @sig3 = () -> (@i32)
.funcsig @sig4 = (@i32) -> ()
.funcsig @sig5 = () -> ()

.typedef @funcref1 = funcref <@sig1>
.typedef @ufuncptr1 = ufuncptr<@sig1>

On the left side of = is the name of the signature. On the right side is the
function signature constructor. In Mu, a function takes 0 or more parameters and
return 0 or more values. It is written in the form (parameter types) ->
(return types).

A function signature is not a type. Unlike the C or C++ programming
language, there is no “function type” in Mu. In fact, in C, if an expression has
function type, it is implicitly converted to the pointer of that function. Mu
takes the explicit approach: there are two types that use function signatures:

	The funcref<sig> type refers to a Mu function which has signature sig.

	The ufuncptr<sig> type is a pointer that points to a native function that
has signature sig.

When defining or declaring functions, such as:

.funcdecl @foo <@sig1>

.funcdef @bar VERSION %v1 <@sig2> {
 ...
 %rv = CALL <@sig1> @foo (...) // arguments omitted
 ...
}

The names of the functions @foo and @bar has the funcref<@sig1> and
the funcref<@sig2> type, respectively, when used as a value.

5.3. Details

This section will only discuss the most important types. For more details, you
can read the Type System section [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/type-system.rst] of the
specification.

5.3.1. Integer and FP types

int<n> is the integer type of n bits. Like LLVM, the int type is
fixed-length. For example, int<32> is the 32-bit integer type.

.typedef @i32 = int<32>
.typedef @i64 = int<64>

It is also signedness-neutral: whether an integer is signed or not depends on
the operation, not the type. Most instructions, such as ADD, SUB,
MUL, work correctly for both signed and unsigned integers. Some instructions
have signed and unsigned variants, such as SDIV/UDIV,
FPTOSI/FPTOUI.

Like LLVM, int<1> is returned by most instructions that return Boolean
results, such as EQ and SLT.

.typedef @i1 = int<1>

float and double are the IEEE 754 single and double-precision floating
point number types, respectively.

.typedef @float = float
.typedef @double = double

Like LLVM but unlike some intermediate languages such as C minus minus [https://en.wikipedia.org/wiki/C–], Mu does not use a single type (such as
“bits32”) to hold both integers and FP numbers, because in modern machines
integers and FP numbers are usually held in different kinds of registers.

5.3.2. References to the memory

ref<T> is the object reference type. It refers to objects in the
garbage-collected Mu heap.

iref<T> is the internal reference type. It refers to a memory
location, that is, a place in the Mu memory that can be loaded or stored. A
field of a heap object is a memory location.

Attention

“Memory location” does not mean “address”. Do not assume a Mu heap object or
any other memory locations have addresses. This is very important in Mu.
This will discussed in details in later chapters. The specification contains
some explanation [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/memory.rst#basic-concepts]

Both ref and iref may be NULL.

Note

Sorry for the billion-dollar mistake [https://en.wikipedia.org/wiki/Null_pointer#History], but NULL is
really easy to implement, and Mu is closer to the machine. The client, on
the other hand, should implement a decent language and help the programmers
prevent such mistakes.)

The <T> type parameter is the type of the heap object it refers to.

For ref<T>, the T means it refers to a heap object of type T. For
example, ref<@i32> refers to a heap object of @i32 type, which we
previously defined as int<32>:

.typedef @refi32 = ref<@i32>
.typedef @refdouble = ref<@double>

.typedef @link = ref<@link>

In the last line, @link is recursively defined as ref<@link>. It means
it refers to a heap object, whose entire content is an object reference to the
same type, or NULL. It is very similar to the C definition: struct Link {
struct Link *next; }. Mu does not need struct to construct recursive
types.

For iref<T>, the T means it refers to a memory location of type T.
So if you use the LOAD instruction on an iref<@i32>, you get a value of
type @i32. You can also STORE an @i64 value to a memory location
referred by an iref<@i64>.

.typedef @irefi32 = iref<@i32>
.typedef @irefi64 = iref<@i64>

5.3.3. References to Mu functions

funcref<sig> is the function reference type. It refers to a Mu
function. Whenever you call a Mu function, you call it with its function
reference. sig is the function signature.

.funcsig @sig1 = (@i32) -> (@float)
.typedef @funcref1 = funcref <@sig1>

funcref only refers to Mu functions. It cannot refer to C functions (that is
what ufuncptr is for).

Like other references, funcref can also be NULL (sorry).

5.3.4. Aggregate types

Among all aggregate types, hybrid is the only “variable-length” types. All
others are “fixed-length”.

5.3.4.1. Fixed-length aggregate types

struct<F1 F2 ...> is the structure type. Like the struct type in
C, it has many fields of types F1, F2, ...

.typedef @struct1 = struct<@i32 @i32 @i32>
.typedef @struct2 = struct<@i64 @double>

Structs may contain other structs, arrays or vectors, but cannot contain
themselves (otherwise it will be infinitely big). It must have at least one
field. But it may contain references so that you can allocate many structs in
the Mu heap, each refer to another object.

.typedef @ListNode = struct<@i64 @ListNodeRef>
.typedef @ListNodeRef = ref<@ListNode>

array<T n> is the fixed-size array type. T is the element type.
n is an integer literal and it is part of the type. A particular
array<T n> holds exactly n instances of T. For example, array<@i32
10> contains exactly 10 @i32 values:

.typedef @array1 = array<@i32 10>
.typedef @array2 = array<@i32 4096>

Like structs, arrays may contain other structs, arrays or vectors, but not
itself. It must have at least one element. Arrays of references are allowed.

vector<T n> is the vector type. It is designed for single-instruction
multiple-data (SIMD) operations. Most modern desktop processors have SIMD
capabilities. Vectors are used in very different ways compared to arrays.
Vectors are usually small and are usually similar to the vector sizes supported
by the machine.

Even today, architectures still do not agree upon any particular vector sizes.
Mu only mandate the following three vector types to be implemented:

.typedef @4xi32 = vector<@i32 4>
.typedef @4xfloat = vector<@float 4>
.typedef @2xdouble = vector<@double 2>

5.3.4.2. The hybrid

hybrid<F1 F2 ... V> is a hybrid of a struct and an array. It starts
with a fixed part: F1, F2, ... which is like a struct. It is
followed by a variable part: an array of many elements of type V.

.typedef @hybrid1 = hybrid<@i64 @i32>
.typedef @hybrid2 = hybrid<@i8>
.typedef @hybrid3 = hybrid<@i64 @i64 @i64 @float>

In the above example, @hybrid1 has one @i64 field in its fixed part, and
many @i32 elements in its variable part. @hybrid2 has an empty fixed
part, and its variable parts are many @i8 elements. @hybrid3 has three
@i64 fields in its fixed part, and many @float elements in the variable
part.

hybrid is the only variable-size type type in Mu whose size is determined
at allocation site rather than the type itself. A hybrid must be allocated by
special instructions, such as NEWHYBRID, which takes not only the type but
also the length as its arguments.

%length1 =
%length2 =
%r1 = NEWHYBRID <@hybrid1 @i64> %length1 // @i64 is the length of %length1
%r2 = NEWHYBRID <@hybrid1 @i64> %length2 // @i64 is the length of %length2

In the above example, %r1 and %r2 refers to two different objects. Both
have type @hybrid1, but the length of their variable parts are %length1
and %length2, respectively.

Since the length cannot be determined by the type itself, it cannot be embedded
in other aggregate types, not even other hybrids:

.typedef @some_struct = struct<@i64 @hybrid1 @hybrid2> // ERROR! cannot embed hybrids

Hybrid is the counterpart of the C99 structs with “flexible array elements”. In
C99, you can write something like:

struct hybrid1 { int64_t f1; int32_t v[]; };
struct hybrid2 { int32_t v[]; };
struct hybrid3 { int64_t f1, f2, f3; float v[]; };

struct hybrid1 *p1 = malloc(sizeof(int64_t) + 1000*sizeof(int32_t));
struct hybrid1 *p2 = malloc(sizeof(int64_t) + 2000*sizeof(int32_t));

Once malloc-ed with enough memory, C can access the dynamically allocated “tail”
elements.

5.3.5. The void type

void means “anything”, and can only be used as the target of references or
pointers. For example:

.typedef @void = void
.typedef @refvoid = ref<@void>
.typedef @irefvoid = iref<@void>
.typedef @uptrvoid = uptr<@void>

ref<@void> means the object reference can refer to any object.
iref<@void> means the internal reference can refer to any memory location.
uptr<@void> means it is... err... just a pointer, and has not been assigned
a type yet.

Mu does not have the concept of “inheritance”, but there are some “prefix rules”
so that a reference may refer to some more complex objects than its <T>
parameter. void is just the “simplest” type: no content at all.

You can allocate heap objects of the void type.

%r = NEW <@void>

Such objects have no contents, but each allocated void object is different,
and compares equal (EQ) to only itself.

In Java, such use is like Object o1 = new Object();. There are some corner
cases where such objects can be used as a “key” to identify something.

5.3.6. Other types

stackref, threadref and framecursorref refers to “special
things” in Mu: stacks, threads and frame cursors. You will need the first two to
start a Mu program, and need the third to perform stack introspection and
on-stack replacement.

weakref<T> is the weak object reference type.

tagref64 is the tagged reference type. It uses some clever bit-magic to
reuse the NaN space of double to represent a tagged union of double,
int<52> and a struct of ref<void> and int<6>.

uptr<T> and ufuncptr<sig> are untraced (raw) pointers. They are
defined to be represented as integers of the pointer size, which is
implementation-specific. For example, on a 64-bit implementation, it is 64 bits.
But if you want to perform pointer arithmetic, you need to convert them to
integers first.

You are unlikely to use raw pointers unless your program interacts with native
programs (usually written in C). The garbage collector will not trace them: they
are treated just like integers.

If you worked with x86 before, you may ask: Wait! Pointer is not just the
address, but also its segment. Sorry, x86. But we see the trend is to move away
from segmented architecture (x86_64 moved away from segments, too). For embedded
systems that may have multiple address spaces, Mu is not designed for such
systems, but supporting such architectures is an open topic.

5.4. Bonus section

Note

These contents should be moved to other chapters in the future. But if you
are interested and patient enough, you can keep reading.

In fact, an internal reference refers to a “memory location” (discussed
in later chapters) of type T. Memory location is a very important
concept in Mu. It is a location in the Mu memory that can hold a Mu value.
A field of an object is one kind of memory location. All memory accessing
operations, such as LOAD and STORE directly work on internal
references. This is different from JVM, where there are getfield and
setfield instructions that work on object references.

If you worked with C before, it is the counterpart of the concept of
“object”. (What? You say C does not have “objects” but C++ does? Go ahead
and read the C specification [http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1570.pdf]. In C,
“object” means “a region of data storage” and does not mean object-oriented
programming.) But the word “object” is used as a synonym of “heap object”
in Mu. To avoid ambiguity, we use the word “memory location” instead.

6. Simple Functions

The constant and function syntax is defined in the Intermediate Representation [https://gitlab.anu.edu.au/mu/mu-spec/blob/master/ir.rst] chapter of the
specification.

The Mu IR uses a variant of the static single assignment (SSA) [https://en.wikipedia.org/wiki/Static_single_assignment_form] or static
single information (SSI) [http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-801.pdf] form. Mu
IR has control flow graphs (CFG), each has many basic blocks, each then has many
parameters and instructions. The main difference is that basic blocks take
parameters, which are the counterpart of the PHI-nodes in SSA. At the end of a
basic block, if it branches to another basic block, it must also specify the
arguments to the destination, which are the counterpart of the SIGMA-nodes in
SSI. There is no explicit PHI- or SIGMA-node. Instructions can only use global
variables, the parameters of the basic block it is in, or the variables
evaluated before that instruction in the same basic block. In other words, each
basic block is a local scope and is like a single-exit “straight-line” function.

6.1. SSA Variable

In the Mu IR, as in SSA, a variable is defined in exactly one place and never
redefined. For this reason, we still call them SSA variables since they are
only assigned in one place.

In the Mu IR, variables are referred to by names, such as @foo or %bar.

Variables can be global or local. Global SSA variables are globally valid and
never change. (Sorry but we still call them “variables”.) Local SSA variables
are only valid within a basic block and gets a value every time it is evaluated.
Oh, did I say variables are defined in one place? Yes, they are, but this does
not prevent them from being assigned multiple times. That is what “static”
single assignment means.

6.2. Constant Definitions

Constant definitions, i.e. .const, are a kind of top-level definition.
They construct values using literals.

.typedef @i8 = int<8>
.typedef @i16 = int<16>
.typedef @i32 = int<32>
.typedef @i64 = int<64>
.typedef @float = float
.typedef @double = double
.typedef @refi64 = ref<@i64>

.const @I8_10 <@i8> = 10
.const @I16_10 <@i16> = 10
.const @I32_10 <@i32> = 10
.const @I64_10 <@i64> = 10
.const @MAGIC_NUMBER1 <@i64> = 0x123456789abcdef0
.const @MAGIC_NUMBER2 <@i64> = 0xfedcba9876543210
.const @MAGIC_NUMBER3 <@i64> = -0x8000000000000000

.const @F_PI <@float> = 3.14f
.const @D_2PI <@double> = 6.28d

.const @MY_CONSTANT_REF <@refi64> = NULL

On the left side of =, there are the name of the constant (such as
@I8_10) and its type (such as @i8). On the right side it is, as you can
guess, the constant constructor.

To construct an integer, you can write it in the decimal form or the hexadecimal
form (add 0x before). It may also have a sign. Since integers themselves in
Mu do not have signs, the integer literal is just used to encode the bit
pattern. Mu uses the 2’s complement representation for negative numbers, so
0xffffffff and -1 are the same if both are 32-bit.

To construct a floating point number, you can write it in the decimal form, with
a decimal point (that is, 1.0, not 1), and append an f for float or a d
for double. nanf, +inff and -inff will construct NaN, positive
infinity and negative infinity of the float type. Replace the last f
with d and it will be the double type.

.const @F_NAN <@float> = nanf // Mu will interpret it as an arbitrary NaN
.const @F_PINF <@float> = +inff // positive infinity
.const @F_NINF <@float> = -inff // negative infinity

If you are an FP number wizard, you can also explicitly specify the bit layout
of an FP constant:

.const @D_1 <@double> = bitsd(0x3ff0000000000000) // +1.0
.const @D_2 <@double> = bitsd(0x400c000000000000) // +3.5
.const @D_PINF <@double> = bitsd(0x7ff0000000000000) // +inf
.const @D_NAN <@double> = bitsd(0x7ff0000000000001) // nan (one possible encoding)

You can define constants of general reference types (ref, iref,
funcref, threadref, stackref and framecursorref), too. But
the only possible constant value is NULL.

.typedef @refi64 = ref<@i64>
.typedef @irefi64 = iref<@i64>
.funcsig @foo.sig = () -> ()
.typedef @foo.fr = funcref<@foo.sig>
.typedef @tr = threadref
.typedef @sr = stackref
.typedef @fcr = framecursorref

.const @NULLREF <@refi64> = NULL
.const @NULLIREF <@irefi64> = NULL
.const @NULLFR <@foo.fr> = NULL
.const @NULLTR <@tr> = NULL
.const @NULLSR <@sr> = NULL
.const @NULLFCR <@fcr> = NULL

That is, you cannot define a constant reference to any heap object.

Note

Why there is no constant references to objects?

First of all, constants, as the name suggests, never change. If a constant
refers to an object, the object is immortal! But the reason why we use the
heap is to use GC, which eventually recycles the object.

Secondly, from the implementation’s point of view, the advantage of using
constants is that they can exist as immediate values in machine
instructions, or be created by some machine code idioms (e.g. xor rax,
rax makes rax 0, and the instruction decoder in modern processors (since
IvyBridge) can eliminate such “idioms” in the front end), rather than being
stored in the memory and loaded when needed (memory is slow nowadays
compared to 20 years ago). But if the type is object reference, perhaps the
only feasible way to implement such constant is to store it in the memory so
that copying GC can update it when the referenced object is moved.
Non-copying GC sucks, because the VM will eventually die of heap
fragmentation. (R.I.P. lighttpd. [http://redmine.lighttpd.net/issues/758] You know, C programmers are
responsible for memory management. If C’s malloc cannot manage the memory
well and kills long-running servers, we should use a VM with copying GC,
instead. If usual VMs perform too bad, that’s why we build the Mu micro VM.)
But if the GC ends up modifying the machine code to fix the reference, it
will be too painful.

If we really need some permanent global memory space, Mu has another
top-level definition: global cells, i.e. .global (it will be discussed
in details when we talk about memory access). Global cells are memory
locations: they are mutable. They can be loaded and stored, and they are
permanent. Just store an object reference in a global cell and it has all
the benefits of constant references.

For other references, constant function reference is unnecessary because the
name of the function is already a constant function reference. Stacks are
similar to heap objects. Threads and frame cursors have their own
lifecycles, so you can’t possibly create such constants that remain valid.

However, pointers are not references. They are just integers and can be
constructed as integers.

.typedef @i64 = int<64>
.typedef @ptri64 = uptr<@i64>

.const @MY_POINTER <@ptri64> = 0x123456789000

.funcsig @bar.sig = () -> ()
.typedef @bar.fp = ufuncptr<@bar.sig>

// The address can be looked up by dlsym.
.const @MY_FUNCTION_POINTER <@bar.fp> = 0x7fff00001230

Mu support constants of non-hybrid composite types, too. A composite constant is
constructed by referring to other constants. Please put as many fields/elements
as there should be.

.typedef @i32 = int<32>
.typedef @struct1 = struct<@i32 @i32 @i32>
.typedef @array1 = array<@i32 2>
.typedef @vector1 = vector<@i32 4>

.const @I32_1 <@i32> = 1
.const @I32_2 <@i32> = 2
.const @I32_3 <@i32> = 3
.const @I32_4 <@i32> = 4
.const @S1 <@struct1> = { @I32_1 @I32_2 @I32_3 }
.const @A1 <@array1> = { @I32_1 @I32_2 }
.const @V1 <@vector1> = { @I32_1 @I32_2 @I32_3 @I32_4 }

.typedef @struct2 = struct<@struct1 @i64>

.const @S2 <@struct2> = { @S1 @I32_4 } // correct

.const @WRONG <@struct2> = { {@I32_1 @I32_2 @I32_3} @I32_4 } // ERROR: cannot nest braces. Define separately

But it is not recommended to use constants of composite types, unless they are
small. Mu may not be able to allocate big values into registers, in which case
it may perform stupid copying. The micro VM may not be smart enough to do too
much optimisation.

6.3. Function definition

TODO

Index

 _static/file.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

_static/down.png

_static/plus.png

nav.xhtml

 Table of Contents

 		The Mu Micro VM

 		Introduction

 		What Makes Language Implementation Difficult?

 		Why Micro Virtual Machines?

 		Separating the Specification and the Implementation

 		Getting Started

 		Where is Everything?

 		Get Mu

 		Pick your language

 		Basic Interaction

 		Mu Contexts

 		Using Mu Contexts

 		Threads and Stacks

 		Trap Handling

 		Scala API

 		C API

 		Working Example

 		Summary

 		Mu Intermediate Representation

 		Bundle

 		Names

 		Type System

 		Overview

 		Define Types and Function Signatures

 		Type definition

 		Function signature definition

 		Details

 		Integer and FP types

 		References to the memory

 		References to Mu functions

 		Aggregate types

 		The void type

 		Other types

 		Bonus section

 		Simple Functions

 		SSA Variable

 		Constant Definitions

 		Function definition

_static/microvm-logo.jpg

_static/down-pressed.png

_static/up.png

