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This workshop was co-organized by Berkeley Lab Ecology Department, UCSF Division of Pulmonary, Critical Care,
Allergy and Sleep Medicine, and The Philippine Genome Center (PGC).

Participants were from National Institutes of Health at the University of the Philippines, Research Institute for Tropical
Medicine, and The Philippine Genome Center (PGC).
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CHAPTER 1

Overview

This five day bioinformatics workshop is intended to open doors to applying bioinformatics for microbial genomics
and phylogenomics, with a specific focus on M. tuberculosis. The overarching goal is to drive engagement with data
analysis by increasing the reliability and quality of data interpretation regarding microbial genomics. The workshop
is organized as a mixture of lectures and hands-on practicals.

1.1 Instructor

Dr. Ulas Karaoz (Berkeley Lab)

1.2 Keynote

Midori Kato-Maeda, MD (UCSF): Genomics to improve the diagnosis of drug resistant tuberculosis
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CHAPTER 2

Workshop Agenda

2.1 Agenda and Lectures’ Slides

2.1.1 Tuesday

PM

Intermediate to Advanced Unix Shell for Bioinformatics

2.1.2 Wednesday

AM

Lecture: Whole-genome sequencing: technologies and data

• Overview of short and long read sequencing technologies

• Project design considerations: library complexity, data quantity and quality

Lecture: Genomics of M. tuberculosis and Genome Assembly Algorithms

• Short intro to genomics and population genomics of M. tuberculosis

• Reference-based, de-novo, and hybrid genome assembly

PM

Hands-on computer lab:

• Short and Long Read Genome Assembly

• Assembly Quality Control

• Genome Annotation
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2.1.3 Thursday

AM

Lecture: Read Mapping and variant calling

PM

Hands-on computer lab:

• Read mapping

• Variant calling

2.1.4 Friday

AM

Lecture: Microbial phylogenetics and phylogenomics

Lecture: Reproducible research in high-throughput biology and building bioinformatics pipelines

PM

Hands-on practical:

• M. tuberculosis phylogenetics and phylogenomics

• Building computational pipelines with Snakemake

2.1.5 Saturday

AM

Lecture & Practical: Building computational pipelines with python and Snakemake
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CHAPTER 3

Workshop Computer Labs

3.1 Day 1: Unix Shell Refresher for Bioinformatics

Unix Shell Refresher for Bioinformatics

3.1.1 Introductory Unix Shell

Updated June 2018 by Ulas Karaoz

Credits

Original author: Tracy Teal for Data Carpentry

Original contributors: Paul Wilson, Milad Fatenejad, Sasha Wood and Radhika Khetani for Software Carpentry

Additional contributors: Titus Brown, Karen Word (https://github.com/ngs-docs/2015-shell-genomics/)

Notes

This workshop operates under the Software Carpentry Code of conduct

Learning Objectives

• What is the shell?

• How do you access it?

• How do you use it and what is it good for?

– Running commands

– Storing files in folders
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– Manipulating files

– Automating actions

• Where are resources where I can learn more?

Important: Before starting:

1. Download the test data. Launch your shell terminal, type or copy/paste the following:

wget https://s3-us-west-1.amazonaws.com/mtb-bioinformatics-workshop/shell-data.zip

2. Unpack the .zip archive:

unzip shell-data.zip

3. We’ll be posting code snippets to: https://public.etherpad-mozilla.org/p/mtb_bioinformatics_shell

What is the shell?

The shell is a program that presents a command line interface which allows you to control your computer using
commands entered with a keyboard instead of controlling graphical user interfaces (GUIs) with a mouse/keyboard
combination.

Some specific reasons to learn about the shell:

• For most bioinformatics tools, you have to use the shell. There is no graphical interface. If you want to work in
metagenomics or genomics you’re going to need to use the shell.

• The shell gives you power. The command line gives you the power to do your work more efficiently and more
quickly. When you need to do things tens to hundreds of times, knowing how to use the shell is transformative.

• To use remote computers or cloud computing, you need to use the shell.

Information on the shell

The challenge with UNIX is that it’s not particularly simple - it’s a power tool, with its own deep internal logic with
lots of details. The joke is that Unix is user-friendly - it’s just very selective about who its friends are!

Shell cheat sheets:

• http://fosswire.com/post/2007/08/unixlinux-command-cheat-sheet/

• https://github.com/swcarpentry/boot-camps/blob/master/shell/shell_cheatsheet.md

Explain shell - a web site where you can see what the different components of a shell command are doing.

• http://explainshell.com

• http://www.commandlinefu.com
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Starting with the shell

We will spend most of our time learning about the basics of the shell by manipulating some experimental data we
downloaded (see above)

Open up the shell and type the command

pwd

and then hit ENTER - this will give you a directory name.

Once that’s done, type:

ls

and hit ENTER. You should see a listing of files, with ‘shell-data.zip’ and data among them.

Running commands

pwd and ls are examples of commands - programs you run at the shell prompt that do stuff. pwd stands for print
working directory, while ls stands for list files.

Another command you’ll find yourself using a lot is cd, which stands for change directory. Try typing:

cd data

and then:

pwd

You should see that you’re now in the data/subdirectory (or folder) underneath the original directory. Type ls to see
what files are in here.

What’s going on? The shell has a concept of working directory, which is basically the default location for commands
to look when you run them. When you run ls, by default it looks in your current working directory; when you run
cd, it changes your current working directory.

What’s the difference between cd and data? Here, cd is the command, and data is an argument to that command -
think of the command as the verb, and the argument as the noun upon which the verb acts.

In this tutorial, commands are shown as I am a command: you can type me in your shell
terminal.

Now type:

cd ..

and type ls. You should see at least two entries, shell-data.zip and data. Here you’re using shorthand notation to go
back up a directory.

Type:

ls data

to tell ls to look in a different directory than your current working directory. This is equivalent to:

cd data
ls
cd ..

3.1. Day 1: Unix Shell Refresher for Bioinformatics 9



M. tuberculosis Bioinformatics Workshop Documentation, Release 0.1

Files and directories

Go back into the data directory and list the files:

cd data
ls

In here, all mixed up together are files and directories/folders. If we want to know which is which, we can type:

ls -F

Anything with a / after it is a directory. Things with a * after them are programs. It there’s nothing there it’s an
otherwise unremarkable file (e.g. a data file).

You can also use the command:

ls -l

to see whether items in a directory are files or directories. ls -l gives a lot more information too, such as the size of
the file.

Command line options

Most programs take additional options (or arguments) that control their exact behavior. For example, -F and -l are
arguments to ls. The ls program, like many programs, take a lot of arguments. But how do we know what the
options are to particular commands?

Most commonly used shell programs have a manual. You can access the manual using the man program. Try entering:

man ls

This will open the manual page for ls. Use the space key to go forward and b to go backwards. When you are done
reading, hit q to quit.

Programs that are run from the shell can get extremely complicated. To see an example, open up the manual page for
the find program. No one can possibly learn all of these arguments, of course. So you will probably find yourself
referring back to the manual page frequently.

The Unix directory file structure

As you’ve already just seen, you can move around in different directories or folders at the command line. Why would
you want to do this, rather than just navigating around the normal way.

When you’re working with bioinformatics programs, you’re working with your data and it’s key to be able to have that
data in the right place and make sure the program has access to the data. Many of the problems people run in to with
command line bioinformatics programs is not having the data in the place the program expects it to be.

Moving around the file system

Let’s practice moving around the file system a bit.

We’re going to work in that data directory we just downloaded.

First let’s navigate there using the regular way by clicking on the different folders.

First we did something like go to the folder of our username. Then we opened data
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This is called a hierarchical file system structure, like an upside down tree with root (/) at the base that looks like this.

That (/) at the base is often also called the top level.

When you are working at your computer or log in to a remote computer, you are on one of the branches of that tree,
your home directory (/home/mtb_upm)

Now let’s go do that same navigation at the command line.

Type:

cd

This puts you in your home directory. This folder here.

Now using cd and ls, go in to the data directory and list its contents.

Let’s also check to see where we are. Sometimes when we’re wandering around in the file system, it’s easy to lose
track of where we are and get lost.

Again, if you want to know what directory you’re currently in, type:

pwd

What if we want to move back up and out of the data directory? Can we just type cd home? Try it and see what
happens.

To go back up a level we need to use ...

Type:

cd ..

Now do ls and pwd. See now that we went back up in to the home directory. .. means go back up to the enclosing
folder level.

3.1. Day 1: Unix Shell Refresher for Bioinformatics 11
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Looking folder within folder within folder within. . .

Try entering:

cd data/hidden

and you will jump directly to hidden without having to go through the intermediate directory. Here, we’re telling cd
to go into data first, and then hidden.

Then do:

cd ../..

to go back up two levels. (Try typing pwd to see where you are!)

You could put more directories and a file on the end, too; for example,

ls data/hidden/tmp1/notit.txt

You can do the same thing with any UNIX command that takes a file or directory name.

Shortcut: Tab Completion

Navigate to the home directory. Typing out directory names can waste a lot of time. When you start typing out the
name of a directory, then hit the tab key, the shell will try to fill in the rest of the directory name. For example, type
cd to get back to your home directy, then enter:

cd da<tab>

The shell will fill in the rest of the directory name for data. Now cd to data/IlluminaReads and try:

ls S1<tab><tab>

When you hit the first tab, nothing happens. The reason is that there are multiple directories in the home directory
which start with S1. Thus, the shell does not know which one to fill in. When you hit tab again, the shell will list the
possible choices.

Tab completion can also fill in the names of programs. For example, enter e<tab><tab>. You will see the name of
every program that starts with an e. One of those is echo. If you enter ec<tab> you will see that tab completion
works.

Full vs. Relative Paths

The cd command takes an argument which is the directory name. Directories can be specified using either a relative
path or a full path. The directories on the computer are arranged into a hierarchy. The full path tells you where a
directory is in that hierarchy. Navigate to the home directory. Now, enter the pwd command and you should see:

/home/mtb_upm

which is the full name of your home directory. This tells you that you are in a directory called mtb_upm, which sits
inside a directory called home which sits inside the very top directory in the hierarchy. The very top of the hierarchy
is a directory called / which is usually referred to as the root directory. So, to summarize: mtb_upm is a directory in
home which is a directory in /.

Now enter the following command:
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cd /home/mtb_upm/data/hidden

This jumps to hidden. Now go back to the home directory (cd). We saw earlier that the command:

cd data/hidden

had the same effect - it took us to the hidden directory. But, instead of specifying the full path (/home/mtb_upm/data),
we specified a relative path. In other words, we specified the path relative to our current directory. A full path always
starts with a /. A relative path does not.

A relative path is like getting directions from someone on the street. They tell you to “go right at the Stop sign, and
then turn left on Main Street”. That works great if you’re standing there together, but not so well if you’re trying to
tell someone how to get there from another country. A full path is like GPS coordinates. It tells you exactly where
something is no matter where you are right now.

You can usually use either a full path or a relative path depending on what is most convenient. If we are in the home
directory, it is more convenient to just enter the relative path since it involves less typing.

Over time, it will become easier for you to keep a mental note of the structure of the directories that you are using and
how to quickly navigate amongst them.

Saving time with shortcuts, wild cards, and tab completion

Shortcuts

There are some shortcuts which you should know about. Dealing with the home directory is very common. So, in the
shell the tilde character, ~, is a shortcut for your home directory. Navigate to the data directory:

cd
cd data

Then enter the command:

ls ~

This prints the contents of your home directory, without you having to type the full path. The shortcut .. always refers
to the directory above your current directory. Thus:

ls ..

prints the contents of the /home/mtb_upm directory. You can chain these together, so:

ls ../../

prints the contents of /home which is above your home directory. Finally, the special directory . always refers to your
current directory. So, ls, ls ., and ls ././././. all do the same thing, they print the contents of the current
directory. This may seem like a useless shortcut right now, but we’ll see when it is needed in a little while.

To summarize, while you are in the data directory, the commands ls ~, ls ~/., ls ../../, and ls /home/
mtb_upm all do exactly the same thing. These shortcuts are not necessary, they are provided for your convenience.

Our dataset: FASTQ files

Assume that we whole-genome sequenced 9 bacterial genomes and generated paired-end Illumina reads. We get our
data back from the sequencing center as FASTQ files, and we stick them all in a folder called IlluminaReads. We want
to be able to look at these files and do some things with them.

3.1. Day 1: Unix Shell Refresher for Bioinformatics 13
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Wild cards

Navigate to the data/IlluminaReads directory (hint: use cd). This directory contains our FASTQ files and some other
ones we’ll need for analyses. If we type ls, we will see that there are a bunch of files with long file names. Some of
them end with .fastq.

The * character is a shortcut for “everything”. Thus, if you enter ls *, you will see all of the contents of a given
directory. Now try this command:

ls *fastq

This lists every file that ends with a fastq. This command:

ls /usr/bin/*.sh

Lists every file in /usr/bin that ends in the characters .sh.

We have paired-end sequencing, so for every sample we have two files. If we want to just see the list of the files for
the forward direction sequencing we can use:

ls *R1*fastq

lists every file in the current directory whose name contains the number R1, and ends with fastq. There are 18 such
files which we would expect because we have 9 samples.

So how does this actually work? Well. . . when the shell (we are using a particular flavor called bash shell for this
tutorial) sees a word that contains the * character, it automatically looks for filenames that match the given pattern. In
this case, it identified four such files. Then, it replaced the *R1*fastq with the list of files, separated by spaces.

What happens if you do ls R1*fastq?

When wildcards go bad

To discuss: Explain how to deal with filenames that being with - (use ‘–’), have spaces (use quotes/backslashes/tab
completion), and/or quotes (use the other kind of quotes/backslashes/tab completion).

Examining Files

We now know how to switch directories, run programs, and look at the contents of directories, but how do we look at
the contents of files?

The easiest way to examine a file is to just print out all of the contents using the program cat. Enter the following
command:

cat S190_L001_R1_001.fastq

This prints out the contents of the S190_L001_R1_001.fastq file.

1. Print out the contents of the ~/data/IlluminaReads/upm.files file. What does this file contain?

2. Without changing directories, (you should still be in data), use one short command to print the contents of all
of the files in the /home/mtb_upm/data/IlluminaReads directory.

Make sure we’re in the right place for the next set of the lessons. We want to be in the IlluminaReads directory. Check
if you’re there with pwd and if not navigate there. One way to do that would be
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cd ~/data/IlluminaReads

cat is a terrific program, but when the file is really big, it can be annoying to use. The program, less, is useful for
this case. Enter the following command:

less S188_L001_R1_001.fastq

less opens the file, and lets you navigate through it. The commands are identical to the man program.

Some commands in ‘‘less‘‘

key action

“space” to go forward
“b” to go backwards
“g” to go to the beginning
“G” to go to the end
“q” to quit

less also gives you a way of searching through files. Just hit the “/” key to begin a search. Enter the name of the word
you would like to search for and hit enter. It will jump to the next location where that word is found. Try searching
the S188_L001_R1_001.fastq file for “TACGGAGGATGC”. If you hit “/” then “enter”, less will just repeat the
previous search. less searches from the current location and works its way forward. If you are at the end of the file
and search for the word “cat”, less will not find it. You need to go to the beginning of the file and search.

For instance, let’s search for the sequence 1101:9376:4054 in our file. You can see that we go right to that sequence
and can see what it looks like.

Remember, the man program actually uses less internally and therefore uses the same commands, so you can search
documentation using “/” as well.

There’s another way that we can look at files, and in this case, just look at part of them. This can be particularly useful
if we just want to see the beginning or end of the file, or see how it’s formatted.

The commands are head and tail and they just let you look at the beginning and end of a file respectively.

head S188_L001_R1_001.fastq
tail S188_L001_R1_001.fastq

The -n option to either of these commands can be used to print the first or last n lines of a file. To print the first/last
line of the file use:

head -n 1 S188_L001_R1_001.fastq
tail -n 1 S188_L001_R1_001.fastq

Searching files

We showed a little how to search within a file using less. We can also search within files without even opening them,
using grep. Grep is a command-line utility for searching plain-text data sets for lines matching a string or regular
expression. Let’s give it a try.

Let’s search for that sequence 1101:9376:4054 in the S188_L001_R1_001.fastq file.

3.1. Day 1: Unix Shell Refresher for Bioinformatics 15
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grep 1101:9376:4054 S188_L001_R1_001.fastq

We get back the whole line that had 1101:14341 in it. What if we wanted all four lines, the whole part of that FASTQ
sequence, back instead.

grep -A 3 1101:9376:4054 S188_L001_R1_001.fastq

Command flags are options that we use to change the behaviour of a program. The -A flag stands for “after match”
so it’s returning the line that matches plus the three after it. The -B flag returns that number of lines before the match.

Creating, moving, copying, and removing

Now we can move around in the file structure and look at files. But what if we want to do normal things like copy files
or move them around or get rid of them. Sure we could do most of these things without the command line, but what
fun would that be?! Besides it’s often faster to do it at the command line, or you’ll be on a remote server where you
won’t have another option.

The upm.files file is one that tells us what sample name goes with what sequences. This is a really important file, so
we want to make a copy so we don’t lose it.

Lets copy the file using the cp command. The cp command backs up the file. Navigate to the IlluminaReads directory
and enter:

cp upm.files upm.files_backup

Now upm.files_backup has been created as a copy of upm.files.

Let’s make a backup directory where we can put this file.

The mkdir command is used to make a directory. Just enter mkdir followed by a space, then the directory name.

mkdir backup

We can now move our backed up file in to this directory. We can move files around using the command mv. Enter this
command:

mv upm.files_backup backup/

This moves upm.files_backup into the directory backup/ ; the full path would be ~/data/IlluminaReads/backup.

The mv command is also how you rename files. Since this file is so important, let’s rename it:

mv upm.files upm.files_IMPORTANT

Now the file name has been changed to upm.files_IMPORTANT. Let’s delete the backup file now:

rm backup/upm.files_backup

The rm file removes the file. Be careful with this command. It doesn’t just nicely put the files in the Trash. THEY
ARE REALLY GONE.

By default, rm, will NOT delete directories. You can tell rm to delete a directory using the -r option (flag); we could
test it out on backup, but let’s not. . . ;)
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Writing files

We’ve been able to do a lot of work with files that already exist, but what if we want to write our own files. Obviously,
we’re not going to type in a FASTQ file, but you’ll see as we go through other tutorials, there are a lot of reasons we’ll
want to write a file, or edit an existing file.

To write in files, we’re going to use the program nano. We’re going to create a file that contains the favorite grep
command so you can remember it for later. We’ll name this file ‘awesome.sh’:

nano awesome.sh

Now you have something that looks like

Type in your command, so it looks like

3.1. Day 1: Unix Shell Refresher for Bioinformatics 17
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Now we want to save the file and exit. At the bottom of nano, you see the “^X Exit”. That means that we use Ctrl-X to
exit. Type Ctrl-X. It will ask if you want to save it. Type y for yes. Then it asks if you want that file name. Hit Enter.

Now you’ve written a file. You can take a look at it with less or cat, or open it up again and edit it.

Exercise

Open awesome.sh and add “echo AWESOME!” after the grep command and save the file.

We’re going to come back and use this file in just a bit.

Running programs, revisited

Commands like ls, rm, echo, and cd are just ordinary programs on the computer. A program is just a file that you
can execute. The program which tells you the location of a particular program. For example:

which ls

will return /bin/ls. Thus, we can see that ls is a program that sits inside of the /bin directory. Now enter:

which find

You will see that find is a program that sits inside of the /usr/bin directory.

So . . . when we enter a program name, like ls, and hit enter, how does the shell know where to look for that program?
How does it know to run /bin/ls when we enter ls. The answer is that when we enter a program name and hit
enter, there are a few standard places that the shell automatically looks. If it can’t find the program in any of those
places, it will print an error saying “command not found”. Enter the command:

echo $PATH
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This will print out the value of the PATH environment variable. Notice that a list of directories, separated by colon
characters, is listed. These are the places the shell looks for programs to run. If your program is not in this list, then
an error is printed. The shell ONLY checks in the places listed in the PATH environment variable.

Navigate to the data directory and list the contents. You will notice that there is a program (executable file) called
hello.sh in this directory. Now, try to run the program by entering:

hello.sh

You should get an error saying that hello.sh cannot be found. That is because the directory /home/mtb_upm/data is not
in the PATH. You can run the hello.sh program by entering:

./hello.sh

Remember that . is a shortcut for the current working directory. This tells the shell to run the hello.sh program which
is located right here. So, you can run any program by entering the path to that program. You can run hello.sh equally
well by specifying:

/home/mtb_upm/data/hello.sh

Or by entering:

~/data/hello.sh

When there are no / characters, the shell assumes you want to look in one of the default places for the program.

(Why doesn’t it look at your current directory by default? Any ideas?)

Writing scripts

We know how to write files and run scripts, so I bet you can guess where this is headed. We’re going to run our own
script.

Go in to the IlluminaReads directory where we created awesome.sh before. Remember we wrote our favorite grep
command in there. Since we like it so much, we might want to run it again, or even all the time. Instead of writing it
out every time, we can just run it as a script.

It’s a command, so we should just be able to run it. Give it try.:

./awesome.sh

Alas, we get -bash: ./awesome.sh: Permission denied. This is because we haven’t told the com-
puter that it’s a program. To do that we have to make it executable. We do this by changing its mode. The command
for that is chmod - change mode. We’re going to change the mode of this file, so that it’s executable and the computer
knows it’s OK to run it as a program.:

chmod +x awesome.sh

Now let’s try running it again:

./awesome.sh

Now you should have seen some output.

Congratulations, you just created your first shell script!
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M. tuberculosis Bioinformatics Workshop Documentation, Release 0.1

Challenge:

write a script that:

• resides in the data directory;

• changes to the IlluminaReads/ subdirectory of the current working directory;

• makes two subdirectories, “left” and “right”;

• moves all of the R1 sequencing files into the left directory;

• moves all of the R2 sequencing files into the right directory;

WE ARE DONE!

More resources

• Software Carpentry tutorial - The Unix shell

• The shell handout - Command Reference

• explainshell.com

• http://tldp.org/HOWTO/Bash-Prog-Intro-HOWTO.html

• man bash

• Google - if you don’t know how to do something, try Googling it. Other people have probably had the same
question.

Most importantly - learn by doing. There’s no real other way to learn this than by trying it out. Open pdfs from the
command line, automate something you don’t really need to automate. . . .

Some books you should look into –

1. Practical Computing for Biologists

2. Bioinformatics Data Skills

3.1.2 Advanced Beginner/Intermediate Shell

Updated June 2018 by Ulas Karaoz

Credits

Original authors: Jessica Mizzi, Titus Brown, and Lisa K. Johnson at Lab for Data Intensive Biology (http:
//dib-training.readthedocs.io/en/pub/2016-01-13-adv-beg-shell.html)

Learning objectives:

• Expose you to a bunch of syntax around shell use & scripting.

• Show you the proximal possibilities of shell use & scripting.

• Give you some useful tricks

• Provide opportunity for discussion, so please ask questions!
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Important: Before starting:

1. Make sure you have the test data. Download and unpack:

wget https://s3-ap-southeast-1.amazonaws.com/mtb-bioinformatics-workshop-singapore/
→˓shell-data.zip
# will unzip a folder called `data`
unzip shell-data.zip

2. Set your current working directory to be the top level dir:

cd ~/data/

3. We’ll be posting code snippets to: https://public.etherpad-mozilla.org/p/mtb_bioinformatics_shell

4. In this tutorial, commands are shown as I am a command: you can type me in your shell
terminal.

Exploring directory structures

So, if we do ls, we see a bunch of stuff. We didn’t create this folder. How do we figure out what’s in it?

Here, find is your first friend:

find . -type d

This walks systematically (recursively) through all files underneath ., finds all directories (type d), and prints them
(assumed, if not other actions).

We’ll come back to find later, when we use it for finding files.

Renaming a bunch of files

Let’s go into the IlluminaReads directory:

cd IlluminaReads

and take a look with ls.

For our first task, let’s pretend that we want to change the extension of all of the fastq files from *.fastq* to *.fq*.
Here, we get to use two commands - for and basename.

for lets you do something to every file in a list. To see it in action:

for i in *.fastq
do

echo $i
done
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This is running the command echo for every value of the variable i, which is set (one by one) to all the values in the
expression *.fastq.

If we want to get rid of the extension .fastq, we can use the basename command:

for i in *.fastq
do

basename $i .fastq
done

Now, this doesn’t actually rename the files - it just prints out the name, with the suffix .fastq removed. To rename the
files, we need to capture the new name in a variable:

for i in *.fastq
do

newname=$(basename $i .fastq).fq
echo $newname

done

What $( . . . ) does is run the command in the middle, and then replace the $( ) with the value of running the command.

Now we have the old name ($i) and the new name ($newname) and we’re ready to write the rename command, which
is mv:

for i in *.fastq
do

newname=$(basename $i .fastq).fq
echo mv $i $newname

done

Question: why did we use ‘echo’ here?

Now that we’re pretty sure it all looks good, let’s run it for real:

for i in *.fastq
do

newname=$(basename $i .fastq).fq
mv $i $newname

done

We have renamed all the files!

Let’s also get rid of the annoying _001 that’s at the end of the files. basename is all fine and good with the end of
files, but what do we do about things in the middle? Now we get to use another useful command, cut.

What cut does is slide and dice strings. So, for example,

echo hello, world | cut -c5-

will give you o, world.

cut expects to take a bunch of lines of input from a file. By default it is happy to take them in from stdin (“standard
input”), so you can specify -‘ and give it some input via a pipe, which is what we’re doing with echo:

We’re taking the output of echo hello, world and sending it to the input of cut with the | command (pipe).

You’ve probably already seen this with head or tail, but many UNIX commands take stdin and stdout.
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Let’s construct the cut command we want to use. If we look at the names of the files, and we want to remove 001
only, we can see that each filename has a bunch of fields separated by _. So we can ask cut to pay attention to the
first four fields, and omit the fifth, around the separator (or delimiter) _:

echo S194_L001_R1_001.fq | cut -d_ -f1-4

That looks about right, let’s put it into a for loop:

for i in *.fq
do

echo $i | cut -d_ -f1-4
done

Good, now assign it to a variable and append an ending:

for i in *.fq
do

newname=$(echo $i | cut -d_ -f1-4).fq
echo $newname

done

and now construct the mv command:

for i in *.fq
do

newname=$(echo $i | cut -d_ -f1-4).fq
echo mv $i $newname

done

and if that looks right, run it:

for i in *.fq
do

newname=$(echo $i | cut -d_ -f1-4).fq
mv $i $newname

done

You’ve renamed all your files.

Let’s do something quite useful - subset a bunch of FASTQ files.

If you look at one of the FASTQ files with head,

head S188_L001_R1.fq

you’ll see that it’s full of FASTQ sequencing records. Often we want to run a bioinformatices pipeline on some small
set of records first, before running it on the full set, just to make sure all the commands work. So we would like to
subset all of these files without modifying the originals.

First, let’s make sure the originals are read-only:

chmod u-w *.fq

Now, let’s make a subset directory:

mkdir subset
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Now, to subset each file, we want to run a head with an argument that is the total number of lines we want to take.
In this case, it should be a multiple of 4, because FASTQ records have 4 lines each. So let’s plan to take the first 100
lines of each file by using head -400.

The for loop will now look something like:

for i in *.fq
do

echo "head -400 $i > subset/$i"
done

If that command looks right, run it for real:

for i in *.fq
do

head -400 $i > subset/$i
done

We now have our subsets.

— Exercise: Can you rename all of your files in subset/ to have subset.fq at the end?

(Work in small groups; start from working code; there are several ways to do it, all that matters is getting there.)

Backtracking

Variables:

You can use either $varname or ${varname}. The latter is useful when you want to construct a new filename, e.g.:

MY${varname}SUBSET

would expand ${varname} and then put MY .. SUBSET on either end, while

MY$varnameSUBSET

would try to put MY in front of $varnameSUBSET which won’t work.

(Unknown/uncreated variables give nothing.)

(Variables are interpreted inside of “”, and not inside of ‘’.)

Pipes and redirection:

To redirect stdin and stdout, you can use:

> - send stdout to a file
< - take stdin from a file
| - take stdout from first command and make it stdin for second command
>> - appends stdout to a previously-existing file

stderr (for errors) can be redirected:

2> - send stderr to a file

and you can also say:
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>& - to send all output to a file

Editing on the command line:

Most prompts support readline-style editing. This uses emacs control keys (emacs is a very powerful editor, tough
with a bit of steep learning curve)

Type something out; then type CTRL-a. Now type CTRL-e. Beginning and end. . .

Up arrows to recall previous command, left/right arrows, etc.

Another useful command along with basename is dirname. Any idea what it does?

Working with collections of files; conditionals

Let’s go back to the data directory and play around with loops some more.

cd ..

if acts on things conditionally:

for i in *
do

if [ -f $i ]; then
echo $i is a file

elif [ -d $i ]; then
echo $i is a directory

fi
done

but what is the [ ] notation? That’s actually running the test command; try help test | less to see the docs.
This is a

syntax that lets you do all sorts of useful things with files –

We can use it to get rid of empty files:

touch emptyfile.txt

to create an empty file, and then:

for i in *
do

if [ \! -s $i ]; then
echo rm $i

fi
done

. . . and as you can see here, we are using ! to say ‘not’.
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Executing things conditionally based on exit status

Let’s create two scripts (you can use nano here if you want) – in success.sh, put:

#! /bin/bash
echo mesucceed
exit 0

and in fail.sh, put:

#! /bin/bash
echo mefail
exit 1

You can do this with here documents. A here document (or heredoc) is a way of getting text input into a script without
having to feed it in from a separate file.

cat > success.sh <<EOF
#! /bin/bash
echo mesucceed
exit 0
EOF
cat > fail.sh <<EOF
#! /bin/bash
echo mefail
exit 1
EOF

Now make them executable:

chmod +x success.sh fail.sh

(Somewhat counterintuitively, an exit status of 0 means “success” in UNIX.)

You can now use this to chain commands with && and ||:

./success.sh && echo this succeeded || echo this failed

./fail.sh && echo this succeeded || echo this failed

You can do this with R and python scripts too. In R, you set the exit status of a script with quit(status=0, save=’no’)
and in Python with sys.exit(0). Any failure of the script due to an exception will automatically set the exit status to
non-zero.

The exit status of the previous command can be examined with $?:

./success.sh
if [ $? -eq 0 ]; then echo succ; fi

./success.sh
if [ $? -ne 0 ]; then echo fail; fi

Writing shell scripts

Always put set -e at the top.

Sometimes put set -x at the top.

You can take in command line parameters with $1, $2, etc. $* gives you all of them at once.
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Other bits and pieces

• You can use to do line continuation in scripts (in R and Python, too!)

• Scripts exit in a subshell and can’t modify your environment variables.

If you want to modify your environment, you need to use . or source.

• Subshells are ways to group commands with ( . . . ).

• screen lets you use multiple windows at the same time. It is extremely useful.

• History tricks:

!! - run previous command
!-1 - run command-before-previous command (!-2 etc.)
!$ - replace with the last word on the previous line
!n - run the nth command in your 'history'

A general approach you can use

• Break your task down into multiple commands

• Put commands in shell scripts, run in serial

• Use intermediate i/o files to figure out what’s going on!

• Use echo to debug!

More things you can do with find

find can be extremely flexible and powerful. Here is more useful things you can do with find command:

Print all files:

find . -type f

Print all files w/details:

find . -type f -ls

Find all directories in the current directory:

find * -prune -type d -print

. . . and get their disk usage:

find * -prune -type d -exec du -skh {} \;

Here, -exec runs the command specified up until the ;, and replaces the {} with the filename.

Same result, different command:

find . -depth 1 -type d -exec du -skh {} \;

Find all files larger than 100k:

find . -size +100k -print
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Find all files that were changed within the last 10 minutes:

find . -ctime -10m

(. . . and do things to them with -exec ;).

Run grep -l to find all files containing the string ‘CGTTATCCGGATTTATTGGGTTTA’:

find . -type f -exec grep -q CGTTATCCGGATTTATTGGGTTTA {} \; -print

Note, you can use -a (and) and -o (or), along with ( and ), to group conditions:

find . \( \( -type f -size +100k \) -o \( -type f -size -1k \) \) -print

Note that you can exec a Python, R, or shell script.

Exercise:

How would you copy all files containing a specific string (‘CGTTATCCGGATTTATTGGGTTTA’, say) into a new
directory? And what are the pros (and cons) of your approach?

(Work in small groups; start from working code, say, the ‘find’ command above; there are several ways to do it, all
that matters is getting there.)

3.2 Day 2: Microbial Genome Assembly (from short and long reads)
and Genome Annotation

In this lab we will perform de novo bacterial genome assembly. We will also annotate the assembled genome. Although
we will specifically be assembling a Mycobacteria tuberculosis genome, the methodology presented here applies to
any bacterial genome.You will be guided through the genome assembly starting with data quality control, through to
building contigs and analysis of the results. At the end of the lab you will know:

1. How to perform basic quality checks on the read data

2. How to run a short read assembler on Illumina short reads

3. How to run a long read assembler on Pacific Biosciences long reads

4. How to improve the accuracy of a long read assembly using short reads

5. How to assess the quality of an assembly

6. How to annotate a microbial genome

3.2.1 Data Sets

The datasets we will use are sequencing reads from M. tuberculosis genome generated using Illumina and PacBio
platforms. For the Illumina platform, there are two sets of reads covering the same library at 20X and 60X coverage.
We will also use a reference assembly for M. tuberculosis H37Rv (NC_000962.3). H37Rv genome is 4411532 bp
long.

The datasets are located under /home/mtb_upm/mtb_genomics_workshop_data/genome-assembly-annotation/data di-
rectory, which has the following content:
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File Content
MTB_illumina60X_R1.fastq 60X coverage run, Illumina short reads, forward
MTB_illumina60X_R2.fastq 60X coverage run, Illumina short reads, forward
MTB_illumina20X_R1.fastq 20X coverage run, Illumina short reads, forward
MTB_illumina20X_R2.fastq 20X coverage run, Illumina short reads, forward
MTB_pacbio_circular-consensus-sequence-
reads.fastq

PacBio long reads, circular consensus sequence

NC_000962.3.fna Mycobacterium tuberculosis H37Rv reference assembly,
4411532 bp, linear

3.2.2 Copying data and preparing the directories

First let’s create a directory named `wgs_assembly` for this practical. And then, under that directory create
subdirectories to hold our data and results:

mkdir ~/wgs_assembly
mkdir -p ~/wgs_assembly/data
mkdir -p ~/wgs_assembly/results
mkdir -p ~/wgs_assembly/results/qc
mkdir -p ~/wgs_assembly/results/short_long_reads_assembly

Now, copy the data into our data directory:

cp -r /home/mtb_upm/mtb_genomics_workshop_data/genome-assembly-annotation/data/* ~/
→˓wgs_assembly/data

Define variables for convenience:

MYDATADIR=~/wgs_assembly/data
MYRESULTSDIR=~/wgs_assembly/results

3.2.3 Read Quality Control and Trimming

To perform data quality control, we will use FastQC, a tool that processes reads and presents visual reports.

First, peak into the first few lines of .fastq files for the Illumina reads from 60X sequencing run

head -n 10 $MYDATADIR/MTB_illumina60X_R1.fastq
head -n 10 $MYDATADIR/MTB_illumina60X_R2.fastq

What can you tell about the headers? What is the read length for this run? Can you quickly count the number of
reads (Hint: use grep and wc)?

Running fastqc

We will now run fastqc. For most tools used in practicals, you can get help by using -h or -help flag. Type the
following to get help for fastqc:

fastqc -h

Run fastqc for forward reads from 60X and 20X runs saving the results under your results directory:
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fastqc -o $MYRESULTSDIR/qc $MYDATADIR/MTB_illumina60X_R1.fastq
fastqc -o $MYRESULTSDIR/qc $MYDATADIR/MTB_illumina20X_R1.fastq

Now run it again for reverse reads:

fastqc -o $MYRESULTSDIR/qc $MYDATADIR/MTB_illumina60X_R2.fastq
fastqc -o $MYRESULTSDIR/qc $MYDATADIR/MTB_illumina20X_R2.fastq

Repeat for PacBio reads.

fastqc -o $MYRESULTSDIR/qc $MYDATADIR/MTB_pacbio_subreads.fastq
fastqc -o $MYRESULTSDIR/qc $MYDATADIR/MTB_pacbio_circular-consensus-sequence-reads.
→˓fastq

fastqc performs a suite of tests and then for each indicates whether the test has been passed (green tick) or failed
(red cross). Notice tough that fastqc has no idea about what your library should look like. All of its tests are based
on a completely random library with 50% GC content and therefore it will show the test as failed if your sample
doesn’t match these assumptions. For instance, you might have reads sampled from a high AT or high GC genome,
and it will fail per sequence GC content. You need to be aware of how your library been generated and interpret the
fastqc reports taking that into account.

Question: For a whole genome shotgun library, what would you expect “per base sequence content” to look like?
Question: What if you had amplicon sequences from a multiplex PCR assay?

Now, open fastqc reports in a browser:

firefox $MYRESULTSDIR/qc/MTB_illumina60X_R1_fastqc.html
firefox $MYRESULTSDIR/qc/MTB_illumina60X_R2_fastqc.html
firefox $MYRESULTSDIR/qc/MTB_illumina20X_R1_fastqc.html
firefox $MYRESULTSDIR/qc/MTB_illumina20X_R2_fastqc.html
firefox $MYRESULTSDIR/qc/MTB_pacbio_R1_fastqc.html
firefox $MYRESULTSDIR/qc/MTB_pacbio_R2_fastqc.html

• Per base sequence quality: This is probably one of the most important diagnostics. Inspecting this, you can
determine what quality trimming parameters you should use in downstream analysis.

• Per base sequence content: For a randomly sampled genome with a GC content of 50%, we would expect that
at any given position within a read, there will be an equal probability of finding a A,C,G, or T base. Our library
from M. tuberculosis is expected to reflect the GC content, which holds here. There seems to be some minor bias
at the start of the read, which may be due to PCR duplicates during amplification or during library preparation.

• Sequence duplication levels: In a whole genome shotgun library, very few reads are expected to occur more
than once. In a shotgun library of a targeted region, a low level of duplication can simply be the result of high
level of sampling (i.e. high coverage). In addition, duplication might also indicate some kind of enrichment bias
(i.e. PCR overamplification)

https://sequencing.qcfail.com/ is a good resource where people post about different ways a sequencing run might have
failed.

Running sickle to quality trim reads:

Now that we have an idea about the quality profile of our reads, we can do quality based trimming of reads. We will
use a Q-score threshold of 30 (-q 30), remove all reads that are shorter than 100 bp after trimming (-l 100), and also
trim 10 bp from 5’ end just to reduce bias. After trimming, singletons reads (reads whose pair dropped off) are save
into a separate file:
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sickle pe -t sanger -q 30 -l 100 -n 10 \
-f $MYDATADIR/MTB_illumina60X_R1.fastq \
-r $MYDATADIR/MTB_illumina60X_R2.fastq \
-o $MYRESULTSDIR/qc/MTB_illumina60X_qced_R1.fastq \
-p $MYRESULTSDIR/qc/MTB_illumina60X_qced_R2.fastq \
-s $MYRESULTSDIR/qc/MTB_illumina60X_qced_single.fastq 1>$MYRESULTSDIR/qc/MTB_
→˓illumina60X_sickle.log

sickle pe -t sanger -q 30 -l 100 -n 10 \
-f $MYDATADIR/MTB_illumina20X_R1.fastq \
-r $MYDATADIR/MTB_illumina20X_R2.fastq \
-o $MYRESULTSDIR/qc/MTB_illumina20X_qced_R1.fastq \
-p $MYRESULTSDIR/qc/MTB_illumina20X_qced_R2.fastq \
-s $MYRESULTSDIR/qc/MTB_illumina20X_qced_single.fastq 1>$MYRESULTSDIR/qc/MTB_
→˓illumina20X_sickle.log

3.2.4 Pre-assembly Quality Control

Before running sga preqc, we need to interleave forward and reverse reads into a single file. Interleaving reads
mean rearranging forward and reverse reads into a single file, keeping the original order and for each pair writing
forward read followed by the reverse read.

To interleave reads, we will use seqtk tool:

seqtk mergepe $MYRESULTSDIR/qc/MTB_illumina20X_qced_R1.fastq $MYRESULTSDIR/qc/MTB_
→˓illumina20X_qced_R2.fastq > $MYRESULTSDIR/qc/MTB_illumina20X_qced_R1R2.fastq
seqtk mergepe $MYRESULTSDIR/qc/MTB_illumina60X_qced_R1.fastq $MYRESULTSDIR/qc/MTB_
→˓illumina60X_qced_R2.fastq > $MYRESULTSDIR/qc/MTB_illumina60X_qced_R1R2.fastq

The sga computations will take several hours on a single core for the 60X library. To save time, we won’t be doing
these computations but simply copy the results from the precalculated directory. Here is how to do these computations
(DONOT RUN).

First, index the data using sga index:

sga index -t 4 -a ropebwt $MYRESULTSDIR/qc/MTB_illumina20X_qced_R1R2.fastq
sga index -t 4 -a ropebwt $MYRESULTSDIR/qc/MTB_illumina60X_qced_R1R2.fastq

Run sga preqc:

sga preqc -t 4 $MYRESULTSDIR/qc/MTB_illumina20X_qced_R1R2.fastq > $MYRESULTSDIR/qc/
→˓MTB_illumina20X_qced_R1R2.preqc
sga preqc -t 4 $MYRESULTSDIR/qc/MTB_illumina60X_qced_R1R2.fastq > $MYRESULTSDIR/qc/
→˓MTB_illumina60X_qced_R1R2.preqc

Copy the precalculated results:

cp /home/mtb_upm/mtb_genomics_workshop_data/genome-assembly-annotation/precalculated/
→˓MTB_illumina20X_qced_R1R2.preqc $MYRESULTSDIR/qc
cp /home/mtb_upm/mtb_genomics_workshop_data/genome-assembly-annotation/precalculated/
→˓MTB_illumina60X_qced_R1R2.preqc $MYRESULTSDIR/qc

Make the report:

sga-preqc-report.py -P genome_size \
-P branch_classification_error -P branch_classification_repeat -P branch_
→˓classification_variant \ (continues on next page)
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(continued from previous page)

-P de_bruijn_simulation_lengths -P kmer_distribution -P gc_distribution -P fragment_
→˓sizes \
MTB_illumina20X_qced_R1R2.preqc MTB_illumina60X_qced_R1R2.preqc -o sga-preqc-report.
→˓pdf

Open the PDF report and interpret the results.

Questions: * Was the genome size estimated correctly? * What differences do you observe between the 20x (blue)
and the 60X (red) datasets? * Which library will be easier to assemble?

3.2.5 Assembly

We can now proceed with the assembly of short and long reads. We will assemble each library (2 short and 1 long
reads library) reseparately and compare the assemblies.

Assembly using Illumina short reads

We will assemble the M. tuberculosis genome using the qced short reads, separately for 20X and 60X libraries. We
will be using SPAdes assembler, which is a de Bruijn graph based short read assembler.

The parameters that go into a short read assembler can be tricky to optimize and tuning them is quite time consuming.
The most important parameter is the k-mer size to be used to built the de Bruijn graph. SPAdes makes the
parameterization quite easy and will select parameter values automatically.

The assembly for the 20X library will be computed quickly but for the 60X library the computation will take a few
hours. ONLY RUN for 20X, DONOT RUN for 60X. For 60X, we will use precalculated results.

You can run SPAdes as follows using 4 threads (-t 4):

spades.py -o $MYRESULTSDIR/short_long_reads_assembly/MTB_illumina20X_spades -t 4 --12
→˓$MYRESULTSDIR/qc/MTB_illumina20X_qced_R1R2.fastq
spades.py -o $MYRESULTSDIR/short_long_reads_assembly/MTB_illumina60X_spades -t 4 --12
→˓$MYRESULTSDIR/qc/MTB_illumina60X_qced_R1R2.fastq

Copy the precalculated assembly directory:

cp -r ~/mtb_genomics_workshop_data/genome-assembly-annotation/precalculated/MTB_
→˓illumina60X_spades $MYRESULTSDIR/short_long_reads_assembly/MTB_illumina60X_spades

Assembly using PacBio long reads

Now, we will generate an assembly of the M. tuberculosis genome using PacBio long reads. Longer reads are better at
resolving repeats and therefor will typically give more contiguous assemblies compared to short reads. However, long
reads have a significantly higher error rate so consensus base qualities are expected to be much lower.

To assemble long reads, we will use canu, an overlap-layour-consensus assembler. Generate the assembly
with the following command (this will take about ~30 min.). Again, we will use precomputed results.

canu gnuplotTested=true -p MTB_pacbio_canu -d MTB_pacbio_canu_auto genomeSize=4.4m -
→˓pacbio-raw MTB_pacbio_circular-consensus-sequence-reads.fastq

Copy the precomputed assembly: cp -r ~/mtb_genomics_workshop_data/genome-
assembly-annotation/precalculated/MTB_pacbio_canu_auto $MYRESULTS-
DIR/short_long_reads_assembly/MTB_pacbio_canu_auto
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Now you should have 3 separate M. tuberculosis assemblies. Copy the fasta files for the assembled contigs into a
separate directory for convenience:

mkdir $MYRESULTSDIR/short_long_reads_assembly/assemblies
cp $MYRESULTSDIR/short_long_reads_assembly/MTB_pacbio_canu_auto/MTB_pacbio_canu.
→˓contigs.fasta $MYRESULTSDIR/short_long_reads_assembly/assemblies/MTB_pacbio_
→˓assembly.fasta
cp $MYRESULTSDIR/short_long_reads_assembly/MTB_illumina20X_spades/contigs.fasta
→˓$MYRESULTSDIR/short_long_reads_assembly/assemblies/MTB_illumina20X_assembly.fasta
cp $MYRESULTSDIR/short_long_reads_assembly/MTB_illumina60X_spades/contigs.fasta
→˓$MYRESULTSDIR/short_long_reads_assembly/assemblies/MTB_illumina60X_assembly.fasta

Next, we will look into these assemblies in detail.

3.2.6 Assessing the quality of the assemblies

We will now start assessing the quality of our assembly. Overall, we want an assembly that is in as few contigs as
possible, as complete as possible (with respect to a reference), and as accurate as possible (ideally at single base pair
resolution). So, when evaluating an assembly, there are 3 factors to consider listed below. Usually, in any assembly
strategy there are tradeoffs between these factors.

• Contiguity: Long contigs are better than short contigs. Long contigs provide more information about the
genomic structure (for instance gene order, synteny)

• Completeness: We want the assembly to represent as much of the true genome as possible. The assumed
genome size in our case is ~4.4 Mb

• Accuracy: We want an assembly that has few large-scale misassemblies and consensus errors (mismatches or
indels). The latter is especially critical for identification of nucleotide variants.

To evaluate assemblies, we will use quast (Quality Assessment Tool for Genome Assemblies). In this case, we have
a high quality reference assembly we can use for groundtruthing. Typically, there will be a lot of short “leftover”
contigs that contain repetitive or low-complexity sequence or low-quality reads that cannot be assembled. To avoid
biasing our evaluation, we will only use contigs that are at least 500 bp long (default threshold in quast). You can
quast as follows on the 3 assemblies:

DO NOT RUN. We will use precomputed results.

# define a variable for the reference genome
REF_GENOME=/home/mtb_upm/mtb_genomics_workshop_data/genome-assembly-annotation/data/
→˓NC_000962.3.fna
quast.py -R $REF_GENOME -o $MYRESULTSDIR/short_long_reads_assembly/assemblies/quast_
→˓3assemblies_qc \
$MYRESULTSDIR/short_long_reads_assembly/assemblies/MTB_illumina20X_assembly.fasta \
$MYRESULTSDIR/short_long_reads_assembly/assemblies/MTB_illumina60X_assembly.fasta \
$MYRESULTSDIR/short_long_reads_assembly/assemblies/MTB_pacbio_assembly.fasta

Copy the precomputed results:

cp -r ~/mtb_genomics_workshop_data/genome-assembly-annotation/precalculated/
→˓assemblies/quast_3assemblies_qc/ $MYRESULTSDIR/short_long_reads_assembly/assemblies/

In quast_3assemblies_qc directory, open report.html file in a browser.

:: firefox $MYRESULTSDIR/short_long_reads_assembly/assemblies/quast_3assemblies_qc/report.html&

When you opened the results web page, put your green stickies on. We will discuss these results in detail.

3.2. Day 2: Microbial Genome Assembly (from short and long reads) and Genome Annotation 33



M. tuberculosis Bioinformatics Workshop Documentation, Release 0.1

3.2.7 Improving the accuracy of the long read assembly

In the lecture, we have seen that PacBio long reads have a significantly higher error rate compared to Illumina short
reads. As a result, the long read assembly will have many errors in the consensus sequence (primarily indels). We
can increase the accuracy of the consensus sequences using the Illumina reads, which will provide more coverage
and higher quality bases. This process of improving the accuracy of the long reads using high fidelity short reads is
sometimes referred to as polishing.

To polish PacBio assembly, we will use pilon which will generate a new consensus sequence for the assembly. The
details of the following commands will be clear in the next lecture. For now, run the following commands:

mkdir $MYRESULTSDIR/short_long_reads_assembly/polished_pacbio_assembly
PACBIO_ASSEMBLY=$MYRESULTSDIR/short_long_reads_assembly/assemblies/MTB_pacbio_
→˓assembly.fasta
cd $MYRESULTSDIR/short_long_reads_assembly/
bwa index $PACBIO_ASSEMBLY
bwa mem -t 4 -p $PACBIO_ASSEMBLY $MYRESULTSDIR/qc/MTB_illumina60X_qced_R1R2.fastq |
→˓samtools sort -T tmp -o $MYRESULTSDIR/short_long_reads_assembly/polished_pacbio_
→˓assembly/MTB_illumina60X_qced.mapped_to_pacbio_contigs.sorted.bam -
samtools index $MYRESULTSDIR/short_long_reads_assembly/polished_pacbio_assembly/MTB_
→˓illumina60X_qced.mapped_to_pacbio_contigs.sorted.bam
java -Xmx8G -jar /opt/pilon-1.22.jar --genome $PACBIO_ASSEMBLY --frags $MYRESULTSDIR/
→˓short_long_reads_assembly/polished_pacbio_assembly/MTB_illumina60X_qced.mapped_to_
→˓pacbio_contigs.sorted.bam --output $MYRESULTSDIR/short_long_reads_assembly/polished_
→˓pacbio_assembly/MTB_pacbio_assembly_shortreadcorrected

Do assembly qc with 4 assemblies. DONOT RUN, we will use precomputed results.

quast.py -R ../NC_000962.3.fna -o quast_4assemblies_qc ./MTB_illumina20X_assembly.
→˓fasta ./MTB_illumina60X_assembly.fasta ./MTB_pacbio_assembly.fasta ./MTB_pacbio_
→˓assembly_shortreadcorrected.fasta

Copy precomputed results:

cp -r ~/mtb_genomics_workshop_data/genome-assembly-annotation/precalculated/
→˓assemblies/quast_4assemblies_qc/ $MYRESULTSDIR/short_long_reads_assembly/assemblies/

In quast_4assemblies_qc directory, open report.html file in a browser. After you open, make sure you
turn on the extended report.

:: firefox $MYRESULTSDIR/short_long_reads_assembly/assemblies/quast_4assemblies_qc/report.html&

When you opened the results web page, put your green stickies on. We will discuss these results in detail.

3.2.8 Microbial Genome Annotation

Now that we have assembled the reads into contigs, we will annotate the genome. That means we will predict genes
and assign functional annotation to them. M. tuberculosis is a very clonal organism and its genome is already well
annotated so typically when we assemble a new M. tuberculosis isolate, there is no need to do de novo annotation.
Although we are using M. tuberculosis as a working example here, the methodology is applicable to all microbial
genomes.

A set of programs are available for genome annotation tasks. Here we will use Prokka, a pipeline comprising sev-
eral open source bioinformatic tools and databases. Prokka automates the process of locating open reading frames
(ORFs) and RNA regions on contigs, translating ORFs to protein sequences, searching for protein homologs and pro-
ducing standard output files. For gene finding and translation, Prokka uses a program named prodigal. Homology
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searches are then performed using BLAST and HMMER based on the translated protein sequences as queries against a
set of public databases (CDD, PFAM, TIGRFAM) as well as custom databases that are included with Prokka.

Create a directory to hold the annotation results:

mkdir -p $MYRESULTSDIR/annotation

Define a shell variable for the final contigs:

FINALCONTIGS=$MYRESULTSDIR/short_long_reads_assembly/polished_pacbio_assembly/MTB_
→˓pacbio_assembly_shortreadcorrected.fasta

Run Prokka (will take ~30 minutes for our assembly). DONOT RUN, copy the precalculated results.

prokka $FINALCONTIGS --outdir $MYRESULTSDIR/annotation/MTB_pacbio_assembly_
→˓shortreadcorrected --norrna --notrna --metagenome --cpus 8

Prokka produces several types of output:

• a .gff file, which is a standardised, tab-delimited, format for genome annotations

• a Genbank (.gbk) file, which is a more detailed description of nucleotide sequences and the genes encoded in
these.

Copy the precalculated results:

mkdir -p $MYRESULTSDIR/annotation/MTB_pacbio_assembly_shortreadcorrected/
cp ~/mtb_genomics_workshop_data/genome-assembly-annotation/precalculated/prokka_
→˓precalculated/* $MYRESULTSDIR/annotation/MTB_pacbio_assembly_shortreadcorrected/

When your dataset has been annotated you can view the annotations directly in the gff file. Peak into the gff file by
doing:

more -S $MYRESULTSDIR/annotation/MTB_pacbio_assembly_shortreadcorrected/PROKKA_
→˓07052018.gff

Question: How many coding regions were found by Prodigal? (Hint: use grep) Question: How many of the coding
regions were given an enzyme identifier? Question: How many were given a COG identifier?

Visualizing the annotations with Artemis

Artemis is a graphical Java program to browse annotated genomes. Launch Artemis and load gff file:

art&

Pick one of favorite M. tuberculosis genes, and try finding it (Goto–>Navigator–>Goto Feature with Key Name)

3.3 Day 3: Read mapping and variant calling

In this lab we will map short reads against the reference Mycobacteria tuberculosis genome (H37Rv) and call variants
based on the mapped reads. This pipeline is sometimes also called “reference based assembly” since you can use the
called variants to generate a new genomic sequence.

At the end of the lab you should:

1. know how to index the reference genome and map short reads

3.3. Day 3: Read mapping and variant calling 35



M. tuberculosis Bioinformatics Workshop Documentation, Release 0.1

2. be familiar with different file formats (.bam, .sam, .vcf)

3. how to query and manipulate .bam files

4. how to assess mapping quality

5. how to deduplicate the alignments and how to do indel realignment

6. how to filter by mapping quality

7. how to call variants

3.3.1 Dataset

The dataset we will be using for today’s and tomorrow’s practicals is a subset of 1000 M. tuberculosis isolates from
a Russian population. The results of this study was published by Casali et al.: Evolution and transmission of drug-
resistant tuberculosis in a Russian population. These isolates have been whole-genome shotgun sequenced using Illu-
mina platform (2x100 bp). Raw read data has been deposited to European Nucleotide Archive under Study Accession
PRJEB2138. For this tutorial, we will focus on a subset of these isolates (n=99 isolates).

3.3.2 Data Prep and Read QC

Let’s create the directory structure to hold our results and define some variables for convenience:

mkdir ~/mapping-variantcalling
MYBASE=/home/mtb_upm/mapping-variantcalling
MYDATA=$MYBASE/data
MYRESULTS=$MYBASE/results
mkdir -p $MYDATA/reads; mkdir -p $MYDATA/ref
mkdir -p $MYRESULTS/fastqc; mkdir -p $MYRESULTS/log; mkdir -p $MYRESULTS/qc; mkdir -p
→˓$MYRESULTS/mapping

We will start with a single isolate, ERS050945 and then scale-up the analysis for all of the 99 isolates. We will define
first a variable for the path to the folder with the source data and the precalculated results. We will then copy the data
into our folder structure we created above:

SRCBASE=/home/mtb_upm/mtb_genomics_workshop_data/mapping-variantcalling
sample=ERS050945
cp $SRCBASE/data/reads/${sample}_*.fastq $MYDATA/reads/
cp $SRCBASE/data/ref/* $MYDATA/ref

Generate a fastqc report:

fastqc $MYDATA/reads/${sample}_R1.fastq
fastqc $MYDATA/reads/${sample}_R2.fastq

Inspect the read quality profile and pick quality trimming parameters. Quality trim reads using sickle:

sickle pe -t sanger -q 30 -l 50 -n 5 \
-f $MYDATA/reads/${sample}_R1.fastq -r $MYDATA/reads/${sample}_R2.fastq \
-o $MYRESULTS/qc/${sample}_qced_R1.fastq -p $MYRESULTS/qc/${sample}_qced_R2.fastq \
-s $MYRESULTS/qc/${sample}_single.fastq 1> $MYRESULTS/log/${sample}.sickle.log

Question: How many paired reads remain after quality trimming? (hint: inspect the sickle command above and try to
guess where that information might be)

36 Chapter 3. Workshop Computer Labs

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939361/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3939361/
https://www.ebi.ac.uk/ena/data/view/PRJEB2138


M. tuberculosis Bioinformatics Workshop Documentation, Release 0.1

3.3.3 Mapping Reads to the Reference Genome

Now that we have high-quality reads, we will start mapping reads to our reference genome. That is, using a “reference”
Mycobacterium tuberculosis genome, we will determine the likely genomic positions from which the short reads have
most likely been sampled.

Note: The canonical reference genome sequence for M. tuberculosis is that of strain H37Rv, the first M. tuberculosis
genome to have been sequenced. As such, H37Rv has a high quality genomic sequence and a wealth of information
accumulated since then. It is important to realize that the reason H37Rv genome is being used as a reference is rather
practically grounded.

Note: Read mapping, read aligment, and sequence alignment are often used interchangeably but in fact they are
different concepts. The purpose of sequence alignment is to identify the homologous positions between evolutionarily
related sequences. With read mapping, our objective is to identify the genomic region(s) from which the read sequence
might be coming from. A mapping is considered to be correct if it overlaps the true region. Once we identify these
regions, then we want align the read, in other words find the detailed placement of each base in the read.

For mapping reads to the reference genome, we will use BWA suit of programs. In this workshop, we will only going
to be using two programs within the suite: bwa index and bwa mem.

BWA (Burrows Wheeler Aligner) uses Burrows Wheeler transform to rapidly map reads to the reference genome.
Importantly, BWA allows for a certain number of mismatches as well as for insertions and deletions.

Before starting mapping, first we first need to index the reference genome. Indexing means arranging the genome
into easily searchable chunks. Index the reference genome sequence using bwa index:

bwa index $MYDATA/ref/NC_000962.3.fna

bwa index will output some files with a set of extensions (.amb, .ann, .bwt, .pac, .sa), which the main alignment
program (bwa mem) knows the format of. The will all end up in the same directory as the reference fasta file. Indexing
is done once for the reference sequence. Before starting mapping, you need to make sure that these files have been
generated. You don’t need to know the information in each but here is the information each one stores:

• .amb: text, records appearance of N (or other non-ATGC) in the reference fasta

• .ann: text, to record ref sequences, name, length, etc.

• .bwt: binary, the Burrows-Wheeler transformed sequence

• .pac: binary, packaged sequence (four base pairs encode one byte)

• .sa: binary, suffix array index

Now, we will start mapping reads. Explore the mapping and alignment options that bwa mem has by typing:

bwa mem

Read mapping has many uses in bioinformatics pipelines. Depending on your goals, you might want to change the
parameters of the mapper, which primarily determine the sensitivity and specificity of mapping. In this workshop, we
will use the default options, which work well for short reads.

bwa mem $MYDATA/ref/NC_000962.3.fna $MYRESULTS/qc/${sample}_qced_R1.fastq $MYRESULTS/
→˓qc/${sample}_qced_R2.fastq > $MYRESULTS/mapping/${sample}.mapped.sam

which aligns forward and reverse reads against the reference, outputs them to the stdout in .sam format,
which we then save to a file.
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Mappers result in either SAM or BAM file (http://genome.sph.umich.edu/wiki/SAM). Those are formats that contain
the alignment information, where BAM is the binary version of the plain text SAM format. Althouth we are outputting
a .sam file here for illustrative purposes-so we can peek into it-, you will typically want to do generate .bam files for
your mapping because .sam files can get quite big and there is really no need to save them.

Inspect the first few lines of the .sam output file with head or more. It should look as follows:

# @SQ SN:NC_000962.3 LN:4411532
# @PG ID:bwa PN:bwa VN:0.7.17-r1188 CL:bwa mem ERS050945/data/ref/NC_000962.3.fna
→˓ERS050945/results1/qc/

Question: What does each line with sequences represent? Can you make sense of the information in different columns?

3.3.4 Visualizing the read alignments

We will be visualizing read alignments using the Integrative Genomics Viewer (IGV), a popular lightweight visualiza-
tion tool for NGS data.

When you launch IGV, you first need to load a genome. By default, it will load the human genome. To get started,
load the reference genome and then open your .bam file.

3.3.5 Inspecting, summarizing, and manipulating the read alignments

We will now inspect and further process the mapping output. For this, we will use samtools suite, which as its name
suggests let us massage the mapping information.

In this section, we will also be playing with the read alignments to have a working understanding of how to get
information from and manipulate them.

Converting sam to bam and back

First, let’s convert our .sam mapping output to its binary counterpart .bam. The binary format is much easier for
computers to process but very difficult for humans to read.

To convert .sam to .bam, we use the samtools view command. We must specify that our input is in .sam
format (by default it expects .bam) using the -S option. We will also explicitely specify that we want the output to be
.bam (by default it also produces bam) with the -b option. samtools follows the UNIX convention of sending its
output to the UNIX STDOUT, so we need to use a redirect operator (“>”) to create a BAM file from the output.

samtools view -S -b $MYRESULTS/mapping/${sample}.mapped.sam > $MYRESULTS/mapping/$
→˓{sample}.mapped.bam

If you need to convert back .bam to .sam and look at it on the fly without saving to disk, you would do:

samtools view $MYRESULTS/mapping/${sample}.mapped.bam | head -n 10

Getting mapping stats directly from .bam

We can also determine mapping statistics directly from the bam file. Use for instance the following (which uses FLAG
options, -F and -f, more on that later below):

samtools view -c -F 4 $MYRESULTS/mapping/${sample}.mapped.bam
samtools view -c -f 4 $MYRESULTS/mapping/${sample}.mapped.bam
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What does these numbers outputted to STDOUT represent -invoke samtools’s help to answer this-. Do things make
sense and add up?

Sorting the read alignments

When you map and align the reads to the reference, the resulting read alignments are in random order with respect to
their position in the reference genome. In other words, the .bam file is in the order that the sequences occurred in the
input .fastq. Prove to yourself that this is the case:

samtools view $MYRESULTS/mapping/${sample}.mapped.bam | more

Doing anything useful downstream such as calling variants or visualizing the alignments requires that the .bam is
further manipulated. It must be sorted such that the alignments occur in “genome order”. That is, ordered positionally
based upon their alignment coordinates on each chromosome (we obviously have a single one here). Sort the .bam
file:

samtools sort $MYRESULTS/mapping/${sample}.mapped.bam -o $MYRESULTS/mapping/${sample}.
→˓sorted.bam

After sorting, check the order:

samtools view $MYRESULTS/mapping/${sample}.sorted.bam | more

Question (easy!): What do you notice?

Note: Sorting can also be done using picard. We will be using picard for removing duplicate alignments after
sorting. When we build our variant calling pipeline, we will do the sorting with picard just to keep things consistent
with downstream processing. The results should be identical.

Indexing read alignments (i.e. indexing .bam)

Indexing a genome sorted .bam file allows one to quickly extract alignments overlapping particular genomic regions.
Indexing is also required by genome viewers (for instance IGV) so that the viewers can quickly display alignments in
each genomic region to which you navigate. This is essential for large genomes.

Index your .bam file:

samtools index $MYRESULTS/mapping/${sample}.sorted.bam

This will create an additional index file -what’s that file’s extension?-

For instance, now that we have indexed the .bam file, we have the flexibility to extract the alignments from a defined
genomic region. We can, for example, extract alignments from the 150th kilobase of the genome.

samtools view $MYRESULTS/mapping/${sample}.sorted.bam NC_000962.3:150000-151000

Question: How many alignments are within NC_000962.3:150000-151000?

Detailed inspection of some alignments

Again, let’s inspect the first 10 alignments in our .bam file in detail:
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samtools view $MYRESULTS/mapping/${sample}.sorted.bam | head -n 10

Let’s also inspect just the header. The header in a bam file records important information regarding the reference
genome to which the reads were aligned, as well as other information about how the BAM has been processed. We
can ask the view command to report solely the header by using the -H option. As the downstream programs further
process the alignments, they will typically add information about what they did to the header. For now, our header
contain bare minimum information.

samtools view -H $MYRESULTS/mapping/${sample}.sorted.bam

The FLAG field in the .bam format encodes several key pieces of information regarding how an alignment aligned to
the reference genome. We can use this information to isolate specific types of alignments that we want to use in our
analysis. Here is a table for the flags right from the manual:

Bit Description
0x1 template having multiple segments in sequencing
0x2 each segment properly aligned according to the aligner
0x4 segment unmapped
0x8 next segment in the template unmapped
0x10 SEQ being reverse complemented
0x20 SEQ of the next segment in the template being reversed
0x40 the first segment in the template
0x80 the last segment in the template
0x100 secondary alignment
0x200 not passing quality controls
0x400 PCR or optical duplicate
0x800 supplementary alignment

For example, we often want to call variants solely from paired-end sequences that aligned “properly” to the reference
genome. Can you tell why?

To ask the view command to report solely “proper pairs” we use the -f option and ask for alignments where the second
bit is true (proper pair is true).

samtools view -f 0x2 $MYRESULTS/mapping/${sample}.sorted.bam

• Question: How many properly paired alignments are there? How does that number compare to the number you
got above using -F?

• Question: How many improperly paired alignments are there?

• Question: Using what you played with, how would you calculate the fragment size distribution?

3.3.6 QCing and filtering the read alignments

Before we can attempt variant calling, we need to make sure that the alignments that are resulted from mapping
artefacts are identified. We also want to get an overall picture on the mapping quality.

Duplicate marking

During the lecture, you heard about library and optical duplicates, which if they exist will bias the variant calling. We
will mark these duplicates using picard.
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First, let’s sort the .bam file, this time using picard. See the note in the previous section. This should give identical
results to samtools sort, we are simply doing it this way for pipelining consistency.

java -Xmx16g -Djava.io.tmpdir=/tmp -jar /opt/picard.jar SortSam \
I=$MYRESULTS/mapping/${sample}.mapped.bam O=$MYRESULTS/mapping/${sample}.sorted.bam
→˓SORT_ORDER=coordinate

Now, we can mark the duplicates:

java -Xmx16g -Djava.io.tmpdir=/tmp -jar /opt/picard.jar MarkDuplicates \
I=$MYRESULTS/mapping/${sample}.sorted.bam O=$MYRESULTS/mapping/${sample}.sorted.nodup.
→˓bam \
REMOVE_DUPLICATES=true ASSUME_SORT_ORDER=coordinate M=$MYRESULTS/mapping/${sample}.
→˓sorted.dupmetrics

The metrics file will contain some statistics about the de-duplication. In the resulting bam file, only one fragment from
each duplicate group survives unchanged, other duplicate fragments are given a FLAG 0x400 and will NOT be used
downstream. Optimally, detection and marking of duplicate fragments should be done per library, i.e., over all read
groups corresponding to a given library. In practice, often it is fine to take a shortcut and is sufficient to do it per lane
(read group) to keep things naively parallelizable.

Assessing depth of coverage

You might often want to take a peak at the depth of coverage using the read alignments. You can do this with
samtools depth:

samtools depth -a $MYRESULTS/mapping/${sample}.sorted.nodup.bam > $MYRESULTS/mapping/$
→˓{sample}.coverage.txt

This will give you the depth of coverage for each position in the genome.

Question: How many lines should be in this file? Question: Can you write an awk one-liner to quickly compute the
average depth of average?

Assessing mapping qualities

Next, we will generate summary statistics on mapping qualities. For this, we will use qualimap. qualimap has a
GUI but we don’t want to use it here. To avoid launching the GUI, we do unset DISPLAY first.

unset DISPLAY;
qualimap bamqc -bam $MYRESULTS/mapping/${sample}.sorted.nodup.bam --java-mem-size=4g -
→˓outformat PDF -outdir $MYRESULTS/mapping/${sample}.bam.qualimap

The results will be in a text file named ${sample}.bam.qualimap/genome_results.txt. Later when we scale our analysis
up to multiple isolates, we will parse out these files to get summary statistics for all of the isolates.

Indel realignment and filtering low quality alignments

We will use pilon to call our variants. This will give us a candidate list from a single sample, which we can
further filter after we merge variants from multiple samples. pilon with its --variant option will perform indel
realignment. We can also specify depth and mapping quality based filters. Run pilon:

java -Xmx16g -jar /opt/pilon-1.22.jar --genome $MYDATA/ref/NC_000962.3.fna --bam
→˓$MYRESULTS/mapping/${sample}.sorted.nodup.bam --output $MYRESULTS/mapping/${sample}_
→˓pilon --variant --mindepth 10 --minmq 40 --minqual 20
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The output will be a .vcf file and a .fasta file. .fasta file has the sequence from this reference based assembly,
which we won’t be using downstream.

3.4 Day 4: Phylogenetics/Phylogenomics and Building Reproducible
Computational Pipelines

3.4.1 Datasets

The dataset is a subset of 1000 M. tuberculosis isolates whole genome sequenced by Casali et al.: Evolution and
transmission of drug-resistant tuberculosis in a Russian population. In the previous tutorial, we generated an initial
set of variants from a single M. tuberculosis isolate. In this subsequent tutorial, we will be repeating that for additinal
isolates. We will then combine all of these variants into a single dataset for further analysis.

File Content
Mtb_repeats.bed precalculated, coordinates of the repetitive regions in the reference M.tuberculosis genome

3.4.2 Data Prep and Read QC

Before starting, make sure that the following variables are defined in your shell environment. That means, you will
need to type the following when you launch a new shell terminal:

MYBASE=/home/mtb_upm/mapping-variantcalling
MYDATA=$MYBASE/data
MYRESULTS=$MYBASE/results

Create a separate directory for the .vcf files:

mkdir $MYRESULTS/vcf

3.4.3 Processing and Merging SNVs from multiple isolates to get an MSA

What we need to do next is to get a set of high-quality SNVs across the whole genome. A SNV, single nucleotide
variant (variant means substitution here), is defined as a variation in a single locus without any reference to its fre-
quency in the population. A SNP or single nucleotide polymorphism, on the other hand is a variation for which we
have evidence that it is fixed in the population. That means we should see it in more than a certain (arbitrarily defined
but often >1%) number of individuals/isolates. Therefore, not all the SNVs are SNPs. Although this is the working
definition we will be following, there is no consensus on this defition and all single nucleotide variants are called SNPs
independent of their frequency in the population.

Previously in the workshop. . .

vcf file we generated using pilon contains unfiltered SNVs as well as indels. To remind, pilon did a series of filtering and quality control steps before coming up with this list SNVs and indels. These steps include

1. indel realignment

2. base quality score filtering

3. mapping quality score filtering

4. depth of coverage filtering.
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So all SNVs in our vcf file have been, to the best of our ability, stripped off any known read mapping/alignment
artifacts, has a reasonably high base quality, depth of coverage, and mapping quality.

Even after these steps, we expect a relatively high false positive rate within this list so we will need to do some further
filtering. The assumption is that we are leaning towards minimizing false positive rate. We might be missing some
true variants during this strict filtering steps. However, realize that we want to make sure that what we have as a final
list (for instance to infer phylogeny) contain only true variants. That is we don’t care so much if we do miss few true
variants here and there (that is higher false negative rate is somewhat acceptable).

Why are we doing all this?

The end point for this analysis is to get an MSA (multiple sequence alignment) of the variable sites, which we can
then use to infer phylogeny. Keep that in mind as you dive in.

Separating SNVs and indels and filtering SNVs within highly repetitive regions

First, we will need to get rid of the indels (insertion/deletion). As you’ve heard during the lecture, read mappers donot
do a particularly good job with indels. Any called indel by any mapper, you should be very suspicious of. We want to
remove them for phylogenetic analysis -we should already have lots of variation to infer phylogeny- as they will bias
the phylogenetic inference. In the next step, we will use vcftools to make 2 separate vcf files, one that contains
only SNVs and the other indels. Concurrently, we will also remove any variant that sits within a highly repetitive
region. Next, a few words on why we want to do this, particularly in analyzing M. tuberculosis genomes.

Note: Repetitive regions in M. tuberculosis genome: A significant portion of the genome of Mycobacterium tu-
berculosis contains highly repetitive regions (every microbial genome will have some level of tandem and more
complex repetitive regions, regions with low sequence complexity). Short-read sequencing isn’t sufficient to make
accurate SNV calls within these regions. Therefore we want to remove these regions from further analysis as they
will confuse downstream phylogenetic analysis. We have precalculated the repetitive regions, which is provided in the
Mtb_repeats.bed file in bed format. bed is a file format used to specify genomic intervals. Overall, the total
length of repetitive regions specified in Mtb_repeats.bed is ~572 Kb (~13% of the genome). The majority of
these regions (~10% of the genome) belong to two large unrelaed gene families (PE and PPE families) clustered in
the genome. They code for glycine-rich proteins that are often based on multiple copies of the polymorphic repetitive
sequences referred to as PGRSs restructured text. (**P**olymorphic guanine cytosine–rich (GC-rich) repetitive se-
quences). Despite their prominence in the genome, we almost know nothing about the biological significance of these
regions.

Run vcftools to separate SNVs/indels and filter repetitive regions:

# get rid of "_pilon" in the filename
mv ${sample}_pilon.vcf ${sample}.vcf
vcftools --gzvcf ${sample}.vcf --exclude-bed $SRCBASE/data/ref/Mtb_repeats.bed --
→˓remove-indels --recode --recode-INFO-all --out $sample
vcftools --gzvcf ${sample}.vcf --exclude-bed $SRCBASE/data/ref/Mtb_repeats.bed --keep-
→˓only-indels --recode --recode-INFO-all --out ${sample}.indels

# take a peek at the indels file! We will be leaving it behind from this point on
more ${sample}.indels.recode.vcf
# and the vcftools log file
more ${sample}.indels.log

Note: vcf files are typically huge (~0.5 GB even for a single microbial genome). Compressing vcf files with bgzip
and indexing them with tabix is the standard way vcf files are stored. Once that is done, further processing of the
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binary files is done with bcftools.

Compress and index the vcf file. Notice that we won’t use the vcf file for indels for this analysis.

bgzip ${sample}.recode.vcf
tabix -p vcf ${sample}.recode.vcf.gz

We need to change the sample header (which is “SAMPLE”, the very last column within the data fields) in the vcf file
to specify that these variants are from $sample. This is to ensure data provenance: we will soon merge vcf files from
multiple samples and they all have the same header at this point. You can do this with bcftools which requires the
header name to be stored in a text file, so we write the sample name into a file called “sample” first.

echo $sample > sample
bcftools reheader -s sample ${sample}.recode.vcf.gz > m.${sample}.recode.vcf.gz # we
→˓add this "m" just to make the filename different in this temp file
mv -f m.${sample}.recode.vcf.gz ${sample}.recode.vcf.gz

# reindex
tabix -f -p vcf ${sample}.recode.vcf.gz

# make sure nothing that ``pilon`` didn't let it "PASS" doesn't get in
bcftools view --include 'FILTER="PASS"' ${sample}.recode.vcf.gz -O z -o temp

mv -f temp ${sample}.recode.vcf.gz
# reindex and we are done
tabix -f -p vcf ${sample}.recode.vcf.gz

All we did here was modifying sample “header” and some simple “data massaging”. If you want, you can unzip the
${sample}.recode.vcf.gz file, peek into it, and do some other quick sanity check:

# OPTIONAL
gunzip ${sample}.recode.vcf.gz
# pay attention to the column name for the very last column, does it look ok?
more ${sample}.recode.vcf
wc ${sample}.vcf
wc ${sample}.recode.vcf

Merge vcf files from multiple isolates

Assuming that we did read mapping etc. for multiple isolates (which you will learn how to do using snakemake),
at this point we can merge all the vcf files from multiple samples into a single vcf file. We will use that single vcf to
define *SNP*s that be used for phylogenetic analysis:

# the way this following command is constructed is intentionally explicit so you can
→˓see what is happening
# notice that this list of 99 isolates contains our prototyping isolate, "ERS050945",
→˓and 98 additional ones
bcftools merge \
ERS050923.recode.vcf.gz \
ERS050924.recode.vcf.gz \
ERS050925.recode.vcf.gz \
ERS050926.recode.vcf.gz \
ERS050927.recode.vcf.gz \
ERS050928.recode.vcf.gz \
ERS050929.recode.vcf.gz \

(continues on next page)

44 Chapter 3. Workshop Computer Labs



M. tuberculosis Bioinformatics Workshop Documentation, Release 0.1

(continued from previous page)

ERS050930.recode.vcf.gz \
ERS050931.recode.vcf.gz \
ERS050932.recode.vcf.gz \
ERS050933.recode.vcf.gz \
ERS050934.recode.vcf.gz \
ERS050935.recode.vcf.gz \
ERS050936.recode.vcf.gz \
ERS050937.recode.vcf.gz \
ERS050938.recode.vcf.gz \
ERS050939.recode.vcf.gz \
ERS050940.recode.vcf.gz \
ERS050942.recode.vcf.gz \
ERS050943.recode.vcf.gz \
ERS050944.recode.vcf.gz \
ERS050945.recode.vcf.gz \
ERS050946.recode.vcf.gz \
ERS050947.recode.vcf.gz \
ERS050948.recode.vcf.gz \
ERS050949.recode.vcf.gz \
ERS050950.recode.vcf.gz \
ERS050951.recode.vcf.gz \
ERS050953.recode.vcf.gz \
ERS050954.recode.vcf.gz \
ERS050955.recode.vcf.gz \
ERS050956.recode.vcf.gz \
ERS050957.recode.vcf.gz \
ERS050958.recode.vcf.gz \
ERS050959.recode.vcf.gz \
ERS050960.recode.vcf.gz \
ERS050961.recode.vcf.gz \
ERS050962.recode.vcf.gz \
ERS050963.recode.vcf.gz \
ERS050964.recode.vcf.gz \
ERS050965.recode.vcf.gz \
ERS050966.recode.vcf.gz \
ERS050968.recode.vcf.gz \
ERS050969.recode.vcf.gz \
ERS050970.recode.vcf.gz \
ERS050971.recode.vcf.gz \
ERS050972.recode.vcf.gz \
ERS053603.recode.vcf.gz \
ERS053604.recode.vcf.gz \
ERS053605.recode.vcf.gz \
ERS053606.recode.vcf.gz \
ERS053607.recode.vcf.gz \
ERS053608.recode.vcf.gz \
ERS053609.recode.vcf.gz \
ERS053610.recode.vcf.gz \
ERS053611.recode.vcf.gz \
ERS053612.recode.vcf.gz \
ERS053613.recode.vcf.gz \
ERS053614.recode.vcf.gz \
ERS053615.recode.vcf.gz \
ERS053616.recode.vcf.gz \
ERS053617.recode.vcf.gz \
ERS053618.recode.vcf.gz \
ERS053619.recode.vcf.gz \

(continues on next page)
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ERS053620.recode.vcf.gz \
ERS053621.recode.vcf.gz \
ERS053622.recode.vcf.gz \
ERS053623.recode.vcf.gz \
ERS053624.recode.vcf.gz \
ERS053625.recode.vcf.gz \
ERS053626.recode.vcf.gz \
ERS053627.recode.vcf.gz \
ERS053628.recode.vcf.gz \
ERS053629.recode.vcf.gz \
ERS053630.recode.vcf.gz \
ERS053631.recode.vcf.gz \
ERS053632.recode.vcf.gz \
ERS053633.recode.vcf.gz \
ERS053634.recode.vcf.gz \
ERS053635.recode.vcf.gz \
ERS053636.recode.vcf.gz \
ERS053637.recode.vcf.gz \
ERS053638.recode.vcf.gz \
ERS053639.recode.vcf.gz \
ERS053641.recode.vcf.gz \
ERS053642.recode.vcf.gz \
ERS053643.recode.vcf.gz \
ERS053644.recode.vcf.gz \
ERS053651.recode.vcf.gz \
ERS053656.recode.vcf.gz \
ERS053659.recode.vcf.gz \
ERS053661.recode.vcf.gz \
ERS053663.recode.vcf.gz \
ERS053667.recode.vcf.gz \
ERS053672.recode.vcf.gz \
ERS053684.recode.vcf.gz \
ERS096323.recode.vcf.gz \
ERS181351.recode.vcf.gz \
ERS181603.recode.vcf.gz \
-O v -o merged-99RussianIsolates.vcf

Merging step requires a reasonable amount of memory and takes some time. We will be using precalculated file. Now,
what we essentially have is a vcf file that contains all the information to make an MSA of the variable position in the
genome. Since everything is already defined with respect to a reference genome, we don’t need to build an MSA, per
se, it will already just fall off once we get rid of the non variable sites. That is what snp-sites does.

Warning: Merging multiple vcf files, the way it has been implemented here, is highly compute heavy. It requires
high memory instances when you have 100s to 1000s of isolates.

In what follows, we first convert vcf to a fasta file using vcf2phylip.py (despite its name, it also does this) before
calling SNPs. compute heavy, DONOT RUN

# -m: keep all SNVs independent of their frequency, typically with a larger number of
→˓isolates
# we would want to impose a threshold
vcf2phylip.py --fasta --phylip-disable -m 1 --input merged-99RussianIsolates.vcf

# -m: output fasta, -v: output VCF, -p: output PHYLIP
snp-sites -m merged-99RussianIsolates.min1.fasta -o 99RussianIsolates.msa.fasta
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99RussianIsolates.msa.fasta contains our multiple sequence alignment.

3.4.4 Building Bioinformatics Pipelines with Snakemake

A workflow management system (WMS) is a piece of software that sets up, performs and monitors a defined sequence
of computational tasks (i.e. “a workflow”). Snakemake is a WMS that was developed in the bioinformatics commu-
nity, and as such it has some features that make it particularly well suited for creating reproducible and scalable data
analyses.

• The language you use to formulate your workflows is based on Python, which is a language with strong stand-
ing in academia. However, users are not required to know how to code in Python to work efficiently with
Snakemake.

• Workflows can easily be scaled from your desktop to server, cluster, grid or cloud environments. This makes it
possible to develop a workflow on your laptop, maybe using only a small subset of your data, and then run the
real analysis on a cluster.

• Snakemake has several features for defining the environment which each task is carried out in. This is impor-
tant in bioinformatics, where workflows often involve running a large number of small third-party tools.

• Snakemake is primarily intended to work on _files_ (rather than for example streams, reading/writing from
databases or passing variables in memory). This fits well with many fields of bioinformatics, notably next-
generation sequencing, that often involve computationally expensive operations on large files. It’s also a good
fit for a scientific research setting, where the exact specifications of the final workflow aren’t always known at
the beginning of a project.

• Lastly, a WMS is a very important tool for making your analyses reproducible. By keeping track of when each
file was generated, and by which operation, it is possible to ensure that there is a consistent “paper trail” from
raw data to final results. Snakemake also has features which allow you to package and distribute the workflow,
and any files it involves, once it’s done.

The basics

Activating snakemake environment within the VM

In the tutorial virtual machine, snakemake is installed within a python3.5 environment. Activate the environment
as follows:

source activate snakemake
# check is snakemake is available
snakemake -h

Create a directory to hold our work:

mkdir -p ~/mtb_genomics_workshop/snakemake/example
cd ~/mtb_genomics_workshop/snakemake/example

In this part of the tutorial we will create a very simple workflow from scratch, in order to show the fundamentals of
how Snakemake works. The workflow will take two files as inputs, a.txt and b.txt, and the purpose is to convert the
text in the files to upper case and then to concatenate them.

Run the following shell commands. The first one will make an empty file named Snakefile, which will later contain
our example workflow. The second and third commands generate two files containing some arbitrary text.
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touch Snakefile
echo "This is a.txt" > a.txt
echo "This is b.txt" > b.txt

Then open Snakefile in a text editor. You can use SublimeText, which you can invoke from command line with subl:

subl Snakefile

Rules

A Snakemake workflow is based on rules which take some file(s) as input, performs some type of operation on them,
and generate some file(s) as outputs. Here is a very simple rule that takes a.txt as an input and produces a.upper.txt as
an output. Copy this rule to your Snakefile and save it.

rule convert_to_upper_case:
input:

"a.txt"
output:

"a.upper.txt"
shell:

"tr [a-z] [A-Z] < {input} > {output}"

Important: Indentation is important in Snakefiles, so make sure that you have the correct number of spaces before
input/output/shell and their respective subsections. The number of spaces per level doesn’t matter as long as you’re
consistent. Here we use four, but you could just as well use two for a more compact look. Don’t use tabs (unless your
editor automatically converts them to spaces).

• A rule has a name, here it’s convert_to_upper_case. Make an effort to name your rules in a way that makes
it easy to understand. The purpose of the rule, as rule names, are one of the main ways to interact with the
workflow.

• The shell section contains the shell commands that will convert the text in the input file to upper case and send
it to the output file. In the shell command string, we can refer to elements of the rule via curly brackets. Here,
we refer to the output file by specifying {output} and to the input file by specifying {input}. This particular
command can be read like “send the contents of a.txt to the program tr, which will convert all characters in the
set [a-z] to the corresponding character in the set [A-Z], and then send the output to a.upper.txt”.

Now let’s run our first Snakemake workflow. When a workflow is executed Snakemake tries to generate a set of
target files. Target files can be specified via the command line (or, as you will see later, in several other ways). Here we
ask Snakemake to make the file a.upper.txt. It’s good practice to first run with the flag –dryrun‘(or ‘-n), which will
show what Snakemake plans to do without actually running anything. You can also use the flag –printshellcmds (or
-p, for showing the shell commands that it will execute, and the flag –reason (or -r for showing the reason for running
a specific rule. snakemake –help will show you all available flags.

Do a dry-run:

snakemake --dryrun --reason --printshellcmds a.upper.txt

Building DAG of jobs...
Job counts:

count jobs
1 convert_to_upper_case
1

(continues on next page)
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rule convert_to_upper_case:
input: a.txt
output: a.upper.txt
jobid: 0
reason: Missing output files: a.upper.txt

tr [a-z] [A-Z] < a.txt > a.upper.txt
Job counts:

count jobs
1 convert_to_upper_case
1

You can see that Snakemake plans to run 1 job: the rule convert_to_upper_case with a.txt as input and a.upper.txt
as output. The reason for doing this is that it’s missing the file a.upper.txt.

Now execute the workflow without the –dryrun flag and check that the contents of a.upper.txt is as expected. Then try
running the same command again. What do you see? It turns out that Snakemake only reruns jobs if one of the input
files is newer than one of the output files, or if one of the input files will be updated by another job. This is how
Snakemake ensures that everything in the workflow is up to date.

Wildcards

We are going to next introduce the concept of wildcards in snakemake. What if we ask Snakemake to generate
the file b.upper.txt?

$ snakemake --dryrun --reason --printshellcmds b.upper.txt
Building DAG of jobs...
MissingRuleException:
No rule to produce b.upper.txt (if you use input functions make sure that they don't
→˓raise unexpected exceptions).

That didn’t work. We could copy the rule to make a similar one for b.txt, but that would be a bit cumbersome. Here
is where named wildcards come in; one of the most powerful features of Snakemake. Simply change the input from
input: “a.txt” to input: “{some_name}.txt” and the output to output: “{some_name}.upper.txt”.

Your updated Snakefile should look as follows:

rule convert_to_upper_case:
input:

"{some_name}.txt"
output:

"{some_name}.upper.txt"
shell:

"tr [a-z] [A-Z] < {input} > {output}"

Now try asking for b.upper.txt again:

$ snakemake b.upper.txt
Building DAG of jobs...
Using shell: /usr/bin/bash
Provided cores: 1
Rules claiming more threads will be scaled down.
Job counts:

count jobs

(continues on next page)
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1 convert_to_upper_case
1

rule convert_to_upper_case:
input: b.txt
output: b.upper.txt
jobid: 0
wildcards: some_name=b

Finished job 0.
1 of 1 steps (100%) done
Complete log: /home/mtb_upm/mtb_genomics_workshop/snakemake/example/.snakemake/log/
→˓2018-07-05T134652.700927.snakemake.log

What happens here is that Snakemake looks at all the rules it has available (actually only one in this case) and
tries to assign values to all wildcards so that the targeted files can be generated. In this case it was quite simple, you
can see that it says that wildcards: some_name=b, but for large workflows and multiple wildcards it can get much
more complex. Named wildcards is what enables a workflow (or single rules) to be efficiently generalized and reused
between projects or shared between people and make scaling up computational workflows feasible.

It seems we have the first part of our workflow working, now it’s time to make the second rule for concatenating the
outputs from convert_to_upper_case. The rule structure will be similar; the only difference is that here we have two
inputs instead of one. This can be expressed in two ways, either with named inputs like this:

input:
firstFile="...",
secondFile="..."

shell:
some_function {input.firstFile} {input.secondFile}

Or with indices like this:

input:
"...",
"..."

shell:
some_function {input[0]} {input[1]}

Important: If you have multiple inputs or outputs they need to be delimited with a comma (as seen above). This
is a very common mistake when writing Snakemake workflows. The parser will complain, but sometimes the error
message can be difficult to interpret.

Now try to construct this rule yourself and name it concatenate_a_and_b. The syntax for concatenating two files in
Bash is cat first_file second_file > output_file. Call the output c.txt. Run the workflow in Snakemake and validate
that the output looks as expected.

Wouldn’t it be nice if our workflow could be used for any files, not just a.txt and b.txt? We can achieve this by using
named wildcards (or in other ways as we will discuss later). As we’ve mentioned, Snakemake looks at all the rules
it has available and tries to assign values to all wildcards so that the targeted files can be generated. We therefore have
to name the output file in a way so that it also contains information about which input files it should be based on. Try
to figure out how to do this yourself.

Rename the rule to concatenate_files to reflect its new more general use.
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rule concatenate_files:
input:

"{first}.upper.txt",
"{second}.upper.txt"

output:
"{first}_{second}.txt"

shell:
"cat {input[0]} {input[1]} > {output}"

We can now control which input files to use by the name of the file we ask Snakemake to generate.

$ snakemake a_b.txt
Building DAG of jobs...
Using shell: /usr/bin/bash
Provided cores: 1
Rules claiming more threads will be scaled down.
Job counts:

count jobs
1 concatenate_files
1 convert_to_upper_case
2

rule convert_to_upper_case:
input: a.txt
output: a.upper.txt
jobid: 2
wildcards: some_name=a

Finished job 2.
1 of 2 steps (50%) done

rule concatenate_files:
input: a.upper.txt, b.upper.txt
output: a_b.txt
jobid: 0
wildcards: second=b, first=a

Finished job 0.
2 of 2 steps (100%) done
Complete log: /home/mtb_upm/mtb_genomics_workshop/snakemake/example/.snakemake/log/
→˓2018-07-05T135145.499632.snakemake.log

What we have learned so far: * How a simple Snakemake rule looks * How to define target files when executing a
workflow * How to use named wildcards for writing generic and flexible rules.

Tip: You can name a file whatever you want in a Snakemake workflow, but you will find that ev-
erything makes much more sense if the filename reflects the file’s path through the workflow, e.g. sam-
ple_a.trimmed.deduplicated.sorted.bam.

Visualization, logging and workflow management

What we’ve done so far could have been quite easily done in a simple shell script that takes the input files as parameters.
Let’s now take a look at some of the features where Snakemake really adds value compared to a more straightforward
approach. One such feature is the possibility to visualize your workflow.
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Snakemake can generate two types of graphs:

1. rules graph that shows how the rules are connected

2. jobs graph that shows how the jobs (i.e. an execution of a rule with some given inputs/outputs/settings) are
connected.

Rule graph: First we look at the rule graph. The following command will generate a rule graph in the dot language
and pipe it to the program dot, which in turn will save a visualization of the graph as a png file (if you’re having
troubles displaying png files you could use svg or jpg instead).

snakemake --rulegraph a_b.txt | dot -Tpng > rulegraph.png

All the graph says is that the output from the rule convert_to_upper_case will be used as input to the rule concate-
nate_files. For a more typical bioinformatics project it can look something like this:

Job graph: The second type of graph is based on the jobs, and looks like this for our little workflow (use –dag instead
of –rulegraph).

snakemake --dag a_b.txt | dot -Tpng > jobgraph.png
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The main difference here is that now each node is a job instead of a rule. You can see that the wildcards used in each
job are also displayed. Another difference is the dotted lines around the nodes. A dotted line is Snakemake’s way of
indicating that this rule doesn’t need to be rerun in order to generate a_b.txt. Validate this by running snakemake -n -r
a_b.txt and it should say that there is nothing to be done.

We’ve discussed before that one of the main purposes of using a WMS is that it automatically makes sure that every-
thing is up to date. This is done by recursively checking that outputs are always newer than inputs for all the rules
involved in the generation of your target files.

Now try to change the contents of a.txt to some other text and save it. What do you think will happen if you run
snakemake -n -r a_b.txt again?

$ snakemake -n -r a_b.txt

rule convert_to_upper_case:
input: a.txt
output: a.upper.txt
jobid: 2
reason: Updated input files: a.txt
wildcards: some_name=a

rule concatenate_files:
input: a.upper.txt, b.upper.txt
output: a_b.txt
jobid: 0
reason: Input files updated by another job: a.upper.txt
wildcards: first=a, second=b

Job counts:
count jobs
1 concatenate_files
1 convert_to_upper_case
2

```

Also generate the job graph and compare to the one generated above. What’s the difference?

Now rerun without -n and validate that a_b.txt contains the new text. Note that Snakemake doesn’t look at the
contents of files when trying to determine what has changed, only at the timestamp for when they were last modified.
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We’ve seen that Snakemake keeps track of if files in the workflow have changed, and automatically makes sure that
any results depending on such files are regenerated. What about if the rules themselves are changed? It turns out that
there are multiple ways to do this, but the most straightforward is to manually specify that you want to rerun a rule (and
thereby also all the steps between that rule and your target). Let’s say that we want to modify the rule concatenate_files
to also include which files were concatenated.

rule concatenate_files:
input:

"{first}.upper.txt",
"{second}.upper.txt"

output:
"{first}_{second}.txt"

shell:
"echo 'Concatenating {input}' | cat - {input[0]} {input[1]} > {output}""

If you now run the workflow as before you should get “Nothing to be done”, because no files involved in the workflow
have been changed. Instead we have to force Snakemake to rerun the rule by using the ‘-R‘flag. Let’s try a dry-run.

snakemake a_b.txt -r -n -R concatenate_files

Note that the reason for the job is now “Forced execution”. You can target files as well as rules, so you would get the
same result with -R a_b.txt. Whenever you’ve made changes to a rule that will affect the output it’s good practice to
force re-execution like this. Still, there can be situations where you don’t know if any rules have been changed. Maybe
several people collaborate on the same workflow but are using it on different files for example. Snakemake keeps track
of how all files were generated (when, by which rule, which version of the rule, and by which commands). You can
export this information to a tab-delimited file like this:

snakemake a_b.txt -D > summary.tsv

The contents of summary.tsv is shown in the table below (scroll to see the full table).

output_file date rule version log-
file(s)

input-
file(s)

shellcmd status plan

a_b.txt Thu
Nov 16
12:03:11
2017

concatenate_files• a.upper.txt,b.upper.txtcat
a.upper.txt
b.upper.txt
> a_b.txt

rule im-
plemen-
tation
changed

no update

a.upper.txt Thu
Nov 16
12:03:11
2017

convert_to_upper_case• a.txt tr [a-z]
[A-Z] <
a.txt >
a.upper.txt

ok no update

b.upper.txt Thu
Nov 16
12:03:11
2017

convert_to_upper_case• b.txt tr [a-z]
[A-Z] <
b.txt >
b.upper.txt

ok no update

You can see in the second last column that the rule implementation for a_b.txt has changed. The last column shows if
Snakemake plans to regenerate the files when it’s next executed. None of the files will be regenerated because Snake-
make doesn’t regenerate files by default if the rule implementation changes. From a reproducibility perspective maybe
it would be better if this was done automatically, but it would be very computationally expensive and cumbersome
if you had to rerun your whole workflow every time you fix a spelling mistake in a comment somewhere. So, it’s
up to us to look at the summary table and rerun things as needed. You can get a list of the files for which the rule
implementation has changed, and then force Snakemake to regenerate these files with the -R flag.
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snakemake a_b.txt -R $(snakemake a_b.txt --list-code-changes)

There are a number of these –list-xxx-changes flags that can help you keep track of your workflow. You can list
all options with snakemake –help. Run with the -D flag again to make sure that the summary table now looks like
expected.

You might wonder where Snakemake keeps track of all these things? It stores all information in a hidden subdirectory
called .snakemake. This is convenient since it’s easy to delete if you don’t need it anymore and everything is contained
in the project directory.

By now you should be familiar with the basic functionality of Snakemake, and you can build advanced workflows
with only the features we have discussed here. There’s a lot we haven’t covered though, in particular when it comes
to making your workflow more reusable. In the following section we will start with a workflow for calling variants.

We’ve learned:

• How to use –dag and –rulegraph for visualizing the job and rule graphs, respectively.

• How to force Snakemake to rerun relevant parts of the workflow after there have been changes.

• How logging in Snakemake works.

Reference: Koster, J. and Rahmann, S. (2012). Snakemake–a scalable bioinformatics workflow engine. Bioinformat-
ics, 28(19), 2520–2522.

Resources:

• The Snakemake documentation

• Here is the official tutorial

• Further questions? Check out stack overflow_.

• There is a snakemake Googlegroups.

Credit: NBIS Reproducible research course.

3.5 Day 5: Building Reproducible Computational Pipelines

Building Reproducible Computational Pipelines using python and snakemake

3.5.1 Building Bioinformatics Pipelines with Snakemake

A workflow management system (WMS) is a piece of software that sets up, performs and monitors a defined sequence
of computational tasks (i.e. “a workflow”). Snakemake is a WMS that was developed in the bioinformatics commu-
nity, and as such it has some features that make it particularly well suited for creating reproducible and scalable data
analyses.

• The language you use to formulate your workflows is based on Python, which is a language with strong stand-
ing in academia. However, users are not required to know how to code in Python to work efficiently with
Snakemake.

• Workflows can easily be scaled from your desktop to server, cluster, grid or cloud environments. This makes it
possible to develop a workflow on your laptop, maybe using only a small subset of your data, and then run the
real analysis on a cluster.

• Snakemake has several features for defining the environment which each task is carried out in. This is impor-
tant in bioinformatics, where workflows often involve running a large number of small third-party tools.
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• Snakemake is primarily intended to work on _files_ (rather than for example streams, reading/writing from
databases or passing variables in memory). This fits well with many fields of bioinformatics, notably next-
generation sequencing, that often involve computationally expensive operations on large files. It’s also a good
fit for a scientific research setting, where the exact specifications of the final workflow aren’t always known at
the beginning of a project.

• Lastly, a WMS is a very important tool for making your analyses reproducible. By keeping track of when each
file was generated, and by which operation, it is possible to ensure that there is a consistent “paper trail” from
raw data to final results. Snakemake also has features which allow you to package and distribute the workflow,
and any files it involves, once it’s done.

The basics

Activating snakemake environment within the VM

In the tutorial virtual machine, snakemake is installed within a python3.5 environment. Activate the environment
as follows:

source activate snakemake
# check is snakemake is available
snakemake -h

Create a directory to hold our work:

mkdir -p ~/mtb_genomics_workshop/snakemake/example
cd ~/mtb_genomics_workshop/snakemake/example

In this part of the tutorial we will create a very simple workflow from scratch, in order to show the fundamentals of
how Snakemake works. The workflow will take two files as inputs, a.txt and b.txt, and the purpose is to convert the
text in the files to upper case and then to concatenate them.

Run the following shell commands. The first one will make an empty file named Snakefile, which will later contain
our example workflow. The second and third commands generate two files containing some arbitrary text.

touch Snakefile
echo "This is a.txt" > a.txt
echo "This is b.txt" > b.txt

Then open Snakefile in a text editor. You can use SublimeText, which you can invoke from command line with subl:

subl Snakefile

Rules

A Snakemake workflow is based on rules which take some file(s) as input, performs some type of operation on them,
and generate some file(s) as outputs. Here is a very simple rule that takes a.txt as an input and produces a.upper.txt as
an output. Copy this rule to your Snakefile and save it.

rule convert_to_upper_case:
input:

"a.txt"
output:

"a.upper.txt"
shell:

"tr [a-z] [A-Z] < {input} > {output}"
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Important: Indentation is important in Snakefiles, so make sure that you have the correct number of spaces before
input/output/shell and their respective subsections. The number of spaces per level doesn’t matter as long as you’re
consistent. Here we use four, but you could just as well use two for a more compact look. Don’t use tabs (unless your
editor automatically converts them to spaces).

• A rule has a name, here it’s convert_to_upper_case. Make an effort to name your rules in a way that makes
it easy to understand. The purpose of the rule, as rule names, are one of the main ways to interact with the
workflow.

• The shell section contains the shell commands that will convert the text in the input file to upper case and send
it to the output file. In the shell command string, we can refer to elements of the rule via curly brackets. Here,
we refer to the output file by specifying {output} and to the input file by specifying {input}. This particular
command can be read like “send the contents of a.txt to the program tr, which will convert all characters in the
set [a-z] to the corresponding character in the set [A-Z], and then send the output to a.upper.txt”.

Now let’s run our first Snakemake workflow. When a workflow is executed Snakemake tries to generate a set of
target files. Target files can be specified via the command line (or, as you will see later, in several other ways). Here we
ask Snakemake to make the file a.upper.txt. It’s good practice to first run with the flag –dryrun‘(or ‘-n), which will
show what Snakemake plans to do without actually running anything. You can also use the flag –printshellcmds (or
-p, for showing the shell commands that it will execute, and the flag –reason (or -r for showing the reason for running
a specific rule. snakemake –help will show you all available flags.

Do a dry-run:

snakemake --dryrun --reason --printshellcmds a.upper.txt

Building DAG of jobs...
Job counts:

count jobs
1 convert_to_upper_case
1

rule convert_to_upper_case:
input: a.txt
output: a.upper.txt
jobid: 0
reason: Missing output files: a.upper.txt

tr [a-z] [A-Z] < a.txt > a.upper.txt
Job counts:

count jobs
1 convert_to_upper_case
1

You can see that Snakemake plans to run 1 job: the rule convert_to_upper_case with a.txt as input and a.upper.txt
as output. The reason for doing this is that it’s missing the file a.upper.txt.

Now execute the workflow without the –dryrun flag and check that the contents of a.upper.txt is as expected. Then try
running the same command again. What do you see? It turns out that Snakemake only reruns jobs if one of the input
files is newer than one of the output files, or if one of the input files will be updated by another job. This is how
Snakemake ensures that everything in the workflow is up to date.
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Wildcards

We are going to next introduce the concept of wildcards in snakemake. What if we ask Snakemake to generate
the file b.upper.txt?

$ snakemake --dryrun --reason --printshellcmds b.upper.txt
Building DAG of jobs...
MissingRuleException:
No rule to produce b.upper.txt (if you use input functions make sure that they don't
→˓raise unexpected exceptions).

That didn’t work. We could copy the rule to make a similar one for b.txt, but that would be a bit cumbersome. Here
is where named wildcards come in; one of the most powerful features of Snakemake. Simply change the input from
input: “a.txt” to input: “{some_name}.txt” and the output to output: “{some_name}.upper.txt”.

Your updated Snakefile should look as follows:

rule convert_to_upper_case:
input:

"{some_name}.txt"
output:

"{some_name}.upper.txt"
shell:

"tr [a-z] [A-Z] < {input} > {output}"

Now try asking for b.upper.txt again:

$ snakemake b.upper.txt
Building DAG of jobs...
Using shell: /usr/bin/bash
Provided cores: 1
Rules claiming more threads will be scaled down.
Job counts:

count jobs
1 convert_to_upper_case
1

rule convert_to_upper_case:
input: b.txt
output: b.upper.txt
jobid: 0
wildcards: some_name=b

Finished job 0.
1 of 1 steps (100%) done
Complete log: /home/mtb_upm/mtb_genomics_workshop/snakemake/example/.snakemake/log/
→˓2018-07-05T134652.700927.snakemake.log

What happens here is that Snakemake looks at all the rules it has available (actually only one in this case) and
tries to assign values to all wildcards so that the targeted files can be generated. In this case it was quite simple, you
can see that it says that wildcards: some_name=b, but for large workflows and multiple wildcards it can get much
more complex. Named wildcards is what enables a workflow (or single rules) to be efficiently generalized and reused
between projects or shared between people and make scaling up computational workflows feasible.

It seems we have the first part of our workflow working, now it’s time to make the second rule for concatenating the
outputs from convert_to_upper_case. The rule structure will be similar; the only difference is that here we have two
inputs instead of one. This can be expressed in two ways, either with named inputs like this:
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input:
firstFile="...",
secondFile="..."

shell:
some_function {input.firstFile} {input.secondFile}

Or with indices like this:

input:
"...",
"..."

shell:
some_function {input[0]} {input[1]}

Important: If you have multiple inputs or outputs they need to be delimited with a comma (as seen above). This
is a very common mistake when writing Snakemake workflows. The parser will complain, but sometimes the error
message can be difficult to interpret.

Now try to construct this rule yourself and name it concatenate_a_and_b. The syntax for concatenating two files in
Bash is cat first_file second_file > output_file. Call the output c.txt. Run the workflow in Snakemake and validate
that the output looks as expected.

Wouldn’t it be nice if our workflow could be used for any files, not just a.txt and b.txt? We can achieve this by using
named wildcards (or in other ways as we will discuss later). As we’ve mentioned, Snakemake looks at all the rules
it has available and tries to assign values to all wildcards so that the targeted files can be generated. We therefore have
to name the output file in a way so that it also contains information about which input files it should be based on. Try
to figure out how to do this yourself.

Rename the rule to concatenate_files to reflect its new more general use.

rule concatenate_files:
input:

"{first}.upper.txt",
"{second}.upper.txt"

output:
"{first}_{second}.txt"

shell:
"cat {input[0]} {input[1]} > {output}"

We can now control which input files to use by the name of the file we ask Snakemake to generate.

$ snakemake a_b.txt
Building DAG of jobs...
Using shell: /usr/bin/bash
Provided cores: 1
Rules claiming more threads will be scaled down.
Job counts:

count jobs
1 concatenate_files
1 convert_to_upper_case
2

rule convert_to_upper_case:
input: a.txt
output: a.upper.txt

(continues on next page)
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(continued from previous page)

jobid: 2
wildcards: some_name=a

Finished job 2.
1 of 2 steps (50%) done

rule concatenate_files:
input: a.upper.txt, b.upper.txt
output: a_b.txt
jobid: 0
wildcards: second=b, first=a

Finished job 0.
2 of 2 steps (100%) done
Complete log: /home/mtb_upm/mtb_genomics_workshop/snakemake/example/.snakemake/log/
→˓2018-07-05T135145.499632.snakemake.log

What we have learned so far: * How a simple Snakemake rule looks * How to define target files when executing a
workflow * How to use named wildcards for writing generic and flexible rules.

Tip: You can name a file whatever you want in a Snakemake workflow, but you will find that ev-
erything makes much more sense if the filename reflects the file’s path through the workflow, e.g. sam-
ple_a.trimmed.deduplicated.sorted.bam.

Visualization, logging and workflow management

What we’ve done so far could have been quite easily done in a simple shell script that takes the input files as parameters.
Let’s now take a look at some of the features where Snakemake really adds value compared to a more straightforward
approach. One such feature is the possibility to visualize your workflow.

Snakemake can generate two types of graphs:

1. rules graph that shows how the rules are connected

2. jobs graph that shows how the jobs (i.e. an execution of a rule with some given inputs/outputs/settings) are
connected.

Rule graph: First we look at the rule graph. The following command will generate a rule graph in the dot language
and pipe it to the program dot, which in turn will save a visualization of the graph as a png file (if you’re having
troubles displaying png files you could use svg or jpg instead).

snakemake --rulegraph a_b.txt | dot -Tpng > rulegraph.png

material/day5/rulegraph.png

All the graph says is that the output from the rule convert_to_upper_case will be used as input to the rule concate-
nate_files. For a more typical bioinformatics project it can look something like this:
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material/day5/rulegraph_complex.png

Job graph: The second type of graph is based on the jobs, and looks like this for our little workflow (use –dag instead
of –rulegraph).

snakemake --dag a_b.txt | dot -Tpng > jobgraph.png

material/day5/jobgraph.png

The main difference here is that now each node is a job instead of a rule. You can see that the wildcards used in each
job are also displayed. Another difference is the dotted lines around the nodes. A dotted line is Snakemake’s way of
indicating that this rule doesn’t need to be rerun in order to generate a_b.txt. Validate this by running snakemake -n -r
a_b.txt and it should say that there is nothing to be done.

We’ve discussed before that one of the main purposes of using a WMS is that it automatically makes sure that every-
thing is up to date. This is done by recursively checking that outputs are always newer than inputs for all the rules
involved in the generation of your target files.

Now try to change the contents of a.txt to some other text and save it. What do you think will happen if you run
snakemake -n -r a_b.txt again?

$ snakemake -n -r a_b.txt

rule convert_to_upper_case:
input: a.txt
output: a.upper.txt
jobid: 2
reason: Updated input files: a.txt
wildcards: some_name=a

rule concatenate_files:
input: a.upper.txt, b.upper.txt
output: a_b.txt
jobid: 0
reason: Input files updated by another job: a.upper.txt
wildcards: first=a, second=b

Job counts:
count jobs
1 concatenate_files
1 convert_to_upper_case
2

```

Also generate the job graph and compare to the one generated above. What’s the difference?
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Now rerun without -n and validate that a_b.txt contains the new text. Note that Snakemake doesn’t look at the
contents of files when trying to determine what has changed, only at the timestamp for when they were last modified.

We’ve seen that Snakemake keeps track of if files in the workflow have changed, and automatically makes sure that
any results depending on such files are regenerated. What about if the rules themselves are changed? It turns out that
there are multiple ways to do this, but the most straightforward is to manually specify that you want to rerun a rule (and
thereby also all the steps between that rule and your target). Let’s say that we want to modify the rule concatenate_files
to also include which files were concatenated.

rule concatenate_files:
input:

"{first}.upper.txt",
"{second}.upper.txt"

output:
"{first}_{second}.txt"

shell:
"echo 'Concatenating {input}' | cat - {input[0]} {input[1]} > {output}""

If you now run the workflow as before you should get “Nothing to be done”, because no files involved in the workflow
have been changed. Instead we have to force Snakemake to rerun the rule by using the ‘-R‘flag. Let’s try a dry-run.

snakemake a_b.txt -r -n -R concatenate_files

Note that the reason for the job is now “Forced execution”. You can target files as well as rules, so you would get the
same result with -R a_b.txt. Whenever you’ve made changes to a rule that will affect the output it’s good practice to
force re-execution like this. Still, there can be situations where you don’t know if any rules have been changed. Maybe
several people collaborate on the same workflow but are using it on different files for example. Snakemake keeps track
of how all files were generated (when, by which rule, which version of the rule, and by which commands). You can
export this information to a tab-delimited file like this:

snakemake a_b.txt -D > summary.tsv

The contents of summary.tsv is shown in the table below (scroll to see the full table).

output_file date rule version log-
file(s)

input-
file(s)

shellcmd status plan

a_b.txt Thu
Nov 16
12:03:11
2017

concatenate_files• a.upper.txt,b.upper.txtcat
a.upper.txt
b.upper.txt
> a_b.txt

rule im-
plemen-
tation
changed

no update

a.upper.txt Thu
Nov 16
12:03:11
2017

convert_to_upper_case• a.txt tr [a-z]
[A-Z] <
a.txt >
a.upper.txt

ok no update

b.upper.txt Thu
Nov 16
12:03:11
2017

convert_to_upper_case• b.txt tr [a-z]
[A-Z] <
b.txt >
b.upper.txt

ok no update

You can see in the second last column that the rule implementation for a_b.txt has changed. The last column shows if
Snakemake plans to regenerate the files when it’s next executed. None of the files will be regenerated because Snake-
make doesn’t regenerate files by default if the rule implementation changes. From a reproducibility perspective maybe
it would be better if this was done automatically, but it would be very computationally expensive and cumbersome
if you had to rerun your whole workflow every time you fix a spelling mistake in a comment somewhere. So, it’s
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up to us to look at the summary table and rerun things as needed. You can get a list of the files for which the rule
implementation has changed, and then force Snakemake to regenerate these files with the -R flag.

snakemake a_b.txt -R $(snakemake a_b.txt --list-code-changes)

There are a number of these –list-xxx-changes flags that can help you keep track of your workflow. You can list
all options with snakemake –help. Run with the -D flag again to make sure that the summary table now looks like
expected.

You might wonder where Snakemake keeps track of all these things? It stores all information in a hidden subdirectory
called .snakemake. This is convenient since it’s easy to delete if you don’t need it anymore and everything is contained
in the project directory.

By now you should be familiar with the basic functionality of Snakemake, and you can build advanced workflows
with only the features we have discussed here. There’s a lot we haven’t covered though, in particular when it comes
to making your workflow more reusable. In the following section we will start with a workflow for calling variants.

We’ve learned:

• How to use –dag and –rulegraph for visualizing the job and rule graphs, respectively.

• How to force Snakemake to rerun relevant parts of the workflow after there have been changes.

• How logging in Snakemake works.

Reference: Koster, J. and Rahmann, S. (2012). Snakemake–a scalable bioinformatics workflow engine. Bioinformat-
ics, 28(19), 2520–2522.

Resources:

• The Snakemake documentation

• Here is the official tutorial

• Further questions? Check out stack overflow_.

• There is a snakemake Googlegroups.

Credit: NBIS Reproducible research course.

3.5. Day 5: Building Reproducible Computational Pipelines 63

https://snakemake.readthedocs.io/en/stable/
https://snakemake.readthedocs.io/en/stable/tutorial/tutorial.html#tutorial
https://groups.google.com/forum/#!forum/snakemake
https://nbis-reproducible-research.readthedocs.io/en/latest/snakemake

	Overview
	Workshop Agenda
	Workshop Computer Labs

