

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Home

mrjob

mrjob lets you write MapReduce jobs in Python 2.7/3.4+ and run them on
several platforms. You can:

	Write multi-step MapReduce jobs in pure Python

	Test on your local machine

	Run on a Hadoop cluster

	Run in the cloud using Amazon Elastic MapReduce (EMR) [http://aws.amazon.com/documentation/elasticmapreduce/]

	Run in the cloud using Google Cloud Dataproc (Dataproc) [https://cloud.google.com/dataproc/overview]

	Easily run Spark jobs on EMR or your own Hadoop cluster

mrjob is licensed under the Apache License, Version 2.0. [https://raw.github.com/Yelp/mrjob/master/LICENSE.txt]

To get started, install with pip:

pip install mrjob

and begin reading the tutorial below.

	Guides
	Why mrjob?
	Overview

	Why use mrjob instead of X?

	Why use X instead of mrjob?

	Fundamentals
	Installation

	Writing your first job

	Running your job different ways

	Writing your second job

	Configuration

	Concepts
	MapReduce and Apache Hadoop

	Hadoop Streaming and mrjob

	Writing jobs
	Defining steps

	Protocols

	Passing entire files to the mapper

	Jar steps

	Using other python modules and packages

	Defining command line options

	Counters

	Input and output formats

	Runners
	Testing locally

	Running on your own Hadoop cluster

	Running on EMR

	Running on Dataproc

	Configuration

	Running your job programmatically

	Spark
	Why use mrjob with Spark?

	mrjob spark-submit

	Writing your first Spark MRJob

	Running on your Spark cluster

	Using remote filesystems other than HDFS

	Other ways to run on Spark

	Passing in libraries

	Command-line options

	Uploading files to the working directory

	Archives and directories

	Multi-step jobs

	External Spark scripts

	Custom input and output formats

	Running “classic” MRJobs on Spark

	Config file format and location
	Precedence and combining options

	Option data types

	Using multiple config files

	Clearing configs

	Options available to all runners
	Making files available to tasks

	Temp files and cleanup

	Job execution context

	Other

	Options ignored by the local and inline runners

	Options ignored by the inline runner

	Hadoop-related options
	Options specific to the local and inline runners

	Options available to local, hadoop, and emr runners

	Options available to hadoop and emr runners

	Options available to hadoop runner only

	Spark runner options

	Configuration quick reference
	Setting configuration options

	Options that can’t be set from mrjob.conf (all runners)

	Other options for all runners

	Additional options for DataprocJobRunner

	Additional options for EMRJobRunner

	Additional options for HadoopJobRunner

	Cloud runner options
	Google credentials

	Choosing/creating a cluster to join

	Job placement

	Number and type of instances

	Cluster software configuration

	Monitoring your job

	Cloud Filesystem

	Auto-termination

	Job Environment Setup Cookbook
	Uploading your source tree

	Uploading your source tree as an archive

	Running a makefile inside your source dir

	Making data files available to your job

	Using a virtualenv

	Other ways to use pip to install Python packages

	Hadoop Cookbook
	Increasing the task timeout

	Writing compressed output

	Testing jobs
	Inline runner

	Local runnner

	Anatomy of a test case

	Cloud Dataproc
	Dataproc Quickstart

	Dataproc runner options

	Other rarely used options

	Elastic MapReduce
	Elastic MapReduce Quickstart

	Cluster Pooling

	EMR runner options

	EMR Bootstrapping Cookbook

	Troubleshooting

	Advanced EMR usage

	Python 2 vs. Python 3
	Raw protocols

	Bytes vs. strings

	python_bin

	Your Hadoop cluster

	Contributing to mrjob
	Contribution guidelines

	A quick tour through the code

	Reference
	mrjob.ami - building custom AMIs

	mrjob.cat - decompress files based on extension

	mrjob.cmd: The mrjob command-line utility
	audit-emr-usage

	boss

	create-cluster

	diagnose

	report-long-jobs

	s3-tmpwatch

	spark-submit

	terminate-cluster

	terminate-idle-clusters

	mrjob.compat - Hadoop version compatibility

	mrjob.conf - parse and write config files
	Reading and writing mrjob.conf

	Combining options

	mrjob.dataproc - run on Dataproc
	Job Runner

	GCS Utilities

	mrjob.emr - run on EMR
	Job Runner

	EMR Utilities

	S3 Utilities

	Other AWS clients

	mrjob.hadoop - run on your Hadoop cluster
	Utilities

	mrjob.inline - debugger-friendly local testing

	mrjob.job - defining your job
	One-step jobs

	Multi-step jobs

	Running the job

	Parsing output

	Counters and status messages

	Setting protocols

	Secondary sort

	Command-line options

	Uploading support files

	Job runner configuration

	Running specific parts of jobs

	Hadoop configuration

	Hooks for testing

	mrjob.local - simulate Hadoop locally with subprocesses

	mrjob.parse - log parsing

	mrjob.protocol - input and output
	Strings

	JSON

	Repr

	Pickle

	mrjob.spark.runner - run on any Spark cluster
	Job Runner

	mrjob.retry - retry on transient errors

	mrjob.runner - base class for all runners
	Running your job

	Run Information

	Configuration

	File management

	mrjob.step - represent Job Steps
	Steps

	Argument interpolation

	mrjob.setup - job environment setup

	mrjob.util - general utility functions

	What’s New
	0.7.4
	Docker on EMR

	Concurrent Steps on EMR clusters

	Cluster Pooling

	Library requirements

	0.7.3

	0.7.2

	0.7.1
	EMR

	0.7.0
	AWS and Google are now optional dependencies

	non-Python mrjobs are no longer supported

	MRSomeJob() means read from sys.argv

	mrjob/examples/ love

	miscellanous tweaks

	removed deprecated code

	0.6.12

	0.6.11

	0.6.10

	0.6.9

	0.6.8
	Nearly full support for Spark

	Spark Hadoop Streaming emulation

	Local runner support for Spark

	Other Spark improvements

	Filesystems

	EMR

	Dependency upgrades

	Other bugfixes

	0.6.7

	0.6.6

	0.6.5

	0.6.4

	0.6.3
	Read arbitrary file formats

	Google Cloud Datatproc parity

	Other changes

	0.6.2

	0.6.1

	0.6.0
	Dropped Python 2.6

	boto3, not boto

	argparse, not optparse

	Chunks, not lines

	Better local/inline mode

	Cloud runner improvements

	EMR now bills by the second, not the hour

	Other EMR changes

	Massive purge of deprecated code

	0.5.12

	0.5.11

	0.5.10

	0.5.9

	0.5.8

	0.5.7
	Spark and related changes

	Cluster pooling

	Other improvements

	Bugfixes

	Deprecation

	0.5.6

	0.5.5

	0.5.4
	Pooling and idle cluster self-termination

	Generic EMR option names

	Log interpretation

	pass_through_option()

	Stop logging credentials

	Other improvements and bugfixes

	0.5.3

	0.5.2

	0.5.1

	0.5.0
	Python versions

	Hadoop

	3.x and 4.x AMIs

	AWS Regions

	S3

	Log interpretation

	Protocols

	Status messages

	Deprecation

	Other changes

	0.4.6

	0.4.5

	0.4.4

	0.4.3

	0.4.2

	0.4.1

	0.4.0

	0.3.5

	0.3.3

	0.3.2

	0.3
	Features

	Changes and Deprecations

	Glossary

Appendices

Index

Module Index

Search Page

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Guides

	Why mrjob?
	Overview

	Why use mrjob instead of X?

	Why use X instead of mrjob?

	Fundamentals
	Installation

	Writing your first job

	Running your job different ways

	Writing your second job

	Configuration

	Concepts
	MapReduce and Apache Hadoop

	Hadoop Streaming and mrjob

	Writing jobs
	Defining steps

	Protocols

	Passing entire files to the mapper

	Jar steps

	Using other python modules and packages

	Defining command line options

	Counters

	Input and output formats

	Runners
	Testing locally

	Running on your own Hadoop cluster

	Running on EMR

	Running on Dataproc

	Configuration

	Running your job programmatically

	Spark
	Why use mrjob with Spark?

	mrjob spark-submit

	Writing your first Spark MRJob

	Running on your Spark cluster

	Using remote filesystems other than HDFS

	Other ways to run on Spark

	Passing in libraries

	Command-line options

	Uploading files to the working directory

	Archives and directories

	Multi-step jobs

	External Spark scripts

	Custom input and output formats

	Running “classic” MRJobs on Spark

	Config file format and location
	Precedence and combining options

	Option data types

	Using multiple config files

	Clearing configs

	Options available to all runners
	Making files available to tasks

	Temp files and cleanup

	Job execution context

	Other

	Options ignored by the local and inline runners

	Options ignored by the inline runner

	Hadoop-related options
	Options specific to the local and inline runners

	Options available to local, hadoop, and emr runners

	Options available to hadoop and emr runners

	Options available to hadoop runner only

	Spark runner options

	Configuration quick reference
	Setting configuration options

	Options that can’t be set from mrjob.conf (all runners)

	Other options for all runners

	Additional options for DataprocJobRunner

	Additional options for EMRJobRunner

	Additional options for HadoopJobRunner

	Cloud runner options
	Google credentials

	Choosing/creating a cluster to join

	Job placement

	Number and type of instances

	Cluster software configuration

	Monitoring your job

	Cloud Filesystem

	Auto-termination

	Job Environment Setup Cookbook
	Uploading your source tree

	Uploading your source tree as an archive

	Running a makefile inside your source dir

	Making data files available to your job

	Using a virtualenv

	Other ways to use pip to install Python packages

	Hadoop Cookbook
	Increasing the task timeout

	Writing compressed output

	Testing jobs
	Inline runner

	Local runnner

	Anatomy of a test case

	Cloud Dataproc
	Dataproc Quickstart

	Dataproc runner options

	Other rarely used options

	Elastic MapReduce
	Elastic MapReduce Quickstart

	Cluster Pooling

	EMR runner options

	EMR Bootstrapping Cookbook

	Troubleshooting

	Advanced EMR usage

	Python 2 vs. Python 3
	Raw protocols

	Bytes vs. strings

	python_bin

	Your Hadoop cluster

	Contributing to mrjob
	Contribution guidelines

	A quick tour through the code

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Why mrjob?

Overview

mrjob is the easiest route to writing Python programs that run on Hadoop. If
you use mrjob, you’ll be able to test your code locally without installing
Hadoop or run it on a cluster of your choice.

Additionally, mrjob has extensive integration with Amazon Elastic MapReduce.
Once you’re set up, it’s as easy to run your job in the cloud as it is to run
it on your laptop.

Here are a number of features of mrjob that make writing MapReduce jobs easier:

	Keep all MapReduce code for one job in a single class

	Easily upload and install code and data dependencies at runtime

	Switch input and output formats with a single line of code

	Automatically download and parse error logs for Python tracebacks

	Put command line filters before or after your Python code

If you don’t want to be a Hadoop expert but need the computing power of
MapReduce, mrjob might be just the thing for you.

Why use mrjob instead of X?

Where X is any other library that helps Hadoop and Python interface with each
other.

	mrjob has more documentation than any other framework or library we are
aware of. If you’re reading this, it’s probably your first contact with the
library, which means you are in a great position to provide valuable
feedback about our documentation. [http://github.com/yelp/mrjob/issues/new] Let us know if anything is
unclear or hard to understand.

	mrjob lets you run your code without Hadoop at all. Other frameworks
require a Hadoop instance to function at all. If you use mrjob, you’ll be
able to write proper tests for your MapReduce code.

	mrjob provides a consistent interface across every environment it supports.
No matter whether you’re running locally, in the cloud, or on your own
cluster, your Python code doesn’t change at all.

	mrjob handles much of the machinery of getting code and data to and from
the cluster your job runs on. You don’t need a series of scripts to install
dependencies or upload files.

	mrjob makes debugging much easier. Locally, it can run a simple MapReduce
implementation in-process, so you get a traceback in your console instead
of in an obscure log file. On a cluster or on Elastic MapReduce, it parses
error logs for Python tracebacks and other likely causes of failure.

	mrjob automatically serializes and deserializes data going into and coming
out of each task so you don’t need to constantly json.loads() and
json.dumps().

Why use X instead of mrjob?

The flip side to mrjob’s ease of use is that it doesn’t give you the same
level of access to Hadoop APIs that Dumbo and Pydoop do. It’s simplified a
great deal. But that hasn’t stopped several companies, including Yelp, from
using it for day-to-day heavy lifting. For common (and many uncommon) cases,
the abstractions help rather than hinder.

Other libraries can be faster if you use typedbytes. There have been several
attempts at integrating it with mrjob, and it may land eventually, but it
doesn’t exist yet.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Fundamentals

Installation

Install with pip:

pip install mrjob

or from a git [http://www.git-scm.org/] clone of the source code [http://www.github.com/yelp/mrjob]:

python setup.py test && python setup.py install

Writing your first job

Open a file called mr_word_count.py and type this into it:

from mrjob.job import MRJob

class MRWordFrequencyCount(MRJob):

 def mapper(self, _, line):
 yield "chars", len(line)
 yield "words", len(line.split())
 yield "lines", 1

 def reducer(self, key, values):
 yield key, sum(values)

if __name__ == '__main__':
 MRWordFrequencyCount.run()

Now go back to the command line, find your favorite body of text (such mrjob’s
README.rst, or even your new file mr_word_count.py), and try
this:

$ python mr_word_count.py my_file.txt

You should see something like this:

"chars" 3654
"lines" 123
"words" 417

Congratulations! You’ve just written and run your first program with mrjob.

What’s happening

A job is defined by a class that inherits from MRJob.
This class contains methods that define the steps of your job.

A “step” consists of a mapper, a combiner, and a reducer. All of those are
optional, though you must have at least one. So you could have a step that’s
just a mapper, or just a combiner and a reducer.

When you only have one step, all you have to do is write methods called
mapper(), combiner(), and
reducer().

The mapper() method takes a key and a value as args (in this case,
the key is ignored and a single line of text input is the value) and yields as
many key-value pairs as it likes. The reduce() [http://docs.python.org/2/library/functions.html#reduce] method takes a key
and an iterator of values and also yields as many key-value pairs as it likes.
(In this case, it sums the values for each key, which represent the numbers of
characters, words, and lines in the input.)

Warning

Forgetting the following information will result in confusion.

The final required component of a job file is these two lines at the end of the
file, every time:

if __name__ == '__main__':
 MRWordCounter.run() # where MRWordCounter is your job class

These lines pass control over the command line arguments and execution to
mrjob. Without them, your job will not work. For more information, see
Hadoop Streaming and mrjob and Why can’t I put the job class and run code in the same file?.

Running your job different ways

The most basic way to run your job is on the command line:

$ python my_job.py input.txt

By default, output will be written to stdout.

You can pass input via stdin, but be aware that mrjob will just dump it to a
file first:

$ python my_job.py < input.txt

You can pass multiple input files, mixed with stdin (using the -
character):

$ python my_job.py input1.txt input2.txt - < input3.txt

By default, mrjob will run your job in a single Python process. This provides
the friendliest debugging experience, but it’s not exactly distributed
computing!

You change the way the job is run with the -r/--runner option. You can
use -r inline (the default), -r local, -r hadoop, or -r emr.

To run your job in multiple subprocesses with a few Hadoop features simulated,
use -r local.

To run it on your Hadoop cluster, use -r hadoop.

If you have Dataproc configured (see Dataproc Quickstart), you can
run it there with -r dataproc.

Your input files can come from HDFS if you’re using Hadoop, or GCS if you’re
using Dataproc:

$ python my_job.py -r dataproc gcs://my-inputs/input.txt
$ python my_job.py -r hadoop hdfs://my_home/input.txt

If you have Elastic MapReduce configured (see Elastic MapReduce Quickstart), you can
run it there with -r emr.

Your input files can come from HDFS if you’re using Hadoop, or S3 if you’re
using EMR:

$ python my_job.py -r emr s3://my-inputs/input.txt
$ python my_job.py -r hadoop hdfs://my_home/input.txt

If your code spans multiple files, see Uploading your source tree.

Writing your second job

Most of the time, you’ll need more than one step in your job. To define
multiple steps, override steps() to return a list of
MRSteps.

Here’s a job that finds the most commonly used word in the input:

from mrjob.job import MRJob
from mrjob.step import MRStep
import re

WORD_RE = re.compile(r"[\w']+")

class MRMostUsedWord(MRJob):

 def steps(self):
 return [
 MRStep(mapper=self.mapper_get_words,
 combiner=self.combiner_count_words,
 reducer=self.reducer_count_words),
 MRStep(reducer=self.reducer_find_max_word)
]

 def mapper_get_words(self, _, line):
 # yield each word in the line
 for word in WORD_RE.findall(line):
 yield (word.lower(), 1)

 def combiner_count_words(self, word, counts):
 # optimization: sum the words we've seen so far
 yield (word, sum(counts))

 def reducer_count_words(self, word, counts):
 # send all (num_occurrences, word) pairs to the same reducer.
 # num_occurrences is so we can easily use Python's max() function.
 yield None, (sum(counts), word)

 # discard the key; it is just None
 def reducer_find_max_word(self, _, word_count_pairs):
 # each item of word_count_pairs is (count, word),
 # so yielding one results in key=counts, value=word
 yield max(word_count_pairs)

if __name__ == '__main__':
 MRMostUsedWord.run()

Configuration

mrjob has an overflowing cornucopia of configuration options. You’ll want to
specify some on the command line, some in a config file.

You can put a config file at /etc/mrjob.conf, ~/.mrjob.conf, or
./mrjob.conf for mrjob to find it without passing it via --conf-path.

Config files are interpreted as YAML if you have the yaml module
installed. Otherwise, they are interpreted as JSON.

See Config file format and location for in-depth information. Here is an example file:

runners:
 emr:
 aws-region: us-west-2
 inline:
 local_tmp_dir: $HOME/.tmp

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Concepts

MapReduce and Apache Hadoop

This section uses text from Apache’s MapReduce Tutorial [http://hadoop.apache.org/docs/current/hadoop-mapreduce-client/hadoop-mapreduce-client-core/MapReduceTutorial.html].

MapReduce is a way of writing programs designed for processing vast amounts of
data, and a system for running those programs in a distributed and
fault-tolerant way. Apache Hadoop [http://hadoop.apache.org/] is one such system designed primarily to
run Java code.

A MapReduce job usually splits the input data-set into independent chunks which
are processed by the map tasks in a completely parallel manner. The framework
sorts the outputs of the maps, which are then input to the reduce tasks.
Typically both the input and the output of the job are stored in a file system
shared by all processing nodes. The framework takes care of scheduling tasks,
monitoring them, and re-executing the failed tasks.

The MapReduce framework consists of a single master “job tracker” (Hadoop 1)
or “resource manager” (Hadoop 2) and a number of worker nodes. The master is
responsible for scheduling the jobs’ component tasks on the worker nodes and
re-executing the failed tasks. The worker nodes execute the tasks as directed
by the master.

As the job author, you write map, combine,
and reduce functions that are submitted to the job tracker
for execution.

A mapper takes a single key and value as input, and returns zero or
more (key, value) pairs. The pairs from all map outputs of a single step are
grouped by key.

A combiner takes a key and a subset of the values for that key as input
and returns zero or more (key, value) pairs. Combiners are optimizations that
run immediately after each mapper and can be used to decrease total data
transfer. Combiners should be idempotent (produce the same output if run
multiple times in the job pipeline).

A reducer takes a key and the complete set of values for that key in
the current step, and returns zero or more arbitrary (key, value) pairs as
output.

After the reducer has run, if there are more steps, the individual results are
arbitrarily assigned to mappers for further processing. If there are no more
steps, the results are sorted and made available for reading.

An example

Consider a program that counts how many times words occur in a document. Here
is some input:

The wheels on the bus go round and round,
round and round, round and round
The wheels on the bus go round and round,
all through the town.

The inputs to the mapper will be (None, "one line of text"). (The
key is None because the input is just raw text.)

The mapper converts the line to lowercase, removes punctuation, splits it on
whitespace, and outputs (word, 1) for each item.

mapper input: (None, "The wheels on the bus go round and round,")
mapper output:
 "the", 1
 "wheels", 1
 "on", 1
 "the", 1
 "bus", 1
 "go", 1
 "round", 1
 "and", 1
 "round", 1

Each call to the combiner gets a word as the key and a list of 1s as the
value. It sums the 1s and outputs the original key and the sum.

combiner input: ("the", [1, 1])
combiner output:
 "the", 2

The reducer is identical to the combiner; for each key, it simply outputs the
original key and the sum of the values.

reducer input: ("round", [2, 4, 2])
reducer output:
 "round", 8

The final output is collected:

"all", 1
"and", 4
"bus", 2
"go", 2
"on", 2
"round", 8
"the", 5
"through", 1
"town", 1
"wheels", 2

Your algorithm may require several repetitions of this process.

Hadoop Streaming and mrjob

Note

If this is your first exposure to MapReduce or Hadoop, you may want to skip
this section and come back later. Feel free to stick with it if you feel
adventurous.

Although Hadoop is primarly designed to work with Java code, it supports other
languages via Hadoop Streaming. This jar opens a subprocess to your
code, sends it input via stdin, and gathers results via stdout.

In most cases, the input to a Hadoop Streaming job is a set of
newline-delimited files. Each line of input is passed to your mapper, which
outputs key-value pairs expressed as two strings separated by a tab and ending
with a newline, like this:

key1\tvalue1\nkey2\tvalue2\n

Hadoop then sorts the output lines by key (the line up to the
first tab character) and passes the sorted lines to the appropriate combiners
or reducers.

mrjob is a framework that assists you in submitting your job to the Hadoop job
tracker and in running each individual step under Hadoop Streaming.

How your program is run

Depending on the way your script is invoked on the command line, it will behave
in different ways. You’ll only ever use one of these; the rest are for mrjob
and Hadoop Streaming to use.

When you run with no arguments or with --runner, you invoke mrjob’s
machinery for running your job or submitting it to the cluster. Your mappers
and reducers are not called in this process at all [1].

This process creates a runner (see MRJobRunner),
which then sends the job to Hadoop [2].

It tells Hadoop something like this:

	Run a step with Hadoop Streaming.

	The command for the mapper is python my_job.py --step-num=0 --mapper.

	The command for the combiner is python my_job.py --step-num=0 --combiner.

	The command for the reducer is python my_job.py --step-num=0 --reducer.

If you have a multi-step job, --step-num helps your script know which step
is being run.

When Hadoop distributes tasks among the task nodes, Hadoop Streaming will use
the appropriate command to process the data it is given.

Note

Prior to v0.6.7, your job would also run itself locally with the
--steps switch, to get a JSON representation of the job’s step.
Jobs now pass that representation directly to the runner
when they instantiate it. See mrjob.step - represent Job Steps for more
information.

Footnotes

	[1]	Unless you’re using the inline runner, which is a special case
for debugging.

	[2]	Or when using the local runner, a simulation of Hadoop.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Writing jobs

This guide covers everything you need to know to write your job. You’ll
probably need to flip between this guide and Runners to find all the
information you need.

Defining steps

Your job will be defined in a file to be executed on your machine as a Python
script, as well as on a Hadoop cluster as an individual map, combine, or reduce
task. (See How your program is run for more on that.)

All dependencies must either be contained within the file, available on the
task nodes, or uploaded to the cluster by mrjob when your job is submitted.
(Runners explains how to do those things.)

The following two sections are more reference-oriented versions of
Writing your first job and Writing your second job.

Single-step jobs

The simplest way to write a one-step job is to subclass
MRJob and override a few methods:

from mrjob.job import MRJob
import re

WORD_RE = re.compile(r"[\w']+")

class MRWordFreqCount(MRJob):

 def mapper(self, _, line):
 for word in WORD_RE.findall(line):
 yield word.lower(), 1

 def combiner(self, word, counts):
 yield word, sum(counts)

 def reducer(self, word, counts):
 yield word, sum(counts)

if __name__ == '__main__':
 MRWordFreqCount.run()

(See Writing your first job for an explanation of this example.)

Here are all the methods you can override to write a one-step job. We’ll
explain them over the course of this document.

	mapper()

	combiner()

	reducer()

	mapper_init()

	combiner_init()

	reducer_init()

	mapper_final()

	combiner_final()

	reducer_final()

	mapper_cmd()

	combiner_cmd()

	reducer_cmd()

	mapper_pre_filter()

	combiner_pre_filter()

	reducer_pre_filter()

Multi-step jobs

To define multiple steps, override steps()
to return a list of MRSteps:

from mrjob.job import MRJob
from mrjob.step import MRStep
import re

WORD_RE = re.compile(r"[\w']+")

class MRMostUsedWord(MRJob):

 def mapper_get_words(self, _, line):
 # yield each word in the line
 for word in WORD_RE.findall(line):
 yield (word.lower(), 1)

 def combiner_count_words(self, word, counts):
 # sum the words we've seen so far
 yield (word, sum(counts))

 def reducer_count_words(self, word, counts):
 # send all (num_occurrences, word) pairs to the same reducer.
 # num_occurrences is so we can easily use Python's max() function.
 yield None, (sum(counts), word)

 # discard the key; it is just None
 def reducer_find_max_word(self, _, word_count_pairs):
 # each item of word_count_pairs is (count, word),
 # so yielding one results in key=counts, value=word
 yield max(word_count_pairs)

 def steps(self):
 return [
 MRStep(mapper=self.mapper_get_words,
 combiner=self.combiner_count_words,
 reducer=self.reducer_count_words),
 MRStep(reducer=self.reducer_find_max_word)
]

if __name__ == '__main__':
 MRMostUsedWord.run()

(This example is explained further in Protocols.)

The keyword arguments accepted by MRStep are the same
as the
method names listed in the previous section,
plus a jobconf argument which takes a
dictionary of jobconf arguments to pass to Hadoop.

Note

If this is your first time learning about mrjob, you should skip down to
Protocols and finish this section later.

Setup and teardown of tasks

Remember from How your program is run that your script is invoked once
per task by Hadoop Streaming. It starts your script, feeds it stdin, reads its
stdout, and closes it. mrjob lets you write methods to run at the beginning and
end of this process: the *_init() and *_final() methods:

	mapper_init()

	combiner_init()

	reducer_init()

	mapper_final()

	combiner_final()

	reducer_final()

(And the corresponding keyword arguments to MRStep.)

If you need to load some kind of support file, like a sqlite3 [http://docs.python.org/2/library/sqlite3.html#module-sqlite3]
database, or perhaps create a temporary file, you can use these methods to do
so. (See File options for an example.)

*_init() and *_final() methods can yield values just like
normal tasks. Here is our word frequency count example rewritten to use
these methods:

from mrjob.job import MRJob
from mrjob.step import MRStep

class MRWordFreqCount(MRJob):

 def init_get_words(self):
 self.words = {}

 def get_words(self, _, line):
 for word in WORD_RE.findall(line):
 word = word.lower()
 self.words.setdefault(word, 0)
 self.words[word] = self.words[word] + 1

 def final_get_words(self):
 for word, val in self.words.iteritems():
 yield word, val

 def sum_words(self, word, counts):
 yield word, sum(counts)

 def steps(self):
 return [MRStep(mapper_init=self.init_get_words,
 mapper=self.get_words,
 mapper_final=self.final_get_words,
 combiner=self.sum_words,
 reducer=self.sum_words)]

In this version, instead of yielding one line per word, the mapper keeps an
internal count of word occurrences across all lines this mapper has seen so
far. The mapper itself yields nothing. When Hadoop Streaming stops sending data
to the map task, mrjob calls final_get_words(). That function emits
the totals for this task, which is a much smaller set of output lines than the
mapper would have output.

The optimization above is similar to using combiners,
demonstrated in Multi-step jobs. It is usually clearer to use a
combiner rather than a custom data structure, and Hadoop may run combiners in
more places than just the ends of tasks.

Defining command line options has a partial example that shows how to load a
sqlite3 [http://docs.python.org/2/library/sqlite3.html#module-sqlite3] database using mapper_init().

Shell commands as steps

You can forego scripts entirely for a step by specifying it as a shell command.
To do so, use mapper_cmd, combiner_cmd, or reducer_cmd as arguments
to MRStep, or override the methods of the same names on
MRJob. (See mapper_cmd(),
combiner_cmd(), and
reducer_cmd().)

Warning

The default inline runner does not support *_cmd(). If you
want to test locally, use the local runner (-r local).

You may mix command and script steps at will. This job will count the number of
lines containing the string “kitty”:

from mrjob.job import job

class KittyJob(MRJob):

 OUTPUT_PROTOCOL = JSONValueProtocol

 def mapper_cmd(self):
 return "grep kitty"

 def reducer(self, key, values):
 yield None, sum(1 for _ in values)

if __name__ == '__main__':
 KittyJob.run()

Step commands are run without a shell, so if you want to use pipes, etc, you’ll
need to run them in a subshell. For example:

class DemoJob(MRJob):

 def mapper_cmd(self):
 return 'sh -c "grep 'blah' | wc -l"'

Note

You may not use *_cmd() with any other options for a task such as
*_filter(), *_init(), *_final(), or a regular
mapper/combiner/reducer function.

Note

You might see an opportunity here to write your MapReduce code in whatever
language you please. If that appeals to you, check out
upload_files for another piece of the puzzle.

Filtering task input with shell commands

You can specify a command to filter a task’s input before it reaches your task
using the mapper_pre_filter and reducer_pre_filter arguments to
MRStep, or override the methods of the same names on
MRJob. Doing so will cause mrjob to pipe input through
that command before it reaches your mapper.

Warning

The default inline runner does not support *_pre_filter(). If
you want to test locally, use the local runner (-r local).

Here’s a job that tests filters using grep:

from mrjob.job import MRJob
from mrjob.protocol import JSONValueProtocol
from mrjob.step import MRStep

class KittiesJob(MRJob):

 OUTPUT_PROTOCOL = JSONValueProtocol

 def test_for_kitty(self, _, value):
 yield None, 0 # make sure we have some output
 if 'kitty' not in value:
 yield None, 1

 def sum_missing_kitties(self, _, values):
 yield None, sum(values)

 def steps(self):
 return [
 MRStep(mapper_pre_filter='grep "kitty"',
 mapper=self.test_for_kitty,
 reducer=self.sum_missing_kitties)]

if __name__ == '__main__':
 KittiesJob.run()

The output of the job should always be 0, since every line that gets to
test_for_kitty() is filtered by grep to have “kitty” in
it.

Protocols

Hadoop streaming assumes that all data is newline-delimited bytes. By default,
mrjob assumes all output is in JSON format, but it can actually read and write
lines in any format by using protocols.

(If you need to read non-line-based data, see Passing entire files to the mapper, below.)

Each job has an input protocol, an output protocol, and an
internal protocol.

A protocol has a read() method and a write() method. The
read() method converts bytes to pairs of Python objects representing
the keys and values. The write() method converts a pair of Python
objects back to bytes.

The input protocol is used to read the bytes sent to the first mapper
(or reducer, if your first step doesn’t use a mapper). The output
protocol is used to write the output of the last step to bytes written to the
output file. The internal protocol converts the output of one step to
the input of the next if the job has more than one step.

You can specify which protocols your job uses like this:

class MyMRJob(mrjob.job.MRJob):

 # these are the defaults
 INPUT_PROTOCOL = mrjob.protocol.RawValueProtocol
 INTERNAL_PROTOCOL = mrjob.protocol.JSONProtocol
 OUTPUT_PROTOCOL = mrjob.protocol.JSONProtocol

The default input protocol is RawValueProtocol, which just reads in a line
as a str. (The line won’t have a trailing newline character because
MRJob strips it.) So by default, the first step in your
job sees (None, line) for each line of input [1].

The default output and internal protocols are both JSONProtocol [2],
which reads and writes JSON strings separated by a tab character. (By default,
Hadoop Streaming uses the tab character to separate keys and values within one
line when it sorts your data.)

If your head hurts a bit, think of it this way: use RawValueProtocol when you
want to read or write lines of raw text. Use JSONProtocol when you want to
read or write key-value pairs where the key and value are JSON-enoded bytes.

Note

Hadoop Streaming does not understand JSON, or mrjob protocols. It simply
groups lines by doing a string comparison on whatever comes before the
first tab character.

See mrjob.protocol for the full list of protocols built-in to mrjob.

Footnotes

	[1]	Experienced Pythonistas might notice that a str is a bytestring
on Python 2, but Unicode on Python 3. That’s right! RawValueProtocol is
an alias for one of two different protocols depending on your Python
version.

	[2]	JSONProtocol is an alias for one of four different
implementations; we try to use the (much faster) ujson library
if it is available, and if not, rapidjson or simplejson
before falling back to the built-in json [http://docs.python.org/2/library/json.html#module-json] implementation.

Data flow walkthrough by example

Let’s revisit our example from Multi-step jobs. It has two
steps and takes a plain text file as input.

class MRMostUsedWord(MRJob):

 def steps(self):
 return [
 MRStep(mapper=self.mapper_get_words,
 combiner=self.combiner_count_words,
 reducer=self.reducer_count_words),
 MRStep(reducer=self.reducer_find_max_word)
]

The first step starts with mapper_get_words():

def mapper_get_words(self, _, line):
 # yield each word in the line
 for word in WORD_RE.findall(line):
 yield (word.lower(), 1)

Since the input protocol is RawValueProtocol, the key will always be None
and the value will be the text of the line.

The function discards the key and yields (word, 1) for each word in the
line. Since the internal protocol is JSONProtocol, each component of the
output is serialized to JSON. The serialized components are written to stdout
separated by a tab character and ending in a newline character, like this:

"mrjob" 1
"is" 1
"a" 1
"python" 1

The next two parts of the step are the combiner and reducer:

def combiner_count_words(self, word, counts):
 # sum the words we've seen so far
 yield (word, sum(counts))

def reducer_count_words(self, word, counts):
 # send all (num_occurrences, word) pairs to the same reducer.
 # num_occurrences is so we can easily use Python's max() function.
 yield None, (sum(counts), word)

In both cases, bytes are deserialized into (word, counts) by
JSONProtocol, and the output is serialized as JSON in the same way (because
both are followed by another step). It looks just like the first mapper output,
but the results are summed:

"mrjob" 31
"is" 2
"a" 2
"Python" 1

The final step is just a reducer:

discard the key; it is just None
def reducer_find_max_word(self, _, word_count_pairs):
 # each item of word_count_pairs is (count, word),
 # so yielding one results in key=counts, value=word
 yield max(word_count_pairs)

Since all input to this step has the same key (None), a single task will
get all rows. Again, JSONProtocol will handle deserialization and produce the
arguments to reducer_find_max_word().

The output protocol is also JSONProtocol, so the final output will be:

31 "mrjob"

And we’re done! But that’s a bit ugly; there’s no need to write the key out at
all. Let’s use JSONValueProtocol instead, so we
only see the JSON-encoded value:

class MRMostUsedWord(MRJob):

 OUTPUT_PROTOCOL = JSONValueProtocol

Now we should have code that is identical to
examples/mr_most_used_word.py in mrjob’s source code. Let’s try running
it (-q prevents debug logging):

$ python mr_most_used_word.py README.txt -q
"mrjob"

Hooray!

Specifying protocols for your job

Usually, you’ll just want to set one or more of the class variables
INPUT_PROTOCOL,
INTERNAL_PROTOCOL, and
OUTPUT_PROTOCOL:

class BasicProtocolJob(MRJob):

 # get input as raw strings
 INPUT_PROTOCOL = RawValueProtocol
 # pass data internally with pickle
 INTERNAL_PROTOCOL = PickleProtocol
 # write output as JSON
 OUTPUT_PROTOCOL = JSONProtocol

If you need more complex behavior, you can override
input_protocol(),
internal_protocol(), or
output_protocol() and return a protocol object
instance. Here’s an example that sneaks a peek at Defining command line options:

class CommandLineProtocolJob(MRJob):

 def configure_args(self):
 super(CommandLineProtocolJob, self).configure_args()
 self.add_passthru_arg(
 '--output-format', default='raw', choices=['raw', 'json'],
 help="Specify the output format of the job")

 def output_protocol(self):
 if self.options.output_format == 'json':
 return JSONValueProtocol()
 elif self.options.output_format == 'raw':
 return RawValueProtocol()

Finally, if you need to use a completely different concept of protocol
assignment, you can override pick_protocols():

class WhatIsThisIDontEvenProtocolJob(MRJob):

 def pick_protocols(self, step_num, step_type):
 return random.choice([Protocololol, ROFLcol, Trolltocol, Locotorp])

Writing custom protocols

A protocol is an object with methods read(self, line) and write(self,
key, value). The read() method takes a bytestring and returns a 2-tuple
of decoded objects, and write() takes the key and value and returns bytes
to be passed back to Hadoop Streaming or as output.

Protocols don’t have to worry about adding or stripping newlines; this
is handled automatically by MRJob.

Here is a simplified version of mrjob’s JSON protocol:

import json

class JSONProtocol(object):

 def read(self, line):
 k_str, v_str = line.split('\t', 1)
 return json.loads(k_str), json.loads(v_str)

 def write(self, key, value):
 return '%s\t%s' % (json.dumps(key), json.dumps(value))

You can improve performance significantly by caching the
serialization/deserialization results of keys. Look at the source code of
mrjob.protocol for an example.

Passing entire files to the mapper

New in version 0.6.3.

Sometimes you need to read binary data (e.g. image files), or text-based
data that has records longer than one line.

By using mapper_raw(), you can pass entire files
to your mapper, and read them however you want. Each mapper gets one file,
and is passed both the path of a local copy of the file, and the URI where
the original file is located on Hadoop’s filesystem.

For example, if you want to read .wet files from
Common Crawl [http://commoncrawl.org/] data, you could handle them like
this:

class MRCrawler(MRJob):

 def mapper_raw(self, wet_path, wet_uri):
 from warcio.archiveiterator import ArchiveIterator

 with open(wet_path, 'rb') as f:
 for record in ArchiveIterator(f):
 ...

To use a library like warcio, you’ll need to ensure that it gets
installed on your cluster. See Using a virtualenv for one way to do
this.

Under the hood, mrjob is passes an input manifest (a list of
URIs of input files) to Hadoop, and instructs Hadoop to send one line to
each mapper. In most cases, this should be seamless, even to the point of
telling you which file was being read when a task fails.

Warning

For all runners except EMR, mrjob uses hadoop fs to download
files to the local filesystem, which means Hadoop has to invoke
itself. If your cluster has tightly tuned memory requirements, this can
sometimes cause an out-of-memory error.

Jar steps

You can run Java directly on Hadoop (bypassing Hadoop Streaming) by using
JarStep instead of MRStep().

For example, on EMR you can use a jar to run a script:

from mrjob.job import MRJob
from mrjob.step import JarStep

class ScriptyJarJob(MRJob):

 def steps(self):
 return [JarStep(
 jar='s3://elasticmapreduce/libs/script-runner/script-runner.jar',
 args=['s3://my_bucket/my_script.sh'])]

More interesting is combining MRStep and
JarStep in the same job. Use
mrjob.step.INPUT and mrjob.step.OUTPUT
in args to stand for the input and output paths
for that step. For example:

class NaiveBayesJob(MRJob):

 def steps(self):
 return [
 MRStep(mapper=self.mapper, reducer=self.reducer),
 JarStep(
 jar='elephant-driver.jar',
 args=['naive-bayes', INPUT, OUTPUT]
)
]

Changed in version 0.6.6: mrjob no longer passes hadoop generic args (-D and -libjars) to
JarSteps. If you want them, add mrjob.step.GENERIC_ARGS
to your JarStep‘s args, and mrjob will automatically interpolate
them.

JarStep has no concept of Protocols. If your
jar reads input from a MRStep, or writes input
read by another MRStep, it is up to those
steps to read and write data in the format your jar expects.

If you are writing the jar yourself, the easiest solution is to have it read
and write mrjob’s default protocol (lines containing two JSONs, separated
by a tab).

If you are using a third-party jar, you can set custom protocols for the steps
before and after it by overriding pick_protocols().

Warning

If the first step of your job is a JarStep and you
pass in multiple input paths, mrjob will replace
INPUT with the input paths joined together with a
comma. Not all jars can handle this!

Best practice in this case is to put all your input into a single
directory and pass that as your input path.

Using other python modules and packages

New in version 0.6.4.

If you want to run Python code outside of the file containing your
MRJob, you’ll to make sure that code gets uploaded to
Hadoop.

The easiest way to do this is with by setting the
DIRS attribute in your job. Put the code you
want to import in one or more packages (directories with an
__init__.py file), and point DIRS
at them:

class MRPackageUsingJob(MRJob):

 DIRS = ['mycode', '../someothercode']

 ...

And then import code from inside a mapper or reducer:

def mapper(self, key, value):
 from mycode.custom import important_business_logic
 from someotherlibrary import util_function
 ...

(If you want to import code from the top level of your script rather than
inside a method, make sure it’s in your PYTHONPATH, just like with
any other code.)

DIRS is relative to the directory your script is
in (not the current working directory). This works inside Hadoop because the
current working directory is the same as the directory your script is in.

If you want to access individual Python modules or other support code, you
can use FILES to upload them to your job’s working
directory inside Hadoop:

class MRFileUsingJob(MRJob):

 FILES = ['mymodule.py', '../data/zipcodes.db']

 def mapper(self, key, value):
 from mymodule import open_zipcode_db
 with open_zipcode_db('zipcodes.db') as db:
 ...

For jobs with more complex dependencies (e.g. code that needs to be compiled),
you may need to use the setup option. See Job Environment Setup Cookbook
for more information.

Defining command line options

Recall from How your program is run that your script is executed in
several contexts: once for the initial invocation, and once for each task. If
you just add an option to your job’s option parser, that option’s value won’t
be propagated to other runs of your script. Instead, you can use mrjob’s option
API: add_passthru_arg() and
add_file_arg().

Passthrough options

A passthrough option is an argparse [http://docs.python.org/2/library/argparse.html#module-argparse] option that mrjob is aware
of. mrjob inspects the value of the option when you invoke your script
and reproduces that value when it invokes your script in other contexts. The
command line-switchable protocol example from before uses this feature:

class CommandLineProtocolJob(MRJob):

 def configure_args(self):
 super(CommandLineProtocolJob, self).configure_args()
 self.add_passthru_arg(
 '--output-format', default='raw', choices=['raw', 'json'],
 help="Specify the output format of the job")

 def output_protocol(self):
 if self.options.output_format == 'json':
 return JSONValueProtocol()
 elif self.options.output_format == 'raw':
 return RawValueProtocol()

When you run your script with --output-format=json, mrjob detects that you
passed --output-format on the command line. When your script is run in any
other context, such as on Hadoop, it adds --output-format=json to its
command string.

add_passthru_arg() takes the same arguments as
argparse.ArgumentParser.add_argument() [http://docs.python.org/2/library/argparse.html#argparse.ArgumentParser.add_argument]. For more information, see the
argparse docs [http://docs.python.org/library/argparse.html].

Passing through existing options

Occasionally, it’ll be useful for mappers, reducers, etc. to be able to see
the value of other command-line options. For this, use
pass_arg_through() with the corresponding
command-line switch.

For example, you might wish to fetch supporting data for your job from
different locations, depending on whether your job is running on EMR or
locally:

class MRRunnerAwareJob(MRJob):

 def configure_args(self):
 super(MRRunnerAwareJob, self).configure_args()

 self.pass_arg_through('--runner')

 def mapper_init(self):
 if self.options.runner == 'emr':
 self.data = ... # load from S3
 else:
 self.data = ... # load from local FS

Note

Keep in mind that self.options.runner (and the values of most options)
will be None unless the user explicitly set them with a command-line
switch.

File options

A file option is like a passthrough option, but:

	Its value must be a string or list of strings (action="store" or
action="append"), where each string represents either a local path, or
an HDFS or S3 path that will be accessible from the task nodes.

	That file will be downloaded to each task’s local directory and the value of
the option will magically be changed to its path.

For example, if you had a map task that required a sqlite3 [http://docs.python.org/2/library/sqlite3.html#module-sqlite3] database,
you could do this:

class SqliteJob(MRJob):

 def configure_args(self):
 super(SqliteJob, self).configure_args()
 self.add_file_arg('--database')

 def mapper_init(self):
 # make sqlite3 database available to mapper
 self.sqlite_conn = sqlite3.connect(self.options.database)

You could call it any of these ways, depending on where the file is:

$ python sqlite_job.py -r local --database=/etc/my_db.sqlite3
$ python sqlite_job.py -r hadoop --database=/etc/my_db.sqlite3
$ python sqlite_job.py -r hadoop --database=hdfs://my_dir/my_db.sqlite3
$ python sqlite_job.py -r emr --database=/etc/my_db.sqlite3
$ python sqlite_job.py -r emr --database=s3://my_bucket/my_db.sqlite3

In any of these cases, when your task runs, my_db.sqlite3 will always
be available in the task’s working directory, and the value of
self.options.database will always be set to its path.

See Making files available to tasks if you want to upload a file to your
tasks’ working directories without writing a custom command line option.

Warning

You must wait to read files until after class initialization. That
means you should use the *_init() methods
to read files. Trying to read files into class variables will not work.

Counters

Hadoop lets you track counters that are aggregated over a step. A
counter has a group, a name, and an integer value. Hadoop itself tracks a few
counters automatically. mrjob prints your job’s counters to the command line
when your job finishes, and they are available to the runner object if you
invoke it programmatically.

To increment a counter from anywhere in your job, use the
increment_counter() method:

class MRCountingJob(MRJob):

 def mapper(self, _, value):
 self.increment_counter('group', 'counter_name', 1)
 yield _, value

At the end of your job, you’ll get the counter’s total value:

group:
 counter_name: 1

Input and output formats

Input and output formats are Java classes that determine how your job
interfaces with data on Hadoop’s filesystem(s).

Suppose we wanted to write a word frequency count job that wrote output
into a separate directory based on the first letter of the word counted
(a/part-*, b/part-*, etc.). We
could accomplish this by using the MultipleValueOutputFormat class
from the Open Source project
nicknack [http://empiricalresults.github.io/nicknack/].

First, we need to tell our job to use the custom output format by setting
HADOOP_OUTPUT_FORMAT in our job class:

HADOOP_OUTPUT_FORMAT = 'nicknack.MultipleValueOutputFormat'

The output format class is part of a custom JAR, so we need to make sure that
this JAR gets included in Hadoop’s classpath. First
download [https://github.com/empiricalresults/nicknack/releases/download/v1.0.0/nicknack-1.0.0.jar]
the jar to the same directory as your script, and add its name to
LIBJARS:

LIBJARS = ['nicknack-1.0.0.jar']

(You can skip this step if you’re using a format class that’s built into
Hadoop.)

Finally, output your data the way that your output format expects.
MultipleValueOutputFormat expects the subdirectory name, followed by
a tab, followed the actual line to write into the file.

First, we need to take direct control of how the job writes output by
setting
OUTPUT_PROTOCOL to
RawValueProtocol:

OUTPUT_PROTOCOL = RawValueProtocol

Then we need to format the line accordingly. In this case, let’s
continue output our final data in the standard format (two JSONs separated by
a tab):

def reducer(self, word, counts):
 total = sum(counts)
 yield None, '\t'.join([word[0], json.dumps(word), json.dumps(total)])

Done! Here’s the full, working job (this is
mrjob.examples.mr_nick_nack):

import json
import re

from mrjob.job import MRJob
from mrjob.protocol import RawValueProtocol

WORD_RE = re.compile(r"[A-Za-z]+")

class MRNickNack(MRJob):

 HADOOP_OUTPUT_FORMAT = 'nicknack.MultipleValueOutputFormat'

 LIBJARS = ['nicknack-1.0.0.jar']

 OUTPUT_PROTOCOL = RawValueProtocol

 def mapper(self, _, line):
 for word in WORD_RE.findall(line):
 yield (word.lower(), 1)

 def reducer(self, word, counts):
 total = sum(counts)
 yield None, '\t'.join([word[0], json.dumps(word), json.dumps(total)])

if __name__ == '__main__':
 MRNickNack.run()

Input formats work the same way; just set
HADOOP_INPUT_FORMAT. (You usually won’t need to set
INPUT_PROTOCOL because it already defaults to
RawValueProtocol.)

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Runners

While the MRJob class is the part of the framework that
handles the execution of your code in a MapReduce context, the runner is
the part that packages and submits your job to be run, and reporting the
results back to you.

In most cases, you will interact with runners via the command line and
configuration files. When you invoke mrjob via the command line, it reads your
command line options (the --runner parameter) to determine which type of
runner to create. Then it creates the runner, which reads your configuration
files and command line args and starts your job running in whatever context
you chose.

Most of the time, you won’t have any reason to construct a runner directly.
Instead you’ll invoke your Python script on the command line and it will make a
runner automatically or you’ll write some sort of wrapper that calls
my_job.make_runner().

Internally, the general order of operations is:

	Get a runner by calling make_runner() on your job

	Call run() on your runner. This will:
	Copy your job and supporting files to Hadoop

	Instruct Hadoop to run your job with the appropriate
--mapper, --combiner, --reducer, and
--step-num arguments

Each runner runs a single job once; if you want to run a job multiple
times, make multiple runners.

Subclasses: DataprocJobRunner,
EMRJobRunner,
HadoopJobRunner,
InlineMRJobRunner,
LocalMRJobRunner

Testing locally

To test the job locally, just run:

python your_mr_job_sub_class.py < log_file_or_whatever > output

The script will automatically invoke itself to run the various steps, using
InlineMRJobRunner (--runner=inline). If you want
to simulate Hadoop more closely, you can use --runner=local, which doesn’t
add your working directory to the PYTHONPATH [http://docs.python.org/2/using/cmdline.html#envvar-PYTHONPATH], sets a few Hadoop
environment variables, and uses multiple subprocesses for tasks.

You can also run individual steps:

test 1st step mapper:
python your_mr_job_sub_class.py --mapper
test 2nd step reducer (step numbers are 0-indexed):
python your_mr_job_sub_class.py --reducer --step-num=1

By default, we read from stdin, but you can also specify one or more
input files. It automatically decompresses .gz and .bz2 files:

python your_mr_job_sub_class.py log_01.gz log_02.bz2 log_03

See mrjob.examples for more examples.

Running on your own Hadoop cluster

	Set up a hadoop cluster (see http://hadoop.apache.org/docs/current/)

	Run your job with -r hadoop:

python your_mr_job_sub_class.py -r hadoop < input > output

Note

You don’t need to install mrjob or any other libraries on the nodes
of your Hadoop cluster, but they do at least need a version of Python
that’s compatible with your job.

Running on EMR

	Set up your Amazon account and credentials (see Configuring AWS credentials)

	Run your job with -r emr:

python your_mr_job_sub_class.py -r emr < input > output

Running on Dataproc

	Set up your Google account and credentials (see Getting started with Google Cloud)

	Run your job with -r dataproc:

python your_mr_job_sub_class.py -r dataproc < input > output

Note

Dataproc does not yet support Spark or libjars.

Configuration

Runners are configured by several methods:

	from mrjob.conf (see Config file format and location)

	from the command line

	by re-defining job_runner_kwargs() etc in your
MRJob (see Job runner configuration)

	by instantiating the runner directly

In most cases, you should put all configuration in mrjob.conf and use the
command line args or class variables to customize how individual jobs are run.

Running your job programmatically

It is fairly common to write an organization-specific wrapper around mrjob. Use
make_runner() to run an MRJob
from another Python script. The context manager guarantees that all temporary
files are cleaned up regardless of the success or failure of your job.

This pattern can also be used to write integration tests (see Testing jobs).

mr_job = MRWordCounter(args=['-r', 'emr'])
with mr_job.make_runner() as runner:
 runner.run()
 for key, value in mr_job.parse_output(runner.cat_output()):
 ... # do something with the parsed output

You instantiate the MRJob, use a context manager to
create the runner, run the job, and cat its output, parsing that output with
the job’s output protocol.

Further reference:

	make_runner()

	run()

	parse_output()

	cat_output()

Limitations

Note

You should pay attention to the next sentence.

You cannot use the programmatic runner functionality in the same file as your
job class. As an example of what not to do, here is some code that does not
work.

Warning

The code below shows you what not to do.

from mrjob.job import MRJob

class MyJob(MRJob):
 # (your job)

no, stop, what are you doing?!?!
mr_job = MyJob(args=[args])
with mr_job.make_runner() as runner:
 runner.run()
 # ... etc

What you need to do instead is put your job in one file, and your run code in
another. Here are two files that would correctly handle the above case.

job.py
from mrjob.job import MRJob

class MyJob(MRJob):
 # (your job)

if __name__ == '__main__':
 MyJob.run()

run.py
from job import MyJob
mr_job = MyJob(args=[args])
with mr_job.make_runner() as runner:
 runner.run()
 # ... etc

Why can’t I put the job class and run code in the same file?

The file with the job class is sent to Hadoop to be run. Therefore, the job
file cannot attempt to start the Hadoop job, or you would be recursively
creating Hadoop jobs!

The code that runs the job should only run outside of the Hadoop context.

The if __name__ == '__main__' block is only run if you invoke the job file
as a script. It is not run when imported. That’s why you can import the job
class to be run, but it can still be invoked as an executable.

Counters

Counters may be read through the
counters() method on the runner. The
example below demonstrates the use of counters in a test case.

mr_counting_job.py

from mrjob.job import MRJob
from mrjob.step import MRStep

class MRCountingJob(MRJob):

 def steps(self):
 # 3 steps so we can check behavior of counters for multiple steps
 return [MRStep(self.mapper),
 MRStep(self.mapper),
 MRStep(self.mapper)]

 def mapper(self, _, value):
 self.increment_counter('group', 'counter_name', 1)
 yield _, value

if __name__ == '__main__':
 MRCountingJob.run()

test_counters.py

from io import BytesIO
from unittest import TestCase

from tests.mr_counting_job import MRCountingJob

class CounterTestCase(TestCase):

 def test_counters(self):
 stdin = BytesIO(b'foo\nbar\n')

 mr_job = MRCountingJob(['--no-conf', '-'])
 mr_job.sandbox(stdin=stdin)

 with mr_job.make_runner() as runner:
 runner.run()

 self.assertEqual(runner.counters(),
 [{'group': {'counter_name': 2}},
 {'group': {'counter_name': 2}},
 {'group': {'counter_name': 2}}])

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Spark

Why use mrjob with Spark?

mrjob augments Spark [http://spark.apache.org/]‘s native Python support
with the following features familiar to users of mrjob:

	automatically upload input and other support files to HDFS, GCS, or S3
(see upload_files, upload_archives,
and py_files)

	run make and other command before running Spark
tasks (see setup).

	passthrough and file arguments (see Defining command line options)

	automatically parse logs to explain errors and other Spark job failures

	easily pass through environment variables (see cmdenv)

	support for libjars

	automatic matching of Python version (see python_bin)

	automatically set up Spark on EMR (see bootstrap_spark)

	automatically making the mrjob library available to your job
(see bootstrap_mrjob)

mrjob spark-submit

If you already have a Spark script written, the easiest way to access mrjob’s
features is to run your job with mrjob spark-submit, just like you
would normally run it with spark-submit. This can, for instance,
make running a Spark job on EMR as easy as running it locally, or allow
you to access features (e.g. setup) not natively supported by
Spark.

For more details, see mrjob spark-submit.

Writing your first Spark MRJob

Another way to integrate mrjob with Spark is to add a
spark() method to your MRJob
class, and put your Spark code inside it. This will allow you to access
features only availble to MRJobs (e.g. FILES).

Here’s how you’d implement a word frequency count job in Spark:

import re
from operator import add

from mrjob.job import MRJob

WORD_RE = re.compile(r"[\w']+")

class MRSparkWordcount(MRJob):

 def spark(self, input_path, output_path):
 # Spark may not be available where script is launched
 from pyspark import SparkContext

 sc = SparkContext(appName='mrjob Spark wordcount script')

 lines = sc.textFile(input_path)

 counts = (
 lines.flatMap(self.get_words)
 .map(lambda word: (word, 1))
 .reduceByKey(add))

 counts.saveAsTextFile(output_path)

 sc.stop()

 def get_words(self, line):
 return WORD_RE.findall(line)

if __name__ == '__main__':
 MRSparkWordcount.run()

Since Spark already supports Python, mrjob takes care of setting up your
cluster, passes in input and output paths, and otherwise gets out of the way.
If you pass in multiple input paths, input_path will be these paths joined
by a comma (SparkContext.textFile() will accept this).

Note that pyspark is imported inside the
spark() method. This allows your job to run whether
pyspark is installed locally or not.

The spark() method can be used to execute arbitrary
code, so there’s nothing stopping you from using SparkSession instead of
SparkContext in Spark 2, or writing a streaming-mode job rather than a
batch one.

Warning

Prior to v0.6.8, to pass job methods into Spark
(e.g. rdd.flatMap(self.get_words)), you first had to call
self.sandbox(); otherwise
Spark would error because self was not serializable.

Running on your Spark cluster

By default, mrjob runs your job on the inline runner (see below).
If you want to run your job on your own Spark cluster, run it with
-r spark:

Use --spark-master (see spark_master) to control where your
job runs.

You can pass in spark options with -D (see jobconf) and
set deploy mode (client or cluster) with --spark-deploy-mode. If you need
to pass other arguments to spark-submit, use
spark_args.

The Spark runner can also run “classic” MRJobs (i.e. those made
by defining mapper() etc. or with
MRSteps) directly on Spark, allowing you to move
off Hadoop without rewriting your jobs. See
below for details.

Warning

If you don’t set spark_master, your job will run on Spark’s
default local[*] master, which can’t handle setup scripts
or --files because it doesn’t give tasks their own working directory.

Note

mrjob needs to know what master and deploy mode you’re using, so it will
override attempts to set spark master or deploy mode through
jobconf (e.g. -D spark.master=...).

Using remote filesystems other than HDFS

By default, if you use a remote Spark master (i.e. not local or
local-cluster), Spark will assume you want to use HDFS for your job’s
temp space, and that you will want to access it through hadoop fs.

Some Spark installations don’t use HDFS at all. Fortunately, the Spark runner
also supports S3 and GCS. Use spark_tmp_dir to specify a remote
temp directory not on HDFS (e.g. --spark-tmp-dir s3a://bucket/path).

For more information on accessing S3 or GCS, see Configuring AWS credentials (S3)
or Configuring Google Cloud credentials (GCS).

Other ways to run on Spark

Inline runner

Running your Spark job with -r inline (the default) will launch it
directly through the pyspark library, effectively running it on the
local[*] master. This is convenient for debugging because exceptions will
bubble up directly to your Python process.

The inline runner also builds a simulated working directory for your job,
making it possible to test scripts that rely on certain files being in the
working directory (it doesn’t run setup scripts).

Note

If you don’t have a local Spark installation, the pyspark library
on PyPI is a pretty quick way to get one (pip install pyspark).

Local runner

Running your Spark job with -r local will launch it through
spark-submit on a local-cluster master. local-cluster
is designed to simulate a real Spark cluster, so setup
will work as expected.

By default, the local runner launches Spark jobs with as many executors
as your system has CPUs. Use --num-cores (see num_cores
to change this).

By default, the local runner gives each executor 1 GB of memory. If you need
more, you can specify it through jobconf, e.g. -D spark.core.memory=4g.

EMR runner

Running your Spark job with -r emr will launch it in Amazon Elastic
MapReduce (EMR), with the same seamless integration and features mrjob provides
for Hadoop jobs on EMR.

The EMR runner will always run your job on the yarn Spark master in
cluster deploy mode.

Hadoop runner

Running your Spark job with -r hadoop will launch it on your own Hadoop
cluster. This is not significantly different than the Spark runner. The main
advantage of the Hadoop runner is that is has more knowledge about how to find
logs and can be better at finding the relevant error if your job fails.

Unlike the Spark runner, the Hadoop runner’s default spark master is yarn.

Note

mrjob does not yet support Spark on Google Cloud Dataproc.

Passing in libraries

Use --py-files to pass in .zip or .egg files full of Python code:

python your_mr_spark_job -r hadoop --py-files lib1.zip,lib2.egg

Or set py_files in mrjob.conf.

Command-line options

Command-line options (passthrough options, etc) work exactly like they
do with regular streaming jobs (even add_file_arg()
on the local[*] Spark master. See Defining command line options.

Uploading files to the working directory

upload_files, FILES, and files
uploaded via setup scripts all should work as expected (except
on local masters because there is no working directory).

Note that you can give files a different name in the working directory
(e.g. --files foo#bar) on all Spark masters, even though Spark treats
that as a YARN-specific feature.

Archives and directories

Spark treats --archives as a YARN-specific feature. This means that
upload_archives, ARCHIVES,
DIRS, etc. will be ignored on non-yarn
Spark masters.

Future versions of mrjob may simulate archives on non-yarn masters
using a setup script.

Multi-step jobs

There generally isn’t a need to define multiple Spark steps (Spark lets
you map/reduce as many times as you want). However, it may sometimes be useful
to pre- or post-process Spark data using a
streaming or
jar step.

This is accomplished by overriding your job’s steps()
method and using the SparkStep class:

def steps():
 return [
 MRStep(mapper=self.preprocessing_mapper),
 SparkStep(spark=self.spark),
]

External Spark scripts

mrjob can also be used to launch external (non-mrjob) Spark scripts using
the SparkScriptStep class, which specifies the
path (or URI) of the script and its arguments.

As with JarSteps, you can interpolate input
and output paths using INPUT and
OUTPUT constants. For example, you could set your job’s
steps() method up like this:

def steps():
 return [
 SparkScriptStep(
 script=os.path.join(
 os.path.dirname(__file__), 'my_spark_script.py'),
 args=[INPUT, '-o', OUTPUT, '--other-switch'],
),
]

Custom input and output formats

mrjob allows you to use input and output formats from custom JARs with Spark,
just like you can with streaming jobs.

First download your JAR [https://github.com/empiricalresults/nicknack/releases/download/v1.0.0/nicknack-1.0.0.jar]
to the same directory as your job, and add it to your job class with the
LIBJARS attribute:

LIBJARS = ['nicknack-1.0.0.jar']

Then use Spark’s own capabilities to reference your input or output format,
keeping in mind the data types they expect.

For example, nicknack’s MultipleValueOutputFormat expects <Text,Text>,
so if we wanted to integrate it with our wordcount example, we’d have to
convert the count to a string:

def spark(self, input_path, output_path):
 from pyspark import SparkContext

 sc = SparkContext(appName='mrjob Spark wordcount script')

 lines = sc.textFile(input_path)

 counts = (
 lines.flatMap(self.get_words
 .map(lambda word: (word, 1))
 .reduceByKey(add))

 # MultipleValueOutputFormat expects Text, Text
 # w_c is (word, count)
 counts = counts.map(lambda w_c: (w_c[0], str(w_c[1])))

 counts.saveAsHadoopFile(output_path,
 'nicknack.MultipleValueOutputFormat')

 sc.stop()

Running “classic” MRJobs on Spark

The Spark runner provides near-total support for running “classic”
MRJobs (the sort described in
Writing your first job and Writing your second job)
directly on any Spark installation, even
though these jobs were originally designed to run on Hadoop Streaming.
Support includes:

	*_init() and
*_final() methods

	HADOOP_INPUT_FORMAT and
HADOOP_OUTPUT_FORMAT

	SORT_VALUES

	passthrough arguments

	increment_counter()

Jobs will often run more quickly on Spark than Hadoop Streaming, so it’s worth
trying even if you don’t plan to move off Hadoop in the forseeable future.

Multiple steps are run as a single job

If you have a job with multiple consecutive MRSteps,
the Spark runner will run them all as a single Spark job. This is usually what
you want (more efficient), but it can make debugging slightly more
challenging (step failure exceptions
give a range of steps, no way to access intermediate data).

To force the Spark runner to run steps separately, you can initialize
each MRStep with a different jobconf
dictionary.

No support for subprocesses

Pre-filters (e.g. mapper_pre_filter()) and
command steps (e.g. reducer_cmd()) are not
supported because they require launching subprocesses.

It wouldn’t be impossible to emulate this inside Spark, but then we’d
essentially be turning Spark into Hadoop Streaming. (If you have a use case
for this seemingly implausible feature, let us know
through GitHub [https://github.com/Yelp/mrjob/issues].)

Spark loves combiners

Hadoop’s “reduce” paradigm is a lot more heavyweight than Spark’s; whereas a
Spark reducer just wants to know how to combine two values into one, a Hadoop
reducer expects to be able to see all the values for a given key, and to emit
zero or more key-value pairs.

In fact, Spark reducers are a lot more like Hadoop combiners. The Spark runner
knows how to translate something like:

def combiner(self, key, values):
 yield key, sum(values)

into Spark’s reduce paradigm–basically it’ll pass your combiner two values
at a time, and hope it emits one. If your combiner does not behave like a
Spark reducer function (emitting multiple or zero values), the Spark runner
handles that gracefully as well.

Counter emulation is almost perfect

Counters (see increment_counter()) are a feature
specific to Hadoop. mrjob emulates them on Spark anyway. If you have a
multi-step job, mrjob will dutifully print out counters for each step and
make them available through counters().

The only drawback is that while Hadoop has the ability to “take back” counters
produced by a failed task, there isn’t a clean way to do this with Spark
accumulators. Therefore, the counters produced by the Spark runner’s
Hadoop emulation may be overestimates.

Spark does not stream data

While Hadoop streaming (as its name implies) passes a stream of data to your
job, Spark instead operates on partitions, which are loaded into memory.

A reducer like this can’t run out of memory on Hadoop streaming, no matter
how many values there are for key:

def reducer(self, key, values):
 yield key, sum(values)

However, on Spark, simply storing the partition that contains these values
can cause Spark to run out of memory.

If this happens, you can let Spark use more memory
(-D spark.executor.memory=10g) or add a combiner to your job.

Compression emulation

It’s fairly common for people to request compressed output from Hadoop via
configuration properties, for example:

python mr_your_job.py -D mapreduce.output.fileoutputformat.compress=true -D\
 mapreduce.output.fileoutputformat.compress.codec=org.apache.hadoop.io.compress.BZip2Codec ...

This works with -r spark too; the Spark runner knows how to recognize these
properties and pass the codec specified to Spark when it writes output.

Spark won’t split .gz files either

A common trick on Hadoop to ensure that segments of your data don’t get split
between mappers is to gzip each segment (since .gz is not a seekable
compression format).

This works on Spark as well.

Controlling number of output files

By default, Spark will write one output file per partition. This may give more
output files than you expect, since Hadoop and Spark are tuned differently.

The Spark runner knows how to emulate the Hadoop configuration property that
sets number of reducers on Hadoop (e.g. -D mapreduce.job.reduces=100),
which will control the number of output files (assuming your last step has a
reducer).

However, this is a somewhat heavyweight solution; once Spark runs a step’s
reducer, mrjob has to forbid Spark from re-partitioning until the end
of the step.

A lighter weight solution is --max-output-files, allows you to limit
the number of output files by running coalesce() just before
writing output. Running your job with --max-output-files=100 would ensure
it produces no more than 100 output files (but it could output less).

Running classic MRJobs on Spark on EMR

It’s often faster to run classic MRJobs on Spark than Hadoop Streaming. It’s
also convenient to be able to run on EMR rather than setting up your own
Spark cluster (or SSH’ing in).

Can you do both? Yes! Run the job with the Spark runner, but tell it
to use mrjob spark-submit to launch Spark jobs on EMR.

It looks something like this:

python mr_your_job.py -r spark \
 --spark-submit-bin 'mrjob spark-submit -r emr' \
 --spark-master yarn --spark-tmp-dir s3://your-bucket/tmp/ input1 input2

Note that because the Spark runner itself doesn’t know the job is going to
run on EMR, you have to give it a couple of hints so that it knows
it’s running on YARN (--spark-master) and that it needs to
use S3 as its temp space (--spark-tmp-dir).

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Config file format and location

We look for mrjob.conf in these locations:

	The location specified by MRJOB_CONF

	~/.mrjob.conf

	/etc/mrjob.conf

You can specify one or more configuration files with the --conf-path
flag. See Options available to all runners for more information.

The point of mrjob.conf is to let you set up things you want every
job to have access to so that you don’t have to think about it. For example:

	libraries and source code you want to be available for your jobs

	where temp directories and logs should go

	security credentials

mrjob.conf is just a YAML [http://www.yaml.org]- or JSON [http://www.json.org]-encoded dictionary containing default values to pass in
to the constructors of the various runner classes. Here’s a minimal
mrjob.conf:

runners:
 emr:
 cmdenv:
 TZ: America/Los_Angeles

Now whenever you run mr_your_script.py -r emr,
EMRJobRunner will automatically set TZ to
America/Los_Angeles in your job’s environment when it runs on EMR.

If you don’t have the yaml module installed, you can use JSON
in your mrjob.conf instead (JSON is a subset of YAML, so it’ll still
work once you install yaml). Here’s how you’d render the above
example in JSON:

{
 "runners": {
 "emr": {
 "cmdenv": {
 "TZ": "America/Los_Angeles"
 }
 }
 }
}

Precedence and combining options

Options specified on the command-line take precedence over
mrjob.conf. Usually this means simply overriding the option in
mrjob.conf. However, we know that cmdenv contains environment
variables, so we do the right thing. For example, if your mrjob.conf
contained:

runners:
 emr:
 cmdenv:
 PATH: /usr/local/bin
 TZ: America/Los_Angeles

and you ran your job as:

mr_your_script.py -r emr --cmdenv TZ=Europe/Paris --cmdenv PATH=/usr/sbin

We’d automatically handle the PATH
variables and your job’s environment would be:

{'TZ': 'Europe/Paris', 'PATH': '/usr/sbin:/usr/local/bin'}

What’s going on here is that cmdenv is associated with
combine_envs(). Each option is associated with an appropriate
combiner function that that combines options in an appropriate way.

Combiner functions can also do useful things like expanding environment
variables and globs in paths. For example, you could set:

runners:
 local:
 upload_files: &upload_files
 - $DATA_DIR/*.db
 hadoop:
 upload_files: *upload_files
 emr:
 upload_files: *upload_files

and every time you ran a job, every job in your .db file in $DATA_DIR
would automatically be loaded into your job’s current working directory.

Also, if you specified additional files to upload with --file, those
files would be uploaded in addition to the .db files, rather than instead
of them.

See Configuration quick reference for the entire dizzying array of configurable
options.

Option data types

The same option may be specified multiple times and be one of several data
types. For example, the AWS region may be specified in mrjob.conf, in the
arguments to EMRJobRunner, and on the command line. These are the rules
used to determine what value to use at runtime.

Values specified “later” refer to an option being specified at a higher
priority. For example, a value in mrjob.conf is specified “earlier” than a
value passed on the command line.

When there are multiple values, they are “combined with” a combiner function.
The combiner function for each data type is listed in its description.

Simple data types

When these are specified more than once, the last non-None value is used.

	String

	Simple, unchanged string. Combined with
combine_values().

	Command

	String containing all ASCII characters to be parsed with
shlex.split() [http://docs.python.org/2/library/shlex.html#shlex.split], or list of command + arguments. Combined with
combine_cmds().

	Path

	Local path with ~ and environment variables (e.g. $TMPDIR)
resolved. Combined with combine_paths().

List data types

The values of these options are specified as lists. When specified more than
once, the lists are concatenated together.

	String list

	List of strings. Combined with
combine_lists().

	Path list

	List of paths. Combined with
combine_path_lists().

Strings and non-sequence data types (e.g. numbers) are treated as
single-item lists.

For example,

runners:
 emr:
 setup: /run/some/command with args

is equivalent to:

runners:
 emr:
 setup:
 - /run/some/command with args

Dict data types

The values of these options are specified as dictionaries. When specified more
than once, each has custom behavior described below.

	Plain dict

	Values specified later override values specified earlier. Combined with
combine_dicts().

JobConf Dicts

New in version 0.6.6: Like plain dicts except that non-string values are converted into a
format that Java understands. For example, the boolean value
true here:

jobconf:
 mapreduce.output.fileoutputformat.compress: true

gets passed through to Hadoop in Java format (true), not
Python format (True).

Keys whose values are None are not passed to Hadoop at all.

Warning

Prior to version 0.6.6, you should use "true" and "false",
for boolean jobconf values in config files, not
true and false.

	Environment variable dict

	Values specified later override values specified earlier, except for
those with keys ending in PATH, in which values are concatenated and
separated by a colon (:) rather than overwritten. The later value comes
first.

For example, this config:

runners:
 emr:
 cmdenv:
 PATH: /usr/bin

when run with this command:

python my_job.py --cmdenv PATH=/usr/local/bin

will result in the following value of cmdenv:

/usr/local/bin:/usr/bin

The function that handles this is combine_envs().

The one exception to this behavior is in the local runner, which
uses the local system separator (on Windows ;, on everything else still
:) instead of always using :. In local mode, the function that
combines config values is combine_local_envs().

Using multiple config files

If you have several standard configurations, you may want to have several
config files “inherit” from a base config file. For example, you may have one
set of AWS credentials, but two code bases and default instance sizes. To
accomplish this, use the include option:

~/mrjob.very-large.conf:

include: ~/.mrjob.base.conf
runners:
 emr:
 num_core_instances: 20
 core_instance_type: m1.xlarge

~/mrjob.very-small.conf:

include: $HOME/.mrjob.base.conf
runners:
 emr:
 num_core_instances: 2
 core_instance_type: m1.small

~/.mrjob.base.conf:

runners:
 emr:
 aws_access_key_id: HADOOPHADOOPBOBADOOP
 aws_secret_access_key: MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP
 region: us-west-1

Options that are lists, commands, dictionaries, etc. combine the same way they
do between the config files and the command line (with combiner functions).

You can use $ENVIRONMENT_VARIABLES and ~/file_in_your_home_dir inside
include.

You can inherit from multiple config files by passing include a list
instead of a string. Files on the right will have precedence over files on the
left. To continue the above examples, this config:

~/.mrjob.everything.conf

include:
- ~/.mrjob.very-small.conf
- ~/.mrjob.very-large.conf

will be equivalent to this one:

~/.mrjob.everything-2.conf

runners:
 emr:
 aws_access_key_id: HADOOPHADOOPBOBADOOP
 aws_secret_access_key: MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP
 core_instance_type: m1.xlarge
 num_core_instances: 20
 region: us-west-1

In this case, ~/.mrjob.very-large.conf has taken precedence over
~/.mrjob.very-small.conf.

Relative includes

Relative include: paths are relative to the real (after resolving
symlinks) path of the including conf file.

For example, you could do this:

~/.mrjob/base.conf:

runners:
 ...

~/.mrjob/default.conf:

include: base.conf

You could then load your configs via a symlink ~/.mrjob.conf to
~/.mrjob/default.conf and ~/.mrjob/base.conf would still be
included (even though it’s not in the same directory as the symlink).

Clearing configs

Sometimes, you just want to override a list-type config (e.g. setup) or
a *PATH environment variable, rather than having mrjob cleverly concatenate
it with previous configs.

You can do this in YAML config files by tagging the values you want to take
precedence with the !clear tag.

For example:

~/.mrjob.base.conf

runners:
 emr:
 aws_access_key_id: HADOOPHADOOPBOBADOOP
 aws_secret_access_key: MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP
 cmdenv:
 PATH: /this/nice/path
 PYTHONPATH: /here/be/serpents
 USER: dave
 setup:
 - /run/this/command

~/.mrjob.conf

include: ~/mrjob.base.conf
runners:
 emr:
 cmdenv:
 PATH: !clear /this/even/better/path/yay
 PYTHONPATH: !clear
 setup: !clear
 - /run/this/other/command

is equivalent to:

runners:
 emr:
 aws_access_key_id: HADOOPHADOOPBOBADOOP
 aws_secret_access_key: MEMIMOMADOOPBANANAFANAFOFADOOPHADOOP
 cmdenv:
 PATH: /this/even/better/path/yay
 USER: dave
 setup:
 - /run/this/other/command

If you specify multiple config files (e.g.
-c ~/mrjob.base.conf -c ~/mrjob.conf), a !clear in a later file will
override earlier files. include: is really just another way to prepend
to the list of config files to load.

If you find it more readable, you may put the !clear tag before the
key you want to clear. For example,

runners:
 emr:
 !clear setup:
 - /run/this/other/command

is equivalent to:

runners:
 emr:
 setup: !clear
 - /run/this/other/command

!clear tags in lists are ignored. You cannot currently clear an entire set
of configs (e.g. runners: emr: !clear ... does not work).

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Options available to all runners

The format of each item in this document is:

	mrjob_conf_option_name (--command-line-option-name) : option_type

	Default: default value

Description of option behavior

Options that take multiple values can be passed multiple times on the command
line. All options can be passed as keyword arguments to the runner if
initialized programmatically.

Making files available to tasks

Most jobs have dependencies of some sort - Python packages, Debian packages,
data files, etc. This section covers options available to all runners that
mrjob uses to upload files to your job’s execution environments. See
File options if you want to write your own command line
options related to file uploading.

Warning

You must wait to read files until after class initialization. That
means you should use the *_init() methods
to read files. Trying to read files into class variables will not work.

	bootstrap_mrjob (--bootstrap-mrjob, --no-bootstrap-mrjob) : boolean

	Default: True

Should we automatically zip up the mrjob library and install it when we run
job?

Set this to False if you’ve already installed mrjob on your
Hadoop cluster or install it by some other method.

	py_files (--py-files) : path list

	Default: []

List of .egg or .zip files to add to your job’s PYTHONPATH.

This is based on a Spark feature, but it works just as well with streaming
jobs.

Changed in version 0.6.7: Deprecated --py-file in favor of --py-files

	upload_archives (--archives) : path list

	Default: []

A list of archives (e.g. tarballs) to unpack in the local directory of the
mr_job script when it runs. You can set the name in the job’s working
directory we unpack into by appending #nameinworkingdir to the path;
otherwise we just use the
name of the archive file (e.g. foo.tar.gz is unpacked to the directory
foo.tar.gz/, and foo.tar.gz#stuff is unpacked to the directory
stuff/).

Changed in version 0.6.7: Deprecated --archive in favor of --archives

	upload_dirs (--dirs) : path list

	Default: []

A list of directories to copy to the local directory of the
mr_job script when it runs (mrjob does this by tarballing the directory
and submitting the tarball to Hadoop as an archive).

You can set the name in the job’s working directory of the directory
we copy by appending
#nameinworkingdir to the path; otherwise we just use its name.

This works with Spark on YARN only.

Changed in version 0.6.7: Deprecated --dir in favor of --dirs

	upload_files (--files) : path list

	Default: []

Files to copy to the local directory of the mr_job script when it runs. You
can set the name of the file in the job’s working directory by appending
#nameinworkingdir to the path; otherwise we just use the name of the
file.

In the config file:

upload_files:
 - file_1.txt
 - file_2.sqlite

On the command line:

--files file_1.txt,file_2.sqlite

Changed in version 0.6.8: In Spark, can use #nameinworkingdir even when not on YARN.

Changed in version 0.6.7: Deprecated --file in favor of --files

Temp files and cleanup

	cleanup (--cleanup) : string

	Default: 'ALL'

List of which kinds of directories to delete when a job succeeds. Valid
choices are:

	
	'ALL': delete logs and local and remote temp files; stop cluster

	if on EMR and the job is not done when cleanup is run.

	'CLUSTER': terminate EMR cluster if job not done when cleanup is run

	'JOB': stop job if not done when cleanup runs (temporarily disabled)

	'LOCAL_TMP': delete local temp files only

	'LOGS': delete logs only

	'NONE': delete nothing

	'REMOTE_TMP': delete remote temp files only

	'TMP': delete local and remote temp files, but not logs

In the config file:

cleanup: [LOGS, JOB]

On the command line:

--cleanup=LOGS,JOB

	cleanup_on_failure (--cleanup-on-failure) : string

	Default: 'NONE'

Which kinds of directories to clean up when a job fails. Valid choices are
the same as cleanup.

	local_tmp_dir (--local-tmp-dir) : path

	Default: value of tempfile.gettempdir() [http://docs.python.org/2/library/tempfile.html#tempfile.gettempdir]

Alternate local temp directory.

--local-tmp-dir '' tells mrjob to ignore the config file
and use the default temp directory
(tempfile.gettempdir() [http://docs.python.org/2/library/tempfile.html#tempfile.gettempdir])

Changed in version 0.6.6: Added –local-tmp-dir switch.

	output_dir (--output-dir) : string

	Default: (automatic)

An empty/non-existent directory where Hadoop streaming should put the
final output from the job. If you don’t specify an output directory,
we’ll output into a subdirectory of this job’s temporary directory. You
can control this from the command line with --output-dir. This option
cannot be set from configuration files. If used with the hadoop runner,
this path does not need to be fully qualified with hdfs:// URIs
because it’s understood that it has to be on HDFS.

	cat_output (--cat-output, --no-cat-output) : boolean

	Default: output if output_dir is not set

Should we stream job output to STDOUT after completion?

Changed in version 0.6.3: used to be --no-output.

	step_output_dir (--step-output-dir) : string

	Default: (automatic)

For a multi-step job, where to put output from job steps other than
the last one. Each step’s output will go into a numbered subdirectory
of this one (0000/, 0001/, etc.)

This option can be useful for debugging. By default, intermediate output
goes into HDFS, which is fastest but not easily accessible on EMR or
Dataproc.

This option currently does nothing on local and inline runners.

Job execution context

	cmdenv (--cmdenv) : environment variable dict

	Default: {}

Dictionary of environment variables to pass to the job inside Hadoop
streaming.

In the config file:

cmdenv:
 PYTHONPATH: $HOME/stuff
 TZ: America/Los_Angeles

On the command line:

--cmdenv PYTHONPATH=$HOME/stuff,TZ=America/Los_Angeles

	python_bin (--python-bin) : command

	Default: (automatic)

Name/path of alternate Python binary for wrapper scripts and
mappers/reducers (e.g. 'python -v').

If you’re on Python 3, this always defaults to 'python3'.

If you’re on Python 2, this defaults to 'python2.7'.

If you’re using PyPy, this defaults to 'pypy' (not 'pypy2.7') or
'pypy3' depending on your version.

This option also affects which Python binary is used for file locking in
setup scripts. It’s also
used by EMRJobRunner to compile mrjob after
bootstrapping it (see bootstrap_mrjob).

Changed in version 0.7.2: Defaults to 'python2.7' (not 'python') on Python 2.

Changed in version 0.6.10: added 'pypy' and 'pypy3' as possible defaults

Note

mrjob does not auto-install PyPy for you on EMR; see
Installing PyPy for how to do this

	setup (--setup) : string list

	Default: []

A list of lines of shell script to run before each task (mapper/reducer).

This option is complex and powerful; the best way to get started is to
read the Job Environment Setup Cookbook.

Using this option replaces your task with a shell “wrapper” script that
executes the setup commands, and then executes the task as the last line
of the script. This means that environment variables set by hadoop
(e.g. $mapred_job_id) are available to setup commands, and that you
can pass environment variables to the task (e.g. $PYTHONPATH) using
export.

We use file locking around the setup commands (not the task)
to ensure that multiple tasks running on the same node won’t run them
simultaneously (it’s safe to run make). Before running the task,
we cd back to the original working directory.

In addition, passing expressions like path#name will cause
path to be automatically uploaded to the task’s working directory
with the filename name, marked as executable, and interpolated into the
script by its absolute path on the machine running the script.

path may also be a URI, and ~ and environment variables within path
will be resolved based on the local environment. name is optional.

You can indicate that an archive should be unarchived into a directory by
putting a / after name (e.g. foo.tar.gz#foo/).

You can indicate that a directory should be copied into the job’s
working directory by putting a / after path (e.g. src-tree/#).
You may optionally put a / after name as well
(e.g. cd src-tree/#/subdir).

This works for Spark as well (except on the local[*] master,
where it doesn’t make sense). The setup
script is run before every executor, but only run before the driver in
cluster mode.

Note

Uploading archives and directories (e.g. src-tree/#) to Spark’s
working directory still only works on YARN.

Changed in version 0.6.8: added full support for Spark

Changed in version 0.6.7: added support for Spark on YARN only

For more details of parsing, see
parse_setup_cmd().

	sh_bin (--sh-bin) : command

	Default: /bin/sh -ex

Name/path of alternate shell binary to use for setup and
bootstrap. Needs to be backwards compatible with
Bourne Shell (e.g. bash, zsh).

If you want to add an argument, use an absolute path
(/bin/bash -x, not bash -x). Please do not pass
multiple args to your shell binary (this plays poorly with Linux
shebang syntax).

This is also used to wrap mappers, reducers, etc. that require piping
one command into another (see e.g.
mapper_pre_filter()).

Changed in version 0.6.8: Setting this to an empty value (--sh-bin '') means to use the
default (used to cause an error).

Changed in version 0.6.7: Used to be sh -ex on local and Hadoop runners

	task_python_bin (--task-python-bin) : command

	Default: same as python_bin

Name/path of alternate python binary to run the job (invoking it with
--mapper, --reducer, --spark, etc.).

In most cases, you’re better off setting python_bin, which
this defaults to. This option exists mostly to support running tasks
inside Docker while using a normal Python binary in setup wrapper scripts.

Other

	conf_paths (-c, --conf-path, --no-conf) : path list

	Default: see find_mrjob_conf()

List of paths to configuration files. This option cannot be used in
configuration files, because that would cause a universe-ending causality
paradox. Use –no-conf on the command line or conf_paths=[] to force
mrjob to load no configuration files at all. If no config path flags are
given, mrjob will look for one in the locations specified in
Config file format and location.

Config path flags can be used multiple times to combine config files, much
like the include config file directive. Using --no-conf will
cause mrjob to ignore all preceding config path flags.

For example, this line will cause mrjob to combine settings from
left.conf and right .conf:

python my_job.py -c left.conf -c right.conf

This line will cause mrjob to read no config file at all:

python my_job.py --no-conf

This line will cause mrjob to read only right.conf, because
--no-conf nullifies -c left.conf:

python my_job.py -c left.conf --no-conf -c right.conf

	read_logs (--read-logs, --no-read-logs) : boolean

	Default: True

New in version 0.6.5.

If set to false, don’t list or read the contents of log files generated
in the course of running your job.

The main impact of turning off read_logs is that if your job fails,
mrjob won’t spend any time or effort determining why it failed. On EMR, this
effectively disables counter fetching as well.

This option does not stop the Hadoop and Dataproc runners from reading
the output of the job driver (i.e. hadoop jar ...), so you will continue
to get counters and high-level Java errors on these platforms.

Options ignored by the local and inline runners

These options are ignored because they require a real instance of Hadoop:

	hadoop_input_format

	hadoop_output_format

	libjars

	partitioner

Options ignored by the inline runner

These options are ignored because the inline runner does not invoke the job
as a subprocess:

	bootstrap_mrjob

	py_files

	python_bin

	read_logs

	setup

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Hadoop-related options

Since mrjob is geared toward Hadoop, there are a few Hadoop-specific options.
However, due to the difference between the different runners, the Hadoop
platform, and Elastic MapReduce, they are not all available for all runners.

Options specific to the local and inline runners

	hadoop_version (--hadoop-version) : string

	Default: None

Set the version of Hadoop to simulate (this currently only matters for
jobconf).

If you don’t set this, the local and
inline runners will run in a version-agnostic mode, where anytime
the runner sets a simulated jobconf variable, it’ll use every possible
name for it (e.g. user.name and mapreduce.job.user.name).

	num_cores (--num-cores) : integer

	Default: None

Maximum number of tasks to handle at one time. If not set, defaults to the
number of CPUs on your system.

This also affects the number of input file splits the runner makes (the
only impact in inline mode).

New in version 0.6.2.

Options available to local, hadoop, and emr runners

These options are both used by Hadoop and simulated by the local
and inline runners to some degree.

	jobconf (-D, --jobconf) : jobconf dict

	Default: {}

-D args to pass to hadoop streaming. This should be a map from
property name to value. Equivalent to passing ['-D',
'KEY1=VALUE1', '-D', 'KEY2=VALUE2', ...] to
hadoop_extra_args

Changed in version 0.6.6: added the -D switch on the command line, to match Hadoop.

Changed in version 0.6.6: boolean true and false values in config files are
passed correctly to Hadoop (see
JobConf dicts)

Options available to hadoop and emr runners

	hadoop_extra_args (--hadoop-args) : string list

	Default: []

Extra arguments to pass to hadoop streaming.

	hadoop_streaming_jar (--hadoop-streaming-jar) : string

	Default: (automatic)

Path to a custom hadoop streaming jar.

On EMR, this can be either a local path or a URI (s3://...). If you
want to use a jar at a path on the master node, use a file:// URI.

On Hadoop, mrjob tries its best to find your hadoop streaming jar,
searching these directories (recursively) for a .jar file with
hadoop followed by streaming in its name:

	$HADOOP_PREFIX

	$HADOOP_HOME

	$HADOOP_INSTALL

	$HADOOP_MAPRED_HOME

	the parent of the directory containing the Hadoop binary (see hadoop_bin), unless it’s one of /, /usr or /usr/local

	$HADOOP_*_HOME (in alphabetical order by environment variable name)

	/home/hadoop/contrib

	/usr/lib/hadoop-mapreduce

(The last two paths allow the Hadoop runner to work out-of-the box
inside EMR.)

	libjars (--libjars) : string list

	Default: []

List of paths of JARs to be passed to Hadoop with the -libjars switch.

~ and environment variables within paths will be resolved based on the
local environment.

Changed in version 0.6.7: Deprecated --libjar in favor of --libjars

Note

mrjob does not yet support libjars on Google Cloud Dataproc.

	label (--label) : string

	Default: script’s module name, or no_script

Alternate label for the job

	owner (--owner) : string

	Default: getpass.getuser() [http://docs.python.org/2/library/getpass.html#getpass.getuser], or no_user if that fails

Who is running this job (if different from the current user)

	check_input_paths (--check-input-paths, --no-check-input-paths) : boolean

	Default: True

Option to skip the input path check. With --no-check-input-paths,
input paths to the runner will be passed straight through, without
checking if they exist.

	spark_args (--spark-args) : string list

	Default: []

Extra arguments to pass to spark-submit.

Warning

Don’t use this to set --master or --deploy-mode.
On the Hadoop runner, you can change these with
spark_master and spark_deploy_mode.
Other runners don’t allow you to set these because they can only
handle the defaults.

Options available to hadoop runner only

	hadoop_bin (--hadoop-bin) : command

	Default: (automatic)

Name/path of your hadoop binary (may include arguments).

mrjob tries its best to find hadoop, checking all of the
following places for an executable file named hadoop:

	$HADOOP_PREFIX/bin

	$HADOOP_HOME/bin

	$HADOOP_INSTALL/bin

	$HADOOP_INSTALL/hadoop/bin

	$PATH

	$HADOOP_*_HOME/bin (in alphabetical order by environment variable name)

If all else fails, we just use hadoop and hope for the best.

Changed in version 0.6.8: Setting this to an empty value (--hadoop-bin '') means to search
for the Hadoop binary (used to effectively disable use of the
hadoop command).

	hadoop_log_dirs (--hadoop-log-dir) : path list

	Default: (automatic)

Where to look for Hadoop logs (to find counters and probable cause of
job failure). These can be (local) paths or URIs (hdfs:///...).

If this is not set, mrjob will try its best to find the logs, searching in:

	$HADOOP_LOG_DIR

	$YARN_LOG_DIR (on YARN only)

	hdfs:///tmp/hadoop-yarn/staging (on YARN only)

	<job output dir>/_logs (usually this is on HDFS)

	$HADOOP_PREFIX/logs

	$HADOOP_HOME/logs

	$HADOOP_INSTALL/logs

	$HADOOP_MAPRED_HOME/logs

	<dir containing hadoop bin>/logs (see hadoop_bin), unless the hadoop binary is in /bin, /usr/bin, or /usr/local/bin

	$HADOOP_*_HOME/logs (in alphabetical order by environment variable name)

	/var/log/hadoop-yarn (on YARN only)

	/mnt/var/log/hadoop-yarn (on YARN only)

	/var/log/hadoop

	/mnt/var/log/hadoop

	hadoop_tmp_dir (--hadoop-tmp-dir) : path

	Default: tmp/mrjob

Scratch space on HDFS. This path does not need to be fully qualified with
hdfs:// URIs because it’s understood that it has to be on HDFS.

	spark_deploy_mode (--spark-deploy-mode) : string

	Default: 'client'

Deploy mode (client or cluster) to pass to the --deploy-mode
argument of spark-submit.

New in version 0.6.6.

	spark_master (--spark-master) : string

	Default: 'yarn'

Name or URL to pass to the --master argument of
spark-submit (e.g. spark://host:port, yarn).

Note that archives (see upload_archives) only work
when this is set to yarn.

	spark_submit_bin (--spark-submit-bin) : command

	Default: (automatic)

Name/path of your spark-submit binary (may include arguments).

mrjob tries its best to find spark-submit, checking all of the
following places for an executable file named spark-submit:

	$SPARK_HOME/bin

	$PATH

	your pyspark installation’s bin/ directory

	/usr/lib/spark/bin

	/usr/local/spark/bin

	/usr/local/lib/spark/bin

If all else fails, we just use spark-submit and hope for the best.

Changed in version 0.6.8: Searches for spark-submit in pyspark installation.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Spark runner options

All options from Options available to all runners and Hadoop-related options
are available in the Spark runner.

In addition, the Spark runner has the following options in common with other
runners:

	aws_access_key_id

	aws_secret_access_key

	aws_session_token

	cloud_fs_sync_secs

	cloud_part_size_mb

	gcs_region

	project_id

	s3_endpoint

	s3_region

Options unique to the Spark runner:

	emulate_map_input_file (--emulate-map-input-file, --no-emulate-map-input-file) : boolean

	Default: False

Imitate Hadoop by setting $mapreduce_map_input_file
to the path of the input file for the current partition. This
helps support jobs that rely on
jobconf_from_env('mapreduce.map.input.file').

This feature only applies to the mapper of the job’s first step,
and is ignored by jobs that set
HADOOP_INPUT_FORMAT.

New in version 0.6.9.

	gcs_region (--gcs-region) : string

	Default: None

The region to use when creating a temporary bucket on Google Cloud Storage.

Similar in meaning to region, but only used to configure GCS
(not S3)

	s3_region (--s3-region) : string

	Default: None

The region to use when creating a temporary bucket on S3.

Similar in meaning to region, but only used to configure S3
(not GCS)

	skip_internal_protocol (--skip-internal-protocol, --no-skip-internal-protocol) : boolean

	Default: False

Don’t emulate the job’s internal protocol (used for communicating between
job steps and tasks in the same step), instead relying on Spark to encode
and decode data structures.

This should work for most but not all jobs, and make them run at least
somewhat faster. Some things to keep in mind:

	data will no longer be “normalized” by being converted to and from string
representation. For example, running a tuple through
JSONProtocol (the default) implicitly
converts it to a list because there are no tuples in JSON. With internal
protocols skipped, it would remain a tuple.

	if your job uses SORT_VALUES, keep in mind
that your values will need to be comparable as Spark will be comparing
them directly, rather than comparing their internal-protocol-encoded
representation. This may also affect sorting order.

New in version 0.6.10.

	spark_tmp_dir (--spark-tmp-dir) : string

	Default: (automatic)

A place to put files where they are visible to Spark executors, similar
to cloud_tmp_dir.

If running locally, defaults to a directory inside
local_tmp_dir, and if running on a cluster, to
tmp/mrjob on HDFS.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Configuration quick reference

Setting configuration options

You can set an option by:

	Passing it on the command line with the switch version (like
--some-option)

	Passing it as a keyword argument to the runner constructor, if you are
creating the runner programmatically

	Putting it in one of the included config files under a runner name, like
this:

runners:
 local:
 python_bin: python3.6 # only used in local runner
 emr:
 python_bin: python3 # only used in Elastic MapReduce runner

See Config file format and location for information on where to put config files.

Options that can’t be set from mrjob.conf (all runners)

There are some options that it makes no sense to set in the config file.

These options can be set via command-line switches:

	Config
	Command line
	Default
	Type

	cat_output
	–cat-output, –no-cat-output
	output if output_dir is not set
	boolean

	conf_paths
	-c, –conf-path, –no-conf
	see find_mrjob_conf()
	path list

	output_dir
	–output-dir
	(automatic)
	string

	step_output_dir
	–step-output-dir
	(automatic)
	string

These options can be set by overriding attributes or methods in your job class:

	Option
	Attribute
	Method
	Default

	hadoop_input_format
	HADOOP_INPUT_FORMAT
	hadoop_input_format()
	None

	hadoop_output_format
	HADOOP_OUTPUT_FORMAT
	hadoop_output_format()
	None

	partitioner
	PARTITIONER
	partitioner()
	None

These options can be set by overriding your job’s
configure_args() to call the appropriate method:

	Option
	Method
	Default

	extra_args
	add_passthru_arg()
	[]

All of the above can be passed as keyword arguments to
MRJobRunner.__init__()
(this is what makes them runner options), but you usually don’t want to
instantiate runners directly.

Other options for all runners

These options can be passed to any runner without an error, though some runners
may ignore some options. See the text after the table for specifics.

	Config
	Command line
	Default
	Type

	bootstrap_mrjob
	–bootstrap-mrjob, –no-bootstrap-mrjob
	True
	boolean

	check_input_paths
	–check-input-paths, –no-check-input-paths
	True
	boolean

	cleanup
	–cleanup
	'ALL'
	string

	cleanup_on_failure
	–cleanup-on-failure
	'NONE'
	string

	cmdenv
	–cmdenv
	{}
	environment variable dict

	hadoop_extra_args
	–hadoop-args
	[]
	string list

	hadoop_streaming_jar
	–hadoop-streaming-jar
	(automatic)
	string

	jobconf
	-D, –jobconf
	{}
	jobconf dict

	label
	–label
	script’s module name, or no_script
	string

	libjars
	–libjars
	[]
	string list

	local_tmp_dir
	–local-tmp-dir
	value of tempfile.gettempdir()
	path

	owner
	–owner
	getpass.getuser(), or no_user if that fails
	string

	py_files
	–py-files
	[]
	path list

	python_bin
	–python-bin
	(automatic)
	command

	read_logs
	–read-logs, –no-read-logs
	True
	boolean

	setup
	–setup
	[]
	string list

	sh_bin
	–sh-bin
	/bin/sh -ex
	command

	spark_args
	–spark-args
	[]
	string list

	task_python_bin
	–task-python-bin
	same as python_bin
	command

	upload_archives
	–archives
	[]
	path list

	upload_dirs
	–dirs
	[]
	path list

	upload_files
	–files
	[]
	path list

LocalMRJobRunner takes no additional options, but:

	bootstrap_mrjob is False by default

	cmdenv uses the local system path separator instead of : all
the time (so ; on Windows, no change elsewhere)

	python_bin defaults to the current Python interpreter

In addition, it ignores hadoop_input_format, hadoop_output_format,
hadoop_streaming_jar, and jobconf

InlineMRJobRunner works like
LocalMRJobRunner, only it also ignores
bootstrap_mrjob, cmdenv, python_bin,
upload_archives, and upload_files.

Additional options for DataprocJobRunner

	Config
	Command line
	Default
	Type

	cluster_properties
	–cluster-property
	None
	

	core_instance_config
	–core-instance-config
	None
	

	gcloud_bin
	–gcloud-bin
	'gcloud'
	command

	master_instance_config
	–master-instance-config
	None
	

	network
	–network
	None
	string

	project_id
	–project-id
	read from credentials config file
	string

	service_account
	–service-account
	None
	

	service_account_scopes
	–service-account-scopes
	(automatic)
	

	task_instance_config
	–task-instance-config
	None
	

Additional options for EMRJobRunner

	Config
	Command line
	Default
	Type

	add_steps_in_batch
	–add-steps-in-batch, –no-add-steps-in-batch
	True for AMIs before 5.28.0, False otherwise
	boolean

	additional_emr_info
	–additional-emr-info
	None
	special

	applications
	–application, –applications
	[]
	string list

	aws_access_key_id
	
	None
	string

	aws_secret_access_key
	–aws-secret-access-key
	None
	string

	aws_session_token
	
	None
	string

	bootstrap_actions
	–bootstrap-actions
	[]
	string list

	bootstrap_spark
	–bootstrap-spark, –no-bootstrap-spark
	(automatic)
	boolean

	cloud_log_dir
	–cloud-log-dir
	append logs to cloud_tmp_dir
	string

	core_instance_bid_price
	–core-instance-bid-price
	None
	string

	docker_client_config
	–docker-client-config
	None
	string

	docker_image
	–docker-image, –no-docker
	None
	string

	docker_mounts
	–docker-mount
	[]
	string list

	ebs_root_volume_gb
	–ebs-root-volume-gb
	None
	integer

	ec2_endpoint
	–ec2-endpoint
	(automatic)
	string

	ec2_key_pair
	–ec2-key-pair
	None
	string

	ec2_key_pair_file
	–ec2-key-pair-file
	None
	path

	emr_action_on_failure
	–emr-action-on-failure
	(automatic)
	string

	emr_configurations
	–emr-configuration
	[]
	list of dicts

	emr_endpoint
	–emr-endpoint
	infer from region
	string

	enable_emr_debugging
	–enable-emr-debugging
	False
	boolean

	hadoop_streaming_jar_on_emr
	–hadoop-streaming-jar-on-emr
	AWS default
	string

	iam_endpoint
	–iam-endpoint
	(automatic)
	string

	iam_instance_profile
	–iam-instance-profile
	(automatic)
	string

	iam_service_role
	–iam-service-role
	(automatic)
	string

	instance_fleets
	–instance-fleet
	None
	

	instance_groups
	–instance-groups
	None
	

	master_instance_bid_price
	–master-instance-bid-price
	None
	string

	max_clusters_in_pool
	–max-clusters-in-pool
	0 (disabled)
	integer

	max_concurrent_steps
	–max-concurrent-steps
	1
	string

	min_available_mb
	–min-available-mb
	0 (disabled)
	integer

	min_available_virtual_cores
	–min-available-virtual-cores
	0 (disabled)
	integer

	pool_clusters
	–pool-clusters
	True
	string

	pool_jitter_seconds
	–pool-jitter-seconds
	60
	string

	pool_name
	–pool-name
	'default'
	string

	pool_timeout_minutes
	–pool-timeout-minutes
	0 (disabled)
	string

	pool_wait_minutes
	–pool-wait-minutes
	0
	string

	release_label
	–release-label
	None
	string

	s3_endpoint
	–s3-endpoint
	(automatic)
	string

	ssh_add_bin
	–ssh-add-bin
	'ssh-add'
	command

	ssh_bin
	–ssh-bin
	'ssh'
	command

	tags
	–tag
	{}
	dict

	task_instance_bid_price
	–task-instance-bid-price
	None
	string

Additional options for HadoopJobRunner

	Config
	Command line
	Default
	Type

	hadoop_bin
	–hadoop-bin
	(automatic)
	command

	hadoop_log_dirs
	–hadoop-log-dir
	(automatic)
	path list

	hadoop_tmp_dir
	–hadoop-tmp-dir
	tmp/mrjob
	path

	spark_deploy_mode
	–spark-deploy-mode
	'client'
	string

	spark_master
	–spark-master
	'yarn'
	string

	spark_submit_bin
	–spark-submit-bin
	(automatic)
	command

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Cloud runner options

These options are generally available whenever you run your job on a
Hadoop cloud service (AWS Elastic MapReduce
or Google Cloud Dataproc).

All options from Options available to all runners and Hadoop-related options
are also available on cloud services.

Google credentials

See Getting started with Google Cloud for specific instructions
about setting these options.

Choosing/creating a cluster to join

	cluster_id (--cluster-id) : string

	Default: automatically create a cluster and use it

The ID of a persistent cluster to run jobs in (on Dataproc, this is the
same thing as “cluster name”).

It’s fine for other jobs to be using the cluster; we give our job’s steps
a unique ID.

Job placement

	region (--region) : string

	Default: 'us-west-2' on EMR, 'us-west1' on Dataproc

Geographic region to run jobs in (e.g. us-central-1).

If mrjob create a temporary bucket, it will be created in this region as
well.

If you set region, you do not need to set zone; a zone
will be chosen for you automatically.

	subnet (--subnet) : string

	Default: None

Optional subnet(s) to launch your job in.

On Amazon EMR, this is the ID of a VPC subnet to launch cluster in
(e.g. 'subnet-12345678'). This can also be a list of possible subnets
if you are using instance_fleets.

On Google Cloud Dataproc, this is the name of a subnetwork (e.g.
'default'). Specifying subnet rather than network will
ensure that your cluster only has access to one specific geographic
region, rather than the entire VPC.

Changed in version 0.6.8: --subnet '' un-sets the subnet on EMR (used to be ignored).

Changed in version 0.6.3: Works on Google Cloud Dataproc as well as AWS Elastic MapReduce.

	zone (--zone) : string

	Default: None

Zone within a specific geographic region to run your job in.

If you set this, you do not neet to set region.

Number and type of instances

	instance_type (--instance-type) : string

	Default: m4.large or m5.xlarge on EMR, n1-standard-1 on Dataproc

Type of instance that runs your Hadoop tasks.

Once you’ve tested a job and want to run it at scale, it’s usually a good
idea to use instances larger than the default. For EMR, see
Amazon EC2 Instance Types [https://aws.amazon.com/ec2/instance-types/]
and for Dataproc, see
Machine Types [https://cloud.google.com/compute/docs/machine-types].

Note

Many EC2 instance types can only run in a VPC (see
subnet).

If you’re running multiple nodes (see num_core_instances),
this option doesn’t apply to the master node because it’s just
coordinating tasks, not running them. Use master_instance_type
instead.

Changed in version 0.6.11: Default on EMR is m5.xlarge on AMI version 5.13.0 and later, m4.large on earlier versions

Changed in version 0.6.10: Default on EMR changed to m5.xlarge

Changed in version 0.6.6: Default on EMR changed to m4.large. Was previously m1.large` if
running Spark, m1.small if running on the (deprecated) 2.x AMIs,
and m1.medium otherwise

	core_instance_type (--core-instance-type) : string

	Default: value of instance_type

like instance_type, but only for the core (worker) Hadoop
nodes; these nodes run tasks and host HDFS. Usually you just want to use
instance_type.

	num_core_instances (--num-core-instances) : integer

	Default: 0 on EMR, 2 on Dataproc

Number of core (worker) instances to start up. These run your job and
host HDFS. This is in addition to the single master instance.

On Google Cloud Dataproc, this must be at least 2.

	master_instance_type (--master-instance-type) : string

	Default: (automatic)

like instance_type, but only for the master Hadoop node.
This node hosts the task tracker/resource manager and HDFS, and runs tasks
if there are no other nodes.

If you’re running a single node (no num_core_instances or
num_task_instances), this will default to the value of
instance_type.

Otherwise, on Dataproc, defaults to n1-standard-1, and on EMR
defaults to m1.medium (exception: m1.small on the
deprecated 2.x AMIs), which is usually adequate for all but the largest
jobs.

	task_instance_type (--task-instance-type) : string

	Default: value of core_instance_type

like instance_type, but only for the task
(secondary worker) Hadoop nodes;
these nodes run tasks but do not host HDFS. Usually you just want to use
instance_type.

	num_task_instances (--num-task-instances) : integer

	Default: 0

Number of task (secondary worker) instances to start up. These run your
job but do not host HDFS.

You must have at least one core instance (see
num_core_instances) to run task instances; otherwise
there’s nowhere to host HDFS.

Cluster software configuration

	image_id (--image-id) : string

	Default: None

ID of a custom machine image.

On EMR, this is complimentary with image_version; you
can install packages and libraries on your custom AMI, but it’s up to
EMR to install Hadoop, create the hadoop user, etc.
image_version may not be less than 5.7.0.

You can use describe_base_emr_images() to identify
Amazon Linux images that are compatible with EMR.

For more details about how to create a custom AMI that works with EMR, see
Best Practices and Considerations [https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-considerations].

Note

This is not yet implemented in the Dataproc runner.

New in version 0.6.5.

	image_version (--image-version) : string

	Default: '6.0.0' on EMR, '1.3' on Dataproc

Machine image version to use. This controls which Hadoop
version(s) are available and which version of Python is installed, among
other things.

See the AMI version docs [http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/EnvironmentConfig_AMIVersion.html] (EMR) or the Dataproc version docs [https://cloud.google.com/dataproc/dataproc-versions] for
more details.

You can use this instead of release_label on EMR, even for
4.x+ AMIs; mrjob will just prepend emr- to form the release label.

Changed in version 0.6.12: Default on Dataproc changed from 1.0 to 1.3

Changed in version 0.6.11: Default on EMR is now 5.27.0

Changed in version 0.6.5: Default on EMR is now 5.16.0 (was 5.8.0)

Warning

The 2.x series of AMIs is deprecated by Amazon and not recommended.

Warning

The 1.x series of AMIs is no longer supported because they use Python
2.5.

	bootstrap (--bootstrap) : string list

	Default: []

A list of lines of shell script to run once on each node in your cluster,
at bootstrap time.

This option is complex and powerful. On EMR, the best way to get started
is to read the EMR Bootstrapping Cookbook.

Passing expressions like path#name will cause
path to be automatically uploaded to the task’s working directory
with the filename name, marked as executable, and interpolated into the
script by their absolute path on the machine running the script.

path
may also be a URI, and ~ and environment variables within path
will be resolved based on the local environment. name is optional.
For details of parsing, see parse_setup_cmd().

Unlike with setup, archives are not supported (unpack them
yourself).

Remember to put sudo before commands requiring root privileges!

	bootstrap_python (--bootstrap-python, --no-bootstrap-python) : boolean

	Default: True on Dataproc, as needed on EMR.

Attempt to install a compatible (major) version of Python at bootstrap time,
including header files and pip (see Installing Python packages with pip).

The only reason to set this to False is if you want to customize
Python/pip installation using bootstrap.

	extra_cluster_params (--extra-cluster-param) : dict

	Default: {}

An escape hatch that allows you to pass extra parameters to the
EMR/Dataproc API at cluster create time, to access API features that mrjob
does not yet support.

For EMR, see the API documentation for RunJobFlow [http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_RunJobFlow.html] for the full list of
options.

Option names are strings, and values are data structures. On the command
line, --extra-cluster-param name=value:

--extra-cluster-param SupportedProducts='["mapr-m3"]'
--extra-cluster-param AutoScalingRole=HankPym

value can be either a JSON or a string (unless it starts with {,
[, or ", so that we don’t convert malformed JSON to strings).
Parameters can be suppressed by setting them to null:

--extra-cluster-param LogUri=null

This also works with Google dataproc:

--extra-cluster-param labels='{"name": "wrench"}'

In the config file, extra_cluster_param is a dict:

runners:
 emr:
 extra_cluster_params:
 AutoScalingRole: HankPym
 LogUri: null # !clear works too
 SupportedProducts:
 - mapr-m3

Changed in version 0.7.2: Dictionaries will be recursively merged into existing
parameters. For example:

runners:
 emr:
 extra_cluster_params:
 Instances:
 EmrManagedMasterSecurityGroup: sg-foo

Changed in version 0.6.8: You may use a name with dots in it to set (or unset) nested
properties. For example:
--extra-cluster-param Instances.EmrManagedMasterSecurityGroup=sg-foo.

Monitoring your job

	check_cluster_every (--check-cluster-every) : float

	Default: 10 seconds on Dataproc, 30 seconds on EMR

How often to check on the status of your job, in seconds.

Changed in version 0.6.5: When the EMR client encounters a transient error, it will wait at
least this many seconds before trying again.

	ssh_tunnel (--ssh-tunnel, --no-ssh-tunnel) : boolean

	Default: False

If True, create an ssh tunnel to the job tracker/resource manager and
listen on a randomly chosen port.

On EMR, this requires you to set
ec2_key_pair and ec2_key_pair_file. See
Configuring SSH credentials for detailed instructions.

On Dataproc, you don’t need to set a key, but you do need to have
the gcloud utility installed and set up (make
sure you ran gcloud auth login and
gcloud config set project <project_id>). See
Installing gcloud, gsutil, and other utilities.

Changed in version 0.6.3: Enabled on Google Cloud Dataproc

	ssh_tunnel_is_open (--ssh-tunnel-is-open) : boolean

	Default: False

if True, any host can connect to the job tracker through the SSH tunnel
you open. Mostly useful if your browser is running on a different machine
from your job runner.

Does nothing unless ssh_tunnel is set.

	ssh_bind_ports (--ssh-bind-ports) : list of integers

	Default: range(40001, 40841)

A list of ports that are safe to listen on.

The main reason to set this is if your firewall blocks the default range
of ports, or if you want to pick a single port for consistency.

On the command line, this looks like
--ssh-bind-ports 2000[:2001][,2003,2005:2008,etc], where commas
separate ranges and colons separate range endpoints.

Cloud Filesystem

	cloud_fs_sync_secs (--cloud-fs-sync-secs) : float

	Default: 5.0

How long to wait for cloud filesystem (e.g. S3, GCS) to reach eventual
consistency? This is typically less than a second, but the default is 5
seconds to be safe.

	cloud_part_size_mb (--cloud-part-size-mb) : integer

	Default: 100

Upload files to cloud filesystem in parts no bigger than this many megabytes
(technically, mebibytes [http://en.wikipedia.org/wiki/Mebibyte]). Default is 100 MiB.

Set to 0 to disable multipart uploading entirely.

Currently, Amazon requires parts to be between 5 MiB and 5 GiB [http://docs.aws.amazon.com/AmazonS3/latest/dev/qfacts.html].
mrjob does not enforce these limits.

Changed in version 0.6.3: Enabled on Google Cloud Storage. This used to be called
cloud_upload_part_size.

	cloud_tmp_dir (--cloud-tmp-dir) : string

	Default: (automatic)

Directory on your cloud filesystem to use as temp space (e.g.
s3://yourbucket/tmp/, gs://yourbucket/tmp/).

By default, mrjob looks for a bucket belong to you whose name starts with
mrjob- and which matches region. If it can’t find
one, it creates one with a random name. This option is then set to tmp/
in this bucket (e.g. s3://mrjob-01234567890abcdef/tmp/).

Auto-termination

	max_mins_idle (--max-mins-idle) : float

	Default: 10.0

Automatically terminate your cluster after it has been idle at least
this many minutes. You cannot turn this off (clusters left idle
rack up billing charges).

If your cluster is only running a single job, mrjob will attempt to
terminate it as soon as your job finishes. This acts as an additional
safeguard, as well as affecting Cluster Pooling on EMR.

Changed in version 0.6.5: EMR’s idle termination script is more robust against
sudo shutdown -h now being ignored, and logs
the script’s stdout and stderr to
/var/log/bootstrap-actions/mrjob-idle-termination.log.

Changed in version 0.6.3: Uses Dataproc’s built-in cluster termination feature rather than
a custom script. The API will not allow you to set an idle time
of less than 10 minutes.

Changed in version 0.6.2: No matter how small a value you set this to, there is a grace period
of 10 minutes between when the idle termination daemon launches
and when it may first terminate the cluster, to allow Hadoop to
accept your first job.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Job Environment Setup Cookbook

Many jobs have significant external dependencies, both libraries and other
source code.

Combining shell syntax with Hadoop’s DistributedCache notation, mrjob’s
setup option provides a powerful, dynamic alternative to
pre-installing your Hadoop dependencies on every node.

All our mrjob.conf examples below are for the hadoop runner,
but these work equally well with the emr runner. Also, if you are using
EMR, take a look at the EMR Bootstrapping Cookbook.

Note

Setup scripts don’t work with Spark; try py_files
instead.

Uploading your source tree

Note

If you’re using mrjob 0.6.4 or later, check out
Using other python modules and packages first.

mrjob can automatically tarball your source directory and include it
in your job’s working directory. We can use setup scripts to upload the
directory and then add it to PYTHONPATH [http://docs.python.org/2/using/cmdline.html#envvar-PYTHONPATH].

Run your job with:

--setup 'export PYTHONPATH=$PYTHONPATH:your-src-code/#'

The / before the # tells mrjob that your-src-code is a
directory. You may optionally include a / after the # as well
(e.g. export PYTHONPATH=$PYTHONPATH:your-source-code/#/your-lib).

If every job you run is going to want to use your-src-code, you can do
this in your mrjob.conf:

runners:
 hadoop:
 setup:
 - export PYTHONPATH=$PYTHONPATH:your-src-code/#

Uploading your source tree as an archive

Prior to mrjob 0.5.8, you had to archive directories yourself before uploading
them.

tar -C your-src-code -f your-src-code.tar.gz -z -c .

Then, run your job with:

--setup 'export PYTHONPATH=$PYTHONPATH:your-src-code.tar.gz#/'

The / after the # (without one before it) is what tells mrjob that
your-src-code.tar.gz is an archive that Hadoop should unpack.

To do the same thing in mrjob.conf:

runners:
 hadoop:
 setup:
 - export PYTHONPATH=$PYTHONPATH:your-src-code.tar.gz#/

Running a makefile inside your source dir

--setup 'cd your-src-dir.tar.gz#/' --setup 'make'

or, in mrjob.conf:

runners:
 hadoop:
 setup:
 - cd your-src-dir.tar.gz#/
 - make

If Hadoop runs multiple tasks on the same node, your source dir will be shared
between them. This is not a problem; mrjob automatically adds locking around
setup commands to ensure that multiple copies of your setup script don’t
run simultaneously.

Making data files available to your job

Best practice for one or a few files is to use passthrough options; see
add_passthru_arg().

You can also use upload_files to upload file(s) into a task’s
working directory (or upload_archives for tarballs and other
archives).

If you’re a setup purist, you can also do something like this:

--setup 'true your-file#desired-name'

since true has no effect and ignores its arguments.

Using a virtualenv

What if you can’t install the libraries you need on your Hadoop cluster?

You could do something like this in your mrjob.conf:

runners:
 hadoop:
 setup:
 - virtualenv venv
 - . venv/bin/activate
 - pip install mr3po

However, now the locking feature that protects make becomes a
liability; each task on the same node has its own virtualenv, but one task has
to finish setting up before the next can start.

The solution is to share the virtualenv between all tasks on the same
machine, something like this:

runners:
 hadoop:
 setup:
 - VENV=/tmp/$mapreduce_job_id
 - if [! -e $VENV]; then virtualenv $VENV; fi
 - . $VENV/bin/activate
 - pip install mr3po

With Hadoop 1, you’d want to use $mapred_job_id instead of
$mapreduce_job_id.

Other ways to use pip to install Python packages

If you have a lot of dependencies, best practice is to make a
pip requirements file [http://www.pip-installer.org/en/latest/cookbook.html]
and use the -r switch:

--setup 'pip install -r path/to/requirements.txt#'

Note that pip can also install from tarballs (which is useful
for custom-built packages):

--setup 'pip install $MY_PYTHON_PKGS/*.tar.gz#'

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Hadoop Cookbook

Increasing the task timeout

Warning

Some EMR AMIs appear to not support setting parameters like
timeout with jobconf at run time. Instead, you must use
Bootstrap-time configuration.

If your mappers or reducers take a long time to process a single step, you may
want to increase the amount of time Hadoop lets them run before failing them
as timeouts.

You can do this with jobconf. For example, to set the timeout to
one hour:

runners:
 hadoop: # also works for emr runner
 jobconf:
 mapreduce.task.timeout: 3600000

Note

If you’re using Hadoop 1, which uses mapred.task.timeout, don’t worry:
this example still works because mrjob auto-converts your
jobconf options between Hadoop versions.

Writing compressed output

To save space, you can have Hadoop automatically save your job’s output as
compressed files. Here’s how you tell it to bzip them:

runners:
 hadoop: # also works for emr runner
 jobconf:
 # "true" must be a string argument, not a boolean! (Issue #323)
 mapreduce.output.fileoutputformat.compress: "true"
 mapreduce.output.fileoutputformat.compress.codec: org.apache.hadoop.io.compress.BZip2Codec

Note

You could also gzip your files with
org.apache.hadoop.io.compress.GzipCodec. Usually bzip is a better
option, as .bz2 files are splittable, and .gz files are not. For
example, if you use .gz files as input, Hadoop has no choice but to
create one mapper per .gz file.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Testing jobs

mrjob can run jobs without the help of Hadoop. This isn’t very efficient, but
it’s a great way to test a job before submitting it to a cluster.

Inline runner

The inline runner (InlineMRJobRunner)
is the default runner for mrjob (it’s what’s used
when you run python mr_your_job.py <input> without any -r
option). It runs your job in a single process so that you get
faster feedback and simpler tracebacks.

Multiple splits

The inline runner doesn’t run mappers or reducers concurrently, but it
does run at least two mappers and two reducers for each step. This can help
catch bad assumptions about the MapReduce programming model.

For example, say we wanted to write a simple script that counted the number
of lines of input:

from mrjob.job import MRJob

 class MRCountLinesWrong(MRJob):

 def mapper_init(self):
 self.num_lines = 0

 def mapper(self, _, line):
 self.num_lines += 1

 def mapper_final(self):
 yield None, self.num_lines

 if __name__ == '__main__':
 MRCountLinesWrong.run()

Looks good, but if we run it, we get more than one line count:

$ python -m mrjob.examples.mr_count_lines_wrong README.rst 2> /dev/null
null 77
null 60

Aha! Because there can be more than one mapper! It’s fine to use
mapper_final() like this, but we need to reduce on a
single key:

from mrjob.job import MRJob

class MRCountLinesRight(MRJob):

 def mapper_init(self):
 self.num_lines = 0

 def mapper(self, _, line):
 self.num_lines += 1

 def mapper_final(self):
 yield None, self.num_lines

 def reducer(self, key, values):
 yield key, sum(values)

if __name__ == '__main__':
 MRCountLinesRight.run()

$ python -m mrjob.examples.mr_count_lines_right README.rst 2> /dev/null
null 137

Thanks, inline runner!

Isolated working directories

Just like Hadoop, the inline runner runs each mapper and reducer in its own
(temporary) working directory. It does add the original working directory
to $PYTHONPATH so it can still access your local source tree.

Simulating jobconf

The inline runner simulates jobconf variables/properties set by Hadoop (and
their Hadoop 1 equivalents):

	mapreduce.job.cache.archives (mapred.cache.archives)

	mapreduce.job.cache.files (mapred.cache.files)

	mapreduce.job.cache.local.archives (mapred.cache.localArchives)

	mapreduce.job.cache.local.files (mapred.cache.localFiles)

	mapreduce.job.id (mapred.job.id)

	mapreduce.job.local.dir (job.local.dir)

	mapreduce.map.input.file (map.input.file)

	mapreduce.map.input.length (map.input.length)

	mapreduce.map.input.start (map.input.start)

	mapreduce.task.attempt.id (mapred.task.id)

	mapreduce.task.id (mapred.tip.id)

	mapreduce.task.ismap (mapred.task.is.map)

	mapreduce.task.output.dir (mapred.work.output.dir)

	mapreduce.task.partition (mapred.task.partition)

You can use jobconf_from_env() to read these from
your job’s environment. For example:

from mrjob.compat import jobconf_from_env
from mrjob.job import MRJob

class MRCountLinesByFile(MRJob):

 def mapper(self, _, line):
 yield jobconf_from_env('mapreduce.map.input.file'), 1

 def reducer(self, path, ones):
 yield path, sum(ones)

if __name__ == '__main__':
 MRCountLinesByFile.run()

$ python -m mrjob.examples.mr_count_lines_by_file README.rst CHANGES.txt 2> /dev/null
"CHANGES.txt" 564
"README.rst" 137

If you only want to simulate jobconf variables from a single version of
Hadoop (for more stringent testing), you can set hadoop_version.

Setting number of mappers and reducers

Want more or less splits? You can tell the inline runner the same way
you’d tell hadoop, with the mapreduce.job.maps and
mapreduces.job.reduces jobconf options:

$ python -m mrjob.examples.mr_count_lines_wrong --jobconf mapreduce.job.maps=5 README.rst 2> /dev/null
null 24
null 33
null 38
null 30
null 12

Local runnner

The local runner (LocalMRJobRunner;
run using -r local) supports
the above features, but, unlike the inline runner, it uses subprocesses.

This means it can be used to test options that don’t make sense in a
single-process context, including:

	python_bin

	setup

The local runner does run multiple subprocesses concurrently, but it’s
not really meant as a replacement for Hadoop; it’s just for testing!

Anatomy of a test case

So, you’ve gotten a job working. Great! Here’s how you write a regression
test so that future developers won’t break it.

For this example we’ll use a
test of the *_init() methods from the mrjob test cases:

from mrjob.job import MRJob

class MRInitJob(MRJob):

 def __init__(self, *args, **kwargs):
 super(MRInitJob, self).__init__(*args, **kwargs)
 self.sum_amount = 0
 self.multiplier = 0
 self.combiner_multipler = 1

 def mapper_init(self):
 self.sum_amount += 10

 def mapper(self, key, value):
 yield(None, self.sum_amount)

 def reducer_init(self):
 self.multiplier += 10

 def reducer(self, key, values):
 yield(None, sum(values) * self.multiplier)

 def combiner_init(self):
 self.combiner_multiplier = 2

 def combiner(self, key, values):
 yield(None, sum(values) * self.combiner_multiplier)

Without using any mrjob features, we can write a simple test case to make
sure our methods are behaving as expected:

from unittest import TestCase

class MRInitTestCase(TestCase):

 def test_mapper(self):
 j = MRInitJob([])
 j.mapper_init()
 self.assertEqual(j.mapper(None, None).next(), (None, j.sum_amount))

To test the full job, you need to set up input, run the job, and check the
collected output. The most straightforward way to provide input is to use the
sandbox() method. Create a BytesIO [http://docs.python.org/2/library/io.html#io.BytesIO]
object, populate it with data, initialize your job to read from stdin, and
enable the sandbox with your BytesIO [http://docs.python.org/2/library/io.html#io.BytesIO] as stdin.

You’ll probably also want to specify --no-conf
so options from your local mrjob.conf don’t pollute your testing
environment.

This example reads from stdin (hence the - parameter):

from io import BytesIO

 def test_init_funcs(self):
 num_inputs = 2
 stdin = BytesIO(b'x\n' * num_inputs)
 mr_job = MRInitJob(['--no-conf'])
 mr_job.sandbox(stdin=stdin)

To run the job without leaving temp files on your system, use the
make_runner() context manager.
make_runner() creates the runner specified in the
command line arguments and ensures that job cleanup is performed regardless of
the success or failure of the job.

Run the job with run(). The job’s output
is available as a generator through
cat_output() and can be parsed with
the job’s output protocol using parse_output():

results = []
with mr_job.make_runner() as runner:
 runner.run()
 for key, value in mrjob.parse_output(runner.cat_output()):
 results.append(value)

 # these numbers should match if mapper_init, reducer_init, and
 # combiner_init were called as expected
 self.assertEqual(sorted(results)[0], num_inputs * 10 * 10 * 2)

Warning

Do not let your tests depend on the input lines being processed in
a certain order. Both mrjob and Hadoop divide input
non-deterministically.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Cloud Dataproc

	Dataproc Quickstart
	Getting started with Google Cloud

	Running a Dataproc Job

	Choosing Type and Number of GCE Instances

	Dataproc runner options
	Google credentials

	Job placement

	Cluster configuration

	Other rarely used options

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

 	Cloud Dataproc

Dataproc Quickstart

Getting started with Google Cloud

Using mrjob with Google Cloud Dataproc is as simple creating an account,
enabling Google Cloud Dataproc, and creating credentials.

Creating an account

	Go to cloud.google.com [https://cloud.google.com].

	Click the circle in the upper right, and select your Google account (if you
don’t have one sign up here [https://accounts.google.com/SignUp]. If
you have multiple Google accounts, sign out first, and then sign into
the account you want to use.

	Click Try it Free in the upper right

	Enter your name and payment information

	Wait a few minutes while your first project is created

Enabling Google Cloud Dataproc

	Go here [https://console.cloud.google.com/apis/library/dataproc.googleapis.com/] (or search for “dataproc” under APIs & Services > Library in the upper left-hand menu)

	Click Enable

Configuring Google Cloud credentials

	Go here [https://console.cloud.google.com/apis/credentials] (or pick APIs & Services > Credentials in the upper left-hand menu)

	Pick Create credentials > Service account key

	Select Compute engine default service account

	Click Create to download a JSON file.

Then you should either install and set up the optional gcloud
utility (see below) or point $GOOGLE_APPLICATION_CREDENTIALS at the file
you downloaded (export GOOGLE_APPLICATION_CREDENTIALS="/path/to/Your Credentials.json").

Installing gcloud, gsutil, and other utilities

mrjob does not require you to install the gcloud command in order
to run jobs on Google Cloud Dataproc, unless you want to set up an SSH
tunnel to the Hadoop resource manager (see ssh_tunnel).

The gcloud command can be very useful for monitoring your job.
The gsutil utility, packaged with it, is very helpful for
dealing with Google Storage, the cloud filesystem that Google Cloud Dataproc
uses.

To install gcloud and gsutil:

	Follow these three steps [https://cloud.google.com/sdk/downloads#interactive] to install the utilities

	Log in with your Google credentials (these will launch a browser):
* gcloud auth login
* gcloud auth application-default init

On some versions of gcloud, you may have to manually configure
project ID for ssh_tunnel to work.

	run gcloud projects list to get your project ID

	gcloud config set project <project_id>

It’s also helpful to set gcloud‘s region and
zone to match mrjob’s defaults:

	gcloud config set compute/region us-west1

	gcloud config set compute/zone us-west1-a

	gcloud config set dataproc/region us-west1

Running a Dataproc Job

Running a job on Dataproc is just like running it locally or on your own Hadoop
cluster, with the following changes:

	The job and related files are uploaded to GCS before being run

	The job is run on Dataproc (of course)

	Output is written to GCS before mrjob streams it to stdout locally

	The Hadoop version is specified by the Dataproc version [https://cloud.google.com/dataproc/dataproc-versions]

This the output of this command should be identical to the output shown in
Fundamentals, but it should take much longer:

> python word_count.py -r dataproc README.txt
"chars" 3654
"lines" 123
"words" 417

Sending Output to a Specific Place

If you’d rather have your output go to somewhere deterministic on GCS,
use --output-dir:

> python word_count.py -r dataproc README.rst \
> --output-dir=gs://my-bucket/wc_out/

Choosing Type and Number of GCE Instances

When you create a cluster on Dataproc, you’ll have the option of specifying a number
and type of GCE instances, which are basically virtual machines. Each instance
type has different memory, CPU, I/O and network characteristics, and costs
a different amount of money. See
Machine Types [https://cloud.google.com/compute/docs/machine-types] and
Pricing [https://cloud.google.com/compute/pricing] for details.

Instances perform one of three roles:

	Master: There is always one master instance. It handles scheduling of tasks
(i.e. mappers and reducers), but does not run them itself.

	Worker: You may have one or more worker instances. These run tasks and host
HDFS.

	Preemptible Worker: You may have zero or more of these. These run tasks, but do not
host HDFS. This is mostly useful because your cluster can lose task instances
without killing your job (see Preemptible VMs [https://cloud.google.com/dataproc/preemptible-vms]).

By default, mrjob runs a single n1-standard-1, which is a cheap but not
very powerful instance type. This can be quite adequate for testing your code on a small subset of your
data, but otherwise give little advantage over running a job locally. To get more performance out of
your job, you can either add more instances, use more powerful instances, or both.

Here are some things to consider when tuning your instance settings:

	Google Cloud bills you a 10-minute minimum even if your cluster only lasts for a few
minutes (this is an artifact of the Google Cloud billing structure), so for many
jobs that you run repeatedly, it is a good strategy to pick instance settings
that make your job consistently run in a little less than 10 minutes.

	Your job will take much longer and may fail if any task (usually a reducer)
runs out of memory and starts using swap. (You can verify this by using
vmstat.) Restructuring your
job is often the best solution, but if you can’t, consider using a high-memory
instance type.

	Larger instance types are usually a better deal if you have the workload
to justify them. For example, a n1-highcpu-8 costs about 6 times as much
as an n1-standard-1, but it has about 8 times as much processing power
(and more memory).

The basic way to control type and number of instances is with the
instance_type and num_core_instances options, on the command line like
this:

--instance-type n1-highcpu-8 --num-core-instances 4

or in mrjob.conf, like this:

runners:
 dataproc:
 instance_type: n1-highcpu-8
 num_core_instances: 4

In most cases, your master instance type doesn’t need to be larger
than n1-standard-1 to schedule tasks. instance_type only applies to
instances that actually run tasks. (In this example, there are 1 n1-standard-1
master instance, and 4 n1-highcpu-8 worker instances.) You will need a larger
master instance if you have a very large number of input files; in this case,
use the master_instance_type option.

If you want to run preemptible instances, use the task_instance_type and num_task_instances options.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

 	Cloud Dataproc

Dataproc runner options

All options from Options available to all runners, Hadoop-related options,
and Cloud runner options are available when running jobs on Google Cloud Dataproc.

Google credentials

Basic credentials are not set in the config file; see Getting started with Google Cloud for
details.

	project_id (--project-id) : string

	Default: read from credentials config file

The ID of the Google Cloud Project to run under.

Changed in version 0.6.2: This used to be called gcp_project

	service_account (--service-account) :

	Default: None

Optional service account to use when creating a cluster. For more
information see Service Accounts [https://cloud.google.com/compute/docs/access/service-accounts#custom_service_accounts].

New in version 0.6.3.

	service_account_scopes (--service-account-scopes) :

	Default: (automatic)

Optional service account scopes to pass to the API when creating a cluster.

Generally it’s suggested that you instead create a
service_account with the scopes you want.

New in version 0.6.3.

Job placement

See also subnet, region, zone

	network (--network) : string

	Default: None

Name or URI of network to launch cluster in. Incompatible with
with subnet.

New in version 0.6.3.

Cluster configuration

	cluster_properties (--cluster-property) :

	Default: None

A dictionary of properties to set in the cluster’s config files
(e.g. mapred-site.xml). For details, see
Cluster properties [https://cloud.google.com/dataproc/docs/concepts/configuring-clusters/cluster-properties].

	core_instance_config (--core-instance-config) :

	Default: None

A dictionary of additional parameters to pass as config.worker_config
when creating the cluster. Follows the format of
InstanceGroupConfig [https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.clusters#InstanceGroupConfig] except that it uses
snake_case instead of camel_case.

For example, to specify 100GB of disk space on core instances, add this to
your config file:

runners:
 dataproc:
 core_instance_config:
 disk_config:
 boot_disk_size_gb: 100

To set this option on the command line, pass in JSON:

--core-instance-config '{"disk_config": {"boot_disk_size_gb": 100}}'

This option can be used to set number of core instances
(num_instances) or instance type (machine_type_uri), but usually
you’ll want to use num_core_instances and
core_instance_type along with this option.

New in version 0.6.3.

	master_instance_config (--master-instance-config) :

	Default: None

A dictionary of additional parameters to pass as config.master_config
when creating the cluster. See core_instance_config for
more details.

New in version 0.6.3.

	task_instance_config (--task-instance-config) :

	Default: None

A dictionary of additional parameters to pass as
config.secondary_worker_config
when creating the cluster. See task_instance_config for
more details.

To make task instances preemptible, add this to your config file:

runners:
 dataproc:
 task_instance_config:
 is_preemptible: true

Note that this config won’t be applied unless you specify at least one
task instance (either through num_task_instances or
by passing num_instances to this option).

New in version 0.6.3.

Other rarely used options

	gcloud_bin (--gcloud-bin) : command

	Default: 'gcloud'

Path to the gcloud binary; may include switches (e.g. 'gcloud -v' or
['gcloud', '-v']). Defaults to gcloud.

Used only as a way to create an SSH tunnel to the Resource Manager.

Changed in version 0.6.8: Setting this to an empty value (--gcloud-bin '') instructs mrjob to
use the default (used to disable SSH).

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Elastic MapReduce

	Elastic MapReduce Quickstart
	Configuring AWS credentials

	Configuring SSH credentials

	Running an EMR Job

	Choosing Type and Number of EC2 Instances

	Cluster Pooling

	EMR runner options
	Amazon credentials

	Instance configuration

	Cluster software configuration

	Monitoring your job

	Cluster pooling

	S3 Filesystem

	Docker

	API Endpoints

	Other rarely used options

	EMR Bootstrapping Cookbook
	When to use bootstrap, and when to use setup

	Installing Python packages with pip

	Installing PyPy

	Installing System Packages

	Troubleshooting
	Using persistent clusters

	Advanced EMR usage
	Spot Instances

	Custom Python packages

	Bootstrap-time configuration

	Manually Reusing Clusters

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

 	Elastic MapReduce

Elastic MapReduce Quickstart

Configuring AWS credentials

Configuring your AWS credentials allows mrjob to run your jobs on Elastic
MapReduce and use S3.

	Create an Amazon Web Services account [http://aws.amazon.com/]

	Go to Security Credentials [https://console.aws.amazon.com/iam/home?#security_credential] in the
login menu (upper right, third from the right), say yes, you want to
proceed, click
on Access Keys, and then Create New Access Key. Make sure to copy the
secret access key, as there is no way to recover it after creation.

Now you can either set the environment variables AWS_ACCESS_KEY_ID
and AWS_SECRET_ACCESS_KEY, or set aws_access_key_id and
aws_secret_access_key in your mrjob.conf file like this:

runners:
 emr:
 aws_access_key_id: <your key ID>
 aws_secret_access_key: <your secret>

Configuring SSH credentials

Configuring your SSH credentials lets mrjob open an SSH tunnel to your jobs’
master nodes to view live progress, see the job tracker in your browser, and
fetch error logs quickly.

	Go to https://console.aws.amazon.com/ec2/home

	Make sure the Region dropdown (upper right, second from the right)
matches the region you want to run jobs in (usually “Oregon”).

	Click on Key Pairs (left sidebar, under Network & Security)

	Click on Create Key Pair (top left).

	Name your key pair EMR (any name will work but that’s what we’re using
in this example)

	Save EMR.pem wherever you like (~/.ssh is a good place)

	Run chmod og-rwx /path/to/EMR.pem so that ssh will be happy

	Add the following entries to your mrjob.conf:

runners:
 emr:
 ec2_key_pair: EMR
 ec2_key_pair_file: /path/to/EMR.pem # ~/ and $ENV_VARS allowed here
 ssh_tunnel: true

Running an EMR Job

Running a job on EMR is just like running it locally or on your own Hadoop
cluster, with the following changes:

	The job and related files are uploaded to S3 before being run

	The job is run on EMR (of course)

	Output is written to S3 before mrjob streams it to stdout locally

	The Hadoop version is specified by the EMR AMI version

This the output of this command should be identical to the output shown in
Fundamentals, but it should take much longer:

> python word_count.py -r emr README.txt
“chars” 3654
“lines” 123
“words” 417

Sending Output to a Specific Place

If you’d rather have your output go to somewhere deterministic on S3, use
--output-dir:

> python word_count.py -r emr README.rst \
> --output-dir=s3://my-bucket/wc_out/

There are many other ins and outs of effectively using mrjob with EMR. See
Advanced EMR usage for some of the ins, but the outs are left as an exercise
for the reader. This is a strictly no-outs body of documentation!

Choosing Type and Number of EC2 Instances

When you create a cluster on EMR, you’ll have the option of specifying a number
and type of EC2 instances, which are basically virtual machines. Each instance
type has different memory, CPU, I/O and network characteristics, and costs
a different amount of money. See
Instance Types [http://aws.amazon.com/ec2/instance-types/] and
Pricing [http://aws.amazon.com/elasticmapreduce/pricing/] for details.

Instances perform one of three roles:

	Master: There is always one master instance. It handles scheduling of tasks
(i.e. mappers and reducers), but does not run them itself.

	Core: You may have one or more core instances. These run tasks and host
HDFS.

	Task: You may have zero or more of these. These run tasks, but do not
host HDFS. This is mostly useful because your cluster can lose task instances
without killing your job (see Spot Instances).

There’s a special case where your cluster only has a single master instance, in which case the master instance schedules tasks, runs them, and hosts HDFS.

By default, mrjob runs a single m1.medium, which is a cheap but not very powerful instance type. This can be quite adequate for testing your code on a small subset of your data, but otherwise give little advantage over running a job locally. To get more performance out of your job, you can either add more instances, use more powerful instances, or both.

Here are some things to consider when tuning your instance settings:

	Your job will take much longer and may fail if any task (usually a reducer)
runs out of memory and starts using swap. (You can verify this by running
mrjob boss j-CLUSTERID vmstat and then looking in
j-CLUSTERID/*/stdout.) Restructuring your job is often the best
solution, but if you can’t, consider using a high-memory instance type.

	Larger instance types are usually a better deal if you have the workload
to justify them. For example, a c1.xlarge costs about 6 times as much
as an m1.medium, but it has about 8 times as much processing power
(and more memory).

The basic way to control type and number of instances is with the
instance_type and num_core_instances options, on the command line like
this:

--instance-type c1.medium --num-core-instances 4

or in mrjob.conf, like this:

runners:
 emr:
 instance_type: c1.medium
 num_core_instances: 4

In most cases, your master instance type doesn’t need to be larger
than m1.medium to schedule tasks, so instance_type only applies to
the 4 instances that actually run tasks. You will need a larger
master instance if you have a very large number of input files; in this case,
use the master_instance_type option.

The num_task_instances option can be used to run 1 or more task instances
(these run tasks but don’t host HDFS). There are also core_instance_type and
task_instance_type options if you want to set these directly.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

 	Elastic MapReduce

Cluster Pooling

Clusters on EMR take several minutes to spin up, which can make development
painfully slow.

To get around this, mrjob provides
cluster pooling.. If you set pool_clusters to true,
once your job completes, the cluster will stay open to accept
additional jobs, and eventually shut itself down after it has been idle
for a certain amount of time (by default, ten minutes; see
max_mins_idle).

Note

Pooling is a way to reduce latency, not to save money. Though
pooling was originally created to optimize AWS’s practice of billing by
the full hour, this ended in October 2017 [https://aws.amazon.com/about-aws/whats-new/2017/10/amazon-emr-now-supports-per-second-billing/].

Pooling is designed so that jobs run with the same version of mrjob and the
same (or similar) mrjob.conf can share the same clusters. Options
that affect which cluster a job can join:

	additional_emr_info: (or lack thereof) must match

	applications: must match

	bootstrap: must match, and files referenced must
have identical contents

	bootstrap_actions: must match

	image_version/release_label: must match

	image_id (or lack thereof) must match

	ec2_key_pair: if specified, only join clusters with the same key
pair

	emr_configurations: (or lack thereof) must match

	subnet: only join clusters with the same EC2 subnet ID (or
lack thereof)

Pooled jobs will also only use clusters with the same pool name, so you
can use the pool_name option to partition your clusters into
separate pools.

Pooling is flexible about instance type and number of instances. It will
attempt to select the cluster with the greatest CPU capacity
(based on NormalizedInstanceHours in the cluster summary returned
by the ListClusters API call), as long as the cluster’s instances provide
at least as much memory and at least as much CPU as your job requests.

Pooling is also somewhat flexible about EBS volumes (see
instance_groups). Each volume must have the same volume type,
but larger volumes or volumes with more I/O ops per second are acceptable,
as are additional volumes of any type.

Pooling cannot match configurations with explicitly set
ebs_root_volume_gb against clusters that use the default (or vice
versa) because the EMR API does not report what the default value is.

If you are using instance_fleets, your jobs will only join other
clusters which use instance fleets. The rules are similar, but jobs will
only join clusters whose fleets use the same set of instances or a subset;
there is no concept of “better” instances.

Pooling uses EMR tags to implement a simple “locking” mechanism that keeps
two jobs from joining the same cluster simultaneously. Locks automatically
expire after a minute (which is more than long enough for a new step to be
submitted to the EMR API and enter the RUNNING state).

You can allow jobs to wait for an available cluster instead of immediately
starting a new one by specifying a value for –pool-wait-minutes. mrjob will
try to find a cluster every 30 seconds for pool_wait_minutes. If
none is found during that time, mrjob will start a new one.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

 	Elastic MapReduce

EMR runner options

All options from Options available to all runners, Hadoop-related options,
and Cloud runner options are available when running jobs on Amazon Elastic
MapReduce.

Amazon credentials

See Configuring AWS credentials and Configuring SSH credentials for specific instructions
about setting these options.

	aws_access_key_id : string

	Default: None

“Username” for Amazon web services.

There isn’t a command-line switch for this option because credentials are
supposed to be secret! Use the environment variable
AWS_ACCESS_KEY_ID instead.

	aws_secret_access_key (--aws-secret-access-key) : string

	Default: None

Your “password” on AWS.

There isn’t a command-line switch for this option because credentials are
supposed to be secret! Use the environment variable
AWS_SECRET_ACCESS_KEY instead.

	aws_session_token : string

	Default: None

Temporary AWS session token, used along with aws_access_key_id
and aws_secret_access_key when using temporary credentials.

There isn’t a command-line switch for this option because credentials are
supposed to be secret! Use the environment variable
AWS_SESSION_TOKEN instead.

	ec2_key_pair (--ec2-key-pair) : string

	Default: None

name of the SSH key you set up for EMR.

	ec2_key_pair_file (--ec2-key-pair-file) : path

	Default: None

path to file containing the SSH key for EMR

	iam_instance_profile (--iam-instance-profile) : string

	Default: (automatic)

Name of an IAM instance profile to use for EC2 clusters created by EMR. See
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles.html
for more details on using IAM with EMR.

	iam_service_role (--iam-service-role) : string

	Default: (automatic)

Name of an IAM role for the EMR service to use. See
http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles.html
for more details on using IAM with EMR.

Instance configuration

On EMR, there are three ways to configure instances:

	instance_fleets

	instance_groups

	individual instance options:
	core_instance_bid_price

	core_instance_type

	instance_type

	master_instance_bid_price

	master_instance_type

	num_core_instances

	num_task_instances

	task_instance_bid_price,

	task_instance_type

If there is a conflict, whichever comes later in the config
files takes precedence, and the command line beats config files. In
the case of a tie, instance_fleets beats instance_groups beats
other instance options.

You may set ebs_root_volume_gb regardless of which style
of instance configuration you use.

	instance_fleets (--instance-fleet) :

	Default: None

A list of instance fleet definitions to pass to the EMR API. Pass a JSON
string on the command line or use data structures in the config file
(which is itself basically JSON). For example:

runners:
 emr:
 instance_fleets:
 - InstanceFleetType: MASTER
 InstanceTypeConfigs:
 - InstanceType: m1.medium
 TargetOnDemandCapacity: 1
 - InstanceFleetType: CORE
 TargetSpotCapacity: 2
 TargetOnDemandCapacity: 2
 LaunchSpecifications:
 SpotSpecification:
 TimeoutDurationMinutes: 20
 TimeoutAction: SWITCH_TO_ON_DEMAND
 InstanceTypeConfigs:
 - InstanceType: m1.medium
 BidPriceAsPercentageOfOnDemandPrice: 50
 WeightedCapacity: 1
 - InstanceType: m1.large
 BidPriceAsPercentageOfOnDemandPrice: 50
 WeightedCapacity: 2

	instance_groups (--instance-groups) :

	Default: None

A list of instance group definitions to pass to the EMR API. Pass a JSON
string on the command line or use data structures in the config file
(which is itself basically JSON).

This allows for more fine-tuned EBS volume configuration than
ebs_root_volume_gb. For example:

runners:
 emr:
 instance_groups:
 - InstanceRole: MASTER
 InstanceCount: 1
 InstanceType: m1.medium
 - InstanceRole: CORE
 InstanceCount: 10
 InstanceType: c1.xlarge
 EbsConfiguration:
 EbsOptimized: true
 EbsBlockDeviceConfigs:
 - VolumeSpecification:
 SizeInGB: 100
 VolumeType: gp2

instance_groups is incompatible with instance_fleets
and other instance options. See instance_fleets for
details.

	core_instance_bid_price (--core-instance-bid-price) : string

	Default: None

When specified and not “0”, this creates the core Hadoop nodes as spot
instances at this bid price. You usually only want to set bid price for
task instances.

	master_instance_bid_price (--master-instance-bid-price) : string

	Default: None

When specified and not “0”, this creates the master Hadoop node as a spot
instance at this bid price. You usually only want to set bid price for
task instances unless the master instance is your only instance.

	task_instance_bid_price (--task-instance-bid-price) : string

	Default: None

When specified and not “0”, this creates the master Hadoop node as a spot
instance at this bid price. (You usually only want to set bid price for
task instances.)

	ebs_root_volume_gb (--ebs-root-volume-gb) : integer

	Default: None

When specified (and not zero), sets the size of the root EBS volume,
in GiB.

New in version 0.6.5.

Cluster software configuration

See also bootstrap, image_id, and
image_version.

	applications (--application, --applications) : string list

	Default: []

Additional applications to run on 4.x AMIs (e.g. 'Ganglia',
'Mahout', 'Spark').

You do not need to specify 'Hadoop'; mrjob will always include it
automatically. In most cases it’ll auto-detect when to include 'Spark'
as well.

See Applications [http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-release-components.html] in the EMR docs for more details.

Changed in version 0.6.7: Added --applications switch

	bootstrap_actions (--bootstrap-actions) : string list

	Default: []

A list of raw bootstrap actions (essentially scripts) to run prior to any
of the other bootstrap steps. Any arguments should be separated from the
command by spaces (we use shlex.split() [http://docs.python.org/2/library/shlex.html#shlex.split]). If the action is on the
local filesystem, we’ll automatically upload it to S3.

This has little advantage over bootstrap; it is included
in order to give direct access to the EMR API.

	bootstrap_spark (--bootstrap-spark, --no-bootstrap-spark) : boolean

	Default: (automatic)

Install Spark on the cluster. This works on AMI version 3.x and later.

By default, we automatically install Spark only if our job has Spark steps.

In case you’re curious, here’s how mrjob determines you’re using Spark:

	any SparkStep or
SparkScriptStep in your job’s steps (including
implicitly through the spark method)

	“Spark” included in applications option

	any bootstrap action (see bootstrap_actions) ending in
/spark-install (this is how you install Spark on 3.x AMIs)

	emr_configurations (--emr-configuration) : list of dicts

	Default: []

Cluster configs for AMI version 4.x and later. For example:

runners:
 emr:
 emr_configurations:
 - Classification: core-site
 Properties:
 hadoop.security.groups.cache.secs: 250

On the command line, configurations should be JSON-encoded:

--emr-configuration '{"Classification": "core-site", ...}

See Configuring Applications [http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-configure-apps.html] in the EMR docs for more details.

Changed in version 0.6.11: !clear tag works. Later config dicts will overwrite earlier ones
with the same Classification. If the later dict has empty
Properties and Configurations, the earlier dict will be simply
deleted.

	max_concurrent_steps (--max-concurrent-steps) : string

	Default: 1

How many steps may an EMR cluster run at the same time? This affects both
clusters launched by our job, and, if using cluster pooling, which
clusters our job will join.

Prior to AMI 5.28.0, EMR clusters could only ever run one step at a time.

New in version 0.7.4.

	release_label (--release-label) : string

	Default: None

EMR Release to use (e.g. emr-4.0.0). This overrides
image_version.

For more information about Release Labels, see
Differences Introduced in 4.x [http://docs.aws.amazon.com/ElasticMapReduce/latest/ReleaseGuide/emr-release-differences.html].

Monitoring your job

See also check_cluster_every, ssh_tunnel.

	enable_emr_debugging (--enable-emr-debugging) : boolean

	Default: False

store Hadoop logs in SimpleDB

Cluster pooling

	max_clusters_in_pool (--max-clusters-in-pool) : integer

	Default: 0 (disabled)

Don’t create a new pooled cluster if there are already this many
active (not terminated) clusters in our pool; instead wait until one of
the clusters is available to join or terminates.

To deal with the situation where several jobs start at once, before
creating a cluster, we wait a random number of seconds (see
pool_jitter_seconds and double-check before creating
a new cluster).

New in version 0.7.4.

	min_available_mb (--min-available-mb) : integer

	Default: 0 (disabled)

When joining a pooled cluster, connect to its YARN resource manager’s
metrics API and make sure that availableMB is at least this high.

This requires SSH to work, so ec2_key_pair and
ec2_key_pair_file must be set.

If you enable this option, pooling will no longer query clusters about
their instance groups/fleets, since this information is mostly redundant.

New in version 0.7.4.

	min_available_virtual_cores (--min-available-virtual-cores) : integer

	Default: 0 (disabled)

When joining a pooled cluster, connect to its YARN resource manager’s
metrics API and make sure that availableVirtualCores is at least this
high.

Like with min_available_mb, this requires SSH to work
and disables querying clusters about their instances.

New in version 0.7.4.

	pool_clusters (--pool-clusters) : string

	Default: True

Try to run the job on a WAITING pooled cluster with the same
bootstrap configuration. Prefer the one with the most compute units. If
we can’t join an existing cluster, create our own (unless
max_clusters_in_pool or pool_wait_minutes
disallow it).

	pool_jitter_seconds (--pool-jitter-seconds) : string

	Default: 60

Wait a random number of seconds between 0 and this many before
double-checking active clusters in the pool for
max_clusters_in_pool or to bypass
pool_wait_minutes.

The main point of this option is so that if several jobs start
simultaneously, they can double-check if the other jobs have launched a
cluster before launching one themselves. You may need wish to adjust
this based on your maximum pool size and the number of jobs you expect
to launch simultaneously.

New in version 0.7.4.

	pool_name (--pool-name) : string

	Default: 'default'

Specify a pool name to join. Does not imply pool_clusters.

	pool_timeout_minutes (--pool-timeout-minutes) : string

	Default: 0 (disabled)

If we can’t create or join a cluster after this many minutes, raise
an exception and bail out.

New in version 0.7.4.

	pool_wait_minutes (--pool-wait-minutes) : string

	Default: 0

If pooling is enabled and no cluster is available, retry finding a cluster
every 30 seconds until this many minutes have passed, then start a new
cluster instead of joining one.

Changed in version 0.7.4: If there aren’t any active clusters with a matching pool name and
hash, we may create our own cluster before pool_wait_minutes is
up. We first wait a random number of seconds and double-check that
other clusters have not been created (see
pool_jitter_seconds).

S3 Filesystem

See also cloud_tmp_dir, cloud_part_size_mb

	cloud_log_dir (--cloud-log-dir) : string

	Default: append logs to cloud_tmp_dir

Where on S3 to put logs, for example s3://yourbucket/logs/. Logs for
your cluster will go into a subdirectory, e.g.
s3://yourbucket/logs/j-CLUSTERID/.

Docker

	docker_client_config (--docker-client-config) : string

	Default: None

An hdfs:// URI pointing to the client config, which is used to
authenticate with a private Docker registry (e.g. ECR). This is mostly
useful on AMIs prior to 6.1.0; otherwise you can use auto-authentication
(see this page [https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-docker.html]).

See “Using ECR” on this page [https://aws.amazon.com/blogs/big-data/run-spark-applications-with-docker-using-amazon-emr-6-0-0-beta/]
for information about how to fetch working credentials. Because ECR
credentials only last 12 hours, if you want to use ECR and Docker
for multiple jobs on a long-running cluster, you may wish to set up
a cron job at bootstrap time.

New in version 0.7.4.

	docker_image (--docker-image, --no-docker) : string

	Default: None

The repository, name, and optionally, tag of a docker image, in the format
registry/repository:tag. If registry/ is omitted, we assume the
default registry on Docker Hub (library). If registry is a hostname,
we connect to that host instead (e.g. for use of ECR).

Other docker_* options will do nothing if this is not set.

Note that you must be running at least AMI 6.0.0 to use Docker on EMR.

New in version 0.7.4.

	docker_mounts (--docker-mount) : string list

	Default: []

Optional mounting instructions to pass to Docker, in the format
/local/path:/path/inside/docker:ro_or_rw.

New in version 0.7.4.

API Endpoints

Note

You usually don’t want to set *_endpoint options unless you have a
challenging network situation (e.g. you have to use a proxy to get around
a firewall).

	ec2_endpoint (--ec2-endpoint) : string

	Default: (automatic)

New in version 0.6.5.

Force mrjob to connect to EC2 on this endpoint (e.g.
ec2.us-gov-west-1.amazonaws.com).

	emr_endpoint (--emr-endpoint) : string

	Default: infer from region

Force mrjob to connect to EMR on this endpoint (e.g.
us-west-1.elasticmapreduce.amazonaws.com).

	iam_endpoint (--iam-endpoint) : string

	Default: (automatic)

Force mrjob to connect to IAM on this endpoint (e.g.
iam.us-gov.amazonaws.com).

	s3_endpoint (--s3-endpoint) : string

	Default: (automatic)

Force mrjob to connect to S3 on this endpoint, rather than letting it
choose the appropriate endpoint for each S3 bucket.

Warning

If you set this to a region-specific endpoint
(e.g. 's3-us-west-1.amazonaws.com') mrjob may not
be able to access buckets located in other regions.

Other rarely used options

	add_steps_in_batch (--add-steps-in-batch, --no-add-steps-in-batch) : boolean

	Default: True for AMIs before 5.28.0, False otherwise

For a multi-step job, should we submit all steps at once, or one at
a time? By default, we only submit steps all at once if the AMI doesn’t
support running concurrent steps (that is, before AMI 5.28.0).

New in version 0.7.4.

	additional_emr_info (--additional-emr-info) : special

	Default: None

Special parameters to select additional features, mostly to support beta
EMR features. Pass a JSON string on the command line or use data
structures in the config file (which is itself basically JSON).

	emr_action_on_failure (--emr-action-on-failure) : string

	Default: (automatic)

What happens if step of your job fails

	'CANCEL_AND_WAIT' cancels all steps on the cluster

	
	'CONTINUE' continues to the next step (useful when submitting several

	jobs to the same cluster)

	'TERMINATE_CLUSTER' shuts down the cluster entirely

The default is 'CANCEL_AND_WAIT' when using pooling (see
pool_clusters) or an existing cluster (see
cluster_id), and 'TERMINATE_CLUSTER' otherwise.

	hadoop_streaming_jar_on_emr (--hadoop-streaming-jar-on-emr) : string

	Default: AWS default

	ssh_add_bin (--ssh-add-bin) : command

	Default: 'ssh-add'

Path to the ssh-add binary. Used on EMR to access logs on the
non-master node, without copying your SSH key to the master node.

New in version 0.7.2.

	ssh_bin (--ssh-bin) : command

	Default: 'ssh'

Path to the ssh binary; may include switches (e.g. 'ssh -v' or
['ssh', '-v']). Defaults to ssh.

On EMR, mrjob uses SSH to tunnel to the job tracker (see
ssh_tunnel), as a fallback way of fetching job progress,
and as a quicker way of accessing your job’s logs.

Changed in version 0.6.8: Setting this to an empty value (--ssh-bin '') instructs mrjob to use
the default value (used to effectively disable SSH).

	tags (--tag) : dict

	Default: {}

Metadata tags to apply to the EMR cluster after its
creation. See Tagging Amazon EMR Clusters [http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-plan-tags.html] for more information
on applying metadata tags to EMR clusters.

Tag names and values are strings. On the command line, to set a tag
use --tag KEY=VALUE:

--tag team=development

In the config file, tags is a dict:

runners:
 emr:
 tags:
 team: development
 project: mrjob

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

 	Elastic MapReduce

EMR Bootstrapping Cookbook

Bootstrapping allows you to run commands to customize EMR machines, at the
time the cluster is created.

When to use bootstrap, and when to use setup

You can use bootstrap and setup together.

Generally, you want to use bootstrap for things that are
part of your general production environment, and setup
for things that are specific to your particular job. This makes things
work as expected if you are using Cluster Pooling.

EMR will generally not allow you to use sudo in
setup commands. See Job Environment Setup Cookbook for how to install
libraries, etc. without using sudo.

Installing Python packages with pip

The only tricky thing is making sure you install packages for the correct
version of Python.

Figure out which version of Python you’ll be running on EMR (see
python_bin for defaults).

	If it’s Python 2, use pip-2.7 (just plain pip also
works on AMI 4.3.0 and later)

	If it’s Python 3, use pip-3.6 on AMI 5.20.0+,
and pip-3.4 for earlier AMIs

For example, to install ujson on Python 2:

runners:
 emr:
 bootstrap:
 - sudo pip-2.7 install ujson

See PyPI [https://pypi.python.org/pypi] for a the full list of available
Python packages.

You can also install packages from a requirements [https://pip.pypa.io/en/stable/user_guide/#requirements-files] file:

runners:
 emr:
 bootstrap:
 - sudo pip-2.7 install -r /local/path/of/requirements.txt#

Or a tarball:

runners:
 emr:
 bootstrap:
 - sudo pip-2.7 install /local/path/of/tarball.tar.gz#

Warning

If you’re trying to run jobs on AMI version 3.0.0 (protip: don’t do that)
pip appears not to work due to out-of-date SSL
certificate information.

Installing PyPy

First, download the version of PyPy you want to use from
Portable PyPy Distributions for Linux [https://bitbucket.org/squeaky/portable-pypy/downloads/].

Then instruct EMR to un-tar it and link to the binary in /usr/bin. For example:

runners:
 emr:
 bootstrap:
 - sudo tar xvfj /local/path/to/pypy-7.1.1-linux_x86_64-portable.tar.bz2# -C /opt
 - sudo ln -s /opt/pypy-7.1.1-linux_x86_64-portable/bin/pypy /usr/bin/pypy

Installing System Packages

EMR gives you access to a variety of different Amazon Machine Images, or AMIs
for short (see image_version).

3.x and later AMIs

Starting with 3.0.0, EMR AMIs use Amazon Linux, which uses yum to
install packages. For example, to install NumPy:

runners:
 emr:
 bootstrap:
 - sudo yum install -y python-numpy

(Don’t forget the -y!)

Amazon Linux’s Python packages generally only work for Python 2.
If you’re on Python 3, just use pip.

The most recent list of Amazon linux packages can be found here [https://aws.amazon.com/amazon-linux-ami/] (click on “Packages List” in the left sidebar).

2.x AMIs

Probably not worth the trouble. The 2.x AMIs are based on a version of Debian
that is so old it has been “archived,” which makes their package installer,
apt-get, no longer work out-of-the-box. Moreover, Python system
packages work for Python 2.6, not 2.7.

Instead, just use pip-2.7 to install Python libraries.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

 	Elastic MapReduce

Troubleshooting

Many things can go wrong in an EMR job, and the system’s distributed nature
can make it difficult to find the source of a problem. mrjob attempts to
simplify the debugging process by automatically scanning logs for probable
causes of failure.

In addition to looking at S3, mrjob can be configured to
also use SSH to fetch error logs directly from the master and worker nodes.
This can speed up debugging significantly (EMR only transfers logs to S3
every five minutes).

Using persistent clusters

When troubleshooting a job, it can be convenient to use a persistent cluster
to avoid having to wait for bootstrapping every run.

First, use the mrjob create-cluster to create a
persistent cluster:

$ mrjob create-cluster
Using configs in /Users/davidmarin/.mrjob.conf
Using s3://mrjob-35cdec11663cb1cb/tmp/ as our temp dir on S3
Creating persistent cluster to run several jobs in...
Creating temp directory /var/folders/zv/jmtt5bxs6xl3kzt38470hcxm0000gn/T/no_script.davidmarin.20160324.231018.720057
Copying local files to s3://mrjob-35cdec11663cb1cb/tmp/no_script.davidmarin.20160324.231018.720057/files/...
j-3BYHP30KB81XE

Now you can use the cluster ID to start the troublesome job:

$ python mrjob/examples/mr_boom.py README.rst -r emr --cluster-id j-3BYHP30KB81XE
Using configs in /Users/davidmarin/.mrjob.conf
Using s3://mrjob-35cdec11663cb1cb/tmp/ as our temp dir on S3
Creating temp directory /var/folders/zv/jmtt5bxs6xl3kzt38470hcxm0000gn/T/mr_boom.davidmarin.20160324.231045.501027
Copying local files to s3://mrjob-35cdec11663cb1cb/tmp/mr_boom.davidmarin.20160324.231045.501027/files/...
Adding our job to existing cluster j-3BYHP30KB81XE
Waiting for step 1 of 1 (s-SGVW9B5LEXF5) to complete...
 PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
 PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
 PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
 PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
 PENDING (cluster is STARTING: Provisioning Amazon EC2 capacity)
 PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
 PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
 PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
 PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
 PENDING (cluster is BOOTSTRAPPING: Running bootstrap actions)
 Opening ssh tunnel to resource manager...
 Connect to resource manager at: http://localhost:40069/cluster
 RUNNING for 9.2s
 RUNNING for 42.3s
 0.0% complete
 RUNNING for 72.6s
 5.0% complete
 RUNNING for 102.9s
 5.0% complete
 RUNNING for 133.4s
 100.0% complete
 FAILED
Cluster j-3BYHP30KB81XE is WAITING: Cluster ready after last step failed.
Attempting to fetch counters from logs...
Looking for step log in /mnt/var/log/hadoop/steps/s-SGVW9B5LEXF5 on ec2-52-37-112-240.us-west-2.compute.amazonaws.com...
 Parsing step log: ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/steps/s-SGVW9B5LEXF5/syslog
Counters: 9
 Job Counters
 Data-local map tasks=1
 Failed map tasks=4
 Launched map tasks=4
 Other local map tasks=3
 Total megabyte-seconds taken by all map tasks=58125312
 Total time spent by all map tasks (ms)=75684
 Total time spent by all maps in occupied slots (ms)=227052
 Total time spent by all reduces in occupied slots (ms)=0
 Total vcore-seconds taken by all map tasks=75684
Scanning logs for probable cause of failure...
Looking for task logs in /mnt/var/log/hadoop/userlogs/application_1458861299388_0001 on ec2-52-37-112-240.us-west-2.compute.amazonaws.com and task/core nodes...
 Parsing task syslog: ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/userlogs/application_1458861299388_0001/container_1458861299388_0001_01_000005/syslog
 Parsing task stderr: ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/userlogs/application_1458861299388_0001/container_1458861299388_0001_01_000005/stderr
Probable cause of failure:

PipeMapRed failed!
java.lang.RuntimeException: PipeMapRed.waitOutputThreads(): subprocess failed with code 1
 at org.apache.hadoop.streaming.PipeMapRed.waitOutputThreads(PipeMapRed.java:330)
 at org.apache.hadoop.streaming.PipeMapRed.mapRedFinished(PipeMapRed.java:543)
 at org.apache.hadoop.streaming.PipeMapper.close(PipeMapper.java:130)
 at org.apache.hadoop.mapred.MapRunner.run(MapRunner.java:81)
 at org.apache.hadoop.streaming.PipeMapRunner.run(PipeMapRunner.java:34)
 at org.apache.hadoop.mapred.MapTask.runOldMapper(MapTask.java:432)
 at org.apache.hadoop.mapred.MapTask.run(MapTask.java:343)
 at org.apache.hadoop.mapred.YarnChild$2.run(YarnChild.java:175)
 at java.security.AccessController.doPrivileged(Native Method)
 at javax.security.auth.Subject.doAs(Subject.java:415)
 at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1548)
 at org.apache.hadoop.mapred.YarnChild.main(YarnChild.java:170)

(from lines 37-50 of ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/userlogs/application_1458861299388_0001/container_1458861299388_0001_01_000005/syslog)

caused by:

Traceback (most recent call last):
 File "mr_boom.py", line 10, in <module>
 MRBoom.run()
 File "/usr/lib/python3.4/dist-packages/mrjob/job.py", line 430, in run
 mr_job.execute()
 File "/usr/lib/python3.4/dist-packages/mrjob/job.py", line 439, in execute
 self.run_mapper(self.options.step_num)
 File "/usr/lib/python3.4/dist-packages/mrjob/job.py", line 499, in run_mapper
 for out_key, out_value in mapper_init() or ():
 File "mr_boom.py", line 7, in mapper_init
 raise Exception('BOOM')
Exception: BOOM

(from lines 1-12 of ssh://ec2-52-37-112-240.us-west-2.compute.amazonaws.com/mnt/var/log/hadoop/userlogs/application_1458861299388_0001/container_1458861299388_0001_01_000005/stderr)

while reading input from s3://mrjob-35cdec11663cb1cb/tmp/mr_boom.davidmarin.20160324.231045.501027/files/README.rst

Step 1 of 1 failed
Killing our SSH tunnel (pid 52847)

Now you can fix the bug and try again, without having to wait for a new
cluster to bootstrap.

Note

mrjob can fetch logs from persistent jobs even without SSH set up, but
it has to pause 10 minutes to wait for EMR to transfer logs to S3, which
defeats the purpose of rapid iteration.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

 	Elastic MapReduce

Advanced EMR usage

Spot Instances

You can potentially save money purchasing EC2 instances for your EMR
clusters from AWS’s spot market. The catch is that if someone bids more for
instances that you’re using, they can be taken away from your cluster. If this
happens, you aren’t charged, but your job may fail.

You can specify spot market bid prices using the core_instance_bid_price,
master_instance_bid_price, and task_instance_bid_price options to
specify a price in US dollars. For example, on the command line:

--task-instance-bid-price 0.42

or in mrjob.conf:

runners:
 emr:
 task_instance_bid_price: '0.42'

(Note the quotes; bid prices are strings, not floats!)

Amazon has a pretty thorough explanation of why and when you’d want to use spot
instances here [http://docs.amazonwebservices.com/ElasticMapReduce/latest/DeveloperGuide/UsingEMR_SpotInstances.html?r=9215].
The brief summary is that either you don’t care if your job fails, in which
case you want to purchase all your instances on the spot market, or you’d need
your job to finish but you’d like to save time and money if you can, in which
case you want to run task instances on the spot market and purchase master and
core instances the regular way.

Cluster Pooling interacts with bid prices more or less how you’d
expect; a job will join a pool with spot instances only if it requested spot
instances at the same price or lower.

Custom Python packages

See Installing Python packages with pip and Installing System Packages.

Bootstrap-time configuration

Some Hadoop options, such as the maximum number of running map tasks per node,
must be set at bootstrap time and will not work with –jobconf. You must use
Amazon’s configure-hadoop script for this. For example, this limits the
number of mappers and reducers to one per node:

--bootstrap-action="s3://elasticmapreduce/bootstrap-actions/configure-hadoop \
-m mapred.tasktracker.map.tasks.maximum=1 \
-m mapred.tasktracker.reduce.tasks.maximum=1"

Note

This doesn’t work on AMI 4.0.0 and later.

Manually Reusing Clusters

In some cases, it may be useful to have more fine-grained control than
Cluster Pooling provides; for example, to run several related jobs
on the same cluster.

mrjob includes a utility to create persistent clusters without
running a job. For example, this command will create a cluster with 12 EC2
instances (1 master and 11 core), taking all other options from
mrjob.conf:

$ mrjob create-cluster --num-core-instances=11
...
j-CLUSTERID

You can then add jobs to the cluster with the --cluster-id
switch or the cluster_id option in mrjob.conf (see
EMRJobRunner.__init__()):

$ python mr_my_job.py -r emr --cluster-id=j-CLUSTERID input_file.txt > out
...
Adding our job to existing cluster j-CLUSTERID
...

Debugging will be difficult unless you complete SSH setup (see
Configuring SSH credentials) since the logs will not be copied from the master node to
S3 before either five minutes pass or the cluster terminates.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Python 2 vs. Python 3

Raw protocols

Both because we don’t want to break mrjob for Python 2 users, and to make writing jobs simple, jobs read their input as strs by default (even though str means bytes in Python 2 and unicode in Python 3).

The way this works in mrjob is that RawValueProtocol is actually an alias for one of two classes, BytesValueProtocol if you’re in Python 2, and TextValueProtocol if you’re in Python 3.

If you care about this distinction, you may want to explicitly set INPUT_PROTOCOL to one of these. If your input has a well-defined encoding, probably you want BytesValueProtocol, and if it’s a bunch of text that’s mostly ASCII, with like, some stuff that... might be UTF-8? (i.e. most log files), you probably want TextValueProtocol. But most of the time it’ll just work.

Bytes vs. strings

	The following things are bytes in any version of Python (which means you need to use the bytes type and/or b'...' constant in Python 3):

	
	data read or written by Protocols

	lines yielded by cat_output()

	anything read from cat()

The stdin, stdout, and stderr attributes of MRJobs are always bytestreams (so, for example, self.stderr defaults to sys.stderr.buffer in Python 3).

Everything else (including file paths, URIs, arguments to commands, and logging messages) are strings; that is, strs on Python 3, and either unicodes or ASCII strs on Python 2. Like with RawValueProtocol, most of the time it’ll just work even if you don’t think about it.

python_bin

python_bin defaults to python3 in Python 3, and python in Python 2 (except on EMR AMIs prior to 4.3.0, where we use python2.7)

Your Hadoop cluster

Whatever version of Python you use, you’ll have to have a compatible version of Python installed on your Hadoop cluster. mrjob does its best to make this work on Elastic MapReduce (see bootstrap_python), but if you’re running on your own Hadoop cluster, this is up to you.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Guides

Contributing to mrjob

Contribution guidelines

mrjob is developed using a standard Github pull request process. Almost all
code is reviewed in pull requests.

The general process for working on mrjob is:

	Fork the project on Github [http://www.github.com/Yelp/mrjob]

	Clone your fork to your local machine

	Create a feature branch from master (e.g. git branch delete_all_the_code)

	Write code, commit often

	Write test cases for all changed functionality

	Submit a pull request against master on Github

	Wait for code review!

It would also help to discuss your ideas on the mailing list [http://groups.google.com/group/mrjob] so we can warn
you of possible merge conflicts with ongoing work or offer suggestions for
where to put code.

Things that will make your branch more likely to be pulled:

	Comprehensive, fast test cases

	Detailed explanation of what the change is and how it works

	Reference relevant issue numbers in the tracker

	API backward compatibility

If you add a new configuration option, please try to do all of these things:

	Add command line switches that allow full control over the option

	Document the option and its switches in the appropriate file under docs

A quick tour through the code

mrjob’s modules can be put in four categories:

	Reading command line arguments and config files, and invoking machinery
accordingly
	mrjob.conf: Read config files

	mrjob.launch: Invoke runners based on command line and configs

	mrjob.options: Define command line options

	Interacting with Hadoop Streaming
	mrjob.job: Python interface for writing jobs

	mrjob.protocol: Defining data formats between Python steps

	Runners and support; submitting the job to various MapReduce environments
	mrjob.runner: Common functionality across runners

	mrjob.hadoop: Submit jobs to Hadoop

	mrjob.step: Define/implement interface between runners and
script steps

	Local
	mrjob.inline: Run Python-only jobs in-process

	mrjob.local: Run Hadoop Streaming-only jobs in subprocesses

	Google Cloud Dataproc
	mrjob.dataproc: Submit jobs to Dataproc

	Amazon Elastic MapReduce
	mrjob.emr: Submit jobs to EMR

	mrjob.pool: Utilities for cluster pooling functionality

	mrjob.retry: Wrapper for S3 and EMR connections to handle
recoverable errors

	Interacting with different “filesystems”
	mrjob.fs.base: Common functionality

	mrjob.fs.composite: Support multiple filesystems; if one fails,
“fall through” to another

	mrjob.fs.gcs: Google Cloud Storage

	mrjob.fs.hadoop: HDFS

	mrjob.fs.local: Local filesystem

	mrjob.fs.s3: S3

	mrjob.fs.ssh: SSH

	Utilities
	mrjob.compat: Transparently handle differences between Hadoop
versions

	mrjob.logs: Log interpretation (counters, probable cause of
job failure)

	mrjob.parse: Parsing utilities for URIs, command line
options, etc.

	mrjob.util: Utilities for dealing with files, command line
options, various other things

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

Reference

	mrjob.ami - building custom AMIs

	mrjob.cat - decompress files based on extension

	mrjob.cmd: The mrjob command-line utility

	mrjob.compat - Hadoop version compatibility

	mrjob.conf - parse and write config files

	mrjob.dataproc - run on Dataproc

	mrjob.emr - run on EMR

	mrjob.hadoop - run on your Hadoop cluster

	mrjob.inline - debugger-friendly local testing

	mrjob.job - defining your job

	mrjob.local - simulate Hadoop locally with subprocesses

	mrjob.parse - log parsing

	mrjob.protocol - input and output

	mrjob.spark.runner - run on any Spark cluster

	mrjob.retry - retry on transient errors

	mrjob.runner - base class for all runners

	mrjob.step - represent Job Steps

	mrjob.setup - job environment setup

	mrjob.util - general utility functions

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.ami - building custom AMIs

Utilities for creating custom AMIs.

	
mrjob.ami.describe_base_emr_images(ec2_client)

	Fetch a list of Amazon Linux AMI images that are usable with EMR,
with the most recent first. This can take several seconds.

	Parameters:	ec2_client – a boto3 EC2 client, which can be obtained from
mrjob.emr.EMRJobRunner.make_ec2_client()
or boto3.client('ec2')

For the sake of consistency, we have somewhat stricter requirements
than the AWS documentation [https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-custom-ami.html#emr-custom-ami-considerations].
Specifically:

	Amazon Linux (not Amazon Linux 2)

	HVM virtualization

	x86_64 architecture

	single EBS volume
* standard volume type (not GP2)

	stable version (no “testing” or “rc”, only numbers and dots)

This only returns images going back to September 2016 (prior to that,
EC2 used a different naming convention).

This returns a dictionary for each image, in the same response format as
ec2_client.describe_images() [https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/ec2.html#EC2.Client.describe_images]. The
ImageId field contains the AMI ID, and Description contains
a human-readable description.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.cat - decompress files based on extension

Emulating the way Hadoop handles input files, decompressing compressed
files based on their file extension.

This module also functions as a cat substitute that can handle
compressed files. It it used by local mode and can
function without the rest of the mrjob library.

	
mrjob.cat.bunzip2_stream(fileobj, bufsize=1024)

	Decompress gzipped data on the fly.

	Parameters:	
	fileobj – object supporting read()

	bufsize – number of bytes to read from fileobj at a time.

Warning

This yields decompressed chunks; it does not split on lines. To get
lines, wrap this in to_lines().

	
mrjob.cat.decompress(readable, path, bufsize=1024)

	Take a readable which supports the .read() method correponding to
the given path and returns an iterator that yields chunks of bytes,
possibly decompressing based on path.

if readable appears to be a fileobj, pass it through as-is.

if readable does not have a read() method, assume that it’s
a generator that yields chunks of bytes

	
mrjob.cat.gunzip_stream(fileobj, bufsize=1024)

	Decompress gzipped data on the fly.

	Parameters:	
	fileobj – object supporting read()

	bufsize – number of bytes to read from fileobj at a time. The
default is the same as in gzip [http://docs.python.org/2/library/gzip.html#module-gzip].

Warning

This yields decompressed chunks; it does not split on lines. To get
lines, wrap this in to_lines().

	
mrjob.cat.to_chunks(readable, bufsize=1024)

	Convert readable, which is any object supporting read()
(e.g. fileobjs) to a stream of non-empty bytes.

If readable has an __iter__ method but not a read method,
pass through as-is.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.cmd: The mrjob command-line utility

The mrjob command provides a number of sub-commands that help you
run and monitor jobs.

The mrjob command comes with Python-version-specific aliases (e.g.
mrjob-3, mrjob-3.4), in case you choose to install
mrjob for multiple versions of Python. You may also run it as
python -m mrjob.cmd <subcommand>.

audit-emr-usage

Audit EMR usage over the past 2 weeks, sorted by cluster name and user.

Usage:

mrjob audit-emr-usage > report

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT
 Force mrjob to connect to EC2 on this endpoint (e.g.
 ec2.us-west-1.amazonaws.com). Default is to infer this
 from region.
--emr-endpoint EMR_ENDPOINT
 Force mrjob to connect to EMR on this endpoint (e.g.
 us-west-1.elasticmapreduce.amazonaws.com). Default is
 to infer this from region.
-h, --help show this help message and exit
--max-days-ago MAX_DAYS_AGO
 Max number of days ago to look at jobs. By default, we
 go back as far as EMR supports (currently about 2
 months)
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT
 Force mrjob to connect to S3 on this endpoint (e.g. s3
 -us-west-1.amazonaws.com). You usually shouldn't set
 this; by default mrjob will choose the correct
 endpoint for each S3 bucket based on its location.
-v, --verbose print more messages to stderr

boss

Run a command on every node of a cluster. Store stdout and stderr for
results in OUTPUT_DIR.

Usage:

mrjob boss CLUSTER_ID [options] "command string"

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT
 Force mrjob to connect to EC2 on this endpoint (e.g.
 ec2.us-west-1.amazonaws.com). Default is to infer this
 from region.
--ec2-key-pair-file EC2_KEY_PAIR_FILE
 Path to file containing SSH key for EMR
--emr-endpoint EMR_ENDPOINT
 Force mrjob to connect to EMR on this endpoint (e.g.
 us-west-1.elasticmapreduce.amazonaws.com). Default is
 to infer this from region.
-h, --help show this help message and exit
-o OUTPUT_DIR, --output-dir OUTPUT_DIR
 Specify an output directory (default: CLUSTER_ID)
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT
 Force mrjob to connect to S3 on this endpoint (e.g. s3
 -us-west-1.amazonaws.com). You usually shouldn't set
 this; by default mrjob will choose the correct
 endpoint for each S3 bucket based on its location.
--ssh-bin SSH_BIN Name/path of ssh binary. Arguments are allowed (e.g.
 --ssh-bin 'ssh -v')
-v, --verbose print more messages to stderr

create-cluster

Create a persistent EMR cluster to run clusters in, and print its ID to
stdout.

Usage:

mrjob create-cluster

Options:

--additional-emr-info ADDITIONAL_EMR_INFO
 A JSON string for selecting additional features on EMR
--applications APPLICATIONS, --application APPLICATIONS
 Additional applications to run on 4.x and 5.x AMIs,
 separated by commas (e.g. "Ganglia,Spark")
--bootstrap BOOTSTRAP
 A shell command to set up libraries etc. before any
 steps (e.g. "sudo apt-get -qy install python3"). You
 may interpolate files available via URL or locally
 with Hadoop Distributed Cache syntax ("sudo yum
 install -y foo.rpm#")
--bootstrap-action BOOTSTRAP_ACTIONS
 Raw bootstrap action scripts to run before any of the
 other bootstrap steps. You can use --bootstrap-action
 more than once. Local scripts will be automatically
 uploaded to S3. To add arguments, just use quotes:
 "foo.sh arg1 arg2"
--bootstrap-mrjob Automatically zip up the mrjob library and install it
 when we run the mrjob. This is the default. Use --no-
 bootstrap-mrjob if you've already installed mrjob on
 your Hadoop cluster.
--no-bootstrap-mrjob Don't automatically zip up the mrjob library and
 install it when we run this job. Use this if you've
 already installed mrjob on your Hadoop cluster.
--bootstrap-python Attempt to install a compatible version of Python at
 bootstrap time. Currently this only does anything for
 Python 3, for which it is enabled by default.
--no-bootstrap-python
 Don't automatically try to install a compatible
 version of Python at bootstrap time.
--bootstrap-spark Auto-install Spark on the cluster (even if not
 needed).
--no-bootstrap-spark Don't auto-install Spark on the cluster.
--cloud-fs-sync-secs CLOUD_FS_SYNC_SECS
 How long to wait for remote FS to reach eventual
 consistency. This is typically less than a second but
 the default is 5.0 to be safe.
--cloud-log-dir CLOUD_LOG_DIR
 URI on remote FS to write logs into
--cloud-part-size-mb CLOUD_PART_SIZE_MB
 Upload files to cloud FS in parts no bigger than this
 many megabytes. Default is 100 MiB. Set to 0 to
 disable multipart uploading entirely.
--cloud-upload-part-size CLOUD_PART_SIZE_MB
 Deprecated alias for --cloud-part-size-mb
--cloud-tmp-dir CLOUD_TMP_DIR
 URI on remote FS to use as our temp directory.
-c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
--no-conf Don't load mrjob.conf even if it's available
--core-instance-bid-price CORE_INSTANCE_BID_PRICE
 Bid price to specify for core nodes when setting them
 up as EC2 spot instances (you probably only want to do
 this for task instances).
--core-instance-type CORE_INSTANCE_TYPE
 Type of GCE/EC2 core instance(s) to launch
--ebs-root-volume-gb EBS_ROOT_VOLUME_GB
 Size of root EBS volume, in GiB. Must be an
 integer.Set to 0 to use the default
--ec2-endpoint EC2_ENDPOINT
 Force mrjob to connect to EC2 on this endpoint (e.g.
 ec2.us-west-1.amazonaws.com). Default is to infer this
 from region.
--ec2-key-pair EC2_KEY_PAIR
 Name of the SSH key pair you set up for EMR
--emr-action-on-failure EMR_ACTION_ON_FAILURE
 Action to take when a step fails (e.g.
 TERMINATE_CLUSTER, CANCEL_AND_WAIT, CONTINUE)
--emr-configuration EMR_CONFIGURATIONS
 Configuration to use on 4.x AMIs as a JSON-encoded
 dict; see http://docs.aws.amazon.com/ElasticMapReduce/
 latest/ReleaseGuide/emr-configure-apps.html for
 examples
--emr-endpoint EMR_ENDPOINT
 Force mrjob to connect to EMR on this endpoint (e.g.
 us-west-1.elasticmapreduce.amazonaws.com). Default is
 to infer this from region.
--enable-emr-debugging
 Enable storage of Hadoop logs in SimpleDB
--disable-emr-debugging
 Disable storage of Hadoop logs in SimpleDB (the
 default)
--extra-cluster-param EXTRA_CLUSTER_PARAMS
 extra parameter to pass to cloud API when creating a
 cluster, to access features not currently supported by
 mrjob. Takes the form <param>=<value>, where value is
 JSON or a string. Use <param>=null to unset a
 parameter
-h, --help show this help message and exit
--iam-endpoint IAM_ENDPOINT
 Force mrjob to connect to IAM on this endpoint (e.g.
 iam.us-gov.amazonaws.com)
--iam-instance-profile IAM_INSTANCE_PROFILE
 EC2 instance profile to use for the EMR cluster -- see
 "Configure IAM Roles for Amazon EMR" in AWS docs
--iam-service-role IAM_SERVICE_ROLE
 IAM service role to use for the EMR cluster -- see
 "Configure IAM Roles for Amazon EMR" in AWS docs
--image-id IMAGE_ID ID of custom AWS machine image (AMI) to use
--image-version IMAGE_VERSION
 version of EMR/Dataproc machine image to run
--instance-fleets INSTANCE_FLEETS
 detailed JSON list of instance fleets, including EBS
 configuration. See docs for --instance-fleets at
 http://docs.aws.amazon.com/cli/latest/reference/emr
 /create-cluster.html
--instance-groups INSTANCE_GROUPS
 detailed JSON list of EMR instance configs, including
 EBS configuration. See docs for --instance-groups at
 http://docs.aws.amazon.com/cli/latest/reference/emr
 /create-cluster.html
--instance-type INSTANCE_TYPE
 Type of GCE/EC2 instance(s) to launch GCE - e.g.
 n1-standard-1, n1-highcpu-4, n1-highmem-4 -- See
 https://cloud.google.com/compute/docs/machine-types
 EC2 - e.g. m1.medium, c3.xlarge, r3.xlarge -- See
 http://aws.amazon.com/ec2/instance-types/
--label LABEL Alternate label for the job, to help us identify it.
--master-instance-bid-price MASTER_INSTANCE_BID_PRICE
 Bid price to specify for the master node when setting
 it up as an EC2 spot instance (you probably only want
 to do this for task instances).
--master-instance-type MASTER_INSTANCE_TYPE
 Type of GCE/EC2 master instance to launch
--max-mins-idle MAX_MINS_IDLE
 If we create a cluster, have it automatically
 terminate itself after it's been idle this many
 minutes
--num-core-instances NUM_CORE_INSTANCES
 Total number of core instances to launch
--num-task-instances NUM_TASK_INSTANCES
 Total number of task instances to launch
--owner OWNER User who ran the job (default is the current user)
--pool-clusters Add to an existing cluster or create a new one that
 does not terminate when the job completes.
--no-pool-clusters Don't run job on a pooled cluster (the default)
--pool-name POOL_NAME
 Specify a pool name to join. Default is "default"
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--release-label RELEASE_LABEL
 Release Label (e.g. "emr-4.0.0"). Overrides --image-
 version
--s3-endpoint S3_ENDPOINT
 Force mrjob to connect to S3 on this endpoint (e.g. s3
 -us-west-1.amazonaws.com). You usually shouldn't set
 this; by default mrjob will choose the correct
 endpoint for each S3 bucket based on its location.
--subnet SUBNET ID of Amazon VPC subnet/URI of Google Compute Engine
 subnetwork to launch cluster in.
--subnets SUBNET Like --subnet, but with a comma-separated list, to
 specify multiple subnets in conjunction with
 --instance-fleets (EMR only)
--tag TAGS Metadata tags to apply to the EMR cluster; should take
 the form KEY=VALUE. You can use --tag multiple times
--task-instance-bid-price TASK_INSTANCE_BID_PRICE
 Bid price to specify for task nodes when setting them
 up as EC2 spot instances
--task-instance-type TASK_INSTANCE_TYPE
 Type of GCE/EC2 task instance(s) to launch
-v, --verbose print more messages to stderr
--zone ZONE GCE zone/AWS availability zone to run Dataproc/EMR
 jobs in.

diagnose

Print probable cause of error for a failed step.

Currently this only works on EMR.

Usage:

mrjob diagnose [opts] j-CLUSTERID

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT
 Force mrjob to connect to EC2 on this endpoint (e.g.
 ec2.us-west-1.amazonaws.com). Default is to infer this
 from region.
--emr-endpoint EMR_ENDPOINT
 Force mrjob to connect to EMR on this endpoint (e.g.
 us-west-1.elasticmapreduce.amazonaws.com). Default is
 to infer this from region.
-h, --help show this help message and exit
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT
 Force mrjob to connect to S3 on this endpoint (e.g. s3
 -us-west-1.amazonaws.com). You usually shouldn't set
 this; by default mrjob will choose the correct
 endpoint for each S3 bucket based on its location.
--step-id STEP_ID ID of a particular failed step to diagnose
-v, --verbose print more messages to stderr

New in version 0.6.1.

report-long-jobs

Report jobs running for more than a certain number of hours (by default,
24.0). This can help catch buggy jobs and Hadoop/EMR operational issues.

Suggested usage: run this as a daily cron job with the -q option:

0 0 * * * mrjob report-long-jobs

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT
 Force mrjob to connect to EC2 on this endpoint (e.g.
 ec2.us-west-1.amazonaws.com). Default is to infer this
 from region.
--emr-endpoint EMR_ENDPOINT
 Force mrjob to connect to EMR on this endpoint (e.g.
 us-west-1.elasticmapreduce.amazonaws.com). Default is
 to infer this from region.
-x EXCLUDE, --exclude EXCLUDE
 Exclude clusters that match the specified tags.
 Specifed in the form TAG_KEY,TAG_VALUE.
-h, --help show this help message and exit
--min-hours MIN_HOURS
 Minimum number of hours a job can run before we report
 it. Default: 24.0
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT
 Force mrjob to connect to S3 on this endpoint (e.g. s3
 -us-west-1.amazonaws.com). You usually shouldn't set
 this; by default mrjob will choose the correct
 endpoint for each S3 bucket based on its location.
-v, --verbose print more messages to stderr

s3-tmpwatch

Delete all files in a given URI that are older than a specified time. The
time parameter defines the threshold for removing files. If the file has not
been accessed for time, the file is removed. The time argument is a number
with an optional single-character suffix specifying the units: m for minutes,
h for hours, d for days. If no suffix is specified, time is in hours.

Suggested usage: run this as a cron job with the -q option:

0 0 * * * mrjob s3-tmpwatch -q 30d s3://your-bucket/tmp/

Usage:

mrjob s3-tmpwatch [options] <time-untouched> <URIs>

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
--no-conf Don't load mrjob.conf even if it's available
-h, --help show this help message and exit
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT
 Force mrjob to connect to S3 on this endpoint (e.g. s3
 -us-west-1.amazonaws.com). You usually shouldn't set
 this; by default mrjob will choose the correct
 endpoint for each S3 bucket based on its location.
-t, --test Don't actually delete any files; just log that we
 would
-v, --verbose print more messages to stderr

spark-submit

A drop-in replacement for spark-submit that can use mrjob’s
runners. For example, you can submit your spark job to EMR just by adding
-r emr.

This also adds a few mrjob features that are not standard with
spark-submit, such as --cmdenv, --dirs, and --setup.

New in version 0.6.7.

Changed in version 0.6.8: added local, spark runners, made spark the default (was
hadoop)

Changed in version 0.7.1: --archives and --dirs are supported on all masters (except local)

Usage:

mrjob spark-submit [-r <runner>] [options] <python file | app jar>
[app arguments]

Options:

All runners:
 -r {emr,hadoop,local,spark}, --runner {emr,hadoop,local,spark}
 Where to run the job (default: "spark")
 --class MAIN_CLASS Your application's main class (for Java / Scala apps).
 --name NAME The name of your application.
 --jars LIBJARS Comma-separated list of jars to include on the
 driverand executor classpaths.
 --packages PACKAGES Comma-separated list of maven coordinates of jars to
 include on the driver and executor classpaths. Will
 search the local maven repo, then maven central and
 any additional remote repositories given by
 --repositories. The format for the coordinates should
 be groupId:artifactId:version.
 --exclude-packages EXCLUDE_PACKAGES
 Comma-separated list of groupId:artifactId, to exclude
 while resolving the dependencies provided in
 --packages to avoid dependency conflicts.
 --repositories REPOSITORIES
 Comma-separated list of additional remote repositories
 to search for the maven coordinates given with
 --packages.
 --py-files PY_FILES Comma-separated list of .zip, .egg, or .py files to
 placed on the PYTHONPATH for Python apps.
 --files UPLOAD_FILES Comma-separated list of files to be placed in the
 working directory of each executor. Ignored on
 local[*] master.
 --archives UPLOAD_ARCHIVES
 Comma-separated list of archives to be extracted into
 the working directory of each executor.
 --dirs UPLOAD_DIRS Comma-separated list of directors to be archived and
 then extracted into the working directory of each
 executor.
 --cmdenv CMDENV Arbitrary environment variable to set inside Spark, in
 the format NAME=VALUE.
 --conf JOBCONF Arbitrary Spark configuration property, in the format
 PROP=VALUE.
 --setup SETUP A command to run before each Spark executor in the
 shell ("touch foo"). In cluster mode, runs before the
 Spark driver as well. You may interpolate files
 available via URL or on your local filesystem using
 Hadoop Distributed Cache syntax (". setup.sh#"). To
 interpolate archives (YARN only), use #/: "cd
 foo.tar.gz#/; make.
 --properties-file PROPERTIES_FILE
 Path to a file from which to load extra properties. If
 not specified, this will look for conf/spark-
 defaults.conf.
 --driver-memory DRIVER_MEMORY
 Memory for driver (e.g. 1000M, 2G) (Default: 1024M).
 --driver-java-options DRIVER_JAVA_OPTIONS
 Extra Java options to pass to the driver.
 --driver-library-path DRIVER_LIBRARY_PATH
 Extra library path entries to pass to the driver.
 --driver-class-path DRIVER_CLASS_PATH
 Extra class path entries to pass to the driver. Note
 that jars added with --jars are automatically included
 in the classpath.
 --executor-memory EXECUTOR_MEMORY
 Memory per executor (e.g. 1000M, 2G) (Default: 1G).
 --proxy-user PROXY_USER
 User to impersonate when submitting the application.
 This argument does not work with --principal /
 --keytab.
 -c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
 --no-conf Don't load mrjob.conf even if it's available
 -q, --quiet Don't print anything to stderr
 -v, --verbose print more messages to stderr
 -h, --help show this message and exit

	Spark and Hadoop runners only:

	

	
--master SPARK_MASTER

		spark://host:port, mesos://host:port,
yarn,k8s://https://host:port, or local. Defaults to
local[*] on spark runner, yarn on hadoop runner.

	
--deploy-mode SPARK_DEPLOY_MODE

		Whether to launch the driver program locally
(“client”) or on one of the worker machines inside the
cluster (“cluster”) (Default: client).

	Cluster deploy mode only:

	

	
--driver-cores DRIVER_CORES

		Number of cores used by the driver (Default: 1).

	Spark standalone or Mesos with cluster deploy mode only:

	

	
--supervise
	If given, restarts the driver on failure.

	Spark standalone and Mesos only:

	

	
--total-executor-cores TOTAL_EXECUTOR_CORES

		Total cores for all executors.

	Spark standalone and YARN only:

	

	
--executor-cores EXECUTOR_CORES

		Number of cores per executor. (Default: 1 in YARN
mode, or all available cores on the worker in
standalone mode)

	YARN-only:

	

	
--queue QUEUE_NAME

		The YARN queue to submit to (Default: “default”).

	
--num-executors NUM_EXECUTORS

		Number of executors to launch (Default: 2). If dynamic
allocation is enabled, the initial number of executors
will be at least NUM.

	
--principal PRINCIPAL

		Principal to be used to login to KDC, while running
onsecure HDFS.

	
--keytab KEYTAB

		The full path to the file that contains the keytab for
the principal specified above. This keytab will be
copied to the node running the Application Master via
the Secure Distributed Cache, for renewing the login
tickets and the delegation tokens periodically.

This also supports the same runner-specific switches as
MRJobs (e.g. --hadoop-bin, --region).

terminate-cluster

Terminate an existing EMR cluster.

Usage:

mrjob terminate-cluster [options] CLUSTER_ID

Terminate an existing EMR cluster.

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
--no-conf Don't load mrjob.conf even if it's available
--ec2-endpoint EC2_ENDPOINT
 Force mrjob to connect to EC2 on this endpoint (e.g.
 ec2.us-west-1.amazonaws.com). Default is to infer this
 from region.
--emr-endpoint EMR_ENDPOINT
 Force mrjob to connect to EMR on this endpoint (e.g.
 us-west-1.elasticmapreduce.amazonaws.com). Default is
 to infer this from region.
-h, --help show this help message and exit
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT
 Force mrjob to connect to S3 on this endpoint (e.g.
 s3-us-west-1.amazonaws.com). You usually shouldn't set
 this; by default mrjob will choose the correct
 endpoint for each S3 bucket based on its location.
-t, --test Don't actually delete any files; just log that we
 would
-v, --verbose print more messages to stderr

terminate-idle-clusters

Terminate idle EMR clusters that meet the criteria passed in on the command
line (or, by default, clusters that have been idle for one hour).

Suggested usage: run this as a cron job with the -q option:

*/30 * * * * mrjob terminate-idle-clusters -q

Changed in version 0.6.4: Skips termination-protected idle clusters, rather than crashing. (This was
also backported to mrjob v0.5.12.)

Options:

-c CONF_PATHS, --conf-path CONF_PATHS
 Path to alternate mrjob.conf file to read from
--no-conf Don't load mrjob.conf even if it's available
--dry-run Don't actually kill idle jobs; just log that we would
--ec2-endpoint EC2_ENDPOINT
 Force mrjob to connect to EC2 on this endpoint (e.g.
 ec2.us-west-1.amazonaws.com). Default is to infer this
 from region.
--emr-endpoint EMR_ENDPOINT
 Force mrjob to connect to EMR on this endpoint (e.g.
 us-west-1.elasticmapreduce.amazonaws.com). Default is
 to infer this from region.
-h, --help show this help message and exit
--max-mins-idle MAX_MINS_IDLE
 Max number of minutes a cluster can go without
 bootstrapping, running a step, or having a new step
 created. This will fire even if there are pending
 steps which EMR has failed to start. Make sure you set
 this higher than the amount of time your jobs can take
 to start instances and bootstrap.
--max-mins-locked MAX_MINS_LOCKED
 Deprecated, does nothing
--pool-name POOL_NAME
 Only terminate clusters in the given named pool.
--pooled-only Only terminate pooled clusters
-q, --quiet Don't print anything to stderr
--region REGION GCE/AWS region to run Dataproc/EMR jobs in.
--s3-endpoint S3_ENDPOINT
 Force mrjob to connect to S3 on this endpoint (e.g.
 s3-us-west-1.amazonaws.com). You usually shouldn't set
 this; by default mrjob will choose the correct
 endpoint for each S3 bucket based on its location.
--unpooled-only Only terminate un-pooled clusters
-v, --verbose print more messages to stderr

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.compat - Hadoop version compatibility

Utility functions for compatibility with different version of hadoop.

	
mrjob.compat.jobconf_from_dict(jobconf, name, default=None)

	Get the value of a jobconf variable from the given dictionary.

	Parameters:	
	jobconf (dict [http://docs.python.org/2/library/stdtypes.html#dict]) – jobconf dictionary

	name (string [http://docs.python.org/2/library/string.html#module-string]) – name of the jobconf variable (e.g. 'user.name')

	default – fallback value

If the name of the jobconf variable is different in different versions of
Hadoop (e.g. in Hadoop 2, map.input.file is
mapreduce.map.input.file), we’ll automatically try all variants before
giving up.

Return default if that jobconf variable isn’t set

	
mrjob.compat.jobconf_from_env(variable, default=None)

	Get the value of a jobconf variable from the runtime environment.

For example, a MRJob could use
jobconf_from_env('map.input.file') to get the name of the file a
mapper is reading input from.

If the name of the jobconf variable is different in different versions of
Hadoop (e.g. in Hadoop 2.0, map.input.file is
mapreduce.map.input.file), we’ll automatically try all variants before
giving up.

Return default if that jobconf variable isn’t set.

	
mrjob.compat.map_version(version, version_map)

	Allows you to look up something by version (e.g. which jobconf variable
to use, specifying only the versions where that value changed.

version is a string

version_map is a map from version (as a string) that a value changed
to the new value.

For efficiency, version_map can also be a list of tuples of
(LooseVersion(version_as_string), value), with oldest versions first.

If version is less than any version in version_map, use the value for
the earliest version in version_map.

	
mrjob.compat.translate_jobconf(variable, version)

	Translate variable to Hadoop version version. If it’s not
a variable we recognize, leave as-is.

	
mrjob.compat.translate_jobconf_dict(jobconf, hadoop_version=None)

	Translates the configuration property name to match those that
are accepted in hadoop_version. Prints a warning message if any
configuration property name does not match the name in the hadoop
version. Combines the original jobconf with the translated jobconf.

	Returns:	a map consisting of the original and translated configuration
property names and values.

	
mrjob.compat.translate_jobconf_for_all_versions(variable)

	Get all known variants of the given jobconf variable.
Unlike translate_jobconf(), returns a list.

	
mrjob.compat.uses_yarn(version)

	Basically, is this Hadoop 2? This also handles versions in the
zero series (0.23+) where YARN originated.

	
mrjob.compat.version_gte(version, cmp_version_str)

	Return True if version >= cmp_version_str.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.conf - parse and write config files

“mrjob.conf” is the name of both this module, and the global config file
for mrjob.

Reading and writing mrjob.conf

	
mrjob.conf.find_mrjob_conf()

	Look for mrjob.conf, and return its path. Places we look:

	The location specified by MRJOB_CONF

	~/.mrjob.conf

	/etc/mrjob.conf

Return None if we can’t find it.

	
mrjob.conf.load_opts_from_mrjob_conf(runner_alias, conf_path=None, already_loaded=None)

	Load a list of dictionaries representing the options in a given
mrjob.conf for a specific runner, resolving includes. Returns
[(path, values)]. If conf_path is not found, return [(None, {})].

	Parameters:	
	runner_alias (str [http://docs.python.org/2/library/functions.html#str]) – String identifier of the runner type, e.g. emr,
local, etc.

	conf_path (str [http://docs.python.org/2/library/functions.html#str]) – location of the file to load

	already_loaded (list) – list of real (according to os.path.realpath())
conf paths that have already
been loaded (used by
load_opts_from_mrjob_confs()).

Relative include: paths are relative to the real (after resolving
symlinks) path of the including conf file

This will only load each config file once, even if it’s referenced
from multiple paths due to symlinks.

	
mrjob.conf.load_opts_from_mrjob_confs(runner_alias, conf_paths=None)

	Load a list of dictionaries representing the options in a given
list of mrjob config files for a specific runner. Returns
[(path, values), ...]. If a path is not found, use (None, {}) as
its value.

If conf_paths is None, look for a config file in the default
locations (see find_mrjob_conf()).

	Parameters:	
	runner_alias (str [http://docs.python.org/2/library/functions.html#str]) – String identifier of the runner type, e.g. emr,
local, etc.

	conf_path – locations of the files to load

This will only load each config file once, even if it’s referenced
from multiple paths due to symlinks.

Combining options

Combiner functions take a list of values to combine, with later options taking
precedence over earlier ones. None values are always ignored.

	
mrjob.conf.combine_cmds(*cmds)

	Take zero or more commands to run on the command line, and return
the last one that is not None. Each command should either be a list
containing the command plus switches, or a string, which will be parsed
with shlex.split() [http://docs.python.org/2/library/shlex.html#shlex.split]. The string must either be a byte string or a
unicode string containing no non-ASCII characters.

Returns either None or a list containing the command plus arguments.

	
mrjob.conf.combine_dicts(*dicts)

	Combine zero or more dictionaries. Values from dicts later in the list
take precedence over values earlier in the list.

If you pass in None in place of a dictionary, it will be ignored.

	
mrjob.conf.combine_envs(*envs)

	Combine zero or more dictionaries containing environment variables.
Environment variable values may be wrapped in ClearedValue.

Environment variables later from dictionaries later in the list take
priority over those earlier in the list.

For variables ending with PATH, we prepend (and add a colon) rather
than overwriting. Wrapping a path value in ClearedValue
disables this behavior.

Environment set to ClearedValue(None) will delete environment
variables earlier in the list, rather than setting them to None.

If you pass in None in place of a dictionary in envs, it will be
ignored.

	
mrjob.conf.combine_jobconfs(*jobconfs)

	Like combine_dicts(), but non-string values are converted to
Java-readable string (e.g. True becomes ‘true’). Keys whose
value is None are blanked out.

	
mrjob.conf.combine_lists(*seqs)

	Concatenate the given sequences into a list. Ignore None values.

Generally this is used for a list of commands we want to run; the
“default” commands get run before any commands specific to your job.

Strings, bytes, and non-sequence objects (e.g. numbers) are treated as
single-item lists.

	
mrjob.conf.combine_local_envs(*envs)

	Same as combine_envs(), except that paths are combined
using the local path separator (e.g ; on Windows rather than :).

	
mrjob.conf.combine_path_lists(*path_seqs)

	Concatenate the given sequences into a list. Ignore None values.
Resolve ~ (home dir) and environment variables, and expand globs
that refer to the local filesystem.

Can take single strings as well as lists.

	
mrjob.conf.combine_paths(*paths)

	Returns the last value in paths that is not None.
Resolve ~ (home dir) and environment variables.

	
mrjob.conf.combine_values(*values)

	Return the last value in values that is not None.

The default combiner; good for simple values (booleans, strings, numbers).

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.dataproc - run on Dataproc

Job Runner

	
class mrjob.dataproc.DataprocJobRunner(**kwargs)

	Runs an MRJob on Google Cloud Dataproc.
Invoked when you run your job with -r dataproc.

DataprocJobRunner runs your job in an Dataproc cluster, which
is basically a temporary Hadoop cluster.

Input, support, and jar files can be either local or on GCS; use
gs://... URLs to refer to files on GCS.

This class has some useful utilities for talking directly to GCS and
Dataproc, so you may find it useful to instantiate it without a script:

from mrjob.dataproc import DataprocJobRunner
...

GCS Utilities

	
class mrjob.dataproc.GCSFilesystem(credentials=None, project_id=None, part_size=None, location=None, object_ttl_days=None)

	Filesystem for Google Cloud Storage (GCS) URIs

	Parameters:	
	credentials – an optional
google.auth.credentials.Credentials, used
to initialize the storage client

	project_id – an optional project ID, used to initialize the storage
client

	part_size – Part size for multi-part uploading, in bytes, or None

	location – Default location to use when creating a bucket

	object_ttl_days – Default object expiry for newly created buckets

Changed in version 0.7.0: removed local_tmp_dir

Changed in version 0.6.8: deprecated local_tmp_dir, added part_size, location,
object_ttl_days

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.emr - run on EMR

Job Runner

	
class mrjob.emr.EMRJobRunner(**kwargs)

	Runs an MRJob on Amazon Elastic MapReduce.
Invoked when you run your job with -r emr.

EMRJobRunner runs your job in an EMR cluster, which is
basically a temporary Hadoop cluster. Normally, it creates a cluster
just for your job; it’s also possible to run your job in a specific
cluster by setting cluster_id or to automatically choose a
waiting cluster, creating one if none exists, by setting
pool_clusters.

Input, support, and jar files can be either local or on S3; use
s3://... URLs to refer to files on S3.

This class has some useful utilities for talking directly to S3 and EMR,
so you may find it useful to instantiate it without a script:

from mrjob.emr import EMRJobRunner

emr_client = EMRJobRunner().make_emr_client()
clusters = emr_client.list_clusters()
...

EMR Utilities

	
EMRJobRunner.get_cluster_id()

	Get the ID of the cluster our job is running on, or None.

	
EMRJobRunner.get_image_version()

	Get the version of the AMI that our cluster is running, or None.

	
EMRJobRunner.get_job_steps()

	Fetch the steps submitted by this runner from the EMR API.

Deprecated since version 0.7.4.

New in version 0.6.1.

	
EMRJobRunner.make_emr_client()

	Create a boto3 EMR client.

	Returns:	a botocore.client.EMR wrapped in a
mrjob.retry.RetryWrapper

S3 Utilities

	
class mrjob.fs.s3.S3Filesystem(aws_access_key_id=None, aws_secret_access_key=None, aws_session_token=None, s3_endpoint=None, s3_region=None, part_size=None)

	Filesystem for Amazon S3 URIs. Typically you will get one of these via
EMRJobRunner().fs, composed with
SSHFilesystem and
LocalFilesystem.

	Parameters:	
	aws_access_key_id – Your AWS access key ID

	aws_secret_access_key – Your AWS secret access key

	aws_session_token – session token for use with temporary
AWS credentials

	s3_endpoint – If set, always use this endpoint

	s3_region – Default region for connections to the S3 API and
newly created buckets.

	part_size – Part size for multi-part uploading, in bytes, or
None

Changed in version 0.6.8: added part_size

	
S3Filesystem.create_bucket(bucket_name, region=None)

	Create a bucket on S3 with a location constraint
matching the given region.

	
S3Filesystem.get_all_bucket_names()

	Get a list of the names of all buckets owned by this user
on S3.

	
S3Filesystem.get_bucket(bucket_name)

	Get the (boto3) bucket, connecting through the
appropriate endpoint.

	
S3Filesystem.make_s3_client(region_name=None)

	Create a boto3 S3 client,
wrapped in a mrjob.retry.RetryWrapper

	Parameters:	region – region to use to choose S3 endpoint.

	
S3Filesystem.make_s3_resource(region_name=None)

	Create a boto3 S3 resource, with its client
wrapped in a mrjob.retry.RetryWrapper

	Parameters:	region – region to use to choose S3 endpoint

It’s best to use get_bucket() because it chooses the
appropriate S3 endpoint automatically. If you are trying to get
bucket metadata, use make_s3_client().

Other AWS clients

	
EMRJobRunner.make_ec2_client()

	Create a boto3 EC2 client.

	Returns:	a botocore.client.EC2 wrapped in a
mrjob.retry.RetryWrapper

	
EMRJobRunner.make_iam_client()

	Create a boto3 IAM client.

	Returns:	a botocore.client.IAM wrapped in a
mrjob.retry.RetryWrapper

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.hadoop - run on your Hadoop cluster

	
class mrjob.hadoop.HadoopJobRunner(**kwargs)

	Runs an MRJob on your Hadoop cluster.
Invoked when you run your job with -r hadoop.

Input and support files can be either local or on HDFS; use hdfs://...
URLs to refer to files on HDFS.

	
HadoopJobRunner.__init__(**kwargs)

	HadoopJobRunner takes the same arguments
as MRJobRunner, plus some additional options
which can be defaulted in mrjob.conf.

Utilities

	
mrjob.hadoop.fully_qualify_hdfs_path(path)

	If path isn’t an hdfs:// URL, turn it into one.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.inline - debugger-friendly local testing

	
class mrjob.inline.InlineMRJobRunner(mrjob_cls=None, **kwargs)

	Runs an MRJob in the same process, so it’s easy
to attach a debugger.

This is the default way to run jobs (we assume you’ll spend some time
debugging your job before you’re ready to run it on EMR or Hadoop).

Unlike other runners, InlineMRJobRunner‘s run() method
raises the actual exception that caused a step to fail (rather than
StepFailedException).

To more accurately simulate your environment prior to running on
Hadoop/EMR, use -r local (see
LocalMRJobRunner).

New in version 0.6.8: can run SparkSteps via the
pyspark library.

	
InlineMRJobRunner.__init__(mrjob_cls=None, **kwargs)

	InlineMRJobRunner takes the same keyword
args as MRJobRunner. However, please note
that
hadoop_input_format, hadoop_output_format, and partitioner
are ignored
because they require Java. If you need to test these, consider
starting up a standalone Hadoop instance and running your job with
-r hadoop.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.job - defining your job

	
class mrjob.job.MRJob(args=None)

	The base class for all MapReduce jobs. See __init__()
for details.

One-step jobs

	
MRJob.mapper(key, value)

	Re-define this to define the mapper for a one-step job.

Yields zero or more tuples of (out_key, out_value).

	Parameters:	
	key – A value parsed from input.

	value – A value parsed from input.

If you don’t re-define this, your job will have a mapper that simply
yields (key, value) as-is.

	By default (if you don’t mess with Protocols):

	
	key will be None

	value will be the raw input line, with newline stripped.

	out_key and out_value must be JSON-encodable: numeric,
unicode, boolean, None, list, or dict whose keys are unicodes.

	
MRJob.reducer(key, values)

	Re-define this to define the reducer for a one-step job.

Yields one or more tuples of (out_key, out_value)

	Parameters:	
	key – A key which was yielded by the mapper

	value – A generator which yields all values yielded by the
mapper which correspond to key.

	By default (if you don’t mess with Protocols):

	
	out_key and out_value must be JSON-encodable.

	key and value will have been decoded from JSON (so tuples
will become lists).

	
MRJob.combiner(key, values)

	Re-define this to define the combiner for a one-step job.

Yields one or more tuples of (out_key, out_value)

	Parameters:	
	key – A key which was yielded by the mapper

	value – A generator which yields all values yielded by one mapper
task/node which correspond to key.

	By default (if you don’t mess with Protocols):

	
	out_key and out_value must be JSON-encodable.

	key and value will have been decoded from JSON (so tuples
will become lists).

	
MRJob.mapper_init()

	Re-define this to define an action to run before the mapper
processes any input.

One use for this function is to initialize mapper-specific helper
structures.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable;
re-define INTERNAL_PROTOCOL to change this.

	
MRJob.mapper_final()

	Re-define this to define an action to run after the mapper reaches
the end of input.

One way to use this is to store a total in an instance variable, and
output it after reading all input data. See mrjob.examples
for an example.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable;
re-define INTERNAL_PROTOCOL to change this.

	
MRJob.reducer_init()

	Re-define this to define an action to run before the reducer
processes any input.

One use for this function is to initialize reducer-specific helper
structures.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable;
re-define INTERNAL_PROTOCOL to change this.

	
MRJob.reducer_final()

	Re-define this to define an action to run after the reducer reaches
the end of input.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable;
re-define INTERNAL_PROTOCOL to change this.

	
MRJob.combiner_init()

	Re-define this to define an action to run before the combiner
processes any input.

One use for this function is to initialize combiner-specific helper
structures.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable;
re-define INTERNAL_PROTOCOL to change this.

	
MRJob.combiner_final()

	Re-define this to define an action to run after the combiner reaches
the end of input.

Yields one or more tuples of (out_key, out_value).

By default, out_key and out_value must be JSON-encodable;
re-define INTERNAL_PROTOCOL to change this.

	
MRJob.mapper_cmd()

	Re-define this to define the mapper for a one-step job as a shell
command. If you define your mapper this way, the command will be
passed unchanged to Hadoop Streaming, with some minor exceptions. For
important specifics, see Shell commands as steps.

Basic example:

def mapper_cmd(self):
 return 'cat'

	
MRJob.reducer_cmd()

	Re-define this to define the reducer for a one-step job as a shell
command. If you define your mapper this way, the command will be
passed unchanged to Hadoop Streaming, with some minor exceptions. For
specifics, see Shell commands as steps.

Basic example:

def reducer_cmd(self):
 return 'cat'

	
MRJob.combiner_cmd()

	Re-define this to define the combiner for a one-step job as a
shell command. If you define your mapper this way, the command will
be passed unchanged to Hadoop Streaming, with some minor exceptions.
For specifics, see Shell commands as steps.

Basic example:

def combiner_cmd(self):
 return 'cat'

	
MRJob.mapper_pre_filter()

	Re-define this to specify a shell command to filter the mapper’s
input before it gets to your job’s mapper in a one-step job. For
important specifics, see Filtering task input with shell commands.

Basic example:

def mapper_pre_filter(self):
 return 'grep "ponies"'

	
MRJob.reducer_pre_filter()

	Re-define this to specify a shell command to filter the reducer’s
input before it gets to your job’s reducer in a one-step job. For
important specifics, see Filtering task input with shell commands.

Basic example:

def reducer_pre_filter(self):
 return 'grep "ponies"'

	
MRJob.combiner_pre_filter()

	Re-define this to specify a shell command to filter the combiner’s
input before it gets to your job’s combiner in a one-step job. For
important specifics, see Filtering task input with shell commands.

Basic example:

def combiner_pre_filter(self):
 return 'grep "ponies"'

	
MRJob.mapper_raw(input_path, input_uri)

	Re-define this to make Hadoop pass one input file to each
mapper.

	Parameters:	
	input_path – a local path that the input file has been copied to

	input_uri – the URI of the input file on HDFS, S3, etc

New in version 0.6.3.

	
MRJob.spark(input_path, output_path)

	Re-define this with Spark code to run. You can read input
with input_path and output with output_path.

Warning

Prior to v0.6.8, to pass job methods into Spark
(rdd.flatMap(self.some_method)), you first had to call
self.sandbox(); otherwise
Spark would error because self was not serializable.

Multi-step jobs

	
MRJob.steps()

	Re-define this to make a multi-step job.

If you don’t re-define this, we’ll automatically create a one-step
job using any of mapper(), mapper_init(),
mapper_final(), reducer_init(),
reducer_final(), and reducer() that you’ve
re-defined. For example:

def steps(self):
 return [MRStep(mapper=self.transform_input,
 reducer=self.consolidate_1),
 MRStep(reducer_init=self.log_mapper_init,
 reducer=self.consolidate_2)]

	Returns:	a list of steps constructed with
MRStep or other classes in
mrjob.step.

Running the job

	
classmethod MRJob.run()

	Entry point for running job from the command-line.

This is also the entry point when a mapper or reducer is run
by Hadoop Streaming.

Does one of:

	Run a mapper (--mapper). See run_mapper()

	Run a combiner (--combiner). See run_combiner()

	Run a reducer (--reducer). See run_reducer()

	Run the entire job. See run_job()

	
MRJob.__init__(args=None)

	Entry point for running your job from other Python code.

You can pass in command-line arguments, and the job will act the same
way it would if it were run from the command line. For example, to
run your job on EMR:

mr_job = MRYourJob(args=['-r', 'emr'])
with mr_job.make_runner() as runner:
 ...

Passing in None is the same as passing in sys.argv[1:]

For a full list of command-line arguments, run:
python -m mrjob.job --help

	Parameters:	args – Arguments to your script (switches and input files)

Changed in version 0.7.0: Previously, args set to None was equivalent to [].

	
MRJob.make_runner()

	Make a runner based on command-line arguments, so we can
launch this job on EMR, on Hadoop, or locally.

	Return type:	mrjob.runner.MRJobRunner

Parsing output

	
MRJob.parse_output(chunks)

	Parse the final output of this MRJob (as a stream of byte chunks)
into a stream of (key, value).

Counters and status messages

	
MRJob.increment_counter(group, counter, amount=1)

	Increment a counter in Hadoop streaming by printing to stderr.

	Parameters:	
	group (str [http://docs.python.org/2/library/functions.html#str]) – counter group

	counter (str [http://docs.python.org/2/library/functions.html#str]) – description of the counter

	amount (int [http://docs.python.org/2/library/functions.html#int]) – how much to increment the counter by

Commas in counter or group will be automatically replaced
with semicolons (commas confuse Hadoop streaming).

	
MRJob.set_status(msg)

	Set the job status in hadoop streaming by printing to stderr.

This is also a good way of doing a keepalive for a job that goes a
long time between outputs; Hadoop streaming usually times out jobs
that give no output for longer than 10 minutes.

Setting protocols

	
MRJob.INPUT_PROTOCOL = <class 'mrjob.protocol.BytesValueProtocol'>

	Protocol for reading input to the first mapper in your job.
Default: RawValueProtocol.

For example you know your input data were in JSON format, you could
set:

INPUT_PROTOCOL = JSONValueProtocol

in your class, and your initial mapper would receive decoded JSONs
rather than strings.

See mrjob.protocol for the full list of protocols.

	
MRJob.INTERNAL_PROTOCOL = <class 'mrjob.protocol.StandardJSONProtocol'>

	Protocol for communication between steps and final output.
Default: JSONProtocol.

For example if your step output weren’t JSON-encodable, you could set:

INTERNAL_PROTOCOL = PickleProtocol

and step output would be encoded as string-escaped pickles.

See mrjob.protocol for the full list of protocols.

	
MRJob.OUTPUT_PROTOCOL = <class 'mrjob.protocol.StandardJSONProtocol'>

	Protocol to use for writing output. Default: JSONProtocol.

For example, if you wanted the final output in repr, you could set:

OUTPUT_PROTOCOL = ReprProtocol

See mrjob.protocol for the full list of protocols.

	
MRJob.input_protocol()

	Instance of the protocol to use to convert input lines to Python
objects. Default behavior is to return an instance of
INPUT_PROTOCOL.

	
MRJob.internal_protocol()

	Instance of the protocol to use to communicate between steps.
Default behavior is to return an instance of
INTERNAL_PROTOCOL.

	
MRJob.output_protocol()

	Instance of the protocol to use to convert Python objects to output
lines. Default behavior is to return an instance of
OUTPUT_PROTOCOL.

	
MRJob.pick_protocols(step_num, step_type)

	Pick the protocol classes to use for reading and writing for the
given step.

	Parameters:	
	step_num (int [http://docs.python.org/2/library/functions.html#int]) – which step to run (e.g. 0 for the first step)

	step_type (str [http://docs.python.org/2/library/functions.html#str]) – one of ‘mapper’, ‘combiner’, or ‘reducer’

	Returns:	(read_function, write_function)

By default, we use one protocol for reading input, one
internal protocol for communication between steps, and one
protocol for final output (which is usually the same as the
internal protocol). Protocols can be controlled by setting
INPUT_PROTOCOL, INTERNAL_PROTOCOL, and
OUTPUT_PROTOCOL.

Re-define this if you need fine control over which protocols
are used by which steps.

Secondary sort

	
MRJob.SORT_VALUES = None

	Set this to True if you would like reducers to receive the values
associated with any key in sorted order (sorted by their encoded
value). Also known as secondary sort.

This can be useful if you expect more values than you can fit in memory
to be associated with one key, but you want to apply information in
a small subset of these values to information in the other values.
For example, you may want to convert counts to percentages, and to do
this you first need to know the total count.

Even though values are sorted by their encoded value, most encodings
will sort strings in order. For example, you could have values like:
['A', <total>], ['B', <count_name>, <count>], and the value
containing the total should come first regardless of what protocol
you’re using.

See jobconf() and partitioner() for more about

Command-line options

See Defining command line options for information on adding command line options to
your job. See Configuration quick reference for a complete list of all
configuration options.

	
MRJob.configure_args()

	Define arguments for this script. Called from __init__().

Re-define to define custom command-line arguments or pass
through existing ones:

def configure_args(self):
 super(MRYourJob, self).configure_args()

 self.add_passthru_arg(...)
 self.add_file_arg(...)
 self.pass_arg_through(...)
 ...

	
MRJob.add_passthru_arg(*args, **kwargs)

	Function to create options which both the job runner
and the job itself respect (we use this for protocols, for example).

Use it like you would use
argparse.ArgumentParser.add_argument():

def configure_args(self):
 super(MRYourJob, self).configure_args()
 self.add_passthru_arg(
 '--max-ngram-size', type=int, default=4, help='...')

If you want to pass files through to the mapper/reducer, use
add_file_arg() instead.

If you want to pass through a built-in option (e.g. --runner, use
pass_arg_through() instead.

	
MRJob.add_file_arg(*args, **kwargs)

	Add a command-line option that sends an external file
(e.g. a SQLite DB) to Hadoop:

def configure_args(self):
 super(MRYourJob, self).configure_args()
 self.add_file_arg('--scoring-db', help=...)

This does the right thing: the file will be uploaded to the working
dir of the script on Hadoop, and the script will be passed the same
option, but with the local name of the file in the script’s working
directory.

Note

If you pass a file to a job, best practice is to lazy-load its
contents (e.g. make a method that opens the file the first time
you call it) rather than loading it in your job’s constructor or
load_args(). Not only is this more efficient, it’s
necessary if you want to run your job in a Spark executor
(because the file may not be in the same place in a Spark driver).

Note

We suggest against sending Berkeley DBs to your job, as
Berkeley DB is not forwards-compatible (so a Berkeley DB that you
construct on your computer may not be readable from within
Hadoop). Use SQLite databases instead. If all you need is an on-disk
hash table, try out the sqlite3dbm module.

Changed in version 0.6.6: now accepts explicit type=str

Changed in version 0.6.8: fully supported on Spark, including local[*] master

	
MRJob.pass_arg_through(opt_str)

	Pass the given argument through to the job.

	
MRJob.load_args(args)

	Load command-line options into self.options.

Called from __init__() after configure_args().

	Parameters:	args (list of str) – a list of command line arguments. None will be
treated the same as [].

Re-define if you want to post-process command-line arguments:

def load_args(self, args):
 super(MRYourJob, self).load_args(args)

 self.stop_words = self.options.stop_words.split(',')
 ...

	
MRJob.is_task()

	True if this is a mapper, combiner, reducer, or Spark script.

This is mostly useful inside load_args(), to disable
loading args when we aren’t running inside Hadoop.

Uploading support files

	
MRJob.FILES = []

	Optional list of files to upload to the job’s working directory.
These can be URIs or paths on the local filesystem.

Relative paths will be interpreted as relative to the directory
containing the script (not the current working directory).
Environment variables and ~ in paths will be expanded.

If you want a file to be uploaded to a filename other than it’s own,
append #<name> (e.g. data/foo.json#bar.json).

If you need to dynamically generate a list of files, override
files() instead.

New in version 0.6.4.

	
MRJob.DIRS = []

	Optional list of directories to upload to the job’s working directory.
These can be URIs or paths on the local filesystem.

Relative paths will be interpreted as relative to the directory
containing the script (not the current working directory).
Environment variables and ~ in paths will be expanded.

If you want a directory to be copied with a name other than it’s own,
append #<name> (e.g. data/foo#bar).

If you need to dynamically generate a list of files, override
dirs() instead.

New in version 0.6.4.

	
MRJob.ARCHIVES = []

	Optional list of archives to upload and unpack in the job’s working
directory. These can be URIs or paths on the local filesystem.

Relative paths will be interpreted as relative to the directory
containing the script (not the current working directory).
Environment variables and ~ in paths will be expanded.

By default, the directory will have the same name as the archive
(e.g. foo.tar.gz/). To change the directory’s name, append
#<name>:

ARCHIVES = ['data/foo.tar.gz#foo']

If you need to dynamically generate a list of files, override
archives() instead.

New in version 0.6.4.

	
MRJob.files()

	Like FILES, except that it can return a dynamically
generated list of files to upload. Overriding
this method disables FILES.

Paths returned by this method are relative to the working directory
(not the script). Note that the job runner will always expand
environment variables and ~ in paths returned by this method.

You do not have to worry about inadvertently disabling --files;
this switch is handled separately.

New in version 0.6.4.

	
MRJob.dirs()

	Like DIRS, except that it can return a dynamically
generated list of directories to upload. Overriding
this method disables DIRS.

Paths returned by this method are relative to the working directory
(not the script). Note that the job runner will always expand
environment variables and ~ in paths returned by this method.

You do not have to worry about inadvertently disabling --dirs;
this switch is handled separately.

New in version 0.6.4.

	
MRJob.archives()

	Like ARCHIVES, except that it can return a dynamically
generated list of archives to upload and unpack. Overriding
this method disables ARCHIVES.

Paths returned by this method are relative to the working directory
(not the script). Note that the job runner will always expand
environment variables and ~ in paths returned by this method.

You do not have to worry about inadvertently disabling --archives;
this switch is handled separately.

New in version 0.6.4.

Job runner configuration

	
classmethod MRJob.mr_job_script()

	Path of this script. This returns the file containing
this class, or None if there isn’t any (e.g. it was
defined from the command line interface.)

Running specific parts of jobs

	
MRJob.run_job()

	Run the all steps of the job, logging errors (and debugging output
if --verbose is specified) to STDERR and streaming the
output to STDOUT.

Called from run(). You’d probably only want to call this
directly from automated tests.

	
MRJob.run_mapper(step_num=0)

	Run the mapper and final mapper action for the given step.

	Parameters:	step_num (int [http://docs.python.org/2/library/functions.html#int]) – which step to run (0-indexed)

Called from run(). You’d probably only want to call this
directly from automated tests.

	
MRJob.map_pairs(pairs, step_num=0)

	Runs mapper_init(),
mapper()/mapper_raw(), and mapper_final()
for one map task in one step.

Takes in a sequence of (key, value) pairs as input, and yields
(key, value) pairs as output.

run_mapper() essentially wraps this method with code to handle
reading/decoding input and writing/encoding output.

New in version 0.6.7.

	
MRJob.run_reducer(step_num=0)

	Run the reducer for the given step.

	Parameters:	step_num (int [http://docs.python.org/2/library/functions.html#int]) – which step to run (0-indexed)

Called from run(). You’d probably only want to call this
directly from automated tests.

	
MRJob.reduce_pairs(pairs, step_num=0)

	Runs reducer_init(),
reducer(), and reducer_final()
for one reduce task in one step.

Takes in a sequence of (key, value) pairs as input, and yields
(key, value) pairs as output.

run_reducer() essentially wraps this method with code to
handle reading/decoding input and writing/encoding output.

New in version 0.6.7.

	
MRJob.run_combiner(step_num=0)

	Run the combiner for the given step.

	Parameters:	step_num (int [http://docs.python.org/2/library/functions.html#int]) – which step to run (0-indexed)

If we encounter a line that can’t be decoded by our input protocol,
or a tuple that can’t be encoded by our output protocol, we’ll
increment a counter rather than raising an exception. If
–strict-protocols is set, then an exception is raised

Called from run(). You’d probably only want to call this
directly from automated tests.

	
MRJob.combine_pairs(pairs, step_num=0)

	Runs combiner_init(),
combiner(), and combiner_final()
for one reduce task in one step.

Takes in a sequence of (key, value) pairs as input, and yields
(key, value) pairs as output.

run_combiner() essentially wraps this method with code to
handle reading/decoding input and writing/encoding output.

New in version 0.6.7.

Hadoop configuration

	
MRJob.HADOOP_INPUT_FORMAT = None

	Optional name of an optional Hadoop InputFormat class, e.g.
'org.apache.hadoop.mapred.lib.NLineInputFormat'.

Passed to Hadoop with the first step of this job with the
-inputformat option.

If you require more sophisticated behavior, try
hadoop_input_format() or the hadoop_input_format argument to
mrjob.runner.MRJobRunner.__init__().

	
MRJob.hadoop_input_format()

	Optional Hadoop InputFormat class to parse input for
the first step of the job.

Normally, setting HADOOP_INPUT_FORMAT is sufficient;
redefining this method is only for when you want to get fancy.

	
MRJob.HADOOP_OUTPUT_FORMAT = None

	Optional name of an optional Hadoop OutputFormat class, e.g.
'org.apache.hadoop.mapred.FileOutputFormat'.

Passed to Hadoop with the last step of this job with the
-outputformat option.

If you require more sophisticated behavior, try
hadoop_output_format() or the hadoop_output_format argument
to mrjob.runner.MRJobRunner.__init__().

	
MRJob.hadoop_output_format()

	Optional Hadoop OutputFormat class to write output for
the last step of the job.

Normally, setting HADOOP_OUTPUT_FORMAT is sufficient;
redefining this method is only for when you want to get fancy.

	
MRJob.JOBCONF = {}

	Optional jobconf arguments we should always pass to Hadoop. This
is a map from property name to value. e.g.:

{'stream.num.map.output.key.fields': '4'}

It’s recommended that you only use this to hard-code things that
affect the semantics of your job, and leave performance tweaks to
the command line or whatever you use to launch your job.

	
MRJob.jobconf()

	-D args to pass to hadoop streaming. This should be a map
from property name to value. By default, returns JOBCONF.

Changed in version 0.6.6: re-defining longer clobbers command-line
--jobconf options.

	
MRJob.LIBJARS = []

	Optional list of paths of jar files to run our job with using Hadoop’s
-libjars option.

~ and environment variables
in paths be expanded, and relative paths will be interpreted as
relative to the directory containing the script (not the current
working directory).

If you require more sophisticated behavior, try overriding
libjars().

	
MRJob.libjars()

	Optional list of paths of jar files to run our job with using
Hadoop’s -libjars option. Normally setting LIBJARS
is sufficient. Paths from LIBJARS are interpreted as
relative to the the directory containing the script (paths from the
command-line are relative to the current working directory).

Note that ~ and environment variables in paths will always be
expanded by the job runner (see libjars).

Changed in version 0.6.6: re-defining this no longer clobbers the command-line
--libjars option

	
MRJob.PARTITIONER = None

	Optional Hadoop partitioner class to use to determine how mapper
output should be sorted and distributed to reducers. For example:
'org.apache.hadoop.mapred.lib.HashPartitioner'.

If you require more sophisticated behavior, try partitioner().

	
MRJob.partitioner()

	Optional Hadoop partitioner class to use to determine how mapper
output should be sorted and distributed to reducers.

By default, returns PARTITIONER.

You probably don’t need to re-define this; it’s just here for
completeness.

Hooks for testing

	
MRJob.sandbox(stdin=None, stdout=None, stderr=None)

	Redirect stdin, stdout, and stderr for automated testing.

You can set stdin, stdout, and stderr to file objects. By
default, they’ll be set to empty BytesIO objects.
You can then access the job’s file handles through self.stdin,
self.stdout, and self.stderr. See Testing jobs for more
information about testing.

You may call sandbox multiple times (this will essentially clear
the file handles).

stdin is empty by default. You can set it to anything that yields
lines:

mr_job.sandbox(stdin=BytesIO(b'some_data\n'))

or, equivalently:

mr_job.sandbox(stdin=[b'some_data\n'])

For convenience, this sandbox() returns self, so you can do:

mr_job = MRJobClassToTest().sandbox()

Simple testing example:

mr_job = MRYourJob.sandbox()
self.assertEqual(list(mr_job.reducer('foo', ['a', 'b'])), [...])

More complex testing example:

from BytesIO import BytesIO

from mrjob.parse import parse_mr_job_stderr
from mrjob.protocol import JSONProtocol

mr_job = MRYourJob(args=[...])

fake_input = '"foo"\t"bar"\n"foo"\t"baz"\n'
mr_job.sandbox(stdin=BytesIO(fake_input))

mr_job.run_reducer(link_num=0)

self.assertEqual(mrjob.stdout.getvalue(), ...)
self.assertEqual(parse_mr_job_stderr(mr_job.stderr), ...)

Note

If you are using Spark, it’s recommended you only pass in
io.BytesIO [http://docs.python.org/2/library/io.html#io.BytesIO] or other serializable alternatives to file
objects. stdin, stdout, and stderr get stored as job
attributes, which means if they aren’t serializable, neither
is the job instance or its methods.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.local - simulate Hadoop locally with subprocesses

	
class mrjob.local.LocalMRJobRunner(**kwargs)

	Runs an MRJob locally, for testing purposes.
Invoked when you run your job with -r local.

Unlike InlineMRJobRunner, this actually spawns
multiple subprocesses for each task.

It’s rare to need to instantiate this class directly (see
__init__() for details).

New in version 0.6.8: can run Spark steps as well, on the local-cluster Spark master.

	
LocalMRJobRunner.__init__(**kwargs)

	Arguments to this constructor may also appear in mrjob.conf
under runners/local.

LocalMRJobRunner‘s constructor takes the
same keyword args as
MRJobRunner. However, please note:

	cmdenv is combined with combine_local_envs()

	python_bin defaults to sys.executable (the current python
interpreter)

	hadoop_input_format, hadoop_output_format,
and partitioner are ignored because they
require Java. If you need to test these, consider starting up a
standalone Hadoop instance and running your job with -r hadoop.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.parse - log parsing

Utilities for parsing errors, counters, and status messages.

	
mrjob.parse.is_s3_uri(uri)

	Return True if uri can be parsed into an S3 URI, False otherwise.

	
mrjob.parse.is_uri(uri)

	Return True if uri is a URI and contains ://
(we only care about URIs that can describe files)

	
mrjob.parse.parse_mr_job_stderr(stderr, counters=None)

	Parse counters and status messages out of MRJob output.

	Parameters:	
	stderr – a filehandle, a list of lines (bytes), or bytes

	counters – Counters so far, to update; a map from group (string to
counter name (string) to count.

Returns a dictionary with the keys counters, statuses, other:

	counters: counters so far; same format as above

	statuses: a list of status messages encountered

	other: lines (strings) that aren’t either counters or status messages

	
mrjob.parse.parse_s3_uri(uri)

	Parse an S3 URI into (bucket, key)

>>> parse_s3_uri('s3://walrus/tmp/')
('walrus', 'tmp/')

If uri is not an S3 URI, raise a ValueError

	
mrjob.parse.to_uri(path_or_uri)

	If path_or_uri is not a URI already, convert it to a file:///
URI.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.protocol - input and output

Protocols translate raw bytes into key, value pairs.

Typically, protocols encode a key and value into bytes, and join them together
with a tab character.

However, protocols with Value in their name ignore
keys and simply read/write values (with key read in as None), allowing
you to read and write data in arbitrary formats.

For more information, see Protocols and Writing custom protocols.

Strings

	
class mrjob.protocol.RawValueProtocol

	Just output value (a str), and discard
key (key is read in as None).

This is the default protocol used by jobs to read input.

This is an alias for RawValueProtocol on Python 2 and
TextValueProtocol on Python 3.

	
class mrjob.protocol.BytesValueProtocol

	Read line (without trailing newline) directly into value (key
is always None). Output value (bytes) directly, discarding key.

This is the default protocol used by jobs to read input on Python 2.

Warning

Typical usage on Python 2 is to have your mapper parse (byte) strings
out of your input files, and then include them in the output to the
reducer. Since this output is then (by default) JSON-encoded, encoding
will fail if the bytestrings are not UTF-8 decodable. If this is an
issue, consider using TextValueProtocol instead.

	
class mrjob.protocol.TextValueProtocol

	Attempt to UTF-8 decode line (without trailing newline) into value,
falling back to latin-1. (key is always None). Output value
UTF-8 encoded, discarding key.

This is the default protocol used by jobs to read input on Python 3.

This is a good solution for reading text files which are mostly ASCII but
may have some other bytes of unknown encoding (e.g. logs).

If you wish to enforce a particular encoding, use
BytesValueProtocol instead:

class MREncodingEnforcer(MRJob):

 INPUT_PROTOCOL = BytesValueProtocol

 def mapper(self, _, value):
 value = value.decode('utf_8')
 ...

	
class mrjob.protocol.RawProtocol

	Output key (str) and value (str),
separated by a tab character.

This is an alias for BytesProtocol on Python 2 and
TextProtocol on Python 3.

	
class mrjob.protocol.BytesProtocol

	Encode (key, value) (bytestrings) as key and value
separated by a tab.

If key or value is None, don’t include a tab. When decoding a
line with no tab in it, value will be None.

When reading from a line with multiple tabs, we break on the first one.

Your key should probably not be None or have tab characters in it, but
we don’t check.

	
class mrjob.protocol.TextProtocol

	UTF-8 encode key and value (unicode strings) and join them
with a tab character. When reading input, we fall back to latin-1 if
we can’t UTF-8 decode the line.

If key or value is None, don’t include a tab. When decoding a
line with no tab in it, value will be None.

When reading from a line with multiple tabs, we break on the first one.

Your key should probably not be None or have tab characters in it, but
we don’t check.

JSON

	
class mrjob.protocol.JSONProtocol

	Encode (key, value) as two JSONs separated by a tab.

This is the default protocol used by jobs to write output and communicate
between steps.

This is an alias for the first one of UltraJSONProtocol,
RapidJSONProtocol, SimpleJSONProtocol,
or StandardJSONProtocol for which the underlying library is
available.

	
class mrjob.protocol.UltraJSONProtocol

	Implements JSONProtocol using the ujson library.

Warning

ujson is about five times faster than the standard
implementation, but is more willing to encode things that aren’t
strictly JSON-encodable, including sets, dictionaries with
tuples as keys, UTF-8 encoded bytes, and objects (!). Relying on this
behavior won’t stop your job from working, but it can
make your job dependent on ujson, rather than just using
it as a speedup.

Note

ujson also differs from the standard implementation in that
it doesn’t add spaces to its JSONs ({"foo":"bar"} versus
{"foo": "bar"}). This probably won’t affect anything but test
cases and readability.

	
class mrjob.protocol.RapidJSONProtocol

	Implements JSONProtocol using the rapidjson
library.

	
class mrjob.protocol.SimpleJSONProtocol

	Implements JSONProtocol using the simplejson
library.

	
class mrjob.protocol.StandardJSONProtocol

	Implements JSONProtocol using Python’s built-in JSON
library.

Note

The built-in json library is (appropriately) strict about the JSON
standard; it won’t accept dictionaries with non-string keys, sets, or
(on Python 3) bytestrings.

	
class mrjob.protocol.JSONValueProtocol

	Encode value as a JSON and discard key (key is read in as
None).

This is an alias for the first one of UltraJSONValueProtocol,
RapidJSONValueProtocol, SimpleJSONValueProtocol,
or StandardJSONValueProtocol for which the underlying library is
available.

	
class mrjob.protocol.UltraJSONValueProtocol

	Implements JSONValueProtocol using the ujson
library.

	
class mrjob.protocol.RapidJSONValueProtocol

	Implements JSONValueProtocol using the rapidjson
library.

	
class mrjob.protocol.SimpleJSONValueProtocol

	Implements JSONValueProtocol using the simplejson
library.

	
class mrjob.protocol.StandardJSONValueProtocol

	Implements JSONValueProtocol using Python’s built-in JSON
library.

Repr

	
class mrjob.protocol.ReprProtocol

	Encode (key, value) as two reprs separated by a tab.

This only works for basic types (we use mrjob.util.safeeval()).

Warning

The repr format changes between different versions of Python (for
example, braces for sets in Python 2.7, and different string contants
in Python 3). Plan accordingly.

	
class mrjob.protocol.ReprValueProtocol

	Encode value as a repr and discard key (key is read
in as None).

See ReprProtocol for details.

Pickle

	
class mrjob.protocol.PickleProtocol

	Encode (key, value) as two string-escaped pickles separated
by a tab.

We string-escape the pickles to avoid having to deal with stray
\t and \n characters, which would confuse Hadoop
Streaming.

Ugly, but should work for any type.

Warning

Pickling is only backwards-compatible across Python versions. If your
job uses this as an output protocol, you should use at least the same
version of Python to parse the job’s output. Vice versa for using this
as an input protocol.

	
class mrjob.protocol.PickleValueProtocol

	Encode value as a string-escaped pickle and discard key
(key is read in as None).

See PickleProtocol for details.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.spark.runner - run on any Spark cluster

Job Runner

	
class mrjob.spark.runner.SparkMRJobRunner(max_output_files=None, mrjob_cls=None, **kwargs)

	Runs a MRJob on your Spark cluster (with or
without Hadoop). Invoked when you run your job with -r spark.

See Running on your Spark cluster for more information.

The Spark runner can also run “classic” MRJobs directly on Spark, without
using Hadoop streaming. See Running “classic” MRJobs on Spark.

New in version 0.6.8.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.retry - retry on transient errors

	
class mrjob.retry.RetryWrapper(wrapped, retry_if, backoff=15, multiplier=1.5, max_tries=10, max_backoff=1200, unwrap_methods=())

	Handle transient errors, with configurable backoff.

This class can wrap any object. The wrapped object will behave like
the original one, except that if you call a function and it raises a
retriable exception, we’ll back off for a certain number of seconds
and call the function again, until it succeeds or we get a non-retriable
exception.

	
RetryWrapper.__init__(wrapped, retry_if, backoff=15, multiplier=1.5, max_tries=10, max_backoff=1200, unwrap_methods=())

	Wrap the given object

	Parameters:	
	wrapped – the object to wrap

	retry_if – a method that takes an exception, and returns whether
we should retry

	backoff (float [http://docs.python.org/2/library/functions.html#float]) – the number of seconds to wait the first time we get a
retriable error

	multiplier (float [http://docs.python.org/2/library/functions.html#float]) – if we retry multiple times, the amount to multiply
the backoff time by every time we get an error

	max_tries (int [http://docs.python.org/2/library/functions.html#int]) – how many tries we get. 0 means to keep trying
forever

	max_backoff (float [http://docs.python.org/2/library/functions.html#float]) – cap the backoff at this number of seconds

	unwrap_methods (sequence) – names of methods to call with this object as
self rather than retrying on transient
errors (e.g. methods that return a paginator)

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.runner - base class for all runners

	
class mrjob.runner.MRJobRunner(mr_job_script=None, conf_paths=None, extra_args=None, hadoop_input_format=None, hadoop_output_format=None, input_paths=None, output_dir=None, partitioner=None, sort_values=None, stdin=None, steps=None, step_output_dir=None, **opts)

	Abstract base class for all runners

	
MRJobRunner.__init__(mr_job_script=None, conf_paths=None, extra_args=None, hadoop_input_format=None, hadoop_output_format=None, input_paths=None, output_dir=None, partitioner=None, sort_values=None, stdin=None, steps=None, step_output_dir=None, **opts)

	All runners take the following keyword arguments:

	Parameters:	
	mr_job_script (str [http://docs.python.org/2/library/functions.html#str]) – the path of the .py file containing the
MRJob. If this is None,
you won’t actually be able to run() the
job, but other utilities (e.g. ls())
will work.

	conf_paths (None or list) – List of config files to combine and use, or None to
search for mrjob.conf in the default locations.

	extra_args (list of str) – a list of extra cmd-line arguments to pass to the
mr_job script. This is a hook to allow jobs to take
additional arguments.

	hadoop_input_format (str [http://docs.python.org/2/library/functions.html#str]) – name of an optional Hadoop InputFormat
class. Passed to Hadoop along with your
first step with the -inputformat
option. Note that if you write your own
class, you’ll need to include it in your
own custom streaming jar (see
hadoop_streaming_jar).

	hadoop_output_format (str [http://docs.python.org/2/library/functions.html#str]) – name of an optional Hadoop
OutputFormat class. Passed to Hadoop
along with your first step with the
-outputformat option. Note that if you
write your own class, you’ll need to
include it in your own custom streaming
jar (see
hadoop_streaming_jar).

	input_paths (list of str) – Input files for your job. Supports globs and
recursively walks directories (e.g.
['data/common/', 'data/training/*.gz']). If
this is left blank, we’ll read from stdin

	output_dir (str [http://docs.python.org/2/library/functions.html#str]) – An empty/non-existent directory where Hadoop
should put the final output from the job.
If you don’t specify an output directory, we’ll
output into a subdirectory of this job’s temporary
directory. You can control this from the command
line with --output-dir. This option cannot be
set from configuration files. If used with the
hadoop runner, this path does not need to be fully
qualified with hdfs:// URIs because it’s
understood that it has to be on HDFS.

	partitioner (str [http://docs.python.org/2/library/functions.html#str]) – Optional name of a Hadoop partitioner class, e.g.
'org.apache.hadoop.mapred.lib.HashPartitioner'.
Hadoop streaming will use this to determine how
mapper output should be sorted and distributed
to reducers.

	sort_values (bool [http://docs.python.org/2/library/functions.html#bool]) – if true, set partitioners and jobconf variables
so that reducers to receive the values
associated with any key in sorted order (sorted by
their encoded value). Also known as secondary
sort.

	stdin – an iterable (can be a BytesIO or even a list) to use
as stdin. This is a hook for testing; if you set
stdin via sandbox(), it’ll
get passed through to the runner. If for some reason
your lines are missing newlines, we’ll add them;
this makes it easier to write automated tests.

	steps – a list of descriptions of steps to run (see mrjob.step - represent Job Steps
for description formats)

	step_output_dir (str [http://docs.python.org/2/library/functions.html#str]) – An empty/non-existent directory where Hadoop
should put output from all steps other than
the last one (this only matters for multi-step
jobs). Currently ignored by local runners.

Running your job

	
MRJobRunner.run()

	Run the job, and block until it finishes.

Raise StepFailedException if there
are any problems (except on
InlineMRJobRunner, where we raise the
actual exception that caused the step to fail).

	
MRJobRunner.cat_output()

	Stream the job’s output, as a stream of bytes. If there are
multiple output files, there will be an empty bytestring
(b'') between them.

Like Hadoop input formats, we ignore files and subdirectories whose
names start with "_" or "." (e.g. _SUCCESS, _logs/,
.part-00000.crc.

Changed in version 0.6.8: Ignore file/dirnames starting with "." as well as "_".

	
MRJobRunner.cleanup(mode=None)

	Clean up running jobs, temp files, and logs, subject to the
cleanup option passed to the constructor.

If you create your runner in a with block,
cleanup() will be called automatically:

with mr_job.make_runner() as runner:
 ...

cleanup() called automatically here

	Parameters:	mode – override cleanup passed into the constructor. Should be
a list of strings from
CLEANUP_CHOICES

	
mrjob.options.CLEANUP_CHOICES = ['ALL', 'CLOUD_TMP', 'CLUSTER', 'HADOOP_TMP', 'JOB', 'LOCAL_TMP', 'LOGS', 'NONE', 'TMP']

	cleanup options:

	'ALL': delete logs and local and remote temp files; stop cluster
if on EMR and the job is not done when cleanup is run.

	'CLOUD_TMP': delete temp files on cloud storage (e.g. S3) only

	
	'CLUSTER': terminate the cluster if on EMR and the job is not done

	on cleanup

	'HADOOP_TMP': delete temp files on HDFS only

	'JOB': stop job if on EMR and the job is not done when cleanup runs

	'LOCAL_TMP': delete local temp files only

	'LOGS': delete logs only

	'NONE': delete nothing

	'TMP': delete local, HDFS, and cloud storage temp files, but not logs

Run Information

	
MRJobRunner.counters()

	Get counters associated with this run in this form:

[{'group name': {'counter1': 1, 'counter2': 2}},
 {'group name': ...}]

The list contains an entry for every step of the current job.

	
MRJobRunner.get_hadoop_version()

	Return the version number of the Hadoop environment as a string if
Hadoop is being used or simulated. Return None if not applicable.

EMRJobRunner infers this from the cluster.
HadoopJobRunner gets this from
hadoop version. LocalMRJobRunner has an
additional hadoop_version option to specify which version it
simulates.
InlineMRJobRunner does not simulate Hadoop at
all.

	
MRJobRunner.get_job_key()

	Get the unique key for the job run by this runner.
This has the format label.owner.date.time.microseconds

Configuration

	
MRJobRunner.get_opts()

	Get options set for this runner, as a dict.

File management

	
MRJobRunner.fs

	Filesystem object for the local
filesystem.

	
class mrjob.fs.base.Filesystem

	Some simple filesystem operations that are common across the local
filesystem, S3, GCS, HDFS, and remote machines via SSH.

Different runners provide functionality for different filesystems via their
fs attribute. Generally a runner will
wrap one or more filesystems with
mrjob.fs.composite.CompositeFilesystem.

Schemes supported:

	mrjob.fs.gcs.GCSFilesystem: gs://

	mrjob.fs.hadoop.HadoopFilesystem: hdfs:// and other URIs

	mrjob.fs.local.LocalFilesystem: paths and file:// URIs

	mrjob.fs.s3.S3Filesystem: s3://, s3a://, s3n://,

	mrjob.fs.ssh.SSHFilesystem: ssh://

Changed in version 0.6.12: LocalFilesystem added support for file:// URIs

	
can_handle_path(path)

	Can we handle this path at all?

	
cat(path_glob)

	cat all files matching path_glob, decompressing if necessary

This yields bytes, which don’t necessarily correspond to lines
(see #1544). If multiple files are catted, yields b'' between
each file.

	
du(path_glob)

	Get the total size of files matching path_glob

Corresponds roughly to: hadoop fs -du path_glob

	
exists(path_glob)

	Does the given path/URI exist?

Corresponds roughly to: hadoop fs -test -e path_glob

	
join(path, *paths)

	Join paths onto path (which may be a URI)

	
ls(path_glob)

	Recursively list all files in the given path.

We don’t return directories for compatibility with S3 (which
has no concept of them)

Corresponds roughly to: hadoop fs -ls -R path_glob

	
md5sum(path)

	Generate the md5 sum of the file at path

	
mkdir(path)

	Create the given dir and its subdirs (if they don’t already
exist). On cloud filesystems (e.g. S3), also create the corresponding
bucket as needed

Corresponds roughly to: hadoop fs -mkdir -p path

New in version 0.6.8: creates buckets on cloud filesystems

	
put(src, path)

	Upload a file on the local filesystem (src) to path.
Like with shutil.copyfile() [http://docs.python.org/2/library/shutil.html#shutil.copyfile], path should be the full path
of the new file, not a directory which should contain it.

Corresponds roughly to hadoop fs -put src path.

New in version 0.6.8.

	
rm(path_glob)

	Recursively delete the given file/directory, if it exists

Corresponds roughly to: hadoop fs -rm -R path_glob

	
touchz(path)

	Make an empty file in the given location. Raises an error if
a non-zero length file already exists in that location.

Correponds to: hadoop fs -touchz path

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.step - represent Job Steps

Representations of job steps, to use in your MRJob‘s
steps() method.

Because the runner just needs to know
how to invoke your MRJob script, not how it works insternally, each step
instance’s description() method produces a simplified, JSON-able
description of the step, to pass to the runner.

Steps

	
class mrjob.step.MRStep(**kwargs)

	Represents steps handled by the script containing your job.

Used by MRJob.steps.
See Multi-step jobs for sample usage.

Takes the following keyword arguments: combiner, combiner_cmd,
combiner_final, combiner_init, combiner_pre_filter, mapper,
mapper_cmd, mapper_final, mapper_init, mapper_pre_filter,
mapper_raw, reducer, reducer_cmd, reducer_final, reducer_init,
reducer_pre_filter. These should be set to None or a function
with the same signature as the corresponding method in
MRJob.

Also accepts jobconf, a dictionary with custom jobconf arguments to pass
to hadoop.

A MRStep’s description looks like:

{
 'type': 'streaming',
 'mapper': { ... },
 'combiner': { ... },
 'reducer': { ... },
 'jobconf': { ... }, # dict of Hadoop configuration properties
}

At least one of mapper, combiner and reducer need be included.
jobconf is completely optional.

mapper, combiner, and reducer are either handled by
the script containing your job definition, in which case they look like:

{
 'type': 'script',
 'pre_filter': 'grep -v bad', # optional cmd to filter input
}

or they simply run a command, which looks like:

{
 'type': 'command',
 'command': 'cut -f 1-2', # command to run, as a string
}

	
class mrjob.step.JarStep(jar, **kwargs)

	Represents a running a custom Jar as a step.

Accepts the following keyword arguments:

	Parameters:	
	jar – The local path to the Jar. On EMR, this can also be an
s3:// URI, or file:// to reference a jar on
the local filesystem of your EMR instance(s).

	args – (optional) A list of arguments to the jar. Use
mrjob.step.INPUT and OUTPUT to
interpolate input and output paths.

	jobconf – (optional) A dictionary of Hadoop properties

	main_class – (optional) The main class to run from the jar. If
not specified, Hadoop will use the main class
in the jar’s manifest file.

jar can also be passed as a positional argument

See Jar steps for sample usage.

Sample description of a JarStep:

{
 'type': 'jar',
 'jar': 'binks.jar.jar',
 'main_class': 'MyMainMan', # optional
 'args': ['argh', 'argh'] # optional
 'jobconf': { ... } # optional
}

To give your jar access to input files, an empty output directory,
configuration properties, and libjars managed by mrjob, you may include
INPUT, OUTPUT, and GENERIC_ARGS in args.

	
class mrjob.step.SparkStep(spark, **kwargs)

	Represents running a Spark step defined in your job.

Accepts the following keyword arguments:

	Parameters:	
	spark – function containing your Spark code with same function
signature as spark()

	jobconf – (optional) A dictionary of Hadoop properties

	spark_args – (optional) an array of arguments to pass to spark-submit
(e.g. ['--executor-memory', '2G']).

Sample description of a SparkStep:

{
 'type': 'spark',
 'jobconf': { ... }, # optional
 'spark_args': ['--executor-memory', '2G'], # optional
}

	
class mrjob.step.SparkJarStep(jar, main_class, **kwargs)

	Represents a running a separate Jar through Spark

Accepts the following keyword arguments:

	Parameters:	
	jar – The local path to the Python script to run. On EMR, this
can also be an s3:// URI, or file:// to reference a
jar on the local filesystem of your EMR instance(s).

	main_class – Your application’s main class (e.g.
'org.apache.spark.examples.SparkPi')

	args – (optional) A list of arguments to the script. Use
mrjob.step.INPUT and OUTPUT to
interpolate input and output paths.

	jobconf – (optional) A dictionary of Hadoop properties

	spark_args – (optional) an array of arguments to pass to spark-submit
(e.g. ['--executor-memory', '2G']).

jar and main_class can also be passed as positional arguments

Sample description of a SparkJarStep:

{
 'type': 'spark_jar',
 'jar': 'binks.jar.jar',
 'main_class': 'MyMainMan', # optional
 'args': ['argh', 'argh'], # optional
 'jobconf': { ... }, # optional
 'spark_args': ['--executor-memory', '2G'], # optional
}

To give your Spark JAR access to input files and an empty output directory
managed by mrjob, you may include INPUT and OUTPUT
in args.

	
class mrjob.step.SparkScriptStep(script, **kwargs)

	Represents a running a separate Python script through Spark

Accepts the following keyword arguments:

	Parameters:	
	script – The local path to the Python script to run. On EMR, this
can also be an s3:// URI, or file:// to reference a
jar on the local filesystem of your EMR instance(s).

	args – (optional) A list of arguments to the script. Use
mrjob.step.INPUT and OUTPUT to
interpolate input and output paths.

	jobconf – (optional) A dictionary of Hadoop properties

	spark_args – (optional) an array of arguments to pass to spark-submit
(e.g. ['--executor-memory', '2G']).

script can also be passed as a positional argument

Sample description of a ScriptStep:

{
 'type': 'spark_script',
 'script': 'my_spark_script.py',
 'args': ['script_arg1', 'script_arg2'],
 'jobconf': { ... }, # optional
 'spark_args': ['--executor-memory', '2G'], # optional
 }

To give your Spark script access to input files and an empty output
directory managed by mrjob, you may include INPUT and
OUTPUT in args.

Argument interpolation

Use these constants in your step’s args and mrjob will automatically replace
them before running your step.

	
mrjob.step.INPUT = '<input>'

	If passed as an argument to JarStep, SparkJarStep,
or SparkScriptStep, it’ll be replaced with the step’s input
path(s). If there are multiple paths, they’ll be joined with commas.

	
mrjob.step.OUTPUT = '<output>'

	If this is passed as an argument to JarStep,
SparkJarStep, or SparkScriptStep, it’ll be replaced
with the step’s output path

	
mrjob.step.GENERIC_ARGS = '<generic args>'

	If this is passed as an argument to JarStep,
it’ll be replaced with generic hadoop args (-D and -libjars)

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.setup - job environment setup

Utilities for setting up the environment jobs run in by uploading files
and running setup scripts.

The general idea is to use Hadoop DistributedCache-like syntax to find and
parse expressions like /path/to/file#name_in_working_dir into “path
dictionaries” like
{'type': 'file', 'path': '/path/to/file', 'name': 'name_in_working_dir'}}.

You can then pass these into a WorkingDirManager to keep
track of which files need to be uploaded, catch name collisions, and assign
names to unnamed paths (e.g. /path/to/file#). Note that
WorkingDirManager.name() can take a path dictionary as keyword
arguments.

If you need to upload files from the local filesystem to a place where
Hadoop can see them (HDFS or S3), we provide UploadDirManager.

Path dictionaries are meant to be immutable; all state is handled by
manager classes.

	
class mrjob.setup.UploadDirManager(prefix)

	Represents a directory on HDFS or S3 where we want to upload
local files for consumption by Hadoop.

UploadDirManager tries to give files the same name as their
filename in the path (for ease of debugging), but handles collisions
gracefully.

UploadDirManager assumes URIs to not need to be uploaded
and thus does not store them. uri() maps URIs to themselves.

	
add(path)

	
	Add a path. If path hasn’t been added before, assign it a name.

	If path is a URI don’t add it; just return the URI.

	Returns:	the URI assigned to the path

	
path_to_uri()

	Get a map from path to URI for all paths that were added,
so we can figure out which files we need to upload.

	
uri(path)

	Get the URI for the given path. If path is a URI, just return it.

	
class mrjob.setup.WorkingDirManager(archive_file_suffix='')

	Represents the working directory of hadoop/Spark tasks (or bootstrap
commands in the cloud).

To support Hadoop’s distributed cache, paths can be for ordinary
files, or for archives (which are automatically uncompressed into
a directory by Hadoop).

When adding a file, you may optionally assign it a name; if you don’t;
we’ll lazily assign it a name as needed. Name collisions are not allowed,
so being lazy makes it easier to avoid unintended collisions.

If you wish, you may assign multiple names to the same file, or add
a path as both a file and an archive (though not mapped to the same name).

	
add(type, path, name=None)

	Add a path as either a file or an archive, optionally
assigning it a name.

	Parameters:	
	type – either 'archive' or 'file'

	path – path/URI to add

	name – optional name that this path must be assigned, or
None to assign this file a name later.

if type is archive, we’ll also add path as an
auto-named archive_file. This reserves space in the working dir
in case we need to copy the archive into the working dir and
un-archive it ourselves.

	
name(type, path, name=None)

	Get the name for a path previously added to this
WorkingDirManager, assigning one as needed.

This is primarily for getting the name of auto-named files. If
the file was added with an assigned name, you must include it
(and we’ll just return name).

We won’t ever give an auto-name that’s the same an assigned name
(even for the same path and type).

	Parameters:	
	type – either 'archive' or 'file'

	path – path/URI

	name – known name of the file

	
name_to_path(type=None)

	Get a map from name (in the setup directory) to path for
all known files/archives, so we can build -file and
-archive options to Hadoop (or fake them in a bootstrap
script).

	Parameters:	type – either 'archive' or 'file'

	
paths(type=None)

	Get a set of all paths tracked by this WorkingDirManager.

	
mrjob.setup.name_uniquely(path, names_taken=(), proposed_name=None, unhide=False, strip_ext=False, suffix='')

	Come up with a unique name for path.

	Parameters:	
	names_taken – a dictionary or set of names not to use.

	proposed_name – name to use if it is not taken. If this is not set,
we propose a name based on the filename.

	unhide – make sure final name doesn’t start with periods or
underscores

	strip_ext – if we propose a name, it shouldn’t have a file extension

	suffix – if set to a string, add this to the end of any filename
we propose. Should include the ..

If the proposed name is taken, we add a number to the end of the
filename, keeping the extension the same. For example:

>>> name_uniquely('foo.txt', {'foo.txt'})
'foo-1.txt'
>>> name_uniquely('bar.tar.gz', {'bar'}, strip_ext=True)
'bar-1'

	
mrjob.setup.parse_legacy_hash_path(type, path, must_name=None)

	Parse hash paths from old setup/bootstrap options.

This is similar to parsing hash paths out of shell commands (see
parse_setup_cmd()) except that we pass in
path type explicitly, and we don’t always require the # character.

	Parameters:	
	type – Type of the path ('archive' or 'file')

	path – Path to parse, possibly with a #

	must_name – If set, use path‘s filename as its name if there
is no '#' in path, and raise an exception
if there is just a '#' with no name. Set must_name
to the name of the relevant option so we can print
a useful error message. This is intended for options
like upload_files that merely upload a file
without tracking it.

	
mrjob.setup.parse_setup_cmd(cmd)

	Parse a setup/bootstrap command, finding and pulling out Hadoop
Distributed Cache-style paths (“hash paths”).

	Parameters:	cmd (string [http://docs.python.org/2/library/string.html#module-string]) – shell command to parse

	Returns:	a list containing dictionaries (parsed hash paths) and strings
(parts of the original command, left unparsed)

Hash paths look like path#name, where path is either a local path
or a URI pointing to something we want to upload to Hadoop/EMR, and name
is the name we want it to have when we upload it; name is optional
(no name means to pick a unique one).

If name is followed by a trailing slash, that indicates path is an
archive (e.g. a tarball), and should be unarchived into a directory on the
remote system. The trailing slash will also be kept as part of the
original command.

If path is followed by a trailing slash, that indicates path is a
directory and should be tarballed and later unarchived into a directory
on the remote system. The trailing slash will also be kept as part of
the original command. You may optionally include a slash after name as
well (this will only result in a single slash in the final command).

Parsed hash paths are dicitionaries with the keys path, name, and
type (either 'file', 'archive', or 'dir').

Most of the time, this function will just do what you expect. Rules for
finding hash paths:

	we only look for hash paths outside of quoted strings

	path may not contain quotes or whitespace

	path may not contain : or = unless it is a URI (starts with
<scheme>://); this allows you to do stuff like
export PYTHONPATH=$PYTHONPATH:foo.egg#.

	name may not contain whitespace or any of the following characters:
'":;><|=/#, so you can do stuff like
sudo dpkg -i fooify.deb#; fooify bar

If you really want to include forbidden characters, you may use backslash
escape sequences in path and name. (We can’t guarantee Hadoop/EMR
will accept them though!). Also, remember that shell syntax allows you
to concatenate strings like""this.

Environment variables and ~ (home dir) in path will be resolved
(use backslash escapes to stop this). We don’t resolve name because it
doesn’t make sense. Environment variables and ~ elsewhere in the
command are considered to be part of the script and will be resolved
on the remote system.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

 	Reference

mrjob.util - general utility functions

Utility functions for MRJob

	
mrjob.util.cmd_line(args)

	build a command line that works in a shell.

	
mrjob.util.expand_path(path)

	Resolve ~ (home dir) and environment variables in path.

If path is None, return None.

	
mrjob.util.file_ext(filename)

	return the file extension, including the .

>>> file_ext('foo.tar.gz')
'.tar.gz'

>>> file_ext('.emacs')
''

>>> file_ext('.mrjob.conf')
'.conf'

	
mrjob.util.log_to_null(name=None)

	Set up a null handler for the given stream, to suppress
“no handlers could be found” warnings.

	
mrjob.util.log_to_stream(name=None, stream=None, format=None, level=None, debug=False)

	Set up logging.

	Parameters:	
	name (str [http://docs.python.org/2/library/functions.html#str]) – name of the logger, or None for the root logger

	stream (file object) – stream to log to (default is sys.stderr)

	format (str [http://docs.python.org/2/library/functions.html#str]) – log message format (default is ‘%(message)s’)

	level – log level to use

	debug (bool [http://docs.python.org/2/library/functions.html#bool]) – quick way of setting the log level: if true, use
logging.DEBUG, otherwise use logging.INFO

	
mrjob.util.random_identifier()

	A random 16-digit hex string.

	
mrjob.util.safeeval(expr, globals=None, locals=None)

	Like eval, but with nearly everything in the environment
blanked out, so that it’s difficult to cause mischief.

globals and locals are optional dictionaries mapping names to
values for those names (just like in eval() [http://docs.python.org/2/library/functions.html#eval]).

	
mrjob.util.save_current_environment(*args, **kwds)

	Context manager that saves os.environ and loads
it back again after execution

	
mrjob.util.save_cwd(*args, **kwds)

	Context manager that saves the current working directory,
and chdir’s back to it after execution.

	
mrjob.util.save_sys_path(*args, **kwds)

	Context manager that saves sys.path and restores it after execution.

	
mrjob.util.save_sys_std(*args, **kwds)

	Context manager that saves the current values of sys.stdin,
sys.stdout, and sys.stderr, and flushes these filehandles before
and after switching them out.

	
mrjob.util.shlex_split(s)

	Wrapper around shlex.split(), but convert to str if Python version <
2.7.3 when unicode support was added.

	
mrjob.util.strip_microseconds(delta)

	Return the given datetime.timedelta [http://docs.python.org/2/library/datetime.html#datetime.timedelta], without microseconds.

Useful for printing datetime.timedelta [http://docs.python.org/2/library/datetime.html#datetime.timedelta] objects.

	
mrjob.util.to_lines(chunks)

	Take in data as a sequence of bytes, and yield it, one line at a time.

Only breaks lines on \n (not \r), and does not add
a trailing newline.

For efficiency, passes through anything with a readline() attribute.

	
mrjob.util.unarchive(archive_path, dest)

	Extract the contents of a tar or zip file at archive_path into the
directory dest.

	Parameters:	
	archive_path (str [http://docs.python.org/2/library/functions.html#str]) – path to archive file

	dest (str [http://docs.python.org/2/library/functions.html#str]) – path to directory where archive will be extracted

dest will be created if it doesn’t already exist.

tar files can be gzip compressed, bzip2 compressed, or uncompressed. Files
within zip files can be deflated or stored.

	
mrjob.util.unique(items)

	Yield items from item in order, skipping duplicates.

	
mrjob.util.which(cmd, path=None)

	Like the UNIX which command: search in path for the executable named
cmd. path defaults to PATH. Returns None if no
such executable found.

This is basically shutil.which() (which was introduced in Python 3.3)
without the mode argument. Best practice is to always specify path
as a keyword argument.

	
mrjob.util.zip_dir(dir, out_path, filter=None, prefix='')

	Compress the given dir into a zip file at out_path.

If we encounter symlinks, include the actual file, not the symlink.

	Parameters:	
	dir (str [http://docs.python.org/2/library/functions.html#str]) – dir to tar up

	out_path (str [http://docs.python.org/2/library/functions.html#str]) – where to write the tarball too

	filter – if defined, a function that takes paths (relative to dir
and returns True if we should keep them

	prefix (str [http://docs.python.org/2/library/functions.html#str]) – subdirectory inside the tarball to put everything into (e.g.
'mrjob')

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Home

What’s New

For a complete list of changes, see CHANGES.txt [https://github.com/Yelp/mrjob/blob/master/CHANGES.txt]

0.7.4

Docker on EMR

This release adds support for Docker on EMR, which
was released with AMI version 6.0.0 [https://docs.aws.amazon.com/emr/latest/ReleaseGuide/emr-spark-docker.html].
This is enabled by setting docker_image to point at your image.

There is also a docker_mounts option, and, if you want to
host your image on a private ECR repo instead of Docker Hub, a
docker_client_config option (though with AMIs 6.1.0 and later,
you can also auto-authenticate to ECR; see
this page [https://docs.aws.amazon.com/emr/latest/ManagementGuide/emr-plan-docker.html]).

As a result of adding Docker support, the default image_version
on EMR is 6.0.0. Also, on EMR and Dataproc we used to literally bootstrap
mrjob by copying it to Python’s root package directory, but as this won’t
put mrjob into a Docker image, mrjob is now bootstrapped via
py_files, like on every other runner.

Concurrent Steps on EMR clusters

This release also supports concurrent steps on EMR clusters, a feature
introduced in AMI 5.28.0. The max_concurrent_steps option
controls both the concurrency level of a newly launched cluster, and how
much concurrency we will accept when joining a pooled cluster.

To prevent
steps from the same job attempting to run simultaneously, mrjob will now
submit steps of a multi-step one at a time (after the previous one completes)
on clusters running AMI 5.28.0 or later. This can be changed with the
add_steps_in_batch option.

get_job_steps() is now deprecated, as
it can’t fetch steps before they’re submitted.

Cluster Pooling

Cluster pooling can now join pooled clusters based on available CPU and
memory reported by the YARN resource manager, rather than looking at number
and type of instances in the cluster. You can enable this by setting
min_available_mb and/or min_available_virtual_cores.
For this feature to work, you must enable SSH (the ec2_key_pair
and ec2_key_pair_file options).

You can now control the size of your cluster pool with the
max_clusters_in_pool option. If a job wants to launch a new
cluster in the pool but the pool is already “full,” it will wait and try again
until the pool is no longer full or it can join a cluster.

Once a job
determines that it is okay to add another cluster to the pool, it will
wait a random number of seconds and try again. This way, if several pooled
jobs launch simultaneously, they will be likely to stay within the maximum
number of clusters rather than all launching their own. The random wait time
can be controlled with pool_jitter_seconds.

By default, a job will wait forever to either join an existing cluster or
create new one. You can make jobs give up and raise an exception with the
pool_timeout_minutes option.

mrjob will now bypass the pool_wait_minutes option if there is
not a matching, active cluster to join. Basically, it won’t wait if there
is not a cluster to wait for. As with max_clusters_in_pool,
if a job determines there are no clusters to wait for, it will wait a
random number of seconds and double-check before launching a new cluster.

Library requirements

To support concurrent
steps, boto3 must be at least version 1.10.0 and botocore must be at
least version 1.13.16. The google-cloud-dataproc library must
be no greater than 1.1.0, to maintain compatibility with our code.

0.7.3

Made many long-overdue changes to Cluster Pooling, to reduce the
potential for throttling by the EMR API. Pooling now puts most information
a job needs to tell if it can join a cluster into the cluster name, meaning
most non-matching clusters can be filtered out when we call ListClusters.
Pooling also no longer needs to list cluster steps. Finally, if
pool_wait_minutes is set, and there are multiple clusters we can
join, we try them all, rather than just trying the “best” one and then
requesting more information from the API.

This update resulted in a few minor changes to pooling. When a job has the
choice of multiple clusters, it chooses solely on based on CPU capacity, using
NormalizedInstanceHours in the cluster summary returned by the
ListClusters API call. mrjob version and applications must
now match exactly in all cases.

We also re-worked the “locking” mechanism that keeps multiple jobs from joining
the same cluster. Formerly, this used S3 (which may only be eventually
consistent), and locks had no fixed expiration time. Now, EMR tags are used
for locking, locks always expire after one minute, and every job uses the same
timing when locking clusters, reducing the potential for race conditions.

mrjob terminate-idle-clusters no longer attempts to lock clusters
before terminating them, so its --max-mins-locked option is deprecated and
does nothing.

The Spark harness now emulates counters correctly in local mode.

If you use mapper_raw(), and your setup
script has an error, it will be correctly reported, even if your underlying
shell is dash and not bash.

0.7.2

Spark normally only supports archives if you’re running on YARN.
However, mrjob now seamlessly emulates archives on all Spark masters
(other than local). This means you can now use --archives or
--dirs with mrjob spark-submit, as well as using archives
in your --setup script.

As a result of this change, mrjob is somewhat better at recognizing file
extensions; it ignores . at the end of filenames, and can now recognize
that a file with a name like mrjob-0.7.0.tar.gz is a .tar.gz file, not
a .7.0.tar.gz file.

Also, if you don’t specify a name for an archive (e.g.
--setup 'cd foo.tar.gz#/') mrjob no longer includes the file extension
in the resulting directory name (foo/, not foo.tar.gz/).

Patched a long-standing security issue on EMR where we were copying the SSH
key to the master node when reading logs from other nodes, which are only
accessible via the master node. mrjob now correctly uses
ssh-add and the SSH agent instead of copying the key. As a result,
mrjob now has a ssh_add_bin option.

The extra_cluster_params option now recursively merges dict
params into existing ones. For example, you can now do this:

runners:
 emr:
 extra_cluster_params:
 Instances:
 EmrManagedMasterSecurityGroup: sg-foo

without obliterating the rest of the Instances API parameter.

Python 2 has reached end-of-life, so if you’re using Python 2, the default
python_bin is python2.7 rather than python, which now
means Python 3 on some systems (for example, 6.x EMR AMIs).

Finally, we ensure that if you’re installing mrjob on Python 3.4, we’ll install
a Python 3.4-compatible version of PyYAML.

0.7.1

EMR

Fixed a bug to set default value of VisibleToAllUsers to True.

You can set sub-parameters with extra_cluster_params to set it False. For
example, you can now do:

--extra-cluster-param VisibleToAllUsers=false

Added logging for mrjob to show invoked runner with keyword arguments.
Contents of archives are now used during bootstrapping to ensure clusters have same setup.

0.7.0

AWS and Google are now optional dependencies

Amazon Web Services (EMR/S3) and Google Cloud are now optional dependencies,
aws and google respectively. For example, to install mrjob with
AWS support, run:

pip install mrjob[aws]

non-Python mrjobs are no longer supported

Fully removed support for writing MRJob scripts in other languages and
then running them with the mrjob library. (This capability so little used
that chances are you never knew it existed.)

As a result the interpreter and steps_interpreter options are gone,
the mrjob run subcommand is gone, and the MRJobLauncher class
has been merged back into MRJob. Also removed mr_wc.rb from
mrjob/examples/

MRSomeJob() means read from sys.argv

In prior versions, if you initialized a MRJob subclass
with no arguments (MRSomeJob()), that meant the same thing as passing in
an empty argument list (MRSomeJob(args=[])). It now means to read args
directly from sys.argv[1:].

In practice, it’s rare to see MRJob subclass intialized this way outside
of test cases. Running a MRJob script directly, or initializing it
with an argument list works this same as in previous versions.

mrjob/examples/ love

The mrjob.examples package [https://github.com/Yelp/mrjob/tree/master/mrjob/examples] has been updated. Some examples that were
difficult to test or maintain were removed, and the remainder were tested
and fixed if necessary.

mrjob.examples.mr_text_classifier no longer needs you to encode
documents in JSON format, and instead operates directly on text files with
names like doc_id-cat_id_1-not_cat_id_2-etc.txt. Try it out:

python -m mrjob.examples.mr_text_classifier docs-to-classify/*.txt

miscellanous tweaks

The mrjob audit-emr-usage subcommand no longer attempts to read
cluster pool names from clusters launched by mrjob v0.5.x.

Method arguments in filesystem classes (in mrjob.fs) are now consistenly
named. This probably won’t matter in practice, as
runner.fs <mrjob.runner.MRJobRunner.fs> is always a
CompositeFilesystem anyhow.

removed deprecated code

Check your deprecation warnings! Everything marked deprecated in
mrjob v0.6.x has been removed.

The following runner config options no longer exist: emr_api_params,
interpreter, max_hours_idle, mins_to_end_of_hour, steps_interpreter,
steps_python_bin, visible_to_all_users.

The following singular switches have been removed in favor of their
plural alternative (e.g. --archives): --archive,
--dir, --file, --hadoop-arg,
--libjar, --py-file, --spark-arg.

The --steps switch is gone. This means --help --steps
no longer works; use --help -v to see help for --mapper,
etc.

Support for simulating optparse [http://docs.python.org/2/library/optparse.html#module-optparse] has been removed from
MRJob. This includes add_file_option(),
add_passthrough_option(), configure_options(), load_options(),
pass_through_option(), self.args, self.OPTION_CLASS.

mrjob.job.MRJobRunner.stream_output() and
mrjob.job.MRJob.parse_output_line() have been removed.

The constructor for MRJobRunner no longer
has a file_upload_args keyword argument.

parse_and_save_options(), read_file(), and read_input() have
all been removed from mrjob.util.

CompositeFilesystem no longer takes filesystems
as arguments to its constructor; use
add_fs(). The useless
local_tmp_dir option to the GCSFilesystem
constructor and the chunk_size arg to its
put() method have been removed.

0.6.12

Updated the Dataproc’s runner default image_version to 1.3,
as the old default, 1.0 no longer works.

The local and inline runners can now handle file:// URIs as input paths
and as files/archives uploaded to the working directory. The local filesystem
(available as runner.fs from all runners) can now handle file://
URIs as well.

0.6.11

Adds support for parsing Spark logs and driver output to determine why a job
failed. This works with with the local, Hadoop, EMR, and Spark runners.

The Spark runner no longer needs pyspark in the $PYTHONPATH to
launch scripts with spark-submit (it still needs pyspark
to use the Spark harness).

On Python 3.7, you can now intermix positional arguments to
MRJob with switches, similar to how you could back when
mrjob used optparse [http://docs.python.org/2/library/optparse.html#module-optparse]. For example:
mr_your_script.py file1 -v file2.

On EMR, the default image_version (AMI) is now 5.27.0.

Restored m4.large as the default instance type pre-5.13.0 AMIs, as they
do not support m5.xlarge. (m5.xlarge is still the default for AMI
5.13.0 and later.)

mrjob can now retry on transient AWS API errors (e.g. throttling) or network
errors when making API calls that use pagination (e.g. listing clusters).

The emr_configurations opt now supports the !clear tag
rather than crashing. You may also override individual configs by setting
a config with the same Classification.

This version restores official support for Python 3.4, as it’s the version
of Python 3 installed on EMR AMIs prior to 5.20.0. In order to make this work,
mrjob drops support for Google Cloud services in Python 3.4, as the recent
Google libraries appear to need a later Python version.

0.6.10

Adds official support for PyPy (that is any version of it compatible with
Python 2.7/3.5+). If you launch a job in PyPy python_bin will
automatically default to pypy or pypy3 as appropriate.

Note that mrjob does not auto-install PyPy for you on EMR (Amazon Linux does
not provide a PyPy package). Installing PyPy yourself at bootstrap time is
fairly straightforward, see Installing PyPy.

The Spark harness can now be used on EMR, allowing you to run “classic”
MRJobs in Spark, which is often faster. Essentially, you launch jobs in
the Spark runner with --spark-submit-bin 'mrjob spark-submit -r emr';
see Running classic MRJobs on Spark on EMR for details.

The Spark runner can now optionally disable internal protocols when running
“classic” MRJobs, eliminating the (usually) unnecessary effort of encoding data
structures into JSON or other string representations and then decoding
them. See skip_internal_protocol for details.

The EMR runner’s default instance type is now m5.xlarge, which works
with newer reasons and should make it easier to run Spark jobs. The EMR runner
also now logs the DNS of the master node as soon as it is available, to make
it easier to SSH in.

Finally, mrjob gives a much clearer error message if you attempt to read a YAML
mrjob.conf file without PyYAML installed.

0.6.9

Drops support for Python 3.4.

Fixes a bug introduced in 0.6.8 that could break archives or
directories uploaded into Hadoop or Spark if the name of the unpacked archive
didn’t have an archive extension (e.g. .tar.gz).

The Spark runner can now optionally emulate Hadoop’s
mapreduce.map.input.file configuration property when running the mapper of
the first step of a streaming job if you enable
emulate_map_input_file. This means that jobs that depend on
jobconf_from_env('mapreduce.map.input.file')
will still work.

The Spark runner also now uses the correct argument names when emulating
increment_counter(), and logs a warning if
spark_tmp_dir doesn’t match spark_master.

mrjob spark-submit can now pass switches to the
Spark script/JAR without explicitly separating them out with --.

The local and inline runners now more correctly emulate the
mapreduce.map.input.file config property by making it a file:// URL.

Deprecated methods add_file_option() and
add_passthrough_option() can now take a type
(e.g. int) as their type argument, to better emulate optparse [http://docs.python.org/2/library/optparse.html#module-optparse].

0.6.8

Nearly full support for Spark

This release adds nearly full support for Spark, including mrjob-specific
features like setup scripts and
passthrough options. See
Why use mrjob with Spark? for everything mrjob can do with Spark.

This release adds a SparkMRJobRunner
(-r spark), which
works with any Spark installation, does not require Hadoop, and can access any
filesystem supported by both mrjob and Spark (HDFS, S3, GCS). The Spark runner
is now the default for mrjob spark-submit.

What’s not supported? mrjob does not yet support Spark on Google Cloud
Dataproc. The Spark runner does not yet parse logs to determine probable
cause of failure when your job fails (though it does give you the
Spark driver output).

Spark Hadoop Streaming emulation

Not only does the Spark runner not need Hadoop to run Spark jobs, it doesn’t
need Hadoop to run most Hadoop Streaming jobs, as it knows how to run them
directly on Spark. This means if you want to migrate to a
non-Hadoop Spark cluster, you can take all your old
MRJobs with you. See Running “classic” MRJobs on Spark
for details.

The “experimental harness script” mentioned in 0.6.7 is now fully
integrated into the Spark runner and is no longer supported as a separate
feature.

Local runner support for Spark

The local and inline runner can now run Spark scripts locally for
testing, analogous to the way they’ve supported Hadoop streaming scripts
(except that they do require a local Spark installation). See
Other ways to run on Spark.

Other Spark improvements

MRJobs are now Spark-serializable without calling
sandbox() (there used to be a problematic reference
to sys.stdin). This means you can always pass job methods to
rdd.flatMap() etc.

setup scripts are no longer a YARN-specific feature, working
on all Spark masters (except
local[*], which doesn’t give executors a separate working directory).

Likewise, you can now specify a different name for files in the job’s
working directory (e.g. --file foo#bar) on all Spark masters.

Note

Uploading archives and directories still only works on YARN
for now; Spark considers --archives a YARN-specific feature.

When running on a local Spark cluster, uses file://... rather than just
the path of the file when necessary (e.g. with --py-files).

cat_output() now ignores files and
subdirectories starting with "." (used to only be "_"). This allows
mrjob to ignore Spark’s checksum files (e.g. .part-00000.crc), and also
brings mrjob in closer compliance to the way Hadoop input formats
read directories.

spark.yarn.appMasterEnv.* config properties are only set if you’re
actually running on YARN.

The values of spark_master and spark_deploy_mode can
no longer be overridden with configuration properties
(-D spark.master=...). While not exactly a “feature,” this means that mrjob
always knows what Spark platform it’s running on.

Filesystems

Every runner has an fs attribute that gives access to all the filesystems
that runner supports.

Added a put() method to all filesystems,
which allows uploading a single file (it used to be that each runner had
custom logic for uploads).

It also used to be that if you wanted to create a bucket on S3 or GCS, you had
to call create_bucket(...) explicitly. Now
mkdir() will automatically create buckets
as needed.

If you still need to access methods specific to a filesystem, you should do so
through fs.<name>, where <name> is the (lowercase) name of the
storage service. For example the Spark runner’s filesystem offers both
runner.fs.s3.create_bucket() and runner.fs.gcs.create_bucket().
The old style of implicitly passing through FS-specific methods
(runner.fs.create_bucket(...)) is deprecated and going away in v0.7.0.

GCSFilesystem‘s constructor had a useless
local_tmp_dir argument, which is now deprecated and going away in v0.7.0.

EMR

Fixed a bad bug introduced in 0.6.7 that could prevent mrjob from
running on EMR with a non-default temp bucket.

You can now set sub-parameters with extra_cluster_params. For
example, you can now do:

--extra-cluster-param Instances.EmrManagedMasterSecurityGroup=...

without clobbering the zone or instance group/fleet configs
specified in Instances.

Running your job with --subnet '' now un-sets a subnet
specified in your config file (used to be ignored).

If you are using cluster pooling with retries (pool_wait_minutes),
mrjob now retains information about clusters that is immutable
(e.g. AMI version), saving API calls.

Dependency upgrades

Bumped the required versions of several Google Cloud Python libraries to be
more compatible with current versions of their sub-dependencies
(Google libraries pin a fairly narrow range of dependencies). mrjob
now requires:

	google-cloud-dataproc at least 0.3.0,

	google-cloud-logging at least 1.9.0, and

	google-cloud-storage at least 1.13.1.

Also dropped support for PyYAML 3.08; now we require at least
PyYAML 3.10 (which came out in 2011).

Note

We are aware that the Google libraries’ extensive dependencies can be a
nuisance for mrjob users who don’t use Google Cloud. Our tentative
plan is to make dependencies specific to a third-party service (including
google-cloud-* and boto3) optional starting in v0.7.0.

Other bugfixes

Fixed a long-standing bug that would cause the Hadoop runner to hang or raise
cryptic errors if hadoop_bin or spark_submit_bin
is not executable.

Support files for mrjob.examples (e.g. stop_words.txt for
MRMostUsedWord) are now
installed along with mrjob.

Setting a *_bin option to an empty value (e.g. --hadoop-bin) now
always instructs mrjob to use the default, rather than disabling core
features or creating cryptic errors. This affects gcloud_bin,
hadoop_bin, sh_bin, and ssh_bin;
the various *python_bin options already worked this way.

0.6.7

setup commands now work on Spark (at least on YARN).

Added the mrjob spark-submit subcommand, which works
as a drop-in replacement for spark-submit but with mrjob runners
(e.g EMR) and mrjob features (e.g. setup, cmdenv).

Fixed a bug that was causing idle timeout scripts to silently fail
on 2.x EMR AMIs.

Fixed a bug that broke create_bucket()
on us-east-1, preventing new mrjob installations from launching on EMR
in that region.

Fixed an ImportError from attempting to import
os.SIGKILL on Windows.

The default instance type on EMR is now m4.large.

EMR’s cluster pooling now knows the CPU and memory capacity of c5 and
m5 instances, allowing it to join “better” clusters.

Added the plural form of several switches (separate multiple values with
commas):

	--applications

	--archives

	--dirs

	--files

	--libjars

	--py-files

Except for --application, the singular version of these switches
(--archive, --dir, --file, --libjar, --py-file) is
deprecated for consistency with Hadoop and Spark

sh_bin is now fully qualified by default (/bin/sh -ex,
not sh -ex). sh_bin may no longer be empty, and a warning
is issued if it has more than one argument, to properly support shell script
shebangs (e.g. #!/bin/sh -ex) on Linux.

Runners no longer call MRJobs with --steps;
instead the job passes its step description to the runner on instantiation.
--steps and steps_python_bin are now deprecated.

The Hadoop and EMR runner can now set SPARK_PYTHON and
SPARK_DRIVER_PYTHON to different values if need be (e.g. to
match task_python_bin, or to support setup
scripts in client mode).

The inline runner no longer attempts to run command substeps.

The inline and local runner no longer silently pretend to run
non-streaming steps.

The Hadoop runner no longer has the bootstrap_spark option,
which did nothing.

interpreter and steps_interpreter are deprecated,
in anticipation in removing support for writing MRJobs in other
programming languages.

Runners now issue a warning if they receive options that belong to other
runners (e.g. passing image_version to the Hadoop runner).

mrjob create-cluster now supports --emr-action-on-failure.

Updated deprecate escape sequences in mrjob code that would break
on Python 3.8.

--help message for mrjob subcommands now correctly includes the
subcommand in usage.

mrjob no longer raises AssertionError, instead raising
ValueError.

Added an experimental harness script (in mrjob/spark) to run basic
MRJobs on Spark, potentially without Hadoop:

spark-submit mrjob_spark_harness.py module.of.YourMRJob input_path output_dir

Added map_pairs(),
reduce_pairs(),
and combine_pairs() methods to
MRJob, to enable the Spark harness script.

0.6.6

Fixes a longstanding bug where boolean jobconf values
were passed to Hadoop in Python format (True instead of true). You
can now do safely do something like this:

runners:
 emr:
 jobconf:
 mapreduce.output.fileoutputformat.compress: true

whereas in prior versions of mrjob, you had to use "true" in quotes.

Added -D as a synonym for --jobconf, to match Hadoop.

On EMR, if you have SSH set up (see Configuring SSH credentials)
mrjob can fetch your history log directly from HDFS, allowing it
to more quickly diagnose why your job failed.

Added a --local-tmp-dir switch. If you set local_tmp_dir
to empty string, mrjob will use the system default.

You can now pass multiple arguments to Hadoop --hadoop-args
(for example, --hadoop-args='-fs hdfs://namenode:port'), rather
than having to use --hadoop-arg one argument at time. --hadoop-arg
is now deprecated.

Similarly, you can use --spark-args to pass arguments to
spark-submit in place of the now-deprecated --spark-arg.

mrjob no longer automatically passes generic arguments (-D and
-libjars) to JarSteps, because this confuses
some JARs. If you want mrjob to pass generic arguments to a JAR, add
GENERIC_ARGS to your
JarStep‘s args keyword argument, like you would
with INPUT and OUTPUT.

The Hadoop runner now has a spark_deploy_mode option.

Fixed the usage: usage: typo in --help messages.

mrjob.job.MRJob.add_file_arg()
can now take an explicit type=str (used to cause an error).

The deprecated optparse emulation methods
add_file_option() and
add_passthrough_option()
now support type='str' (used to only accept type='string').

Fixed a permissions error that was breaking inline and local mode
on some versions of Windows.

0.6.5

This release fixes an issue with self-termination of idle clusters on EMR
(see max_mins_idle) where the master node sometimes
simply ignored sudo shutdown -h now. The idle self termination script
now logs to bootstrap-actions/mrjob-idle-termination.log.

Note

If you are using Cluster Pooling, it’s highly recommended you upgrade
to this version to fix the self-termination issue.

You can now turn off log parsing (on all runners) by setting
read_logs to false. This can speed up cases where you don’t care
why a job failed (e.g. integration tests) or where you’d rather use the
diagnose tool after the fact.

You may specify custom AMIs with the image_id option. To find
Amazon Linux AMIs compatible with EMR that you can use as a base for your
custom image, use describe_base_emr_images().

The default AMI on EMR is now 5.16.0.

New EMR clusters launched by mrjob will be automatically tagged with
__mrjob_label (filename of your mrjob script) and __mrjob_owner
(your username), to make it easier to understand your mrjob usage in
CloudWatch [https://aws.amazon.com/cloudwatch/] etc. You can change the
value of these tags with the label and owner options.

You may now set the root EBS volume size for EMR clusters directly with
ebs_root_volume_gb (you used to have to use
instance_groups or instance_fleets).

API clients returned by EMRJobRunner now retry on
SSL timeouts. EMR clients returned by
mrjob.emr.EMRJobRunner.make_emr_client() won’t retry faster than
check_cluster_every, to prevent throttling.

Cluster pooling recovery (relaunching a job when your pooled cluster
self-terminates) now works correctly on single-node clusters.

0.6.4

This release makes it easy to attach static files to your
MRJob
with the FILES, DIRS,
and ARCHIVES attributes.

In most cases, you no longer need setup scripts to access other
python modules or packages from your job because you can use
DIRS instead. For more details, see
Using other python modules and packages.

For completeness, also
added files(),
dirs(), and archives()
methods.

terminate-idle-clusters now skips termination-protected idle clusters,
rather than crashing (this is fixed in 0.5.12, but not
previous 0.6.x versions).

Python 3.3 is no longer supported.

mrjob now requires google-cloud-dataproc 0.2.0+ (this
library used to be vendored).

0.6.3

Read arbitrary file formats

You can now pass entire files in any format to your mapper by defining
mapper_raw(). See Passing entire files to the mapper for an example.

Google Cloud Datatproc parity

mrjob now offers feature parity between Google Cloud Dataproc
and Amazon Elastic MapReduce. Support for Spark
and libjars will be added in a future release.
(There is no plan to introduce Cluster Pooling with Dataproc.)

Specifically, DataprocJobRunner now supports:

	fetching and parsing counters

	parsing logs for probable cause of failure

	job progress messages (% complete)

	Jar steps

	these config options:
	cloud_part_size_mb (chunked uploading)

	core_instance_config, master_instance_config,
task_instance_config

	hadoop_streaming_jar

	network/subnet (running in a VPC)

	service_account (custom IAM account)

	service_account_scopes (fine-grained permissions)

	ssh_tunnel/ssh_tunnel_is_open (resource manager)

Improvements to existing Dataproc features:

	bootstrap scripts run in a temp dir, rather than /

	uses Dataproc’s built-in auto-termination feature, rather than a script

	GCS filesystem:
	cat() streams data rather than dumping
to a temp file

	exists() no longer swallows all
exceptions

To get started, read Getting started with Google Cloud.

Other changes

mrjob no longer streams your job output to the command line if you specify
output_dir. You can control this with the --cat-output
and --no-cat-output switches (--no-output is deprecated).

cloud_upload_part_size has been renamed to cloud_part_size_mb
(the old name will work until v0.7.0).

mrjob can now recognize “not a valid JAR” errors from Hadoop and suggest
them as probable cause of job failure.

mrjob no longer depends on google-cloud (which implies several other
Google libraries). Its current Google library dependencies are
google-cloud-logging 1.5.0+ and google-cloud-storage 1.9.0+.
Future versions of mrjob will depend on google-cloud-dataproc 0.11.0+
(currently included with mrjob because it hasn’t yet been released).

RetryWrapper now sets __name__ when wrapping
methods, making for easier debugging.

0.6.2

mrjob is now orders of magnitude quicker at parsing logs, making it practical
to diagnose rare errors from very large jobs. However, on some AMIs, it can no
longer parse errors without waiting for logs to transfer to S3 (this may be
fixed in a future version).

To run jobs on Google Cloud Dataproc, mrjob no longer requires you to install
the gcloud util (though if
you do have it installed, mrjob can read credentials from its configs). For
details, see Dataproc Quickstart.

mrjob no longer requires you to select a Dataproc zone prior
to running jobs. Auto zone placement (just set region and let
Dataproc pick a zone) is now enabled, with the default being auto zone
placement in us-west1. mrjob no longer reads zone and region from
gcloud‘s compute engine configs.

mrjob’s Dataproc code has been ported from the google-python-api-client
library (which is in maintenance mode) to google-cloud-sdk, resulting in
some small changes to the GCS filesystem API. See CHANGES.txt [https://github.com/Yelp/mrjob/blob/master/CHANGES.txt] for details.

Local mode now has a num_cores option that allow you to control
how tasks it handles simultaneously.

0.6.1

Added the diagnose tool (run
mrjob diagnose j-CLUSTERID), which determines why a previously run
job failed.

Fixed a serious bug that made mrjob unable to properly parse error logs
in some cases.

Added the get_job_steps() method to
EMRJobRunner.

0.6.0

Dropped Python 2.6

mrjob now supports Python 2.7 and Python 3.3+. (Some versions of PyPy
also work but are not officially supported.)

boto3, not boto

mrjob now uses boto3 rather than boto to talk to AWS.
This makes it much simpler to pass user-defined data structures directly
to the API, enabling a number of features.

At least version 1.4.6 of boto3 is required to run jobs on EMR.

It is now possible to fully configure instances (including EBS volumes).
See instance_groups for an example.

mrjob also now supports Instance Fleets, which may be fully configured
(including EBS volumes) through the instance_fleets option.

Methods that took or returned boto objects (for example,
make_emr_conn()) have been completely removed as there as no way
to make a deprecated shim for them without keeping boto as a
dependency. See EMRJobRunner and
S3Filesystem for new method names.

Note that boto3 reads temporary credentials from
$AWS_SESSION_TOKEN,
not $AWS_SECURITY_TOKEN as in boto (see
aws_session_token for details).

argparse, not optparse

mrjob now uses argparse [http://docs.python.org/2/library/argparse.html#module-argparse] to parse options, rather than
optparse [http://docs.python.org/2/library/optparse.html#module-optparse], which has been deprecated since Python 2.7.

argparse [http://docs.python.org/2/library/argparse.html#module-argparse] has slightly different option-parsing logic. A couple
of things you should be aware of:

	everything that starts with - is assumed to be a switch.
--hadoop-arg=-verbose works, but --hadoop-arg -verbose does not.

	positional arguments may not be split.
mr_wc.py CHANGES.txt LICENSE.txt -r local will work, but
mr_wc.py CHANGES.txt -r local LICENSE.txt will not.

Passthrough options, file options, etc. are now handled with
add_file_arg(),
add_passthru_arg(),
configure_args(),
load_args(), and
pass_arg_through(). The old
methods with “option” in their name are deprecated but still work.

As part of this refactor, OptionStore and its subclasses have been removed;
options are now handled by runners directly.

Chunks, not lines

mrjob no longer assumes that job output will be line-based. If you
run your job programmatically, you should
read your job output with cat_output(),
which yields bytestrings which don’t necessarily correspond to lines, and run
these through parse_output(), which will convert
them into key/value pairs.

runner.fs.cat() also now yields arbitrary bytestrings, not lines. When it
yields from multiple files, it will yield an empty bytestring (b'')
between the chunks from each file.

read_file() and read_input() are
now deprecated because they are line-based. Try
decompress(), to_chunks(), and
to_lines().

Better local/inline mode

The sim runners (inline and local mode) have been completely
rewritten, making it possible to fix a number of outstanding issues.

Local mode now runs one mapper/reducer per CPU, using
multiprocesssing, for faster results.

We only sort by reducer key (not the full line) unless
SORT_VALUES is set, exposing bad assumptions sooner.

The step_output_dir option is now supported, making it easier to
debug issues in intermediate steps.

Files in tasks’ (e.g. mappers’) working directories are marked user-executable,
to better imitate Hadoop Distributed Cache. When possible, we also symlink
to a copy of each file/archive in the “cache,” rather than copying them.

If os.symlink() [http://docs.python.org/2/library/os.html#os.symlink] raises an exception, we fall back to copying (this
can be an issue in Python 3 on Windows).

Tasks are run more like they are in Hadoop; input is passed through stdin,
rather than as script arguments. mrjob.cat is no longer executable
because local mode no longer needs it.

Cloud runner improvements

Much of the common code for the “cloud” runners (Dataproc and EMR) has been
merged, so that new features can be rolled out in parallel.

The bootstrap option (for both Dataproc and EMR) can now take
archives and directories as well as files, like the setup
option has since version 0.5.8.

The extra_cluster_params option allows you to pass arbitrary
JSON to the API at cluster create time (in Dataproc and EMR). The old
emr_api_params option is deprecated and disabled.

max_hours_idle has been replaced with max_mins_idle
(the old option is deprecated but still works). The default is 10 minutes.
Due to a bug, smaller numbers of minutes might cause the cluster to terminate
before the job runs.

It is no longer possible for mrjob to launch a cluster that sits idle
indefinitely (except by setting max_mins_idle to an unreasonably
high value). It is still a good idea to run report-long-jobs because
mrjob can’t tell if a running job is doing useful work or has stalled.

EMR now bills by the second, not the hour

Elastic MapReduce recently stopped billing by the full hour, and now
bills by the second. This means that Cluster Pooling is no longer
a cost-saving strategy, though developers might find it handy to reduce
wait times when testing.

The mins_to_end_of_hour option no longer makes sense, and
has been deprecated and disabled.

audit-emr-usage has been updated to use billing by the second
when approximating time billed and waste.

Note

Pooling was enabled by default for some development versions of v0.6.0,
prior to the billing change. This did not make it into the release; you
must still explicitly turn on
cluster pooling.

Other EMR changes

The default AMI is now 5.8.0. Note that this means you get Spark 2 by default.

Regions are now case-sensitive, and the EU alias for eu-west-1 no
longer works.

Pooling no longer adds dummy arguments to the master bootstrap script, instead
setting the __mrjob_pool_hash and __mrjob_pool_name tags on the
cluster.

mrjob automatically adds the __mrjob_version tag to clusters it creates.

Jobs will not add tags to clusters they join rather than create.

enable_emr_debugging now works on AMI 4.x and later.

AMI 2.4.2 and earlier are no longer supported (no Python 2.7). There is
no longer any special logic for the “latest” AMI alias (which the API no
longer supports).

The SSH filesystem no longer dumps file contents to memory.

Pooling will only join a cluster with enough running instances to meet its
specifications; requested instances no longer count.

Pooling is now aware of EBS (disk) setup.

Pooling won’t join a cluster that has extra instance types that don’t have
enough memory or disk space to run your job.

Errors in bootstrapping scripts are no longer dumped as JSON.

visible_to_all_users is deprecated.

Massive purge of deprecated code

About a hundred functions, methods, options, and more that were deprecated in
v0.5.x have been removed. See CHANGES.txt [https://github.com/Yelp/mrjob/blob/master/CHANGES.txt] for details.

0.5.12

This release came out after v0.6.3. It was mostly a backport from v0.6.x.

Python 2.6 and 3.3 are no longer supported.

mrjob.parse.parse_s3_uri() handles s3a:// URIs.

terminate-idle-clusters now skips termination-protected idle clusters,
rather than crashing.

Since Amazon no longer bills by the full hour [https://aws.amazon.com/about-aws/whats-new/2017/10/amazon-emr-now-supports-per-second-billing/],
the mins_to_end_of_hour option now defaults to 60, effectively
disabling it.

When mrjob passes an environment dictionary to subprocesses, it ensures
that the keys and values are always str [http://docs.python.org/2/library/functions.html#str]s (this mostly affects
Python 2 on Windows).

0.5.11

The report-long-jobs utility can now ignore certain clusters based on
EMR tags.

This version deals more gracefully with clusters that use instance fleets,
preventing crashes that may occur in some rare edge cases.

0.5.10

Fixed an issue where bootstrapping mrjob on Dataproc or EMR could stall if
mrjob was already installed.

The aws_security_token option has been renamed to
aws_session_token. If you want to set it via environment
variable, you still have to use $AWS_SECURITY_TOKEN because that’s
what boto uses.

Added protocol support for rapidjson; see
RapidJSONProtocol and
RapidJSONValueProtocol. If available,
rapidjson will be used as the default JSON implementation if
ujson is not installed.

The master bootstrap script on EMR and Dataproc now has the correct
file extension (.sh, not .py).

0.5.9

Fixed a bug that prevented setup scripts from working on EMR AMIs
5.2.0 and later. Our workaround should be completely transparent unless
you use a custom shell binary; see sh_bin for details.

The EMR runner now correctly re-starts the SSH tunnel to the job
tracker/resource manager when a cluster it tries to run a job on
auto-terminates. It also no longer requires a working SSH tunnel to
fetch job progress (you still a working SSH; see
ec2_key_pair_file).

The emr_applications option has been renamed to applications.

The terminate-idle-clusters utility is now slightly more robust in
cases where your S3 temp directory is an different region from your clusters.

Finally, there a couple of changes that probably only matter if you’re trying
to wrap your Hadoop tasks (mappers, reducers, etc.) in docker:

	You can set just the python binary for tasks with
task_python_bin. This allows you to use a wrapper script in
place of Python without perturbing setup scripts.

	Local mode now no longer relies on an absolute path to access the
mrjob.cat utility it uses to handle compressed input files;
copying the job’s working directory into Docker is enough.

0.5.8

You can now pass directories to jobs, either directly with the
upload_dirs option, or through setup commands.
For example:

--setup 'export PYTHONPATH=$PYTHONPATH:your-src-code/#'

mrjob will automatically tarball these directories and pass them to Hadoop as
archives.

For multi-step jobs, you can now specify where inter-step output goes
with step_output_dir (--step-output-dir), which can be useful
for debugging.

All job step types now take the jobconf keyword
argument to set Hadoop properties for that step.

Jobs’ --help printout is now better-organized and less verbose.

Made several fixes to pre-filters (commands that pipe into streaming steps):

	you can once again add pre-filters to a single step job by re-defining
mapper_pre_filter(),
combiner_pre_filter(), and/or
reducer_pre_filter()

	local mode now ignores non-zero return codes from pre-filters (this
matters for BSD grep)

	local mode can now run pre-filters on compressed input files

mrjob now respects sh_bin when it needs to wrap a command
in sh before passing it to Hadoop (e.g. to support pipes)

On EMR, mrjob now fetches logs from task nodes when determining probable cause
of error, not just core nodes (the ones that run tasks and host HDFS).

Several unused functions in mrjob.util are now deprecated:

	args_for_opt_dest_subset()

	bash_wrap()

	populate_option_groups_with_options()

	scrape_options_and_index_by_dest()

	tar_and_gzip()

bunzip2_stream() and gunzip_stream()
have been moved from mrjob.util to mrjob.cat.

SSHFilesystem.ssh_slave_hosts() has been deprecated.

Option group attributes in MRJobs have been deprecated,
as has the get_all_option_groups() method.

0.5.7

Spark and related changes

mrjob now supports running Spark jobs on your own Hadoop cluster or
Elastic MapReduce. mrjob provides significant benefits over Spark’s
built-in Python support; see Why use mrjob with Spark? for details.

Added the py_files option, to put .zip or .egg files in your
job’s PYTHONPATH. This is based on a Spark feature, but it works with
streaming jobs as well. mrjob is now bootstrapped (see
bootstrap_mrjob) as a .zip file rather than a tarball.
If for some reason, the bootstrapped mrjob library won’t compile, you’ll
get much cleaner error messages.

The default AMI version on EMR (see image_version) has been bumped
from 3.11.0 to 4.8.2, as 3.11.0’s Spark support is spotty.

On EMR, mrjob now defaults to the cheapest instance type that will work (see
instance_type). In most cases, this is m1.medium, but it
needs to be m1.large for Spark worker nodes.

Cluster pooling

mrjob can now add up to 1,000 steps on
pooled clusters on EMR (except on very old AMIs).
mrjob now prints debug messages explaining why your job matched
a particular pooled cluster when running in verbose mode (the -v option).
Fixed a bug that caused pooling to fail when there was no need for a master
bootstrap script (e.g. when running with --no-bootstrap-mrjob).

Other improvements

Log interpretation is much more efficient at determining a job’s probable
cause of failure (this works with Spark as well).

When running custom JARs (see JarStep) mrjob now
repects libjars and jobconf.

The hadoop_streaming_jar option now supports environment variables
and ~.

The terminate-idle-clusters tool now works with all step types,
including Spark. (It’s still recommended that you rely on the
max_hours_idle option rather than this tool.)

mrjob now works in Anaconda3 Jupyter Notebook.

Bugfixes

Added several missing command-line switches, including
--no-bootstrap-python on Dataproc. Made a major refactor that should
prevent these kinds of issues in the future.

Fixed a bug that caused mrjob to crash when the ssh binary (see
ssh_bin) was missing or not executable.

Fixed a bug that erroneously reported failed or just-started jobs as 100%
complete.

Fixed a bug where timestamps were erroneously recognized as URIs.
mrjob now only recognizes strings containing
:// as URIs (see is_uri()).

Deprecation

The following are deprecated and will be removed in v0.6.0:

	JarStep.``INPUT``; use mrjob.step.INPUT
instead

	JarStep.``OUTPUT``; use mrjob.step.OUTPUT
instead

	non-strict protocols (see strict_protocols)

	the python_archives option (try
this instead)

	is_windows_path()

	parse_key_value_list()

	parse_port_range_list()

	scrape_options_into_new_groups()

0.5.6

Fixed a critical bug that caused Dataproc runner to always crash when
determining Hadoop version.

Log interpretation now prioritizes task errors (e.g. a traceback from
your Python script) as probable cause of failure, even if they aren’t the most
recent error. Log interpretation will now continue to download and parse
task logs until it finds a non-empty stderr log.

Log interpretation also strips the “subprocess failed” Java stack trace
that appears in task stderr logs from Hadoop 1.

0.5.5

Functionally equivalent to 0.5.4, except that it restores
the deprecated ami_version option as an alias for image_version,
making it easier to upgrade from earlier versions of mrjob.

Also slightly improves Cluster Pooling on EMR with
updated information on memory and CPU power of various EC2 instance types, and
by treating application names (e.g. “Spark”) as case-insensitive.

0.5.4

Pooling and idle cluster self-termination

Warning

This release accidentally removed the ami_version option instead
of merely deprecating it. If you are upgrading from an earlier version
of mrjob, use version 0.5.5 or later.

This release resolves a long-standing EMR API race condition that made it
difficult to use Cluster Pooling and idle cluster
self-termination (see max_hours_idle) together. Now if your
pooled job unknowingly runs on a cluster that was in the process of shutting
down, it will detect that and re-launch the job on a different cluster.

This means pretty much everyone running jobs on EMR should now enable
pooling, with a configuration like this:

runners:
 emr:
 max_hours_idle: 1
 pool_clusters: true

You may also run the terminate-idle-clusters script periodically, but
(barring any bugs) this shouldn’t be necessary.

Generic EMR option names

Many options to the EMR runner have been
made more generic, to make it easier to share code with the
Dataproc runner
(in most cases, the new names are also shorter and easier to remember):

	old option name
	new option name

	ami_version
	image_version

	aws_availablity_zone
	zone

	aws_region
	region

	check_emr_status_every
	check_cluster_every

	ec2_core_instance_bid_price
	core_instance_bid_price

	ec2_core_instance_type
	core_instance_type

	ec2_instance_type
	instance_type

	ec2_master_instance_bid_price
	master_instance_bid_price

	ec2_master_instance_type
	master_instance_type

	ec2_slave_instance_type
	core_instance_type

	ec2_task_instance_bid_price
	task_instance_bid_price

	ec2_task_instance_type
	task_instance_type

	emr_tags
	tags

	num_ec2_core_instances
	num_core_instances

	num_ec2_task_instances
	num_task_instances

	s3_log_uri
	cloud_log_dir

	s3_sync_wait_time
	cloud_fs_sync_secs

	s3_tmp_dir
	cloud_tmp_dir

	s3_upload_part_size
	cloud_upload_part_size

The old option names and command-line switches are now deprecated but will
continue to work until v0.6.0. (Exception: ami_version was accidentally
removed; if you need it, use 0.5.5 or later.)

num_ec2_instances has simply been deprecated (it’s just
num_core_instances plus one).

hadoop_streaming_jar_on_emr has also been deprecated; in its
place, you can now pass a file:// URI to hadoop_streaming_jar
to reference a path on the master node.

Log interpretation

Log interpretation (counters and probable cause of job failure) on Hadoop is
more robust, handing a wider variety of log4j formats and recovering more
gracefully from permissions errors. This includes fixing a crash that
could happen on Python 3 when attempting to read data from HDFS.

Log interpretation used to be partially broken on EMR AMI 4.3.0 and later
due to a permissions issue; this is now fixed.

pass_through_option()

You can now pass through existing command-line switches to your job;
for example, you can tell a job which runner launched it. See
pass_through_option() for details.

If you don’t do this, self.options.runner will now always be None
in your job (it used to confusingly default to 'inline').

Stop logging credentials

When mrjob is run in verbose mode (the -v option), the values of all
runner options are debug-logged to stderr. This has been the case since
the very early days of mrjob.

Unfortunately, this means that if you set your AWS credentials in
mrjob.conf, they get logged as well, creating a surprising potential
security vulnerability. (This doesn’t happen for AWS credentials set through
environment variables.)

Starting in this version, the values of aws_secret_access_key
and aws_security_token are shown as '...' if they are set,
and all but the last four characters of aws_access_key_id are
blanked out as well (e.g. '...YNDR').

Other improvements and bugfixes

The ssh tunnel to the resource manager on EMR (see ssh_tunnel)
now connects to its correct internal IP; this resolves a firewall issue that
existed on some VPC setups.

Uploaded files will no longer be given names starting with _ or .,
since Hadoop’s input processing treats these files as “hidden”.

The EMR idle cluster self-termination script (see max_hours_idle)
now only runs on the master node.

The audit-emr-usage command-line tool should no longer constantly
trigger throttling warnings.

bootstrap_python no longer bothers trying to install Python 3
on EMR AMI 4.6.0 and later, since it is already installed.

The --ssh-bind-ports command-line switch was broken (starting in
0.4.5!), and is now fixed.

0.5.3

This release adds support for custom libjars (such as
nicknack [http://empiricalresults.github.io/nicknack/]), allowing easy
access to custom input and output formats. This works on Hadoop and EMR
(including on a cluster that’s already running).

In addition, jobs can specify needed libjars by setting the
LIBJARS attribute or overriding the
libjars() method. For examples, see
Input and output formats.

The Hadoop runner now tries even harder to find your log files without
needing additional configuration (see hadoop_log_dirs).

The EMR runner now supports Amazon VPC subnets (see subnet), and,
on 4.x AMIs, Application Configurations (see emr_configurations).

If your EMR cluster fails during bootstrapping, mrjob can now determine
the probable cause of failure.

There are also some minor improvements to SSH tunneling and a handful of
small bugfixes; see CHANGES.txt [https://github.com/Yelp/mrjob/blob/master/CHANGES.txt] for details.

0.5.2

This release adds basic support for Google Cloud Dataproc [https://cloud.google.com/dataproc/overview] which is Google’s Hadoop service, roughly analogous to EMR. See Dataproc Quickstart. Some features are not yet implemented:

	fetching counters

	finding probable cause of errors

	running Java JARs as steps

Added the emr_applications option, which helps you configure 4.x AMIs.

Fixed an EMR bug (introduced in v0.5.0) where we were waiting for steps
to complete in the wrong order (in a multi-step job, we wouldn’t register
that the first step had finished until the last one had).

Fixed a bug in SSH tunneling (introduced in v0.5.0) that made connections
to the job tracker/resource manager on EMR time out when running on a 2.x
AMI inside a VPC (Virtual Private Cluster).

Fixed a bug (introduced in v0.4.6) that kept mrjob from interpreting ~
(home directory) in includes in mrjob.conf.

It is now again possible to run tool modules deprecated in v0.5.0 directly
(e.g. python -m mrjob.tools.emr.create_job_flow). This is still a
deprecated feature; it’s recommended that you use the appropriate
mrjob subcommand instead (e.g. mrjob create-cluster).

0.5.1

Fixes a bug in the previous relase that broke
SORT_VALUES and any other attempt by the job
to set the partitioner. The --partitioner switch is now deprecated
(the choice of partitioner is part of your job semantics).

Fixes a bug in the previous release that caused strict_protocols
and check_input_paths to be ignored in mrjob.conf. (We
would much prefer you fixed jobs that are using “loose protocols” rather than
setting strict_protocols: false in your config file, but we didn’t break
this on purpose, we promise!)

mrjob terminate-idle-clusters now correctly handles EMR debugging steps
(see enable_emr_debugging) set up by boto 2.40.0.

Fixed a bug that could result in showing a blank probable cause of error
for pre-YARN (Hadoop 1) jobs.

ssh_bind_ports now defaults to a range object (xrange on
Python 2), so that when you run on emr in verbose mode (-r emr -v), debug
logging devotes one line to the value of ssh_bind_ports rather than 840.

0.5.0

Python versions

mrjob now fully supports Python 3.3+ in a way that should be transparent to existing Python 2 users (you don’t have to suddenly start handling unicode instead of str). For more information, see Python 2 vs. Python 3.

If you run a job with Python 3, mrjob will automatically install Python 3 on ElasticMapreduce AMIs (see bootstrap_python).

When you run jobs on EMR in Python 2, mrjob attempts to match your minor version of Python as well (either python2.6 or python2.7); see python_bin for details.

Note

If you’re currently running Python 2.7, and
using yum to install python libraries, you’ll
want to use the Python 2.7 version of the package (e.g.
python27-numpy rather than python-numpy).

The mrjob command is now installed with Python-version-specific aliases (e.g. mrjob-3, mrjob-3.4), in case you install mrjob for multiple versions of Python.

Hadoop

mrjob should now work out-of-the box on almost any Hadoop setup. If hadoop is in your path, or you set any commonly-used $HADOOP_* environment variable, mrjob will find the Hadoop binary, the streaming jar, and your logs, without any help on your part (see hadoop_bin, hadoop_log_dirs, hadoop_streaming_jar).

mrjob has been updated to fully support Hadoop 2 (YARN), including many updates to HadoopFilesystem. Hadoop 1 is still supported, though anything prior to Hadoop 0.20.203 is not (mrjob is actually a few months older than Hadoop 0.20.203, so this used to matter).

3.x and 4.x AMIs

mrjob now fully supports the 3.x and 4.x Elastic MapReduce AMIs, including SSH tunneling to the resource mananager, fetching counters and finding probable cause of job failure.

The default ami_version (see image_version) is now 3.11.0. Our plan is to continue updating this to the lastest (non-broken) 3.x AMI for each 0.5.x release of mrjob.

The default instance_type is now m1.medium (m1.small is too small for the 3.x and 4.x AMIs)

You can specify 4.x AMIs with either the new release_label option, or continue using ami_version; both work.

mrjob continues to support 2.x AMIs. However:

Warning

2.x AMIs are deprecated by AWS, and based on a very old version of Debian (squeeze), which breaks apt-get and exposes you to security holes.

Please, please switch if you haven’t already.

AWS Regions

The new default aws_region (see region) is us-west-2 (Oregon). This both matches the default in the EMR console and, according to Amazon, is carbon neutral [https://aws.amazon.com/about-aws/sustainability/].

An edge case that might affect you: EC2 key pairs (i.e. SSH credentials) are region-specific, so if you’ve set up SSH but not explicitly specified a region, you may get an error saying your key pair is invalid. The fix is simply to create new SSH keys for the us-west-2 (Oregon) region.

S3

	mrjob is much smarter about the way it interacts with S3:

	
	automatically creates temp bucket in the same region as jobs

	connects to S3 buckets on the endpoint matching their region (no more 307 errors)
	EMRJobRunner and S3Filesystem methods no longer take s3_conn args (passing around a single S3 connection no longer makes sense)

	no longer uses the temp bucket’s location to choose where you run your job

	rm() no longer has special logic for *_$folder$ keys

	ls() recurses “subdirectories” even if you pass it a URI without a trailing slash

Log interpretation

The part of mrjob that fetches counters and tells you what probably caused your job to fail was basically unmaintainable and has been totally rewritten. Not only do we now have solid support across Hadoop and EMR AMI versions, but if we missed anything, it should be straightforward to add it.

Once casualty of this change was the mrjob fetch-logs command, which means mrjob no longer offers a way to fetch or interpret logs from a past job. We do plan to re-introduce this functionality.

Protocols

Protocols are now strict by default (they simply raise an exception on
unencodable data). “Loose” protocols can be re-enabled with the
--no-strict-protocols switch; see strict_protocols for
why this is a bad idea.

Protocols will now use the much faster ujson library, if installed,
to encode and decode JSON. This is especially recommended for simple jobs that
spend a significant fraction of their time encoding and data.

Note

If you’re using EMR, try out
this bootstrap recipe to install ujson.

mrjob will fall back to the simplejson library if ujson
is not installed, and use the built-in json module if neither is installed.

You can now explicitly specify which JSON implementation you wish to use
(e.g. StandardJSONProtocol, SimpleJSONProtocol, UltraJSONProtocol).

Status messages

We’ve tried to cut the logging messages that your job prints as it runs down to the basics (either useful info, like where a temp directory is, or something that tells you why you’re waiting). If there are any messages you miss, try running your job with -v.

When a step in your job fails, mrjob no longer prints a useless stacktrace telling you where in the code the runner raised an exception about your step failing. This is thanks to StepFailedException, which you can also catch and interpret if you’re running jobs programmatically.

Deprecation

Many things that were deprecated in 0.4.6 have been removed:

	options:
	IF_SUCCESSFUL cleanup option (use ALL)

	iam_job_flow_role (use iam_instance_profile)

	functions and methods:
	positional arguments to mrjob.job.MRJob.mr() (don’t even use mr(); use mrjob.step.MRStep)

	mrjob.job.MRJob.jar() (use mrjob.step.JarStep)

	step_args and name arguments to mrjob.step.JarStep (use args instead of step_args, and don’t use name at all)

	mrjob.step.MRJobStep (use mrjob.step.MRStep)

	mrjob.compat.get_jobconf_value() (use to jobconf_from_env())

	mrjob.job.MRJob.parse_counters()

	mrjob.job.MRJob.parse_output()

	mrjob.conf.combine_cmd_lists()

	mrjob.fs.s3.S3Filesystem.get_s3_folder_keys()

mrjob.compat functions supports_combiners_in_hadoop_streaming(), supports_new_distributed_cache_options(), and uses_generic_jobconf(), which only existed to support very old versions of Hadoop, were removed without deprecation warnings (sorry!).

To avoid a similar wave of deprecation warnings in the future, the name of every part of mrjob that isn’t meant to be a stable interface provided by the library now starts with an underscore. You can still use these things (or copy them; it’s Open Source), but there’s no guarantee they’ll exist in the next release.

If you want to get ahead of the game, here is a list of things that are deprecated starting in mrjob 0.5.0 (do these after upgrading mrjob):

	options:
	base_tmp_dir is now local_tmp_dir

	cleanup options LOCAL_SCRATCH and REMOTE_SCRATCH are now LOCAL_TMP and REMOTE_TMP

	emr_job_flow_id is now cluster_id

	emr_job_flow_pool_name is now pool_name

	hdfs_scratch_dir is now hadoop_tmp_dir

	pool_emr_job_flows is now pool_clusters

	s3_scratch_uri is now cloud_tmp_dir

	ssh_tunnel_to_job_tracker is now simply ssh_tunnel

	functions and methods:
	mrjob.job.MRJob.is_mapper_or_reducer() is now is_task()

	Filesystem method path_exists() is now simply exists()

	Filesystem method path_join() is now simply join()

	Use runner.fs explicitly when accessing filesystem methods (e.g. runner.fs.ls(), not runner.ls())

	mrjob subcommands
- mrjob create-job-flow is now mrjob create-cluster
- mrjob terminate-idle-job-flows is now mrjob terminate-idle-clusters
- mrjob terminate-job-flow is now mrjob temrinate-cluster

Other changes

	mrjob now requires boto 2.35.0 or newer (chances are you’re already doing this). Later 0.5.x releases of mrjob may require newer versions of boto.

	visible_to_all_users now defaults to True

	HadoopFilesystem.rm() uses -skipTrash

	new iam_endpoint option

	custom hadoop_streaming_jars are properly uploaded

	JOB cleanup on EMR is temporarily disabled

	mrjob now follows symlinks when ls()ing the local filesystem (beware recursive symlinks!)

	The interpreter option disables bootstrap_mrjob by default (interpreter is meant for non-Python jobs)

	Cluster Pooling now respects ec2_key_pair

	cluster self-termination (see max_hours_idle) now respects non-streaming jobs

	LocalFilesystem now rejects URIs rather than interpreting them as local paths

	local and inline runners no longer have a default hadoop_version, instead handling jobconf in a version-agnostic way

	steps_python_bin now defaults to the current Python interpreter.

	minor changes to mrjob.util:
	file_ext() takes filename, not path

	gunzip_stream() now yields chunks of bytes, not lines

	moved random_identifier() method here from mrjob.aws

	buffer_iterator_to_line_iterator() is now named to_lines(), and no longer appends a trailing newline to data.

0.4.6

include: in conf files can now use relative paths in a meaningful way.
See Relative includes.

List and environment variable options loaded from included config files can
be totally overridden using the !clear tag. See Clearing configs.

Options that take lists (e.g. setup) now treat scalar values
as single-item lists. See this example.

Fixed a bug that kept the pool_wait_minutes option from being loaded from
config files.

0.4.5

This release moves mrjob off the deprecated DescribeJobFlows [http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_DescribeJobFlows.html]
EMR API call.

Warning

AWS again broke older versions mrjob for at least some new accounts, by
returning 400s for the deprecated DescribeJobFlows [http://docs.aws.amazon.com/ElasticMapReduce/latest/API/API_DescribeJobFlows.html]
API call. If you have a newer AWS account (circa July 2015), you must
use at least this version of mrjob.

The new API does not provide a way to tell when a job flow (now called
a “cluster”) stopped provisioning instances and started bootstrapping, so the
clock for our estimates of when we are close to the end of a billing hour now
start at cluster creation time, and are thus more conservative.

Related to this change, terminate_idle_job_flows
no longer considers job flows in the STARTING state idle; use
report_long_jobs to catch jobs stuck in
this state.

terminate_idle_job_flows performs much better
on large numbers of job flows. Formerly, it collected all job flow information
first, but now it terminates idle job flows as soon as it identifies them.

collect_emr_stats and
job_flow_pool have not been ported to the
new API and will be removed in v0.5.0.

Added an aws_security_token option to allow you to run
mrjob on EMR using temporary AWS credentials.

Added an emr_tags (see tags) option to allow you to tag EMR job
flows at creation time.

EMRJobRunner now has a
get_ami_version() method.

The hadoop_version option no longer has any effect in EMR. This
option only every did anything on the 1.x AMIs, which mrjob no longer supports.

Added many missing switches to the EMR tools (accessible from the
mrjob command). Formerly, you had to use a
config file to get at these options.

You can now access the mrboss tool from the
command line: mrjob boss <args>.

Previous 0.4.x releases have worked with boto as old as 2.2.0, but this one
requires at least boto 2.6.0 (which is still more than two years old). In any
case, it’s recommended that you just use the latest version of boto.

This branch has a number of additional deprecation warnings, to help prepare
you for mrjob v0.5.0. Please heed them; a lot of deprecated things really are
going to be completely removed.

0.4.4

mrjob now automatically creates and uses IAM objects as necessary to comply
with new requirements from Amazon Web Services [http://docs.aws.amazon.com/ElasticMapReduce/latest/DeveloperGuide/emr-iam-roles-creatingroles.html].

(You do not need to install the AWS CLI or run aws emr create-default-roles
as the link above describes; mrjob takes care of this for you.)

Warning

The change that AWS made essentially broke all older versions of mrjob for
all new accounts. If the first time your AWS account created an Elastic
MapReduce cluster was on or after April 6, 2015, you should use at least
this version of mrjob.

If you must use an old version of mrjob with a new AWS account, see
this thread [https://groups.google.com/forum/#!topic/mrjob/h7-1UYB7O20]
for a possible workaround.

--iam-job-flow-role has been renamed to --iam-instance-profile.

New --iam-service-role option.

0.4.3

This release also contains many, many bugfixes, one of which probably
affects you! See CHANGES.txt [https://github.com/Yelp/mrjob/blob/master/CHANGES.txt] for details.

Added a new subcommand, mrjob collect-emr-active-stats, to collect stats
about active jobflows and instance counts.

--iam-job-flow-role option allows setting of a specific IAM role to run
this job flow.

You can now use --check-input-paths and --no-check-input-paths on EMR
as well as Hadoop.

Files larger than 100MB will be uploaded to S3 using multipart upload if you
have the filechunkio module installed. You can change the limit/part size
with the --s3-upload-part-size option, or disable multipart upload by
setting this option to 0.

You can now require protocols to be strict from mrjob.conf;
this means unencodable input/output will result in an exception rather
than the job quietly incrementing a counter. It is recommended you set this
for all runners:

runners:
 emr:
 strict_protocols: true
 hadoop:
 strict_protocols: true
 inline:
 strict_protocols: true
 local:
 strict_protocols: true

You can use --no-strict-protocols to turn off strict protocols for
a particular job.

Tests now support pytest and tox.

Support for Python 2.5 has been dropped.

0.4.2

JarSteps, previously experimental, are now fully integrated into multi-step
jobs, and work with both the Hadoop and EMR runners. You can now use powerful
Java libraries such as Mahout [http://mahout.apache.org/] in your MRJobs.
For more information, see Jar steps.

Many options for setting up your task’s environment (--python-archive,
--setup-cmd and --setup-script) have been replaced by a powerful
--setup option. See the Job Environment Setup Cookbook for examples.

Similarly, many options for bootstrapping nodes on EMR (--bootstrap-cmd,
--bootstrap-file, --bootstrap-python-package and
--bootstrap-script) have been replaced by a single --bootstrap
option. See the EMR Bootstrapping Cookbook.

This release also contains many bugfixes [https://github.com/Yelp/mrjob/blob/master/CHANGES.txt], including
problems with boto 2.10.0+, bz2 decompression, and Python 2.5.

0.4.1

The SORT_VALUES option enables secondary sort,
ensuring that your reducer(s) receive values in sorted order. This allows you
to do things with reducers that would otherwise involve storing all the values
in memory, such as:

	Receiving a grand total before any subtotals, so you can calculate
percentages on the fly. See mr_next_word_stats.py [https://github.com/Yelp/mrjob/blob/master/mrjob/examples/mr_next_word_stats.py] for an example.

	Running a window of fixed length over an arbitrary amount of sorted
values (e.g. a 24-hour window over timestamped log data).

The max_hours_idle option allows you to spin up EMR job flows
that will terminate themselves after being idle for a certain amount of time,
in a way that optimizes EMR/EC2’s full-hour billing model.

For development (not production), we now recommend always using
job flow pooling, with max_hours_idle
enabled. Update your mrjob.conf like this:

runners:
 emr:
 max_hours_idle: 0.25
 pool_emr_job_flows: true

Warning

If you enable pooling without max_hours_idle (or
cronning terminate_idle_job_flows), pooled job
flows will stay active forever, costing you money!

You can now use --no-check-input-paths with the Hadoop runner to
allow jobs to run even if hadoop fs -ls can’t see their input files
(see check_input_paths).

Two bits of straggling deprecated functionality were removed:

	Built-in protocols must be instantiated
to be used (formerly they had class methods).

	Old locations for mrjob.conf are no longer supported.

This version also contains numerous bugfixes and natural extensions of
existing functionality; many more things will now Just Work (see CHANGES.txt [https://github.com/Yelp/mrjob/blob/master/CHANGES.txt]).

0.4.0

The default runner is now inline instead of local. This change will speed
up debugging for many users. Use local if you need to simulate more features
of Hadoop.

The EMR tools can now be accessed more easily via the mrjob command. Learn
more here.

Job steps are much richer now:

	You can now use mrjob to run jar steps other than Hadoop Streaming. More info

	You can filter step input with UNIX commands. More info

	In fact, you can use arbitrary UNIX commands as your whole step (mapper/reducer/combiner). More info

If you Ctrl+C from the command line, your job will be terminated if you give it time.
If you’re running on EMR, that should prevent most accidental runaway jobs. More info

mrjob v0.4 requires boto 2.2.

We removed all deprecated functionality from v0.2:

	–hadoop-*-format

	–*-protocol switches

	MRJob.DEFAULT_*_PROTOCOL

	MRJob.get_default_opts()

	MRJob.protocols()

	PROTOCOL_DICT

	IF_SUCCESSFUL

	DEFAULT_CLEANUP

	S3Filesystem.get_s3_folder_keys()

We love contributions, so we wrote some guidelines to help you help us. See you on Github!

0.3.5

The pool_wait_minutes (--pool-wait-minutes) option lets your job
delay itself in case a job flow becomes available. Reference:
Configuration quick reference

The JOB and JOB_FLOW cleanup options tell mrjob to clean up the job
and/or the job flow on failure (including Ctrl+C). See
CLEANUP_CHOICES for more information.

0.3.3

You can now include one config file from another.

0.3.2

The EMR instance type/number options have changed to support spot instances:

	core_instance_bid_price

	core_instance_type

	master_instance_bid_price

	master_instance_type

	slave_instance_type (alias for core_instance_type)

	task_instance_bid_price

	task_instance_type

There is also a new ami_version option to change the AMI your job flow uses
for its nodes.

For more information, see mrjob.emr.EMRJobRunner.__init__().

The new report_long_jobs tool alerts on jobs that
have run for more than X hours.

0.3

Features

Support for Combiners

You can now use combiners in your job. Like mapper() and
reducer(), you can redefine combiner() in your
subclass to add a single combiner step to run after your mapper but before
your reducer. (MRWordFreqCount does this to improve
performance.) combiner_init() and combiner_final()
are similar to their mapper and reducer equivalents.

You can also add combiners to custom steps by adding keyword argumens to
your call to steps().

More info: One-step jobs, Multi-step jobs

*_init(), *_final() for mappers, reducers, combiners

Mappers, reducers, and combiners have *_init() and *_final()
methods that are run before and after the input is run through the main
function (e.g. mapper_init() and mapper_final()).

More info: One-step jobs, Multi-step jobs

Custom Option Parsers

It is now possible to define your own option types and actions using a
custom OptionParser subclass.

Job Flow Pooling

EMR jobs can pull job flows out of a “pool” of similarly configured job
flows. This can make it easier to use a small set of job flows across
multiple automated jobs, save time and money while debugging, and generally
make your life simpler.

More info: Cluster Pooling

SSH Log Fetching

mrjob attempts to fetch counters and error logs for EMR jobs via SSH before
trying to use S3. This method is faster, more reliable, and works with
persistent job flows.

More info: Configuring SSH credentials

New EMR Tool: fetch_logs

If you want to fetch the counters or error logs for a job after the fact,
you can use the new fetch_logs tool.

More info: mrjob.tools.emr.fetch_logs

New EMR Tool: mrboss

If you want to run a command on all nodes and inspect the output, perhaps
to see what processes are running, you can use the new mrboss tool.

More info: mrjob.tools.emr.mrboss

Changes and Deprecations

Configuration

The search path order for mrjob.conf has changed. The new order is:

	The location specified by MRJOB_CONF

	~/.mrjob.conf

	~/.mrjob (deprecated)

	mrjob.conf in any directory in PYTHONPATH [http://docs.python.org/2/using/cmdline.html#envvar-PYTHONPATH]
(deprecated)

	/etc/mrjob.conf

If your mrjob.conf path is deprecated, use this table to fix it:

	Old Location
	New Location

	~/.mrjob
	~/.mrjob.conf

	somewhere in PYTHONPATH [http://docs.python.org/2/using/cmdline.html#envvar-PYTHONPATH]
	Specify in MRJOB_CONF

More info: mrjob.conf

Defining Jobs (MRJob)

Mapper, combiner, and reducer methods no longer need to contain a yield
statement if they emit no data.

The --hadoop-*-format switches are deprecated. Instead, set your
job’s Hadoop formats with
HADOOP_INPUT_FORMAT/HADOOP_OUTPUT_FORMAT
or hadoop_input_format()/hadoop_output_format().
Hadoop formats can no longer be set from mrjob.conf.

In addition to --jobconf, you can now set jobconf values with the
JOBCONF attribute or the jobconf() method. To read
jobconf values back, use mrjob.compat.jobconf_from_env(), which
ensures that the correct name is used depending on which version of Hadoop
is active.

You can now set the Hadoop partioner class with --partitioner,
the PARTITIONER attribute, or the partitioner()
method.

More info: Hadoop configuration

Protocols

Protocols can now be anything with a read() and write()
method. Unlike previous versions of mrjob, they can be instance
methods rather than class methods. You should use instance methods
when defining your own protocols.

The --*protocol switches and DEFAULT_*PROTOCOL
are deprecated. Instead, use the *_PROTOCOL attributes or
redefine the *_protocol() methods.

Protocols now cache the decoded values of keys. Informal testing shows
up to 30% speed improvements.

More info: Protocols

Running Jobs

All Modes

All runners are Hadoop-version aware and use the correct jobconf and
combiner invocation styles. This change should decrease the number
of warnings in Hadoop 0.20 environments.

All *_bin configuration options (hadoop_bin, python_bin,
and ssh_bin) take lists instead of strings so you can add
arguments (like ['python', '-v']). More info:
Configuration quick reference

Cleanup options have been split into cleanup and
cleanup_on_failure. There are more granular values for both of
these options.

Most limitations have been lifted from passthrough options, including
the former inability to use custom types and actions.

The job_name_prefix option is gone (was deprecated).

All URIs are passed through to Hadoop where possible. This should
relax some requirements about what URIs you can use.

Steps with no mapper use cat instead of going through a
no-op mapper.

Compressed files can be streamed with the cat() method.

EMR Mode

The default Hadoop version on EMR is now 0.20 (was 0.18).

The instance_type option only sets the instance type for slave
nodes when there are multiple EC2 instance. This is because the master
node can usually remain small without affecting the performance of the
job.

Inline Mode

Inline mode now supports the cmdenv option.

Local Mode

Local mode now runs 2 mappers and 2 reducers in parallel by default.

There is preliminary support for simulating some jobconf variables.
The current list of supported variables is:

	mapreduce.job.cache.archives

	mapreduce.job.cache.files

	mapreduce.job.cache.local.archives

	mapreduce.job.cache.local.files

	mapreduce.job.id

	mapreduce.job.local.dir

	mapreduce.map.input.file

	mapreduce.map.input.length

	mapreduce.map.input.start

	mapreduce.task.attempt.id

	mapreduce.task.id

	mapreduce.task.ismap

	mapreduce.task.output.dir

	mapreduce.task.partition

Other Stuff

boto 2.0+ is now required.

The Debian packaging has been removed from the repostory.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Home

Glossary

	combiner

	A function that converts one key and a list of values that share that
key (not necessarily all values for the key) to zero or more key-value
pairs based on some function. See Concepts for details.

	Hadoop Streaming

	A special jar that lets you run code written in any language on Hadoop.
It launches a subprocess, passes it input on stdin, and receives output
on stdout. Read more here. [http://hadoop.apache.org/docs/stable/streaming.html]

	input protocol

	The protocol that converts the input file to the key-value
pairs seen by the first step. See Protocols for details.

	internal protocol

	The protocol that converts the output of one step to the intput
of the next. See Protocols for details.

	mapper

	A function that converts one key-value pair to zero or more key-value
pairs based on some function. See Concepts for details.

	output protocol

	The protocol that converts the output of the last step to the
bytes written to the output file. See Protocols for details.

	protocol

	An object that converts a stream of bytes to and from Python objects.
See Protocols for details.

	reducer

	A function that converts one key and all values that share that key to
zero or more key-value pairs based on some function. See
Concepts for details.

	step

	One mapper, combiner, and reducer. Any of
these may be omitted from a mrjob step as long as at least one is
included.

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Home

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 mrjob	

 	
 	
 mrjob.ami	

 	
 	
 mrjob.cat	

 	
 	
 mrjob.compat	

 	
 	
 mrjob.conf	

 	
 	
 mrjob.dataproc	

 	
 	
 mrjob.emr	

 	
 	
 mrjob.fs.base	

 	
 	
 mrjob.hadoop	

 	
 	
 mrjob.inline	

 	
 	
 mrjob.job	

 	
 	
 mrjob.local	

 	
 	
 mrjob.parse	

 	
 	
 mrjob.protocol	

 	
 	
 mrjob.retry	

 	
 	
 mrjob.runner	

 	
 	
 mrjob.setup	

 	
 	
 mrjob.spark.runner	

 	
 	
 mrjob.step	

 	
 	
 mrjob.tools.diagnose	

 	
 	
 mrjob.tools.emr.audit_usage	

 	
 	
 mrjob.tools.emr.create_cluster	

 	
 	
 mrjob.tools.emr.mrboss	

 	
 	
 mrjob.tools.emr.report_long_jobs	

 	
 	
 mrjob.tools.emr.s3_tmpwatch	

 	
 	
 mrjob.tools.emr.terminate_cluster	

 	
 	
 mrjob.tools.emr.terminate_idle_clusters	

 	
 	
 mrjob.tools.spark_submit	

 	
 	
 mrjob.util	

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Home

Index

 Symbols
 | _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | U
 | V
 | W
 | Z

Symbols

 	

 	$AWS_SECURITY_TOKEN, [1]

 	$AWS_SESSION_TOKEN

 	$HADOOP_*

 	

 	$mapreduce_map_input_file

 	$PYTHONPATH

_

 	

 	__init__() (mrjob.hadoop.HadoopJobRunner method)

 	

 	(mrjob.inline.InlineMRJobRunner method)

 	(mrjob.job.MRJob method)

 	(mrjob.local.LocalMRJobRunner method)

 	(mrjob.retry.RetryWrapper method)

 	(mrjob.runner.MRJobRunner method)

A

 	

 	add() (mrjob.setup.UploadDirManager method)

 	

 	(mrjob.setup.WorkingDirManager method)

 	add_file_arg() (mrjob.job.MRJob method)

 	add_passthru_arg() (mrjob.job.MRJob method)

 	ARCHIVES (mrjob.job.MRJob attribute)

 	

 	archives() (mrjob.job.MRJob method)

 	AWS_ACCESS_KEY_ID, [1]

 	AWS_SECRET_ACCESS_KEY, [1]

 	AWS_SESSION_TOKEN

B

 	

 	bunzip2_stream() (in module mrjob.cat)

 	BytesProtocol (class in mrjob.protocol)

 	

 	BytesValueProtocol (class in mrjob.protocol)

C

 	

 	can_handle_path() (mrjob.fs.base.Filesystem method)

 	cat() (mrjob.fs.base.Filesystem method)

 	cat_output() (mrjob.runner.MRJobRunner method)

 	cleanup() (mrjob.runner.MRJobRunner method)

 	CLEANUP_CHOICES (in module mrjob.options)

 	cmd_line() (in module mrjob.util)

 	combine_cmds() (in module mrjob.conf)

 	combine_dicts() (in module mrjob.conf)

 	combine_envs() (in module mrjob.conf)

 	combine_jobconfs() (in module mrjob.conf)

 	combine_lists() (in module mrjob.conf)

 	combine_local_envs() (in module mrjob.conf)

 	combine_pairs() (mrjob.job.MRJob method)

 	

 	combine_path_lists() (in module mrjob.conf)

 	combine_paths() (in module mrjob.conf)

 	combine_values() (in module mrjob.conf)

 	combiner

 	combiner() (mrjob.job.MRJob method)

 	combiner_cmd() (mrjob.job.MRJob method)

 	combiner_final() (mrjob.job.MRJob method)

 	combiner_init() (mrjob.job.MRJob method)

 	combiner_pre_filter() (mrjob.job.MRJob method)

 	configure_args() (mrjob.job.MRJob method)

 	counters() (mrjob.runner.MRJobRunner method)

 	create_bucket() (mrjob.emr.S3Filesystem method)

D

 	

 	DataprocJobRunner (class in mrjob.dataproc)

 	decompress() (in module mrjob.cat)

 	describe_base_emr_images() (in module mrjob.ami)

 	

 	DIRS (mrjob.job.MRJob attribute)

 	dirs() (mrjob.job.MRJob method)

 	du() (mrjob.fs.base.Filesystem method)

E

 	

 	EMRJobRunner (class in mrjob.emr)

 	
 environment variable

 	

 	$AWS_SECURITY_TOKEN, [1]

 	$AWS_SESSION_TOKEN

 	$HADOOP_*

 	$PYTHONPATH

 	$mapreduce_map_input_file

 	AWS_ACCESS_KEY_ID, [1]

 	AWS_SECRET_ACCESS_KEY, [1]

 	AWS_SESSION_TOKEN

 	MRJOB_CONF, [1], [2], [3]

 	PATH, [1]

 	PYTHONPATH, [1], [2], [3]

 	TZ

 	

 	exists() (mrjob.fs.base.Filesystem method)

 	expand_path() (in module mrjob.util)

F

 	

 	file_ext() (in module mrjob.util)

 	FILES (mrjob.job.MRJob attribute)

 	files() (mrjob.job.MRJob method)

 	Filesystem (class in mrjob.fs.base)

 	

 	find_mrjob_conf() (in module mrjob.conf)

 	fs (mrjob.runner.MRJobRunner attribute)

 	fully_qualify_hdfs_path() (in module mrjob.hadoop)

G

 	

 	GCSFilesystem (class in mrjob.dataproc)

 	GENERIC_ARGS (in module mrjob.step)

 	get_all_bucket_names() (mrjob.emr.S3Filesystem method)

 	get_bucket() (mrjob.emr.S3Filesystem method)

 	get_cluster_id() (mrjob.emr.EMRJobRunner method)

 	get_hadoop_version() (mrjob.runner.MRJobRunner method)

 	

 	get_image_version() (mrjob.emr.EMRJobRunner method)

 	get_job_key() (mrjob.runner.MRJobRunner method)

 	get_job_steps() (mrjob.emr.EMRJobRunner method)

 	get_opts() (mrjob.runner.MRJobRunner method)

 	gunzip_stream() (in module mrjob.cat)

H

 	

 	Hadoop Streaming

 	HADOOP_INPUT_FORMAT (mrjob.job.MRJob attribute)

 	hadoop_input_format() (mrjob.job.MRJob method)

 	

 	HADOOP_OUTPUT_FORMAT (mrjob.job.MRJob attribute)

 	hadoop_output_format() (mrjob.job.MRJob method)

 	HadoopJobRunner (class in mrjob.hadoop)

I

 	

 	increment_counter() (mrjob.job.MRJob method)

 	InlineMRJobRunner (class in mrjob.inline)

 	INPUT (in module mrjob.step)

 	input protocol

 	INPUT_PROTOCOL (mrjob.job.MRJob attribute)

 	input_protocol() (mrjob.job.MRJob method)

 	

 	internal protocol

 	INTERNAL_PROTOCOL (mrjob.job.MRJob attribute)

 	internal_protocol() (mrjob.job.MRJob method)

 	is_s3_uri() (in module mrjob.parse)

 	is_task() (mrjob.job.MRJob method)

 	is_uri() (in module mrjob.parse)

J

 	

 	JarStep (class in mrjob.step)

 	JOBCONF (mrjob.job.MRJob attribute)

 	jobconf() (mrjob.job.MRJob method)

 	jobconf_from_dict() (in module mrjob.compat)

 	

 	jobconf_from_env() (in module mrjob.compat)

 	join() (mrjob.fs.base.Filesystem method)

 	JSONProtocol (class in mrjob.protocol)

 	JSONValueProtocol (class in mrjob.protocol)

L

 	

 	LIBJARS (mrjob.job.MRJob attribute)

 	libjars() (mrjob.job.MRJob method)

 	load_args() (mrjob.job.MRJob method)

 	load_opts_from_mrjob_conf() (in module mrjob.conf)

 	load_opts_from_mrjob_confs() (in module mrjob.conf)

 	

 	LocalMRJobRunner (class in mrjob.local)

 	log_to_null() (in module mrjob.util)

 	log_to_stream() (in module mrjob.util)

 	ls() (mrjob.fs.base.Filesystem method)

M

 	

 	make_ec2_client() (mrjob.emr.EMRJobRunner method)

 	make_emr_client() (mrjob.emr.EMRJobRunner method)

 	make_iam_client() (mrjob.emr.EMRJobRunner method)

 	make_runner() (mrjob.job.MRJob method)

 	make_s3_client() (mrjob.emr.S3Filesystem method)

 	make_s3_resource() (mrjob.emr.S3Filesystem method)

 	map_pairs() (mrjob.job.MRJob method)

 	map_version() (in module mrjob.compat)

 	mapper

 	mapper() (mrjob.job.MRJob method)

 	mapper_cmd() (mrjob.job.MRJob method)

 	mapper_final() (mrjob.job.MRJob method)

 	mapper_init() (mrjob.job.MRJob method)

 	mapper_pre_filter() (mrjob.job.MRJob method)

 	mapper_raw() (mrjob.job.MRJob method)

 	md5sum() (mrjob.fs.base.Filesystem method)

 	mkdir() (mrjob.fs.base.Filesystem method)

 	mr_job_script() (mrjob.job.MRJob class method)

 	MRJob (class in mrjob.job)

 	mrjob.ami (module)

 	mrjob.cat (module)

 	mrjob.compat (module)

 	mrjob.conf (module)

 	mrjob.dataproc (module)

 	mrjob.emr (module)

 	

 	mrjob.fs.base (module)

 	mrjob.hadoop (module)

 	mrjob.inline (module)

 	mrjob.job (module)

 	mrjob.local (module)

 	mrjob.parse (module)

 	mrjob.protocol (module)

 	mrjob.retry (module)

 	mrjob.runner (module)

 	mrjob.setup (module)

 	mrjob.spark.runner (module)

 	mrjob.step (module)

 	mrjob.tools.diagnose (module)

 	mrjob.tools.emr.audit_usage (module)

 	mrjob.tools.emr.create_cluster (module)

 	mrjob.tools.emr.mrboss (module)

 	mrjob.tools.emr.report_long_jobs (module)

 	mrjob.tools.emr.s3_tmpwatch (module)

 	mrjob.tools.emr.terminate_cluster (module)

 	mrjob.tools.emr.terminate_idle_clusters (module)

 	mrjob.tools.spark_submit (module)

 	mrjob.util (module)

 	MRJOB_CONF, [1], [2], [3]

 	MRJobRunner (class in mrjob.runner)

 	MRStep (class in mrjob.step)

N

 	

 	name() (mrjob.setup.WorkingDirManager method)

 	name_to_path() (mrjob.setup.WorkingDirManager method)

 	

 	name_uniquely() (in module mrjob.setup)

O

 	

 	OUTPUT (in module mrjob.step)

 	output protocol

 	

 	OUTPUT_PROTOCOL (mrjob.job.MRJob attribute)

 	output_protocol() (mrjob.job.MRJob method)

P

 	

 	parse_legacy_hash_path() (in module mrjob.setup)

 	parse_mr_job_stderr() (in module mrjob.parse)

 	parse_output() (mrjob.job.MRJob method)

 	parse_s3_uri() (in module mrjob.parse)

 	parse_setup_cmd() (in module mrjob.setup)

 	PARTITIONER (mrjob.job.MRJob attribute)

 	partitioner() (mrjob.job.MRJob method)

 	pass_arg_through() (mrjob.job.MRJob method)

 	PATH, [1]

 	

 	path_to_uri() (mrjob.setup.UploadDirManager method)

 	paths() (mrjob.setup.WorkingDirManager method)

 	pick_protocols() (mrjob.job.MRJob method)

 	PickleProtocol (class in mrjob.protocol)

 	PickleValueProtocol (class in mrjob.protocol)

 	protocol

 	put() (mrjob.fs.base.Filesystem method)

 	PYTHONPATH, [1], [2], [3]

R

 	

 	random_identifier() (in module mrjob.util)

 	RapidJSONProtocol (class in mrjob.protocol)

 	RapidJSONValueProtocol (class in mrjob.protocol)

 	RawProtocol (class in mrjob.protocol)

 	RawValueProtocol (class in mrjob.protocol)

 	reduce_pairs() (mrjob.job.MRJob method)

 	reducer

 	reducer() (mrjob.job.MRJob method)

 	reducer_cmd() (mrjob.job.MRJob method)

 	reducer_final() (mrjob.job.MRJob method)

 	reducer_init() (mrjob.job.MRJob method)

 	

 	reducer_pre_filter() (mrjob.job.MRJob method)

 	ReprProtocol (class in mrjob.protocol)

 	ReprValueProtocol (class in mrjob.protocol)

 	RetryWrapper (class in mrjob.retry)

 	rm() (mrjob.fs.base.Filesystem method)

 	run() (mrjob.job.MRJob class method)

 	

 	(mrjob.runner.MRJobRunner method)

 	run_combiner() (mrjob.job.MRJob method)

 	run_job() (mrjob.job.MRJob method)

 	run_mapper() (mrjob.job.MRJob method)

 	run_reducer() (mrjob.job.MRJob method)

S

 	

 	S3Filesystem (class in mrjob.fs.s3)

 	safeeval() (in module mrjob.util)

 	sandbox() (mrjob.job.MRJob method)

 	save_current_environment() (in module mrjob.util)

 	save_cwd() (in module mrjob.util)

 	save_sys_path() (in module mrjob.util)

 	save_sys_std() (in module mrjob.util)

 	set_status() (mrjob.job.MRJob method)

 	shlex_split() (in module mrjob.util)

 	SimpleJSONProtocol (class in mrjob.protocol)

 	SimpleJSONValueProtocol (class in mrjob.protocol)

 	

 	SORT_VALUES (mrjob.job.MRJob attribute)

 	spark() (mrjob.job.MRJob method)

 	SparkJarStep (class in mrjob.step)

 	SparkMRJobRunner (class in mrjob.spark.runner)

 	SparkScriptStep (class in mrjob.step)

 	SparkStep (class in mrjob.step)

 	StandardJSONProtocol (class in mrjob.protocol)

 	StandardJSONValueProtocol (class in mrjob.protocol)

 	step

 	steps() (mrjob.job.MRJob method)

 	strip_microseconds() (in module mrjob.util)

T

 	

 	TextProtocol (class in mrjob.protocol)

 	TextValueProtocol (class in mrjob.protocol)

 	to_chunks() (in module mrjob.cat)

 	to_lines() (in module mrjob.util)

 	to_uri() (in module mrjob.parse)

 	

 	touchz() (mrjob.fs.base.Filesystem method)

 	translate_jobconf() (in module mrjob.compat)

 	translate_jobconf_dict() (in module mrjob.compat)

 	translate_jobconf_for_all_versions() (in module mrjob.compat)

 	TZ

U

 	

 	UltraJSONProtocol (class in mrjob.protocol)

 	UltraJSONValueProtocol (class in mrjob.protocol)

 	unarchive() (in module mrjob.util)

 	unique() (in module mrjob.util)

 	

 	UploadDirManager (class in mrjob.setup)

 	uri() (mrjob.setup.UploadDirManager method)

 	uses_yarn() (in module mrjob.compat)

V

 	

 	version_gte() (in module mrjob.compat)

W

 	

 	which() (in module mrjob.util)

 	

 	WorkingDirManager (class in mrjob.setup)

Z

 	

 	zip_dir() (in module mrjob.util)

 Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

 search.html

 Navigation

 		
 index

 		
 modules |

 		Home »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2009-2018 Yelp and Contributors.
 Created using Sphinx 1.3.1.

_static/down-pressed.png

_static/logo_small.png
mrjob

_static/comment.png

_static/plus.png

_static/up-pressed.png

_static/file.png

_static/minus.png

_static/up.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment-bright.png

_static/down.png

