mrainet Documentation

Release 0.1.1a

Wouter M. Kouw

Dec 18, 2019

Contents

1	Installation	
	1.1 Environment	3
2	Classifiers	5
	2.1 MRAI Convolutional Neural Network	5
	2.2 MRAI Dense Neural Network	9
3	Examples	13
4	4 Contact	
Py	thon Module Index	17
Inc	dex	19

MRAI-net is a set of neural networks designed to learn MRI-scanner acquisition-invariant representations. In other words, it extracts lower-dimensional feature vectors from two sets of images, such that there is minimal variance between them outside of tissue variation.

Installation

mrainet is registered on PyPI and can be installed through:

pip install mrainet

1.1 Environment

Pip takes care of all dependencies, but the addition of these dependencies can mess up your current python environment. To ensure a clean install, it is recommended to set up a virtual environment using conda or virtualenv. To ease this set up, an environment file is provided, which can be run through:

conda env create -f environment.yml
source activate mrainet

For more information on getting started, see the Examples section.

Classifiers

This page contains information on MRAI neural networks.

2.1 MRAI Convolutional Neural Network

class mrainet.mraicnn.MRAIConvolutionalNeuralNetwork(patch_size=(31,

31), classes = [1,]2, 3], num_draw=10, kernum_kernels=[8], $nel_size = [(3,$ 3)], dense_size=[16, 8], strides = (1, 1), dropout = 0.1,*l*2=0.001, margin=1, optimizer='rmsprop', *batch_size=32*, $num_epochs=1$)

Network for MRI-scanner acquisition-invariant representation learning.

Class of convolutional neural networks that aim to map patches of two datasets from different MRI-scanners Methods include image processing operations, pair sampling and Siamese loss minimization.

Methods

compile_net(self)	Compile network architecture.	
<pre>contrastive_loss(self, label, distance)</pre>	Contrastive Siamese loss.	
<pre>extract_random_patches(self, X, Y)</pre>	Extract a random set of patches from image.	
feedforward(self, patches, scan_ID)	Feed a set of patches forward through the network.	
gen_index_combs(self, x)	Generate combinations of two index arrays.	
index2patch(self, X, index)	Slice patches from an image at given indices.	
	Continued on next page	

l1_norm(self, x)	11-norm for loss layer.			
12_norm(self, x)	12-norm for loss layer.			
<pre>load_model(self, model_fn, weights_fn)</pre>	Load model from filename.			
<pre>matrix2sparse(self, X[, edge, remove_nans])</pre>	Map matrix to a sparse array format.			
<pre>sample_pairs(self, X, y, Z, u[, num_draw])</pre>	Sample a set of pairs of patches from two images.			
<pre>save_model(self, model_fn, weights_fn)</pre>	Save model to filename.			
<pre>segment_image(self, X, model[, feed,])</pre>	Segment a new image using the trained network.			
<pre>subsample_rows(self, X[, num_draw])</pre>	Take a random subsample of rows from X.			
<pre>train(self, X, Y, Z, U[, num_targets])</pre>	Train the network using pairs of patches from the im-			
	ages.			

Table 1 - continued from previous page

compile_net (self)

Compile network architecture.

contrastive_loss (self, label, distance)

Contrastive Siamese loss.

For similar pairs, it consists of the squared Lp-distance. For dissimilar pairs, it consists of a hinge loss with respect to a margin parameter.

Parameters

label [int] Similarity label, 1=similar and 0=dissimilar

distance: float Lp-norm between pairs of patches mapped through the network.

Returns

float Loss value for current pair of patches.

extract_random_patches (self, X, Y)

Extract a random set of patches from image.

Parameters

X [array] Input image to sample patches from.

Y [array] Label image corresponding to X.

Returns

patches [array] Patches array, num patches by patch height by patch width by 1.

labels [array] Tissue label array corresponding to patches array.

feedforward(self, patches, scan_ID)

Feed a set of patches forward through the network.

Parameters

patches [array] Contains patches in form of number of patches by patch height by patch width by 1.

scan_ID [int] Scanner identification variable, indicating from which MRI-scanner these patches came from.

Returns

array Final layer representation of patches fed forward through the network.

gen_index_combs (self, x)

Generate combinations of two index arrays.

index2patch(self, X, index)

Slice patches from an image at given indices.

Parameters

X [array] input image

index [array] Row and column indices for the provided image.

Returns

patches [array] Number of patches by patch height by patch width by 1.

11_norm (*self*, *x*) 11-norm for loss layer.

12_norm (*self*, *x*) 12-norm for loss layer.

load_model (self, model_fn, weights_fn)
Load model from filename.

Parameters

model_fn [str] Filename of saved model.

weights_fn [str] Filename of saved weight matrix.

Returns

None

matrix2sparse (*self*, *X*, *edge*=(0, 0), *remove_nans=False*) Map matrix to a sparse array format.

Parameters

X [array] Matrix that should be mapped to sparse array format, may contain NaN's.

edge [tuple(int, int)] Dimensions of edge to ignore.

remove_nans [bool] Whether to remove NaN's as tissue labels.

Returns

sX [array] Original matrix mapped to (i,j,v) format where i corresponds to the i-th row of X, j to the j-column of X and v of the value at position (i,j) of X.

sample_pairs (self, X, y, Z, u, num_draw=(10, 1))

Sample a set of pairs of patches from two images.

Parameters

X [array] slice from source MRI-scanner

- **y** [array] source tissue index sparse array; where each row i,j,k consists of the pixel's row index i, the pixel's column index j and the pixel's tissue k.
- Z [array] slice from target MRI-scanner
- **u** [array] target tissue index sparse array; where each row i,j,k consists of the pixel's row index i, the pixel's column index j and the pixel's tissue k.

num_draw [tuple(int, int)] maximum number of patches to draw from (source, target)

Returns

P [list[A, B, a, b]] contains pairs of patches and scanner identifications

S [array] contains similarity labels between pairs

save_model (self, model_fn, weights_fn)

Save model to filename.

Parameters

model_fn [str] Filename to save model to.

weights_fn [str] Filename to save weight matrix to.

Returns

None

segment_image (self, X, model, feed=True, mapost=False, scan_ID=1)
Segment a new image using the trained network.

Parameters

X [array] new image that needs to be segmented.

model [sklearn-model] Trained classifier from scikit-learn, needs to have a predict method.

feed [bool] whether the extracted patches should be fed through the network, a value of False is for experimental purposes (def: True)

mapost [bool] whether to map the predictions to a maximum a posteriori form. (def: False)

scan_ID [int] scanner identification of new image.

Returns

preds [array] Label image of same size as input image, containing predictions made by the provided trained classifier.

subsample_rows (self, X, num_draw=1)

Take a random subsample of rows from X.

Parameters

X [array] Array to subsample from.

num_draw [int] Number of rows to subsample.

replace [bool] Whether to replace sampled rows.

Returns

array Smaller array.

train (self, X, Y, Z, U, num_targets=1)

Train the network using pairs of patches from the images.

Parameters

X [array] source scans, slices by height by width

Y [array] source labels, slices by height by width

Z [array] target scans, slices by height by width

U [array] target labels, slices by height by width, contains NaN's at unknown labels

num_targets [int] How many target labels to use.

Returns

None

2.2 MRAI Dense Neural Network

class	<pre>mrainet.mraidnn.MRAIDenseNeuralNetwork(patch_size=(31, 31), classes=[1, 2,</pre>
	<i>3], num_draw=10, dense_size=[16,</i>
	8], dropout=0.1, l2=0.001, margin=1,
	optimizer='rmsprop', batch_size=32,
	$num_epochs=2$)
N	etwork for MRI-scanner acquisition-invariant representation learning.

Class of fully-connected neural networks that aim to map patches of two datasets from different MRI-scanners Methods include image processing operations, pair sampling and Siamese loss minimization.

Methods

compile_net(self)	Compile network architecture.
contrastive_loss(self, label, distance)	Contrastive Siamese loss.
<pre>extract_random_patches(self, X, Y)</pre>	Extract a random set of patches from image.
feedforward(self, patches, scan_ID)	Feed a set of patches forward through the network.
gen_index_combs(self, x)	Generate combinations of two index arrays.
index2patch(self, X, index)	Slice patches from an image at given indices.
l1_norm(self, x)	11-norm for loss layer.
12_norm(self, x)	12-norm for loss layer.
<pre>load_model(self, model_fn, weights_fn)</pre>	Load model from filename.
<pre>matrix2sparse(self, X[, edge, remove_nans])</pre>	Map matrix to a sparse array format.
<pre>sample_pairs(self, X, y, Z, u[, num_draw])</pre>	Sample a set of pairs of patches from two images.
<pre>save_model(self, model_fn, weights_fn)</pre>	Save model to filename.
<pre>segment_image(self, X, model[, feed,])</pre>	Segment a new image using the trained network.
<pre>subsample_rows(self, X[, num_draw])</pre>	Take a random subsample of rows from X.
<pre>train(self, X, Y, Z, U[, num_targets])</pre>	Train the network using pairs of patches from the im-
	ages.

compile_net (self)

Compile network architecture.

contrastive_loss (self, label, distance)

Contrastive Siamese loss.

For similar pairs, it consists of the squared Lp-distance. For dissimilar pairs, it consists of a hinge loss with respect to a margin parameter.

Parameters

label [int] Similarity label, 1=similar and 0=dissimilar

distance: float Lp-norm between pairs of patches mapped through the network.

Returns

float Loss value for current pair of patches.

```
extract_random_patches (self, X, Y)
```

Extract a random set of patches from image.

Parameters

X [array] Input image to sample patches from.

Y [array] Label image corresponding to X.

Returns

patches [array] Patches array, num patches by patch height by patch width by 1.

labels [array] Tissue label array corresponding to patches array.

feedforward (self, patches, scan_ID)

Feed a set of patches forward through the network.

Parameters

patches [array] Contains patches in form of number of patches by patch height by patch width by 1.

scan_ID [int] Scanner identification variable, indicating from which MRI-scanner these patches came from.

Returns

array Final layer representation of patches fed forward through the network.

gen_index_combs (self, x)

Generate combinations of two index arrays.

index2patch(self, X, index)

Slice patches from an image at given indices.

Parameters

X [array] input image

index [array] Row and column indices for the provided image.

Returns

patches [array] Number of patches by patch height by patch width by 1.

11_norm (*self*, *x*)

11-norm for loss layer.

$12_norm(self, x)$

12-norm for loss layer.

load_model (self, model_fn, weights_fn)

Load model from filename.

Parameters

model_fn [str] Filename of saved model.

weights_fn [str] Filename of saved weight matrix.

Returns

None

matrix2sparse (*self*, *X*, *edge*=(0, 0), *remove_nans=False*) Map matrix to a sparse array format.

Parameters

X [array] Matrix that should be mapped to sparse array format, may contain NaN's.

edge [tuple(int, int)] Dimensions of edge to ignore.

remove_nans [bool] Whether to remove NaN's as tissue labels.

Returns

sX [array] Original matrix mapped to (i,j,v) format where i corresponds to the i-th row of X, j to the j-column of X and v of the value at position (i,j) of X.

sample_pairs (self, X, y, Z, u, num_draw=(10, 1))

Sample a set of pairs of patches from two images.

Parameters

X [array] slice from source MRI-scanner

- **y** [array] source tissue index sparse array; where each row i,j,k consists of the pixel's row index i, the pixel's column index j and the pixel's tissue k.
- Z [array] slice from target MRI-scanner
- **u** [array] target tissue index sparse array; where each row i,j,k consists of the pixel's row index i, the pixel's column index j and the pixel's tissue k.

num_draw [tuple(int, int)] maximum number of patches to draw from (source, target)

Returns

- **P** [list[A, B, a, b]] contains pairs of patches and scanner identifications
- S [array] contains similarity labels between pairs

save_model (self, model_fn, weights_fn)

Save model to filename.

Parameters

model_fn [str] Filename to save model to.

weights_fn [str] Filename to save weight matrix to.

Returns

None

segment_image (self, X, model, feed=True, mapost=False, scan_ID=1)
Segment a new image using the trained network.

Parameters

X [array] new image that needs to be segmented.

model [sklearn-model] Trained classifier from scikit-learn, needs to have a predict method.

- **feed** [bool] whether the extracted patches should be fed through the network, a value of False is for experimental purposes (def: True)
- **mapost** [bool] whether to map the predictions to a maximum a posteriori form. (def: False)

scan_ID [int] scanner identification of new image.

Returns

preds [array] Label image of same size as input image, containing predictions made by the provided trained classifier.

subsample_rows(self, X, num_draw=1)

Take a random subsample of rows from X.

Parameters

X [array] Array to subsample from.

num_draw [int] Number of rows to subsample.

replace [bool] Whether to replace sampled rows.

Returns

array Smaller array.

train (self, X, Y, Z, U, num_targets=1)

Train the network using pairs of patches from the images.

Parameters

 ${f X}$ [array] source scans, slices by height by width

Y [array] source labels, slices by height by width

Z [array] target scans, slices by height by width

U [array] target labels, slices by height by width, contains NaN's at unknown labels

num_targets [int] How many target labels to use.

Returns

None

Examples

In the /demos folder, there are a number of example scripts. These show potential use cases.

Here we walk through a simple version. First, make sure to import some necessary modules:

```
import numpy as np
import matplotlib.pyplot as plt
from mrainet.mraicnn import MRAIConvolutionalNeuralNetwork
from mrainet.util import extract_all_patches
from mrainet.viz import viz_embedding
```

Next, we should load some data. The folder *mrainet/demos/data/* contains a source MRI-scan and its segmentation as well as a target MRI-scan with an imcomplete segmentation.

```
# Load source MRI-scan and corresponding segmentation
X = np.load('./demos/data/subject01_GE2D_1.5T.npy')
Y = np.load('./demos/data/subject01_segmentation.npy')
# Load target MRI-scan and corresponding segmentation
Z = np.load('./demos/data/subject02_GE2D_3.0T.npy')
U = np.load('./demos/data/subject02_segmentation.npy')
# Note that U is missing a lot of labels
print('Proportion missing labels = ' + str(np.mean(~np.isnan(U.ravel()))))
```

Now, it's time to initialize and compile the network.

(continues on next page)

(continued from previous page)

```
num_draw=10,
margin=10)
```

Note that these options will result in a training set of 220 000 samples, and training might be quite expensive on a CPU laptop.

Now we'll call the training procedure, which automatically handles the pair sampling procedure.

```
# Call training procedure on source and target data
N.train(X, Y, Z, U, num_targets=1)
```

After training, we'll map all source and target patches extracted from the images to MRAI's learned representation.

```
# Extract all source patches and feed them through network.
PX = extract_all_patches(X[0], patch_size=(31, 31), edge=(15, 15), add_4d=True)
HX = N.feedforward(PX, scan_ID=0)
# Map label image to sparse array format
sY = N.matrix2sparse(Y[0], edge=(15, 15))
# Extract all target patches and feed them through network.
PZ = extract_all_patches(Z[0], patch_size=(31, 31), edge=(15, 15), add_4d=True)
HZ = N.feedforward(PZ, scan_ID=1)
# Map label image to sparse array format
sU = N.matrix2sparse(U[0], edge=(15, 15), remove_nans=False)
# Filter out missing target labels
HZ = HZ[~np.isnan(sU[:, 2]), :]
sU = sU[~np.isnan(sU[:, 2]), :]
```

Given 2-dimensional feature vectors for each patch, we can visualize them using a scatter plot:

```
# Create figure
fig, ax = plt.subplots(figsize=(15, 10))
# Call visualizer
viz_embedding(HX, sY[:, 2], marker='o', ax=ax)
viz_embedding(HZ, sU[:, 2], marker='x', ax=ax)
```

Contact

Any comments, questions, or general feedback can be submitted to the repository's issues tracker.

Python Module Index

m

mrainet.mraicnn,5
mrainet.mraidnn,9

Index

С

L

compile_net() (mrainet.mraicnn.MRAIConvolutiona	lNeulr <u>a</u> tNetwork (mrainet.mraicnn.MRAIConvolutionalNeuralNetwork		
method), 6	method), 7		
<pre>compile_net() (mrainet.mraidnn.MRAIDenseNeural.</pre>	NeWorkorm() (mrainet.mraidnn.MRAIDenseNeuralNetwork		
method), 9	method), 10		
contrastive_loss()	<pre>l2_norm() (mrainet.mraicnn.MRAIConvolutionalNeuralNetwork</pre>		
(mrainet.mraicnn.MRAIConvolutionalNeuralNetwork method), 7			
method), 6	l2_norm() (<i>mrainet.mraidnn.MRAIDenseNeuralNetwork</i>		
contrastive_loss()	method), 10		
(mrainet.mraidnn.MRAIDenseNeuralNetwork	<pre>load_model() (mrainet.mraicnn.MRAIConvolutionalNeuralNetwork</pre>		
method), 9	method), 7		
_	<pre>load_model() (mrainet.mraidnn.MRAIDenseNeuralNetwork</pre>		
E	method), 10		

E

<pre>extract_random_patches() (mrainet.mraicnn.MRAIConvolutionalNeur</pre>	tw M k	
method), 6	<pre>matrix2sparse() (mrainet.mraicnn.MRAIConvol</pre>	utionalNeuralNetwor
<pre>extract_random_patches()</pre>	method), 7	
(mrainet.mraidnn.MRAIDenseNeuralNetwork	<pre>matrix2sparse() (mrainet.mraidnn.MRAIDensel</pre>	NeuralNetwork
method), 9	method), 10	
F	MRAIConvolutionalNeuralNetwork (class mrainet.mraicnn), 5	in
<pre>feedforward() (mrainet.mraicnn.MRAIConvolutional</pre>	Mana Menork (class mrainet.mraidnn), 9	in

feedforward() (mrainet.mraidnn.MRAIDenseNeuralNetWorknet.mraicnn (module), 5 mrainet.mraidnn (module), 9

S

G

method), 10

sample_pairs() (mrainet.mraicnn.MRAIConvolutionalNeuralNetwork gen_index_combs() method), 7 (mrainet.mraicnn.MRAIConvolutionalNeuralNetwork sample_pairs() (mrainet.mraidnn.MRAIDenseNeuralNetwork method), 6 method), 11 gen_index_combs() save_model() (mrainet.mraicnn.MRAIConvolutionalNeuralNetwork (mrainet.mraidnn.MRAIDenseNeuralNetwork method), 8 method), 10 save_model() (mrainet.mraidnn.MRAIDenseNeuralNetwork L method), 11 index2patch() (mrainet.mraicnn.MRAIConvolutionalNeuralNetwork ________ image() (mrainet.mraicnn.MRAIConvolutionalNeuralNetwork method), 8 method), 6 index2patch() (mrainet.mraidnn.MRAIDenseNeuralNework __image() (mrainet.mraidnn.MRAIDenseNeuralNetwork method), 11 method), 10

Т