

Welcome to mr-provisioner

The main documentation for the site is organized into a couple sections:

	User Documentation

Information about development is also available:

	Developer Documentation

	Design Documentation

User Documentation

	Getting started
	Install external dependencies

	Create a virtual env

	Install requirements

	Configuration file

	Set up database

	Run the app

	Next steps

	Configuration options

	Kea integration
	Install

	Configure

	Deploy
	Systemd

	Upgrade
	Releases

	Download and install

Design Documentation

	Design Overview

	Netboot explained

	Console Access

	BMC Access

Developer Documentation

	Getting started
	Install development requirements

	Run development server

	Develop with Docker!

	Working with documentation

	Database migrations
	Creating a new migration

Getting started

Install external dependencies

mr-provisioner requires the following external dependencies to be installed:

	virtualenv

	python-pip

	ipmitool

Additionally, mr-provisioner also relies on the following external services:

	postgresql

	tftp-http-proxy [https://github.com/bwalex/tftp-http-proxy]

	ws-subprocess [https://github.com/bwalex/ws-subprocess]

Create a virtual env

Set up a virtual environment to run the application:

virtualenv --python=python3 env

NOTE: Make sure to specify python 3 if your system doesn’t use it by detault
(-p PYTHON_EXE)

After that, activate the virtual env:

source env/bin/activate

Install requirements

First, make sure the virtual env is activated (see above). Then, install the required python dependencies by running:

pip install -r requirements.txt

Configuration file

Copy the example configuration file from examples/config.ini to a location of your chosing, and adjust it according to your needs. At the least, you will have to configure the database uri and the TFTPRoot setting.

See Configuration options for more information.

Set up database

Create a new database and user for mr-provisioner if you haven’t already set one up:

sudo -u postgres -s
psql

CREATE DATABASE <dbname>;
CREATE ROLE <username> WITH PASSWORD '<password>' LOGIN;
GRANT ALL PRIVILEGES ON DATABASE <dbname> TO <username>;

Create the required tables by running the database migrations:

./run.py -c /path/to/your/config.ini db upgrade

After this, a first user called admin with password linaro will be available.

Run the app

First, make sure the virtual env is activated in the current shell.

Start up ws-subprocess [https://github.com/bwalex/ws-subprocess]:

/path/to/ws-subprocess -controller-url "http://localhost:5000/admin/ws-subprocess" -listen "0.0.0.0:8866"

Start up tftp-http-proxy [https://github.com/bwalex/tftp-http-proxy]:

/path/to/tftp-http-proxy -http-base-url "http://localhost:5000/tftp/"

And finally, start up mr-provisioner:

./run.py -c /path/to/your/config.ini tornado -h 0.0.0.0 -p 5000

Next steps

mr-provisioner can be used with any DHCP server, but works best with Kea [https://www.isc.org/kea/] and the mr-provisioner-kea plugin. See Kea integration for more information. Some of the features that are only enabled with Kea [https://www.isc.org/kea/] include:

	Showing DHCP IP lease in the UI

	Assigning static/reserved IPs to machines

For additional deployment instructions, see Deploy.

Configuration options

This section will document all the supported config.ini options. Still needs to be written.

Kea integration

Install

Dependencies

To build Kea and the mr-provisioner-kea plugin [https://github.com/mr-provisioner/mr-provisioner-kea], you need some libraries in addition to standard build tools:

	log4cplus (e.g. on Ubuntu: liblog4cplus-dev)

	curl (e.g. on Ubuntu: libcurl4-openssl-dev or libcurl4-gnutls-dev)

	openssl (e.g. on Ubuntu: libssl-dev)

	boost c++ (e.g. on Ubuntu: libboost-all-dev)

Install Kea

Download a Kea 1.2.0 source tarball from the Kea website [https://www.isc.org/kea/]. In the Kea source directory, run:

./configure --prefix=/opt/kea
make -j5
sudo make install

Install Kea mr-provisioner hook/plugin

Download a mr-provisioner-kea release compatible with the Kea release (e.g. version 0.1) from the mr-provisioner-kea releases [https://github.com/mr-provisioner/mr-provisioner-kea/releases] page. In the mr-provisioner-kea source directory, run:

make KEA_SRC=/path/to/kea-1.2.0 KEA_PREFIX=/opt/kea
sudo make KEA_SRC=/path/to/kea-1.2.0 KEA_PREFIX=/opt/kea install

This will install the plugin as libkea-hook-mr-provisioner.so under $(KEA_PREFIX)/lib.

Configure

Add the following section to your Kea Dhcp4/Dhcp6 configuration section(s), adjusting the URL to your deployment of mr-provisioner:

"hooks-libraries": [
 {
 "library": "/opt/kea/lib/libkea-hook-mr-provisioner.so",
 "parameters": {
 "provisioner_url": "http://127.0.0.1:5000/dhcp",
 "timeout_ms": 5000
 }
 }
]

For additional setup information including systemd files, see Deploy.

Deploy

This section will document how to properly deploy mr-provisioner, with sample systemd files, etc. Still needs to be written.

Systemd

Service files

Copy the example systemd service files in examples/systemd into /etc/systemd/system and adjust the paths in them.

Reload systemd to ensure the new service files are picked up:

systemctl daemon-reload

Start the services

Enable the services so they start automatically at boot time:

systemctl enable mr-provisioner.service
systemctl enable mr-provisioner-ws.service
systemctl enable mr-provisioner-tftp.service

Start the services:

systemctl start mr-provisioner.service
systemctl start mr-provisioner-ws.service
systemctl start mr-provisioner-tftp.service

Optionally, if you followed Kea integration, also enable and start the Kea services:

systemctl enable kea-dhcp4.service
systemctl start kea-dhcp4.service

Upgrade

This section will document how to upgrade from one release to another.

Releases

New releases of mr-provisioner are available in mr-provisioner’s github [https://github.com/mr-provisioner/mr-provisioner/releases].

New releases are published when there are enough fixes or new features to grant them. An occasional release may be done when a critical issue is found and fixed.

Download and install

Note these instructions will need to be contextualized to whichever way your deployment is running the different services. The recommended way to do upgrades is to set up the new version from scratch and then point the service file to the new version, or use a symlink to point to the current version’s directory.

	Download the new release tar.gz from mr-provisioner’s github [https://github.com/mr-provisioner/mr-provisioner/releases] and extract it to a new directory.

	Go into the new version’s directory and follow the usual installation instructions:

virtualenv --python=python3 env
source env/bin/activate
pip install -r requirements.txt

	Stop the service that runs the old version.

	Make a backup of the database before the database upgrade.

	Upgrade the database:

./run.py -c /path/to/your/config.ini db upgrade

	Start the service using the newly installed version.

Design Overview

mr-provisioner helps you automate and provision servers, manage and assign your hardware. It can handle multiple architectures.

mr-provisioner handles the entire network boot process from controlling DHCP and handling TFTP requests to providing installation configuration files. See Netboot explained for detailed explanation.

Hardware reservation is available and it enables assigning machines to users. Users can then manage the OS that gets installed and access the console. mr-provisioner provides users restart and PXE reboot functionality by talking to BMC (see BMC Access) and Console Access via ipmi.

Netboot explained

In the first version of mr-provisioner the installation process is simple, see the following diagram:

[image: ../_images/boot-flow-simple.svg]
In the diagram the Client is the server that is going to be reprovisioned. The DHCP server in this case is dnsmasq configured to serve bootfile-grub-aa64.efi as follows:

dhcp-boot=bootfile-grub-aa64.efi,,<tftp-proxy-ip-address>

The bootfile should be placed inside the tftp folder for mr-provisioner to serve.

mr-provisioner relies on the bootloader requesting for a configuration file with the MAC in its name. E.g. (tftp)/grub/01-${MAC}.

mr-provisioner will serve any file that it is requested by the tftp proxy if the file exists.

Console Access

Engineers can access the console of the server they are installing from the web app, see diagram:

[image: ../_images/ws-console.svg]
The user makes a request to mr-provisioner, and a token for the session is generated, then the browser of the user makes a websocket request to `ws-subprocess`_, who then has all that is needed to get the command to run the console from mr-provisioner.

BMC Access

There are two BMC types supported by mr-provisioner. Plain BMC is the most common one. Moonshot BMC exists separately because it needs to support double bridging. mr-provisioner uses ipmitool [https://sourceforge.net/projects/ipmitool/] to access both BMC types.

Getting started

Install development requirements

First, make sure the virtual env is activated. Then, install additional development requirements:

pip install -r requirements.dev.txt

Run development server

First, make sure the virtual env is activated.

Start up the development server by running:

./run.py -c /path/to/your/config.ini runserver -h 0.0.0.0 -p 5000 -d -r

Develop with Docker!

Alternatively, use the standalone docker development environment.

Usage:

./scripts/docker-dev.sh

The script creates a standalone local development environment in an ephemeral
docker container.

The container will operate as your UID and mount in your local mr-provisioner
source path to /work. It will install mr_provisioner, set up and start
postgresql, run all database migrations, run tests, run linters (javascript and
python), run mr_provisioner on localhost:5000 in the background, and also
return a bash shell.

From the docker shell, interactively run “make test”, “make lint”, etc while
editing files in real-time.

Log into the web interface with username admin, password linaro @
http://localhost:5000/

Working with documentation

In the docs/ directory, generate the documentation by running:

make html

Or, you can start up a live-updating documentation server by running:

sphinx-autobuild . _build

The documentation will then be available at http://127.0.0.1:8000

Database migrations

Creating a new migration

A new migration can either be autogenerated, or created manually.

Autogenerated migration

Automatically generate a migration based on detected model changes by running:

./run.py -c /path/to/your/config.ini db migrate -m "some relevant description"

Manual migration

Generate a new empty migration file to write a manual migration by running:

./run.py -c /path/to/your/config.ini db revision -m "some relevant description"

Index

 _static/comment-bright.png

_static/comment-close.png

_static/ajax-loader.gif

_static/comment.png

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		
 Welcome to mr-provisioner

 		
 Getting started

 		
 Install external dependencies

 		
 Create a virtual env

 		
 Install requirements

 		
 Configuration file

 		
 Set up database

 		
 Run the app

 		
 Next steps

 		
 Configuration options

 		
 Kea integration

 		
 Install

 		
 Dependencies

 		
 Install Kea

 		
 Install Kea mr-provisioner hook/plugin

 		
 Configure

 		
 Deploy

 		
 Systemd

 		
 Service files

 		
 Start the services

 		
 Upgrade

 		
 Releases

 		
 Download and install

 		
 Design Overview

 		
 Netboot explained

 		
 Console Access

 		
 BMC Access

 		
 Getting started

 		
 Install development requirements

 		
 Run development server

 		
 Develop with Docker!

 		
 Working with documentation

 		
 Database migrations

 		
 Creating a new migration

 		
 Autogenerated migration

 		
 Manual migration

_static/minus.png

_static/plus.png

_static/file.png

_static/up.png

_static/up-pressed.png

