

 Navigation

 	
 index

 	
 next |

 	mqtt-broker 1 documentation

Welcome to mqtt-broker’s Project Documentation

This project was originally developed Tegris Ltda for the FieldLink [https://www.fieldlink.me]
application and is distributed under the conditions described in the
licensing chapter.

You may contact the project maintainer by dropping a message at
@rafgoncalves [http://www.twitter.com/rafgoncalves] or using the
issue tracker [https://bitbucket.org/tegris/mqtt-broker/issues].

Table of Contents

	Getting Started
	Installation

	Running the Broker
	Command Line Options

	Message Exchanging

	Configuration Scripts
	Supervisor

	systemd

	Frontend Console
	Dashboards
	Broker Dashboard

	Session Dashboard

	Topic Dashboard

	Monitoring Running Brokers
	Munin Integration

	SNMP Interface

	Amazon AWS Cloud Monitoring

	Advanced Configurations
	Session and Message Store Options
	In Memory Storage

	File Storage

	Redis Backend

	MQTT-Broker Clusters
	Bridge Mode

	Session and Message Store Sharing

	Contribute
	Software Development

	Bug Tracking

	Documentation

	Project Roadmap
	MQTT Compliance

	MQTT Protocol Extensions

	Integration Testing

	Dependency Review

	Message Store Support

	References
	MQTT Protocol

	Recommended MQTT Clients

	Recommended MQTT Brokers

	Licensing
	An Open Source Effort and Contribution

	MIT License Terms

	Sandbox

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mqtt-broker 1 documentation

Getting Started

Installation

Running the Broker

Command Line Options

Message Exchanging

Configuration Scripts

Supervisor

systemd

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mqtt-broker 1 documentation

Frontend Console

Dashboards

Broker Dashboard

Session Dashboard

Topic Dashboard

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mqtt-broker 1 documentation

Monitoring Running Brokers

Munin Integration

SNMP Interface

Amazon AWS Cloud Monitoring

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mqtt-broker 1 documentation

Advanced Configurations

Session and Message Store Options

In Memory Storage

File Storage

Redis Backend

MQTT-Broker Clusters

Bridge Mode

Session and Message Store Sharing

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mqtt-broker 1 documentation

Contribute

Software Development

Clone the project’s repository [https://bitbucket.org/tegris/mqtt-broker/] from BitBucket, do some good and open a pull
request.

Attention

Check the open issues and pull requests to avoid reinventing the wheel.

If you want to collaborate in solving an issue or developing a feature,
please contact the person doing it through the issue tracker.

Bug Tracking

So you found a nasty bug?

Take a look at the issue tracker [https://bitbucket.org/tegris/mqtt-broker/issues] and see if it was already reported. If you
find a corresponding entry please upvote it and consider tackling the issue or
helping those already involved. If you manage to solve the bug, open a pull
request so we fix project for everyone.

If you found a previously unknown exemplar of software development fauna,
please create a new entry and describe the bug as best as you can, possibly
writing a unittest for it. Finally, state if you plan to solve it yourself
or need help.

Documentation

You will find this documentation bundled with the source code, under the docs
directory, in the project’s repository [https://bitbucket.org/tegris/mqtt-broker/]. It should be easy to compile it using
the command:

you@your-pc:somewhere/mqtt-broker/docs$ make html

The results are built and stored at the build directory. The following steps
are recommended:

	Edit a page under sources directory;

	Rebuild the html results (using the aforementioned command);

	Check the results by opening build/index.html;

	Repeat to your satisfaction;

	Open a pull request so everyone can benefit from your work.

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mqtt-broker 1 documentation

Project Roadmap

Important

These features are presented in no special order, neither is there a
development schedule for them. If your project requires any of these features
we encourage you to visit the corresponding BitBucket issue and express
the situation.

You are also welcome to implement these and open a pull request.

MQTT Compliance

	MQTT Strict Mode [issue #1] [https://bitbucket.org/tegris/mqtt-broker/issue/1/mqtt-strict-mode]

	QoS Level 2, exactly once delivery [issue #2] [https://bitbucket.org/tegris/mqtt-broker/issue/2/qos-2-support]

	Last Will message [issue #3] [https://bitbucket.org/tegris/mqtt-broker/issue/3/support-last-will]

MQTT Protocol Extensions

	Authentication support [issue #4] [https://bitbucket.org/tegris/mqtt-broker/issue/4/authentication-support]

	Authorization support [issue #5] [https://bitbucket.org/tegris/mqtt-broker/issue/5/authorization-support]

	Handling compressed publish messages (gzip) [issue #6] [https://bitbucket.org/tegris/mqtt-broker/issue/6/message-compression]

	Automatic compressing messages based on payload size [issue #7] [https://bitbucket.org/tegris/mqtt-broker/issue/7/automatic-compression-based-on-payload]

Integration Testing

	Expand the test suite for QoS 0 [issue #8] [https://bitbucket.org/tegris/mqtt-broker/issue/8/expand-test-suite-for-qos-0]

	Expand the test suite for QoS 2 [issue #9] [https://bitbucket.org/tegris/mqtt-broker/issue/9/expand-test-suite-for-qos-2]

Dependency Review

	Consider Python AsyncIO instead of TornadoWeb [issue #10] [https://bitbucket.org/tegris/mqtt-broker/issue/10/consider-replacing-tornadoweb-in-favor-of]

Message Store Support

	File based message store [issue #11] [https://bitbucket.org/tegris/mqtt-broker/issue/11/file-based-message-store]

	Redis backend [issue #12] [https://bitbucket.org/tegris/mqtt-broker/issue/12/redis-based-message-store]

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mqtt-broker 1 documentation

References

MQTT Protocol

Recommended MQTT Clients

Recommended MQTT Brokers

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mqtt-broker 1 documentation

Licensing

An Open Source Effort and Contribution

This work is distributed as an contribution for the open source community,
responsible for revolutionary tools as the Python Language, the Tornadoweb
framework, the Sphinx=doc project and all the projects on which both this
software and Tegris are build upon.

MIT License Terms

The MIT License (MIT)
Copyright (c) 2014 Tegris LTDA

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	
 previous |

 	mqtt-broker 1 documentation

Sandbox

	
class broker.server.MQTTServer(authentication=None, persistence=None, clients=None, ssl_options=None)[source]

	This is the highest abstraction of the package and represents the whole MQTT
Broker. It’s main roles are handling incoming connections, keeping tabs for
the known client sessions and dispatching messages based on subscription
matching.

	
add_client(client)[source]

	Register a client to the Broker.

	Parameters:	client (MQTTClient) – A broker.client.MQTTClient instance.

	
broadcast_message(msg)[source]

	Broadcasts a message to all clients with matching subscriptions,
respecting the subscription QoS.

	Parameters:	msg (Publish) – A broker.messages.Publish instance.

	
configure_last_will(client, connect_msg)[source]

	Configures the last will message options for a given client on its
connect message. Both the client and the connect message must point
to the same client uid.

	Parameters:	
	MQTTClient (client) – A client instance;

	Connect (connect_msg) – A Connect message that specifies the client.

	
disconnect_all_clients()[source]

	Disconnect all known clients.

	
disconnect_client(client)[source]

	Disconnects a MQTT client. Can be safely called without checking if the
client is connected.

	Parameters:	client (MQTTClient) – The MQTTClient to be disconnect

	
dispatch_message(client, msg, cache=None)[source]

	Dispatches a message to a client based on its subscriptions. It is safe
to call this method without checking if the client has matching
subscriptions.

	Parameters:	
	client (MQTTClient) – The client which will possibly receive the
message;

	msg (Publish) – The message to be delivered.

	cache (dict) – A dict that will be used for raw data caching.
Defaults to a empty dictionary if None.

	
enqueue_retained_message(client, subscription_mask)[source]

	Enqueues all retained messages matching the subscription_mask to be
sent to the client.

	Parameters:	
	client (MQTTClient) – A known MQTTClient.

	subscription_mask (str) – The subscription mask to match the
messages against.

	
get_known_client(connect_msg)[source]

	Returns a known MQTTClient instance that has the same uid defined on
the Connect message.

Caution

If the connect message defines the usage of a clean session, this
method will clear any previous session matching this client ID and
automatically return None

	Parameters:	Connect (connect_msg) – A connect message that specifies the client.

	
handle_incoming_publish(msg)[source]

	Handles an incoming publish. This method is normally called by the
clients a mechanism of notifying the server that there is a new message
to be processed. The processing itself consists of retaining the message
according with the msg.retain flag and broadcasting it to the
subscribers.

	Parameters:	msg (Publish) – The Publish message to be processed.

	
handle_stream(stream, address)[source]

	This coroutine is called by the Tornado loop whenever it receives a
incoming connection. The server resolves the first message sent, checks
if it’s a CONNECT frame and configures the client accordingly.

	Parameters:	
	stream (IOStream) – A tornado.iostream.IOStream instance;

	address (tuple) – A tuple containing the ip and port of the
connected client, ie (‘127.0.0.1’, 12345).

	
remove_client(client)[source]

	Removes a client from the know clients list. It’s safe to call this
method without checking if the client is already known.

	Parameters:	client (MQTTClient) – A broker.client.MQTTClient instance;

Caution

It won’t force client disconnection during the process, which can
result in a lingering client in the Tornado loop.

	
class broker.client.MQTTClient(server, connection, authorization=None, uid=None, clean_session=False, keep_alive=60, persistence=None)[source]

	Objects of this class encapsulate and abstract all aspects of a given
client. A MQTTClient object may refer to a live, connected, client or a
known client which albeit disconnected had the clean_sessions flag set to
false and, thus, is kept by the server as an end point for routed messages.

One may call self.is_connected() to check whether is there a connected
client or not.

	Parameters:	
	server (MQTTServer) – The server which the client is bound to;

	connection (MQTTConnection) – The connection to be used;

	uid (str) – A string used as the client’s id;

	clean_session (bool) – The clean session flag, as per MQTT Protocol;

	keep_alive (int) – The keep alive interval, in seconds.

	persistence (ClientPersistenceBase) – An object that provides persistence

	
_on_connection_timeout(connection)[source]

	Callback called when the connection times out. Ensures clearing the
self.connected event and processing the self.disconnect()
method.

	
_on_stream_close(connection)[source]

	Callback called when the stream closes. Ensures clearing the
self.connected event and processing the self.disconnect()
method.

	
_process_incoming_packets(connection)[source]

	This coroutinte fetches the message raw data from
self.incoming_queue, parses it into the corresponding message
object (an instance of one of the
broker.messages.BaseMQTTMessage subclasses) and passes it to
the self.incoming_transaction_manager to be processed.

It is started by calling self.start() and stops upon client
disconnection.

	
_process_outgoing_packets(connection)[source]

	This coroutinte fetches the message raw data from
self.outgoing_queue, parses it into the corresponding message
object (an instance of one of the
broker.messages.BaseMQTTMessage subclasses) and passes
it to the self.outgoing_transaction_manager to be processed.

It is started by calling self.start() and stops upon client
disconnection.

	
configure_last_will(topic, payload, qos, retain=False)[source]

	Configures a message to be send as the client’s last will. This message
will be send when the connected is disconnected by a connection timeout,
protocol error or an unexpected disconnection.

	Parameters:	
	topic (str) – The topic which the message will be delivered;

	payload (bytes) – Message payload;

	retain (bool) – Message’s retain flag.

	
connected[source]

	An toro.Event instance that is set whenever the client is
connected and clear on disconnection. It’s safe to wait on this property
before stream related operations.

	
disconnect()[source]

	Closes the socket and disconnects the client. If
self.clean_session is set, ensures that the incoming and
outgoing queues are cleared and calls the server client removing
routine.

Hint

It’s safe to call this function without checking whether the
connection is open or not.

	
dispatch_to_server(pub_msg)[source]

	Dispatches a Publish message to the server for further processing, ie.
delivering it to the appropriate subscribers.

	Parameters:	pub_msg (Publish) – A broker.messages.Publish instance.

	
get_list_of_delivery_qos(msg)[source]

	Matches the msg.topic against all the current subscriptions and
returns a list containing the QoS level for each matched subscription.

	Parameters:	msg (Publish) – A MQTT valid message.

	Return type:	tuple

	Returns:	A list of QoS levels, ie [0, 0, 1, 2, 0, 2]

	
get_matching_qos(msg, subscriptions_mask)[source]

	Matches the msg.topic against a single subscription defined by the
subscription mask and returns the QoS level on which the message should
be delivered.

	Parameters:	
	msg (Publish) – Message to be analysed;

	subscriptions_mask – A subscription mask that identifies one of
the client’s subscriptions.

	Returns:	QoS Level or None, in case it doesn’t match.

	
handle_last_will()[source]

	Checks if a client has a pending last will message and dispatches it for
server processing.

	
is_connected()[source]

	A shorthand for :meth:connected.is_set().

	
publish(msg)[source]

	Puts a publish packet on the self.outgoing_queue to be sent
to the client.

	Parameters:	msg (Publish) – The message to be set or a iterable of its bytes.

	
send_packet(packet)[source]

	Puts a packet on the self.outgoing_queue to be sent to the
client.

	
start()[source]

	Starts the client fetching, processing and dispatching routines. Should
be called after object instantiation or a self.update_connection()
call.

The following coroutines are started:

	self._process_incoming_messages()

	self._process_outgoing_messages()

	
subscribe(subscription_mask, qos)[source]

	Subscribes the client to a topic or wildcarded mask at the informed QoS
level. Calling this method also signalizes the server to enqueue the
matching retained messages.

When called for a (subscripition_mask, qos) pair for which the
client has already a subscription it will silently ignore the command
and return a suback.

	Parameters:	
	subscription_mask (string) – A MQTT valid topic or wildcarded mask;

	qos (int) – A valid QoS level (0, 1 or 2).

	Return type:	int

	Returns:	The granted QoS level (0, 1 or 2) or 0x80 for failed
subscriptions.

	
unsubscribe(topics)[source]

	Unsubscribes the client from each topic in topics. Safely
ignores topics which the client is not subscribed to.

	Parameters:	topics (iterable) – An iterable of MQTT valid topic strings.

	
update_configuration(clean_session=False, keep_alive=60)[source]

	Updates the internal attributes.

	Parameters:	
	clean_session (bool) – A flag indicating whether this session should
be brand new or attempt to reuse the last known session for a client
with the same self.uid as this.

	keep_alive (int) – Connection’s keep alive setting, in seconds.

	
update_connection(connection)[source]

	Updates the client’s connection by disconnecting the previous one and
configuring the new one’s keep alive time according to keep_alive.

	Parameters:	connection (MQTTConnection) – The new connection to be used;

	
write(msg)[source]

	Writes a MQTT Message to the client. If the client isn’t connected,
waits for the self.connected event to be set.

	Parameters:	Message msg (MQTT) – The message to be send. It must be a instance
of broker.messages.BaseMQTTMessage or it’s subclasses.

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 Navigation

 	
 index

 	mqtt-broker 1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | G
 | H
 | I
 | M
 | P
 | R
 | S
 | U
 | W

_

 	

 	_on_connection_timeout() (broker.client.MQTTClient method)

 	_on_stream_close() (broker.client.MQTTClient method)

 	

 	_process_incoming_packets() (broker.client.MQTTClient method)

 	_process_outgoing_packets() (broker.client.MQTTClient method)

A

 	

 	add_client() (broker.server.MQTTServer method)

B

 	

 	broadcast_message() (broker.server.MQTTServer method)

C

 	

 	configure_last_will() (broker.client.MQTTClient method)

 	

 	(broker.server.MQTTServer method)

 	

 	connected (broker.client.MQTTClient attribute)

D

 	

 	disconnect() (broker.client.MQTTClient method)

 	disconnect_all_clients() (broker.server.MQTTServer method)

 	disconnect_client() (broker.server.MQTTServer method)

 	

 	dispatch_message() (broker.server.MQTTServer method)

 	dispatch_to_server() (broker.client.MQTTClient method)

E

 	

 	enqueue_retained_message() (broker.server.MQTTServer method)

G

 	

 	get_known_client() (broker.server.MQTTServer method)

 	get_list_of_delivery_qos() (broker.client.MQTTClient method)

 	

 	get_matching_qos() (broker.client.MQTTClient method)

H

 	

 	handle_incoming_publish() (broker.server.MQTTServer method)

 	handle_last_will() (broker.client.MQTTClient method)

 	

 	handle_stream() (broker.server.MQTTServer method)

I

 	

 	is_connected() (broker.client.MQTTClient method)

M

 	

 	MQTTClient (class in broker.client)

 	

 	MQTTServer (class in broker.server)

P

 	

 	publish() (broker.client.MQTTClient method)

R

 	

 	remove_client() (broker.server.MQTTServer method)

S

 	

 	send_packet() (broker.client.MQTTClient method)

 	start() (broker.client.MQTTClient method)

 	

 	subscribe() (broker.client.MQTTClient method)

U

 	

 	unsubscribe() (broker.client.MQTTClient method)

 	update_configuration() (broker.client.MQTTClient method)

 	

 	update_connection() (broker.client.MQTTClient method)

W

 	

 	write() (broker.client.MQTTClient method)

 Copyright 2013, Tegris.
 Created using Sphinx 1.2.

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		mqtt-broker 1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Tegris.
 Created using Sphinx 1.2.

_static/plus.png

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_modules/broker/client.html

 Navigation

 		
 index

 		mqtt-broker 1 documentation »

 		Module code »

 Source code for broker.client

from collections import deque
from contextlib import ContextDecorator
from datetime import timedelta
import re
from logging import getLogger

from tornado import gen
from tornado import ioloop
from tornado.concurrent import Future
from tornado.iostream import StreamClosedError
from toro import Event
import toro

from broker.access_control import Authorization
from broker.actions import IncomingAction, OutgoingAction
from broker.concurency import CancelledException, DummyFuture

from broker.persistence import InMemoryClientPersistence, OutgoingPublishesBase, PacketIdsDepletedError
from broker.util import MQTTUtils
from broker.factory import MQTTMessageFactory, MQTTMessageMakeError, IncomingActionFactory, TypeFactoryError, \
 OutgoingActionFactory

from broker.messages import Publish, BaseMQTTMessage
from broker.connection import MQTTConnection, MQTTConnectionClosed

[docs]class MQTTClient():
 """
 Objects of this class encapsulate and abstract all aspects of a given
 client. A MQTTClient object may refer to a live, connected, client or a
 known client which albeit disconnected had the clean_sessions flag set to
 false and, thus, is kept by the server as an end point for routed messages.

 One may call :meth:`self.is_connected` to check whether is there a connected
 client or not.

 :param MQTTServer server: The server which the client is bound to;
 :param MQTTConnection connection: The connection to be used;
 :param str uid: A string used as the client's id;
 :param bool clean_session: The clean session flag, as per MQTT Protocol;
 :param int keep_alive: The keep alive interval, in seconds.
 :param ClientPersistenceBase persistence: An object that provides persistence
 """
 def __init__(self, server, connection, authorization=None,
 uid=None, clean_session=False,
 keep_alive=60, persistence=None):

 self.uid = uid
 self.logger = getLogger('activity.clients')
 self.persistence = persistence or InMemoryClientPersistence(uid)

 self.subscriptions = ClientSubscriptions(persistence.subscriptions)

 self._connected = Event()

 self.last_will = None
 self.connection = None
 self.clean_session = None
 self.keep_alive = None

 self.server = server
 self.authorization = authorization or Authorization.no_restrictions()

 # Queue of the packets ready to be delivered
 self.outgoing_queue = OutgoingQueue(self.persistence.outgoing_publishes)

 self.update_configuration(clean_session, keep_alive)
 self.update_connection(connection)

 @property
 def incoming_packet_ids(self):
 return self.persistence.incoming_packet_ids

 @property
 def redelivery_deadline(self):
 s = self.keep_alive if self.keep_alive > 0 else 60
 return timedelta(seconds=s)

[docs] def update_connection(self, connection):
 """
 Updates the client's connection by disconnecting the previous one and
 configuring the new one's keep alive time according to ``keep_alive``.

 :param MQTTConnection connection: The new connection to be used;
 """
 if self.is_connected():
 self.disconnect()

 if connection is not None:
 assert isinstance(connection, MQTTConnection)

 self.connection = connection
 self.connection.set_timeout(self.keep_alive)
 self.connection.set_close_callback(self._on_stream_close)
 self.connection.set_timeout_callback(self._on_connection_timeout)

 if not self.connection.closed():
 self._connected.set()

[docs] def update_configuration(self, clean_session=False, keep_alive=60):
 """
 Updates the internal attributes.

 :param bool clean_session: A flag indicating whether this session should
 be brand new or attempt to reuse the last known session for a client
 with the same :attr:`self.uid` as this.
 :param int keep_alive: Connection's keep alive setting, in seconds.
 """
 self.clean_session = clean_session
 self.keep_alive = keep_alive

 def update_authorization(self, authorization):
 self.authorization = authorization

 if not self.clean_session:
 self.unsubscribe_denied_topics()

[docs] def start(self):
 """
 Starts the client fetching, processing and dispatching routines. Should
 be called after object instantiation or a :meth:`self.update_connection`
 call.

 The following coroutines are started:

 * :meth:`self._process_incoming_messages`
 * :meth:`self._process_outgoing_messages`
 """
 self.logger.debug("[uid: %s] starting co-routines" % self.uid)
 # put connection object in `_process_incoming_messages` scope
 # so corner cases can be handled appropriately
 self._process_incoming_packets(self.connection)
 self._process_outgoing_packets(self.connection)

 @property
[docs] def connected(self):
 """
 An :class:`toro.Event` instance that is set whenever the client is
 connected and clear on disconnection. It's safe to wait on this property
 before stream related operations.
 """
 return self._connected

[docs] def is_connected(self):
 """
 A shorthand for :meth:connected.is_set().
 """
 return self._connected.is_set()

[docs] def configure_last_will(self, topic, payload, qos, retain=False):
 """
 Configures a message to be send as the client's last will. This message
 will be send when the connected is disconnected by a connection timeout,
 protocol error or an unexpected disconnection.

 :param str topic: The topic which the message will be delivered;
 :param bytes payload: Message payload;
 :param bool retain: Message's retain flag.

 """
 if topic is not None and payload is not None and qos is not None:
 self.last_will = Publish(qos=qos, dup=False, retain=retain)
 self.last_will.topic = topic
 self.last_will.payload = payload

[docs] def handle_last_will(self):
 """
 Checks if a client has a pending last will message and dispatches it for
 server processing.
 """
 if self.last_will is not None:
 self.dispatch_to_server(self.last_will)
 self.logger.debug("[uid: %s] Dispatched last will message %s" %
 (self.uid, self.last_will.log_info()))

 def _get_action(self, msg, factory):
 try:
 action = factory.make(msg)
 action.bind_client(self)
 return action

 except KeyError:
 self.logger.exception("[uid: %s] Wrong message type %s" %
 (self.uid, type(msg)))

 self.logger.debug(
 "[uid: %s] Will be disconnect due to invalid message" %
 self.uid
)

 self.disconnect()

 @gen.coroutine
[docs] def _process_incoming_packets(self, connection):
 """
 This coroutinte fetches the message raw data from
 :attr:`self.incoming_queue`, parses it into the corresponding message
 object (an instance of one of the
 :class:`broker.messages.BaseMQTTMessage` subclasses) and passes it to
 the :attr:`self.incoming_transaction_manager` to be processed.

 It is started by calling :meth:`self.start()` and stops upon client
 disconnection.
 """
 while connection.is_readable:
 with client_process_context(self, connection):
 msg = yield connection.read_message()

 msg_obj = MQTTMessageFactory.make(msg)
 self.logger.debug("[B << C] [uid: %s] %s" %
 (self.uid, msg_obj.log_info()))

 action = self._get_action(msg_obj, IncomingActionFactory)
 assert isinstance(action, IncomingAction)
 action.run()

 self.logger.debug("[uid: %s] stopping _process_incoming_messages"
 % self.uid)

 @gen.coroutine
[docs] def _process_outgoing_packets(self, connection):
 """
 This coroutinte fetches the message raw data from
 :attr:`self.outgoing_queue`, parses it into the corresponding message
 object (an instance of one of the
 :class:`broker.messages.BaseMQTTMessage` subclasses) and passes
 it to the :attr:`self.outgoing_transaction_manager` to be processed.

 It is started by calling :meth:`self.start()` and stops upon client
 disconnection.
 """
 self.outgoing_queue.clear()
 self.outgoing_queue.retry_pending()

 while not connection.closed():
 with client_process_context(self, connection):
 msg = yield self.outgoing_queue.get()
 assert isinstance(msg, BaseMQTTMessage)

 action = self._get_action(msg, OutgoingActionFactory)
 assert isinstance(action, OutgoingAction)

 self.logger.debug("[B >> C] [uid: %s] %s" %
 (self.uid, msg.log_info()))
 yield self.write(action.get_data())

 action.post_write()

 self.logger.debug("[uid: %s] stopping _process_outgoing_messages" % self.uid)

[docs] def publish(self, msg):
 """
 Puts a publish packet on the :attr:`self.outgoing_queue` to be sent
 to the client.

 :param msg: The message to be set or a iterable of its bytes.
 :type msg: Publish
 """
 try:
 self.outgoing_queue.put_publish(msg)
 except PacketIdsDepletedError:
 self.logger.error('[uid: %s] Packet IDs depleted' % self.uid)

[docs] def send_packet(self, packet):
 """
 Puts a packet on the :attr:`self.outgoing_queue` to be sent to the
 client.
 """
 self.outgoing_queue.put(packet)

 @gen.coroutine
[docs] def write(self, msg):
 """
 Writes a MQTT Message to the client. If the client isn't connected,
 waits for the :attr:`self.connected` event to be set.

 :param MQTT Message msg: The message to be send. It must be a instance
 of :class:`broker.messages.BaseMQTTMessage` or it's subclasses.
 """
 yield self.connected.wait()
 yield self.connection.write_message(msg)

[docs] def dispatch_to_server(self, pub_msg):
 """
 Dispatches a Publish message to the server for further processing, ie.
 delivering it to the appropriate subscribers.

 :param Publish pub_msg: A :class:`broker.messages.Publish` instance.
 """
 assert isinstance(pub_msg, Publish)

 if self.authorization.is_publish_allowed(pub_msg.topic):
 self.server.handle_incoming_publish(pub_msg)
 else:
 self.logger.warn("[uid: %s] is not allowed to publish on %s" %
 (self.uid, pub_msg.topic))

[docs] def subscribe(self, subscription_mask, qos):
 """
 Subscribes the client to a topic or wildcarded mask at the informed QoS
 level. Calling this method also signalizes the server to enqueue the
 matching retained messages.

 When called for a (`subscripition_mask`, `qos`) pair for which the
 client has already a subscription it will silently ignore the command
 and return a suback.

 :param string subscription_mask: A MQTT valid topic or wildcarded mask;
 :param int qos: A valid QoS level (0, 1 or 2).
 :rtype: int
 :return: The granted QoS level (0, 1 or 2) or 0x80 for failed
 subscriptions.
 """
 if qos not in [0, 1, 2]:
 self.logger.warn('client tried to subscribe with invalid qos %s' % qos)
 return 0x80

 new_subscription = subscription_mask not in self.subscriptions or \
 self.subscriptions.qos(subscription_mask) != qos

 if not self.authorization.is_subscription_allowed(subscription_mask):
 self.logger.warn("[uid: %s] is not allowed to subscribe on %s" %
 (self.uid, subscription_mask))
 del self.subscriptions[subscription_mask]
 qos = 0x80

 elif new_subscription:
 ereg = MQTTUtils.convert_to_ereg(subscription_mask)
 if ereg is not None:
 self.subscriptions.add(subscription_mask, qos, re.compile(ereg))
 self.server.enqueue_retained_message(self, subscription_mask)

 else:
 qos = 0x80

 return qos

[docs] def unsubscribe(self, topics):
 """
 Unsubscribes the client from each topic in ``topics``. Safely
 ignores topics which the client is not subscribed to.

 :param iterable topics: An iterable of MQTT valid topic strings.
 """
 for topic in topics:
 del self.subscriptions[topic]

 def unsubscribe_denied_topics(self):
 for topic in self.subscriptions.masks:
 if not self.authorization.is_subscription_allowed(topic):
 self.unsubscribe(topic)

[docs] def disconnect(self):
 """
 Closes the socket and disconnects the client. If
 :attr:`self.clean_session` is set, ensures that the incoming and
 outgoing queues are cleared and calls the server client removing
 routine.

 .. hint::
 It's safe to call this function without checking whether the
 connection is open or not.
 """
 if self.is_connected():
 self.logger.debug("[uid: %s] disconnecting client" % self.uid)
 self.connection.close()
 self._connected.clear()

 self.outgoing_queue.clear()

 if self.clean_session:
 self.logger.debug("[uid: %s] cleaning session" % self.uid)
 self.server.remove_client(self)

[docs] def get_list_of_delivery_qos(self, msg):
 """
 Matches the ``msg.topic`` against all the current subscriptions and
 returns a list containing the QoS level for each matched subscription.

 :param Publish msg: A MQTT valid message.
 :rtype: tuple
 :return: A list of QoS levels, ie [0, 0, 1, 2, 0, 2]
 """
 # TODO CACHING THESE RESULTS PER CLIENT
 qos_list = []
 for mask in self.subscriptions.masks:
 qos = self.get_matching_qos(msg, mask)

 if qos is not None:
 qos_list.append(qos)

 return qos_list

[docs] def get_matching_qos(self, msg, subscriptions_mask):
 """
 Matches the ``msg.topic`` against a single subscription defined by the
 subscription mask and returns the QoS level on which the message should
 be delivered.

 :param Publish msg: Message to be analysed;
 :param subscriptions_mask: A subscription mask that identifies one of
 the client's subscriptions.
 :return: QoS Level or None, in case it doesn't match.
 """
 assert isinstance(msg, Publish)

 qos, pattern = self.subscriptions[subscriptions_mask]

 if pattern.match(msg.topic) is not None:
 self.logger.debug("[uid: %s] %s matched by %s, MAXQOS: %d"
 % (self.uid, msg.topic, subscriptions_mask, qos))

 return min(qos, msg.qos)

 return None

[docs] def _on_connection_timeout(self, connection):
 """
 Callback called when the connection times out. Ensures clearing the
 :attr:`self.connected` event and processing the :meth:`self.disconnect`
 method.
 """
 self.logger.debug("[uid: %s] Connection timeout" % self.uid)
 self.handle_last_will()
 self.disconnect()

 connection.set_close_callback(None)
 connection.set_timeout_callback(None)

[docs] def _on_stream_close(self, connection):
 """
 Callback called when the stream closes. Ensures clearing the
 :attr:`self.connected` event and processing the :meth:`self.disconnect`
 method.
 """
 self.logger.debug("[uid: %s] Stream closed %s" %
 (self.uid, self.connection._address))

 try:
 if self.connection.closed_due_error():
 self.handle_last_will()

 self.disconnect()

 except MQTTConnectionClosed:
 # already closed / disconnected
 pass

 connection.set_close_callback(None)
 connection.set_timeout_callback(None)

class client_process_context(ContextDecorator):
 def __init__(self, client, connection):
 assert isinstance(client, MQTTClient)
 self.client = client
 self.connection = connection

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 if exc_type == StreamClosedError:
 self.client.disconnect()

 elif exc_type == toro.Timeout:
 self.client.logger.debug("[uid: %s] _process_incoming_messages: timed out" %
 (self.client.uid,))
 self.client._on_connection_timeout(self.connection)

 elif exc_type == TypeFactoryError:
 self.client.logger.debug('[uid: %s] %s' % (self.client.uid, exc_val.message))
 self.client.disconnect()

 elif exc_type in [CancelledException, MQTTConnectionClosed, MQTTMessageMakeError]:
 pass

 elif isinstance(exc_val, Exception):
 self.client.logger.exception(
 "[uid: %s] Unhandled exception on client_process_context: %s" %
 (self.client.uid, str(exc_val))
)

 return True # suppress the raised exception

class ClientSubscriptions():
 """
 Encapsulates subscription persistence access and mask regex caching.
 """
 def __init__(self, subscriptions):
 self._subscriptions = subscriptions

 self._re_cache = dict()

 def add(self, mask, qos, pattern=None):
 self._re_cache[mask] = pattern or re.compile(MQTTUtils.convert_to_ereg(mask))
 self._subscriptions[mask] = qos

 def __contains__(self, item):
 return item in self._subscriptions

 def __getitem__(self, mask):
 assert self.__contains__(mask)
 return self.qos(mask), self._get_regex(mask)

 def qos(self, mask):
 return self._subscriptions[mask]

 def _get_regex(self, mask):
 compiled = self._re_cache.get(mask, None)

 if not compiled:
 ereg = MQTTUtils.convert_to_ereg(mask)
 compiled = re.compile(ereg)
 self._re_cache[mask] = compiled

 return compiled

 @property
 def masks(self):
 return self._subscriptions.keys()

 def __delitem__(self, mask):
 if mask in self._subscriptions:
 del self._subscriptions[mask]
 if mask in self._re_cache:
 del self._re_cache[mask]

class OutgoingQueue():
 """
 This class controls packets to be delivered to the remote client.
 It encapsulates the logic to send packets and start new publish flows.
 """
 def __init__(self, outgoing_publishes):
 self.max_inflight = 1

 assert isinstance(outgoing_publishes, OutgoingPublishesBase)
 self.publishes = outgoing_publishes

 self.packets = deque()
 self.retrial_handles = dict()

 self.future = DummyFuture()

 def retry_pending(self):
 for packet in self.publishes.get_all_inflight():
 self.retrial_handles[packet.id] = None
 self.put(packet)

 def put(self, packet):
 """
 Puts a packet to the outgoing queue.
 No checks are done on the provided packets.
 """
 assert isinstance(packet, BaseMQTTMessage)
 if not self.future.done():
 self.future.set_result(packet)
 else:
 self.packets.append(packet)

 def put_publish(self, packet):
 """
 Puts a publish packet to the outgoing queue.
 If the QoS level is 0 it is only placed on the outgoing queue.
 Otherwise the packet is persisted and scheduled for publishing.
 """
 assert isinstance(packet, Publish)

 if packet.qos == 0:
 self.put(packet)
 else:
 self.publishes.insert(packet)
 self._start_next_flow()

 def set_sent(self, packet_id):
 if self.publishes.is_inflight(packet_id):
 self.publishes.set_sent(packet_id)

 def is_sent(self, packet_id):
 return self.publishes.is_inflight(packet_id) and \
 self.publishes.is_sent(packet_id)

 def is_pubconf(self, packet_id):
 return self.publishes.is_inflight(packet_id) and \
 self.publishes.is_pubconf(packet_id)

 def set_pubconf(self, packet_id):
 if self.publishes.is_inflight(packet_id):
 self.publishes.set_pubconf(packet_id)

 def get(self):
 """
 Gets the next packet to be sent to the remote client.
 :return: a `Future`
 """
 if not self.future.done():
 self.future.set_exception(CancelledException('Only one future supported'))

 self.future = Future()

 # try to start next publish flow first,
 # otherwise the outgoing packets would have to deplete before
 # any publish flows could start
 started = self._start_next_flow()

 if not started and self.packets:
 self.future.set_result(self.packets.popleft())

 return self.future

 def clear(self):
 """
 Clears the in-memory state of the outgoing queue. The data in
 persistence is left as is. If there is any pending `Future`
 waiting for result, it is cancelled.
 """
 for packet_id in self.retrial_handles.keys():
 self.cancel_retrial(packet_id)

 self.packets.clear()
 self.retrial_handles.clear()

 if not self.future.done():
 msg = 'Outgoing queue was cleansed'
 self.future.set_exception(CancelledException(msg))

 self.future = DummyFuture()

 def flow_completed(self, packet_id):
 """
 Removes the publish corresponding to the `packet-id` from the inflight
 set and from persistence.
 """
 if packet_id:
 self.publishes.remove(packet_id)
 if packet_id in self.retrial_handles:
 self.cancel_retrial(packet_id)
 del self.retrial_handles[packet_id]

 self._start_next_flow()

 def _start_next_flow(self):
 if self.publishes.inflight_len < self.max_inflight:
 packet = self.publishes.get_next()
 if packet:
 self.retrial_handles[packet.id] = None
 self.put(packet)
 return True

 return False

 def _retry_flow(self, packet_id):
 if self.publishes.is_inflight(packet_id):
 self.retrial_handles[packet_id] = None
 self.put(self.publishes.get_inflight(packet_id))

 def set_retrial(self, packet_id, deadline):
 handle = self.retrial_handles.get(packet_id)

 if handle:
 self.cancel_retrial(packet_id)

 callback = lambda: self._retry(packet_id)
 handle = ioloop.IOLoop.current().add_timeout(deadline, callback)
 self.retrial_handles[packet_id] = handle

 def cancel_retrial(self, packet_id):
 handler = self.retrial_handles.get(packet_id)
 if handler is not None:
 ioloop.IOLoop.current().remove_timeout(handler)
 self.retrial_handles[packet_id] = None

 def _retry(self, packet_id):
 if packet_id in self.retrial_handles:
 self._retry_flow(packet_id)

 © Copyright 2013, Tegris.
 Created using Sphinx 1.2.

_modules/broker/server.html

 Navigation

 		
 index

 		mqtt-broker 1 documentation »

 		Module code »

 Source code for broker.server

import tornado.concurrent
from tornado.iostream import StreamClosedError
from tornado.tcpserver import TCPServer
from tornado.log import access_log
from tornado import gen
from logging import getLogger
import toro

from broker import MQTTConstants
from broker.access_control import NoAuthentication, Authorization
from broker.client import MQTTClient
from broker.exceptions import ConnectError
from broker.messages import Publish, Connect, Connack
from broker.connection import MQTTConnection
from broker.factory import MQTTMessageFactory
from broker.persistence import InMemoryPersistence

client_logger = getLogger('activity.clients')

[docs]class MQTTServer(TCPServer):
 """
 This is the highest abstraction of the package and represents the whole MQTT
 Broker. It's main roles are handling incoming connections, keeping tabs for
 the known client sessions and dispatching messages based on subscription
 matching.
 """
 def __init__(self, authentication=None, persistence=None, clients=None,
 ssl_options=None):
 super().__init__(ssl_options=ssl_options)

 self.clients = clients if clients is not None else dict()
 assert isinstance(self.clients, dict)

 self.persistence = persistence or InMemoryPersistence()
 self.authentication = authentication or NoAuthentication()

 self.recreate_sessions(self.persistence.get_client_uids())

 self._retained_messages = RetainedMessages(self.persistence.get_retained_messages())
 assert isinstance(self._retained_messages, RetainedMessages)

 def recreate_sessions(self, uids):
 access_log.info("recreating %s sessions" % len(uids))
 for uid in uids:
 if uid not in self.clients:
 self.add_client(self.recreate_client(str(uid)))

[docs] def get_known_client(self, connect_msg):
 """
 Returns a known MQTTClient instance that has the same uid defined on
 the Connect message.

 .. caution::
 If the connect message defines the usage of a clean session, this
 method will clear any previous session matching this client ID and
 automatically return None

 :param connect_msg Connect: A connect message that specifies the client.
 """
 assert isinstance(connect_msg, Connect)

 client = self.clients.get(connect_msg.client_uid)
 if client is not None:
 assert isinstance(client, MQTTClient)
 if connect_msg.clean_session:
 # Force server to remove the client, regardless of its
 # previous clean_sessions configuration
 self.remove_client(client)
 client = None

 return client

 def get_or_create_client(self, connection, msg, authorization):
 if not authorization.is_connection_allowed():
 raise ConnectError("Authentication failed uid:%s user:%s"
 % (msg.client_uid, msg.username))

 client = self.get_known_client(msg)

 if client is None:
 client = self.create_client(connection, msg, authorization)
 else:
 self.update_client(connection, msg, authorization, client)

 self.configure_last_will(client, msg)
 return client

 def create_client(self, connection, msg, authorization):
 client_persistence = self.persistence.get_for_client(msg.client_uid)
 client = MQTTClient(
 server=self,
 connection=connection,
 authorization=authorization,
 uid=msg.client_uid,
 clean_session=msg.clean_session,
 keep_alive=msg.keep_alive,
 persistence=client_persistence,
)

 access_log.info("[uid: %s] new session created"
 % client.uid)
 return client

 def recreate_client(self, client_uid):
 return MQTTClient(
 server=self,
 connection=None,
 uid=client_uid,
 clean_session=False,
 persistence=self.persistence.get_for_client(client_uid)
)

 def update_client(self, connection, msg, authorization, client):
 client.update_configuration(
 clean_session=msg.clean_session,
 keep_alive=msg.keep_alive
)
 client.update_connection(connection)
 client.update_authorization(authorization)

 access_log.info("[uid: %s] Reconfigured client upon "
 "reconnection." % client.uid)

[docs] def configure_last_will(self, client, connect_msg):
 """
 Configures the last will message options for a given client on its
 connect message. Both the client and the connect message *must* point
 to the same client uid.

 :param client MQTTClient: A client instance;
 :param connect_msg Connect: A Connect message that specifies the client.
 """
 assert isinstance(connect_msg, Connect)
 assert isinstance(client, MQTTClient)
 assert connect_msg.client_uid == client.uid

 if connect_msg.will_message is not None:
 will_payload = connect_msg.will_message.encode()
 else:
 will_payload = None
 client.configure_last_will(
 topic=connect_msg.will_topic,
 payload=will_payload,
 qos=connect_msg.will_qos,
 retain=connect_msg.will_retain
)

 @gen.coroutine
[docs] def handle_stream(self, stream, address):
 """
 This coroutine is called by the Tornado loop whenever it receives a
 incoming connection. The server resolves the first message sent, checks
 if it's a CONNECT frame and configures the client accordingly.

 :param IOStream stream: A :class:`tornado.iostream.IOStream` instance;
 :param tuple address: A tuple containing the ip and port of the
 connected client, ie ('127.0.0.1', 12345).
 """
 with stream_handle_context(stream) as context:
 connection = MQTTConnection(stream, address)

 msg = yield self.read_connect_message(connection)
 context.client_uid = msg.client_uid

 authorization = yield self.authenticate(msg)
 yield self.write_connack_message(connection, msg, authorization)

 context.client = client = self.get_or_create_client(
 connection, msg, authorization)

 client.start()
 self.add_client(client)

 @gen.coroutine
 def read_connect_message(self, connection):
 bytes_ = yield connection.read_message()
 msg = MQTTMessageFactory.make(bytes_)

 if not isinstance(msg, Connect):
 raise ConnectError('The first message is expected to be CONNECT')

 client_logger.debug("[B << C] [uid: %s] %s" %
 (msg.client_uid, msg.log_info()))

 return msg

 @gen.coroutine
 def authenticate(self, msg):
 if not msg.client_uid and not msg.clean_session:
 raise ConnectError('Client must provide an id to connect '
 'without clean session')

 authorization = yield self.authentication.authenticate(
 msg.client_uid,
 msg.username, msg.passwd)

 assert isinstance(authorization, Authorization)
 if authorization.is_fully_authorized():
 client_logger.debug('[uid: %s] user:%s fully authorized' %
 (msg.client_uid, msg.username))
 return authorization

 @gen.coroutine
 def write_connack_message(self, connection, msg, authorization):
 if not authorization.is_connection_allowed():
 ack = Connack.from_return_code(0x04)

 else:
 sp = self.is_session_present(msg)
 ack = Connack.from_return_code(0x00, session_present=sp)

 client_logger.debug("[B >> C] [uid: %s] %s" %
 (msg.client_uid, ack.log_info()))

 yield connection.write_message(ack)

 def is_session_present(self, msg):
 return not msg.clean_session and msg.client_uid in self.clients

[docs] def add_client(self, client):
 """
 Register a client to the Broker.

 :param MQTTClient client: A :class:`broker.client.MQTTClient` instance.
 """
 assert isinstance(client, MQTTClient)
 self.clients[client.uid] = client

[docs] def remove_client(self, client):
 """
 Removes a client from the know clients list. It's safe to call this
 method without checking if the client is already known.

 :param MQTTClient client: A :class:`broker.client.MQTTClient` instance;

 .. caution::
 It won't force client disconnection during the process, which can
 result in a lingering client in the Tornado loop.
 """
 assert isinstance(client, MQTTClient)

 self.persistence.remove_client_data(client.uid)

 if client.uid in self.clients:
 del self.clients[client.uid]
 access_log.info("[uid: %s] session cleaned" % client.uid)

[docs] def dispatch_message(self, client, msg, cache=None):
 """
 Dispatches a message to a client based on its subscriptions. It is safe
 to call this method without checking if the client has matching
 subscriptions.

 :param MQTTClient client: The client which will possibly receive the
 message;
 :param Publish msg: The message to be delivered.
 :param dict cache: A dict that will be used for raw data caching.
 Defaults to a empty dictionary if None.
 """
 assert isinstance(msg, Publish)
 assert isinstance(client, MQTTClient)
 assert client.uid in self.clients

 cache = cache if cache is not None else {}
 qos_list = client.get_list_of_delivery_qos(msg)

 for qos in qos_list:

 # If the client is not connected, drop QoS 0 messages
 if client.is_connected() or \
 qos > MQTTConstants.AT_MOST_ONCE:

 if qos not in cache:
 msg_copy = msg.copy()
 msg_copy.qos = qos
 cache[qos] = msg_copy

 client.publish(cache[qos])

[docs] def broadcast_message(self, msg):
 """
 Broadcasts a message to all clients with matching subscriptions,
 respecting the subscription QoS.

 :param Publish msg: A :class:`broker.messages.Publish` instance.
 """
 assert isinstance(msg, Publish)

 cache = {}

 for client in self.clients.values():
 self.dispatch_message(client, msg, cache)

[docs] def disconnect_client(self, client):
 """
 Disconnects a MQTT client. Can be safely called without checking if the
 client is connected.

 :param MQTTClient client: The MQTTClient to be disconnect
 """
 assert isinstance(client, MQTTClient)
 client.disconnect()

[docs] def disconnect_all_clients(self):
 """ Disconnect all known clients. """

 # The tuple() is needed because the dictionary could change during the
 # iteration
 for client in tuple(self.clients.values()):
 self.disconnect_client(client)

[docs] def handle_incoming_publish(self, msg):
 """
 Handles an incoming publish. This method is normally called by the
 clients a mechanism of notifying the server that there is a new message
 to be processed. The processing itself consists of retaining the message
 according with the `msg.retain` flag and broadcasting it to the
 subscribers.

 :param Publish msg: The Publish message to be processed.
 """
 if msg.retain is True:
 self._retained_messages.save(msg)

 # Broadcasted messages must always be delivered with the retain flag
 # set to false. The flag should only be used when the message is sent
 # cold.
 msg.retain = False

 self.broadcast_message(msg)

[docs] def enqueue_retained_message(self, client, subscription_mask):
 """
 Enqueues all retained messages matching the `subscription_mask` to be
 sent to the `client`.

 :param MQTTClient client: A known MQTTClient.
 :param str subscription_mask: The subscription mask to match the
 messages against.
 """
 assert isinstance(client, MQTTClient)

 for topic, message in self._retained_messages.items():
 if message is not None:
 msg_obj = Publish.from_bytes(message)
 qos = client.get_matching_qos(msg_obj, subscription_mask)

 if qos is not None:
 # creates a copy of the object to avoid reference errors
 msg_copy = msg_obj.copy()
 msg_copy.qos = qos
 client.publish(msg_copy)

class stream_handle_context():
 def __init__(self, stream):
 self.stream = stream
 self.client = None
 self.client_uid = '?'

 def __enter__(self):
 return self

 def __exit__(self, exc_type, exc_val, exc_tb):
 if exc_type == toro.Timeout:
 access_log.debug("[uid: %s] connection timeout"
 % self.client_uid)

 elif exc_type == StreamClosedError:
 access_log.warning('[uid: %s] stream closed unexpectedly'
 % self.client_uid)

 elif exc_type == ConnectError:
 self.stream.close()
 access_log.info('[uid: %s] connection refused: %s'
 % (self.client_uid, exc_val.message))

 elif exc_type == Exception:
 access_log.exception('[uid: %s] error handling stream'
 % self.client_uid, exc_info=True)

 if exc_val is not None:
 if self.client is not None:
 self.client.disconnect()

 return True # suppress the raised exception

class RetainedMessages():
 def __init__(self, retained_messages):
 self._messages = retained_messages

 def save(self, msg):
 assert isinstance(msg, Publish)
 if len(msg.payload) == 0:
 if msg.topic in self._messages:
 del self._messages[msg.topic]
 else:
 self._messages[msg.topic] = msg.raw_data

 def items(self):
 return self._messages.items()

 © Copyright 2013, Tegris.
 Created using Sphinx 1.2.

_static/down.png

_modules/index.html

 Navigation

 		
 index

 		mqtt-broker 1 documentation »

 All modules for which code is available

		broker.client

		broker.server

 © Copyright 2013, Tegris.
 Created using Sphinx 1.2.

