

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	MPRIS2 0.9.3 documentation

MPRIS2

This is a copy of mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/

That also works as python lib.

Version 2.2

Copyright © 2006-2010 the VideoLAN team(Mirsal Ennaime, Rafaël Carré, Jean-Paul Saman)

Copyright © 2005-2008 Milosz Derezynski

Copyright © 2008 Nick Welch

Copyright © 2010-2012 Alex Merry

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

About

The Media Player Remote Interfacing Specification is a standard D-Bus interface which aims to provide a common programmatic API for controlling media players.

It provides a mechanism for compliant media players discovery, basic playback and media player state control as well as a tracklist interface which is used to add context to the current item.

Changes

Changes (Permalink)

From 2.1 to 2.2:

	Added the optional Fullscreen and CanSetFullscreen properties to the org.mpris.MediaPlayer2 interface.

	The path /org/mpris/MediaPlayer2/TrackList/NoTrack now represents “no track” where required in the org.mpris.MediaPlayer2.TrackList interface (since empty paths are not allowed by D-Bus).

	The suggested unique instance identifier no longer violates the D-Bus specification by begining with a digit.

From 2.0 to 2.1:

	Added the optional org.mpris.MediaPlayer2.Playlists interface.

Bus Name Policy

Each media player must request a unique bus name which begins with org.mpris.MediaPlayer2. For example:

	org.mpris.MediaPlayer2.audacious

	org.mpris.MediaPlayer2.vlc

	org.mpris.MediaPlayer2.bmp

	org.mpris.MediaPlayer2.xmms2

This allows clients to list available media players (either already running or which can be started via D-Bus activation)

In the case where the media player allows multiple instances running simultaneously, each additional instance should request a unique bus name, adding a dot and a unique identifier to its usual bus name, such as one based on a UNIX process id. For example, this could be:

	org.mpris.MediaPlayer2.vlc.7389

Note: According to the D-Bus specification, the unique identifier “must only contain the ASCII characters ‘[A-Z][a-z][0-9]_-‘” and “must not begin with a digit”.

Entry point

The media player must expose the /org/mpris/MediaPlayer2 object path, which must implement the following interfaces:

	org.mpris.MediaPlayer2

	org.mpris.MediaPlayer2.Player

The /org/mpris/MediaPlayer2 object may implement the org.mpris.MediaPlayer2.TrackList interface.

The /org/mpris/MediaPlayer2 object may implement the org.mpris.MediaPlayer2.Playlists interface.

The PropertiesChanged signal

The MPRIS uses the org.freedesktop.DBus.Properties.PropertiesChanged signal to notify clients of changes in the media player state. If a client implementation uses D-Bus bindings which do not support this signal, then it should connect to it manually. If a media player implementation uses D-Bus bindings which do not support this signal, then it should send it manually

Corrections

2010-09-26: Added EmitsChangedSignal annotation to Volume property on the Player interface.

2011-01-26: Added PlaylistChanged signal to the Playlists interface.

Interfaces

	org.mpris.MediaPlayer2

	org.mpris.MediaPlayer2.Player

	org.mpris.MediaPlayer2.Playlists

	org.mpris.MediaPlayer2.TrackList

Indices and tables

	Index

	Module Index

	Search Page

Require:

To use this lib you need:
Python dbus

Contents:

	MPRIS2 Interfaces

	MPRIS2 Types

	mpris2
	mpris2 package

	Configure dbus and mainloop

	Discover your player mpris uri

	Connect to player

	Call methods

	Get attributes

	Wait signal

	Other examples:

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

MPRIS2 Interfaces

	
class mpris2.Interfaces[source]

	This class contains the constants defined at index of MPRIS2 definition:

Interfaces:

	
	MEDIA_PLAYER

	‘org.mpris.MediaPlayer2’

	
	TRACK_LIST

	‘org.mpris.MediaPlayer2.TrackList’

	
	PLAYER

	‘org.mpris.MediaPlayer2.Player’

	
	PLAYLISTS

	‘org.mpris.MediaPlayer2.Playlists’

	
	PROPERTIES

	‘org.freedesktop.DBus.Properties’

Signals:

	
	SIGNAL

	‘PropertiesChanged’

Objects:

	
	OBJECT_PATH

	‘/org/mpris/MediaPlayer2’

	
class mpris2.MediaPlayer2(*args, **kw)[source]

	Interface for MediaPlayer2 (org.mpris.MediaPlayer2)

	
CanQuit

	Returns

	Read only

	Inject attrs from decorator at new object then return obje

When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

If false, calling Quit will have no effect, and may raise a NotSupported error. If true, calling Quit will cause the media application to attempt to quit (although it may still be prevented from quitting by the user, for example).

	
CanRaise

	Returns

	Read only

	If false, calling Raise will have no effect, and may raise a NotSupported error. If true, calling Raise will cause the media application to attempt to bring its user interface to the front, although it may be prevented from doing so (by the window manager, for example).

When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

	
CanSetFullscreen

	Returns

	Read only

	If false, attempting to set Fullscreen will have no effect, and may raise an error. If true, attempting to set Fullscreen will not raise an error, and (if it is different from the current value) will cause the media player to attempt to enter or exit fullscreen mode.

This property is optional. Clients should handle its absence gracefully.

When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Added in 2.2.

	..note::

	Note that the media player may be unable to fulfil the request. In this case, the value will not change. If the media player knows in advance that it will not be able to fulfil the request, however, this property should be false.

	
DesktopEntry

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The basename of an installed .desktop file which complies with the Desktop entry specification, with the ‘.desktop’ extension stripped.

Example: The desktop entry file is ‘/usr/share/applications/vlc.desktop’, and this property contains ‘vlc’

This property is optional. Clients should handle its absence gracefully

	
Fullscreen

	Returns

	Read Write

	Whether the media player is occupying the fullscreen.

This property is optional. Clients should handle its absence gracefully.

When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

This is typically used for videos. A value of true indicates that the media player is taking up the full screen.

Media center software may well have this value fixed to true

If CanSetFullscreen is true, clients may set this property to true to tell the media player to enter fullscreen mode, or to false to return to windowed mode.

If CanSetFullscreen is false, then attempting to set this property should have no effect, and may raise an error. However, even if it is true, the media player may still be unable to fulfil the request, in which case attempting to set this property will have no effect (but should not raise an error).

Added in 2.2.

	
HasTrackList

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Indicates whether the /org/mpris/MediaPlayer2 object implements the org.mpris.MediaPlayer2.TrackList interface.

	
Identity

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

If false, calling Raise will have no effect, and may raise a NotSupported error. If true, calling Raise will cause the media application to attempt to bring its user interface to the front, although it may be prevented from doing so (by the window manager, for example).

	
PropertiesChanged

	Parameters:

	
	args - list

	unnamed parameters passed by dbus signal

	
	kw - dict

	named parameters passed by dbus signal

Every time that some property change, signal will be called

	
Quit

	Causes the media player to stop running.

The media player may refuse to allow clients to shut it down. In this case, the CanQuit property is false and this method does nothing.

	..note::

	Media players which can be D-Bus activated, or for which there is no sensibly easy way to terminate a running instance (via the main interface or a notification area icon for example) should allow clients to use this method. Otherwise, it should not be needed.

If the media player does not have a UI, this should be implemented

	
Raise

	Brings the media player’s user interface to the front using any appropriate mechanism available.

The media player may be unable to control how its user interface is displayed, or it may not have a graphical user interface at all. In this case, the Identity property is false and this method does nothing.

	
SupportedMimeTypes

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The mime-types supported by the media player.

Mime-types should be in the standard format (eg: audio/mpeg or application/ogg).

Note

This is important for clients to know when using the editing capabilities of the Playlist interface, for example.

	
SupportedUriSchemes

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The URI schemes supported by the media player.

This can be viewed as protocols supported by the player in almost all cases. Almost every media player will include support for the ‘file’ scheme. Other common schemes are ‘http’ and ‘rtsp’.

Note that URI schemes should be lower-case.

Note

This is important for clients to know when using the editing capabilities of the Playlist interface, for example.

	
class mpris2.Player(*args, **kw)[source]

	This interface implements the methods for querying and providing basic control over what is currently playing.

	
CanControl

	Returns

	Read only

	The org.freedesktop.DBus.Properties.PropertiesChanged signal is not emitted when this property changes.

Whether the media player may be controlled over this interface.

This property is not expected to change, as it describes an intrinsic capability of the implementation.

If this is false, clients should assume that all properties on this interface are read-only (and will raise errors if writing to them is attempted); all methods are not implemented and all other properties starting with ‘Can’ are also false.

	
CanGoNext

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether the client can call the Next method on this interface and expect the current track to change.

If CanControl is false, this property should also be false.

	
CanGoPrevious

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether the client can call the Previous method on this interface and expect the current track to change.

If CanControl is false, this property should also be false.

	
CanPause

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether playback can be paused using Pause or PlayPause.

Note that this is an intrinsic property of the current track: its value should not depend on whether the track is currently paused or playing. In fact, if playback is currently paused (and CanControl is true), this should be true.

If CanControl is false, this property should also be false.

	
CanPlay

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether playback can be started using Play or PlayPause.

Note that this is related to whether there is a ‘current track’: the value should not depend on whether the track is currently paused or playing. In fact, if a track is currently playing CanControl is true), this should be true.

If CanControl is false, this property should also be false.

	
CanSeek

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether the client can control the playback position using Seek and SetPosition. This may be different for different tracks.

If CanControl is false, this property should also be false.

	
LoopStatus

	Returns

	Read/Write

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The current loop / repeat status

May be:

	‘None’ if the playback will stop when there are no more tracks to play

	‘Track’ if the current track will start again from the begining once it has finished playing

	‘Playlist’ if the playback loops through a list of tracks

This property is optional, and clients should deal with NotSupported errors gracefully.

If CanControl is false, attempting to set this property should have no effect and raise an error.

	
MaximumRate

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The maximum value which the Rate property can take. Clients should not attempt to set the Rate property above this value.

This value should always be 1.0 or greater.

	
Metadata

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The metadata of the current element.

If there is a current track, this must have a ‘mpris:trackid’ entry at the very least, which contains a string that uniquely identifies this track.

See the type documentation for more details.

	
MinimumRate

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The minimum value which the Rate property can take. Clients should not attempt to set the Rate property below this value.

Note that even if this value is 0.0 or negative, clients should not attempt to set the Rate property to 0.0.

This value should always be 1.0 or less.

	
Next

	Skips to the next track in the tracklist.

If there is no next track (and endless playback and track repeat are both off), stop playback.

If playback is paused or stopped, it remains that way.

If CanGoNext is false, attempting to call this method should have no effect.

	
OpenUri

	Parameters:

	
	Uri - s (Uri)

	Uri of the track to load. Its uri scheme should be an element of the org.mpris.MediaPlayer2.SupportedUriSchemes property and the mime-type should match one of the elements of the org.mpris.MediaPlayer2.SupportedMimeTypes.

Opens the Uri given as an argument

If the playback is stopped, starts playing

If the uri scheme or the mime-type of the uri to open is not supported, this method does nothing and may raise an error. In particular, if the list of available uri schemes is empty, this method may not be implemented.

Clients should not assume that the Uri has been opened as soon as this method returns. They should wait until the mpris:trackid field in the Metadata property changes.

If the media player implements the TrackList interface, then the opened track should be made part of the tracklist, the org.mpris.MediaPlayer2.TrackList.TrackAdded or org.mpris.MediaPlayer2.TrackList.TrackListReplaced signal should be fired, as well as the org.freedesktop.DBus.Properties.PropertiesChanged signal on the tracklist interface.

	
Pause

	Pauses playback.

If playback is already paused, this has no effect.

Calling Play after this should cause playback to start again from the same position.

If CanPause is false, attempting to call this method should have no effect.

	
Play

	Starts or resumes playback.

If already playing, this has no effect.

If there is no track to play, this has no effect.

If CanPlay is false, attempting to call this method should have no effect.

	
PlayPause

	Pauses playback.

If playback is already paused, resumes playback.

If playback is stopped, starts playback.

If CanPause is false, attempting to call this method should have no effect and raise an error.

	
PlaybackStatus

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The current playback status.

May be ‘Playing’, ‘Paused’ or ‘Stopped’.

	
Position

	Returns

	Read only

	The org.freedesktop.DBus.Properties.PropertiesChanged signal is not emitted when this property changes.

The current track position in microseconds, between 0 and the ‘mpris:length’ metadata entry (see Metadata).

Note

If the media player allows it, the current playback position can be changed either the SetPosition method or the Seek method on this interface. If this is not the case, the CanSeek property is false, and setting this property has no effect and can raise an error.

If the playback progresses in a way that is inconstistant with the Rate property, the Seeked signal is emited.

	
Previous

	Skips to the previous track in the tracklist.

If there is no previous track (and endless playback and track repeat are both off), stop playback.

If playback is paused or stopped, it remains that way.

If CanGoPrevious is false, attempting to call this method should have no effect.

	
PropertiesChanged

	Parameters

	
	args - list

	unnamed parameters passed by dbus signal

	
	kw - dict

	named parameters passed by dbus signal

Every time that some property change, signal will be called

	
Rate

	Returns

	Read/Write

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The current playback rate.

The value must fall in the range described by MinimumRate and MaximumRate, and must not be 0.0. If playback is paused, the PlaybackStatus property should be used to indicate this. A value of 0.0 should not be set by the client. If it is, the media player should act as though Pause was called.

If the media player has no ability to play at speeds other than the normal playback rate, this must still be implemented, and must return 1.0. The MinimumRate and MaximumRate properties must also be set to 1.0.

Not all values may be accepted by the media player. It is left to media player implementations to decide how to deal with values they cannot use; they may either ignore them or pick a ‘best fit’ value. Clients are recommended to only use sensible fractions or multiples of 1 (eg: 0.5, 0.25, 1.5, 2.0, etc).

	
Seek

	Parameters:

	
	Offset - x (Time_In_Us)

	The number of microseconds to seek forward.

Seeks forward in the current track by the specified number of microseconds.

A negative value seeks back. If this would mean seeking back further than the start of the track, the position is set to 0.

If the value passed in would mean seeking beyond the end of the track, acts like a call to Next.

If the CanSeek property is false, this has no effect.

	
Seeked

	Parameters:

	
	Position - x (Time_In_Us)

	The new position, in microseconds.

Indicates that the track position has changed in a way that is inconsistant with the current playing state.

When this signal is not received, clients should assume that:

	When playing, the position progresses according to the rate property.

	When paused, it remains constant.

This signal does not need to be emitted when playback starts or when the track changes, unless the track is starting at an unexpected position. An expected position would be the last known one when going from Paused to Playing, and 0 when going from Stopped to Playing.

	
SetPosition

	Parameters

	
	TrackId - o (Track_Id)

	The currently playing track’s identifier.

If this does not match the id of the currently-playing track, the call is ignored as ‘stale’.

	
	Position - x (Time_In_Us)

	Track position in microseconds.

This must be between 0 and <track_length>.

Sets the current track position in microseconds.

If the Position argument is less than 0, do nothing.

If the Position argument is greater than the track length, do nothing.

If the CanSeek property is false, this has no effect.

	
Shuffle

	Returns

	Read/Write

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

A value of false indicates that playback is progressing linearly through a playlist, while true means playback is progressing through a playlist in some other order.

This property is optional, and clients should deal with NotSupported errors gracefully.

If CanControl is false, attempting to set this property should have no effect and raise an error.

	
Stop

	Stops playback.

If playback is already stopped, this has no effect.

Calling Play after this should cause playback to start again from the beginning of the track.

If CanControl is false, attempting to call this method should have no effect and raise an error.

	
Volume

	Returns

	Read/Write

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The volume level.

When setting, if a negative value is passed, the volume should be set to 0.0.

If CanControl is false, attempting to set this property should have no effect and raise an error.

	
class mpris2.Playlists(*args, **kw)[source]

	Provides access to the media player’s playlists.

Since D-Bus does not provide an easy way to check for what interfaces are exported on an object, clients should attempt to get one of the properties on this interface to see if it is implemented.

	
ActivatePlaylist

	Parameters:

	
	PlaylistId - o

	The id of the playlist to activate.

Starts playing the given playlist.

Note that this must be implemented. If the media player does not allow clients to change the playlist, it should not implement this interface at all.

It is up to the media player whether this completely replaces the current tracklist, or whether it is merely inserted into the tracklist and the first track starts. For example, if the media player is operating in a ‘jukebox’ mode, it may just append the playlist to the list of upcoming tracks, and skip to the first track in the playlist.

	
ActivePlaylist

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The currently-active playlist.

If there is no currently-active playlist, the structure’s Valid field will be false, and the Playlist details are undefined.

Note that this may not have a value even after ActivatePlaylist is called with a valid playlist id as ActivatePlaylist implementations have the option of simply inserting the contents of the playlist into the current tracklist.

	
GetPlaylists

	Parameters:

	
	Index - u

	The index of the first playlist to be fetched (according to the ordering).

	
	MaxCount - u

	The maximum number of playlists to fetch.

	
	Order - s (Playlist_Ordering)

	The ordering that should be used.

	
	ReverseOrder - b

	Whether the order should be reversed.

Returns

	
	Playlists - a(oss) (Playlist_List)

	A list of (at most MaxCount) playlists.

Gets a set of playlists.

	
Orderings

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The avaislable orderings. At least one must be offered.

	
PlaylistChanged

	Parameters

	
	Playlist - (oss) (Playlist)

	The playlist whose details have changed.

Indicates that the name or icon for a playlist has changed.

Note that, for this signal to operate correctly, the id of the playlist must not change when the name changes.

	
PlaylistCount

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The number of playlists available.

	
class mpris2.TrackList(*args, **kw)[source]

	Interface for TrackList (org.mpris.MediaPlayer2.TrackList)

Provides access to a short list of tracks which were recently played or
will be played shortly. This is intended to provide context to the
currently-playing track, rather than giving complete access to the media
player’s playlist.

Example use cases are the list of tracks from the same album as the
currently playing song or the Rhythmbox play queue.

Each track in the tracklist has a unique identifier. The intention is that
this uniquely identifies the track within the scope of the tracklist. In
particular, if a media item (a particular music file, say) occurs twice in
the track list, each occurrence should have a different identifier. If a
track is removed from the middle of the playlist, it should not affect the
track ids of any other tracks in the tracklist.

As a result, the traditional track identifiers of URLs and position in the
playlist cannot be used. Any scheme which satisfies the uniqueness
requirements is valid, as clients should not make any assumptions about the
value of the track id beyond the fact that it is a unique identifier.

Note that the (memory and processing) burden of implementing the TrackList
interface and maintaining unique track ids for the playlist can be
mitigated by only exposing a subset of the playlist when it is very long
(the 20 or so tracks around the currently playing track, for example). This
is a recommended practice as the tracklist interface is not designed to
enable browsing through a large list of tracks, but rather to provide
clients with context about the currently playing track.

	
AddTrack

	Parameters:

	
	Uri - s (Uri)

	The uri of the item to add. Its uri scheme should be an element of
the org.mpris.MediaPlayer2.SupportedUriSchemes property and the
mime-type should match one of the elements of the
org.mpris.MediaPlayer2.SupportedMimeTypes

	
	AfterTrack - o (Track_Id)

	The identifier of the track after which the new item should be
inserted. The path /org/mpris/MediaPlayer2/TrackList/NoTrack
indicates that the track should be inserted at the start of the
track list.

	
	SetAsCurrent - b

	Whether the newly inserted track should be considered as the
current track. Setting this to trye has the same effect as calling
GoTo afterwards.

Adds a URI in the TrackList.

If the CanEditTracks property is false, this has no effect.

Note

Clients should not assume that the track has been added at the time
when this method returns. They should wait for a TrackAdded (or
TrackListReplaced) signal.

	
CanEditTracks

	Returns:

	Read only

	When this property changes, the
org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted
with the new value.

If false, calling AddTrack or RemoveTrack will have no effect, and may
raise a NotSupported error.

	
GetTracksMetadata

	Parameters:

	
	TrackIds - ao (Track_Id_List)

	The list of track ids for which metadata is requested.

Returns

	
	Metadata - aa{sv} (Metadata_Map_List)

	Metadata of the set of tracks given as input.

See the type documentation for more details.

Gets all the metadata available for a set of tracks.

Each set of metadata must have a ‘mpris:trackid’ entry at the very
least, which contains a string that uniquely identifies this track
within the scope of the tracklist.

	
GoTo

	Parameters:

	
	TrackId - o (Track_Id)

	Identifier of the track to skip to.

/org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

Skip to the specified TrackId.

If the track is not part of this tracklist, this has no effect.

If this object is not /org/mpris/MediaPlayer2, the current TrackList’s
tracks should be replaced with the contents of this TrackList, and the
TrackListReplaced signal should be fired from /org/mpris/MediaPlayer2.

	
RemoveTrack

	Parameters:

	
	TrackId - o (TrackId)

	Identifier of the track to be removed.
/org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

Removes an item from the TrackList.

If the track is not part of this tracklist, this has no effect.

If the CanEditTracks property is false, this has no effect.

Note

Clients should not assume that the track has been removed at the
time when this method returns. They should wait for a TrackRemoved
(or TrackListReplaced) signal.

	
TrackAdded

	Parameters:

	
	Metadata - a{sv} (Metadata_Map)

	The metadata of the newly added item.

This must include a mpris:trackid entry.

See the type documentation for more details.

	
	AfterTrack - o (Track_Id)

	The identifier of the track after which the new track was inserted.
The path /org/mpris/MediaPlayer2/TrackList/NoTrack indicates that
the track was inserted at the start of the track list.

Indicates that a track has been added to the track list.

	
TrackListReplaced

	Parameters:

	
	Tracks - ao (Track_Id_List)

	The new content of the tracklist.

	
	CurrentTrack - o (Track_Id)

	The identifier of the track to be considered as current.

/org/mpris/MediaPlayer2/TrackList/NoTrack indicates that there is no current track.

This should correspond to the mpris:trackid field of the Metadata property of
the org.mpris.MediaPlayer2.Player interface.

Indicates that the entire tracklist has been replaced.

It is left up to the implementation to decide when a change to the
track list is invasive enough that this signal should be emitted
instead of a series of TrackAdded and TrackRemoved signals.

	
TrackMetadataChanged

	Parameters:

	
	TrackId - o (Track_Id)

	The id of the track which metadata has changed.

If the track id has changed, this will be the old value.

/org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

	
	Metadata - a{sv} (Metadata_Map)

	The new track metadata.

This must include a mpris:trackid entry.

See the type documentation for more details.

Indicates that the metadata of a track in the tracklist has changed.

This may indicate that a track has been replaced, in which case the
mpris:trackid metadata entry is different from the TrackId argument.

	
TrackRemoved

	Parameters:

	
	TrackId - o (Track_Id)

	The identifier of the track being removed.

/org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

Indicates that a track has been removed from the track list.

	
Tracks

	Returns:

	Read only

	When this property changes, the
org.freedesktop.DBus.Properties.PropertiesChanged signal is
emitted, but the new value is not sent.

An array which contains the identifier of each track in the tracklist,
in order.

The org.freedesktop.DBus.Properties.PropertiesChanged signal is emited
every time this property changes, but the signal message does not
contain the new value. Client implementations should rather rely on the
TrackAdded, TrackRemoved and TrackListReplaced signals to keep their
representation of the tracklist up to date.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

MPRIS2 Types

	
class mpris2.types.Loop_Status(status)[source]

	A repeat / loop status

	
	None (None)

	The playback will stop when there are no more tracks to play

	
	Track (Track)

	The current track will start again from the begining once it has finished playing

	
	Playlist (Playlist)

	The playback loops through a list of tracks

	
class mpris2.types.Metadata_Map(metadata)[source]

	A mapping from metadata attribute names to values.

The mpris:trackid attribute must always be present. This contains a string that uniquely identifies the track within the scope of the playlist.

If the length of the track is known, it should be provided in the metadata property with the ‘mpris:length’ key. The length must be given in microseconds, and be represented as a signed 64-bit integer.

If there is an image associated with the track, a URL for it may be provided using the ‘mpris:artUrl’ key. For other metadata, fields defined by the Xesam ontology should be used, prefixed by ‘xesam:’. See http://wiki.xmms2.xmms.se/wiki/MPRIS_Metadata for a list of common fields.

Lists of strings should be passed using the array-of-string (‘as’) D-Bus type. Dates should be passed as strings using the ISO 8601 extended format (eg: 2007-04-29T14:35:51). If the timezone is known, RFC 3339’s internet profile should be used (eg: 2007-04-29T14:35:51+02:00).

	
	Attribute - s

	The name of the attribute; see http://wiki.xmms2.xmms.se/wiki/MPRIS_Metadata for guidelines on names to use.

	
	Value - v

	The value of the attribute, in the most appropriate format.

	
class mpris2.types.Playback_Rate(rate=1.0)[source]

	A playback rate

This is a multiplier,
so a value of 0.5 indicates that playback is happening at half speed,
while 1.5 means that 1.5 seconds of ‘track time’ is consumed every second.

	
class mpris2.types.Playback_Status(status)[source]

	A playback state.

	
	Playing (Playing)

	A track is currently playing.

	
	Paused (Paused)

	A track is currently paused.

	
	Stopped (Stopped)

	There is no track currently playing.

	
class mpris2.types.Playlist(playlist)[source]

	A data structure describing a playlist.

	
	Id - o (Playlist_Id)

	A unique identifier for the playlist.

This should remain the same if the playlist is renamed.

	
	Name - s

	The name of the playlist, typically given by the user.

	
	Icon - s (Uri)

	The URI of an (optional) icon.

	
class mpris2.types.Maybe_Playlist(maybe_playlist=None)[source]

	
	
	Valid - b

	Whether this structure refers to a valid playlist.

	
	Playlist - (oss) (Playlist)

	The playlist, providing Valid is true, otherwise undefined.

When constructing this type, it should be noted that the playlist ID must
be a valid object path, or D-Bus implementations may reject it. This is
true even when Valid is false. It is suggested that ‘/’ is used as the
playlist ID in this case.

	
class mpris2.types.Playlist_Id(playlist_id)[source]

	Unique playlist identifier.

	
class mpris2.types.Playlist_Ordering(ordering)[source]

	Specifies the ordering of returned playlists.

	
	Alphabetical (Alphabetical)

	Alphabetical ordering by name, ascending.

	
	CreationDate (Created)

	Ordering by creation date, oldest first.

	
	ModifiedDate (Modified)

	Ordering by last modified date, oldest first.

	
	LastPlayDate (Played)

	Ordering by date of last playback, oldest first.

	
	UserDefined (User)

	A user-defined ordering.

	
class mpris2.types.Time_In_Us(time=0)[source]

	Time in microseconds.

	
class mpris2.types.Uri(uri)[source]

	A unique resource identifier.

	
class mpris2.types.Volume(volume=1.0)[source]

	Audio volume level

	0.0 means mute.

	1.0 is a sensible maximum volume level (ex: 0dB).

Note that the volume may be higher than 1.0, although generally clients should not attempt to set it above 1.0.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

mpris2

	mpris2 package
	Subpackages
	mpris2.decorator package
	Submodules

	Module contents

	mpris2.types package
	Submodules

	Module contents

	Submodules
	mpris2.interfaces module

	mpris2.mediaplayer2 module

	mpris2.player module

	mpris2.playlists module

	mpris2.some_players module

	mpris2.tracklist module

	mpris2.utils module

	Module contents
	Version 2.2

	About

	Changes

	Bus Name Policy

	Entry point

	The PropertiesChanged signal

	Corrections

	Interfaces

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

mpris2 package

Subpackages

	mpris2.decorator package
	Submodules
	mpris2.decorator.attribute module

	mpris2.decorator.base module

	mpris2.decorator.interface module

	mpris2.decorator.method module

	mpris2.decorator.signal module

	Module contents

	mpris2.types package
	Submodules
	mpris2.types.loop_status module

	mpris2.types.metadata_map module

	mpris2.types.playback_rate module

	mpris2.types.playback_status module

	mpris2.types.playlist module

	mpris2.types.playlist_id module

	mpris2.types.playlist_ordering module

	mpris2.types.time_in_us module

	mpris2.types.uri module

	mpris2.types.volume module

	Module contents

Submodules

	mpris2.interfaces module

	mpris2.mediaplayer2 module

	mpris2.player module

	mpris2.playlists module

	mpris2.some_players module

	mpris2.tracklist module

	mpris2.utils module

Module contents

This is a copy of mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/

That also works as python lib.

Version 2.2

Copyright © 2006-2010 the VideoLAN team(Mirsal Ennaime, Rafaël Carré, Jean-Paul Saman)

Copyright © 2005-2008 Milosz Derezynski

Copyright © 2008 Nick Welch

Copyright © 2010-2012 Alex Merry

This library is free software; you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation; either version 2.1 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public License along with this library; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.

About

The Media Player Remote Interfacing Specification is a standard D-Bus interface which aims to provide a common programmatic API for controlling media players.

It provides a mechanism for compliant media players discovery, basic playback and media player state control as well as a tracklist interface which is used to add context to the current item.

Changes

Changes (Permalink)

From 2.1 to 2.2:

	Added the optional Fullscreen and CanSetFullscreen properties to the org.mpris.MediaPlayer2 interface.

	The path /org/mpris/MediaPlayer2/TrackList/NoTrack now represents “no track” where required in the org.mpris.MediaPlayer2.TrackList interface (since empty paths are not allowed by D-Bus).

	The suggested unique instance identifier no longer violates the D-Bus specification by begining with a digit.

From 2.0 to 2.1:

	Added the optional org.mpris.MediaPlayer2.Playlists interface.

Bus Name Policy

Each media player must request a unique bus name which begins with org.mpris.MediaPlayer2. For example:

	org.mpris.MediaPlayer2.audacious

	org.mpris.MediaPlayer2.vlc

	org.mpris.MediaPlayer2.bmp

	org.mpris.MediaPlayer2.xmms2

This allows clients to list available media players (either already running or which can be started via D-Bus activation)

In the case where the media player allows multiple instances running simultaneously, each additional instance should request a unique bus name, adding a dot and a unique identifier to its usual bus name, such as one based on a UNIX process id. For example, this could be:

	org.mpris.MediaPlayer2.vlc.7389

Note: According to the D-Bus specification, the unique identifier “must only contain the ASCII characters ‘[A-Z][a-z][0-9]_-‘” and “must not begin with a digit”.

Entry point

The media player must expose the /org/mpris/MediaPlayer2 object path, which must implement the following interfaces:

	org.mpris.MediaPlayer2

	org.mpris.MediaPlayer2.Player

The /org/mpris/MediaPlayer2 object may implement the org.mpris.MediaPlayer2.TrackList interface.

The /org/mpris/MediaPlayer2 object may implement the org.mpris.MediaPlayer2.Playlists interface.

The PropertiesChanged signal

The MPRIS uses the org.freedesktop.DBus.Properties.PropertiesChanged signal to notify clients of changes in the media player state. If a client implementation uses D-Bus bindings which do not support this signal, then it should connect to it manually. If a media player implementation uses D-Bus bindings which do not support this signal, then it should send it manually

Corrections

2010-09-26: Added EmitsChangedSignal annotation to Volume property on the Player interface.

2011-01-26: Added PlaylistChanged signal to the Playlists interface.

Interfaces

	org.mpris.MediaPlayer2

	org.mpris.MediaPlayer2.Player

	org.mpris.MediaPlayer2.Playlists

	org.mpris.MediaPlayer2.TrackList

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.decorator package

Submodules

	mpris2.decorator.attribute module

	mpris2.decorator.base module

	mpris2.decorator.interface module

	mpris2.decorator.method module

	mpris2.decorator.signal module

Module contents

This is not part of specification

Helper class to make it work as python lib

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.decorator package

mpris2.decorator.attribute module

This is not part of specification

Helper class to make it work as python lib

	
class mpris2.decorator.attribute.DbusAttr(meth=None, produces=<function <lambda>>)[source]

	Bases: mpris2.decorator.base.Decorator

https://docs.python.org/2/howto/descriptor.html#properties

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.decorator package

mpris2.decorator.base module

This is not part of specification

Helper class to make it work as python lib

	
class mpris2.decorator.base.Decorator[source]

	Bases: object [http://docs.python.org/library/functions.html#object]

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.decorator package

mpris2.decorator.interface module

This is not part of specification

Helper class to make it work as python lib

	
class mpris2.decorator.interface.DbusInterface(iface=None, path=None, uri=None, dbus_object=None, session=None)[source]

	Bases: mpris2.decorator.base.Decorator

	
dbusWrapedInterface(info_property, *args, **kw)[source]

	Called when some decoreted class was called
Inject attrs from decorator at new object then return object

@param *args: list of args to call constructor
@param **kw: dict of keywords, can redefine class default parameters
@return: instance of decoreted class, with new attributes
@see: mpris2.mediaplayer2 to see some examples

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.decorator package

mpris2.decorator.method module

This is not part of specification

Helper class to make it work as python lib

	
class mpris2.decorator.method.DbusMethod(meth=None, iface=None, produces=<function <lambda>>, args_to_dbus=<function args_to_dbus>, kw_to_dbus=<function kw_to_dbus>, std_args=(), std_kwds={})[source]

	Bases: mpris2.decorator.base.Decorator

	
convert_args_to_dbus_args(*args)[source]

	

	
convert_kw_to_dbus_kw(**kw)[source]

	

	
classmethod merge_args(args, std_args)[source]

	

	
classmethod merge_kwds(kwds, std_kwds)[source]

	

	
mpris2.decorator.method.args_to_dbus(*args)[source]

	

	
mpris2.decorator.method.kw_to_dbus(**kw)[source]

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.decorator package

mpris2.decorator.signal module

	
class mpris2.decorator.signal.DbusSignal(meth=None, iface=None)[source]

	Bases: mpris2.decorator.base.Decorator

https://docs.python.org/2/howto/descriptor.html#properties

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.types package

Submodules

	mpris2.types.loop_status module

	mpris2.types.metadata_map module

	mpris2.types.playback_rate module

	mpris2.types.playback_status module

	mpris2.types.playlist module

	mpris2.types.playlist_id module

	mpris2.types.playlist_ordering module

	mpris2.types.time_in_us module

	mpris2.types.uri module

	mpris2.types.volume module

Module contents

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.loop_status module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Enum:Loop_Status

	
class mpris2.types.loop_status.Loop_Status(status)[source]

	Bases: str [http://docs.python.org/library/functions.html#str]

A repeat / loop status

	
	None (None)

	The playback will stop when there are no more tracks to play

	
	Track (Track)

	The current track will start again from the begining once it has finished playing

	
	Playlist (Playlist)

	The playback loops through a list of tracks

	
NONE = 'None'

	

	
PLAYLIST = 'Playlist'

	

	
TRACK = 'Track'

	

	
VALUES = ('None', 'Track', 'Playlist')

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.metadata_map module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Track_List_Interface.html#Mapping:Metadata_Map

	
class mpris2.types.metadata_map.Metadata_Map(metadata)[source]

	Bases: dict [http://docs.python.org/library/stdtypes.html#dict]

A mapping from metadata attribute names to values.

The mpris:trackid attribute must always be present. This contains a string that uniquely identifies the track within the scope of the playlist.

If the length of the track is known, it should be provided in the metadata property with the ‘mpris:length’ key. The length must be given in microseconds, and be represented as a signed 64-bit integer.

If there is an image associated with the track, a URL for it may be provided using the ‘mpris:artUrl’ key. For other metadata, fields defined by the Xesam ontology should be used, prefixed by ‘xesam:’. See http://wiki.xmms2.xmms.se/wiki/MPRIS_Metadata for a list of common fields.

Lists of strings should be passed using the array-of-string (‘as’) D-Bus type. Dates should be passed as strings using the ISO 8601 extended format (eg: 2007-04-29T14:35:51). If the timezone is known, RFC 3339’s internet profile should be used (eg: 2007-04-29T14:35:51+02:00).

	
	Attribute - s

	The name of the attribute; see http://wiki.xmms2.xmms.se/wiki/MPRIS_Metadata for guidelines on names to use.

	
	Value - v

	The value of the attribute, in the most appropriate format.

	
ALBUM = 'xesam:album'

	

	
ALBUM_ARTIST = 'xesam:albumArtist'

	

	
ARTIST = 'xesam:artist'

	

	
ART_URI = 'mpris:artUrl'

	

	
AS_TEXT = 'xesam:asText'

	

	
AUDIO_BPM = 'xesam:audioBPM'

	

	
AUTO_RATING = 'xesam:autoRating'

	

	
COMMENT = 'xesam:comment'

	

	
COMPOSER = 'xesam:composer'

	

	
CONTENT_CREATED = 'xesam:contentCreated'

	

	
DISC_NUMBER = 'xesam:discNumber'

	

	
FIRST_USED = 'xesam:firstUsed'

	

	
GENRE = 'xesam:genre'

	

	
LAST_USED = 'xesam:lastUsed'

	

	
LENGTH = 'mpris:length'

	

	
LYRICIST = 'xesam:lyricist'

	

	
TITLE = 'xesam:title'

	

	
TRACKID = 'mpris:trackid'

	

	
TRACK_NUMBER = 'xesam:trackNumber'

	

	
URL = 'xesam:url'

	

	
USER_RATING = 'xesam:userRating'

	

	
USE_COUNT = 'xesam:useCount'

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.playback_rate module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Simple-Type:Playback_Rate

	
class mpris2.types.playback_rate.Playback_Rate(rate=1.0)[source]

	Bases: float [http://docs.python.org/library/functions.html#float]

A playback rate

This is a multiplier,
so a value of 0.5 indicates that playback is happening at half speed,
while 1.5 means that 1.5 seconds of ‘track time’ is consumed every second.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.playback_status module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Enum:Playback_Status

	
class mpris2.types.playback_status.Playback_Status(status)[source]

	Bases: str [http://docs.python.org/library/functions.html#str]

A playback state.

	
	Playing (Playing)

	A track is currently playing.

	
	Paused (Paused)

	A track is currently paused.

	
	Stopped (Stopped)

	There is no track currently playing.

	
PAUSED = 'Paused'

	

	
PLAYING = 'Playing'

	

	
STOPPED = 'Stopped'

	

	
VALUES = ('Playing', 'Paused', 'Stopped')

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.playlist module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Playlists_Interface.html#Struct:Playlist

	
class mpris2.types.playlist.Maybe_Playlist(maybe_playlist=None)[source]

	Bases: dbus.Struct

	
	Valid - b

	Whether this structure refers to a valid playlist.

	
	Playlist - (oss) (Playlist)

	The playlist, providing Valid is true, otherwise undefined.

When constructing this type, it should be noted that the playlist ID must
be a valid object path, or D-Bus implementations may reject it. This is
true even when Valid is false. It is suggested that ‘/’ is used as the
playlist ID in this case.

	
Playlist

	

	
Valid

	

	
class mpris2.types.playlist.Playlist(playlist)[source]

	Bases: dbus.Struct

A data structure describing a playlist.

	
	Id - o (Playlist_Id)

	A unique identifier for the playlist.

This should remain the same if the playlist is renamed.

	
	Name - s

	The name of the playlist, typically given by the user.

	
	Icon - s (Uri)

	The URI of an (optional) icon.

	
Icon

	

	
Id

	

	
Name

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.playlist_id module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Playlists_Interface.html#Simple-Type:Playlist_Id

	
class mpris2.types.playlist_id.Playlist_Id(playlist_id)[source]

	Bases: str [http://docs.python.org/library/functions.html#str]

Unique playlist identifier.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.playlist_ordering module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Playlists_Interface.html#Enum:Playlist_Ordering

	
class mpris2.types.playlist_ordering.Playlist_Ordering(ordering)[source]

	Bases: str [http://docs.python.org/library/functions.html#str]

Specifies the ordering of returned playlists.

	
	Alphabetical (Alphabetical)

	Alphabetical ordering by name, ascending.

	
	CreationDate (Created)

	Ordering by creation date, oldest first.

	
	ModifiedDate (Modified)

	Ordering by last modified date, oldest first.

	
	LastPlayDate (Played)

	Ordering by date of last playback, oldest first.

	
	UserDefined (User)

	A user-defined ordering.

	
ALPHABETICAL = 'Alphabetical'

	

	
CREATION_DATE = 'CreationDate'

	

	
LAST_PLAY_DATE = 'LastPlayDate'

	

	
MODIFIED_DATE = 'ModifiedDate'

	

	
USER_DEFINE = 'UserDefined'

	

	
VALUES = ('Alphabetical', 'CreationDate', 'ModifiedDate', 'LastPlayDate', 'UserDefined')

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.time_in_us module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Simple-Type:Time_In_Us

	
class mpris2.types.time_in_us.Time_In_Us(time=0)[source]

	Bases: int [http://docs.python.org/library/functions.html#int]

Time in microseconds.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.uri module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Playlists_Interface.html#Simple-Type:Uri

	
class mpris2.types.uri.Uri(uri)[source]

	Bases: str [http://docs.python.org/library/functions.html#str]

A unique resource identifier.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

 	mpris2.types package

mpris2.types.volume module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Simple-Type:Volume

	
class mpris2.types.volume.Volume(volume=1.0)[source]

	Bases: float [http://docs.python.org/library/functions.html#float]

Audio volume level

	0.0 means mute.

	1.0 is a sensible maximum volume level (ex: 0dB).

Note that the volume may be higher than 1.0, although generally clients should not attempt to set it above 1.0.

	
MAX = 1.0

	

	
MIN = 0.0

	

	
RANGE = set([0.0, 0.5, 0.2, 0.4, 1.0, 0.8, 0.6, 0.3, 0.1, 0.9, 0.7])

	

	
n = 10

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.interfaces module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/#Interfaces

	
class mpris2.interfaces.Interfaces[source]

	Bases: object [http://docs.python.org/library/functions.html#object]

This class contains the constants defined at index of MPRIS2 definition:

Interfaces:

	
	MEDIA_PLAYER

	‘org.mpris.MediaPlayer2’

	
	TRACK_LIST

	‘org.mpris.MediaPlayer2.TrackList’

	
	PLAYER

	‘org.mpris.MediaPlayer2.Player’

	
	PLAYLISTS

	‘org.mpris.MediaPlayer2.Playlists’

	
	PROPERTIES

	‘org.freedesktop.DBus.Properties’

Signals:

	
	SIGNAL

	‘PropertiesChanged’

Objects:

	
	OBJECT_PATH

	‘/org/mpris/MediaPlayer2’

	
MEDIA_PLAYER = 'org.mpris.MediaPlayer2'

	

	
OBJECT_PATH = '/org/mpris/MediaPlayer2'

	

	
PLAYER = 'org.mpris.MediaPlayer2.Player'

	

	
PLAYLISTS = 'org.mpris.MediaPlayer2.Playlists'

	

	
PROPERTIES = 'org.freedesktop.DBus.Properties'

	

	
SIGNAL = 'PropertiesChanged'

	

	
TRACK_LIST = 'org.mpris.MediaPlayer2.TrackList'

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.mediaplayer2 module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Media_Player.html

	
class mpris2.mediaplayer2.MediaPlayer2(*args, **kw)[source]

	Bases: mpris2.interfaces.Interfaces

Interface for MediaPlayer2 (org.mpris.MediaPlayer2)

	
CanQuit

	Returns

	Read only

	Inject attrs from decorator at new object then return obje

When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

If false, calling Quit will have no effect, and may raise a NotSupported error. If true, calling Quit will cause the media application to attempt to quit (although it may still be prevented from quitting by the user, for example).

	
CanRaise

	Returns

	Read only

	If false, calling Raise will have no effect, and may raise a NotSupported error. If true, calling Raise will cause the media application to attempt to bring its user interface to the front, although it may be prevented from doing so (by the window manager, for example).

When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

	
CanSetFullscreen

	Returns

	Read only

	If false, attempting to set Fullscreen will have no effect, and may raise an error. If true, attempting to set Fullscreen will not raise an error, and (if it is different from the current value) will cause the media player to attempt to enter or exit fullscreen mode.

This property is optional. Clients should handle its absence gracefully.

When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Added in 2.2.

	..note::

	Note that the media player may be unable to fulfil the request. In this case, the value will not change. If the media player knows in advance that it will not be able to fulfil the request, however, this property should be false.

	
DesktopEntry

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The basename of an installed .desktop file which complies with the Desktop entry specification, with the ‘.desktop’ extension stripped.

Example: The desktop entry file is ‘/usr/share/applications/vlc.desktop’, and this property contains ‘vlc’

This property is optional. Clients should handle its absence gracefully

	
Fullscreen

	Returns

	Read Write

	Whether the media player is occupying the fullscreen.

This property is optional. Clients should handle its absence gracefully.

When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

This is typically used for videos. A value of true indicates that the media player is taking up the full screen.

Media center software may well have this value fixed to true

If CanSetFullscreen is true, clients may set this property to true to tell the media player to enter fullscreen mode, or to false to return to windowed mode.

If CanSetFullscreen is false, then attempting to set this property should have no effect, and may raise an error. However, even if it is true, the media player may still be unable to fulfil the request, in which case attempting to set this property will have no effect (but should not raise an error).

Added in 2.2.

	
HasTrackList

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Indicates whether the /org/mpris/MediaPlayer2 object implements the org.mpris.MediaPlayer2.TrackList interface.

	
Identity

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

If false, calling Raise will have no effect, and may raise a NotSupported error. If true, calling Raise will cause the media application to attempt to bring its user interface to the front, although it may be prevented from doing so (by the window manager, for example).

	
PROPERTIES_CAN_QUIT = 'CanQuit'

	

	
PROPERTIES_CAN_RAISE = 'Identity'

	

	
PROPERTIES_DESKTOP_ENTRY = 'DesktopEntry'

	

	
PROPERTIES_HAS_TRACK_LIST = 'HasTrackList'

	

	
PROPERTIES_IDENTITY = 'Identity'

	

	
PROPERTIES_SUPPORTED_MINE_TYPES = 'SupportedMimeTypes'

	

	
PROPERTIES_SUPPORTED_URI_SCHEMES = 'SupportedUriSchemes'

	

	
PropertiesChanged

	Parameters:

	
	args - list

	unnamed parameters passed by dbus signal

	
	kw - dict

	named parameters passed by dbus signal

Every time that some property change, signal will be called

	
Quit

	Causes the media player to stop running.

The media player may refuse to allow clients to shut it down. In this case, the CanQuit property is false and this method does nothing.

	..note::

	Media players which can be D-Bus activated, or for which there is no sensibly easy way to terminate a running instance (via the main interface or a notification area icon for example) should allow clients to use this method. Otherwise, it should not be needed.

If the media player does not have a UI, this should be implemented

	
Raise

	Brings the media player’s user interface to the front using any appropriate mechanism available.

The media player may be unable to control how its user interface is displayed, or it may not have a graphical user interface at all. In this case, the Identity property is false and this method does nothing.

	
SIGNALS_PROPERTIES_CHANGED = 'PropertiesChanged'

	

	
SupportedMimeTypes

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The mime-types supported by the media player.

Mime-types should be in the standard format (eg: audio/mpeg or application/ogg).

Note

This is important for clients to know when using the editing capabilities of the Playlist interface, for example.

	
SupportedUriSchemes

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The URI schemes supported by the media player.

This can be viewed as protocols supported by the player in almost all cases. Almost every media player will include support for the ‘file’ scheme. Other common schemes are ‘http’ and ‘rtsp’.

Note that URI schemes should be lower-case.

Note

This is important for clients to know when using the editing capabilities of the Playlist interface, for example.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.player module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html

	
class mpris2.player.Player(*args, **kw)[source]

	Bases: mpris2.interfaces.Interfaces

This interface implements the methods for querying and providing basic control over what is currently playing.

	
CanControl

	Returns

	Read only

	The org.freedesktop.DBus.Properties.PropertiesChanged signal is not emitted when this property changes.

Whether the media player may be controlled over this interface.

This property is not expected to change, as it describes an intrinsic capability of the implementation.

If this is false, clients should assume that all properties on this interface are read-only (and will raise errors if writing to them is attempted); all methods are not implemented and all other properties starting with ‘Can’ are also false.

	
CanGoNext

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether the client can call the Next method on this interface and expect the current track to change.

If CanControl is false, this property should also be false.

	
CanGoPrevious

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether the client can call the Previous method on this interface and expect the current track to change.

If CanControl is false, this property should also be false.

	
CanPause

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether playback can be paused using Pause or PlayPause.

Note that this is an intrinsic property of the current track: its value should not depend on whether the track is currently paused or playing. In fact, if playback is currently paused (and CanControl is true), this should be true.

If CanControl is false, this property should also be false.

	
CanPlay

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether playback can be started using Play or PlayPause.

Note that this is related to whether there is a ‘current track’: the value should not depend on whether the track is currently paused or playing. In fact, if a track is currently playing CanControl is true), this should be true.

If CanControl is false, this property should also be false.

	
CanSeek

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

Whether the client can control the playback position using Seek and SetPosition. This may be different for different tracks.

If CanControl is false, this property should also be false.

	
LoopStatus

	Returns

	Read/Write

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The current loop / repeat status

May be:

	‘None’ if the playback will stop when there are no more tracks to play

	‘Track’ if the current track will start again from the begining once it has finished playing

	‘Playlist’ if the playback loops through a list of tracks

This property is optional, and clients should deal with NotSupported errors gracefully.

If CanControl is false, attempting to set this property should have no effect and raise an error.

	
MaximumRate

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The maximum value which the Rate property can take. Clients should not attempt to set the Rate property above this value.

This value should always be 1.0 or greater.

	
Metadata

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The metadata of the current element.

If there is a current track, this must have a ‘mpris:trackid’ entry at the very least, which contains a string that uniquely identifies this track.

See the type documentation for more details.

	
MinimumRate

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The minimum value which the Rate property can take. Clients should not attempt to set the Rate property below this value.

Note that even if this value is 0.0 or negative, clients should not attempt to set the Rate property to 0.0.

This value should always be 1.0 or less.

	
Next

	Skips to the next track in the tracklist.

If there is no next track (and endless playback and track repeat are both off), stop playback.

If playback is paused or stopped, it remains that way.

If CanGoNext is false, attempting to call this method should have no effect.

	
OpenUri

	Parameters:

	
	Uri - s (Uri)

	Uri of the track to load. Its uri scheme should be an element of the org.mpris.MediaPlayer2.SupportedUriSchemes property and the mime-type should match one of the elements of the org.mpris.MediaPlayer2.SupportedMimeTypes.

Opens the Uri given as an argument

If the playback is stopped, starts playing

If the uri scheme or the mime-type of the uri to open is not supported, this method does nothing and may raise an error. In particular, if the list of available uri schemes is empty, this method may not be implemented.

Clients should not assume that the Uri has been opened as soon as this method returns. They should wait until the mpris:trackid field in the Metadata property changes.

If the media player implements the TrackList interface, then the opened track should be made part of the tracklist, the org.mpris.MediaPlayer2.TrackList.TrackAdded or org.mpris.MediaPlayer2.TrackList.TrackListReplaced signal should be fired, as well as the org.freedesktop.DBus.Properties.PropertiesChanged signal on the tracklist interface.

	
Pause

	Pauses playback.

If playback is already paused, this has no effect.

Calling Play after this should cause playback to start again from the same position.

If CanPause is false, attempting to call this method should have no effect.

	
Play

	Starts or resumes playback.

If already playing, this has no effect.

If there is no track to play, this has no effect.

If CanPlay is false, attempting to call this method should have no effect.

	
PlayPause

	Pauses playback.

If playback is already paused, resumes playback.

If playback is stopped, starts playback.

If CanPause is false, attempting to call this method should have no effect and raise an error.

	
PlaybackStatus

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The current playback status.

May be ‘Playing’, ‘Paused’ or ‘Stopped’.

	
Position

	Returns

	Read only

	The org.freedesktop.DBus.Properties.PropertiesChanged signal is not emitted when this property changes.

The current track position in microseconds, between 0 and the ‘mpris:length’ metadata entry (see Metadata).

Note

If the media player allows it, the current playback position can be changed either the SetPosition method or the Seek method on this interface. If this is not the case, the CanSeek property is false, and setting this property has no effect and can raise an error.

If the playback progresses in a way that is inconstistant with the Rate property, the Seeked signal is emited.

	
Previous

	Skips to the previous track in the tracklist.

If there is no previous track (and endless playback and track repeat are both off), stop playback.

If playback is paused or stopped, it remains that way.

If CanGoPrevious is false, attempting to call this method should have no effect.

	
PropertiesChanged

	Parameters

	
	args - list

	unnamed parameters passed by dbus signal

	
	kw - dict

	named parameters passed by dbus signal

Every time that some property change, signal will be called

	
Rate

	Returns

	Read/Write

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The current playback rate.

The value must fall in the range described by MinimumRate and MaximumRate, and must not be 0.0. If playback is paused, the PlaybackStatus property should be used to indicate this. A value of 0.0 should not be set by the client. If it is, the media player should act as though Pause was called.

If the media player has no ability to play at speeds other than the normal playback rate, this must still be implemented, and must return 1.0. The MinimumRate and MaximumRate properties must also be set to 1.0.

Not all values may be accepted by the media player. It is left to media player implementations to decide how to deal with values they cannot use; they may either ignore them or pick a ‘best fit’ value. Clients are recommended to only use sensible fractions or multiples of 1 (eg: 0.5, 0.25, 1.5, 2.0, etc).

	
Seek

	Parameters:

	
	Offset - x (Time_In_Us)

	The number of microseconds to seek forward.

Seeks forward in the current track by the specified number of microseconds.

A negative value seeks back. If this would mean seeking back further than the start of the track, the position is set to 0.

If the value passed in would mean seeking beyond the end of the track, acts like a call to Next.

If the CanSeek property is false, this has no effect.

	
Seeked

	Parameters:

	
	Position - x (Time_In_Us)

	The new position, in microseconds.

Indicates that the track position has changed in a way that is inconsistant with the current playing state.

When this signal is not received, clients should assume that:

	When playing, the position progresses according to the rate property.

	When paused, it remains constant.

This signal does not need to be emitted when playback starts or when the track changes, unless the track is starting at an unexpected position. An expected position would be the last known one when going from Paused to Playing, and 0 when going from Stopped to Playing.

	
SetPosition

	Parameters

	
	TrackId - o (Track_Id)

	The currently playing track’s identifier.

If this does not match the id of the currently-playing track, the call is ignored as ‘stale’.

	
	Position - x (Time_In_Us)

	Track position in microseconds.

This must be between 0 and <track_length>.

Sets the current track position in microseconds.

If the Position argument is less than 0, do nothing.

If the Position argument is greater than the track length, do nothing.

If the CanSeek property is false, this has no effect.

	
Shuffle

	Returns

	Read/Write

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

A value of false indicates that playback is progressing linearly through a playlist, while true means playback is progressing through a playlist in some other order.

This property is optional, and clients should deal with NotSupported errors gracefully.

If CanControl is false, attempting to set this property should have no effect and raise an error.

	
Stop

	Stops playback.

If playback is already stopped, this has no effect.

Calling Play after this should cause playback to start again from the beginning of the track.

If CanControl is false, attempting to call this method should have no effect and raise an error.

	
Volume

	Returns

	Read/Write

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The volume level.

When setting, if a negative value is passed, the volume should be set to 0.0.

If CanControl is false, attempting to set this property should have no effect and raise an error.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.playlists module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Playlists_Interface.html

	
class mpris2.playlists.Playlists(*args, **kw)[source]

	Bases: mpris2.interfaces.Interfaces

Provides access to the media player’s playlists.

Since D-Bus does not provide an easy way to check for what interfaces are exported on an object, clients should attempt to get one of the properties on this interface to see if it is implemented.

	
ActivatePlaylist

	Parameters:

	
	PlaylistId - o

	The id of the playlist to activate.

Starts playing the given playlist.

Note that this must be implemented. If the media player does not allow clients to change the playlist, it should not implement this interface at all.

It is up to the media player whether this completely replaces the current tracklist, or whether it is merely inserted into the tracklist and the first track starts. For example, if the media player is operating in a ‘jukebox’ mode, it may just append the playlist to the list of upcoming tracks, and skip to the first track in the playlist.

	
ActivePlaylist

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The currently-active playlist.

If there is no currently-active playlist, the structure’s Valid field will be false, and the Playlist details are undefined.

Note that this may not have a value even after ActivatePlaylist is called with a valid playlist id as ActivatePlaylist implementations have the option of simply inserting the contents of the playlist into the current tracklist.

	
GetPlaylists

	Parameters:

	
	Index - u

	The index of the first playlist to be fetched (according to the ordering).

	
	MaxCount - u

	The maximum number of playlists to fetch.

	
	Order - s (Playlist_Ordering)

	The ordering that should be used.

	
	ReverseOrder - b

	Whether the order should be reversed.

Returns

	
	Playlists - a(oss) (Playlist_List)

	A list of (at most MaxCount) playlists.

Gets a set of playlists.

	
Orderings

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The avaislable orderings. At least one must be offered.

	
PlaylistChanged

	Parameters

	
	Playlist - (oss) (Playlist)

	The playlist whose details have changed.

Indicates that the name or icon for a playlist has changed.

Note that, for this signal to operate correctly, the id of the playlist must not change when the name changes.

	
PlaylistCount

	Returns

	Read only

	When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

The number of playlists available.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.some_players module

	
class mpris2.some_players.Some_Players[source]

	Bases: object [http://docs.python.org/library/functions.html#object]

Not defined in documentation

Maybe this player (and other) implement mpris2

Some players

	
	AUDACIOUS

	‘audacious’

	
	BANSHEE

	‘banshee’

	
	BEATBOX

	‘beatbox’

	
	BMP

	‘bmp’

	
	CLEMENTINE

	‘clementine’

	
	DRAGONPLAYER

	‘dragonplayer’

	
	EXAILE

	‘exaile’

	
	GMUSICBROWSER

	‘gmusicbrowser’

	
	GMPC

	‘gmpc’

	
	GUAYADEQUE

	‘guayadeque’

	
	MOPIDY

	‘mopidy’

	
	MPDRIS

	‘mpDris’

	
	QUODLIBET

	‘quodlibet’

	
	RAVEND

	‘ravend’

	
	RHYTHMBOX

	‘rhythmbox’

	
	SPOTIFY

	‘spotify’

	
	VLC

	‘vlc’

	
	XBMC

	‘xbmc’

	
	XMMS2

	‘xmms2’

	
	XNOISE

	‘xnoise’

	
AUDACIOUS = 'audacious'

	

	
BANSHEE = 'banshee'

	

	
BEATBOX = 'beatbox'

	

	
BMP = 'bmp'

	

	
CLEMENTINE = 'clementine'

	

	
DRAGONPLAYER = 'dragonplayer'

	

	
EXAILE = 'exaile'

	

	
GMPC = 'gmpc'

	

	
GMUSICBROWSER = 'gmusicbrowser'

	

	
GUAYADEQUE = 'guayadeque'

	

	
MOPIDY = 'mopidy'

	

	
MPDRIS = 'mpDris'

	

	
QUODLIBET = 'quodlibet'

	

	
RAVEND = 'ravend'

	

	
RHYTHMBOX = 'rhythmbox'

	

	
SPOTIFY = 'spotify'

	

	
VLC = 'vlc'

	

	
XBMC = 'xbmc'

	

	
XMMS2 = 'xmms2'

	

	
XNOISE = 'xnoise'

	

	
static get_dict()[source]

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.tracklist module

From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Track_List_Interface.html

	
class mpris2.tracklist.TrackList(*args, **kw)[source]

	Bases: mpris2.interfaces.Interfaces

Interface for TrackList (org.mpris.MediaPlayer2.TrackList)

Provides access to a short list of tracks which were recently played or
will be played shortly. This is intended to provide context to the
currently-playing track, rather than giving complete access to the media
player’s playlist.

Example use cases are the list of tracks from the same album as the
currently playing song or the Rhythmbox play queue.

Each track in the tracklist has a unique identifier. The intention is that
this uniquely identifies the track within the scope of the tracklist. In
particular, if a media item (a particular music file, say) occurs twice in
the track list, each occurrence should have a different identifier. If a
track is removed from the middle of the playlist, it should not affect the
track ids of any other tracks in the tracklist.

As a result, the traditional track identifiers of URLs and position in the
playlist cannot be used. Any scheme which satisfies the uniqueness
requirements is valid, as clients should not make any assumptions about the
value of the track id beyond the fact that it is a unique identifier.

Note that the (memory and processing) burden of implementing the TrackList
interface and maintaining unique track ids for the playlist can be
mitigated by only exposing a subset of the playlist when it is very long
(the 20 or so tracks around the currently playing track, for example). This
is a recommended practice as the tracklist interface is not designed to
enable browsing through a large list of tracks, but rather to provide
clients with context about the currently playing track.

	
AddTrack

	Parameters:

	
	Uri - s (Uri)

	The uri of the item to add. Its uri scheme should be an element of
the org.mpris.MediaPlayer2.SupportedUriSchemes property and the
mime-type should match one of the elements of the
org.mpris.MediaPlayer2.SupportedMimeTypes

	
	AfterTrack - o (Track_Id)

	The identifier of the track after which the new item should be
inserted. The path /org/mpris/MediaPlayer2/TrackList/NoTrack
indicates that the track should be inserted at the start of the
track list.

	
	SetAsCurrent - b

	Whether the newly inserted track should be considered as the
current track. Setting this to trye has the same effect as calling
GoTo afterwards.

Adds a URI in the TrackList.

If the CanEditTracks property is false, this has no effect.

Note

Clients should not assume that the track has been added at the time
when this method returns. They should wait for a TrackAdded (or
TrackListReplaced) signal.

	
CanEditTracks

	Returns:

	Read only

	When this property changes, the
org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted
with the new value.

If false, calling AddTrack or RemoveTrack will have no effect, and may
raise a NotSupported error.

	
GetTracksMetadata

	Parameters:

	
	TrackIds - ao (Track_Id_List)

	The list of track ids for which metadata is requested.

Returns

	
	Metadata - aa{sv} (Metadata_Map_List)

	Metadata of the set of tracks given as input.

See the type documentation for more details.

Gets all the metadata available for a set of tracks.

Each set of metadata must have a ‘mpris:trackid’ entry at the very
least, which contains a string that uniquely identifies this track
within the scope of the tracklist.

	
GoTo

	Parameters:

	
	TrackId - o (Track_Id)

	Identifier of the track to skip to.

/org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

Skip to the specified TrackId.

If the track is not part of this tracklist, this has no effect.

If this object is not /org/mpris/MediaPlayer2, the current TrackList’s
tracks should be replaced with the contents of this TrackList, and the
TrackListReplaced signal should be fired from /org/mpris/MediaPlayer2.

	
PROPERTIES_CAN_EDIT_TRACKS = 'CanEditTracks'

	

	
PROPERTIES_TACKS = 'Tracks'

	

	
RemoveTrack

	Parameters:

	
	TrackId - o (TrackId)

	Identifier of the track to be removed.
/org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

Removes an item from the TrackList.

If the track is not part of this tracklist, this has no effect.

If the CanEditTracks property is false, this has no effect.

Note

Clients should not assume that the track has been removed at the
time when this method returns. They should wait for a TrackRemoved
(or TrackListReplaced) signal.

	
SIGNALS_PROPERTIES_CHANGED = 'PropertiesChanged'

	

	
SIGNALS_TRACK_ADDED = 'TrackAdded'

	

	
SIGNALS_TRACK_LIST_REPLACED = 'TrackListReplaced'

	

	
SIGNALS_TRACK_METADATA_CHANGED = 'TrackMetadataChanged'

	

	
SIGNALS_TRACK_REMOVED = 'TrackRemoved'

	

	
TrackAdded

	Parameters:

	
	Metadata - a{sv} (Metadata_Map)

	The metadata of the newly added item.

This must include a mpris:trackid entry.

See the type documentation for more details.

	
	AfterTrack - o (Track_Id)

	The identifier of the track after which the new track was inserted.
The path /org/mpris/MediaPlayer2/TrackList/NoTrack indicates that
the track was inserted at the start of the track list.

Indicates that a track has been added to the track list.

	
TrackListReplaced

	Parameters:

	
	Tracks - ao (Track_Id_List)

	The new content of the tracklist.

	
	CurrentTrack - o (Track_Id)

	The identifier of the track to be considered as current.

/org/mpris/MediaPlayer2/TrackList/NoTrack indicates that there is no current track.

This should correspond to the mpris:trackid field of the Metadata property of
the org.mpris.MediaPlayer2.Player interface.

Indicates that the entire tracklist has been replaced.

It is left up to the implementation to decide when a change to the
track list is invasive enough that this signal should be emitted
instead of a series of TrackAdded and TrackRemoved signals.

	
TrackMetadataChanged

	Parameters:

	
	TrackId - o (Track_Id)

	The id of the track which metadata has changed.

If the track id has changed, this will be the old value.

/org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

	
	Metadata - a{sv} (Metadata_Map)

	The new track metadata.

This must include a mpris:trackid entry.

See the type documentation for more details.

Indicates that the metadata of a track in the tracklist has changed.

This may indicate that a track has been replaced, in which case the
mpris:trackid metadata entry is different from the TrackId argument.

	
TrackRemoved

	Parameters:

	
	TrackId - o (Track_Id)

	The identifier of the track being removed.

/org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

Indicates that a track has been removed from the track list.

	
Tracks

	Returns:

	Read only

	When this property changes, the
org.freedesktop.DBus.Properties.PropertiesChanged signal is
emitted, but the new value is not sent.

An array which contains the identifier of each track in the tracklist,
in order.

The org.freedesktop.DBus.Properties.PropertiesChanged signal is emited
every time this property changes, but the signal message does not
contain the new value. Client implementations should rather rely on the
TrackAdded, TrackRemoved and TrackListReplaced signals to keep their
representation of the tracklist up to date.

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 	mpris2

 	mpris2 package

mpris2.utils module

utils functions not defined in espec

	
mpris2.utils.get_player_id_from_uri(uri)[source]

	Returns player mpris2 id from uri
@param uri: string mpris2 player dbus uri
@return: string mrpis2 id

	
mpris2.utils.get_players_id(pattern=None)[source]

	Return string of player mpris2 id
@param pattern=None: string RegEx that filter response
@return: array string of players bus name

	
mpris2.utils.get_players_uri(pattern='')[source]

	Return string of player bus name
@param pattern=None: string RegEx that filter response
@return: array string of players bus name

	
mpris2.utils.implements(uri, interface, path='/org/mpris/MediaPlayer2', bus=None)[source]

	

	
mpris2.utils.list_interfaces(uri, path=None, bus=None)[source]

	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	MPRIS2 0.9.3 documentation

 Here is some examples, that shows how to work with this lib.

Configure dbus and mainloop

>>> # configure mainloop (not required if you wont expect signals)
>>> from dbus.mainloop.glib import DBusGMainLoop
>>> DBusGMainLoop(set_as_default=True)

Discover your player mpris uri

>>> # you can use get_players_uri to get current running players uri
>>> from mpris2 import get_players_uri
>>> # next raise StopIteration if not found
>>> uri = next(get_players_uri())

Connect to player

>>> # create you player
>>> from mpris2 import Player
>>> player = Player(dbus_interface_info={'dbus_uri': uri})

Call methods

>>> player.Next() # play next media

Get attributes

>>> print(player.Metadata) #current media data

Wait signal

>>> def another_handler(self, *args, **kw):
>>> print(args, kw)
>>>
>>> player.PropertiesChanged = another_handler
>>> # python3
>>> import gi.repository.GLib
>>> mloop = gi.repository.GLib.MainLoop()
>>> mloop.run()

Other examples:

>>> # old versions mainloop
>>> import gobject
>>> mloop = gobject.MainLoop()

>>> # list all running players
>>> from mpris2 import get_players_uri
>>> print([uri for uri in get_players_uri()])
>>> # get_players_uri can be called with filter parameter
>>> get_players_uri('.+rhythmbox')
>>> # you can set it yourself
>>> uri = 'org.mpris.MediaPlayer2.gmusicbrowser'
>>> # or use one predefined
>>> from mpris2 import SomePlayers, Interfaces
>>> uri = '.'.join([Interfaces.MEDIA_PLAYER, SomePlayers.GMUSICBROWSER])

>>> # test other interfaces
>>> from mpris2 import MediaPlayer2
>>> mp2 = MediaPlayer2(dbus_interface_info={'dbus_uri': uri})
>>> # not all players implement this:
>>> from mpris2 import Playlists, TrackList
>>> pls = Playlists(dbus_interface_info={'dbus_uri': uri})
>>> tl = TrackList(dbus_interface_info={'dbus_uri': uri})

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	MPRIS2 0.9.3 documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 mpris2	

 	
 	
 mpris2.decorator	

 	
 	
 mpris2.decorator.attribute	

 	
 	
 mpris2.decorator.base	

 	
 	
 mpris2.decorator.interface	

 	
 	
 mpris2.decorator.method	

 	
 	
 mpris2.decorator.signal	

 	
 	
 mpris2.interfaces	

 	
 	
 mpris2.mediaplayer2	

 	
 	
 mpris2.player	

 	
 	
 mpris2.playlists	

 	
 	
 mpris2.some_players	

 	
 	
 mpris2.tracklist	

 	
 	
 mpris2.types	

 	
 	
 mpris2.types.loop_status	

 	
 	
 mpris2.types.metadata_map	

 	
 	
 mpris2.types.playback_rate	

 	
 	
 mpris2.types.playback_status	

 	
 	
 mpris2.types.playlist	

 	
 	
 mpris2.types.playlist_id	

 	
 	
 mpris2.types.playlist_ordering	

 	
 	
 mpris2.types.time_in_us	

 	
 	
 mpris2.types.uri	

 	
 	
 mpris2.types.volume	

 	
 	
 mpris2.utils	

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	MPRIS2 0.9.3 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | X

A

 	

 	ActivatePlaylist (mpris2.Playlists attribute)

 	

 	(mpris2.playlists.Playlists attribute)

 	ActivePlaylist (mpris2.Playlists attribute)

 	

 	(mpris2.playlists.Playlists attribute)

 	AddTrack (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	ALBUM (mpris2.types.metadata_map.Metadata_Map attribute)

 	ALBUM_ARTIST (mpris2.types.metadata_map.Metadata_Map attribute)

 	ALPHABETICAL (mpris2.types.playlist_ordering.Playlist_Ordering attribute)

 	args_to_dbus() (in module mpris2.decorator.method)

 	

 	ART_URI (mpris2.types.metadata_map.Metadata_Map attribute)

 	ARTIST (mpris2.types.metadata_map.Metadata_Map attribute)

 	AS_TEXT (mpris2.types.metadata_map.Metadata_Map attribute)

 	AUDACIOUS (mpris2.some_players.Some_Players attribute)

 	AUDIO_BPM (mpris2.types.metadata_map.Metadata_Map attribute)

 	AUTO_RATING (mpris2.types.metadata_map.Metadata_Map attribute)

B

 	

 	BANSHEE (mpris2.some_players.Some_Players attribute)

 	BEATBOX (mpris2.some_players.Some_Players attribute)

 	

 	BMP (mpris2.some_players.Some_Players attribute)

C

 	

 	CanControl (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	CanEditTracks (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	CanGoNext (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	CanGoPrevious (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	CanPause (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	CanPlay (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	CanQuit (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	CanRaise (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	CanSeek (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	

 	CanSetFullscreen (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	CLEMENTINE (mpris2.some_players.Some_Players attribute)

 	COMMENT (mpris2.types.metadata_map.Metadata_Map attribute)

 	COMPOSER (mpris2.types.metadata_map.Metadata_Map attribute)

 	CONTENT_CREATED (mpris2.types.metadata_map.Metadata_Map attribute)

 	convert_args_to_dbus_args() (mpris2.decorator.method.DbusMethod method)

 	convert_kw_to_dbus_kw() (mpris2.decorator.method.DbusMethod method)

 	CREATION_DATE (mpris2.types.playlist_ordering.Playlist_Ordering attribute)

D

 	

 	DbusAttr (class in mpris2.decorator.attribute)

 	DbusInterface (class in mpris2.decorator.interface)

 	DbusMethod (class in mpris2.decorator.method)

 	DbusSignal (class in mpris2.decorator.signal)

 	dbusWrapedInterface() (mpris2.decorator.interface.DbusInterface method)

 	

 	Decorator (class in mpris2.decorator.base)

 	DesktopEntry (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	DISC_NUMBER (mpris2.types.metadata_map.Metadata_Map attribute)

 	DRAGONPLAYER (mpris2.some_players.Some_Players attribute)

E

 	

 	EXAILE (mpris2.some_players.Some_Players attribute)

F

 	

 	FIRST_USED (mpris2.types.metadata_map.Metadata_Map attribute)

 	

 	Fullscreen (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

G

 	

 	GENRE (mpris2.types.metadata_map.Metadata_Map attribute)

 	get_dict() (mpris2.some_players.Some_Players static method)

 	get_player_id_from_uri() (in module mpris2.utils)

 	get_players_id() (in module mpris2.utils)

 	get_players_uri() (in module mpris2.utils)

 	GetPlaylists (mpris2.Playlists attribute)

 	

 	(mpris2.playlists.Playlists attribute)

 	

 	GetTracksMetadata (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	GMPC (mpris2.some_players.Some_Players attribute)

 	GMUSICBROWSER (mpris2.some_players.Some_Players attribute)

 	GoTo (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	GUAYADEQUE (mpris2.some_players.Some_Players attribute)

H

 	

 	HasTrackList (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

I

 	

 	Icon (mpris2.types.playlist.Playlist attribute)

 	Id (mpris2.types.playlist.Playlist attribute)

 	Identity (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	

 	implements() (in module mpris2.utils)

 	Interfaces (class in mpris2)

 	

 	(class in mpris2.interfaces)

K

 	

 	kw_to_dbus() (in module mpris2.decorator.method)

L

 	

 	LAST_PLAY_DATE (mpris2.types.playlist_ordering.Playlist_Ordering attribute)

 	LAST_USED (mpris2.types.metadata_map.Metadata_Map attribute)

 	LENGTH (mpris2.types.metadata_map.Metadata_Map attribute)

 	list_interfaces() (in module mpris2.utils)

 	

 	Loop_Status (class in mpris2.types)

 	

 	(class in mpris2.types.loop_status)

 	LoopStatus (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	LYRICIST (mpris2.types.metadata_map.Metadata_Map attribute)

M

 	

 	MAX (mpris2.types.volume.Volume attribute)

 	MaximumRate (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	Maybe_Playlist (class in mpris2.types)

 	

 	(class in mpris2.types.playlist)

 	MEDIA_PLAYER (mpris2.interfaces.Interfaces attribute)

 	MediaPlayer2 (class in mpris2)

 	

 	(class in mpris2.mediaplayer2)

 	merge_args() (mpris2.decorator.method.DbusMethod class method)

 	merge_kwds() (mpris2.decorator.method.DbusMethod class method)

 	Metadata (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	Metadata_Map (class in mpris2.types)

 	

 	(class in mpris2.types.metadata_map)

 	MIN (mpris2.types.volume.Volume attribute)

 	MinimumRate (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	MODIFIED_DATE (mpris2.types.playlist_ordering.Playlist_Ordering attribute)

 	MOPIDY (mpris2.some_players.Some_Players attribute)

 	MPDRIS (mpris2.some_players.Some_Players attribute)

 	mpris2 (module), [1]

 	mpris2.decorator (module)

 	mpris2.decorator.attribute (module)

 	mpris2.decorator.base (module)

 	mpris2.decorator.interface (module)

 	mpris2.decorator.method (module)

 	

 	mpris2.decorator.signal (module)

 	mpris2.interfaces (module)

 	mpris2.mediaplayer2 (module)

 	mpris2.player (module)

 	mpris2.playlists (module)

 	mpris2.some_players (module)

 	mpris2.tracklist (module)

 	mpris2.types (module)

 	mpris2.types.loop_status (module)

 	mpris2.types.metadata_map (module)

 	mpris2.types.playback_rate (module)

 	mpris2.types.playback_status (module)

 	mpris2.types.playlist (module)

 	mpris2.types.playlist_id (module)

 	mpris2.types.playlist_ordering (module)

 	mpris2.types.time_in_us (module)

 	mpris2.types.uri (module)

 	mpris2.types.volume (module)

 	mpris2.utils (module)

N

 	

 	n (mpris2.types.volume.Volume attribute)

 	Name (mpris2.types.playlist.Playlist attribute)

 	

 	Next (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	NONE (mpris2.types.loop_status.Loop_Status attribute)

O

 	

 	OBJECT_PATH (mpris2.interfaces.Interfaces attribute)

 	OpenUri (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	

 	Orderings (mpris2.Playlists attribute)

 	

 	(mpris2.playlists.Playlists attribute)

P

 	

 	Pause (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	PAUSED (mpris2.types.playback_status.Playback_Status attribute)

 	Play (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	Playback_Rate (class in mpris2.types)

 	

 	(class in mpris2.types.playback_rate)

 	Playback_Status (class in mpris2.types)

 	

 	(class in mpris2.types.playback_status)

 	PlaybackStatus (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	Player (class in mpris2)

 	

 	(class in mpris2.player)

 	PLAYER (mpris2.interfaces.Interfaces attribute)

 	PLAYING (mpris2.types.playback_status.Playback_Status attribute)

 	Playlist (class in mpris2.types)

 	

 	(class in mpris2.types.playlist)

 	PLAYLIST (mpris2.types.loop_status.Loop_Status attribute)

 	Playlist (mpris2.types.playlist.Maybe_Playlist attribute)

 	Playlist_Id (class in mpris2.types)

 	

 	(class in mpris2.types.playlist_id)

 	Playlist_Ordering (class in mpris2.types)

 	

 	(class in mpris2.types.playlist_ordering)

 	PlaylistChanged (mpris2.Playlists attribute)

 	

 	(mpris2.playlists.Playlists attribute)

 	PlaylistCount (mpris2.Playlists attribute)

 	

 	(mpris2.playlists.Playlists attribute)

 	

 	Playlists (class in mpris2)

 	

 	(class in mpris2.playlists)

 	PLAYLISTS (mpris2.interfaces.Interfaces attribute)

 	PlayPause (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	Position (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	Previous (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	PROPERTIES (mpris2.interfaces.Interfaces attribute)

 	PROPERTIES_CAN_EDIT_TRACKS (mpris2.tracklist.TrackList attribute)

 	PROPERTIES_CAN_QUIT (mpris2.mediaplayer2.MediaPlayer2 attribute)

 	PROPERTIES_CAN_RAISE (mpris2.mediaplayer2.MediaPlayer2 attribute)

 	PROPERTIES_DESKTOP_ENTRY (mpris2.mediaplayer2.MediaPlayer2 attribute)

 	PROPERTIES_HAS_TRACK_LIST (mpris2.mediaplayer2.MediaPlayer2 attribute)

 	PROPERTIES_IDENTITY (mpris2.mediaplayer2.MediaPlayer2 attribute)

 	PROPERTIES_SUPPORTED_MINE_TYPES (mpris2.mediaplayer2.MediaPlayer2 attribute)

 	PROPERTIES_SUPPORTED_URI_SCHEMES (mpris2.mediaplayer2.MediaPlayer2 attribute)

 	PROPERTIES_TACKS (mpris2.tracklist.TrackList attribute)

 	PropertiesChanged (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.Player attribute)

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	(mpris2.player.Player attribute)

Q

 	

 	Quit (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	

 	QUODLIBET (mpris2.some_players.Some_Players attribute)

R

 	

 	Raise (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	RANGE (mpris2.types.volume.Volume attribute)

 	Rate (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	

 	RAVEND (mpris2.some_players.Some_Players attribute)

 	RemoveTrack (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	RHYTHMBOX (mpris2.some_players.Some_Players attribute)

S

 	

 	Seek (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	Seeked (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	SetPosition (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	Shuffle (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	SIGNAL (mpris2.interfaces.Interfaces attribute)

 	SIGNALS_PROPERTIES_CHANGED (mpris2.mediaplayer2.MediaPlayer2 attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	SIGNALS_TRACK_ADDED (mpris2.tracklist.TrackList attribute)

 	SIGNALS_TRACK_LIST_REPLACED (mpris2.tracklist.TrackList attribute)

 	

 	SIGNALS_TRACK_METADATA_CHANGED (mpris2.tracklist.TrackList attribute)

 	SIGNALS_TRACK_REMOVED (mpris2.tracklist.TrackList attribute)

 	Some_Players (class in mpris2.some_players)

 	SPOTIFY (mpris2.some_players.Some_Players attribute)

 	Stop (mpris2.Player attribute)

 	

 	(mpris2.player.Player attribute)

 	STOPPED (mpris2.types.playback_status.Playback_Status attribute)

 	SupportedMimeTypes (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

 	SupportedUriSchemes (mpris2.MediaPlayer2 attribute)

 	

 	(mpris2.mediaplayer2.MediaPlayer2 attribute)

T

 	

 	Time_In_Us (class in mpris2.types)

 	

 	(class in mpris2.types.time_in_us)

 	TITLE (mpris2.types.metadata_map.Metadata_Map attribute)

 	TRACK (mpris2.types.loop_status.Loop_Status attribute)

 	TRACK_LIST (mpris2.interfaces.Interfaces attribute)

 	TRACK_NUMBER (mpris2.types.metadata_map.Metadata_Map attribute)

 	TrackAdded (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	

 	TRACKID (mpris2.types.metadata_map.Metadata_Map attribute)

 	TrackList (class in mpris2)

 	

 	(class in mpris2.tracklist)

 	TrackListReplaced (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	TrackMetadataChanged (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	TrackRemoved (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

 	Tracks (mpris2.TrackList attribute)

 	

 	(mpris2.tracklist.TrackList attribute)

U

 	

 	Uri (class in mpris2.types)

 	

 	(class in mpris2.types.uri)

 	URL (mpris2.types.metadata_map.Metadata_Map attribute)

 	USE_COUNT (mpris2.types.metadata_map.Metadata_Map attribute)

 	

 	USER_DEFINE (mpris2.types.playlist_ordering.Playlist_Ordering attribute)

 	USER_RATING (mpris2.types.metadata_map.Metadata_Map attribute)

V

 	

 	Valid (mpris2.types.playlist.Maybe_Playlist attribute)

 	VALUES (mpris2.types.loop_status.Loop_Status attribute)

 	

 	(mpris2.types.playback_status.Playback_Status attribute)

 	(mpris2.types.playlist_ordering.Playlist_Ordering attribute)

 	

 	VLC (mpris2.some_players.Some_Players attribute)

 	Volume (class in mpris2.types)

 	

 	(class in mpris2.types.volume)

 	(mpris2.Player attribute)

 	(mpris2.player.Player attribute)

X

 	

 	XBMC (mpris2.some_players.Some_Players attribute)

 	XMMS2 (mpris2.some_players.Some_Players attribute)

 	

 	XNOISE (mpris2.some_players.Some_Players attribute)

 Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

 _modules/mpris2/types/playback_rate.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.playback_rate

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Simple-Type:Playback_Rate
'''

[docs]class Playback_Rate(float):
 '''
 A playback rate

 This is a multiplier,
 so a value of 0.5 indicates that playback is happening at half speed,
 while 1.5 means that 1.5 seconds of 'track time' is consumed every second.
 '''

 def __init__(self, rate=1.0):
 self._rate = rate

 def __float__(self):
 return self._rate

 def __str__(self):
 return str(self._rate)

if __name__ == '__main__':
 pr = Playback_Rate(1.2)
 assert pr == 1.2

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/types/time_in_us.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.time_in_us

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Simple-Type:Time_In_Us
'''

[docs]class Time_In_Us(int):
 '''Time in microseconds.'''

 def __init__(self, time=0):
 self._time = time

 def __int__(self):
 return int(self._time)

 def __str__(self):
 return str(self._time)

if __name__ == '__main__':
 assert Time_In_Us(10) == 10

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/types/loop_status.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.loop_status

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Enum:Loop_Status
'''

[docs]class Loop_Status(str):
 '''
 A repeat / loop status

 * None (None)
 The playback will stop when there are no more tracks to play
 * Track (Track)
 The current track will start again from the begining once it has finished playing
 * Playlist (Playlist)
 The playback loops through a list of tracks
 '''
 NONE = 'None'
 TRACK = 'Track'
 PLAYLIST = 'Playlist'
 VALUES = (NONE, TRACK, PLAYLIST)
 def __init__(self, status):
 self._status = status

 def __int__(self):
 return Loop_Status.VALUES.index(self._status)

 def __str__(self):
 return self._status

if __name__ == '__main__':
 assert Loop_Status.PLAYLIST != 'None'
 assert Loop_Status.PLAYLIST == 'Playlist'
 assert Loop_Status.TRACK == 'Track'
 assert Loop_Status.NONE == 'None'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/types/playlist.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.playlist

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Playlists_Interface.html#Struct:Playlist
'''

from dbus import Struct

[docs]class Playlist(Struct):
 '''
 A data structure describing a playlist.

 * Id - o (Playlist_Id)
 A unique identifier for the playlist.

 This should remain the same if the playlist is renamed.
 * Name - s
 The name of the playlist, typically given by the user.
 * Icon - s (Uri)
 The URI of an (optional) icon.

 '''
 def __init__(self, playlist):
 Struct.__init__(
 self,
 iter(playlist),
 signature=playlist.signature,
 variant_level=playlist.variant_level
)

 @property
 def Id(self):
 return self[0]

 @property
 def Name(self):
 return self[1]

 @property
 def Icon(self):
 return self[2]

[docs]class Maybe_Playlist(Struct):
 '''
 * Valid - b
 Whether this structure refers to a valid playlist.
 * Playlist - (oss) (Playlist)
 The playlist, providing Valid is true, otherwise undefined.

 When constructing this type, it should be noted that the playlist ID must
 be a valid object path, or D-Bus implementations may reject it. This is
 true even when Valid is false. It is suggested that '/' is used as the
 playlist ID in this case.
 '''

 def __init__(self, maybe_playlist=None):
 Struct.__init__(
 self,
 (maybe_playlist[0], maybe_playlist[1]),
 signature=maybe_playlist.signature,
 variant_level=maybe_playlist.variant_level
)

 @property
 def Valid(self):
 return self[0]

 @property
 def Playlist(self):
 return Playlist(self[1])

 def __nonzero__(self):
 return bool(self.Valid)

 def __bool__(self):
 return self.__nonzero__()

if __name__ == '__main__':
 expect = Struct((1, 'My Playlist', None), signature='iss')
 p = Playlist(expect)
 assert p.Id == 1
 assert p.Name == 'My Playlist'
 assert p.Icon == None
 m_expect = Struct((False, p))
 mp = Maybe_Playlist(m_expect)
 assert not mp.Valid
 assert not mp

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_static/comment-close.png

_modules/mpris2/types/uri.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.uri

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Playlists_Interface.html#Simple-Type:Uri
'''

[docs]class Uri(str):
 '''A unique resource identifier.'''

 def __init__(self, uri):
 self._uri = uri

 def __str__(self):
 return str(self._uri)

if __name__ == '__main__':
 assert Uri('http://www.com.br') == 'http://www.com.br'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/types/playback_status.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.playback_status

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Enum:Playback_Status
'''

[docs]class Playback_Status(str):
 '''
 A playback state.

 * Playing (Playing)
 A track is currently playing.
 * Paused (Paused)
 A track is currently paused.
 * Stopped (Stopped)
 There is no track currently playing.

 '''

 PLAYING = 'Playing'
 PAUSED = 'Paused'
 STOPPED = 'Stopped'
 VALUES = (PLAYING, PAUSED, STOPPED)

 def __init__(self, status):
 self._status = status

 def __int__(self):
 return Playback_Status.VALUES.index(self._status)

 def __str__(self):
 return self._status

if __name__ == '__main__':
 assert Playback_Status.PLAYING == 'Playing'
 assert Playback_Status.PAUSED == 'Paused'
 assert Playback_Status.STOPPED == 'Stopped'
 assert Playback_Status.STOPPED != 'Playing'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_static/file.png

_static/plus.png

_static/comment.png

_static/down.png

_static/up.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/up-pressed.png

_static/minus.png

_modules/mpris2/utils.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.utils

'''
utils functions not defined in espec
'''

import re

from .interfaces import Interfaces
from .decorator.utils import get_session, get_uri, get_mainloop # @UnusedImport
from .decorator.utils import list_interfaces as _list_interfaces
from .decorator.utils import implements as _implements

[docs]def get_players_uri(pattern=''):
 '''
 Return string of player bus name
 @param pattern=None: string RegEx that filter response
 @return: array string of players bus name
 '''
 return get_uri(Interfaces.MEDIA_PLAYER + '.*' + pattern)

[docs]def get_player_id_from_uri(uri):
 '''
 Returns player mpris2 id from uri
 @param uri: string mpris2 player dbus uri
 @return: string mrpis2 id
 '''
 mateched = re.match(Interfaces.MEDIA_PLAYER + '\.(.+)', uri or '')
 return mateched.groups()[0]\
 if mateched\
 else ''

[docs]def get_players_id(pattern=None):
 '''
 Return string of player mpris2 id
 @param pattern=None: string RegEx that filter response
 @return: array string of players bus name
 '''
 for item in get_uri(Interfaces.MEDIA_PLAYER + '.*' + pattern):
 yield get_player_id_from_uri(item)

[docs]def list_interfaces(uri, path=None, bus=None):
 return _list_interfaces(uri, path or Interfaces.OBJECT_PATH, bus)

[docs]def implements(uri, interface, path=Interfaces.OBJECT_PATH, bus=None):
 return _implements(uri, interface, path or Interfaces.OBJECT_PATH, bus)

if __name__ == '__main__':
 uris = get_players_uri()
 if not uris:
 print('No running players')
 for uri in uris:
 print(uri, ':')
 for interface in list_interfaces(uri):
 print('\t', interface)

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/mediaplayer2.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.mediaplayer2

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Media_Player.html
'''

from .decorator import DbusAttr
from .decorator import DbusInterface
from .decorator import DbusMethod
from .decorator import DbusSignal
from .interfaces import Interfaces

[docs]class MediaPlayer2(Interfaces):
 '''
 Interface for MediaPlayer2 (org.mpris.MediaPlayer2)
 '''
 PROPERTIES_CAN_QUIT = 'CanQuit'
 PROPERTIES_CAN_RAISE = 'Identity'
 PROPERTIES_HAS_TRACK_LIST = 'HasTrackList'
 PROPERTIES_IDENTITY = 'Identity'
 PROPERTIES_DESKTOP_ENTRY = 'DesktopEntry'
 PROPERTIES_SUPPORTED_URI_SCHEMES = 'SupportedUriSchemes'
 PROPERTIES_SUPPORTED_MINE_TYPES = 'SupportedMimeTypes'
 SIGNALS_PROPERTIES_CHANGED = 'PropertiesChanged'

 @DbusInterface(Interfaces.MEDIA_PLAYER, Interfaces.OBJECT_PATH)
 def __init__(self):
 '''Constructor'''

 @DbusMethod
 def Raise(self):
 '''
 Brings the media player's user interface to the front using any appropriate mechanism available.

 The media player may be unable to control how its user interface is displayed, or it may not have a graphical user interface at all. In this case, the Identity property is false and this method does nothing.
 '''

 @DbusMethod
 def Quit(self):
 '''
 Causes the media player to stop running.

 The media player may refuse to allow clients to shut it down. In this case, the CanQuit property is false and this method does nothing.

 ..note::
 Media players which can be D-Bus activated, or for which there is no sensibly easy way to terminate a running instance (via the main interface or a notification area icon for example) should allow clients to use this method. Otherwise, it should not be needed.

 If the media player does not have a UI, this should be implemented
 '''

 @DbusAttr
 def CanQuit(self):
 '''
 Returns

 Read only
 Inject attrs from decorator at new object then return obje

 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 If false, calling Quit will have no effect, and may raise a NotSupported error. If true, calling Quit will cause the media application to attempt to quit (although it may still be prevented from quitting by the user, for example).
 '''

 @DbusAttr
 def Fullscreen(self):
 '''
 Returns

 Read Write
 Whether the media player is occupying the fullscreen.

 This property is optional. Clients should handle its absence gracefully.

 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 This is typically used for videos. A value of true indicates that the media player is taking up the full screen.

 Media center software may well have this value fixed to true

 If CanSetFullscreen is true, clients may set this property to true to tell the media player to enter fullscreen mode, or to false to return to windowed mode.

 If CanSetFullscreen is false, then attempting to set this property should have no effect, and may raise an error. However, even if it is true, the media player may still be unable to fulfil the request, in which case attempting to set this property will have no effect (but should not raise an error).

 Added in 2.2.
 '''

 @DbusAttr
 def CanSetFullscreen(self):
 '''
 Returns

 Read only
 If false, attempting to set Fullscreen will have no effect, and may raise an error. If true, attempting to set Fullscreen will not raise an error, and (if it is different from the current value) will cause the media player to attempt to enter or exit fullscreen mode.

 This property is optional. Clients should handle its absence gracefully.

 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 Added in 2.2.

 ..note::
 Note that the media player may be unable to fulfil the request. In this case, the value will not change. If the media player knows in advance that it will not be able to fulfil the request, however, this property should be false.
 '''

 @DbusAttr
 def CanRaise(self):
 '''
 Returns

 Read only
 If false, calling Raise will have no effect, and may raise a NotSupported error. If true, calling Raise will cause the media application to attempt to bring its user interface to the front, although it may be prevented from doing so (by the window manager, for example).

 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.
 '''

 @DbusAttr
 def HasTrackList(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 Indicates whether the /org/mpris/MediaPlayer2 object implements the org.mpris.MediaPlayer2.TrackList interface.
 '''

 @DbusAttr
 def DesktopEntry(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The basename of an installed .desktop file which complies with the Desktop entry specification, with the '.desktop' extension stripped.

 Example: The desktop entry file is '/usr/share/applications/vlc.desktop', and this property contains 'vlc'

 This property is optional. Clients should handle its absence gracefully
 '''

 @DbusAttr
 def Identity(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 If false, calling Raise will have no effect, and may raise a NotSupported error. If true, calling Raise will cause the media application to attempt to bring its user interface to the front, although it may be prevented from doing so (by the window manager, for example).
 '''

 @DbusAttr
 def SupportedUriSchemes(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The URI schemes supported by the media player.

 This can be viewed as protocols supported by the player in almost all cases. Almost every media player will include support for the 'file' scheme. Other common schemes are 'http' and 'rtsp'.

 Note that URI schemes should be lower-case.

 .. note::
 This is important for clients to know when using the editing capabilities of the Playlist interface, for example.
 '''

 @DbusAttr
 def SupportedMimeTypes(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The mime-types supported by the media player.

 Mime-types should be in the standard format (eg: audio/mpeg or application/ogg).

 .. note::
 This is important for clients to know when using the editing capabilities of the Playlist interface, for example.
 '''

 @DbusSignal(iface=Interfaces.PROPERTIES)
 def PropertiesChanged(self, *args, **kw):
 '''
 Parameters:

 * args - list
 unnamed parameters passed by dbus signal
 * kw - dict
 named parameters passed by dbus signal

 Every time that some property change, signal will be called
 '''

if __name__ == '__main__':
 from .utils import get_players_uri, implements, get_mainloop
 mainloop = get_mainloop()
 # to set signal handler
 # set_default_mainloop
 # need to be called before instance creation

 for uri in get_players_uri():
 if implements(uri, Interfaces.PLAYER):

 mp2 = MediaPlayer2(dbus_interface_info={
 'dbus_uri': uri
 })
 print(mp2.SupportedUriSchemes)

 def another_handler(self, *args, **kw):
 print(args, '\n', kw)

 if mainloop:
 mp2.PropertiesChanged = another_handler
 mainloop.run()
 break
 else:
 print('no player with mediaplayer2 interface found')

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 All modules for which code is available

		mpris2.decorator.attribute

		mpris2.decorator.base

		mpris2.decorator.interface

		mpris2.decorator.method

		mpris2.decorator.signal

		mpris2.interfaces

		mpris2.mediaplayer2

		mpris2.player

		mpris2.playlists

		mpris2.some_players

		mpris2.tracklist

		mpris2.types.loop_status

		mpris2.types.metadata_map

		mpris2.types.playback_rate

		mpris2.types.playback_status

		mpris2.types.playlist

		mpris2.types.playlist_id

		mpris2.types.playlist_ordering

		mpris2.types.time_in_us

		mpris2.types.uri

		mpris2.types.volume

		mpris2.utils

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/player.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.player

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html
'''

from .decorator import DbusAttr
from .decorator import DbusInterface
from .decorator import DbusMethod
from .decorator import DbusSignal
from .interfaces import Interfaces
from .types import Time_In_Us
from .types import Loop_Status
from .types import Playback_Status
from .types import Playback_Rate
from .types import Metadata_Map
from .types import Volume

[docs]class Player(Interfaces):
 '''
 This interface implements the methods for querying and providing basic control over what is currently playing.
 '''

 @DbusInterface(Interfaces.PLAYER, Interfaces.OBJECT_PATH)
 def __init__(self):
 '''Constructor'''

 @DbusMethod
 def Next(self):
 '''
 Skips to the next track in the tracklist.

 If there is no next track (and endless playback and track repeat are both off), stop playback.

 If playback is paused or stopped, it remains that way.

 If CanGoNext is false, attempting to call this method should have no effect.
 '''

 @DbusMethod
 def Previous(self):
 '''
 Skips to the previous track in the tracklist.

 If there is no previous track (and endless playback and track repeat are both off), stop playback.

 If playback is paused or stopped, it remains that way.

 If CanGoPrevious is false, attempting to call this method should have no effect.
 '''

 @DbusMethod
 def Pause(self):
 '''
 Pauses playback.

 If playback is already paused, this has no effect.

 Calling Play after this should cause playback to start again from the same position.

 If CanPause is false, attempting to call this method should have no effect.
 '''

 @DbusMethod
 def PlayPause(self):
 '''
 Pauses playback.

 If playback is already paused, resumes playback.

 If playback is stopped, starts playback.

 If CanPause is false, attempting to call this method should have no effect and raise an error.
 '''

 @DbusMethod
 def Stop(self):
 '''
 Stops playback.

 If playback is already stopped, this has no effect.

 Calling Play after this should cause playback to start again from the beginning of the track.

 If CanControl is false, attempting to call this method should have no effect and raise an error.
 '''

 @DbusMethod
 def Play(self):
 '''
 Starts or resumes playback.

 If already playing, this has no effect.

 If there is no track to play, this has no effect.

 If CanPlay is false, attempting to call this method should have no effect.
 '''

 @DbusMethod
 def Seek(self, Offet):
 '''
 Parameters:

 * Offset - x (Time_In_Us)
 The number of microseconds to seek forward.

 Seeks forward in the current track by the specified number of microseconds.

 A negative value seeks back. If this would mean seeking back further than the start of the track, the position is set to 0.

 If the value passed in would mean seeking beyond the end of the track, acts like a call to Next.

 If the CanSeek property is false, this has no effect.
 '''

 @DbusMethod
 def SetPosition(self, TrackId, Position):
 '''
 Parameters

 * TrackId - o (Track_Id)
 The currently playing track's identifier.

 If this does not match the id of the currently-playing track, the call is ignored as 'stale'.
 * Position - x (Time_In_Us)
 Track position in microseconds.

 This must be between 0 and <track_length>.

 Sets the current track position in microseconds.

 If the Position argument is less than 0, do nothing.

 If the Position argument is greater than the track length, do nothing.

 If the CanSeek property is false, this has no effect.
 '''

 @DbusMethod
 def OpenUri(self, Uri):
 '''
 Parameters:

 * Uri - s (Uri)
 Uri of the track to load. Its uri scheme should be an element of the org.mpris.MediaPlayer2.SupportedUriSchemes property and the mime-type should match one of the elements of the org.mpris.MediaPlayer2.SupportedMimeTypes.

 Opens the Uri given as an argument

 If the playback is stopped, starts playing

 If the uri scheme or the mime-type of the uri to open is not supported, this method does nothing and may raise an error. In particular, if the list of available uri schemes is empty, this method may not be implemented.

 Clients should not assume that the Uri has been opened as soon as this method returns. They should wait until the mpris:trackid field in the Metadata property changes.

 If the media player implements the TrackList interface, then the opened track should be made part of the tracklist, the org.mpris.MediaPlayer2.TrackList.TrackAdded or org.mpris.MediaPlayer2.TrackList.TrackListReplaced signal should be fired, as well as the org.freedesktop.DBus.Properties.PropertiesChanged signal on the tracklist interface.
 '''

 @DbusSignal
 def Seeked(self, Position):
 '''
 Parameters:

 * Position - x (Time_In_Us)
 The new position, in microseconds.

 Indicates that the track position has changed in a way that is inconsistant with the current playing state.

 When this signal is not received, clients should assume that:

 * When playing, the position progresses according to the rate property.
 * When paused, it remains constant.

 This signal does not need to be emitted when playback starts or when the track changes, unless the track is starting at an unexpected position. An expected position would be the last known one when going from Paused to Playing, and 0 when going from Stopped to Playing.
 '''
 return Time_In_Us(Position)

 @DbusSignal(iface=Interfaces.PROPERTIES)
 def PropertiesChanged(self, *args, **kw):
 '''
 Parameters

 * args - list
 unnamed parameters passed by dbus signal
 * kw - dict
 named parameters passed by dbus signal

 Every time that some property change, signal will be called
 '''

 @DbusAttr(produces=Playback_Status)
 def PlaybackStatus(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The current playback status.

 May be 'Playing', 'Paused' or 'Stopped'.
 '''

 @DbusAttr(produces=Loop_Status)
 def LoopStatus(self):
 '''
 Returns

 Read/Write
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The current loop / repeat status

 May be:

 * 'None' if the playback will stop when there are no more tracks to play
 * 'Track' if the current track will start again from the begining once it has finished playing
 * 'Playlist' if the playback loops through a list of tracks

 This property is optional, and clients should deal with NotSupported errors gracefully.

 If CanControl is false, attempting to set this property should have no effect and raise an error.
 '''

 @DbusAttr(produces=Playback_Rate)
 def Rate(self):
 '''
 Returns

 Read/Write
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The current playback rate.

 The value must fall in the range described by MinimumRate and MaximumRate, and must not be 0.0. If playback is paused, the PlaybackStatus property should be used to indicate this. A value of 0.0 should not be set by the client. If it is, the media player should act as though Pause was called.

 If the media player has no ability to play at speeds other than the normal playback rate, this must still be implemented, and must return 1.0. The MinimumRate and MaximumRate properties must also be set to 1.0.

 Not all values may be accepted by the media player. It is left to media player implementations to decide how to deal with values they cannot use; they may either ignore them or pick a 'best fit' value. Clients are recommended to only use sensible fractions or multiples of 1 (eg: 0.5, 0.25, 1.5, 2.0, etc).
 '''

 @DbusAttr
 def Shuffle(self):
 '''
 Returns

 Read/Write
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 A value of false indicates that playback is progressing linearly through a playlist, while true means playback is progressing through a playlist in some other order.

 This property is optional, and clients should deal with NotSupported errors gracefully.

 If CanControl is false, attempting to set this property should have no effect and raise an error.
 '''

 @DbusAttr(produces=Metadata_Map)
 def Metadata(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The metadata of the current element.

 If there is a current track, this must have a 'mpris:trackid' entry at the very least, which contains a string that uniquely identifies this track.

 See the type documentation for more details.
 '''

 @DbusAttr(produces=Volume)
 def Volume(self):
 '''
 Returns

 Read/Write
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The volume level.

 When setting, if a negative value is passed, the volume should be set to 0.0.

 If CanControl is false, attempting to set this property should have no effect and raise an error.
 '''

 @DbusAttr
 def Position(self):
 '''
 Returns

 Read only
 The org.freedesktop.DBus.Properties.PropertiesChanged signal is not emitted when this property changes.

 The current track position in microseconds, between 0 and the 'mpris:length' metadata entry (see Metadata).

 .. note::
 If the media player allows it, the current playback position can be changed either the SetPosition method or the Seek method on this interface. If this is not the case, the CanSeek property is false, and setting this property has no effect and can raise an error.

 If the playback progresses in a way that is inconstistant with the Rate property, the Seeked signal is emited.
 '''

 @DbusAttr
 def MinimumRate(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The minimum value which the Rate property can take. Clients should not attempt to set the Rate property below this value.

 Note that even if this value is 0.0 or negative, clients should not attempt to set the Rate property to 0.0.

 This value should always be 1.0 or less.
 '''

 @DbusAttr
 def MaximumRate(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The maximum value which the Rate property can take. Clients should not attempt to set the Rate property above this value.

 This value should always be 1.0 or greater.
 '''

 @DbusAttr
 def CanGoNext(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 Whether the client can call the Next method on this interface and expect the current track to change.

 If CanControl is false, this property should also be false.
 '''

 @DbusAttr
 def CanGoPrevious(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 Whether the client can call the Previous method on this interface and expect the current track to change.

 If CanControl is false, this property should also be false.
 '''

 @DbusAttr
 def CanPlay(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 Whether playback can be started using Play or PlayPause.

 Note that this is related to whether there is a 'current track': the value should not depend on whether the track is currently paused or playing. In fact, if a track is currently playing CanControl is true), this should be true.

 If CanControl is false, this property should also be false.
 '''

 @DbusAttr
 def CanPause(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 Whether playback can be paused using Pause or PlayPause.

 Note that this is an intrinsic property of the current track: its value should not depend on whether the track is currently paused or playing. In fact, if playback is currently paused (and CanControl is true), this should be true.

 If CanControl is false, this property should also be false.
 '''

 @DbusAttr
 def CanSeek(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 Whether the client can control the playback position using Seek and SetPosition. This may be different for different tracks.

 If CanControl is false, this property should also be false.
 '''

 @DbusAttr
 def CanControl(self):
 '''
 Returns

 Read only
 The org.freedesktop.DBus.Properties.PropertiesChanged signal is not emitted when this property changes.

 Whether the media player may be controlled over this interface.

 This property is not expected to change, as it describes an intrinsic capability of the implementation.

 If this is false, clients should assume that all properties on this interface are read-only (and will raise errors if writing to them is attempted); all methods are not implemented and all other properties starting with 'Can' are also false.
 '''

if __name__ == '__main__':
 from .utils import get_players_uri, implements
 for uri in get_players_uri():
 if implements(uri, Interfaces.PLAYER):
 mp2 = Player(dbus_interface_info={'dbus_uri': uri})
 print(mp2.LoopStatus)
 print(mp2.Shuffle)
 mp2.Shuffle = not mp2.Shuffle
 print(mp2.Shuffle)
 break
 else:
 print('no player with player interface found')

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/playlists.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.playlists

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Playlists_Interface.html
'''

from .decorator import DbusAttr
from .decorator import DbusInterface
from .decorator import DbusMethod
from .decorator import DbusSignal
from .interfaces import Interfaces
from .types import Playlist, Maybe_Playlist
from dbus import UInt32

[docs]class Playlists(Interfaces):
 '''
 Provides access to the media player's playlists.

 Since D-Bus does not provide an easy way to check for what interfaces are exported on an object, clients should attempt to get one of the properties on this interface to see if it is implemented.

 '''

 @DbusInterface(Interfaces.PLAYLISTS, Interfaces.OBJECT_PATH)
 def __init__(self):
 '''Constructor'''
 pass

 @DbusMethod
 def ActivatePlaylist(self, PlaylistId):
 '''
 Parameters:

 * PlaylistId - o
 The id of the playlist to activate.

 Starts playing the given playlist.

 Note that this must be implemented. If the media player does not allow clients to change the playlist, it should not implement this interface at all.

 It is up to the media player whether this completely replaces the current tracklist, or whether it is merely inserted into the tracklist and the first track starts. For example, if the media player is operating in a 'jukebox' mode, it may just append the playlist to the list of upcoming tracks, and skip to the first track in the playlist.
 '''
 pass

 @DbusMethod(produces=lambda playlist_list: \
 [Playlist(playlist) for playlist in playlist_list],
 args_to_dbus=[UInt32, UInt32, str, bool])
 def GetPlaylists(self, Index, MaxCount, Order, ReverseOrder=False):
 '''
 Parameters:

 * Index - u
 The index of the first playlist to be fetched (according to the ordering).
 * MaxCount - u
 The maximum number of playlists to fetch.
 * Order - s (Playlist_Ordering)
 The ordering that should be used.
 * ReverseOrder - b
 Whether the order should be reversed.

 Returns

 * Playlists - a(oss) (Playlist_List)
 A list of (at most MaxCount) playlists.

 Gets a set of playlists.
 '''
 pass

 @DbusSignal
 def PlaylistChanged(self, Playlist):
 '''
 Parameters

 * Playlist - (oss) (Playlist)
 The playlist whose details have changed.

 Indicates that the name or icon for a playlist has changed.

 Note that, for this signal to operate correctly, the id of the playlist must not change when the name changes.
 '''
 pass

 @DbusAttr
 def PlaylistCount(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The number of playlists available.
 '''
 pass

 @DbusAttr
 def Orderings(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The avaislable orderings. At least one must be offered.
 '''
 pass

 @DbusAttr(produces=Maybe_Playlist)
 def ActivePlaylist(self):
 '''
 Returns

 Read only
 When this property changes, the org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted with the new value.

 The currently-active playlist.

 If there is no currently-active playlist, the structure's Valid field will be false, and the Playlist details are undefined.

 Note that this may not have a value even after ActivatePlaylist is called with a valid playlist id as ActivatePlaylist implementations have the option of simply inserting the contents of the playlist into the current tracklist.
 '''
 pass

if __name__ == '__main__':
 from .utils import get_players_uri, implements
 for uri in get_players_uri():
 if implements(uri, Interfaces.PLAYLISTS):
 mp2 = Playlists(dbus_interface_info={'dbus_uri': uri})
 print(mp2.ActivePlaylist)
 print('Active is valid playlist: ', bool(mp2.ActivePlaylist))
 if mp2.ActivePlaylist:
 print('Active playlist name:', mp2.ActivePlaylist.Playlist.Name)
 from mpris2.types import Playlist_Ordering
 print(hasattr('anystring', 'eusequenaotem'))
 print('bla', mp2.GetPlaylists(0, 20,
 Playlist_Ordering.ALPHABETICAL, False))
 break
 else:
 print('no player with playlist interface found')

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/interfaces.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.interfaces

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/#Interfaces
'''

[docs]class Interfaces(object):
 '''
 This class contains the constants defined at index of MPRIS2 definition:

 Interfaces:

 * MEDIA_PLAYER
 'org.mpris.MediaPlayer2'
 * TRACK_LIST
 'org.mpris.MediaPlayer2.TrackList'
 * PLAYER
 'org.mpris.MediaPlayer2.Player'
 * PLAYLISTS
 'org.mpris.MediaPlayer2.Playlists'
 * PROPERTIES
 'org.freedesktop.DBus.Properties'

 Signals:

 * SIGNAL
 'PropertiesChanged'

 Objects:

 * OBJECT_PATH
 '/org/mpris/MediaPlayer2'

 '''
 #interface
 MEDIA_PLAYER = 'org.mpris.MediaPlayer2'
 TRACK_LIST = 'org.mpris.MediaPlayer2.TrackList'
 PLAYER = 'org.mpris.MediaPlayer2.Player'
 PLAYLISTS = 'org.mpris.MediaPlayer2.Playlists'
 PROPERTIES = 'org.freedesktop.DBus.Properties'
 #signal
 SIGNAL = 'PropertiesChanged'
 #Object
 OBJECT_PATH = '/org/mpris/MediaPlayer2'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/some_players.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.some_players

[docs]class Some_Players(object):
 '''
 Not defined in documentation

 Maybe this player (and other) implement mpris2

 Some players

 * AUDACIOUS
 'audacious'
 * BANSHEE
 'banshee'
 * BEATBOX
 'beatbox'
 * BMP
 'bmp'
 * CLEMENTINE
 'clementine'
 * DRAGONPLAYER
 'dragonplayer'
 * EXAILE
 'exaile'
 * GMUSICBROWSER
 'gmusicbrowser'
 * GMPC
 'gmpc'
 * GUAYADEQUE
 'guayadeque'
 * MOPIDY
 'mopidy'
 * MPDRIS
 'mpDris'
 * QUODLIBET
 'quodlibet'
 * RAVEND
 'ravend'
 * RHYTHMBOX
 'rhythmbox'
 * SPOTIFY
 'spotify'
 * VLC
 'vlc'
 * XBMC
 'xbmc'
 * XMMS2
 'xmms2'
 * XNOISE
 'xnoise'
 '''
 AUDACIOUS = 'audacious'
 BANSHEE = 'banshee'
 BEATBOX = 'beatbox'
 BMP = 'bmp'
 CLEMENTINE = 'clementine'
 DRAGONPLAYER = 'dragonplayer'
 EXAILE = 'exaile'
 GMUSICBROWSER = 'gmusicbrowser'
 GMPC = 'gmpc'
 GUAYADEQUE = 'guayadeque'
 MOPIDY = 'mopidy'
 MPDRIS = 'mpDris'
 QUODLIBET = 'quodlibet'
 RAVEND = 'ravend'
 RHYTHMBOX = 'rhythmbox'
 SPOTIFY = 'spotify'
 VLC = 'vlc'
 XBMC = 'xbmc'
 XMMS2 = 'xmms2'
 XNOISE = 'xnoise'

 @staticmethod
[docs] def get_dict():
 result = {}
 for key in dir(Some_Players):
 if key[0] not in ('_', 'g'):
 result[key] = getattr(Some_Players, key)
 return result

if __name__ == '__main__':
 print('Well know players:', Some_Players.get_dict().values())

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/decorator/interface.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.decorator.interface

'''
This is not part of specification

Helper class to make it work as python lib
'''

import dbus
from functools import wraps
from .base import Decorator, ARG_KEY, I_PROP, ATTR_KEY

class _DbusInfoProperty(object):
 def __init__(self, iface=None, path=None,
 uri=None, dbus_object=None, session=None, wrapped=None):
 self.iface = iface
 self.path = path
 self.uri = uri
 self.object = dbus_object
 self.session = session
 self.wrapped = wrapped
 self.interface = None
 self.properties = None

 if not self.object:
 bus = self.session = self.session or dbus.SessionBus()
 self.object = bus.get_object(self.uri, self.path)
 if not self.interface:
 self.interface = dbus.Interface(self.object,
 dbus_interface=self.iface)
 if not self.properties:
 self.properties = dbus.Interface(self.object, I_PROP)

 def reconnect(self, session=None):
 '''
 Required if you need update session/proxy object/interfaces
 '''

 session = session or self.session
 if session == self.session:
 self.session.close()
 session = self.session = dbus.SessionBus()
 self.object = session.get_object(self.uri, self.path)
 self.interface = dbus.Interface(self.object, dbus_interface=self.iface)
 self.properties = dbus.Interface(self.object, I_PROP)

[docs]class DbusInterface(Decorator):

 def __init__(self, iface=None, path=None,
 uri=None, dbus_object=None, session=None):
 self.iface = iface
 self.path = path
 self.uri = uri
 self.object = dbus_object
 self.session = session
 self.wrapped = None

 def __call__(self, meth):
 ''' Called when any decorated class is loaded'''
 self.wrapped = meth
 self._update_me(meth)

 @wraps(meth)
 def dbusWrapedInterface(*args, **kw):
 _args = kw.get(ARG_KEY, {})
 info_property = _DbusInfoProperty(
 iface=_args.get('dbus_iface', self.iface),
 path=_args.get('dbus_path', self.path),
 uri=_args.get('dbus_uri', self.uri),
 dbus_object =_args.get('dbus_object', self.object),
 session =_args.get('dbus_session', self.session),
 wrapped=self.wrapped
)
 if ARG_KEY in kw:
 del kw[ARG_KEY]

 return self.dbusWrapedInterface(info_property, *args, **kw)

 return dbusWrapedInterface

[docs] def dbusWrapedInterface(self, info_property, *args, **kw):
 ''' Called when some decoreted class was called
 Inject attrs from decorator at new object then return object

 @param *args: list of args to call constructor
 @param **kw: dict of keywords, can redefine class default parameters
 @return: instance of decoreted class, with new attributes
 @see: mpris2.mediaplayer2 to see some examples
 '''
 #call decorated class constructor
 new_obj = self.wrapped(*args, **kw)
 if new_obj:
 setattr(new_obj, ATTR_KEY, info_property)
 elif len(args) > 0:
 setattr(args[0], ATTR_KEY, info_property)

 return new_obj

if __name__ == '__main__':
 # examples
 @DbusInterface('org.freedesktop.DBus', '/')
 class Example(object):
 pass

 d = Example(
 dbus_interface_info={
 'dbus_uri': 'org.freedesktop.DBus'})
 assert d._dbus_interface_info.iface == 'org.freedesktop.DBus'
 assert d._dbus_interface_info.path == '/'
 assert d._dbus_interface_info.uri == 'org.freedesktop.DBus'

 class ExempleToo(object):
 @DbusInterface('org.freedesktop.DBus', '/')
 def __init__(self):
 pass

 dd = ExempleToo(
 dbus_interface_info={
 'dbus_uri': 'org.freedesktop.DBus'})

 assert dd._dbus_interface_info.iface == 'org.freedesktop.DBus'
 assert dd._dbus_interface_info.path == '/'
 assert dd._dbus_interface_info.uri == 'org.freedesktop.DBus'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/decorator/base.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.decorator.base

'''
This is not part of specification

Helper class to make it work as python lib
'''

I_PROP = 'org.freedesktop.DBus.Properties'
ARG_KEY = 'dbus_interface_info'
ATTR_KEY = '_dbus_interface_info'

[docs]class Decorator(object):
 def _update_me(self, target=None):
 if hasattr(target, "__doc__"):
 self.__doc__ = target.__doc__
 if hasattr(target, "__name__"):
 self.__name__ = target.__name__
 if hasattr(target, "__bases__"):
 self.__bases__ = target.__bases__

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/tracklist.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.tracklist

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Track_List_Interface.html
'''

from .decorator import DbusAttr
from .decorator import DbusMethod
from .decorator import DbusSignal
from .decorator import DbusInterface
from .interfaces import Interfaces
from .types import Metadata_Map

[docs]class TrackList(Interfaces):
 '''
 Interface for TrackList (org.mpris.MediaPlayer2.TrackList)

 Provides access to a short list of tracks which were recently played or
 will be played shortly. This is intended to provide context to the
 currently-playing track, rather than giving complete access to the media
 player's playlist.

 Example use cases are the list of tracks from the same album as the
 currently playing song or the Rhythmbox play queue.

 Each track in the tracklist has a unique identifier. The intention is that
 this uniquely identifies the track within the scope of the tracklist. In
 particular, if a media item (a particular music file, say) occurs twice in
 the track list, each occurrence should have a different identifier. If a
 track is removed from the middle of the playlist, it should not affect the
 track ids of any other tracks in the tracklist.

 As a result, the traditional track identifiers of URLs and position in the
 playlist cannot be used. Any scheme which satisfies the uniqueness
 requirements is valid, as clients should not make any assumptions about the
 value of the track id beyond the fact that it is a unique identifier.

 Note that the (memory and processing) burden of implementing the TrackList
 interface and maintaining unique track ids for the playlist can be
 mitigated by only exposing a subset of the playlist when it is very long
 (the 20 or so tracks around the currently playing track, for example). This
 is a recommended practice as the tracklist interface is not designed to
 enable browsing through a large list of tracks, but rather to provide
 clients with context about the currently playing track.
 '''
 PROPERTIES_TACKS = 'Tracks'
 PROPERTIES_CAN_EDIT_TRACKS = 'CanEditTracks'
 SIGNALS_TRACK_LIST_REPLACED = 'TrackListReplaced'
 SIGNALS_TRACK_ADDED = 'TrackAdded'
 SIGNALS_TRACK_REMOVED = 'TrackRemoved'
 SIGNALS_TRACK_METADATA_CHANGED = 'TrackMetadataChanged'
 SIGNALS_PROPERTIES_CHANGED = 'PropertiesChanged'

 @DbusInterface(Interfaces.TRACK_LIST, Interfaces.OBJECT_PATH)
 def __init__(self):
 '''Constructor'''

 @DbusMethod(produces=lambda map_list:\
 [Metadata_Map(metadata_map) for metadata_map in map_list])
 def GetTracksMetadata(self, TrackIds):
 '''
 Parameters:

 * TrackIds - ao (Track_Id_List)
 The list of track ids for which metadata is requested.

 Returns

 * Metadata - aa{sv} (Metadata_Map_List)
 Metadata of the set of tracks given as input.

 See the type documentation for more details.

 Gets all the metadata available for a set of tracks.

 Each set of metadata must have a 'mpris:trackid' entry at the very
 least, which contains a string that uniquely identifies this track
 within the scope of the tracklist.
 '''
 pass

 @DbusMethod()
 def AddTrack(self, Uri, AfterTrack='', SetAsCurrent=False):
 '''
 Parameters:

 * Uri - s (Uri)
 The uri of the item to add. Its uri scheme should be an element of
 the org.mpris.MediaPlayer2.SupportedUriSchemes property and the
 mime-type should match one of the elements of the
 org.mpris.MediaPlayer2.SupportedMimeTypes
 * AfterTrack - o (Track_Id)
 The identifier of the track after which the new item should be
 inserted. The path /org/mpris/MediaPlayer2/TrackList/NoTrack
 indicates that the track should be inserted at the start of the
 track list.
 * SetAsCurrent - b
 Whether the newly inserted track should be considered as the
 current track. Setting this to trye has the same effect as calling
 GoTo afterwards.

 Adds a URI in the TrackList.

 If the CanEditTracks property is false, this has no effect.

 .. note::
 Clients should not assume that the track has been added at the time
 when this method returns. They should wait for a TrackAdded (or
 TrackListReplaced) signal.
 '''
 pass

 @DbusMethod
 def RemoveTrack(self, TrackId):
 '''

 Parameters:

 * TrackId - o (TrackId)
 Identifier of the track to be removed.
 /org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

 Removes an item from the TrackList.

 If the track is not part of this tracklist, this has no effect.

 If the CanEditTracks property is false, this has no effect.

 .. note::
 Clients should not assume that the track has been removed at the
 time when this method returns. They should wait for a TrackRemoved
 (or TrackListReplaced) signal.
 '''
 pass

 @DbusMethod
 def GoTo(self, TrackId):
 '''
 Parameters:

 * TrackId - o (Track_Id)
 Identifier of the track to skip to.

 /org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

 Skip to the specified TrackId.

 If the track is not part of this tracklist, this has no effect.

 If this object is not /org/mpris/MediaPlayer2, the current TrackList's
 tracks should be replaced with the contents of this TrackList, and the
 TrackListReplaced signal should be fired from /org/mpris/MediaPlayer2.
 '''

 @DbusSignal
 def TrackListReplaced(self, Tracks, CurrentTrack):
 '''
 Parameters:

 * Tracks - ao (Track_Id_List)
 The new content of the tracklist.
 * CurrentTrack - o (Track_Id)
 The identifier of the track to be considered as current.

 /org/mpris/MediaPlayer2/TrackList/NoTrack indicates that there is no current track.

 This should correspond to the mpris:trackid field of the Metadata property of
 the org.mpris.MediaPlayer2.Player interface.

 Indicates that the entire tracklist has been replaced.

 It is left up to the implementation to decide when a change to the
 track list is invasive enough that this signal should be emitted
 instead of a series of TrackAdded and TrackRemoved signals.
 '''
 pass

 @DbusSignal
 def TrackAdded(self, Metadata, AfterTrack=''):
 '''
 Parameters:

 * Metadata - a{sv} (Metadata_Map)
 The metadata of the newly added item.

 This must include a mpris:trackid entry.

 See the type documentation for more details.
 * AfterTrack - o (Track_Id)
 The identifier of the track after which the new track was inserted.
 The path /org/mpris/MediaPlayer2/TrackList/NoTrack indicates that
 the track was inserted at the start of the track list.

 Indicates that a track has been added to the track list.
 '''
 pass

 @DbusSignal
 def TrackRemoved(self, TrackId):
 '''
 Parameters:

 * TrackId - o (Track_Id)
 The identifier of the track being removed.

 /org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

 Indicates that a track has been removed from the track list.
 '''
 pass

 @DbusSignal
 def TrackMetadataChanged(self, TrackId, Metadata):
 '''
 Parameters:

 * TrackId - o (Track_Id)
 The id of the track which metadata has changed.

 If the track id has changed, this will be the old value.

 /org/mpris/MediaPlayer2/TrackList/NoTrack is not a valid value for this argument.

 * Metadata - a{sv} (Metadata_Map)
 The new track metadata.

 This must include a mpris:trackid entry.

 See the type documentation for more details.

 Indicates that the metadata of a track in the tracklist has changed.

 This may indicate that a track has been replaced, in which case the
 mpris:trackid metadata entry is different from the TrackId argument.
 '''
 pass

 @DbusAttr
 def Tracks(self):
 '''
 Returns:

 Read only
 When this property changes, the
 org.freedesktop.DBus.Properties.PropertiesChanged signal is
 emitted, but the new value is not sent.

 An array which contains the identifier of each track in the tracklist,
 in order.

 The org.freedesktop.DBus.Properties.PropertiesChanged signal is emited
 every time this property changes, but the signal message does not
 contain the new value. Client implementations should rather rely on the
 TrackAdded, TrackRemoved and TrackListReplaced signals to keep their
 representation of the tracklist up to date.
 '''
 pass

 @DbusAttr
 def CanEditTracks(self):
 '''
 Returns:

 Read only
 When this property changes, the
 org.freedesktop.DBus.Properties.PropertiesChanged signal is emitted
 with the new value.

 If false, calling AddTrack or RemoveTrack will have no effect, and may
 raise a NotSupported error.
 '''
 pass

if __name__ == '__main__':
 from .utils import get_players_uri, implements
 for uri in get_players_uri():
 if implements(uri, Interfaces.TRACK_LIST):
 # this is optional, maybe running player don't implement it
 # VLC does if you want try
 mp2 = TrackList(dbus_interface_info={'dbus_uri': uri})
 #print(dir(mp2))
 print('Tracks:', mp2.Tracks)
 print('CanEditTracks:', bool(mp2.CanEditTracks))
 break
 else:
 print('no player with playlist interface found')

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/decorator/attribute.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.decorator.attribute

'''
This is not part of specification

Helper class to make it work as python lib
'''

from .base import Decorator, ATTR_KEY

[docs]class DbusAttr(Decorator):
 '''
 https://docs.python.org/2/howto/descriptor.html#properties
 '''

 def __init__(self, meth=None, produces=lambda resp: resp):
 self.attr = meth
 self.produces = produces
 self._update_me(meth)

 def __call__(self, meth):
 self.attr = meth
 self._update_me(meth)
 return self

 def __get__(self, obj, objtype=None):
 #static call
 if not obj:
 return self

 _dbus = getattr(obj, ATTR_KEY)
 props = _dbus.properties
 iface = _dbus.iface
 result = props.Get(iface, self.attr.__name__)
 produces = self.produces
 return produces(result)

 def __set__(self, obj, value):
 if obj:
 _dbus = getattr(obj, ATTR_KEY)
 props = _dbus.properties
 iface = _dbus.iface
 props.Set(iface, self.attr.__name__, value)
 else: #static call
 self.attr = value

 def __delete__(self, obj):
 raise AttributeError('can not delete attribute')

if __name__ == '__main__':
 # examples
 from .interface import DbusInterface

 @DbusInterface('org.mpris.MediaPlayer2',
 '/org/mpris/MediaPlayer2')
 class Example(object):
 @DbusAttr
 def Identity(self):
 pass

 d = Example(
 dbus_interface_info={
 'dbus_uri': 'org.mpris.MediaPlayer2.vlc'})

 assert d.Identity == 'VLC media player'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/types/volume.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.volume

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Player_Interface.html#Simple-Type:Volume
'''

[docs]class Volume(float):
 '''
 Audio volume level

 * 0.0 means mute.
 * 1.0 is a sensible maximum volume level (ex: 0dB).

 Note that the volume may be higher than 1.0, although generally clients should not attempt to set it above 1.0.
 '''

 MIN = 0.0
 MAX = 1.0
 RANGE = set([n/10.0 for n in range(11)])

 def __init__(self, volume=1.0):
 assert volume <= 1
 self._volume = float(volume)

 def __float__(self):
 return self._volume

 def __str__(self):
 return str(self._volume)

if __name__ == '__main__':
 assert Volume(1) == 1
 assert Volume(0.1) == 0.1
 assert Volume(1) == 1.0
 assert Volume(1.0) == 1
 assert Volume(0.1) != 1.2

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/decorator/signal.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.decorator.signal

from .base import Decorator, ATTR_KEY

[docs]class DbusSignal(Decorator):
 '''
 https://docs.python.org/2/howto/descriptor.html#properties
 '''

 def __init__(self, meth=None, iface=None):
 self.attr = meth
 self.handler = None
 self.iface = iface
 self._update_me(meth)

 def __call__(self, meth):
 self.attr = meth
 self._update_me(meth)
 return self

 def __get__(self, obj, objtype=None):
 if obj:
 return self.handler

 #static call
 return self

 def __set__(self, obj, value):
 if obj:
 _dbus = getattr(obj, ATTR_KEY)
 interface = _dbus.interface
 def handle(*args, **kwds):
 h = self.handler
 h and h(*args, **kwds)

 if not self.handler:
 interface.connect_to_signal(self.attr.__name__, handle,
 dbus_interface=self.iface)
 self.handler = value
 else: #static call
 self.attr = value

 def __delete__(self, obj):
 self.handler = None

if __name__ == '__main__':
 from .interface import DbusInterface
 from .utils import get_mainloop
 mainloop = get_mainloop()
 print('mainloop', mainloop)

 @DbusInterface('org.mpris.MediaPlayer2.player',
 '/org/mpris/MediaPlayer2')
 class Example(object):

 @DbusSignal
 def Seeked(self):
 pass

 d = Example(
 dbus_interface_info={
 'dbus_uri': 'org.mpris.MediaPlayer2.gmusicbrowser'})

 def handler(self, *args):
 print(args)

 d.Seeked = handler
 mainloop and mainloop.run()

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/decorator/method.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.decorator.method

'''
This is not part of specification

Helper class to make it work as python lib
'''

from .base import Decorator, ATTR_KEY

[docs]def kw_to_dbus(**kw):
 return kw

[docs]def args_to_dbus(*args):
 return args

[docs]class DbusMethod(Decorator):

 def __init__(self, meth=None,
 iface=None,
 produces=lambda resp: resp,
 args_to_dbus=args_to_dbus,
 kw_to_dbus=kw_to_dbus,
 std_args=(),
 std_kwds={}):
 self.meth = meth
 self.handler = None
 self.produces = produces
 self.iface = iface
 self.args_to_dbus = args_to_dbus
 self.kw_to_dbus = kw_to_dbus
 self.std_args = std_args
 self.std_kwds = std_kwds
 self.obj = None
 self._update_me(meth)

 def __call__(self, meth=None):
 self.meth = meth
 self._update_me(meth)
 return self

 def __get__(self, obj=None, cls=None):
 if obj is None:
 return self
 self.obj = obj
 return self._call_dbus

 def _call_dbus(self, *args, **kwds):
 _dbus = getattr(self.obj, ATTR_KEY)
 if self.iface:
 iface = self.iface
 else:
 iface = _dbus.iface
 bus_obj = _dbus.object
 bus_meth = bus_obj.get_dbus_method(self.meth.__name__, iface)
 _args = self.merge_args(args, self.std_args)
 args = self.convert_args_to_dbus_args(*_args)
 _kwds = self.std_kwds.copy()
 _kwds.update(kwds)
 kwds = self.convert_kw_to_dbus_kw(**_kwds)
 result = bus_meth(*args, **kwds)
 return self.produces(result)

 @classmethod
[docs] def merge_args(cls, args, std_args):
 _len = len(std_args) - len(args)
 return args + std_args[-_len:] if _len > 0 else args

 @classmethod
[docs] def merge_kwds(cls, kwds, std_kwds):
 _kwds = std_kwds.copy()
 _kwds.update(kwds)
 return _kwds

[docs] def convert_args_to_dbus_args(self, *args):
 args_to_dbus = self.args_to_dbus
 if callable(args_to_dbus):
 return args_to_dbus(*args)

 #iterate over args
 result = []
 for arg in args:
 i = args.index(arg)
 if i < len(args_to_dbus):
 make = args_to_dbus[i]
 if callable(make):
 arg = make(arg)
 result.append(arg)
 return tuple(result)

[docs] def convert_kw_to_dbus_kw(self, **kw):
 kw_to_dbus = self.kw_to_dbus
 if callable(kw_to_dbus):
 return kw_to_dbus(**kw)

 if hasattr(self.kw_to_dbus, 'keys'):
 for key, val in kw.items():
 make = kw_to_dbus.get(key, lambda v: v)
 kw[key] = make(val)
 return kw

if __name__ == '__main__':
 # examples
 from .interface import DbusInterface
 @DbusInterface('org.freedesktop.DBus', '/')
 class Example(object):

 @DbusMethod
 def GetId(self):
 pass

 @DbusMethod
 def GetNameOwner(self, name):
 pass

 d = Example(
 dbus_interface_info={
 'dbus_uri': 'org.freedesktop.DBus'})
 assert d.GetId()
 assert d.GetNameOwner('org.freedesktop.DBus') == 'org.freedesktop.DBus'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/types/playlist_id.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.playlist_id

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Playlists_Interface.html#Simple-Type:Playlist_Id
'''

[docs]class Playlist_Id(str):
 '''
 Unique playlist identifier.
 '''

 def __init__(self, playlist_id):
 self._playlist_id = playlist_id

 def __str__(self):
 return self._status

if __name__ == '__main__':
 pid = Playlist_Id('id of a playlist')
 assert pid == 'id of a playlist'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/types/metadata_map.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.metadata_map

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/latest/Track_List_Interface.html#Mapping:Metadata_Map
'''

[docs]class Metadata_Map(dict):
 '''
 A mapping from metadata attribute names to values.

 The mpris:trackid attribute must always be present. This contains a string that uniquely identifies the track within the scope of the playlist.

 If the length of the track is known, it should be provided in the metadata property with the 'mpris:length' key. The length must be given in microseconds, and be represented as a signed 64-bit integer.

 If there is an image associated with the track, a URL for it may be provided using the 'mpris:artUrl' key. For other metadata, fields defined by the Xesam ontology should be used, prefixed by 'xesam:'. See http://wiki.xmms2.xmms.se/wiki/MPRIS_Metadata for a list of common fields.

 Lists of strings should be passed using the array-of-string ('as') D-Bus type. Dates should be passed as strings using the ISO 8601 extended format (eg: 2007-04-29T14:35:51). If the timezone is known, RFC 3339's internet profile should be used (eg: 2007-04-29T14:35:51+02:00).

 * Attribute - s
 The name of the attribute; see http://wiki.xmms2.xmms.se/wiki/MPRIS_Metadata for guidelines on names to use.
 * Value - v
 The value of the attribute, in the most appropriate format.
 '''
 ART_URI = 'mpris:artUrl'
 TRACKID = 'mpris:trackid'
 LENGTH = 'mpris:length'
 ALBUM = 'xesam:album'
 ALBUM_ARTIST = 'xesam:albumArtist'
 ARTIST = 'xesam:artist'
 AS_TEXT = 'xesam:asText'
 AUDIO_BPM = 'xesam:audioBPM'
 AUTO_RATING = 'xesam:autoRating'
 COMMENT = 'xesam:comment'
 COMPOSER = 'xesam:composer'
 CONTENT_CREATED = 'xesam:contentCreated'
 DISC_NUMBER = 'xesam:discNumber'
 FIRST_USED = 'xesam:firstUsed'
 GENRE = 'xesam:genre'
 LAST_USED = 'xesam:lastUsed'
 LYRICIST = 'xesam:lyricist'
 TITLE = 'xesam:title'
 TRACK_NUMBER = 'xesam:trackNumber'
 URL = 'xesam:url'
 USE_COUNT = 'xesam:useCount'
 USER_RATING = 'xesam:userRating'

 def __init__(self, metadata):
 super(Metadata_Map, self).__init__(**metadata)

if __name__ == '__main__':
 mdm = Metadata_Map({Metadata_Map.ALBUM : 'Marcelo Nova Ao Vivo'})
 assert mdm[Metadata_Map.ALBUM] == 'Marcelo Nova Ao Vivo'

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

_modules/mpris2/types/playlist_ordering.html

 Navigation

 		
 index

 		
 modules |

 		MPRIS2 0.9.3 documentation »

 		Module code »

 Source code for mpris2.types.playlist_ordering

'''
From mprisV2.2 documentation

http://specifications.freedesktop.org/mpris-spec/2.2/Playlists_Interface.html#Enum:Playlist_Ordering
'''

[docs]class Playlist_Ordering(str):
 '''
 Specifies the ordering of returned playlists.

 * Alphabetical (Alphabetical)
 Alphabetical ordering by name, ascending.
 * CreationDate (Created)
 Ordering by creation date, oldest first.
 * ModifiedDate (Modified)
 Ordering by last modified date, oldest first.
 * LastPlayDate (Played)
 Ordering by date of last playback, oldest first.
 * UserDefined (User)
 A user-defined ordering.
 '''

 ALPHABETICAL = 'Alphabetical'
 CREATION_DATE = 'CreationDate'
 MODIFIED_DATE = 'ModifiedDate'
 LAST_PLAY_DATE = 'LastPlayDate'
 USER_DEFINE = 'UserDefined'
 VALUES = (ALPHABETICAL,CREATION_DATE,MODIFIED_DATE,LAST_PLAY_DATE,USER_DEFINE)

 def __init__(self, ordering):
 self._ordering = ordering

 def __str__(self):
 return self._ordering

if __name__ == '__main__':
 po = Playlist_Ordering('Alphabetical')
 assert po == 'Alphabetical'
 assert po == Playlist_Ordering.ALPHABETICAL
 assert po != Playlist_Ordering.CREATION_DATE

 © Copyright 2015, hugosenari.
 Created using Sphinx 1.3.5.

