

mppnccombine-fast

mppnccombine-fast is an optimised implementation of the MOM tool
mppnccombine for use with high-resolution NetCDF4-compressed datasets

Contents:

	Installation

	Usage
	Globbing inputs

	Changing compression settings

	Implementation Overview
	Writer Rank

	Reader Ranks

	The Async Write Loop

	API
	async.h

	error.h

	read_chunked.h

Indices and tables

	Index

Installation

For installation instructions see the README at https://github.com/coecms/mppnccombine-fast

Usage

mppnccombine-fast is a MPI program, and requires at least two MPI ranks to run:

mpirun -n 2 mppnccombine-fast --output output.nc input.nc.000 input.nc.001

Variables in the input files whos dimensions have a domain_distribution
attribute will be collated. All other dimensions, variables and attributes will
be copied from the first input file.

The domain_distribution values are expected to be in the format provided by
the MOM model - an array of 4 integer values using 1-based array indices:

	First index of this dimension in the full dataset

	Last index of this dimension in the full dataset

	First index of this dimension in this file’s data

	Last index of this dimension in this file’s data

A domain_distribution of [1, 10, 5, 10] states that the full dimension
has a length of 10, and this file contains the 5 values starting at offset
5.

Globbing inputs

Input files may be listed either individually or as an escaped shell glob (both
to reduce the history attribute in the output file as well as to avoid
issues when there are thousands of input files):

mpirun -n 2 mppnccombine-fast --output output.nc input.nc.*

Changing compression settings

Chunk size and compression settings will by default come from the first input
file, though they can be overridden using flags. Note that the optimised
copying routines can only be used when the compression settings of an input
file matches those of the output, and when the input file’s data chunks align
with the chunks in the output file (e.g. if a variable in the output file has
chunk sizes [10, 15, 30] then the input file’s offset in the full dataset
must be [m*10, n*15, o*30] where m, n and o are integers).

If only some of the chunks in the input file align with the output these chunks
will use the fast path (so partial chunks on the edges of the dataset are fine).

Implementation Overview

The basic outline of mppnccombine-fast consists of one “Writer” rank and one or
more “Reader” ranks. The Writer rank handles all writing to the output file,
while the Reader ranks read in data from the many files to be collated and
send the data to the Writer rank.

The main slowdown in copying compressed variables is that the hdf5 library has
to de-compress them during the read, and re-compress them during the write.
mppnccombine-fast works around this by using HDF5 1.10.2’s direct IO
functions
H5DOwrite_chunk() [https://support.hdfgroup.org/HDF5/doc/HL/RM_HDF5Optimized.html#H5DOwrite_chunk]
and
H5DOread_chunk() [https://support.hdfgroup.org/HDF5/doc/HL/RM_HDF5Optimized.html#H5DOread_chunk]
to copy the compressed data from one file to the other directly, rather than
going through the de-compress/re-compress cycle.

To get a even larger speedup MPI is used to have separate read and write
processes, since HDF5 IO is a blocking function.

Since the NetCDF4 library is much nicer to use, but doesn’t provide public
access to the underlying HDF5 file, we need to do a bit of musical chairs with
the files, swapping between NetCDF4 and HDF5 modes by re-opening the files.

[image: digraph ranks { subgraph cluster_writer { copy_uncollated -> async_loop -> all_ended label = "Writer" copy_uncollated [label = "Copy Uncollated Vars"] async_loop [label = "Async Write Loop"] all_ended [label = "All Readers Ended"] rank = same } subgraph cluster_reader { open_file -> send_chunks -> end_of_files label = "Reader" open_file [label = "Open File"] send_chunks [label = "Send Collated Chunks"] end_of_files [label = "All Files Read"] rank = same } send_chunks:s -> open_file:e [constraint=false] async_loop:s -> async_loop:n [constraint=false] send_chunks -> async_loop [constraint=false] end_of_files -> async_loop [constraint=false] }]

Writer Rank

The Writer starts out by copying the dimensions, attributes and any uncollated
variables from the first of the listed input files using the NetCDF API in
init() and copy_contiguous(). It then re-opens the file using
the HDF5 API and enters the ‘Async Write Loop’ in run_async_writer().

This loop polls for any incoming MPI messages from the Reader processes then
performs some action (e.g. write a compressed chunk directly to the file at
some location). Once a Reader has finished reading all of its input files it
sends a close message to the Writer rank, once all close messages have been
received the Writer rank closes the output file and exits.

Reader Ranks

The Readers distribute input files amonst themselves using a shared atomic
counter. When a Reader is ready for a new file it gets the next value from the
counter, then in copy_chunked() opens that file using NetCDF to query
its attributes and discover and copy collated variables.

Depending on the chunking and alignment of the file the Reader will decide to
copy the data either in uncompressed form using NetCDF with
copy_netcdf_variable_chunks() or directly copying the compressed chunks
by re-opening the file in HDF5 mode with copy_hdf5_variable_chunks().

Once all available files have been read the Reader sends a final close message
to the Writer and exits.

The Async Write Loop

The Async write loop is set up to handle a number of messages that the Readers
will send to the Writer

	open_variable_async(): Obtain a handle to a variable in the output
file

	variable_info_async(): Obtain chunking and compression information
for a variable

	write_uncompressed_async(): Write uncompressed data to a given
logical location in the variable

	write_chunk_async(): Write a compressed chunk directly to the output
file at a given chunk location

	close_variable_async(): Return the variable handle

	close_async(): Reports that the Reader will not send any more
messages

The Writer asyncronously polls for these messages in
run_async_writer(), then actions them in
receive_open_variable_async() etc.

API

async.h

Contains the async Writer loop and functions that the Reader process can use to
communicate with it

Reader side

	
type varid_t

	Remote handle to a variable in the output file on the Writer process

	
varid_t open_variable_async(const char *varname, size_t len, int async_writer_rank)

	Open a variable in the async writer.

	Return

	a handle to the variable in the output file

	Parameters

	
	varname: Variable name

	len: Length of varname, including the closing ‘/0’

	async_writer_rank: MPI rank of writer process

	
void variable_info_async(varid_t varid, size_t ndims, size_t chunk[], int *deflate, int *deflate_level, int *shuffle, int async_writer_rank)

	Get info about a variable in the output file.

For direct chunk writes to work the compression parameters must match between the input and output files. Use this function to query the parameters of the output file, then compare the results against the values returned by nc_inq_var_deflate() on the input file.

	Parameters

	
	varid: Variable handle obtained with open_variable_async

	ndims: Number of dimensions

	chunk[ndims]: (out): Chunk shape

	deflate: (out): Compression enabled

	deflate_level: (out): Compression level

	shuffle: (out): Shuffle filter enabled

	async_writer_rank: MPI rank of writer process

	
void write_uncompressed_async(varid_t varid, size_t ndims, const size_t offset[], const size_t shape[], const void *buffer, nc_type type, int async_writer_rank, MPI_Request *request)

	Write data to the file, using the dataset filters.

This writes uncompressed data, as obtained by nc_get_vara() on the input file. It is slower than direct chunk writes, as the data must be put through a compression filter, but is more flexible as it can be used to write partial or unaligned chunks.

request must be sent to MPI_Wait for the message to complete

	Parameters

	
	varid: Variable handle obtained with open_variable_async

	ndims: Number of dimensions

	offset[ndims]: Offset of this data’s origin in the collated dataset

	shape[ndims]: Shape of this data array

	buffer: Compressed chunk data

	type: NetCDF type of the data

	async_writer_rank: MPI rank of writer process

	request: (out): MPI request for the communication

	
void write_chunk_async(varid_t varid, size_t ndims, uint32_t filter_mask, const hsize_t offset[], size_t data_size, const void *buffer, int async_writer_rank, MPI_Request *request)

	Write a compressed chunk directly to the file.

This writes compressed chunks, as obtained by opening the input file in HDF5 and calling H5DOread_chunk(). This is faster than copying uncompressed data, but the chunking and compression parameters must be identical on the input and output files, and the chunk must lay on the chunk boundary of the output file. variable_info_async() can be used to determine the chunk layout and compression settings of the variable in the output file.

request must be sent to MPI_Wait for the message to complete

	Parameters

	
	varid: Variable handle obtained with open_variable_async

	ndims: Number of dimensions

	filter_mask: HDF5 filter information (must match the output file)

	offset[ndims]: Offset of this chunk’s origin in the collated dataset (must be on a chunk boundary of the output file)

	data_size: Size of the compressed chunk in bytes

	buffer: Compressed chunk data

	async_writer_rank: MPI rank of writer process

	request: [out]: MPI request for the communication

	
void close_variable_async(varid_t varid, int async_writer_rank)

	Close a variable in the async writer.

varid is no longer a valid handle after this call

	Parameters

	
	varid: Variable handle obtained with open_variable_async

	async_writer_rank: MPI rank of writer process

	
void close_async(int async_writer_rank)

	Close the async writer.

	Parameters

	
	async_writer_rank: MPI rank of writer process

Writer side

	
size_t run_async_writer(const char *filename)

	Async runner to accept writes.

Called by the Writer to accept async messages sent by the Readers. Once all Readers have sent close_async() messages this will return

	Return

	total size written

	Parameters

	
	filename: Output filename

error.h

Functions for reporting errors from the various libraries used

	
NCERR(x)

	NetCDF error handler.

If a NetCDF call has errored reports the error and exits

	Parameters

	
	x: The return code of a NetCDF library call

	
H5ERR(x)

	HDF5 error handler.

If a HDF5 call has errored reports the error and exits

	Parameters

	
	x: The return code of a HDF5 library call

	
CERR(x, message)

	C error handler.

If a C library call has errored reports the error and exits

	Parameters

	
	x: The return code of a C library call

	message: Error message

	
void set_log_level(int level)

	Set the output level for log messages.

	Parameters

	
	level: Messages with a level less than or equal to this will be output

	
void log_message(int level, const char *message, ...)

	Send a message to the log.

	Parameters

	
	level: Message log level

	message: Message (printf-like format string)

	...: Message arguments

Available log levels are:

	
LOG_DEBUG

	

	
LOG_INFO

	

	
LOG_WARNING

	

	
LOG_ERROR

	

read_chunked.h

Functions the Readers use to read chunks from the input files and send them to
the Writer

	
bool is_collated(int ncid, int varid)

	Check if any of the dimensions of a variable are collated.

	Return

	true if any dimension of varid is collated, false otherwise

	Parameters

	
	ncid: NetCDF4 file handle

	varid: NetCDF4 variable handle

	
bool get_collation_info(int ncid, int varid, size_t out_offset[], size_t local_size[], size_t total_size[], int ndims)

	Get collation info from a variable.

	Return

	true if any of the dimensions are collated

	Parameters

	
	ncid: NetCDF4 file handle

	varid: NetCDF4 variable handle

	out_offset[ndims]: (out): The offset in the collated array of this file’s data

	local_size[ndims]: (out): This file’s data size

	total_size[ndims]: (out): The total collated size of this variable

	ndims: Variable dimensions

	
bool get_collated_dim_decomp(int ncid, const char *varname, int decomposition[4])

	

	
size_t get_collated_dim_len(int ncid, const char *varname)

	Get the global length of a collated variable.

	Return

	: Collated variable length

	Parameters

	
	ncid: NetCDF4 file handle

	varname: Variable name

	
void copy_chunked(const char *filename, int async_writer_rank)

	Copy all collated variables to the Writer.

The main function for Reader processes. Iterates over all collated variables in the file, choosing to send each variable in compressed (HDF5) or uncompressed (NetCDF4) mode to the Writer.

	Parameters

	
	filename: Input filename

	async_writer_rank: MPI rank of the writer process

Index

 C
 | G
 | H
 | I
 | L
 | N
 | O
 | R
 | S
 | V
 | W

C

 	
 	CERR (C macro)

 	close_async (C++ function)

 	
 	close_variable_async (C++ function)

 	copy_chunked (C++ function)

G

 	
 	get_collated_dim_decomp (C++ function)

 	
 	get_collated_dim_len (C++ function)

 	get_collation_info (C++ function)

H

 	
 	H5ERR (C macro)

I

 	
 	is_collated (C++ function)

L

 	
 	LOG_DEBUG (C macro)

 	LOG_ERROR (C macro)

 	
 	LOG_INFO (C macro)

 	log_message (C++ function)

 	LOG_WARNING (C macro)

N

 	
 	NCERR (C macro)

O

 	
 	open_variable_async (C++ function)

R

 	
 	run_async_writer (C++ function)

S

 	
 	set_log_level (C++ function)

V

 	
 	variable_info_async (C++ function)

 	
 	varid_t (C++ type)

W

 	
 	write_chunk_async (C++ function)

 	
 	write_uncompressed_async (C++ function)

 nav.xhtml

 Table of Contents

 		
 mppnccombine-fast

 		
 Installation

 		
 Usage

 		
 Globbing inputs

 		
 Changing compression settings

 		
 Implementation Overview

 		
 Writer Rank

 		
 Reader Ranks

 		
 The Async Write Loop

 		
 API

 		
 async.h

 		
 Reader side

 		
 Writer side

 		
 error.h

 		
 read_chunked.h

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_images/graphviz-120cc54a8efeaadc6b83b534acee65af4489b7a9.png
Writer

Copy Uncollated Vars

Asyne Write Loop

All Readers Ended

Send Collated Chunks

All Files Read

_static/ajax-loader.gif

_static/comment-close.png

