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The mpoints package is a machine learning tool that implements the class of state-dependent Hawkes processes. Its
key features include both simulation and estimation (statistical inference). It also contains a module with specialised
plotting services.

State-dependent Hawkes processes belong to the class of hybrid marked point processes, a class that models the arrival
in time of random events and their interaction with the state of a system.

We strongly recommend to first read the tutorial. It contains an introduction to this statistical model and illustrates the
main services offered by the mpoints package.

For additional mathematical details, please consult the documentation and the references.

Contents: 1
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2 Contents:



CHAPTER 1

Installation

The package can be easily installed via pip, a popular package management system for Python. In the terminal, simply
enter the following command.

pip install mpoints

If you are using virtual environments (with conda), make sure that you install the package in the intended environment.

Note: when installing mpoints on Windows, you may be prompted to install Visual C++ Build Tools if this is not
already installed.
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CHAPTER 2

Tutorial

The mpoints package implements the class of state-dependent Hawkes processes. Its key features include both
simulation and estimation (statistical inference). It also contains a module with specialised plot tools.

2.1 State-dependent Hawkes processes

State-dependent Hawkes processes model the arrival in time of random events and their interaction with the state of a
system.

A state-dependent Hawkes process consists of an increasing sequence of random times (𝑇𝑛), a sequence of random
event types (𝐸𝑛) in ℰ (the set of possible event types) and a piecewise constant càdlàg state process (𝑋(𝑡)) in 𝒳 (the
set of possible states). Here, we assume that the event space ℰ and state space 𝒳 are finite, with respective sizes 𝑑𝑒
and 𝑑𝑥.

2.1.1 Dynamics of events

Denote by 𝑁𝑒(𝑡) the number of events of type 𝑒 ∈ ℰ that have occured up to time 𝑡 and by (𝑇 𝑒
𝑛) the arrival times of

events of type 𝑒. The arrival rate of events of type 𝑒, denoted by 𝜆𝑒 (its mathematical name is the intensity), is of the
form

𝜆𝑒(𝑡) = 𝜈𝑒 +
∑︁
𝑒′∈ℰ

∫︁
[0,𝑡)

𝑘𝑒′𝑒(𝑡− 𝑠,𝑋(𝑠))𝑑𝑁𝑒′(𝑠) = 𝜈𝑒 +
∑︁
𝑒′∈ℰ

∑︁
𝑛:𝑇 𝑒′

𝑛 <𝑡

𝑘𝑒′𝑒(𝑡− 𝑇 𝑒′

𝑛 , 𝑋(𝑇 𝑒′

𝑛 )).

The non-negative kernel 𝑘𝑒′𝑒 determines how events of type 𝑒′ precipitate events of type 𝑒 (by increasing their arrival
rate). Notice that it depends on the state process. The kernels allow to introduce self- and cross-excitation effects.
When all the kernels are null, the events behave like in a standard Poisson process with non-negative arrival rates
(𝜈𝑒)𝑒∈ℰ .
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2.1.2 Dynamics of the state process

The state process can only jump at the event times (𝑇𝑛). It jumps following transition probabilities that depend on
both the current state and the event type. More precisely, denoting the history of 𝑁 := (𝑁𝑒)𝑒∈ℰ and 𝑋 just before
time 𝑇𝑛 by ℱ𝑁,𝑋

𝑇𝑛− , it statisfies

𝑃 (𝑋(𝑇𝑛) = 𝑥 | 𝐸𝑛,ℱ𝑁,𝑋
𝑇𝑛− ) = 𝜑𝐸𝑛

(𝑋(𝑇𝑛−), 𝑥), 𝑥 ∈ 𝒳 ,

where 𝜑 := (𝜑𝑒)𝑒∈ℰ is a family of transition probability matrices. In other words, 𝜑𝑒(𝑥
′, 𝑥) is the probability of

transitioning from state 𝑥′ to state 𝑥 when an event of type 𝑒 occurs.

Notice that the state process (𝑋(𝑡)) is fully determined by its values (𝑋𝑛) at the event times (𝑇𝑛), that is, 𝑋𝑛 :=
𝑋(𝑇𝑛).

Notice also that the counting process 𝑁 and the state process 𝑋 are fully coupled, in the sense that there is a two-way
interaction: the self- and cross-excitation of 𝑁 depend on 𝑋 and the dynamics of 𝑋 depend on 𝑁 .

2.1.3 Exponential kernels

At the moment, the package implements only the case of exponential kernels, that is, we only consider parametric
kernels of the form

𝑘𝑒′𝑒(𝑡, 𝑥) = 𝛼𝑒′𝑥𝑒 exp(−𝛽𝑒′𝑥𝑒𝑡), 𝑡 > 0, 𝑒′, 𝑒 ∈ ℰ , 𝑥 ∈ 𝒳 ,

where the base rates 𝜈 and impact coefficients 𝛼 are non-negative and the decay coefficients 𝛽 are positive.

2.2 Setting up the model

From the mpoints package, we import the class HybridHawkesExp and the plot_tools module.

In [1]: import os
import numpy as np
from mpoints.hybrid_hawkes_exp import HybridHawkesExp
from mpoints import plot_tools
import seaborn # for good-looking plots
from IPython.display import set_matplotlib_formats # set the figures format to svg
set_matplotlib_formats('svg')
%matplotlib inline

/Users/maximemorariu/anaconda/envs/py36/lib/python3.6/site-packages/statsmodels/compat/pandas.py:56: FutureWarning: The pandas.core.datetools module is deprecated and will be removed in a future version. Please use the pandas.tseries module instead.
from pandas.core import datetools

2.2.1 Set the meta-parameters

We set the dimension of the event space ℰ and state space 𝒳 . We also name their elements.

In [2]: n_events = 2 # number of event types, $d_e$
n_states = 2 # number of possible states, $d_x$
events_labels = ['A', 'B'] # names of the event types
states_labels = ['1', '2'] # names of the states

We initialise an instance of a state-dependent Hawkes process with exponential kernels.

In [3]: model = HybridHawkesExp(n_events, n_states, events_labels, states_labels)

6 Chapter 2. Tutorial
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2.2.2 Set the model parameters

We now need to input the parameters 𝜑, 𝜈, 𝛼 and 𝛽.

In [4]: # The transition probabilities $\phi$
phis = np.zeros((n_states, n_events, n_states))
phis[0, 0, 0] = 0.7
phis[0, 0, 1] = 0.3
phis[1, 0, 0] = 0.6
phis[1, 0, 1] = 0.4 # $\phi_0(1, 1)$, probability of transitioning from state 1 to 1 when an event of type 0 occurs
phis[0, 1, 0] = 0.2
phis[0, 1, 1] = 0.8
phis[1, 1, 0] = 0.4
phis[1, 1, 1] = 0.6

# The base rates $\nu$
nus = np.ones(n_events)

# The impact coefficients $\alpha$
alphas = np.zeros((n_events, n_states, n_events))
alphas[0, 0, 0] = 2
alphas[0, 0, 1] = 1
alphas[1, 0, 0] = 1
alphas[1, 0, 1] = 4
alphas[0, 1, 0] = 2
alphas[0, 1, 1] = 10
alphas[1, 1, 0] = 5
alphas[1, 1, 1] = 1

# The decay coefficients $\beta$
betas = np.zeros((n_events, n_states, n_events))
betas[0, 0, 0] = 4
betas[0, 0, 1] = 12
betas[1, 0, 0] = 14
betas[1, 0, 1] = 10
betas[0, 1, 0] = 14
betas[0, 1, 1] = 15
betas[1, 1, 0] = 10
betas[1, 1, 1] = 14

Set the transition probabilities 𝜑.

In [5]: model.set_transition_probabilities(phis)

Set the parameters that govern the dynamics of the arrival rates, that is, 𝜈, 𝛼 and 𝛽.

In [6]: model.set_hawkes_parameters(nus, alphas, betas)

2.2.3 Print the model parameters

The model paramaters can be conveniently converted to strings via the following methods.

In [7]: # Sequence of transition probability matrices, one per event type
print(model.transition_matrix_to_string(phis))

[[ 0.7 0.3]
[ 0.6 0.4]]

[[ 0.2 0.8]
[ 0.4 0.6]]

2.2. Setting up the model 7
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In [8]: # Sequence of impact coefficient matrices, one per possible state
print(model.impact_coefficients_to_string(alphas))

[[ 2. 1.]
[ 1. 4.]]

[[ 2. 10.]
[ 5. 1.]]

In [9]: # Sequence of decay coefficient matrices, one per possible state
print(model.decay_coefficients_to_string(betas))

[[ 4. 12.]
[ 14. 10.]]

[[ 14. 15.]
[ 10. 14.]]

2.3 Simulation

The model can now be simulated from time 𝑡 = 0 to time 𝑡 = 7200 (for two hours) as follows.

In [10]: time_start = 0
time_end = 7200
times, events, states = model.simulate(time_start, time_end)

Let’s see how many events have occured in two hours.

In [11]: print('Number of events: ' + "{:,}".format(len(times)))

Number of events: 37,188

2.3.1 Plot a sample path

The sample path from time 𝑡1 to time 𝑡2 can be plotted as follows. In the upper subplot, we show the state process
(𝑋(𝑡)). The dots indicate the arrival times (𝑇𝑛) while their colour informs us on the event types (𝐸𝑛). The lower
subplot displays the arrival rates 𝜆𝑒 (intensities).

In [12]: t_1 = 0
t_2 = 5
seaborn.set() # set the default seaborn style for figures
fig, fig_array = plot_tools.sample_path(times, events, states, model, t_1, t_2)

2.3.2 Distribution of events and states

The joint distribution of (𝐸𝑛, 𝑋𝑛) can be computed and plotted as follows.

In [13]: distribution = model.proportion_of_events_and_states(events, states, n_events, n_states)
fig = plot_tools.discrete_distribution(distribution, v_labels = events_labels, h_labels = states_labels,

figsize=(2, 2))

8 Chapter 2. Tutorial
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2.4 Statistical inference

Let’s now imagine that times, events and states is some data that we want to analayse. We would like to fit
a state-dependent Hawkes process to this sample path. Here, we should hopefully retrieve the original parameters
phis, nus, alphas and betas that were used to generate this data.

Given this sample path, the model parameters can be estimated via maximum likelihood. It can be proven that the
transition probabilities 𝜑 and the Hawkes parameters 𝜈, 𝛼 and 𝛽 can be estimated independently, in spite of the strong
coupling between 𝑁 and 𝑋 .

2.4.1 Estimate the transition probabilities

The transition probabilities 𝜑 are estimated as follows. Note that one can show that the maximum likelihood estimator
is in fact given by the empirical transition probabilities.

In [14]: phis_hat = model.estimate_transition_probabilities(events, states)

The transition probabilities can be plotted as a heatmap. The estimated transition probabilities coincide indeed with
the true ones.

In [15]: fig, fig_array = plot_tools.transition_probabilities(phis_hat, events_labels=events_labels, states_labels=states_labels,
figsize=(6, 3), left=0.12, right=0.88, bottom=0.18, top=0.82)

2.4.2 Estimate the Hawkes parameters

The package comes with a built-in method that searches for the parameters 𝜈, 𝛼 and 𝛽 that maximise the likelihood
of events. It is based on the scipy.optimize.minimize module and, by default, employs a conjugate gradient
method (other methods from scipy.optimize.minimize can be called, see documentation). More advanced
users can apply their own optimisation algorithm by calling directly the methods that compute the log-likelihood or
partial log-likelihoods and the gradient or partial gradients (again, see the documentation).

In [16]: opt_result, initial_guess, initial_guess_kind = model.estimate_hawkes_parameters(times, events, states,
time_start, time_end)

The method returns a scipy.optimize.OptimizeResult instance which contains the maximum likelihood
estimate as a 1D numpy array. One can go from this 1D array to the usual parameter format as follows.

In [17]: # the maximum likelihood estimate in a 1D array
mle_estimate = opt_result.x
# tranform it to the usual format
nus_hat, alphas_hat, betas_hat = model.array_to_parameters(mle_estimate, n_events, n_states)

We check that our estimate of the base rates 𝜈 is close to the original value nus.

In [18]: print(nus)
print(nus_hat)

[ 1. 1.]
[ 0.98175138 0.98502245]

The kernels can be visualised by plotting the cumulative excitation functions

𝑡 ↦→ ||𝑘𝑒′𝑒(·, 𝑥)||1,𝑡 :=
∫︁ 𝑡

0

𝑘𝑒′𝑒(𝑠, 𝑥)𝑑𝑠, 𝑒′, 𝑒 ∈ ℰ , 𝑥 ∈ 𝒳 ,

which provide a convenient visualisation of the magnitude of the self- and cross-excitation effects and the effective
timescales at which they occur. One can interpret ||𝑘𝑒′𝑒(·, 𝑥)||1,𝑡 as the average number of events of type 𝑒 that are

2.4. Statistical inference 9
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directly triggered by an event of type 𝑒′ within 𝑡 seconds of its occurrence, under state 𝑥. We plot these functions for
the estimated and true kernels.

In [19]: # Estimated kernels in full line
fig, fig_array = plot_tools.kernels_exp(alphas_hat, betas_hat, events_labels=events_labels, states_labels=states_labels,

log_timescale=True, figsize=(7, 4))
# True kernels in dashed line
fig, fig_array = plot_tools.kernels_exp(alphas, betas,

tmax=1, log_timescale=True, fig=fig, fig_array=fig_array, ls='--',
left=0.12, right=0.88, bottom=0.15, top=0.85, ymax=0.7)

# Add x and y labels
txt = fig.text(0.5, 0.02, 'Time (seconds)', ha='center', fontsize=16)
txt = fig.text(0.01, 0.5, r'$||\hat{k}||_{1, t}$', va='center', rotation='vertical', fontsize=16)

For example, the top right subplot shows the kernels 𝑘𝐴𝐵(·, 𝑥) for the two different states 𝑥 = 1 and 𝑥 = 2. We were
indeed able to approximately retrieve the true paramaters from the sample path, thanks to the maximum likelihood
princinple.

2.4.3 Goodness-of-fit

Define the event residuals 𝑟𝑒𝑛 by

𝑟𝑒𝑛 :=

∫︁ 𝑡𝑒𝑛

𝑡𝑒𝑛−1

𝜆𝑒(𝑡)𝑑𝑡, 𝑒 ∈ ℰ ,

where 𝑡𝑒𝑛 is the time when the 𝑛 th event of type 𝑒 occurred (that is, 𝑡𝑒𝑛 is the realisation of random variable 𝑇 𝑒
𝑛).

Let’s compute the sequences of residuals (one per event type) under the estimated model. We first update the model
paramaeters with the estimated ones.

In [20]: model.set_transition_probabilities(phis_hat)
model.set_hawkes_parameters(nus_hat, alphas_hat, betas_hat)

The event residuals can then be computed as follows.

In [21]: residuals = model.compute_events_residuals(times, events, states, time_start)

Under the assumption that the sample path was generated by this estimated model, the event residuals (𝑟𝑒𝑛)𝑛∈N,𝑒∈ℰ
are the realisation of i.i.d standard unit rate exponential random variables. Hence, the goodness-of-fit of our estimated
model can be assessed by analysing the distribution of the event residuals.

For comparison, we also compute the event residuals under a naive Poisson model.

In [22]: n_states_poisson = 1 # no state process under this naive model
model_poisson = HybridHawkesExp(n_events, n_states_poisson, events_labels, ['no state'])
# the transition probabilities are then trivial
model_poisson.set_transition_probabilities(np.ones((n_states_poisson, n_events, n_states_poisson)))
# compute the mean arrival rate and use it as the base rate
nus_poisson = np.zeros(n_events)
for e in range(n_events):

nus_poisson[e] = (events == e).sum() / (time_end - time_start)
# impact coefficients set to null to get a Poisson process
alphas_poisson = np.zeros((n_events, n_states_poisson, n_events))
# deceay coefficents, their value does not matter here
betas_poisson = np.ones((n_events, n_states_poisson, n_events))
# set the parameters that govern the arrival rates of events (intensities)
model_poisson.set_hawkes_parameters(nus_poisson, alphas_poisson, betas_poisson)
# compute the event residuals under this naive model

10 Chapter 2. Tutorial
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states_poisson = np.zeros(len(times), dtype='int') # we create a fake trivial state process
residuals_poisson = model_poisson.compute_events_residuals(times, events, states_poisson, time_start)

For every event type 𝑒 ∈ ℰ , we compare the distribution of (𝑟𝑒𝑛) to the standard exponential distirbution via a qq-plot.
We do this under both the state-dependent-Hawkes-proces model and the Poisson model.

In [23]: model_labels = ['Hawkes', 'Poisson']
fig, fig_array = plot_tools.qq_plot([residuals, residuals_poisson], shape=(1, n_events), labels=events_labels,

model_labels=model_labels,
figsize=(8, 4), left=0.085, right=0.915, bottom=0.15, top=0.85)

We also plot the correlogram of the event residuals time series (𝑟𝑛) := (𝑟1𝑛, . . . , 𝑟
𝑑𝑒
𝑛 ) as a test of the mutual indepen-

dence.

In [24]: fig, fig_array = plot_tools.correlogram([residuals, residuals_poisson], labels=events_labels,
model_labels=model_labels,
figsize=(6, 5), left=0.12, right=0.88, bottom=0.12, top=0.88, n_lags=10)

As expected, the state-dependent Hawkes process provides an (almost) perfect fit but the Poisson model does not.

A similar study can be performed with the total residuals 𝑟𝑒𝑥𝑛 , defined by

𝑟𝑒𝑥𝑛 :=

∫︁ 𝑡𝑒𝑥𝑛

𝑡𝑒𝑥𝑛−1

𝜑𝑒(𝑋(𝑡), 𝑥)𝜆𝑒(𝑡)𝑑𝑡,

where 𝑡𝑒𝑥𝑛 is the time when the 𝑛 th event of type 𝑒 after which the state is 𝑥 occurred.

In [25]: residuals_total = model.compute_total_residuals(times, events, states, time_start)
product_labels = model.generate_product_labels()
fig, fig_array = plot_tools.qq_plot(residuals_total, shape=(n_events, n_states), labels=product_labels,

figsize=(8, 4), left=0.085, right=0.915, bottom=0.15, top=0.85, log=False)

In [26]: fig, fig_array = plot_tools.correlogram(residuals_total, labels=product_labels, n_lags=10,
left=0.1, right=0.9, bottom=0.12, top=0.88)

2.5 Application to high-frequency financial data

State-dependent Hawkes processes were applied to high-frequency financial data in the following paper.

Morariu-Patrichi, M. and Pakkanen, M. S. (2018). State-dependent Hawkes processes and their application to limit
order book modelling. Preprint, available at https://arxiv.org/abs/1809.08060.

2.5. Application to high-frequency financial data 11
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CHAPTER 3

C extension

The crucial algorithms of this package (simulation, likelihood and gradient computations, computation of residuals)
are in fact implemented in C via Cython. The class HybridHawkesExp wraps a C extension that is compiled when
the package is installed with pip.

Without the increase in computational speed provided by the C extension, the statistical inference of state-dependent
Hawkes processes would be impractical.

The Cython code that generated the C extension is available in the GitHub repository (the .pyx file).

13
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CHAPTER 4

Documentation

4.1 hybrid_hawkes_exp module

class mpoints.hybrid_hawkes_exp.HybridHawkesExp(number_of_event_types, num-
ber_of_states, events_labels,
states_labels)

Bases: object

This class implements state-dependent Hawkes processes with exponential kernels, a subclass of hybrid marked
point processes. The main features it provides include simulation and statistical inference (estimation).

Parameters

• number_of_event_types (int) – number of different event types.

• number_of_states (int) – number of possible states.

• events_labels (list of strings) – names of the different event types.

• states_labels (list of strings) – names of the possible states.

static array_to_parameters(array, number_of_event_types_1, number_of_states, num-
ber_of_event_types_2=0)

Retrieves the parameters (𝜈, 𝛼, 𝛽) from a 1D array. It is NOT assumed that the length of
the 1st and 3rd dimensions of the arrays (𝛼𝑒′𝑥𝑒) and (𝛽𝑒′𝑥𝑒) are equal. For instance, in
log_likelihood_of_events_partial(), only of subgroup of the parameters (𝜈, 𝛼, 𝛽) are re-
quired.

Parameters

• array (1D numpy array) – an array containing the parameters (𝜈, 𝛼, 𝛽).

• number_of_event_types_1 (int) – length of the first dimension of (𝛼𝑒′𝑥𝑒) and
(𝛽𝑒′𝑥𝑒).

• number_of_states (int) – number of possible states in the state-dependent Hawkes
process, length of the second dimension.

15
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• number_of_event_types_2 (int) – length of the third dimension of (𝛼𝑒′𝑥𝑒) and
(𝛽𝑒′𝑥𝑒). It is also the length of 𝜈. If set to zero, we assume that array contains ALL the
parameters and not only a subgroup, meaning that 1st and 3rd dimensions of the arrays
(𝛼𝑒′𝑥𝑒) and (𝛽𝑒′𝑥𝑒) are equal.

Return type 1D numpy array, 3D numpy array, 3D numpy array

Returns the parameters (𝜈, 𝛼, 𝛽).

compute_events_residuals(times, events, states, time_start, initial_partial_sums=0)
Computes the events residuals 𝑟𝑒𝑛 defined by

𝑟𝑒𝑛 :=

∫︁ 𝑡𝑒𝑛

𝑡𝑒𝑛−1

𝜆𝑒(𝑡)𝑑𝑡,

where 𝑡𝑒𝑛 is the time when the n th event of type e occurred. The methods wraps a C implementation that
was obtained via Cython.

Parameters

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

• time_start (float) – the time at which we consider that the process started, prior
times are treated as an initial condition.

• initial_partial_sums (3D numpy array) – the initial condition can also be given
implicitly via the partial sums 𝑆𝑒′,𝑥,𝑒(−∞, time𝑠𝑡𝑎𝑟𝑡].

Return type list of 1D numpy arrays

Returns the e th element of the list is the sequence (𝑟𝑒𝑛) corresponding to the event type e.

compute_partial_sums(times, events, states, time_end, initial_partial_sums=None,
time_initial_condition=None)

Computes the partial sums

𝑆𝑒′𝑥𝑒(−∞, 𝑇 ] := 𝛼𝑒′𝑥𝑒

∑︁
𝑛:𝑡𝑒′𝑥𝑛 ≤𝑇

exp(−𝛽𝑒′𝑥𝑒(𝑇 − 𝑡𝑒
′𝑥

𝑛 )),

where e and e’ are event types, x is a possible state, 𝑡𝑒
′𝑥

𝑛 is the time when the n th event of type e’ after
which the state is x occurred. The collection of partial sums (𝑆𝑒′𝑥𝑒) at time 𝑇 encodes the history of the
state-dependent Hawkes process up to time 𝑇 . It can for example be used to simulate the process from
time 𝑇 . In simulate(), one can pass the partial sums as an initial condition instead of the entire history.

Parameters

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

• time_end (float) – 𝑇 , the time up to which the partial sums are computed.

• initial_partial_sums (3D numpy array of float) – an initial condition
(events that occur before times) can be given implicitly as partial sums.
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• time_initial_condition (float) – the time up to which the partial sums given
as an initial condition were computed.

Return type 3D numpy array of float

Returns the partial sums, array[e’, x, e] corresponds to 𝑆𝑒′𝑥′𝑒.

compute_total_residuals(times, events, states, time_start, initial_partial_sums=0, ini-
tial_state=0)

Computes the total residuals 𝑟𝑒𝑥𝑛 defined by

𝑟𝑒𝑥𝑛 :=

∫︁ 𝑡𝑒𝑥𝑛

𝑡𝑒𝑥𝑛−1

𝜑𝑒(𝑋(𝑡), 𝑥)𝜆𝑒(𝑡)𝑑𝑡,

where 𝑡𝑒𝑥𝑛 is the time when the n th event of type e after which the state is x occurred. The methods wraps
a C implementation that was obtained via Cython.

Parameters

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

• time_start (float) – the time at which we consider that the process started, prior
times are treated as an initial condition.

• initial_partial_sums (3D numpy array) – the ini-
tial condition can also be given implicitly via the partial sums
𝑆𝑒′,𝑥,𝑒(−∞, time𝑠𝑡𝑎𝑟𝑡]. initial_state (int) – if there are no event times before time_start, this is used as the initial state.

•Return type list of 1D numpy arrays

Returns the sequence (𝑟𝑒𝑥𝑛 ) is the x + e * number_of_states th element in the list.

static decay_coefficients_to_string(decay_coefficients)
Transforms the decay coefficients 𝛽 to a string that can be printed in the console or a text file.

Parameters decay_coefficients (3D numpy array) – the decay coefficients 𝛽.

Return type string

Returns sequence of matrices (𝛽·𝑥·), one per possible state x.

estimate_hawkes_parameters(times, events, states, time_start, time_end, maxi-
mum_number_of_iterations=2000, method=’TNC’,
parameters_lower_bound=1e-06, parame-
ters_upper_bound=None, given_guesses=[], num-
ber_of_random_guesses=1, min_decay_coefficient=0.5,
max_decay_coefficient=100, parallel_estimation=True)

Estimates the parameters of the intensities (arrival rates) of events, i.e., (𝜈, 𝛼, 𝛽). Estimation if performed
via maximum likelihood. This method uses the scipy.minimize library.

Parameters

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.
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• time_start (float) – the time at which we consider that the process started, prior
times are treated as an initial condition.

• time_end (float) – the time at which we stopped to record the process.

• maximum_number_of_iterations (int) – will be passed to the maxiter argument
in scipy.minimize. Depending on method, it is the maximum number of iterations or func-
tion evaluations.

• method (string) – the optimisation method used in scipy.minimize.

• parameters_lower_bound (float) – lower bound on all the parameters.

• parameters_upper_bound (float) – upper bound on all the parameters.

• given_guesses (list of 1D numpy array) – every member x is an initial
guess on the parameters. For every x, we attempt to maximise the likelihood starting from
x. One can go from x to (𝜈, 𝛼, 𝛽) and vice versa using array_to_parameters() and
parameters_to_array(). We retain the solution that gives the highest likelihood.

• number_of_random_guesses (int) – the method can also generate random initial
guesses.

• min_decay_coefficient (numpy array or float) – defines how a random
guess is generated.

• max_decay_coefficient (numpy array of float) – a random guess
on 𝛽𝑒′𝑥𝑒 is generated uniformly in the interval [min_decay_coefficient[e’,x,e],
max_decay_coefficient[e’,x.e]] but on a logarithmic scale.

• parallel_estimation (boolean) – the MLE problem can be decomposed into 𝑑𝑒
independent optimisation problems, where 𝑑𝑒 is the number of event types. When True,
each problem is solved independently. In this case, the limit on the number of iterations or
function evaluations is applied independently to each sub-problem.

Return type scipy.optimize.OptimizerResult, 1D numpy array, string

Returns The first object is the optimisation result and contains the maximum likelihood estimate
along with additional information on the optimisation routine. The second object contains the
initial guess that resulted in the highest likelihood after running the optimisation procedure.
The third object indicates the nature of this initial guess (‘random’ or ‘given’).

estimate_transition_probabilities(events, states)
Estimates the transition probabilities 𝜑 of the state process from the data. This method returns the maxi-
mum likelihood estimate. One can prove that it coincides with the empirical transition probabilities.

Parameters

• events (1D array of int) – the sequence of event types, events[n] is the event
type of the n th event.

• states (1D array of int) – the sequence of states, states[n] is the new state of the
system following the n th event.

Return type 3D array

Returns the estimated transition probabilities 𝜑.

generate_base_rates_labels()
Produces labels for the base rates 𝜈. This uses the events labels of the model.

Return type list of string

Returns list[e] returns a label for 𝜈𝑒.
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generate_decay_coefficients_labels()
Produces labels for the decay coefficients 𝛽. This uses the events and states labels of the model.

Return type list of list of list of string

Returns list[e’][x][e] returns a label for 𝛽𝑒′𝑥𝑒.

generate_impact_coefficients_labels()
Produces labels for the impact coefficients 𝛼. This uses the events and states labels of the model.

Return type list of list of list of string

Returns list[e’][x][e] returns a label for 𝛼𝑒′𝑥𝑒.

generate_product_labels()
Produces labels for all the couples of events types and possible states. This uses the events and states labels
of the model.

Return type list of strings

Returns the label for the couple (e, x) is given by by list[n] where 𝑛 = 𝑥+𝑒×number𝑜𝑓𝑒𝑣𝑒𝑛𝑡𝑡𝑦𝑝𝑒𝑠.

gradient(parameters, times, events, states, time_start, time_end)
Computes the gradient of the log-likelihood 𝑙 with respect to the parameters (𝜈, 𝛼, 𝛽). The method wraps
a C implementation that was obtained via Cython.

Parameters

• parameters (1D numpy array) – the parameters (𝜈, 𝛼, 𝛽) put into a single array.
Go from parameters to (𝜈, 𝛼, 𝛽) and vice versa using array_to_parameters() and
parameters_to_array().

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

• time_start (float) – 𝑡0, the time at which we consider that the process started, prior
times are treated as an initial condition.

• time_end (float) – 𝑇 , the time at which we stopped to record the process.

Return type float

Returns the gradient of the log-likelihood 𝑙.

gradient_partial(event_type, parameters, times, events, states, time_start, time_end)
Computes the gradient of the partial log-likelihood 𝑙𝑒 with respect to the parameters (𝜈, 𝛼, 𝛽) that govern
𝜆𝑒, the intensity of events of type e. The method wraps a C implementation that was obtained via Cython.

Parameters

• event_type (int) – e, the event type for which we want to compute the gradient of the
partial log-likelihood 𝑙𝑒.

• parameters (1D numpy array) – only the parameters (𝜈, 𝛼, 𝛽) that govern 𝜆𝑒

put into a single array. Go from parameters to (𝜈, 𝛼, 𝛽) and vice versa using
array_to_parameters() and parameters_to_array().

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.
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• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

• time_start (float) – 𝑡0, the time at which we consider that the process started, prior
times are treated as an initial condition.

• time_end (float) – 𝑇 , the time at which we stopped to record the process.

Return type float

Returns the gradient of the partial log-likelihood 𝑙𝑒.

static impact_coefficients_to_string(impact_coefficients)
Transforms the impact coefficients 𝛼 to a string that can be printed in the console or a text file.

Parameters impact_coefficients (3D numpy array) – the impact coefficients 𝛼.

Return type string

Returns sequence of matrices (𝛼·𝑥·), one per possible state x.

intensities_of_events(partial_sums)
Computes the intensities, given the partial sums 𝑆𝑒′𝑥𝑒.

Parameters partial_sums (3D numpy array of float) – the partial sums 𝑆𝑒′,𝑥′,𝑒 at
the considered time.

Return type 1D numpy array of float

Returns the intensities, array[e] is the value of 𝜆𝑒 at the considered time.

intensities_of_events_at_times(compute_times, times, events, states)
Computes the intensities at the compute_times given a realisation of the state-dependent Hawkes process.

Parameters

• compute_times (1D numpy array of float) – the times at which the intensi-
ties will be computed.

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

Return type 1D numpy array of float, 2D numpy array of float

Returns the first array contains both the compute_times and the event times of the given reali-
sation, in increasing order. Note that the event times are put there twice: the intensities are
computed just before and right after the event times. The second array gives the intensities at
the times of the first array. array2[e,n] is the intensity of events of type e at time array1[n].

intensity_of_event(event_type, partial_sums)
Computes the intensity of events of type event_type, given the partial sums 𝑆𝑒′𝑥𝑒.

Parameters

• event_type (int) – the event type for which the intensity is computed.

• partial_sums (3D numpy array of float) – the partial sums 𝑆𝑒′,𝑥′,𝑒 at the
considered time.

Return type float

Returns the value of 𝜆𝑒 at the considered time.
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static kernel_at_time(time, alpha, beta)
Evaluates the kernel of the model at the given time with the given parameters.

Parameters

• time (float) – the positive time 𝑡.

• alpha (float) – a non-negative 𝛼.

• beta (float) – a positive 𝛽.

Return type float

Returns 𝛼 exp(−𝛽𝑡).

log_likelihood_of_events(parameters, times, events, states, time_start, time_end)
Computes the log-likelihood of the observed times and event types under the assumption that they are the
realisation of a state-dependent Hawkes process with the given parameters. The log-likelihood is given by

𝑙 :=
∑︁

𝑛:𝑡0<𝑡𝑛≤𝑇

𝜆𝑒𝑛(𝑡𝑛)−
∑︁
𝑒

∫︁ 𝑇

𝑡0

𝜆𝑒(𝑡)𝑑𝑡,

where (𝑡𝑛) and (𝑒𝑛) are the sequences of event times and event types, respectively. The method wraps a C
implementation that was obtained via Cython.

Parameters

• parameters (1D numpy array) – the parameters (𝜈, 𝛼, 𝛽) put into a single array.
Go from parameters to (𝜈, 𝛼, 𝛽) and vice versa using array_to_parameters() and
parameters_to_array().

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

• time_start (float) – 𝑡0, the time at which we consider that the process started, prior
times are treated as an initial condition.

• time_end (float) – 𝑇 , the time at which we stopped to record the process.

Return type float

Returns the log-likelihood 𝑙.

log_likelihood_of_events_partial(event_type, parameters, times, events, states, time_start,
time_end)

Computes the log-likelihood of the arrival times of events of the given type under the assumption that
they are the realisation of a state-dependent Hawkes process with the given parameters. These parameters
include only those that govern 𝜆𝑒, the intensity of events of type e. For example, among the base rates 𝜈,
only 𝜈𝑒 should be contained in parameters. This partial log-likelihood is given by

𝑙𝑒 :=
∑︁

𝑛:𝑡0<𝑡𝑒𝑛≤𝑇

𝜆𝑒(𝑡
𝑒
𝑛)−

∫︁ 𝑇

𝑡0

𝜆𝑒(𝑡)𝑑𝑡,

where (𝑡𝑒𝑛) are the arrival times of events of the given type e. The method wraps a C implementation that
was obtained via Cython.

Parameters
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• event_type (int) – e, the event type for which we want to compute the partial log-
likelihood 𝑙𝑒.

• parameters (1D numpy array) – only the parameters (𝜈, 𝛼, 𝛽) that govern 𝜆𝑒

put into a single array. Go from parameters to (𝜈, 𝛼, 𝛽) and vice versa using
array_to_parameters() and parameters_to_array().

• times (1D numpy array of float) – the times at which events occur.

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

• time_start (float) – 𝑡0, the time at which we consider that the process started, prior
times are treated as an initial condition.

• time_end (float) – 𝑇 , the time at which we stopped to record the process.

Return type float

Returns the partial log-likelihood 𝑙𝑒.

static parameters_to_array(base_rates, impact_coefficients, decay_coefficients)
Puts the model parameters (𝜈, 𝛼, 𝛽) into a one dimensional array.

Parameters

• base_rates (1D numpy array) – the collection (𝜈𝑒).

• impact_coefficients (3D numpy array) – the collection (𝛼𝑒′𝑥𝑒).

• decay_coefficients (3D numpy array) – the collection (𝛽𝑒′𝑥𝑒).

Return type 1D numpy array

Returns the parameters put into a single 1D array.

static proportion_of_events_and_states(events, states, number_of_event_types, num-
ber_of_states)

Computes the empirical distribution of the events and states.

Parameters

• events (1D numpy array of int) – the sequence of event types, events[n] is the
event type of the n th event.

• states (1D numpy array of int) – the sequence of states, states[n] is the new
state of the system following the n th event.

• number_of_event_types (int) – number of different event types.

• number_of_states (int) – number of possible states.

Return type 2D numpy array of float

Returns array[e,x] is the percentage of events of type e after which the state is x.

set_hawkes_parameters(base_rates, impact_coefficients, decay_coefficients)
Fixes the parameters (𝜈, 𝛼, 𝛽) that define the intensities (arrival rates) of events. The are used in
simulate(), compute_events_residuals() and compute_total_residuals().

Parameters

• base_rates (1D numpy array) – one base rate 𝜈𝑒 per event type 𝑒.

• impact_coefficients (3D numpy array) – the alphas 𝛼𝑒′𝑥𝑒.
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• decay_coefficients (3D numpy array) – the betas 𝛽𝑒′𝑥𝑒.

Returns

set_transition_probabilities(transition_probabilities)
Fixes the transition probabilities 𝜑 of the state-dependent Hawkes process. The are used to simulate()
and compute_total_residuals().

Parameters transition_probabilities (3D numpy array) – shape should be
(𝑑𝑥, 𝑑𝑒, 𝑑𝑥) where 𝑑𝑒 and 𝑑𝑥 are the number of event types and states, respectively. The
entry 𝑖, 𝑗, 𝑘 is the probability of going from state 𝑖 to state 𝑘 when an event of type 𝑗 occurs.

Returns

simulate(time_start, time_end, initial_condition_times=[], initial_condition_events=[],
initial_condition_states=[], initial_partial_sums=0, initial_state=0,
max_number_of_events=1000000)

Simulates a sample path of the state-dependent Hawkes process. The methods wraps a C implementation
that was obtained via Cython.

Parameters

• time_start (float) – time at which the simulation starts.

• time_end (float) – time at which the simulation ends.

• initial_condition_times (array) – times of events before and including
time_start.

• initial_condition_events (array of int) – types of the events that oc-
curred at initial_condition_times.

• initial_condition_states (array of int) – values of the state process just
after the initial_condition_times.

• initial_partial_sums (3D numpy array) – the ini-
tial condition can also be given implicitly via the partial sums
𝑆𝑒′,𝑥,𝑒(−∞, time𝑠𝑡𝑎𝑟𝑡]. initial_state (int) – if there are no event times before time_start, this is used as the initial state. max_number_of_events (int) – the simulation stops when this number of events is reached (including the initial condition).

••Return type array, array of int, array of int

Returns the times at which the events occur, their types and the values of the state process right
after each event. Note that these include the initial condition as well.

static transition_matrix_to_string(transition_probabilities)
Transforms the transition probabilities 𝜑 to a string that can be printed in the console or a text file.

Parameters transition_probabilities (3D numpy array) – the transition proba-
bilities 𝜑.

Return type string

Returns sequence of transition probability matrices (𝜑𝑒), one per event type e.

4.2 plot_tools module

mpoints.plot_tools.correlogram(residuals, path=”, fig_name=’correlogram.pdf’, title=None, la-
bels=None, model_labels=None, palette=None, n_lags=50, fig-
size=(8, 6), size_labels=16, size_ticks=14, size_legend=16, bot-
tom=None, top=None, left=None, right=None, savefig=False)

Correlogram of residuals.
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Parameters

• residuals (list) – list of lists (one list of residuals per event type) or list of lists of lists
when multiple models are compared (one list of lists per model).

• path (string) – where the figure is saved.

• fig_name (string) – name of the file.

• title (string) – suptitle.

• labels (list of strings) – labels of the event types.

• model_labels (list of strings) – names of the different considered models.

• palette (list of colours) – color palette, one color per model.

• n_lags (int) – number of lags to plot.

• figsize ((int, int)) – tuple (width, height).

• size_labels (int) – fontsize of labels.

• size_ticks (int) – fontsize of tick labels.

• legend_size (int) – fontsize of the legend.

• bottom (float) – between 0 and 1, adjusts the bottom margin, see matplotlib sub-
plots_adjust.

• top (float) – between 0 and 1, adjusts the top margin, see matplotlib subplots_adjust.

• left (float) – between 0 and 1, adjusts the left margin, see matplotlib subplots_adjust.

• right (float) – between 0 and 1, adjusts the right margin, see matplotlib subplots_adjust.

• savefig (boolean) – set to True to save the figure.

Return type Figure, array of Axes

Returns the figure and array of figures (see matplotlib).

mpoints.plot_tools.discrete_distribution(probabilities, path=”,
fig_name=’distribution_events_states.pdf’,
v_labels=None, h_labels=None, ti-
tle=None, color_map=None, figsize=(12, 6),
size_labels=16, size_values=14, bottom=None,
top=None, left=None, right=None, save-
fig=False, usetex=False)

Annotated heatmap of a given discrete distribution with 2 dimensions.

Parameters

• probabilities (2D array) – the 2D discrete distribution.

• path (string) – where the figure is saved.

• fig_name (string) – name of the file.

• v_labels (list of strings) – labels for the first dimension (vertical).

• h_labels (list of strings) – labels for the second dimension (horizontal).

• title (string) – suptitle.

• color_map – color map for the heatmap, see seaborn documentation.

• figsize ((int, int)) – tuple (width, height).
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• size_labels (int) – fontsize of labels.

• size_values (int) – fontsize of the annotations on top of the heatmap.

• bottom (float) – between 0 and 1, adjusts the bottom margin, see matplotlib sub-
plots_adjust.

• top (float) – between 0 and 1, adjusts the top margin, see matplotlib subplots_adjust.

• left (float) – between 0 and 1, adjusts the left margin, see matplotlib subplots_adjust.

• right (float) – between 0 and 1, adjusts the right margin, see matplotlib subplots_adjust.

• savefig (boolean) – set to True to save the figure.

• usetex (boolean) – set to True if matplolib figure is rendered with TeX.

Return type Figure

Returns the figure (see matplotlib).

mpoints.plot_tools.kernels_exp(impact_coefficients, decay_coefficients, events_labels=None,
states_labels=None, path=”, fig_name=’kernels.pdf’, ti-
tle=None, palette=None, figsize=(9, 7), size_labels=16,
size_values=14, size_legend=16, bottom=None, top=None,
left=None, right=None, savefig=False, fig_array=None,
fig=None, tmin=None, tmax=None, npoints=500, ymax=None,
alpha=1, legend_pos=0, log_timescale=True, ls=’-’)

Plots the kernels of a state-dependent Hawkes process. Here the kernels are assumed to be exponential, that is,
𝑘𝑒′𝑒(𝑡, 𝑥) = 𝛼𝑒′𝑥𝑒 exp(−𝛽𝑒′𝑥𝑒𝑡). We plot the functions

𝑡 ↦→ ||𝑘𝑒′𝑒(·, 𝑥)||1,𝑡 :=
∫︁ 𝑡

0

𝑘𝑒′𝑒(𝑠, 𝑥)𝑑𝑠.

The quantity ||𝑘𝑒′𝑒(·, 𝑥)||1,𝑡 can be interpreted as the average number of events of type 𝑒 that are directly pre-
cipitated by an event of type 𝑒′ within 𝑡 units of time, under state 𝑥. There is a subplot for each couple of event
types (𝑒′, 𝑒). In each subplot, there is a curve for each possible state 𝑥.

Parameters

• impact_coefficients (3D array) – the alphas 𝛼𝑒′𝑥𝑒.

• decay_coefficients (3D array) – the betas 𝛽𝑒′𝑥𝑒.

• events_labels (list of strings) – labels of the event types.

• states_labels (list of strings) – labels of the states.

• path (string) – where the figure is saved.

• fig_name (string) – name of the file.

• title (string) – suptitle.

• palette (list of colours) – color palette, one color per state 𝑥.

• figsize ((int, int)) – tuple (width, height).

• size_labels (int) – fontsize of labels.

• size_values (int) – fontsize of tick labels.

• size_legend (int) – fontsize of the legend.

• bottom (float) – between 0 and 1, adjusts the bottom margin, see matplotlib sub-
plots_adjust.
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• top (float) – between 0 and 1, adjusts the top margin, see matplotlib subplots_adjust.

• left (float) – between 0 and 1, adjusts the left margin, see matplotlib subplots_adjust.

• right (float) – between 0 and 1, adjusts the right margin, see matplotlib subplots_adjust.

• savefig (boolean) – set to True to save the figure.

• fig_array (array of Axes) – fig_array, where to plot the kernels (see matplotlib).

• fig (Figure) – figure, where to plot the figure (see matplotlib).

• tmin (float) – we plot over the time interval [tmin, tmax].

• tmax (float) – we plot over the time interval [tmin, tmax].

• npoints (int) – number of points used to plot.

• ymax (float) – upper limit of the y axis.

• alpha (float) – between 0 and 1, transparency of the curves.

• legend_pos (int) – position of the legend in the array of figures.

• log_timescale (boolean) – set to False to plot with a linear timescale.g

• ls (string) – the linestyle (see matplotlib).

Return type Figure, array of Axes

Returns the figure and array of figures (see matplotlib).

mpoints.plot_tools.qq_plot(residuals, shape=None, path=”, fig_name=’qq_plot.pdf’, log=False,
q_min=0.01, q_max=0.99, number_of_quantiles=100, title=None,
labels=None, model_labels=None, palette=None, figsize=(12,
6), size_labels=16, size_ticks=14, legend_size=16, bottom=0.12,
top=0.93, left=0.08, right=0.92, savefig=False, leg_pos=0)

Qq-plot of residuals.

Parameters

• residuals (list) – list of lists (one list of residuals per event type) or list of lists of lists
when multiple models are compared (one list of lists per model).

• shape ((int, int)) – 2D-tuple (number of rows, number of columns), shape of the
array of figures.

• path (string) – where the figure is saved.

• fig_name (string) – name of the file.

• log (boolean) – set to True for qq-plots with log-scale.

• q_min (float) – smallest quantile to plot (e.g., 0.01 for 1%).

• q_max (float) – largest quantile to plot.

• number_of_quantiles (int) – number of points used to plot.

• title (string) – suptitle.

• labels (list of strings) – labels of the event types.

• model_labels (list of strings) – names of the different considered models.

• palette (list of colours) – color palette, one color per model.

• figsize ((int, int)) – tuple (width, height).

• size_labels (int) – fontsize of labels.
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• size_ticks (int) – fontsize of tick labels.

• legend_size (int) – fontsize of the legend.

• bottom (float) – between 0 and 1, adjusts the bottom margin, see matplotlib sub-
plots_adjust.

• top (float) – between 0 and 1, adjusts the top margin, see matplotlib subplots_adjust.

• left (float) – between 0 and 1, adjusts the left margin, see matplotlib subplots_adjust.

• right (float) – between 0 and 1, adjusts the right margin, see matplotlib subplots_adjust.

• savefig (boolean) – set to True to save the figure.

• leg_pos (int) – position of the legend in the array of figures.

Return type Figure, array of Axes

Returns the figure and array of figures (see matplotlib).

mpoints.plot_tools.sample_path(times, events, states, model, time_start, time_end,
color_palette=None, labelsize=16, ticksize=14, leg-
endsize=16, num=1000, s=12, savefig=False, path=”,
fig_name=’sample_path.pdf’)

Plots a sample path along with the intensities.

Parameters

• times (array of floats) – times when the events occur.

• events (array of int) – type of the event at each event time.

• states (array of int) – state process after each event time.

• model (HybridHawkesExp) – the model that is used to compute the intensities.

• time_start (float) – time at which the plot starts.

• time_end (float) – time at which the plot ends.

• color_palette (list of colours) – one colour per event type.

• labelsize (int) – fontsize of labels.

• ticksize (int) – fontsize of tick labels.

• legendsize (int) – fontsize of the legend.

• num (int) – number of points used to plot.

• s (int) – size of the dots in the scatter plot of the events.

• savefig (boolean) – set to True to save the figure.

• path (string) – where the figure is saved.

• fig_name (string) – name of the file.

Return type Figure, array of Axes

Returns the figure and array of figures (see matplotlib).
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mpoints.plot_tools.transition_probabilities(probabilities, shape=None, path=”,
fig_name=’transition_probabilities.pdf’,
events_labels=None, states_labels=None,
title=None, color_map=None, figsize=(12,
6), size_labels=16, size_values=14, bot-
tom=0.1, top=0.95, left=0.08, right=0.92,
wspace=0.2, hspace=0.2, savefig=False,
usetex=False)

Annotated heatmap of the transition probabilities of a state-dependent Hawkes process.

Parameters

• probabilities (3D array) – the transition probabilities.

• shape ((int, int)) – 2D-tuple (number of rows, number of columns), shape of the
array of figures.

• path (string) – where the figure is saved.

• fig_name (string) – name of the file.

• events_labels (list of strings) – labels of the event types.

• states_labels (list of strings) – labels of the states.

• title (string) – suptitle.

• color_map – color map for the heatmap, see seaborn documentation.

• figsize ((int, int)) – tuple (width, height).

• size_labels (int) – fontsize of labels.

• size_values (int) – fontsize of the annotations on top of the heatmap.

• bottom (float) – between 0 and 1, adjusts the bottom margin, see matplotlib sub-
plots_adjust.

• top (float) – between 0 and 1, adjusts the top margin, see matplotlib subplots_adjust.

• left (float) – between 0 and 1, adjusts the left margin, see matplotlib subplots_adjust.

• right (float) – between 0 and 1, adjusts the right margin, see matplotlib subplots_adjust.

• wspace (float) – horizontal spacing between the subplots, see matplotlib sub-
plots_adjust.

• hspace (float) – vertical spacing between the subplots, see matplotlib subplots_adjust.

• savefig (boolean) – set to True to save the figure.

• usetex (boolean) – set to True if matplolib figure is rendered with TeX.

Return type Figure, array of Axes

Returns the figure and array of figures (see matplotlib).
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References

The mpoints package is based on the following two references. The first reference is an introduction to state-dependent
Hawkes processes with an application to high-frequency financial data. The second reference sets the theoretical
foundations of hybrid marked point processes.

1. Morariu-Patrichi, M. and Pakkanen, M. S. (2018). State-dependent Hawkes processes and their application to
limit order book modelling. Preprint, available at http://arxiv.org/abs/1809.08060.

2. Morariu-Patrichi, M. and Pakkanen, M. S. (2017). Hybrid marked point processes: characterisation, existence
and uniqueness. Preprint, available at: http://arxiv.org/abs/1707.06970.

A friendly introduction to (hybrid) marked point processes can be found at https://maximemorariu.com.
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CHAPTER 6

Support

Support can be found on the GitHub page of the project. Should you have any queries, feel free to contact Maxime
Morariu-Patrichi via the contact form on his website.
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CHAPTER 7

Indices and tables

• genindex

• modindex

• search
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Python Module Index

m
mpoints.hybrid_hawkes_exp, 15
mpoints.plot_tools, 23
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Index

A
array_to_parameters() (mpoints.hybrid_hawkes_exp.HybridHawkesExp

static method), 15

C
compute_events_residuals()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 16

compute_partial_sums() (mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 16

compute_total_residuals()
(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 17

correlogram() (in module mpoints.plot_tools), 23

D
decay_coefficients_to_string()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
static method), 17

discrete_distribution() (in module mpoints.plot_tools), 24

E
estimate_hawkes_parameters()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 17

estimate_transition_probabilities()
(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 18

G
generate_base_rates_labels()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 18

generate_decay_coefficients_labels()
(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 18

generate_impact_coefficients_labels()
(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 19

generate_product_labels()
(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 19

gradient() (mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 19

gradient_partial() (mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 19

H
HybridHawkesExp (class in

mpoints.hybrid_hawkes_exp), 15

I
impact_coefficients_to_string()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
static method), 20

intensities_of_events() (mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 20

intensities_of_events_at_times()
(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 20

intensity_of_event() (mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 20

K
kernel_at_time() (mpoints.hybrid_hawkes_exp.HybridHawkesExp

static method), 20
kernels_exp() (in module mpoints.plot_tools), 25

L
log_likelihood_of_events()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 21

log_likelihood_of_events_partial()
(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 21

M
mpoints.hybrid_hawkes_exp (module), 15
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mpoints.plot_tools (module), 23

P
parameters_to_array() (mpoints.hybrid_hawkes_exp.HybridHawkesExp

static method), 22
proportion_of_events_and_states()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
static method), 22

Q
qq_plot() (in module mpoints.plot_tools), 26

S
sample_path() (in module mpoints.plot_tools), 27
set_hawkes_parameters()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 22

set_transition_probabilities()
(mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 23

simulate() (mpoints.hybrid_hawkes_exp.HybridHawkesExp
method), 23

T
transition_matrix_to_string()

(mpoints.hybrid_hawkes_exp.HybridHawkesExp
static method), 23

transition_probabilities() (in module mpoints.plot_tools),
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