
mplstyle Documentation
Release 0.3

Thomas Zipperl and Dennis Atabay

Sep 19, 2017

Contents

1 Contents 3

2 Dependencies (Python) 13

Python Module Index 15

i

ii

mplstyle Documentation, Release 0.3

Maintainers Thomas Zipperle <thomas.zipperle@tum.de>, Dennis Atabay <den-
nis.atabay@tum.de>

Organization Institute for Energy Economy and Application Technology, Technische Uni-
versität München

Version 0.3

Date Sep 19, 2017

Copyright This documentation is licensed under a Creative Commons Attribution 4.0 In-
ternational license.

Contents 1

mailto:thomas.zipperle@tum.de
mailto:dennis.atabay@tum.de
mailto:dennis.atabay@tum.de
http://www.ewk.ei.tum.de/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

mplstyle Documentation, Release 0.3

2 Contents

CHAPTER 1

Contents

This documentation contains the following pages:

Overview

mplstyle is a Python package, which allows matplotlib users to simplify the process of improving plots’
quality. Quite often font, size, legend, colors and other settings should be changed for making plots look
better. Such changes can be remembered and stored in your own plot style, which can automatically
change the way of making plots by importing it as a usual Python toolbox. In other words, with mplstyle
you can set plotting settings once and use created configuration many times.

The core of mplstyle is a PLTbase class contained list of methods, which change initial settings of
matplotlib. Figure 1 illustrates these changes by plotting several trigonometric functions with and
without PLTbase.

All changes are distributed between three settings: color style, color order style and plt style. Each
of them according to PLTbase has only one way of rewriting initial corresponding matplotlib setting.
This way is called a default style. Figure 2 illustrates above mentioned PLTbase structure.

Besides PLTbase there are five more classes: PLTdatabay, PLTdynamis, PLTenfo, PLTewk and
PLTtz. Each class inherits functionality of PLTbase class and contains new other styles of reconfiguring
initial settings. The structure of one of those classes is presented in the Figure 3.

As can be seen PLTtz keeps PLTbase styles and also contains additionals. Other four classes have
exactly the same structure, but with their own additional styles. With mplstyle you can use already
uploaded classes or create your own class.

How to Install

There are two ways of mplstyle installation. All of them are described below properly.

3

mplstyle Documentation, Release 0.3

Fig. 1.1: Figure 1: Plotting changes by applying PLTbase class

Fig. 1.2: Figure 2: PLTbase class structure

4 Chapter 1. Contents

mplstyle Documentation, Release 0.3

Fig. 1.3: Figure 3: PLTtz class structure

From Source

Open Command Promt (cmd) , paste the line written in the following and push enter. mplstyle package
will be added to Python search path automatically.

pip install git+https://github.com/tzipperle/mplstyle.git@master

From Python

Put the following command at the beginning of your code.

sys.path.append('C:/.../mplstyle/')

It allows to use mplstyle for the case, when the package wasn’t added to Python search path. Written in
the brackets part 'C:/.../mplstyle/' is the path to the directory, where mplstyle is located. This
step is really necessary, if, for example, you have just downloaded or cloned (with git) this repository to
a directory of your choice, and you want to run examples’ codes inside or outside this directory trying
to figure out how mplstyle is working.

How to Use

This section explains and shows how any of the classes from mplstyle can be used. PLTtz class,
which was already mentioned in the overview, is taken as an example. Its implementation in the
trigonometric_functions.py is explained very detailed by moving step by step through the
script. Other classes are used completely similar.

trigonometric_functions.py

Several trigonometric functions are plotted fourfold in this file showing each time the change in current
configuration of plot settings. All plots with chosen configuration are splitted between two figures
presented in the middle and in the end of the description. Detailed comments of the script are in the
following.

1.3. How to Use 5

https://github.com/tzipperle/mplstyle/archive/master.zip
http://git-scm.com/

mplstyle Documentation, Release 0.3

import matplotlib.pyplot as plt
import numpy as np
import os
import sys

Four packages are included:

• matplotlib.pyplot is a plotting library which allows present results in a diagram form quite easily;

• numpy is the fundamental package for scientific computing with Python;

• os is the module for using operating system according to its functionality in a portable way;

• sys is the module, which provides access to variables and functions used by the interpreter.

from mplstyle.tz import PLTtz
tz_plt=PLTtz()

Imports PLTtz class from a file tz.py, where this class is described as a child of PLTbase. Then
creates an instance of the class and assigns it to the local variable tz_plt.

Note: When a new initialized instance of the chosen class is obtained, all three settings (color style,
color order style and plt style) are immediately rewritten. Since this moment each setting works ac-
cording to its own default style, kept in PLTbase class.

fig1 = plt.figure(figsize=[8, 6])
fig2 = plt.figure(figsize=[8, 6])

Chooses the size of two figures, where three plots will be printed.

#1st plot
#########
ax0 = fig1.add_subplot(211)

#setting four trigonometric functions and plotting them
x = np.arange(0, 2 * np.pi, 0.01)
for c in range(4):

y = np.sin(x) + c
ax0.plot(x, y, label=c)

#labeling axises, putting legend and title
ax0.set_title('default - default - default')
ax0.set_ylabel(r'Pressure ($\mathrm{bar}_{\mathrm{g}}$)')
ax0.set_xlabel(r'Power (kW)')
ax0.legend()

Makes 1st plot by choosing its location on the first figure, setting trigonometric functions and configuring
additional parameters.

#2nd plot
#########
#changing all plot settings
tz_plt.set_style(color_style='mpl2_colors')
tz_plt.set_style(color_order_style='mpl2_colors')
tz_plt.set_style(plt_style='jupyter-notebook')

6 Chapter 1. Contents

https://matplotlib.org/index.html
https://docs.scipy.org/doc/numpy-dev/user/index.html
https://docs.python.org/3/library/os.html#module-os
https://docs.python.org/3/library/sys.html

mplstyle Documentation, Release 0.3

Changes each plot setting by set_style() function. Since now the initial configuration (default - default
- default) is changed on the new one (mpl2_colors - mpl2_colors - jupyter-notebook).

ax1 = fig1.add_subplot(212)

x1 = np.arange(0, 2 * np.pi, 0.01)
for c1 in range(4):

y1 = np.sin(x1) + c1
ax1.plot(x1, y1, label=c1)

ax1.set_title('mpl2_colors - mpl2_colors - jupyter-notebook')
ax1.set_ylabel(r'Pressure ($\mathrm{bar}_{\mathrm{g}}$)')
ax1.set_xlabel(r'Power (kW)')
ax1.legend()

fig1.tight_layout()
plt.show()

Does similar operations for making 2nd plot. Figure 4 illustrates these two plots with their respective
configurations written in the title and placed near each plot.

Fig. 1.4: Figure 4: Comparison of two identical plots made with initial and specifically chosen configu-
rations

As can be seen from above written script, with set_style() function any from three plot settings (color
style, color order style and plt style) can be changed quite easily. Other part of the script is described
below.

#3rd plot
#########
#changing only plt_style setting
tz_plt.set_style(plt_style='default')

Starts work with 3rd plot by changing only plt_style setting. According to it, configuration changes
only partially from old (mpl2_colors - mpl2_colors - jupyter-notebook) to new (mpl2_colors -
mpl2_colors - default).

1.3. How to Use 7

mplstyle Documentation, Release 0.3

ax2 = fig2.add_subplot(212)

x2 = np.arange(0, 2 * np.pi, 0.01)
for c2 in range(4):

y2 = np.sin(x2) + c2
ax2.plot(x2, y2, label=c2)

ax2.set_title('mpl2_colors - mpl2_colors - default')
ax2.set_ylabel(r'Pressure ($\mathrm{bar}_{\mathrm{g}}$)')
ax2.set_xlabel(r'Power (kW)')
ax2.legend()

Makes 3rd plot similar to 1st and 2nd.

#4rth plot
#########
#changing all plot settings with one function
tz_plt.set_style('default')

Uses set_style() function once for changing all plot settings (color style, color order style and plt style)
simultaneously to their own default style.

ax3 = fig2.add_subplot(212)

x3 = np.arange(0, 2 * np.pi, 0.01)
for c3 in range(4):

y3 = np.sin(x3) + c3
ax3.plot(x3, y3, label=c3)

ax3.set_title('mpl2_colors - mpl2_colors - default')
ax3.set_ylabel(r'Pressure ($\mathrm{bar}_{\mathrm{g}}$)')
ax3.set_xlabel(r'Power (kW)')
ax3.legend()

fig2.tight_layout()
plt.show()

Does similar to previous operations for making the 4th plot. 3rd and 4th plots are presented in the figure
5 with their respective configurations written in the title and placed near each plot.

Comparing 2nd and 3rd plots partial change in the configuration can be observed. From the part of script
dedicated to the 4th plot can be seen, that set_style() function also allows to change all plot settings at
one time. Only the name of the style without mentioning a specific parameter (color style, color order
style and plt style) should be written in brackets for such change.

Note: All three settings (color style, color order style and plt style) can be changed at one time with
set_style() function only to the style, which exists for all of them. The command won’t work, if at least
one plot setting doesn’t have a style with name mentioned in brackets.

8 Chapter 1. Contents

mplstyle Documentation, Release 0.3

Fig. 1.5: Figure 5: Comparison of two identical plots made with two different configurations

How to Create

Current section explains the procedure of creating your own class, where all desired styles for each plot
setting (color style, color order style, plt style) will be stored. Mentioned before PLTtz class is taken
as an example. Its script in the tz.py is explained below.

tz.py

import matplotlib as mpl
import matplotlib.pyplot as plt
from cycler import cycler
from .base import PLTbase

Four packages are included:

• matplotlib is a plotting library which allows present results in a diagram form quite easily;

• matplotlib.pyplot is a specified module of matplotlib;

• cycler is the composable style cycles;

• base is the file, where fundamental class PLTbase is described.

class PLTtz(PLTbase):
#PLTtz class, child of PLTbase#

_BLUE = 'blue'
_JUPYTER_NOTEBOOK = 'jupyter-notebook'
_MPL_V2 = 'mpl2_colors'

Gives the name to the new class mentioning in brackets the so-called “father”. Then links user-friendly
names of all available styles stored inside this class with formal ones used in the script.

def __init__(self):
PLTbase.__init__(self)

1.4. How to Create 9

https://matplotlib.org/index.html
https://matplotlib.org/api/pyplot_summary.html
http://matplotlib.org/cycler/

mplstyle Documentation, Release 0.3

available_styles = {
'color_style': [self._BLUE, self._MPL_V2],
'color_order_style': [self._BLUE, self._MPL_V2],
'plt_style': [self._JUPYTER_NOTEBOOK]}

self._add_available_styles(available_styles)

Function, which connects each plotting setting (color style, color order style and plt style) with corre-
sponding list of available styles.

def _get_colors(self, style):
if style == self._BLUE:

return {
'darkblue': (11, 85, 159),
'mdarkblue': (42, 122, 185),
'mediumblue': (83, 157, 204),
'mlightblue': (136, 190, 220),
'lightblue': (186, 214, 234),
'pastelblue': (218, 232, 245),

}
if style == self._MPL_V2:

return {
'c0': '#1f77b4',
'c1': '#ff7f0e',
'c2': '#2ca02c',
'c3': '#d62728',
'c4': '#9467bd',
'c5': '#8c564b',
'c6': '#e377c2',
'c7': '#7f7f7f',
'c8': '#bcbd22',
'c9': '#17becf'

}
return None

Function, which is responsible for color style plot setting. Keeps available colors for corresponding
style. Style blue uses RGB codes for identification, mpl2_colors - HEX codes.

def _get_colors_order(self, style):
if style == self._BLUE:

return ['darkblue', 'mdarkblue', 'mediumblue', 'mlightblue',
'lightblue', 'pastelblue']

elif style == self._MPL_V2:
return ['c0', 'c1', 'c2', 'c3', 'c4', 'c5', 'c6', 'c7', 'c8', 'c9']

return None

Current function regulates color order style setting. Orders corresponding colors in dependence on
style.

def _set_plt_style(self, style, colors, prop_cycle_colors):
if style == self._JUPYTER_NOTEBOOK:

plt.style.use('default')
fntsz = 12
lw = 2
fntcol = 'black'
font = {'family': 'arial', 'weight': 'normal', 'size': fntsz}

10 Chapter 1. Contents

mplstyle Documentation, Release 0.3

mpl.rc('font', **font)
mpl.rc('figure', titlesize=fntsz)
mpl.rc('legend', framealpha=None,

edgecolor='gainsboro',
fontsize=fntsz - 2, numpoints=1, handlelength=1,
loc='best', frameon=True, shadow=False,
fancybox=False)

mpl.rcParams['text.color'] = fntcol
mpl.rc('axes', edgecolor=fntcol, grid=True,

xmargin=0, labelsize=fntsz - 1, titlesize=fntsz,
linewidth=0.9)

mpl.rcParams['axes.spines.right'] = False
mpl.rcParams['axes.spines.top'] = False
mpl.rc('grid', linestyle='-', color='darkgrey',

linewidth=0.5, alpha=0.35)
mpl.rc('lines', lw=lw, markersize=10)
mpl.rc('xtick', color=fntcol, labelsize=fntsz - 2)
mpl.rc('ytick', color=fntcol, labelsize=fntsz - 2)
mpl.rcParams['axes.prop_cycle'] = cycler('color',

prop_cycle_colors)
return True

return False

These strings control plt style setting. All terms (font of the text, fontsize, legend, ticks on the axes,
etc.), which form the view of the plot, are described here.

API

List of commands, which can be applied on initialized instance of the chosen class, is presented in the
following.

mplstyle.set_style(*args, **kwargs)
Chooses style for color, color order and plt style. Arguments can be entered in two ways. First
one assumes, that only a name of a style in the form of string is given. In this case all settings
will be changed at one time. Second case allows to change a specific setting (color, color order
and plt style) by putting a couple setting=’style’ as an argument. Two or three arguments are
also possible in this case. Concept of inputs *args and **kwargs make it possible. More detailed
explanation about nature of this concept is written here.

Parameters

• *args – name of the style;

• **kwargs – couple in the form setting=’style’.

mplstyle.get_colors()

Returns dictionary of colors used in the chosen color style.

mplstyle.get_color_order()

Returns list of colors from the chosen color order style in order of appearance.

mplstyle.get_available_styles()

Returns all available styles for each plotting setting (color, color order and plt style).

1.5. API 11

https://stackoverflow.com/questions/3394835/args-and-kwargs

mplstyle Documentation, Release 0.3

mplstyle.get_selected_style()

Returns chosen style for color, color order and plt style.

mplstyle.get_cmap(colors, position=None, bit=False)
Generates custom color maps for Matplotlib. The method allows to create a list of tuples with
8-bit (0 to 255) or arithmetic (0.0 to 1.0) RGB values for making linear color maps. Color tuple
placed first characterizes the lowest value of the color bar. The last tuple represents the the highest
value.

Parameters

• colors – list of RGB tuples with 8-bit (0 to 255) or arithmetic (0 to 1),
default: arithmetic;

• position – list from 0 to 1, which dictates the location for each color;

• bit – boolean, default: False (arithmetic), True (RGB);

Returns cmap - a color map with equally spaced colors.

Example1 cmap = mplstyle.get_cmap(colors=[(255, 0, 0), (0, 157, 0)], bit=True)

Example2 cmap = mplstyle.get_cmap([(1, 1, 1), (0.5, 0, 0)], position=[0, 1]))

mplstyle.add_zbild(ax, x, y, text, tum=True, fontsize=10, color=’grey’)
Sets ZBild number as a text in the chart.

Parameters

• ax – instance of matplotlib axes;

• x – float for position (xmin=0, xmax=1);

• y – float for position (ymin=0, ymax=1);

• text – string for the text;

• tum – optional boolean for copyright, default: (tum=True);

• fontsize – optional float for font size, default: (10);

• color – optional string for mpl color, default: (grey).

12 Chapter 1. Contents

CHAPTER 2

Dependencies (Python)

• numpy for mathematical operations

• matplotlib for making plots

• cycler

13

http://www.numpy.org/
https://matplotlib.org/
http://matplotlib.org/cycler/

mplstyle Documentation, Release 0.3

14 Chapter 2. Dependencies (Python)

Python Module Index

m
mplstyle, 1

15

mplstyle Documentation, Release 0.3

16 Python Module Index

Index

A
add_zbild() (in module mplstyle), 12

G
get_available_styles() (in module mplstyle), 11
get_cmap() (in module mplstyle), 12
get_color_order() (in module mplstyle), 11
get_colors() (in module mplstyle), 11
get_selected_style() (in module mplstyle), 11

M
mplstyle (module), 1

S
set_style() (in module mplstyle), 11

17

	Contents
	Dependencies (Python)
	Python Module Index

