
Overview

1 MPF Overview 11
MPF complete feature list . 13
The MPF “Media Controller” . 18
Understanding MPF config files . 19
Config files versus “real” programming . 19

2 Compatible Pinball Machines 24
Controlling a custom “home brew” machine with MPF . 24
Controlling an existing machine with MPF . 25

3 Downloading & Installing MPF (2023 Version) 27
Installing MPF on Mac . 27
Installing MPF 0.56 on Windows . 32
Installing MPF on Linux . 36

4 How to start MPF and run your game 51
The quick version . 51
Starting the MPF game engine and media controller together 51
Starting the MPF media controller . 52
Starting the MPF game engine . 52
Specifying command-line options . 52
Understanding how this works . 52
Specifying BCP ports . 53

5 MPF Tutorial 62
Tutorial step 1: Installing MPF on your computer . 63
Tutorial step 2: Create your machine folder . 64
Tutorial step 3: Get flipping! . 69
Tutorial step 4: Adjust your flipper power . 80
Tutorial step 5: Add a display . 82
Tutorial step 6: Add keyboard control . 92
Tutorial step 7: Add your trough . 95
Tutorial step 8: Add your plunger lane . 96
Tutorial step 9. Add the start button . 99

1

Tutorial step 10: Run a real game . 100
Tutorial step 11: Add the rest of your coils and switches . 104
Tutorial step 12: Add the rest of your ball devices . 105
Tutorial step 13: Add slingshots, pop bumpers, and other “autofire” devices 107
Tutorial step 14: Add your first game mode . 107
Tutorial step 15: Add scoring . 113
Tutorial step 16: Create an attract mode display show . 116
Tutorial step 17: Add lights (or LEDs) . 121
Tutorial step 18: Add your first shot . 127
Tutorial step 19: Testing your machine . 137
Tutorial step 20: Next steps . 137

6 MPF compatible control systems / hardware 139
List of supported control systems & hardware . 139
Configuration Guides . 143
Browse Platforms by Capabilities . 415

7 Pinball Mechanisms 420
Accelerometers . 420
Autofire Coils . 421
Ball Devices . 426
Coils (Solenoids) . 430
Diverters . 443
Flippers . 450
Kickbacks . 466
Lights . 467
Loops / Orbits / Ramps . 489
Magnets . 490
Motors . 498
Playfields . 500
Plungers & Ball Launch Devices . 503
Pop Bumpers . 529
How to Configure Score Reels . 534
Scoops / Vertical up Kickers (VUKs) / Saucer holes . 536
Servos . 541
Shakers . 543
Slingshots . 544
Spinners . 548
Stepper Motors . 550
Switches . 553
Targets . 573
Tilt Bob . 588
Troughs / Ball Drains . 588

8 Game Logic 634
Achievements . 635
Ball Holds . 637
Ball Locks . 638
Ball Saves . 639
Ball Search . 642
Ball Start and End Behaviour . 644
Ball Tracking . 647

2

End of Ball Bonus . 647
Coins & Credits . 652
Combo Switches (“flipper cancel”, etc.) . 663
Extra Balls . 665
High Scores . 666
Logic Blocks . 672
Match Mode . 686
Modes . 688
Multiballs . 695
Player Variables . 704
Replays . 706
Timed Switches . 707
Timers . 708
Service Mode . 709
Shots . 711
Skill Shot . 719
Video Modes . 722
Scoring . 722
Tilt . 725

9 How to design a game in MPF using Modes 729
Mode Selection and Game Startup . 729
Game Mode . 734
Wizard Modes . 756
Ball End Modes . 758
Game End Modes . 759
Other modes . 760
Layering Modes Example . 761

10Displays, DMDs, & Graphics 766
Related Events . 770

11Sounds, Music & Audio 920
MPF Sound & Audio Technical Overview . 921
Ducking . 923
Tracks . 925
How to setup sound for your machine . 926
Sound & Audio Tips & Tricks . 931
How to play a sound with variations . 935

12Shows 938
Show configuration format . 938
What can you put in shows? . 942
Creating standalone show files . 943
Shows in files versus shows in configs . 944
Referencing Slides/Widgets in Shows . 945
Using “tokens” for run-time variable replacement in shows . 945
Starting & stopping shows . 949
Synchronizing multiple shows . 949
Playing Shows in a Show . 950

13Assets 951
Creating “pools” of assets . 952

3

Bitmap Fonts (asset type) . 952
Images (asset type) . 952
Shows (asset type) . 952
Sounds (asset type) . 952
Videos (asset type) . 952

14Config Players 953
Standalone Config Player . 954
Config Player in a Show . 955

15Machine Management 982
Auditor . 982
Service Mode . 985
Operator Settings . 986

16Tools 987
MPF Monitor . 987
“Interactive” MC (or “iMC”) . 987
Service Cli . 987
Build Production Configs . 987
Lightshow Creator . 988
Language Server in Your IDE . 988
MPF format . 988
MPF test . 988
MPF test . 988
Machine Fuzzer . 988
Hardware Debugger . 988
Future Tools . 988

17Testing your machine 1010

18Finalizing your machine 1011
Tuning Software for Production . 1011
Choosing a computer to run MPF . 1013
Choosing an OS for your final machine . 1014
Controlling your machine & computer power on / power off . 1014
Enabling & fine-tuning ball search . 1016
Fine-tuning ball device timing . 1016
Fine-tuning switches . 1016

19Flowcharts 1017
MPF Boot Up / Start Up Sequence . 1018
Game Start Sequence . 1020
Ball Start Sequence . 1022
Mode Start Sequence . 1023
Mode Stop Sequence . 1024
Ball End Sequence . 1024

20Troubleshooting 1026
Step 1: Diagnosing Your Issue . 1026
Step 2: Prepare a Report and Ask in the Forum . 1031
Relevant Configuration . 1031
Attach a Log with debug and verbose logging . 1032

4

Prepare the Error Message . 1032
Tell Us How to Reproduce Your Problem . 1032
Ask In the Forum . 1032
Consider Improving the Documentation . 1033
More Howtos . 1033

21How To Build Physical Pinball Machines 1036
What Should You Consider When Planning a Playfield Layout? 1036
Planning Layout with CAD . 1041

22Example Configuration Files 1049
accelerometer (example config files) . 1049
achievement (example config files) . 1050
animated_images (example config files) . 1057
animation (example config files) . 1058
apc (example config files) . 1063
asset_manager (example config files) . 1066
assets_and_image (example config files) . 1078
audio (example config files) . 1081
auditor (example config files) . 1095
autofire (example config files) . 1096
ball_controller (example config files) . 1097
ball_device (example config files) . 1100
ball_holds (example config files) . 1124
ball_routing (example config files) . 1126
ball_save (example config files) . 1128
ball_search (example config files) . 1130
bcp (example config files) . 1139
bitmap_fonts (example config files) . 1141
blinkenlight (example config files) . 1142
blocking_events (example config files) . 1145
bonus (example config files) . 1146
bonus_additional_events (example config files) . 1148
bonus_dynamic_keep_multiplier (example config files) . 1150
bonus_no_keep_multiplier (example config files) . 1151
carousel (example config files) . 1152
coil_player (example config files) . 1154
color (example config files) . 1156
combo_switches (example config files) . 1156
config_errors (example config files) . 1158
config_interface (example config files) . 1158
config_loader (example config files) . 1159
config_players (example config files) . 1161
config_processor (example config files) . 1163
counters (example config files) . 1163
credits (example config files) . 1164
custom_code (example config files) . 1168
data_manager (example config files) . 1169
device (example config files) . 1169
device_collection (example config files) . 1171
digital_output (example config files) . 1172
digital_score_reels (example config files) . 1172

5

display (example config files) . 1173
diverter (example config files) . 1176
dmd (example config files) . 1183
drop_targets (example config files) . 1190
event_manager (example config files) . 1193
event_players (example config files) . 1194
extra_ball (example config files) . 1199
fast (example config files) . 1201
flippers (example config files) . 1208
fonts (example config files) . 1211
game (example config files) . 1212
head2head (example config files) . 1214
high_score (example config files) . 1217
high_score_reverse (example config files) . 1218
i2c_servo_controller (example config files) . 1219
info_lights (example config files) . 1219
keyboard (example config files) . 1221
kickback (example config files) . 1222
light (example config files) . 1223
light_player (example config files) . 1226
light_segment_displays (example config files) . 1231
lisy (example config files) . 1235
logic_blocks (example config files) . 1239
machine_vars (example config files) . 1246
magnet (example config files) . 1246
match_mode (example config files) . 1248
mma8451 (example config files) . 1249
mode_tests (example config files) . 1249
modes (example config files) . 1254
motor (example config files) . 1255
mpf_plugin_config_player_validation (example config files) . 1258
mpftestcase (example config files) . 1260
multiball (example config files) . 1261
multiball_locks (example config files) . 1265
mypinballs (example config files) . 1271
null (example config files) . 1271
openpixel (example config files) . 1272
opp (example config files) . 1273
osc (example config files) . 1278
p3_roc (example config files) . 1279
p_roc (example config files) . 1282
pkone (example config files) . 1286
platform (example config files) . 1289
player_vars (example config files) . 1291
playfield (example config files) . 1292
playfield_transfer (example config files) . 1292
plugin_config_player (example config files) . 1293
pololu_maestro (example config files) . 1295
pololu_tic (example config files) . 1296
randomizer (example config files) . 1297
rpi (example config files) . 1297

6

rpi_dmd (example config files) . 1298
score_queue (example config files) . 1298
score_reels (example config files) . 1299
scriptlet (example config files) . 1301
segment_display (example config files) . 1302
segment_display_widget (example config files) . 1308
sequence_shot (example config files) . 1309
service_mode (example config files) . 1311
servo (example config files) . 1313
settings (example config files) . 1314
shapes (example config files) . 1314
shots (example config files) . 1315
shows (example config files) . 1334
slide (example config files) . 1351
slide_player (example config files) . 1353
smart_matrix (example config files) . 1359
smart_virtual_platform (example config files) . 1359
smbus2 (example config files) . 1365
snux (example config files) . 1365
spi_bit_bang (example config files) . 1367
spike (example config files) . 1368
spinners (example config files) . 1370
state_machine (example config files) . 1371
step_stick (example config files) . 1373
stepper (example config files) . 1374
switch_controller (example config files) . 1374
switch_player (example config files) . 1375
text (example config files) . 1376
text_input (example config files) . 1382
tilt (example config files) . 1382
tilt_defaults (example config files) . 1388
timed_switches (example config files) . 1389
timer (example config files) . 1390
transitions (example config files) . 1393
trinamics_steprocker (example config files) . 1396
twitch_client (example config files) . 1397
utils (example config files) . 1398
variable_player (example config files) . 1398
video (example config files) . 1402
virtual_pinball (example config files) . 1405
virtual_segment_display_connector (example config files) . 1406
vpe (example config files) . 1407
vpx (example config files) . 1408
widget_styles (example config files) . 1409
widgets (example config files) . 1411

23Example Machine Projects you can learn from 1423
The mpf-examples project . 1423
State Fair Pinball . 1423
Brooks ‘n Dunn . 1423
Mass Effect 2 . 1424

7

24The MPF Cookbook 1429
Recipe: The Addams Family Mansion Awards . 1430
Recipe: Attack From Mars Super Jets . 1443
Recipe: Rollover Lanes (with Lane Change) . 1452
Recipe: GADGET Targets from Stern Batman ‘66 . 1456
Recipe: Modifying the game mode - Dual launch devices . 1466
Recipe: Sequential Drop Target Banks . 1473
Recipe: Skillshot (with Lane Change) . 1477
Recipe: Skillshot (with Auto-Rotate) . 1480

25Config file reference 1485
Instructions . 1485
Index of config sections . 1502

26Events 1906
Events Overview . 1906
Conditional Events . 1909
Handler Priorities . 1912
Types of events . 1912
Event Reference . 1913
Device Indexes . 1967

27Game Variables 1974
max_players . 1974
num_players . 1974
balls_per_game . 1974
balls_in_play . 1974
tilted . 1975
slam_tilted . 1975

28Machine Variables 1976
credit_units . 1977
credits_denominator . 1977
credits_numerator . 1977
credits_string . 1977
credits_value . 1977
credits_whole_num . 1977
fast_(x)_firmware . 1978
fast_(x)_model . 1978
(high_score_category)(position)_label . 1978
(high_score_category)(position)_name . 1978
(high_score_category)(position)_value . 1978
lisy_api_version . 1978
lisy_hardware . 1979
lisy_version . 1979
mc_extended_version . 1979
mc_version . 1979
mpf_extended_version . 1979
mpf_version . 1979
p_roc_hardware_version . 1979
p_roc_revision . 1980
p_roc_version . 1980

8

pkone_firmware . 1980
pkone_hardware . 1980
platform . 1980
platform_machine . 1980
platform_release . 1980
platform_system . 1981
platform_version . 1981
player(x)_score . 1981
python_version . 1981
Related Events . 1981

29Player Variables Reference 1982
index . 1982
ball . 1982
extra_ball_(name)_awarded . 1983
extra_balls . 1983
Related Events . 1983

30Log and Error Descriptions 1984
CFE-coils-1: Driver must have a number . 1984
CFE-ConfigValidator-1: Section not valid outside of game modes 1985
CFE-ConfigValidator-2: Your config contains a value for the setting, but this is not a valid setting

name . 1987
CFE-ConfigValidator-4: Invalid Validator in config spec . 1988
CFE-ConfigValidator-6: Device not found in section in your config 1989
CFE-ConfigValidator-9: Required setting is missing from section in your config 1990
CFE-ConfigValidator-12: Item is not a dict . 1991
CFE-ConfigValidator-13: Cannot convert value to boolean . 1992
CFE-DeviceManager-3: Device does not have a valid config. Expected a dictionary. 1993
CFE-show-1: Show does not appear to be a valid show config 1995
CFE-Smart_Virtual_Platform-1: Switch used in virtual_platform_start_active_switches was not

found in switches section . 1997
CFE-Virtual_Platform-1: Switch used in virtual_platform_start_active_switches was not found

in switches section . 1998
Log-SwitchController-1: Received duplicate switch state for switch 1999
RE-MPF-MC_BCP_Server-1: Failed to bind BCP Socket to localhost on port 5050 1999
RE-MPF_BCP_Server-1: Failed to bind BCP Socket to 127.0.0.1 on port 5051 2000
RE-P-Roc-1 - Known Firmware Bug in P/P3-Roc . 2001
RE-P-Roc-2 - Communication with P/P3-Roc broke down . 2001
RE-P-Roc-3 - Failed to Import Pinproc . 2002

31Developer Documentation 2004

32About the MPF Documentation 2005
MPF documentation authors . 2005
MPF license & copyright . 2006
Help us to write it . 2006

33MPF FAQ 2007
FAQ: General . 2007
FAQ: Installation . 2009
FAQ: Building your game . 2010
FAQ: Getting help . 2010

9

Mission Pinball Framework Documentation, Version

34Glossary of MPF terms 2012

35Contributing to MPF 2013
Install MPF in development mode . 2013
Install MPF-MC in development mode . 2014
Getting started with an open issue . 2015

36Contributing to MPF’s Documentation 2016
To make a quick change to an existing page . 2016
To make a suggestion for a new doc (or to point out an error) 2017
How does the layout work? . 2017
To clone the mpf-docs repo locally to make bigger changes . 2017

37MPF Versions 2019
User Documentation for Older MPF Versions . 2019
Understanding MPF version numbering . 2019
MPF Release Notes . 2021
MPF Road Map, Vision & Future . 2078
MPF release checklist . 2083

Overview 10

CHAPTER1

MPF Overview

The Mission Pinball Framework (which we call “MPF”) is free and open source software that you run
on a computer (Windows, Mac, Linux, Raspberry Pi, etc.) to control a real, physical pinball machine.
(More info one what MPF is here.)

Most people develop their game on their laptop, and then when they’re done, transfer it to a smaller
computer permanently installed in their pinball machine.

The computer running MPF is connected to a modern pinball control system via USB. (MPF supports
several different control systems, including FAST Pinball, P-ROC, Open Pinball Project open source
hardware, and Stern SPIKE hardware.)

You put that control system in your pinball machine, which can be a custom (home brew) machine or
an existing machine you want to reprogram.

This diagram shows how it all fits together:

11

http://missionpinball.org

Mission Pinball Framework Documentation, Version

The MPF software is used to configure and control everything in your machine, including:

∙ Pinball mechanisms (switches, LEDs, lights, motors, coils, servos, steppers, flippers, ball locks,
diverters, etc.)

∙ Pinball logic (ball locks, multiball, modes, tilt, high scores, ball saves, ball search, extra balls,
etc.)

∙ The display (or displays): DMD, RGB LED, and/or LCD

∙ Audio & sounds

∙ Coordinated “shows” of actions which flash lights, fade LEDs, play sounds and video, etc.

∙ Player management, including player progress, scoring, tracking towards goals, etc.

∙ Plus lots of other little things that you probably aren’t even thinking about yet :)

Note: MPF is a work-in-progress!

At this point MPF is a work-in-progress and not yet complete. It’s being built by pinball-loving
software developers in their spare time. There’s a lot you can do with MPF today, but we also have a
lot of work still to do. We’re working hard though, typically adding 20-30 updates per week! And MPF
is definitely “done” enough for you to use it today.

12

Mission Pinball Framework Documentation, Version

Read on to understand other important concepts about MPF:

MPF complete feature list

Even though MPF is a work-in-progress that’s not yet complete, the core dev team has been working
on it since 2014, with thousands of hours of combined effort.

Major Features & Concepts

∙ The vast majority of “programming” your game can be done with text-based config files that
make it easy to get powerful and complex pinball features running in your game. They’re also
easy for non-programmers to use.

∙ MPF is “event-driven” meaning that everything that happens in a pinball machine generates an
event, and you can use those events to trigger actions (scoring, lights, starting a mode, etc.)

∙ Advanced programmers and customization can be done via the API. (The API is fully documented
at developer.missionpinball.org.)

∙ You can easily switch between hardware platforms, so if sometime down the road you want to
switch hardware or the company whose hardware you’re using goes out of business, all your
effort is not lost as you can easily move everything to a new hardware platform with a few
changed lines in your config file.

Compatible control systems / electronics

MPF currently interfaces with the following pinball control systems & electronics (which in turn
control the physical pinball machine hardware):

∙ Multimorphic P-ROC & P3-ROC pinball controllers, with either PD-8x8, PD-16, PD-LED, and
SW-16 driver and accessory boards or installation in existing WPC, Stern Whitestar, or Stern
SAM machines.

∙ FAST Pinball Core, Nano & WPC controllers, with 3802, 1616, and 0804 I/O boards, FAST servo
boards, or installation in existing WPC machines.

∙ Open Pinball Project (OPP) open source controllers with Gen2 driver boards.

∙ Stern SPIKE / SPIKE 2 pinball machines.

∙ LISY controllers for Gottlieb System 1 and System 80 machines.

∙ Mark Sunnucks’s “Snux” System 11 driver board for use in System 11 and Data East machines,
in concert with either a P-ROC or FAST WPC controller.

∙ Fadecandy RGB LED controllers.

∙ Open Pixel Control (OPC) LED and lighting controllers.

∙ I2C servo controllers.

∙ Pololu Maestro servo controllers.

∙ SmartMatrix RGB LED DMD controllers.

∙ RGB.DMD RGB LED-based DMD controllers.

MPF complete feature list 13

http://developer.missionpinball.org/

Mission Pinball Framework Documentation, Version

∙ MyPinballs segment display controllers.

∙ Trinamics Steprocker stepper motor controllers.

See the Control Systems / Electronics documentation for full details.

Pinball mechanism support

MPF currently supports the following different types of pinball playfield mechanisms:

∙ Switches (normally open, normally closed, mechanical or opto, with configurable debounce
settings)

∙ Coils / drivers / solenoids (pulse, enable, disable, PWM)

∙ Lamp matrix-based incandescent lights & LEDs

∙ LEDs (RGB, GRB, RGBA, RGBW, RGBAW)

∙ Accelerometers

∙ GI (general illumination)

∙ Flashers

∙ Flippers

∙ Pop bumpers / slingshots

∙ Drop targets and drop target banks

∙ Diverters

∙ All forms of troughs (modern, System 11, early WPC, early ’80s, Gottlieb System 3, etc.)

∙ Ball devices (scoops, VUKs, saucers, locks, etc.)

∙ Multiple playfields and playfield transfers (including head-to-head machines)

∙ Driver-enabled devices (like flippers and pop bumpers in System 11 machines)

∙ Mechanical and coil-fired plungers, ball launchers, and catapults

∙ EM score reels

∙ Kickbacks

∙ Magnets

∙ Rollover switches

∙ Servos

∙ Stepper motors

∙ Traditional motors

See the Pinball Mechs documentation for full details.

Game logic

MPF includes built-in support for all the pinball machine and game logic you need, inculding:

∙ Modes and a mode stack (start / stop / restart / stacked modes)

MPF complete feature list 14

Mission Pinball Framework Documentation, Version

∙ Ball locks

∙ Multiball

∙ Ball saves

∙ Ball search

∙ Extra balls

∙ Tilt

∙ Credits / coin play

∙ Audits

∙ Bonus

∙ High score

∙ Full per-player variable and settings support. Save/restore anything on a per-player bases (shots,
objectives, goals collected, targets hit, etc.)

∙ Player achievements & achievement groups (groups of modes to start which progress towards
wizard mode, etc.)

∙ Ball tracking / automatic ball routing

∙ Shots & shot groups (with full per-player state management (e.g. lit, unlit, flashing, etc.)

∙ Shot rotation (lane change, etc.)

∙ Attract mode

∙ Logic blocks, which let you build complex pinball game logic out of reusable components via the
config files

∙ Score controller to assign points (or other progress) per-player for different events, with mode
integration for blocking and blending

∙ Timers (start / stop / pause / count down / count up)

∙ Video modes

∙ Switch combinations (flipper cancel, hold flipper button to start super skill shot, etc.)

∙ Timed switches (hold the flipper for 2 seconds to show game stats, etc.)

See the Game Logic documentation for full details.

Displays, DMDs, & Graphics

∙ On-screen LCD displays, either high-def or with a “dot” look

∙ Physical mono-color DMDs

∙ RGB LED DMDs

∙ Segmented displays

∙ Display “slides” with priorities, transitions in and out

∙ Display “widgets” (things you put on displays), including:

∙ Text (with fonts, styles, colors, dynamic text based on game state, etc.)

MPF complete feature list 15

Mission Pinball Framework Documentation, Version

∙ Images & animated images

∙ Videos

∙ Shapes

∙ “Picture-in-picture” style sub-displays

∙ Any property of any widget can be animated (opacity, size, position, etc.)

See the Displays documentation for full details.

Sounds & Audio

∙ Multi-track sound system with automatic volume and ducking (e.g. voice, sfx, and background
music tracks)

∙ Per-track settings for simultaneous sounds and sound queues (e.g. let as many sfx sounds play at
once as you want, but queue sounds on the voice track so only one plays at a time)

∙ Advanced per-sound “tuning”, including attack, attenuation, ducking, etc.

∙ Sound pools and sound groups, so you can have multiple sounds for a single effect and cycle
through them, with controls for whether they random, weighed random, rotation patterns, etc.

See the Sounds documentation for full details.

Shows

∙ A show controller which runs coordinated shows of LEDs, lights, coils, flashers, sounds, slides,
videos, animations, etc.

∙ Start/stop/pause/resume shows

∙ Dynamic shows which change based on what’s happening in the game.

∙ Change the playback speed of shows (even while they’re playing)

See the Shows documentation for full details.

Machine Management

∙ Service mode / operator menus

∙ Operator-configurable “settings” which you can use to expose any setting anywhere in MPF to
game operators.

∙ A data manager which handles reading and writing data from disk, including audits, earnings,
machine variables, high scores, etc.

∙ Power supply management (map drivers to power supplies to make sure not too many things fire
at once)

MPF complete feature list 16

Mission Pinball Framework Documentation, Version

Tools

∙ The MPF Monitor standalone app which is a graphical tool that connects to a live running
instance of MPF and shows the status of various devices. You can interact with it by clicking on
switches and see your game in action on your computer.

∙ An “interactive” media controller which lets you interactively build and test display slides,
widgets, and animations.

∙ A switch player which lets you build automatically scripts to “replay” switches for testing your
game.

∙ A complete set of test functions which you can use to write your own automated tests for your
machine.

∙ A keyboard interface which lets you simulate switch actions with your computer keyboard.
(Great for testing!)

∙ Detailed logging, config file checking, and helpful error messages to help you troubleshoot
issues.

Professional-level features

MPF contains hundreds of the “little” things most people never think about that help ensure machines
running it are truly professional-level machines that can be placed in revenue service in public
locations. Here are just a few random things that have caused people to say, “Hey, that’s cool!” over
the years:

∙ Power supply management: MPF knows how much current each power supply has and how
much current various devices require, so it will intelligently manage and delay coil firings to
ensure fuses don’t blow. (For example, don’t reset the drop targets at the same time the flippers
are held on and a ball is being ejected.)

∙ Tilt-through prevention: A sliding time window ensures that the tilt plumb-bob has settled before
the next player’s ball is started.

∙ Automatic ball routing and retry logic:

∙ Asset pools: Sound effects, images, and videos can be “pooled” (with various settings for
randomness, weightings, etc.), ensuring that each “hit” of a target produces a different sound
instead of the same one over and over.

∙ Audio loops and break / resume points: Cue points for music and audio to ensure that music
tracks are smoothly looped and advanced based on game play.

∙ Advanced multi-track audio: Automatic ducking of music and sfx when voice tracks play, etc.

∙ Auto leveling based on accelerometer: The machine knows when it’s out of level and can post a
credit dot or notify the operator.

Developer-friendly

∙ Fully open-source and well-documented code.

∙ A plugin architecture which allows you to write your own plugins to extend baseline functionality.

∙ Modular design that lets you write your own hardware interfaces.

MPF complete feature list 17

Mission Pinball Framework Documentation, Version

∙ A “scriptlet” interface which can be used to easily add Python code snippets to a game to extend
the functionality you can get with the configuration files.

∙ A mode “code” interface which lets you add custom Python code to game modes.

And the best part: Everything mentioned on this page (except for the developer stuff) can be done via
the text-based configuration files. If you don’t want to be a “coder,” you don’t have to be. (Though if
you are a coder, we’d love to have you help us write MPF!

By the way, if you’d like to see what we have in store for the future, check out our MPF Road Map,
Vision & Future.

The MPF “Media Controller”

All modern pinball machines use graphics and sound. MPF’s architecture is build so that the core
“game” engine is completely separate from the “media” engine.

The “game” engine is the MPF software itself, and the “media” engine is something called the MPF
Media Controller (which we often abbreviate as “MPF-MC”).

When you run MPF, these two components are two separate processes that talk to each other via
something called the “Backbox Control Protocol”.

The details and inner workings of this are not really important, (and frankly they’re mostly hidden
from you).

But as you start to learn about MPF, just keep in mind that the part of MPF that runs your game and
controls the hardware is separate from the part that shows the graphics and plays the sounds.

Here’s a diagram that shows what each piece does:

More details about MPF’s media controller architecture, as well as guides which show you how to run
them on separate computers, or even to replace MPF’s Media Controller with one based on Unity 3D
or something you write yourself, are available in the Displays, DMDs, & Graphics section of the
documentation.

The MPF “Media Controller” 18

Mission Pinball Framework Documentation, Version

Understanding MPF config files

MPF uses text-based config files to control the bulk of your game logic. In a sense, your MPF “code” is
actually these config files.

There are machine-wide config files which control machine-wide things (such as hardware mappings,
switches, lights, etc.) as well as mode-specific config files that control what happens when a specific
mode is running. (And you can stack modes so you have a lot of them all doing different things at
once.)

MPF also uses text-based files to control the “shows” which are the coordinated sequences of lights,
sounds, displays, etc.

The MPF config files use a file format called YAML which is text-based and human readable. You can
edit them in Notepad. YAML is kind of like XML, though easier to read and write. It’s kind of like INI
files, though more powerful.

We have a detailed config file reference that explains all the options for all the files, but for now we
just want to explain the basic concept of how these files work. (Feel free to browse through the config
file reference, but remember that it’s a just a reference. You’ll actually learn how to use the config
files via our tutorial and How To guides. Learning MPF by reading the config file reference is like
learning a foreign language by reading a dictionary. :)

When you create your machine code in MPF, you’ll actually create a folder which will contain your
config files. A super-simple snippet might look like this:

game:

balls_per_game: 3

Want a 5-ball game instead? Simple! Just change it:

game:

balls_per_game: 5

Ultimately your config files will be thousands of lines long (though you can break them up into
multiple files to help your sanity), but again, don’t be overwhelmed now. The tutorial will walk you
through them step-by-step, and in no time you’ll have a playing pinball machine!

Config files versus “real” programming

When we talk about MPF, we really play up the fact that when you use MPF, you can do 90%+ of your
of your “programming” with MPF’s YAML configuration files.

We’ve received criticism of that over the past few years, typically falling into one of the following
categories:

∙ Since everything in MPF is in config files, that’s something new you have to learn. If you don’t
know MPF, you can’t just look at a config file and know what’s happening.

∙ Since config files insulate the game programmer from the code, when something doesn’t work,
you don’t know if it’s your config or a bug in MPF.

∙ Using config files limits game programmers in that they have to do everything the “MPF way.”

∙ Coding is fun! MPF deprives people of that.

Understanding MPF config files 19

http://www.yaml.org/spec/1.2/spec.html

Mission Pinball Framework Documentation, Version

We understand the motivation behind all these thoughts, so we’d like to provide our perspective on
these issues.

You can still code in MPF

MPF does not prevent you from coding. We provide two levels of abstraction to programmers:
hardware abstraction and device abstract. If you use a flipper device in code it will expose methods to
disable or enable a flipper and work on any hardware which is supported in MPF. Plus the device will
manage all the game integration (e.g. disable flipper after the game).

Nevertheless, you might want to implement a different type of flipper (say with three coils each) and
the flipper device might be a bad fit. Therefore, you can use the hardware abstraction interface and
write rules in a hardware independent way (or overload the flipper device which does exactly that).

If you want to use a very specific feature of your hardware and we did not implement an abstraction
for it you can also access the hardware directly but it will likely not work on other platforms anymore.
E.g. this might be the case if you want to do advanced stuff with the AUX port on the P-Roc.

As you see, MPF offers you all kind of flexibility. You can access hardware directly or use abstractions.
Plus, if you implement your own devices or extend existing devices (those can live inside your machine
folder) you will be able to instantiate them using config (if you want that).

Code can be added either globally (using scriptlets or code hooks), per mode, as new/overloaded
device or even as a custom platform. See the MPF developer documentation for more details about
our APIs and interfaces.

Why config files?

At the most basic level, config files in MPF let you access hundreds or thousands of lines of code with
a simple line or two in a config. The actual code that runs a pinball machine is really, really complex,
especially when you think about all the logic around ball tracking, mode stacking, multiple things
happening at once, etc.

By providing an interface like the config files, we allow you to have access and to be able to control all
these complex things in a simple way.

MPF’s config files are a form of something in computer science called a “domain-specific language.
(DSL)”

In this context the “domain” is pinball, so the MPF config files could be thought of as a
“pinball-specific language”. This means that you can’t use the MPF DSL to program a dart board
machine or a self-driving car, but when it comes to programming pinball, they’re darn good!

There are many advantages to DSLs, including:

∙ Increased productivity: Get a complex mode up and running in MPF with a half-page config file
instead of writing 500 lines of Python code.

∙ Fewer bugs: The config files are used by lots of people, so we know they work the way they’re
supposed to, instead of every pinball maker writing their own stuff from scratch and re-solving
the same problems over and over.

∙ Easier to read: You can look at a few lines of config file and know what you’re looking at and what
it’s trying to do versus pages of Python code that you have to reverse engineer to understand.

Config files versus “real” programming 20

http://docs.missionpinball.org
https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Domain-specific_language

Mission Pinball Framework Documentation, Version

∙ Ease of support: Same as above. If you are having a problem, it’s easy to post a config to the
forum and everyone can understand it, versus scanning through hundreds of lines of custom
Python code.

∙ Ease of planning: Since everyone in the MPF community speaks the same language of config
files, it’s easy to ask for help and direction on how to do things.

∙ Insulation from future updates: The config files remain constant (or we provide migration tools
to upgrade them, so we can make major changes to MPF under the hood without you having to
re-write anything in your game.

Config files in MPF: use as much (or as little) as you want

Even though we just laid out the reasons we like “programming” your game via config files instead of
“real” code, there’s one important thing to know about the config files:

You don’t have to use config files for everything.

There’s a whole website dedicated to mixing custom code with MPF (at developer.missionpinball.org,
and you can easily mix code (written in Python or the language of your choice) with existing MPF code
and configs, so really you can use as much or as little of the config file interface as you want.

One way to think about MPF is that it’s a solid set of pinball functionality with a nice API, and then the
config file interface is a separate component that rides on top of that API and exposes it via
easy-to-use config files.

So if you’re a programmer and prefer to program against the API directly, go for it! The API is
well-documented and fairly stable now, so if you don’t want to use a single config file for anything, you
can just use the MPF API and do whatever you want and still benefit from the thousands of hours of
effort we put into MPF.

The reality, though, is that building a complete game in MPF is a balance between doing things in
config files and writing code. At the end of the day, it doesn’t matter whether your game is 90%
configs and 10% code, or 80/20, 50/50, 20/80, etc. The exact balance depends on the personal
preference of the person building the game.

In fact even we drop into “real” code to do certain things. There have been lots of times when we
think, “Yeah, X action would be 20 confusing config lines or just two lines of Python, so I’m writing it
in Python.” That’s perfectly fine.

The real power comes when you start to mix-and-match. For example, you could use the MPF config
files to build out your base hardware interface and mode structures, then use your own Python code to
do the logic within a mode, then use your mode code to post an event to use MPF’s scoring system, etc.

If you don’t use MPF, then you have to write everything yourself in code. If you do use MPF, then you
get to choose what you write in code and what you don’t have to write. (Seriously, ball tracking is a
hard. Use our pre-written code via the config files!)

I already know Python. Why learn obscure config files?

Again, the software that runs pinball machines is complex. The complete MPF codebase is over
15,000 lines of code, with thousands of lines of code to do things that seem simple on the surface, like
managing ball devices and tracking where all the balls are at all times.

MPF’s config files provide a friendly interface to all that complexity. So yes, it’s true that you have to
spend a few hours learning about the ball_devices: section of the MPF config files in order to learn

Config files versus “real” programming 21

http://developer.missionpinball.org

Mission Pinball Framework Documentation, Version

how to use them effectively. But the alternative is learning everything about how ball tracking works
in a pinball machine and then writing all that from scratch yourself. That would take a lot longer than
it would to learn about how to configure ball tracking in MPF. And besides, we already did that! :)

Aren’t config files limiting?

Even though we’ve tried to envision many different scenarios and many different types of pinball
machines as we built MPF, it’s true that MPF does things a certain way, and the config files are a
manifestation of the way MPF does things. So there could be scenarios where you want to do
something differently than how MPF does it.

But this does not mean that MPF is not the right framework for you. Don’t throw the baby out with the
bath water! If you don’t like the way something works in MPF’s shot management tracking, you don’t
have to completely write your own shot management from scratch. Rather you can use MPF’s shot
sytem, subclass the methods and objects you want to change, and then tweak them to work in your
specific scenario.

Even if you want to completely replace one component of MPF, there hundreds of different
components, modules, and systems that go into a pinball machine that are already part of MPF. Unless
you want to write all of those from scratch, using MPF lets you get a head start on many of the things
that you need in your machine that you don’t want to write yourself.

Coding is fun! Doesn’t using config files deprive me of that?

Some people have said, “I like to code. I don’t want to just build my machine quickly.” Certainly we
appreciate that, because we like to code too!

If you decide to write the software for your own pinball machine from scratch, you will spend
hundreds of hours writing low-level pinball things, like hardware device management, ball tracking, a
mode queue, player objects, a display and sound system, etc.

If you use MPF, even if you write your own game logic in Python code, then you can focus on the fun
stuff while the MPF developers focus on the boring low-level pinball stuff.

Of course, if you’re thinking, “But I like the low-level stuff, I want to write that,” then we would love to
have you on our team helping to make MPF better. :) We have a to-do list for MPF which will take
years to complete, so if you like to code, we’d love to have you help!

If there’s something that MPF does that you don’t like and that you think you can do better, that’s an
even better reason to contribute back to MPF. Please, help us make MPF better!

We have success stories of this already. Brian Madden and Gabe Knuth started writing MPF in 2014.
Since then, MPF user Jan Kantert started using MPF, and then he started tweaking things here and
there (and submitting his changes back to the MPF project.) Now Jan has completely rewritten MPF’s
ball device code, our hardware platform interface, he’s added multiball, ball lock, and ball search,
extra balls, servos, tests. . . the list goes on.

Another MPF user, Quinn Capen, has rewritten MPF’s RGB LED interface, written a complete
pinball-focused advanced audio system, written an alternative media controller based on Unity 3D. . .

John Marsh said, “It would be cool if there was a GUI wizard to help people set up their machines,” so
now he’s building that.

Hugh Spahr created his own pinball controller hardware (the Open Pinball Project), and then wrote a
platform interface for MPF so MPF users can use OPP hardware too.

Config files versus “real” programming 22

Mission Pinball Framework Documentation, Version

You get the idea.

The bottom line is that these are all MPF users who love to code, so rather than being scared away by
MPF’s config file interface, instead they embraced MPF, dug in, and are making MPF better. So now
all the time they spend writing code isn’t just limited to running on their machine which sits in their
basement for 360 days a year; instead their code is running on pinball machines all over the world,
which is very fulfilling and cool!

When something breaks, I don’t know if it’s my config or an MPF bug?

True, one of the limitations of using config files is that when things don’t work the way you expect, you
don’t know if it’s a problem with your config or a deeper bug in MPF.

However if you’re someone who knows how to program, MPF is open source! You can go through the
MPF code to see if it’s a bug, and if so, you can fix it and submit a pull request to fix that bug for
everyone.

And if it’s a configuration error, you can also edit the MPF documentation to be more clear, and then
submit a pull request to the docs, and now you’ve also helped fix this issue for everyone.

Again, don’t not use MPF because it uses config files and you want to “know” what’s happening under
the hood. Instead learn MPF and the code behind it and share your programming and pinball passion
with the world!

Using MPF means you have a team of programmers making your machine better

The MPF project was started in May 2014. Since then we have over 5,000 hours of time spent (both in
code and documentation). More importantly, we’re continuing to update and expand MPF, with dozens
of commits to the core code and docs every week. (Probably an average of 60 hours a week of work.)

If you use MPF, you get all that work for free. :) It’s like having a team of developers working 60 hours
a week to make your game better. Pretty cool!

The bottom line

The creators of MPF are passionate about pinball, passionate about software development, and
passionate about open source.

The beauty of MPF is that it’s a bunch of people, from all over the world, writing software and
documentation which helps more people create more pinball machines. As MPF grows in popularity,
we love the fact that some day we will be able to walk into a bar, see a pinball machine, and know that
some of the code we wrote is powering that machine. It warms our hearts.

If you decide to go your own way and not use MPF, that’s great. We support you! (Feel free to rip off
any ideas from MPF. We’d love it!) But don’t write off MPF just because you want to do “real”
programming and MPF is a “config-based” project. We could use the help of programmers like you. :)

Config files versus “real” programming 23

CHAPTER2

Compatible Pinball Machines

If you haven’t done so already, be sure to read the MPF Overview page to understand how MPF talks
to physical pinball machines.

There are three options when it comes to using MPF with a pinball machine:

∙ Build your own new machine completely from scratch.

∙ Rewrite the rules for an existing machine, which means you don’t change the physical hardware
at all, rather, you just update the software.

∙ “Retheme” an existing machine, which means you reuse all of the mechanical and electrical
components of an existing machine, but you strip down and replace all the artwork to transform
it into something else. (And you rewrite all the rules for your new theme.)

Here are more details on each option. The “rewrite the rules” and “retheme” options above are
combined below into the “controlling an existing machine” section:

Controlling a custom “home brew” machine with MPF

Details for how to build custom machine hardware are covered on the PinballMakers.com Wiki. We
cover some general areas here and suggest that you investigate those on your own. Contributions to
the guide (and the rest of the documentation are welcome).

Control System

If you are “just” retheaming a machine have a look at the Controlling an existing machine with MPF
section. If you want to use MPF to power a new custom pinball machine that you build yourself, you
should buy new custom driver boards. There are a few common choices:

∙ Multimorphic P3-Roc

∙ FAST Pinball

24

http://pinballmakers.com

Mission Pinball Framework Documentation, Version

∙ Open Pinball Project (OPP)

∙ LISY Home (custom pinball version of LISY)

∙ Arduino Pinball Controller

∙ CobraPin Pinball Controller

P3-Roc and FAST are both commercial systems at a similar price point but features vary slightly so
compare them wisely. OPP is an open source/open hardware project and much cheaper but expect to
invest some more time into the hardware itself. CobraPin is based on OPP with the goal of making
OPP more accessible and provides somewhat of an all-in-one solution.

You might also want to some more control boards for servos, steppers and light. Common choices are:

∙ Fadecandy for WS2812 lights (FAST and P3-Roc offer this too)

∙ Pololu Maestro for servos

See the Hardware Section for all hardware supported by MPF.

Power and Wiring

You should invest some time into at the beginning of your custom pinball journey into your power
supply and wiring.

∙ Voltages and Power

∙ Wiring and Connectors in Pinball Machines

Parts and Assemblies

MPF supports a varity of pinball mechs. You can have a look at manuals of existing machines to find
numbers of mechs. For homebrew machines it is wise to buy assemblies of mechs. Mostly, because
mechs consist of a lot of parts and you will likely fail to order all of them at once. Additionally,
assemblies are often cheaper.

There are a few shops such as Pinballlife which offer assemblies. They also have a homebrew section
which is worth checking out. Other shops such as Marcos Specialities offer more parts but are less
focused on homebrew.

Controlling an existing machine with MPF

If you want to use MPF to write your own custom game code for an existing Williams or Stern pinball
machine, you replace the original CPU board in the machine with a modern pinball controller board
(called a hardware controller) such as a P-ROC Controller (but not P3-Roc). That hardware controller
interfaces with the existing machine’s driver boards to control the coils, lights, and DMD, and it
provides a “bridge” (via USB) to a host computer running Python and the Mission Pinball Framework.

Controlling an existing machine with MPF 25

https://www.pinballlife.com/
https://www.marcospecialties.com/

Mission Pinball Framework Documentation, Version

Machine Type P-ROC LISY APC Direct
Williams / Bally / Midway WPC X X
Williams / Bally System 11 X X
Data East X
Stern S.A.M. X
Stern Whitestar X
Pinball 2000 X
Stern SPIKE / SPIKE 2 X
Gottlieb System 1 X
Gottlieb System 80 X
Bally/Stern w/ AS-2518-17 or AS-2518-35 MPU X

Notes:

∙ “WPC” includes WPC-S and WPC-95, and machines made under the brands of Williams, Bally,
and Midway. (A complete WPC game list is here.)

∙ System 11 and Data East machines require the “Snux” replacement driver board in addition to
the P-ROC or FAST controller.

∙ Since Stern SPIKE systems have a linux-based computer inside them already, so MPF can
directly connect to and control them via USB . No additional hardware is needed.

∙ Gottlieb System 1 and 80 can be controlled using the LISY platform

∙ Bally and Stern Games manufactured from 1977 to 1985 with MPU AS-2518-17 or AS-2518-35
can be controlled using LISY35

If you want to use MPF with an existing machine type that’s not on the list above, that’s still possible,
but you’d have to rewire the entire machine and use modern control hardware. In other words, you
strip the guts and keep all the hardware, and the machine essentially becomes a home-brew machine
on the inside and a retheme or update on the outside. However, there might be an alternative not
listed here so we recommend you to ask in our user forum.

Controlling an existing machine with MPF 26

http://www.pinwiki.com/wiki/index.php?title=Williams_WPC#Game_List

CHAPTER3

Downloading & Installing MPF (2023 Version)

The MPF Installers were rewritten from scratch and completely updated for MPF 0.56 in August 2022.
(If you’re using an older version of MPF, see the docs for the version you’re using for installation
instructions.)

MPF should work with following platforms:

∙ Windows 10 / Windows 11 (64-bit only)

∙ macOS 10.14+, up through macOS 13 Ventura (Intel & Apple Silicon)

∙ Linux (64-bit, lots of distros)

∙ Raspberry Pi 4B (eventually, not done yet, but no one can get Pis now anyway so no hurry.)

Python 3.9 is the latest version of Python supported. Some platforms also support Python 3.7 and 3.8.
Python 3.10+ will not work.

Here links to the installation guides for each platform:

Installing MPF on Mac

This is the new process used to install MPF 0.56 on a Mac.

Overview of MPF on macOS

MPF works on macOS running on both Intel and Apple Silicon (M1/M2 processors). Requirements are:

∙ Apple Silicon Mac (M1/M2 processors) require macOS 12 Monterey or newer and Python 3.9.

∙ Intel processors require MacOS 10.14 or newer, and Python 3.7 - 3.9.

∙ MPF does not work with Python 3.10+

To install MPF on a Mac:

27

Mission Pinball Framework Documentation, Version

1. If you do not have Python, install Python 3.9.13 from python.org. If you have an M1/M2 Mac, be
sure to get the Universal installer, not the Intel one.

macOS 64-bit Intel-only installer
(https://www.python.org/ftp/python/3.9.13/python-3.9.13-macosx10.9.pkg)

macOS 64-bit universal installer
(https://www.python.org/ftp/python/3.9.13/python-3.9.13-macos11.pkg)

Choose the default installation location. If you want to install to a custom location, remember
that location for later steps.

2. Install Homebrew (https://brew.sh/). Open your command terminal and paste in this command:

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/install.sh)"

This will also install the Xcode command line tools if you don’t have them. This process might
take some time, so be patient.

3. Use Homebrew (or ‘brew’) to install the libraries and other support files MPF needs:

brew install SDL2 SDL2_mixer SDL2_image gstreamer gst-plugins-base gst-plugins-good
gst-plugins-bad gst-plugins-ugly

4. Verify that pip is installed. If you installed Python from python.org, then pip should have been
installed as well. You can verify this by running pip --version or pip3 --version in your
terminal. If it’s not installed, you can install it using brew install pip.

5. Use pip to install MPF with the Text UI components:

pip install "mpf[cli]"

6. Use pip to install the MPF Monitor (Note that the latest version requires PyQt6, priors required
PyQt5):

pip install mpf-monitor

7. Use pip to install MPF-MC:

pip install mpf-mc

Note: For the commands that use pip, if you run into permission issues, try prefixing the command
with sudo (i.e., sudo pip install "mpf[cli]"). Be aware that sudo allows the command to run with
root permissions, which can pose a security risk if used carelessly.

Also, pip installs Python packages globally by default. If you’d prefer to keep your project and its
dependencies isolated from your system’s Python, consider using a Python virtual environment. There
are several tools available for this, such as pipx, venv, or virtualenv.

Testing

May 2023 Note: Some of this might not work: The mc_demo and demo_man mentioned below might
not work anymore as they haven’t been updated in a while. Feel free to fix and/or update them and
we’ll merge your changes in!

To test, download the mpf-examples repo from here: https://github.com/missionpinball/mpf-examples.
You can either clone it locally, or download the zip file and unzip it. Either is fine, just do what you’re
most comfortable with. Be sure to download / switch to the dev branch.

Installing MPF on Mac 28

https://www.python.org/ftp/python/3.9.13/python-3.9.13-macosx10.9.pkg
https://www.python.org/ftp/python/3.9.13/python-3.9.13-macos11.pkg
https://brew.sh/
https://github.com/missionpinball/mpf-examples

Mission Pinball Framework Documentation, Version

Then back in the terminal, change into the mpf-examples folder (or whatever folder you just unzipped
that into), then change into the mc_demo folder, then run mpf both. That should launch the mc_demo
code (which is Media Controller demo). A window should open with a red background and some text
about slides, you should be able to use the right arrow key to advance to the next slide. You should be
able to use the left arrow key to go back to the previous slide and you should hear a drum and cymbal
sound when you change the slide.

You will see a bunch of warnings about some classes implemented in multiple locations, and how one
will be used, but which one is undefined. It sounds scary, but this is normal. (For now.) We are
investigating whether this is something we need to fix, and how we’ll fix it if it is. But for now, it’s fine.

You can also run the “demo_man” game from the mpf-examples folder. Change into the demo_man folder
and run mpf both -X. You should see the DMD window pop up. The window you ran the command from
will have some warnings which cover up the nice text UI display. Just grab a corner of the window
with the mouse and resize the window (just make it a tiny bit bigger and smaller) and that will cause
the window contents to completely refresh and you should see the expected MPF text UI display
showing switch status, ball locations, etc. (See the screenshots below for details)

At this point, MPF is ready to go!

Notes, Caveats & Next Steps

If have existing SDL and Gstreamer libraries installed (check the /Library/Frameworks folder), you can
delete them. The versions that brew installs will go into the /opt/homebrew folder.

Do NOT use brew to install Python. Why? Because the Python in brew is meant to support other brew
packages that need python, and as such it will automatically “upgrade” you to the latest Python, even
on its own, which means your Python will flip to 3.10 and MPF won’t work and you’ll be sad. So that’s
why we install the “Framework Python” from python.org. (Why’s it called “Framework Python”?
Because it installs like a framework to that /Library/Frameworks folder.)

The Apple Silicon Macs need the Xcode command-line tools installed because the ruamel.yaml library
that MPF uses to read YAML files doesn’t have a pre-built version for M1/M2 Macs, so it has to be
built locally. This process is automatic and transparent when the Xcode tools are installed.

If you do not see the “normal” MPF text UI display, and instead see something like this:

Installing MPF on Mac 29

Mission Pinball Framework Documentation, Version

This is because those warnings mentioned above print on top of the nice MPF display. To fix this, just
grab a corner of the window with the mouse and resize it to be a bit bigger and then smaller again.
This will cause the entire window to update and you should see the expected MPF text UI display
showing switch status, ball locations, etc. (See the screenshots below for details)

Alternately, if you don’t want to resize the window every time, you can open two different terminal
windows, and run mpf -X in one and mpf mc in the other.

Installing MPF on Mac 30

Mission Pinball Framework Documentation, Version

Keeping MPF up-to-date

Once you have MPF installed via the procedure above, you can keep it up-to-date by running the final
two pipx commands from above which you used to install MPF and MPF-MC.

Questions? Comments? Need help? You can post to the MPF Users Google Group:
https://groups.google.com/g/mpf-users/c/BIemtw17lx0

What if you borked it?

There aren’t too many things that could go wrong, but if your environment is broken and you want to
remove everything and start over, here are some notes:

To remove homebrew, run the following command:

/bin/bash -c "$(curl -fsSL
https://raw.githubusercontent.com/Homebrew/install/HEAD/uninstall.sh)"

Homebrew installs everything to /opt/homebrew, which means if you just delete that folder, everything
will be gone.

To fix Python versions:

Another problem is sometimes the system’s default Python will be the homebrew one, and not that one
that you installed from python.org. This can be a problem because MPF requires Python 3.7, 3.8, or
3.9 (3.9 only on M1/M2 Macs), but the homebrew python could be version 3.10 which won’t work with
MPF. So if you need to check or change this, you can use the following command:

which python3

You will see a path to the version of python that runs when you just type python3 from the command
line. Ideally you want it to be the version you installed, which will be:

/Library/Frameworks/Python.framework/Versions/3.9/bin/python3

If you see something else, then run which -a python3 to see what other versions are installed. Then
copy the path to the version you installed (which will be the /Library/Frameworks/... version), and
use that in Step 5 (the initial pipx installation command) when you install MPF.

To fix errors about failing to load assets:

If you get an error about a failure while loading assets, and you see some references to PIL, there’s a
potential conflict with an image library that you can remove. To do that, use the following command:

pipx runpip mpf uninstall pillow

This command uses pipx to run a pip command inside the mpf environment to uninstall a package
called pillow.

Installing MPF on Mac 31

https://groups.google.com/g/mpf-users/c/BIemtw17lx0

Mission Pinball Framework Documentation, Version

Installing MPF 0.56 on Windows

This process walks through installing MPF 0.56 a Windows machine.

Note that installing MPF is more complicated than a normal application. This is because MPF is a
development tool you use to create your pinball software, not a finished app itself. So, like everything
in pinball, there are a lot of steps.

Note: If you’re an expert Python user, you can skip most of this page. Just know you need Python 3.9
(newer or older won’t work, see below), and you can install MPF-MC via pip. pipx install mpf-mc This
will also install MPF. You probably also want to install MPF Monitor via pipx install mpf-monitor.

Remove prior versions of MPF

MPF and the MPF-MC have many dependencies and requirements. If you have an older version of
MPF installed, it may have installed some of these dependencies in a way that is incompatible with the
latest version of MPF. So it’s best to remove any prior versions of MPF before installing the latest
version.

Uninstall MPF by using this command:

pip uninstall mpf

If you are unsure which version of MPF you have installed, you can run this command to check what is
installed:

mpf --version

Windows System Requirements

MPF 0.56 requires Python 3.9. It does not run on Python 3.10 or newer. (If you can figure out how to
get it to run on Python 3.10+, please submit the fixes!)

MPF can run on Python 3.7 and 3.8, but the MPF-MC audio doesn’t work on those versions. So you
should use Python 3.9.

Install Python

If you open a command prompt on a fresh Windows machine and type python, the Microsoft App Store
will open and try to install Python 3.7. This is not the version of Python you want. So don’t do that.

So instead, install Python from python.org. Here’s the direct link to the newest installer for the final
version of Python 3.9: https://www.python.org/ftp/python/3.9.13/python-3.9.13-amd64.exe

Run the installer, and choose the “Customize installation” option, and make sure to check the box for
“py launcher” and “pip”. (The others don’t matter either way.) Then on the next screen, check the box
for “Add Python to environment variables”. Then click “Install”.

Then open a command prompt (you can just run “cmd”), and type each of these commands one at a
time (and hit enter after each one). First, make sure Python is installed and make sure when you run

Installing MPF 0.56 on Windows 32

https://www.python.org/ftp/python/3.9.13/python-3.9.13-amd64.exe

Mission Pinball Framework Documentation, Version

“python” that it’s the proper version. (Sometimes Windows will have multiple versions of Python
installed and it’s not always clear which one will be used when you type “python”.)

python --version

You want a result like “Python 3.9.13” or whatever version you just installed. If you see a version other
than that, trying running python3 --version instead.

Install MPF

Now you’re ready to install MPF. Open a new command window (cmd.exe) and type these commands
and hit enter.

pip install "mpf[cli]"

A bunch of things will scroll by, and then hopefully MPF is installed. You can test it by typing this
command:

mpf --version

This should print out something like MPF 0.56.0. If you get an error, something went wrong. If you get
a different version, then you might have an older version of MPF which you need to uninstall first.
(See the “Remove prior versions of MPF” section above.)

Install MPF Monitor

MPF Monitor the developers “god view” into your running MPF code. It has windows to show the
states of every device, events, variables, modes, etc. You can even add a photo of your playfield and it
will show all the lights and switches on it animated in real time to show you what’s happening in your
game.

MPF Monitor is also nice because it’s a simple install, so you can visualize your game quickly. The
MPF-MC (which will drive the displays in your machine) is a more complicated install, so you can get
your game working with MPF Monitor first, and then add the MPF-MC later.

pip install mpf-monitor

You can now proceed with the getting started tutorials, or, go on to install the MPF Media Controller
(MPF-MC).

Install the MPF Media Controller (MPF-MC)

The MPF Media Controller (MPF-MC) is a standalone package used to control the graphics, sounds,
and music in a pinball machine. It’s a separate package from MPF. Not every pinball machine uses
MPF-MC, but most do. (There are also other media controllers that are not MPF-MC. For example,
some people use Unity, the Unreal Engine, or Godot as their media controllers.)

To install MPF-MC, use the following command:

pip install mpf-mc

Installing MPF 0.56 on Windows 33

Mission Pinball Framework Documentation, Version

If you encounter permission issues during the installation, try running the commands with
administrator privileges (Right-click on cmd.exe -> Run as Administrator).

Testing MPF-MC

Installing MPF-MC is pretty straightforward. Unfortunately just because it installs doesn’t mean it
works. :(

May 2023 Note: Some of this might not work: The mc_demo and demo_man mentioned below might
not work anymore as they haven’t been updated in a while. Feel free to fix and/or update them and
we’ll merge your changes in!

One way to test the MC is download the mpf-examples repo from here:
https://github.com/missionpinball/mpf-examples. You can either clone it locally, or download the zip
file and unzip it. Either is fine, just do what you’re most comfortable with. Be sure to download /
switch to the dev branch.

Then back in the command terminal, change into the mpf-examples folder (or whatever folder you just
unzipped that into), then change into the mc_demo folder, then run mpf both. That should launch the
mc_demo code (which is Media Controller demo). A window should open with a red background and
some text about slides, you should be able to use the right arrow key to advance to the next slide. You
should be able to use the left arrow key to go back to the previous slide and you should hear a drum
and cymbal sound when you change the slide.

You will see a bunch of warnings about some classes implemented in multiple locations, and how one
will be used, but which one is undefined. It sounds scary, but this is normal. (For now.) We are
investigating whether this is something we need to fix, and how we’ll fix it if so. But for now it’s fine.

You can also run the “demo_man” game from the mpf-examples folder. Change into the demo_man folder
and run mpf both -X. You should see the DMD window pop up. The window you ran the command from
will have some warnings which cover up the nice text UI display. Just grab a corner of the window
with the mouse and resize the window (just make it a tiny bit bigger and smaller) and that will cause
the window contents to completely refresh and you should see the expected MPF text UI display
showing switch status, ball locations, etc. (See the screenshots below for details)

If you do not see the “normal” MPF text UI display, and instead see something like this:

Installing MPF 0.56 on Windows 34

https://github.com/missionpinball/mpf-examples

Mission Pinball Framework Documentation, Version

This is because those warnings mentioned above print on top of the nice MPF display. To fix this, just
grab a corner of the window with the mouse and resize it to be a bit bigger or smaller, which will
cause the entire window to update and you should see the expected MPF text UI display showing
switch status, ball locations, etc. (See the screenshots below for details)

Alternately if you don’t want to resize the window every time, you can open two different command
prompt windows, and run mpf -X in one and mpf mc in the other.

Installing MPF 0.56 on Windows 35

Mission Pinball Framework Documentation, Version

At this point, MPF is ready to go!

Keeping MPF up-to-date

Once you have MPF installed via the procedure above, you can keep it up-to-date by running the final
two pip commands from above which you used to install MPF and MPF-MC.

Questions? Comments? Need help? You can post a reply into the MPF new installers for macOS
thread in the MPF Users Google Group: https://groups.google.com/g/mpf-users/c/BIemtw17lx0

Installing MPF on Linux

May 2023 Update

We need to update this page (we no longer suggest pipx, btw), but if you want the “real” linux install
instructions, read through the GitHub Actions job scripts in the .github/workflows/build_wheel.yml
file. You’ll see the exact steps we use to build MPF-MC (MPF is simple to install, it’s the MC part that’s
tricky). Various jobs in there use both apt-get and yum to set everything up before building the MC.

As part of our automated build process, we build and test MPF and MPF-MC against Ubuntu 20.04 &
22.04 and Debian Stretch & Buster. MPF 0.54 supports Python 3.5 to 3.7. MPF 0.55 supports Python
3.6 to 3.9. MPF 0.56 supports Python 3.7 to 3.9

Installing MPF Using Our Installer

Download the MPF Debian Installer (which is used for all of these) from
https://github.com/missionpinball/mpf-debian-installer/archive/0.55.x.zip

Unzip it, and from a terminal run chmod +x install && sudo ./install from the folder you unzipped
the files to. If you are using a P-Roc or P3-Roc also run chmod +x install-proc && ./install-proc
(skip for other platforms). Consult the README for more information.

Installing MPF Manually

Current version these instructions are for v0.56.0, which is the current “dev” branch of MPF.

MPF 0.56 requires Python 3.7, 3.8, or 3.9. Various Linux distributions offer to install multiple versions
of Python in parallel. First check what version of Python you might have already running on your
computer.

python3 --version

In some cases you might only get a Python version of 3.6, then run your admin tool and install a higher
version of python, preferabyl the latest version of 3.9. If you don’t want to remove the older version of
Python you can keep it in parallel, just make sure to run the installer commands with the right version
of python. If you have for example installed Python 3.9 try to running

python3.9 --version

Installing MPF on Linux 36

https://groups.google.com/g/mpf-users/c/BIemtw17lx0
https://github.com/missionpinball/mpf-debian-installer/archive/0.55.x.zip

Mission Pinball Framework Documentation, Version

You will need pip further down the line to complete the installation. Same as above for Python, check
what version of pip you are running and choose the command to match the version you would like to
use. Try the following commands to figure out what pip command works for you and has the right
version.

pip --version

pip3 --version

pip3.9 --version

For the rest of the chapter I will always write python3.9 and pip3.9 as commands as reminder to use
the right version, any of the above commands might work for you (or fail).

NOTE: If you already have an earlier version of MPF installed, uninstall that first by using this
command:

sudo pip3.9 uninstall mpf-mc mpf

If you are unsure which version of MPF you have installed, you can run this command to check what is
installed:

mpf --version

Now back to the installation, in a console run

pip3.9 install --user pipx

python3.9 -m pipx ensurepath

After this it might be necessary to restart the console. Now run the following command (obey that this
is pipx and here there is no need for a version)

pipx install "mpf[cli]" --pip-args="--pre" --verbose --include-deps

pipx inject mpf mpf-mc --pip-args="--pre" --verbose --include-deps --include-apps

Updated MPF Monitor instructions (which work with pipx) are here.

At this point, MPF 0.56.0.devXX and MPF-MC 0.56.0.devXX are installed. (The “XX” in the version will
be the dev build numbers.)

Download & run the “Demo Man” example game

Now that you have MPF installed, you probably want to see it in action. The easiest way to do that is
to download a bundle of MPF examples and run our “Demo Man” example game. To do that, follow the
instructions in the How to run “Demo Man”, an MPF example game guide.

There’s another example project you can also check out if you want called the “MC Demo” (for media
controller demo) that lets you step through a bunch of example display things (slides, widgets, sounds,
videos, etc). Instructions for running the MC Demo are here.

Running MPF

See the How to start MPF and run your game for details and command-line options.

If you see a Failed to initialize MPF exception when trying to start MPF with Multimorphic
P-ROC/P3-ROC boards with Python 3.8.

Installing MPF on Linux 37

Mission Pinball Framework Documentation, Version

Example Error:

Try Changing Edit install-proc:

From:

To:

Keeping MPF up-to-date

To upgrade MPF just re-run the installer which will make sure that you will also get updated
dependencies:

sudo ./install

If you have MPF installed via the manual procedure above, you can keep it up-to-date by running the
final two pipx commands from above which you used to install MPF and MPF-MC.

Warning: If you are upgrading from MPF 0.33 to 0.50 you will need to manually perform several
migration steps to modify your configuration files or they will not work in MPF 0.50. Please refer to
Migrating from config version 4 to 5 of MPF for step-by-step instructions.

To install the latest dev release (not generally recommended) which allows you to try bleeding-edge
features run:

pip3 install mpf[all] mpf-mc --pre --upgrade

To downgrade (or install a specific release x.yy.z) run:

pip3 install mpf[all]==x.yy.z

pip3 install mpf-mc==x.yy.z

Uninstalling MPF

To remove MPF either because it is no longer needed or to perform a clean install run:

sudo pip3 uninstall mpf-mc mpf

Specific Hardware Devices

We got some write-ups for specific hardware platforms. They follow the general linux installation
schema but also cover some details about that hardware.

Installing MPF on a Raspberry Pi 3

Installing MPF on Linux 38

Mission Pinball Framework Documentation, Version

Warning: Raspberry Pi support is experimental at this point. Users have found various issues
with audio, and we’re not sure whether the RPi has enough power to support MPF. So this
document is more like a collection of notes versus a solid guide. We welcome your feedback or
experience with other low-cost systems, though at this point if you’re looking for a development
platform, we’d probably recommend buying a more beefy x86 computer. For a “final” machine an
inexpensive (<$200) Intel-based system running Linux or Windows might be better suited.
However, it should be possible to run your final game on a RPi3+ if you tune your game
accordingly. For example, this would include transcoding your videos to a format which can be
played hardware accelerated on the RPi.

One first word: Don’t try to install mpf on a Raspberry Pi B+ or Raspberry zero, it just won’t work or
will be very slow. Get yourself at a Raspberry Pi 3, they have a quad-core processor running with more
than 900MHz. RPi3 also has better audio than RPi 1 (still not perfect). An HDMI audio adapter may be
worthy for better audio. If you want to try this get at least a RPi4 with 2GB of RAM.

We previously recommended KivyPI but it only works for MPF < 0.54 and only the RPi3. Instead, we
propose you install Raspbian and install all other parts yourself:

∙ Get the latest Raspberry Pi Imager from here: https://www.raspberrypi.org/software/

∙ Install Raspbian Lite onto your SD card.

∙ Boot your PI and connect keyboard + monitor

∙ Login with user:pi password:raspberry

∙ now type this:

sudo raspi-config

and choose 7. Advanced Options -> A1. Expand Filesystem to use the whole SD-Card Space, we will
need it. You can change your username and localization settings too.

After that we will give the GPU a bit more of RAM:

Go to 7. Advanced Options -> A3 Memory split and change the value to 256.

Now reboot, login and type:

sudo apt update

sudo apt upgrade

sudo apt install git

git clone https://github.com/missionpinball/mpf-debian-installer.git

cd mpf-debian-install

sudo ./install

To checkout and run the MPF Linux Debian installer. It will install MPF, MPF-MC and all
dependencies for you.

This will take some time as it may compile some drivers mpf-mc needs like the audio driver.
Sometimes it looks like it hangs, but it does not. It will take up to half an hour, at least on a Raspberry
1 (which you should not use). Compiling is really slow on the Raspi.

Now copy your machine folder from your develop station or create a new one under your home
directory (/home/pi/your_machine)

If you need a file-manager start mc (No, not the mpf mediacontroller, its the midnight commander ;-))

Installing MPF on Linux 39

https://www.raspberrypi.org/software/

Mission Pinball Framework Documentation, Version

If you need to copy your folders from an usb-stick you have to manually mount it (we dont have X, so
everything has to be done by hand).

sudo mount /dev/sda1 /mnt

This works in 90% otherwise your stick is not sda1, just look inside the /dev folder to find out which
device you have to mount or type

lsblk

to list your block devices.

Now you find the contents of your stick in /mnt.

To tell mpf-mc and the underlying kivy to use the framebuffer via SDL2 you have to put this in your
machine/config/config.yaml:

window:

width: 1280

height: 800

kivy_config:

graphics:

fbo: force-hardware

More or less important last steps:

Serial communication:

Linux always had and has the possibility to log in via a serial connection. If you run a hardware
platform which uses the serial pin on the Raspberry you should disable the Linux login shell on that
port. The device is called /dev/ttyAMA0 and you need to stop it from starting:

Type:

sudo systemctl disable serial-getty@ttyAMA0.service

Now you have to disable the console itself:

sudo mc

to start Midnight Commander as root (normally you should not do this, but this time you have to.)

Now go to /boot and press F4 over cmdline.txt.

Remove these entries:

console=ttyAMA0,115200 kgdboc=ttyAMA0, 115200

and save the file.

You have the possibility to connect RS 232 devices directly to the raspi but take care, the voltage
levels are 3.3V on the raspi gpio. Further instructions here: http://elinux.org/RPi_Serial_Connection

Installing MPF on Linux 40

http://elinux.org/RPi_Serial_Connection

Mission Pinball Framework Documentation, Version

Sound output:

Navigate to /boot/config.txt if you want to use audio out of the Raspberry built in “”soundcard””: edit
this file as root and insert this line:

dtparam=audio=on

Inside this file you can change some settings that initialize on boot, its like a bios which the raspberry
does not have.

Video Playback:

If you need video capability in your mpf-mc you need to install one player that kivy will use to play
your videos:

sudo apt-get install omxplayer

You can try videoplayback with

omxplayer your_video.mp4

To test the video playback capability under kivy into the framebuffer just run this command:

python3 -m kivy.uix.videoplayer /usr/local/lib/python3.4/dist-packages/mpfmc/tests/machine_files/video/

→˓videos/mpf_video_small_test.mp4

Troubleshooting:

More documentation about kivypie can be found here: http://kivypie.mitako.eu/kivy-faq.html

No sound:

If you have trouble getting sound out of your speakers or monitor have a look here:

https://www.raspberrypi.org/documentation/configuration/audio-config.md

If sound plays via omxplayer but not in MPF, set use_sdl_mixer_loader: False in your MPF
configuration file.

Do a reboot:

sudo reboot

Remote log in:

To log in from your development machine into your raspberry you can do it easily via ssh. For windows
I recommend putty: http://www.putty.org/

Installing MPF on Linux 41

http://kivypie.mitako.eu/kivy-faq.html
https://www.raspberrypi.org/documentation/configuration/audio-config.md
http://www.putty.org/

Mission Pinball Framework Documentation, Version

See whats going on on your pinball:

sudo dispman_vncserver

This starts a vncserver on your raspi and you can log in remotely from a RealVNCViewer
https://www.realvnc.com/download/viewer/

Kivypie IP address, port 5900. It is not 100% reliable but fairly usable. Thanks to Peter Hanzel.

Start mpf and mpf-mc

To test your installation type

mpf

in your machine_folder.

Press (STRG+ALT F2) to change to the second terminal tty2.

Login and start mpf-mc inside your machine folder with

mpf mc

Enjoy!

What if it did not work?

In the following we list some common problems and solutions. If you got another problem please ask
in our MPF User Forum.

YAML error on first start

You will see this error if there is already a different version of ruamel.yaml installed on your system:

pkg_resources.VersionConflict: (ruamel.yaml 0.15.37␣

→˓(c:\users\robert\appdata\local\programs\python\python36\lib\site-packages), Requirement.parse('ruamel.

→˓yaml<0.11,>=0.10')

This could have happened if you are upgrading to a newer version of MPF or you have incompatible
versions of MPF, MPF-MC and/or the MPF-Monitor installed. The required ruamel.yaml version is
different on newer MPF versions. We used to install ruamel 0.11 and switched to 0.15 in MPF 0.53+.
MPF cannot start with two yaml libraries. To fix this check your versions pip3 list and check mpf,
mpf-mc and mpf-monitor. Remove the wrong version and install the right one. All versions need to
match (for instance all 0.56 or all dev).

The following command will remove all three and install the latest release:

pip3 uninstall mpf mpf-mc mpf-monitor

pip3 install mpf mpf-mc mpf-monitor

Installing MPF on Linux 42

https://www.realvnc.com/download/viewer/
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

This error can also occur if you already have ruamel.yaml installed in your python system packages for
a non-MPF package. Often times, you will have a newer version of ruamel.yaml than MPF requires.
Unfortunately, MPF cannot use a newer version of this package because that caused issues in the past
because newer versions dropped support (wheels for windows) for older python versions. In the case
that you need a different version than the one MPF requires, it is advised to create a python virtual
environment and install the required packages there, and use that virtual environment for running
MPF.

Installing MPF on a Pine64 with Ubuntu

Note: This procedure for installing MPF on a Pine64 does not fully work. (MPF runs fine, Kivy
installs fine, but MPF-MC does not run.) If you want to use MPF on a Pine64, maybe you can help
figure out why this doesn’t work and share your findings with us?)

Hardware Notes

∙ Spring for the fastest MicroSD card you can (Samsung Evo cards are reportedly the fastest), at
least 16GB.

∙ The Pine64’s video seems to only support 1080p and 4K resolutions, so make sure your display
can do one or both of those at a proper 16:9 aspect ratio or else everything will be scaled and
squished and it looks awful.

∙ If you find that your pine64 does not boot it maybe due to using a HDMI->DVI cable, try HDMI to
HDMI first.

System Notes

There are a bunch of things that arrive broken with the current Ubuntu installer for Pine64 (as of this
writing in November 2016). Some of them will prevent MPF from installing, and a few are just
annoying.

Instructions

After installing the OS following the instructions on the Pine64 Wiki, expanding the volume to the full
size of the SD card, and getting connected to the Internet, follow these steps. Don’t try to update the
installed system before following this.

Locale

Locale arrives broken and this wreaks all kinds of havoc, so here’s how to fix it.

Assuming you want US English, substitute your preferred language if not:

Installing MPF on Linux 43

http://wiki.pine64.org/index.php/Main_Page)

Mission Pinball Framework Documentation, Version

$ sudo locale-gen "en_US.UTF-8"

Generating locales...

en_US.UTF-8... done

Generation complete.

$ sudo dpkg-reconfigure locales

Generating locales...

en_US.UTF-8... up-to-date

Generation complete.

That command will open a text-based dialog, we recommend that you don’t choose “ALL” and only
select the one or a few languages you want (generating them all takes a long time). Then reboot, then
do the above reconfigure step AGAIN, then reboot, then run:

$ locale

And make sure it looks good. Mine says:

LANG=en_US.UTF-8

LANGUAGE=en

LC_CTYPE="en_US.UTF-8"

LC_NUMERIC=en_US.UTF-8

LC_TIME=en_US.UTF-8

LC_COLLATE="en_US.UTF-8"

LC_MONETARY=en_US.UTF-8

LC_MESSAGES="en_US.UTF-8"

LC_PAPER=en_US.UTF-8

LC_NAME=en_US.UTF-8

LC_ADDRESS=en_US.UTF-8

LC_TELEPHONE=en_US.UTF-8

LC_MEASUREMENT=en_US.UTF-8

LC_IDENTIFICATION=en_US.UTF-8

LC_ALL=

It took a few tries for this to stick for me, so do it again, including reboot, if your results here are
wrong.

Fix the Software Boutique

This arrives broken, too. Oddly, running the Mate Welcome as root and clicking a button partly fixes it.

$ sudo ubuntu-mate-welcome

When it comes up, click on the “Subscribe to updates” button, then quit it.

Now go to System -> Administration -> Software Boutique. Click on the wrench, then do each repair
option (after clicking one, wait for it to say it has finished).

Now go to System -> Administration -> Software Updater and get everything up to date. You will need
to reboot again after that.

Installing MPF on Linux 44

Mission Pinball Framework Documentation, Version

Install Missing pip3

$ apt-get install python3-pip

The path where pip puts executables is not in the system default path, so edit ~/.bashrc to add the
following path:

$ sudo nano ~/.bashrc

At the bottom of the file add the following:

export PATH=~/.local/bin:$PATH

Hit “control + x” to save and “y” then “return” to save the file as the same name.

Now start a fresh terminal so that this new PATH is included in your current environment. Then:

Install MPF

Download the MPF Debian Installer from
https://github.com/missionpinball/mpf-debian-installer/archive/0.55.x.zip

To unzip the file navigate in your terminal to the location of the downloaded files.

Unzip the file:

$ unzip dev.zip .

If this does not run you may need to install unzip:

$ sudo apt-get install unzip

After unzip, run ./dev/install from the folder you unzipped the files to. Consult the README for more
information.

Running MPF

See the How to start MPF and run your game page for details and command-line options.

What if it did not work?

In the following we list some common problems and solutions. If you got another problem please ask
in our MPF User Forum.

YAML error on first start

You will see this error if there is already a different version of ruamel.yaml installed on your system:

pkg_resources.VersionConflict: (ruamel.yaml 0.15.37␣

→˓(c:\users\robert\appdata\local\programs\python\python36\lib\site-packages), Requirement.parse('ruamel.

→˓yaml<0.11,>=0.10')

Installing MPF on Linux 45

https://github.com/missionpinball/mpf-debian-installer/archive/0.55.x.zip
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

This could have happened if you are upgrading to a newer version of MPF or you have incompatible
versions of MPF, MPF-MC and/or the MPF-Monitor installed. The required ruamel.yaml version is
different on newer MPF versions. We used to install ruamel 0.11 and switched to 0.15 in MPF 0.53+.
MPF cannot start with two yaml libraries. To fix this check your versions pip3 list and check mpf,
mpf-mc and mpf-monitor. Remove the wrong version and install the right one. All versions need to
match (for instance all 0.56 or all dev).

The following command will remove all three and install the latest release:

pip3 uninstall mpf mpf-mc mpf-monitor

pip3 install mpf mpf-mc mpf-monitor

This error can also occur if you already have ruamel.yaml installed in your python system packages for
a non-MPF package. Often times, you will have a newer version of ruamel.yaml than MPF requires.
Unfortunately, MPF cannot use a newer version of this package because that caused issues in the past
because newer versions dropped support (wheels for windows) for older python versions. In the case
that you need a different version than the one MPF requires, it is advised to create a python virtual
environment and install the required packages there, and use that virtual environment for running
MPF.

Specific Linux Distributions

Specifics about certain linux distributions.

Installing MPF on Xubuntu/Lubuntu

Xubuntu is a Ubuntu-based linux distribution using the minimalist, yet still feature-packed, XFCE
desktop manager. The focus of this guide will be for getting MPF up and running directly from power
(unattended) for use in a production scenario.

1. Create Xubuntu/Lubuntu Installation Media

You will need:

∙ 4GB USB Flash Drive or larger

Write the ISO (Win/Mac/Linux)

Use UNetbootin

∙ Select LUbuntu or XUbuntu

∙ Select your USB Stick

2. Install Xubuntu/Lubuntu

Boot from the installation media (you may need to change something in your BIOS to enable booting
from USB). It should be a fairly straight-forward linux installation. When it asks about partioning,
choose the “Guided - entire hard disk” option (unless you have a specific reason not to). You will be
asked to create a user account. When doing so, it’s important that you: DO NOT ELECT TO

Installing MPF on Linux 46

https://unetbootin.github.io/

Mission Pinball Framework Documentation, Version

ENCRYPT THE HOME FOLDER. If you encrypt the home folder, the auto login will not work and will
have to reinstall to fix.

3. Configure Xubuntu/Lubuntu

The system will reboot after installation. Login with your username and password then follow these
steps:

∙ Launch a Terminal emulator

∙ Update the sources: sudo apt-get update

∙ Upgrade all the things: sudo apt-get upgrade

∙ Setup auto-login to the XFCE desktop

∙ Create the file /etc/lightdm/lightdm.conf.d/12-autologin.conf and edit it to contain:

[Seat:*]

autologin-user=your_username

autologin-user-timeout=0

∙ Be sure to change your_username to the username you created during installation.

∙ Optional: Reduce the Network Timeout

∙ You should do this if the system will not always be connected to the internet

∙ Edit the file /etc/systemd/system/network-online.targets.wants/networking.service

∙ Find the line TimeoutStartSec=5min and change to TimeoutStartSec=10sec

4. Install MPF

The existing Debian install script works perfectly on Ubuntu. The following commands will install the
current versions of MPF and MPF-MC as well as each of their dependencies.

cd ~

wget https://github.com/missionpinball/mpf-debian-installer/archive/0.55.x.zip

unzip dev.zip

cd mpf-debian-installer-dev

sudo -H ./install

rm ~/dev.zip && rm -Rf ~/mpf-debian-installer-dev

If you want to make sure that MPF was installed, you can run:

mpf --version

This command can be run from anywhere and should produce output something like this:

username@host:~$ mpf --version

MPF v0.33.13

(Note that the actual version number of your MPF installation will be whatever version is the latest.)

Installing MPF on Linux 47

Mission Pinball Framework Documentation, Version

5. Setup your Machine Config

∙ Copy your machine config root folder to ~/ which is the same as /home/your_username/.

∙ Create a new file named run.sh in /home/your_username/your_machine_folder/

∙ Edit the file to contain:

#!/bin/bash

xterm -e "cd /home/your_username/your_machine_folder && mpf both -c config"

∙ Change your_username to the username you created during installation.

∙ Change your_machine_folder to the name of your specific machine folder.

∙ Change config part to reflect the name of your top-level config file in
~/your_machine_folder/config/.

6. Setup your Machine Config to Auto-execute

When XFCE is executed, it runs all the Desktop Entries found within ~/.config/autostart. We’ll
create one of our own to run the script we just added to our machine config.

∙ Create the file ~/.config/autostart/mpf.desktop and edit it to contain:

[Desktop Entry]

Version=1.0

Name=MPF

Comment=Mission Pinball

Exec=/home/your_username/your_machine_folder/run.sh

Path=/home/your_username/your_machine_folder/

Terminal=false

Type=Application

∙ Change your_username to the username you created during installation.

∙ Change your_machine_folder to the name of your specific machine folder.

That’s it. At this point, you should be able to reboot and watch the system auto-login to XFCE and then
launch MPF using the script we added to your machine config.

Other Considerations

If using the SmartMatrix RGB DMD with this setup, you need to add the system user running your
game to the dialout group.

sudo usermod -a -G dialout your_username

What if it did not work?

In the following we list some common problems and solutions. If you got another problem please ask
in our MPF User Forum.

Installing MPF on Linux 48

https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

YAML error on first start

You will see this error if there is already a different version of ruamel.yaml installed on your system:

pkg_resources.VersionConflict: (ruamel.yaml 0.15.37␣

→˓(c:\users\robert\appdata\local\programs\python\python36\lib\site-packages), Requirement.parse('ruamel.

→˓yaml<0.11,>=0.10')

This could have happened if you are upgrading to a newer version of MPF or you have incompatible
versions of MPF, MPF-MC and/or the MPF-Monitor installed. The required ruamel.yaml version is
different on newer MPF versions. We used to install ruamel 0.11 and switched to 0.15 in MPF 0.53+.
MPF cannot start with two yaml libraries. To fix this check your versions pip3 list and check mpf,
mpf-mc and mpf-monitor. Remove the wrong version and install the right one. All versions need to
match (for instance all 0.56 or all dev).

The following command will remove all three and install the latest release:

pip3 uninstall mpf mpf-mc mpf-monitor

pip3 install mpf mpf-mc mpf-monitor

This error can also occur if you already have ruamel.yaml installed in your python system packages for
a non-MPF package. Often times, you will have a newer version of ruamel.yaml than MPF requires.
Unfortunately, MPF cannot use a newer version of this package because that caused issues in the past
because newer versions dropped support (wheels for windows) for older python versions. In the case
that you need a different version than the one MPF requires, it is advised to create a python virtual
environment and install the required packages there, and use that virtual environment for running
MPF.

What if it did not work?

In the following we list some common problems and solutions. If you got another problem please ask
in our MPF User Forum.

YAML error on first start

You will see this error if there is already a different version of ruamel.yaml installed on your system:

pkg_resources.VersionConflict: (ruamel.yaml 0.15.37␣

→˓(c:\users\robert\appdata\local\programs\python\python36\lib\site-packages), Requirement.parse('ruamel.

→˓yaml<0.11,>=0.10')

This could have happened if you are upgrading to a newer version of MPF or you have incompatible
versions of MPF, MPF-MC and/or the MPF-Monitor installed. The required ruamel.yaml version is
different on newer MPF versions. We used to install ruamel 0.11 and switched to 0.15 in MPF 0.53+.
MPF cannot start with two yaml libraries. To fix this check your versions pip3 list and check mpf,
mpf-mc and mpf-monitor. Remove the wrong version and install the right one. All versions need to
match (for instance all 0.56 or all dev).

The following command will remove all three and install the latest release:

pip3 uninstall mpf mpf-mc mpf-monitor

pip3 install mpf mpf-mc mpf-monitor

Installing MPF on Linux 49

https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

This error can also occur if you already have ruamel.yaml installed in your python system packages for
a non-MPF package. Often times, you will have a newer version of ruamel.yaml than MPF requires.
Unfortunately, MPF cannot use a newer version of this package because that caused issues in the past
because newer versions dropped support (wheels for windows) for older python versions. In the case
that you need a different version than the one MPF requires, it is advised to create a python virtual
environment and install the required packages there, and use that virtual environment for running
MPF.

Installing MPF on Linux 50

CHAPTER4

How to start MPF and run your game

MPF is a console-based application which you run from the command line.

The quick version

1. Open a command prompt

2. Switch to your machine folder

3. Run mpf both

Starting the MPF game engine and media controller together

You can start both the MPF game engine and the media controller at the same time with a single
command.

Since this is done from the command line, you’ll need to open a command line window. On Windows,
you can right-click on the Start Button (or whatever it’s called these days) and click the “Command
Prompt”. On Mac OS X you can run the Terminal app. On Linux, well, if you’re using Linux, you know
what a command line is. :)

From the command line, change to the directory which is the root of your machine folder. This is the
folder that contains your machine’s config, modes, shows, etc. folders.

Note: Prior to MPF 0.30, we recommended that you put your machine’s folder in the /machine_files
folder inside the MPF package. That is changed now, and you can put your machine folder(s)
wherever you want. In fact now that MPF has a “real” installer, the MPF package folder is hidden
deep inside your system.

Then run:

51

Mission Pinball Framework Documentation, Version

mpf both <enter>

The mpf both command is what we use and probably what you’ll use 99% of the time.

Starting the MPF media controller

Alternately you can choose to run just the media controller by itself (still from within your machine
folder) like this:

mpf mc <enter>

You should see a popup window and a bunch of stuff scroll by in the console.

Starting the MPF game engine

You can run the MPF game engine by itself by running:

mpf game <enter>

Note that if you do not have a media controller running, the game engine won’t start fully because it
will get stuck trying to connect to the media controller. To avoid this if you just want to run the game
engine by itself, add the -b command line option. (Details below)

Specifying command-line options

There are several command-like options you can use when you run MPF. To use them, add them after
the name of the MPF command you’re running, like:

mpf game -x -v

mpf mc -xvV

mpf both -v -b

The full list of available commands is covered in the documentation for each command (discussed
below).

Understanding how this works

When you install MPF, the command mpf is registered with your system. Then you can open a
command prompt and run “mpf” from any folder.

There are several sub-commands you can specify when you run MPF. You specify a sub-command by
running mpf <command>. (Some mpf commands take additional options).

Here’s a list of valid MPF commands. Click on any one of them for full details and command-line
options.

Starting the MPF media controller 52

Mission Pinball Framework Documentation, Version

∙ mpf (Starts the MPF game engine and other commands)

∙ mpf game (Starts the MPF game engine)

∙ mpf mc (Starts the MPF Media Controller)

∙ mpf both (Starts both the MPF game engine and media controller at the same time)

∙ mpf migrate (Migrates older config and show files to the current version)

∙ mpf hardware (Scan, inspect and configure hardware)

∙ mpf service (Service command line interface)

∙ mpf build (Build production bundles)

Specifying BCP ports

By default, the MPF game engine and the MC will connect via TCP port 5050. You can change that
port to whatever you want though .

MPF command-line utility

When you install MPF, it registers an executable called mpf and puts it in your system path. Everything
you do with MPF will use this tool from the command line.

Simply running mpf by itself will start the MPF game engine and run whatever machine configuration
is in the current folder. But you can also use mpf to launch other things, like mpf mc to start the media
controller, or mpf migrate to migrate your config files to the current version of MPF.

A full list of all the available commands, along with the various command line options, is here.

Command line options

–version

Prints the version of MPF and exits:

$ mpf --version

MPF v0.xx.yy

<command>

Runs the MPF command (with or without additional options).

See the MPF commands documentation for options.

MPF commands

MPF offers multiple commandline commands. Almost all of those commands should executed from
within your MPF machine folder.

Usually you start MPF using:

Specifying BCP ports 53

Mission Pinball Framework Documentation, Version

$ mpf both

Alternatively your can run MPF and MC separately:

$ mpf game

and:

$ mpf mc

To start the interactive service cli run (start mpf both before):

$ mpf service

If you want to see details about your hardware (do not run MPF in parallel):

$ mpf hardware scan

To update the firmware of your hardware controllers (if supported by your platform):

$ mpf hardware firmware_update

mpf both (command-line utility)

Starts both the MPF game engine and the MPF Media Controller from a single command window with
a single command. This is effectively the same as running both mpf game and mpf mc, but more
convenient.

When you run mpf both, the console log outputs from both MPF and MPF-MC will be mingled together
in the console window. However the log files in your machine’s /logs folder will still be separate.

Also note that you can pass command line options to both MPF and MPF-MC after the “both”
command, like this:

mpf both -v

mpf both -v -V -b

etc. See the mpf game (command-line utility) and mpf mc (command-line utility) command references
for a full list of command line options.

To quit MPF and MPF-MC, either click in the graphical pop up window (so it has focus) and hit Esc, or
click in the console window and press CTRL+C.

Note: If you use the -l (lowercase L) option to specify a log file along with mpf both, you need to use
-l to specify the MPF log and -L to specify the MC log.

mpf core (command-line utility)

Runs the MPF “core” modules without any game logic. This feature has not been fully implemented
yet, but it’s being put in place to facilitate using the MPF platform interface to be completely
controlled by external sources such as PinMAME without any of MPF’s game logic.

Specifying BCP ports 54

Mission Pinball Framework Documentation, Version

mpf diagnosis (command-line utility)

Prints the current installed versions of MPF and the MPF-MC.

mpf game (command-line utility)

Starts the MPF game engine (the main MPF process).

Command line options

There are several command-line options you can use when running MPF. Note that single commands
that take no options can be combined, so mpf game -vVa is the same as mpf game -v -V -a.

-a (lowercase)

Forces MPF to reload the config from the actual YAML config files, rather than from cache.

MPF contains a caching mechanism that caches YAML config files, and if the original files haven’t
changed since the last time MPF was run, it loads them from cache instead. Cached files are stored in
your machine’s temp folder which varies depending on your system.

-A (uppercase)

Do not cache the config files.

-b

Disables MPF’s BCP interface, meaning MPF will not try to connect to a media controller via BCP. This
is used if for some reason you just want to run MPF without MPF MC. Without this option, MPF will
not start because it will just sit there trying to connect to the media controller.

-c (lowercase)

Specifies the name of the config file (or files) to load. Default config.yaml is used if this option is
omitted. You do not have to specify the .yaml extension.

Examples:

Run MPF and load the config file config/config.yaml:

$ mpf game

Run MPF and load the config file config/nodisplay.yaml:

$ mpf game -c nodisplay

You can also chain multiple config files together by specifying a comma-separated list (no spaces). For
example, to load config/config.yaml first, and then once that’s loaded, merge in changes from
config/fast.yaml, run:

Specifying BCP ports 55

Mission Pinball Framework Documentation, Version

$ mpf game -c config,fast

To load a machine folder from some other location, such as
/home/brian/pinball/demo_man/config/config.yaml:

$ mpf game -c /home/brian/pinball/demo_man/config/config.yaml

-C (uppercase)

Specify the name of the MPF default config file which is loaded before your before your machine
config. (MPF includes a file mpfconfig.yaml which is inside the MPF package which sets up default
things like which modules are loaded, paths used, etc. If for some reason you want to override this
file, you can do so with the -C option.

-h

Displays the command line help and exits. (Pretty much what’s on this page.)

-f

Forces MPF to load all assets at start (rather than the default behavior where some assets can be
loaded only when modes start or based on other events). This is useful during development to ensure
that all assets are valid and loadable.

-t

Disable Text UI. This can be helpful while debugging and is also recommended when running the
machine in production.

-l (lowercase “L”)

Specifies the name and path of the log file.

The default stores the log file in the /logs folder in your machine folder, with a file name of
<year>-<month>-<day>-<hour>-<min>-<sec>-mpf-<hostname>.log.

Note that log files are standard log file formats that can be read and parsed with log file utilities. (The
“Console” app is built-in to OS X, for example.)

–syslog_address

Log to the specified syslog address. This can be a domain socket such as /dev/log on Linux or
/var/run/syslog on Mac. Alternatively, you an specify host:port for remote logging over UDP.

Specifying BCP ports 56

Mission Pinball Framework Documentation, Version

-v (lowercase)

Enables verbose logging to the log file. Warning: Your log files will be huge, perhaps 1MB per minute
of game time. Definitely only use this when you’re troubleshooting.

-V (uppercase)

Enables verbose logging to the console output.

Note that due to the way the command prompt console works on Windows, enabling verbose logging
on Windows will significantly affect MPF (in a bad way). Windows computers can run MPF no
problem, but because of their weird console slowness we recommend that you do not use the -V
command line option from a Windows computer.

-x (lowercase)

Ignores all platform: settings in your config files and forces MPF to run using the virtual platform
interface. This is nice for testing when you don’t have your physical hardware attached.

-X (uppercase)

Like -x, except it forces the smart virtual platform.

–vpx

Like -x, except it forces the Virtual Pinball (VPX) platform.

mpf mc (command-line utility)

Starts the MPF Media Controller.

Command line options

There are several command-line options you can use when running the MPF MC. Note that single
commands that take no options can be combined, so mpf mc -vVb is the same as mpf mc -v -V -b.

-c (lowercase)

Specifies the name of the config file (or files) to load. Default config.yaml is used if this option is
omitted. You do not have to specify the .yaml extension.

Examples:

Run MPF MC and load the config file config/config.yaml:

$ mpf mc

Specifying BCP ports 57

Mission Pinball Framework Documentation, Version

Run MPF and load the config file config/nodisplay.yaml:

$ mpf mc -c nodisplay

You can also chain multiple config files together by specifying a comma-separated list (no spaces). For
example, to load config/config.yaml first, and then once that’s loaded, merge in changes from
config/fast.yaml, run:

$ mpf mc -c config,fast

To load a machine folder from some other location, such as
/home/brian/pinball/demo_man/config/config.yaml:

$ mpf mc -c /home/brian/pinball/demo_man/config/config.yaml

-C (uppercase)

Specify the name of the MPF MC default config file which is loaded before your before your machine
config. (MPF MC includes a file mcconfig.yaml which is inside the MPF MC package which sets up
default things like which modules are loaded, paths used, etc. If for some reason you want to override
this file, you can do so with the -C option.

Note that the -C option is used by both mpf game and mpf mc, but these two packages use different
default files. So if you want to override the default, you’ll have to make one file that works for both or
else launch the MPF game engine and MPF MC separately (e.g. not using mpf both.

-h

Displays the command line help and exits. (Pretty much what’s on this page.)

-f

Forces MPF to load all assets at start (rather than the default behavior where some assets can be
loaded only when modes start or based on other events). This is useful during development to ensure
that all assets are valid and loadable.

-l (lowercase “L”)

Specifies the name and path of the log file.

The default stores the log file in the /logs folder in your machine folder, with a file name of
<year>-<month>-<day>-<hour>-<min>-<sec>-mpf-<hostname>.log.

Note that log files are standard log file formats that can be read and parsed with log file utilities. (The
“Console” app is built-in to OS X, for example.)

-L (uppercase)

Specifies the name and path of the log file.

Specifying BCP ports 58

Mission Pinball Framework Documentation, Version

Note this is the same as -l (lowercase L), but it’s included so if you use mpf both with manually
specified log files that you can use -l for the MPF log and -L for the MC log.

-v (lowercase)

Enables verbose logging to the log file. Warning: Your log files will be huge, perhaps 1MB per minute
of game time. Definitely only use this when you’re troubleshooting.

-V (uppercase)

Enables verbose logging to the console output.

Note that on due to the way the command prompt console works on Windows, enabling verbose
logging on Windows will significantly affect MPF (in a bad way). Windows computers can run MPF no
problem, but because of their weird console slowness we recommend that you do not use the -V
command line option from a Windows computer.

-x (lowercase)

Ignores all platform: settings in your config files and forces MPF to run using the virtual platform
interface. This is nice for testing when you don’t have your physical hardware attached.

-X (uppercase)

Like -x, except it forces the smart virtual platform.

Unused Options

Note that command line options -a -A -x -X are valid but ignored by the MPF MC. This is because
these options are used with the MPF game engine, but if you start the MPF game engine and MPF MC
at the same time via mpf both, all options will be sent to both the game engine and the MC, so the MC
ignores these options which it doesn’t use.

mpf imc (command-line utility)

Starts the MPF Media Controller with a slide editor.

Command line options

There are no commandline option. Just start it from within your machine folder.

mpf migrate (command-line utility)

Migrates config and show files built for prior versions of MPF to the current version.

Specifying BCP ports 59

Mission Pinball Framework Documentation, Version

mpf monitor (command-line utility)

Starts the MPF Monitor.

mpf hardware (command-line utility)

Starts the MPF game engine, scan/configure hardware platforms and exit.

Command line options

There are several command-line options you can use when running mpf hardware.

scan

Start MPF, scan all configured hardware platforms, dump their state and exit

firmware_update

Start MPF, scan all configured hardware platforms, update their firmware if not up to date and exit.

mpf service (command-line utility)

Start the command line service mode. Run this command from your machine folder. Service CLI will
connect to MPF via BCP and put the machine into service mode.

Command line options

mpf service will spawn an interactive shell. See Service Commandline for details.

mpf build (command-line utility)

See Build Command Line for details.

mpf test (command-line utility)

See Run Single File Tests.

mpf format (command-line utility)

See Format And Lint Config Files.

Specifying BCP ports 60

Mission Pinball Framework Documentation, Version

How to change the TCP ports MPF uses

Note: The functionality for changing the BCP port in the MPF-MC was added in MPF-MC v0.32.10.

Various MPF components talk to each other via a TCP socket protocol called BCP (which we invented).
By default, MPF and MPF-MC each listen for incoming BCP connections on the following two TCP
ports:

∙ 5050 MPF-MC

∙ 5051 MPF

When MPF-MC starts up, it starts listening on port 5050. If the MPF game engine doesn’t connect,
MPF-MC will sit there and wait for it. No problem.

When the MPF game engine starts, it attempts to connect to the MC on port 5050. If it can’t make a
connection, it will try again, and keep trying until a connection is made. (Note that you can control the
behavior of this in the config files.)

The MPF game engine also listens for incoming BCP connections on 5051. This is not used by
MPF-MC, but is used by other things that need to connect to MPF, such as the MPF Monitor.

If you have a port conflict (because something else on your system is using port 5050 or 5051), then
you can change the MPF and MPF-MC ports to whatever you want. Just add the following two sections
to your machine-wide config file. Note that you have to change it in two places, the “bcp” section
which is what the MPF game engine reads to know what port the MC is listening on, and the “mpf-mc”
section which is what the MC reads to know what port it should listen on.

Valid port numbers are anything between 1024 and 65535.

config_version=5

bcp:

connections:

local_display:

port: 1234

mpf-mc:

bcp_port: 1234

Specifying BCP ports 61

CHAPTER5

MPF Tutorial

Let’s learn by example!

This tutorial will walk you through using MPF to create a basic pinball machine config. Since MPF is
just software that supports lots of different physical hardware, you don’t actually need to have
physical pinball machine hardware to complete the tutorial. You can create a “virtual” pinball machine
for now and then hook up a real machine later.

The tutorial includes:

∙ Configuring switches, coils, flippers, sling shots, and your trough.

∙ Starting and playing a complete game with multiple players.

∙ Setting up attract mode light and display shows.

∙ Basic scoring and defining shots and lights.

∙ Using the display to show what’s happening and the score.

∙ Setting up a “base” game mode.

The idea is that everyone should follow the tutorial, and complete every step, in order. (The tutorial
steps all build off the previous steps.) Once that’s done, you can then move browse through the rest of
the documentation to read specific “How To” guides for everything else you need. (These are in the
Control Systems / Hardware, Pinball Mechanisms, Game Logic, Displays & Graphics, Sound, and
Shows sections.)

If you want to see us work through the tutorial you can also watch our walk-through video:

https://youtu.be/R4WugGNiezc

Now let’s get started. . .

62

https://youtu.be/R4WugGNiezc

Mission Pinball Framework Documentation, Version

Tutorial step 1: Installing MPF on your computer

The first step to using MPF is to understand some basics about how it works and to actually get MPF
installed on your computer. So that’s what these next few steps will do.

1. You don’t need a physical pinball machine yet

First, you do not need to have physical hardware to go through this tutorial. You can complete the
entire thing via MPF’s “virtual” hardware platform which lets you run MPF on your computer with no
actual hardware attached.

We should point out that MPF’s virtual platform is not pinball emulation software. There is no
3D-rendered playfield like Pinball Arcade, and you can’t really “play” your game. (This is because
MPF is not pinball emulation software, rather, it’s software to control a real pinball machine!)

That said, MPF has tools which let you control switches and see lights flash on your computer screen,
and you can arrange them onto an image of your playfield, so you can actually build a complete game
in MPF before you ever start on a physical machine!

2. Read the overview of MPF

You certainly don’t have to read through all the documentation to start this tutorial. However, the
documentation is arranged in the order you should read it, so if you haven’t read the stuff leading up
to this point, please do that now. (If you’re reading this online, start with the “MPF Overview” entry
on the left. If you’re reading a PDF, please turn to Page 1. :)

3. Install MPF

Obviously before you can start using MPF, you need to install it. At this point it’s best to install MPF
on whatever computer you use daily. There is certainly no need to try to put it on some small Linux
single board computer or Raspberry Pi or whatever you ultimately plan to put in your pinball machine.
For now just install it on your laptop.

MPF runs on Windows, Mac, and Linux. You can find the installation instructions here.

Go do that now, and make sure that you get both MPF and the MPF-MC installed.

3a. What if you already installed MPF?

If you already installed MPF, let’s quickly make sure you’re using the same version this tutorial is
written for.

This tutorial is written for MPF versions 0.56.

To see what version you have, open a command prompt (like you did when you installed MPF) and run
the following command:

mpf --version

Tutorial step 1: Installing MPF on your computer 63

Mission Pinball Framework Documentation, Version

That command should print something like MPF v0.51.3. Note that the version is three numbers,
x.y.z. The last number (the “z”) is the patch number and doesn’t have any functional changes. (In
other words, MPF 0.51.0 and 0.51.2 and 0.51.56 have the same functions and features.)

Tip: We highly recommend that you use the latest version of MPF, especially if you’re starting out
and don’t have config files to migrate. To find out which version of MPF is the latest, visit the MPF
Users Google Group and look at the banner welcome message at the top of the page.

If this command gives you an error, then go back to the Downloading & Installing MPF (2023 Version)
section to make sure MPF is installed. If it prints a version number lower than 0.56, then install the
latest version of MPF. And if it shows that you have a newer version of MPF (based on the first two
numbers), then go to docs.missionpinball.org to get the version of this documentation that matches
the version of MPF you have.

4. Let’s go!

If you’re reading this tutorial online, note that there are “Previous” and “Next” navigation buttons at
the bottom of each page. You should be able to just click those to follow along. (And if you’d like to
download a copy of this documentation to read offline, click the “Read the Docs” link at the bottom of
the menu bar on the left for links to PDF, HTML, and Epub versions of this documentation.)

Tutorial step 2: Create your machine folder

Okay, so MPF is installed and you’re able to run Demo Man. Great! Now it’s time to create the folders
and files for your own game.

1. Understand the “machine folder” concept

In MPF, we use the term machine folder to describe the folder that contains all the files for your game.
This includes config files, images, sounds, videos, settings, audits, modes, and everything else.

The machine folder is organized into subfolders to keep everything straight.

MPF machine folders are portable, meaning you can grab a machine folder from one computer and
run it on another—-even if it’s a different platform. (Windows to Linux, Mac to Windows, etc.)

Note: In “MPF speak”, we call these “machine” folders, not “game” folders. The reason is because in
MPF, a “game” is an actual game-in-progress running on a machine (with players, balls, scores, etc.).
So you’re really creating a pinball machine config, not a pinball game config.

2. Create your machine folders

Okay, so let’s get started with your own game’s machine folder. The first step is to create an empty
folder somewhere. (Anywhere you want.) You can name this folder whatever you want too.

Let’s use the name “your_machine”, and let’s add that folder to the C:\pinball folder, like this:

Tutorial step 2: Create your machine folder 64

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
http://docs.missionpinball.org

Mission Pinball Framework Documentation, Version

C:\pinball\your_machine

Obviously if you’re on Mac or Linux, you won’t have a C: drive, but that doesn’t matter for the tutorial.
Just create a new folder empty folder somewhere and name it whatever you want.

Throughout this tutorial we’ll refer to this as “your machine folder”.

Next create a subfolder in your new machine folder called \config. This is where your machine
configuration files will live. This folder should be inside your machine folder, like this:

C:\pinball\your_machine\config

3. Create your machine config file

Now let’s actually create a file which will contain all the configuration for your pinball machine. To do
that, create a file called config.yaml in your machine folder’s /config sub-folder. This file should be
here:

C:\pinball\your_machine\config\config.yaml

Note that if you’re on Windows and you just right-click and select New > Text Document, make sure
that Windows Explorer is configured to show file extensions so you actually create a file called
config.yaml and not config.yaml.txt. (That’s in the “View” menu of Explorer.)

4. Add #config_version=5 to the top of your config file

The first thing you need to do when you create any new config file for MPF is to add an entry on the
very top line that tells MPF what “version” of the MPF config spec you’re using for the file you’re
creating.

So just open the file (with a text editor or a free tool like Atom, Sublime, or Notepad++) and then add
that to the top of the file and save it. If you are familiar with an IDE such as VSCode or
PyCharm/IntelliJ we suggest that you install the MPF language server which supports
auto-completion, syntax and error highlighting, context help, go to definition and more.

You can also follow our video about the perfect IDE setup:

https://youtu.be/QdDHEe2aEJo

For MPF 0.56, that should look like this:

#config_version=5

Be sure to enter this exactly as it’s shown here, with no spaces around the equal sign.

This line tells MPF which version of the config spec you have. That way if a future version of MPF
requires changes to a config file, it can automatically recognize older files and update them.

The current version of the config files is 5 which is what’s used with MPF 0.50 and newer, so that’s
what we’re adding here.

At this point, your environment should look like this:

Tutorial step 2: Create your machine folder 65

http://atom.io
https://www.sublimetext.com/
https://notepad-plus-plus.org/
https://youtu.be/QdDHEe2aEJo

Mission Pinball Framework Documentation, Version

Note the folder structure, the location of the config.yaml file, and the #config_version=5 as the only
contents of that file.

5. Run your game!

Believe it our not, it’s time to run your game! Simply open a console window and change to your
machine folder, and run mpf -b, like this:

C:\pinball\your_machine>mpf -b

Again, enter it as shown, with a space between mpf and -b. (The -b option tells MPF not to try to
connect to a media controller for display and sound since we haven’t set that up yet.)

You should get results that look something like this:

Tutorial step 2: Create your machine folder 66

Mission Pinball Framework Documentation, Version

This is MPF’s default display when it’s running. Don’t worry–this is not what your machine’s players
will see when they play! :) We’ll set that up later. This is more for you while you’re building your MPF
config.

Notice a few things on this console display:

∙ The version of MPF that’s running is in the red bar along the top.

∙ Any game modes that are running are in the “ACTIVE MODES” section (which is just the attract
mode for now since we haven’t set anything else up).

∙ A list of switches and their states in in the middle “SWITCHES” section (which is also empty
since we don’t have any switches setup yet).

∙ A list showing which devices are holding balls is in the “BALL COUNTS” section (also blank).

∙ The current player’s number, score, and ball in the “CURRENT PLAYER” section (also blank).

∙ The machine folder path (in yellow in the lower left corner)

∙ How much CPU and memory MPF is using. (CPU is the percentage which is 0% in the screen
shot which makes sense since your config is blank and MPF isn’t doing anything!) The memory
use is the memory used (RSS), then a slash, then the memory size (total that it could use). In the
screen shot, we see MPF is using 4MB but could use as much as 22MB.

∙ How long MPF has been running (hours:minutes:seconds) in green in the lower right

∙ How much total free memory your computer has (530 MB in the screen shot)

∙ How much total CPU is busy on your computer overall (also 0% in the screen shot)

At this point you can pretty much just sit there and watch MPF forever, but it won’t ever do anything
until you add more to your config file.

To stop MPF, hit CTRL+C . That should take you back to the command window.

At this point you’re all set! If your machine is working like this, go ahead and move on to the next step.
However if you got something else on your display or some kind of error or crash, read on below. . .

Tutorial step 2: Create your machine folder 67

Mission Pinball Framework Documentation, Version

What if it didn’t work?

If you don’t get an output that shows the attract mode running like the example above, there could be
a few reasons for this, depending on the error.

If you get a crash with a message about a “Config file version mismatch”, like this:

C:\pinball\your_machine>mpf -b

Config file version mismatch: C:\pinball\your_machine\config\config.yaml

Traceback (most recent call last):

File "c:\python34\lib\site-packages\mpf\commands\game.py", line 202, in __init__

MachineController(mpf_path, machine_path, vars(self.args)).run()

File "c:\python34\lib\site-packages\mpf\core\machine.py", line 146, in __init__

self._load_config()

File "c:\python34\lib\site-packages\mpf\core\machine.py", line 405, in _load_config

self._load_config_from_files()

File "c:\python34\lib\site-packages\mpf\core\machine.py", line 425, in _load_config_from_files

config_type='machine'))

File "c:\python34\lib\site-packages\mpf\core\config_processor.py", line 24, in load_config_file

config = FileManager.load(filename, verify_version, halt_on_error)

File "c:\python34\lib\site-packages\mpf\core\file_manager.py", line 167, in load

halt_on_error)

File "c:\python34\lib\site-packages\mpf\file_interfaces\yaml_interface.py", line 255, in load

raise ValueError("Config file version mismatch: {}".format(filename))

ValueError: Config file version mismatch: C:\pinball\your_machine\config\config.yaml

This means you don’t have #config_version=5 in the top line of your config file. (Make sure you
include the hash mark as part of that.)

If the following line at the end of your log and nothing more happens you probably started mpf with
mc (i.e. by omitting the -b switch). This can be fixed by either running mpf -b or by making sure that
the media controller is running.

BCPClientSocket.local_display : Connecting BCP to 'local_display' at localhost:5050...

If you get an error that says Could not find machine folder: 'None', that means that you ran MPF
from the wrong folder. For example:

C:\pinball\your_machine\config>mpf

Error. Could not find machine folder: 'None'.

This happens because the command prompt is in the child “config” folder, rather than the base
machine folder. So cd .. up one level and try again.

C:\>mpf

Error. Could not find machine folder: 'None'.

Again, same thing here. The example above is in the root of C: which is not a valid machine folder. (It
is possible to run a machine from another folder via command line options which is why this error says
it couldn’t find the machine “None”, but for now just know that you need to run MPF from the root of
your machine folder.)

It’s possible you might also get an error about “mpf” not being recognized. For example, on Windows:

Tutorial step 2: Create your machine folder 68

Mission Pinball Framework Documentation, Version

C:\pinball\your_machine>mpf

'mpf' is not recognized as an internal or external command,

operable program or batch file.

Or on Mac or Linux:

$ mpf

-bash: mpf: command not found

In this case you probably don’t have MPF installed right, so jump back to the installation part of the
docs and follow that again.

If you see a yellow bar and do not see the attract mode in the list of active modes, like this:

That means you did not including the -b option when you ran MPF. (e.g. you probably just ran mpf
instead of mpf -b. In this case, MPF is trying to connect to the media controller (for your game’s
graphics and sounds), but since we haven’t gotten that far in the tutorial, it doesn’t exist and therefore
MPF won’t be able to connect to it.

Tutorial step 3: Get flipping!

There’s something exciting about seeing the first flips from your own code, so in this step we’re going
to focus on getting your flippers working.

To do that, you have to add some entries to your config file to tell MPF about some coils and switches,
then you have to group them together to tell MPF that they should act like flipper devices. So go
ahead and open that /config/config.yaml file that you created in the previous step.

Tutorial step 3: Get flipping! 69

Mission Pinball Framework Documentation, Version

1. Add your flipper switches

The switches: section of your machine config file is where you list all the switches in your machine
and map physical switch numbers to more friendly switch names. (This is what makes it possible to
interact with switch names like “left_flipper” and “right_inlane” versus “switch 27” or “switch 19”.)

So on the line after the #config_version=5 entry from the previous tutorial step, write switches: (note
the colon). Then on the next line, type four spaces (these must be spaces, not a tab), and write
s_left_flipper:. Then on the next line, type eight spaces and add number:. Repeat that again for
s_right_flipper:.

So now your config.yaml file should look like this:

#config_version=5

switches:

s_left_flipper:

number:

tags: left_flipper

s_right_flipper:

number:

tags: right_flipper

In case you’re wondering why we preface each switch name with “s_”, that’s a little trick we learned
that makes things easier as you get deeper into your configuration. We do this because most text
editors and IDEs have “autocomplete” functions where it will pop up a list to autocomplete values as
you type. So if you preface all your switches with “s_” (and your coils with “c_”, your lights with “l_”,
etc.), then as soon as you type “s_” into your YAML file you should get a popup list with all your
switches which you can use to select the right one. These saves lots of headaches later caused by not
entering the name exactly right somewhere. :)

If you use Sublime as your editor, it just does this automatically. Other editors might require plugins.
(For example, you can add this functionality to Atom with a free package called “autocomplete-plus”.)

Notice that we added tags called left_flipper and right_flipper. These are optional, but
recommended. The reason is that MPF includes a combo switch feature which posts events when
player switches are held in combination. If you add these tags to your flipper switches, an event called
flipper_cancel will be posted when the player hits both flipper buttons at the same time which you can
use to cancel shows and other things you want the player to be able to skip.

When naming your switches (and most devices in MPF), your name can’t start with a number and it
should only be a combination of letters, numbers, and underscores.

Also, the names you enter here are the internal names that you’ll use for these switches in your game
code and configuration file. When it comes time to create “friendly” names for these switches which
you’ll expose via the service menu, you can create plain-English labels with spaces and capitalization
everything. But that comes later.

In pre-0.50 versions, MPF was not case-sensitive and would internally convert most things to
lowercase before comparison. This proved to be problematic, so MPF is now case-sensitive for all
elements of your config files. Our configuration directives use only lowercase letters, underscores,
and numbers. While you are free to format your tags as you wish, be aware that case-consistency is
now required.

Speaking of formatting files, let’s look at a few important things to know about YAML files (which is
the format of the file we’re creating here):

Tutorial step 3: Get flipping! 70

Mission Pinball Framework Documentation, Version

∙ You cannot use tabs to indent in YAML. (It is literally not allowed.) Most text editors can be
configured to automatically insert spaces when you push the tab key, or you can just hit the
space bar a bunch of times.

∙ The exact number of spaces you use for the indents doesn’t matter (most people use groups of
two or four), but what is absolutely important is that all items at the same “level” must be
indented with the same number of spaces. In other words s_left_flipper: and s_right_flipper:
need to have the same number of spaces in front of them. In a practical sense this shouldn’t be a
problem, because again most text editors let you use the tab key to automatically insert space
characters.

∙ You cannot have a space between the setting name and the colon. GOOD: switches:. BAD:
switches :

∙ You must must have a space after the colon and the setting value. GOOD: balls: 3. BAD: balls:3

∙ Anything on a line following a hash sign # is ignored, so you can use this to add comments and
notes to yourself.

This all might seem kind of annoying, but that’s just the way it is with YAML files. When we started
building MPF, we weighed the pros and cons of lots of different config file formats (XML, INI, JSON,
TOML, text, Python, etc.), and YAML was the best trade-off in terms of having the features we needed
while being the easiest to use.

By the way, at some point we’ll create GUI tools you can use to build your configs instead of having to
hand-edit YAML files, but that’s probably a few years away, so in the meantime, get used to YAML. :)

2. Enter the hardware numbers for your switches

The config.yaml file you have so far is completely valid. However, you’ll notice that the number:
setting for each switch is blank. If you are not using MPF with a physical pinball machine yet, you can
keep these numbers blank. But if you want to control a real pinball machine, you need to enter values
for each switch’s number: setting.

The exact number you enter for each switch is dictated by which switch input on your pinball
controller each switch is connected to. However, different controllers use different number formats.

The How to configure “number:” settings guide explains how hardware numbering works on each of
the various hardware platforms MPF supports, so check that out now and enter your real numbers,
not the made-up ones we use below.

switches:

s_left_flipper:

number: 0 # this can be blank if you don't have physical hw yet

s_right_flipper:

number: 1 # if you do have physical hw, most likely your number will be different

3. Add your flipper coils

Next you need to add entries for your flipper coils. These will be added to a section called coils:. If
you’re using dual-wound coils, you’ll actually have four coil entries here—-both the main and hold coils
for each flipper. If you’re using single-wound coils, then you’ll only have one coil for each flipper
(which we’ll configure to pulse-width modulation for the holds).

Tutorial step 3: Get flipping! 71

http://www.yaml.org/faq.html

Mission Pinball Framework Documentation, Version

If you have no idea what we’re talking about, read our Flippers documentation for an introduction to
flipper concepts, dual-wound versus single- wound, holding techniques, end-of-stroke switches, and a
bunch of other stuff that’s important that you probably never thought about.

Here’s an example of how you’d enter your coils for a machine with two dual-wound coils. If you have
single-wound coils, or you have more than two flippers, refer to the Flippers documentation for
examples of how to configure them.

coils:

c_flipper_left_main:

number: 0 # again, these numbers will probably be different for you

c_flipper_left_hold:

number: 1 # check your platform-specific documentation for the actual numbers

allow_enable: true

c_flipper_right_main:

number: 2

c_flipper_right_hold:

number: 3

allow_enable: true

Again, note each coil name is indented four spaces, and each “number” listed under them is indented
eight spaces, there’s no space before the colons, and there is a space after the colons. Like the switch
numbers, the number: entry under each coil is the number that the pinball hardware controller uses
for this coil. The exact number will depend on what type of controller hardware and driver boards
you’re using.

Also note that the two hold coils have allow_enable: entries added, with values of “true”. Anyway, the
purpose of the allow_enable: setting is that as a safety precaution, MPF does not allow you to enable
(that is, to hold a coil in its “on” position) unless you specifically add allow_enable: true to that coil’s
config. This will help to prevent some errant config from enabling a coil that you didn’t mean to
enable and burning it up or starting a fire.

So in the case of your flippers, the “hold” coil of a flipper needs to have allow_enable: true since in
order for it to act as a flipper, that coil need to be allowed to be enabled (held on).

4. Add your flipper “devices”

Okay, you have your coils and switches defined, but you can’t flip yet because you don’t have any
flippers defined. Now you might be thinking, “Wait, but didn’t I just configure the coils and switches?”
Yes, you did, but now you have to tell MPF that you want to create a flipper device which links
together one switch and one (or two) coils to become a “flipper”. MPF supports dozens of different
types of Pinball Mechanisms, some of which (like flippers), are created by combining other devices.

You create your flipper devices by adding a flippers: section to your config file, and then specifying
the switch and coil(s) for each flipper. Since the flippers belong to a playfield we also create this now.
Here’s what you would create based on the switches and coils we’ve defined so far:

playfields:

playfield:

tags: default

default_source_device: None # use None in steps before 8

flippers:

left_flipper:

(continues on next page)

Tutorial step 3: Get flipping! 72

Mission Pinball Framework Documentation, Version

(continued from previous page)

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_left_flipper

right_flipper:

main_coil: c_flipper_right_main

hold_coil: c_flipper_right_hold

activation_switch: s_right_flipper

5. Try running MPF to make sure your config file is ok

At this point you should run your game to make sure it runs okay. Your flippers aren’t going to work
yet, but mainly we want to make sure MPF can read your config files and that there aren’t any errors.
Open a command prompt, switch to your machine folder, and run MPF again (like Step 2), also with
the -b option. Additionally, we will add the -t option to disable the text UI and show the log on the
console instead (you can also see it inside the logs folder inside your machine):

$ mpf -t -b

The console output will look similar to Step 2 as well, and it won’t look like much is happening here.
The main thing is to make sure that MPF starts and runs without giving you any errors–meaning that
everything you setup in your config file is ok.

$ mpf -t -b

INFO : root : Loading config.

INFO : YamlMultifileConfigLoader : Machine config file #1: config.yaml

INFO : ConfigProcessor : Loading config from cache: /tmp/7146c817793475fbeb8d22f907d7bbbc.mpf_cache

INFO : ConfigProcessor : Loading config from cache: /tmp/49091ea856e626b51c4160f53a2ef744.mpf_cache

INFO : ConfigProcessor : Loading config from cache: /tmp/4cc7d3d11df84bb81fda7943558aba56.mpf_cache

INFO : Machine : Mission Pinball Framework Core Engine v0.54.0-dev.18

INFO : Machine : Command line arguments: {'no_load_cache': False, 'create_config_cache': True, 'bcp':␣

→˓False, 'configfile': ['config.yaml'], 'force_assets_load': False, 'jsonlogging': False, 'logfile':

→˓'logs/2020-04-01-21-45-55-mpf.log', 'pause': False, 'production': False, 'text_ui': False, 'loglevel

→˓': 15, 'consoleloglevel': 20, 'force_platform': None, 'syslog_address': None, 'mc_file_name': None,

→˓'no_sound': False}

INFO : Machine : MPF path: /pinball/src/mpf/mpf

INFO : Machine : Machine path: /mpf-examples/tutorial/step_3

INFO : Machine : Platform: linux

INFO : Machine : Python executable location: /usr/bin/python3

INFO : Machine : Python version: 3.6.9 (64-bit)

INFO : Machine : Initialise MPF.

INFO : EventManager : Event: ======'machine_var_credits_string'====== Args={'value': 'FREE PLAY', 'prev_

→˓value': None, 'change': True}

INFO : EventManager : Event: ======'machine_var_mpf_version'====== Args={'value': 'MPF v0.54.0-dev.18',

→˓'prev_value': None, 'change': True}

INFO : EventManager : Event: ======'machine_var_mpf_extended_version'====== Args={'value': 'MPF v0.54.0-

→˓dev.18, Config version:5, Show version: 5, BCP version:1.1', 'prev_value': None, 'change': True}

INFO : EventManager : Event: ======'machine_var_python_version'====== Args={'value': '3.6.9', 'prev_

→˓value': None, 'change': True}

INFO : EventManager : Event: ======'machine_var_platform'====== Args={'value': 'Linux-4.15.0-72-generic-

→˓x86_64-with-Ubuntu-18.04-bionic', 'prev_value': None, 'change': True}

INFO : EventManager : Event: ======'machine_var_platform_system'====== Args={'value': 'Linux', 'prev_

→˓value': None, 'change': True}

(continues on next page)

Tutorial step 3: Get flipping! 73

Mission Pinball Framework Documentation, Version

(continued from previous page)

INFO : EventManager : Event: ======'machine_var_platform_release'====== Args={'value': '4.15.0-72-

→˓generic', 'prev_value': None, 'change': True}

INFO : EventManager : Event: ======'machine_var_platform_version'====== Args={'value': '#81-Ubuntu SMP␣

→˓Tue Nov 26 12:20:02 UTC 2019', 'prev_value': None, 'change': True}

INFO : EventManager : Event: ======'machine_var_platform_machine'====== Args={'value': 'x86_64', 'prev_

→˓value': None, 'change': True}

INFO : EventManager : Event: ======'init_phase_1'====== Args={}

INFO : EventManager : Event: ======'init_phase_2'====== Args={}

INFO : EventManager : Event: ======'init_phase_3'====== Args={}

INFO : EventManager : Event: ======'init_phase_4'====== Args={}

INFO : EventManager : Event: ======'machine_var_audits_switches_s_left_flipper'====== Args={'value': 0,

→˓'prev_value': None, 'change': True}

INFO : EventManager : Event: ======'machine_var_audits_switches_s_right_flipper'====== Args={'value': 0,

→˓ 'prev_value': None, 'change': True}

INFO : EventManager : Event: ======'init_phase_5'====== Args={}

INFO : EventManager : Event: ======'init_done'====== Args={}

INFO : EventManager : Event: ======'machine_reset_phase_1'====== Args={}

INFO : EventManager : Event: ======'machine_reset_phase_2'====== Args={}

INFO : EventManager : Event: ======'machine_reset_phase_3'====== Args={}

INFO : EventManager : Event: ======'reset_complete'====== Args={}

INFO : EventManager : Event: ======'mode_attract_will_start'====== Args={}

INFO : EventManager : Event: ======'mode_attract_starting'====== Args={}

INFO : Mode.attract : Started. Priority: 10

INFO : EventManager : Event: ======'mode_attract_started'====== Args={}

INFO : EventManager : Event: ======'collecting_balls_complete'====== Args={}

INFO : Machine : Starting the main run loop.

At this point you can stop it by making sure your console window has focus and then hitting CTRL+C.

What if it didn’t work?

If your game ran fine, then you can skip down to Step 6 below. If something didn’t work or you got an
error, then there are a few things to try depending on what your error was.

If the last line in your console output was something like this:

ValueError: Found a "switchs:" section in config file C:\your_machine\config\config, but that section␣

→˓is not valid in machine config files.

That means that it found a section in your config file that is not valid. Most likely this is due to a typo.
For example, the above example has “switchs” instead of “switches”.

Or maybe the error is more like this:

AssertionError: Config validation error: Entry flippers:left_flipper:main_coil:c_fliper_left_main is␣

→˓not valid.

This is showing that the flippers:left_flipper:main_coil:c_fliper_left_main entry is not valid.
Again this is a typo–the coil name is spelled wrong (one “p” in flipper instead of two).

Or something like this:

AssertionError: Your config contains a value for the setting "flippers:left_flipper:holdcoil", but this␣

→˓is not a valid setting name.

Tutorial step 3: Get flipping! 74

Mission Pinball Framework Documentation, Version

Again pretty self-explanatory. The setting flippers:left_flipper:holdcoil is not valid. (It should
actually be “hold_coil”, not “holdcoil”.)

So you can see that we’ve tried to be pretty helpful when it comes to typos and config file errors. The
trick it just to read through the output in the logs and to trace down what they’re complaining about.

You might also get errors saying there’s some kind of YAML problem. For example, if you remove the
colon after the coils: section and re-run MPF, you get the following error:

ValueError: YAML error found in file /Users/brian/git/mpf-examples/tutorial/config/config.yaml. Line 16,

→˓ Position 24

Line 16, Position 24. Pretty straightforward, except the missing colon is actually on line 15. This is
because removing the colon still produced valid YAML until it hit the next line. The point is that if you
get a YAML error, look a few lines above and below the line number from the error.

Again, recapping the rules of YAML:

∙ Be sure to indent with spaces, not tabs.

∙ Make sure that all the “child” elements are indented the same. So your s_left_flipper and
s_right_flipper both need to be indented the same number of spaces, etc.

∙ Make sure you do not have a space before each colon.

∙ Make sure you do have a space after each colon.

∙ Make sure you have the #config_version=5 as the first line in your file.

If you struggle to spot the problem read our Debugging YAML Parse Errors guide.

6. Enabling your flippers

Just running MPF with your game’s config file isn’t enough to get your flippers working. By default,
they are only turned on when a ball starts, and they automatically turn off when a ball ends. But the
simple config file we just created doesn’t have a start button or your ball trough or plunger lane
configured, so you can’t actually start a game yet. So in order to get your flippers working, we need to
add a configuration into each flipper’s entry in your config file that tells MPF that we just want to
enable your flippers right away, without an actual game. (This is just a temporary setting that we’ll
remove later.) To do this, add the following entry to each of your flippers in your config file:

enable_events: machine_reset_phase_3

We’ll cover exactly what this means later on. (Basically it’s telling each of your flippers that they
should enable themselves when MPF is booting up, rather than them waiting for a ball to start.) So
now the flippers: section of your config file should look like this: (If you have single-wound coils,
then you won’t have the hold_coil: entries here.)

flippers:

left_flipper:

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_left_flipper

enable_events: machine_reset_phase_3

right_flipper:

main_coil: c_flipper_right_main

(continues on next page)

Tutorial step 3: Get flipping! 75

Mission Pinball Framework Documentation, Version

(continued from previous page)

hold_coil: c_flipper_right_hold

activation_switch: s_right_flipper

enable_events: machine_reset_phase_3

At this point the rest of the steps on this page are for getting your physical machine connected to your
pinball controller. If you don’t have a physical machine yet then you can skip directly to Tutorial step
4: Adjust your flipper power.

7. Configure MPF to use your physical pinball controller

If you have a physical pinball machine (or at least a something on your workbench) which is hooked up
to a FAST, P-ROC, P3-ROC, OPP, or Stern SPIKE controller, then you need to add the hardware
information to your config file so MPF knows which platform interface to use and how to talk to your
hardware. To configure MPF to use a hardware pinball controller, you need to add a hardware: section
to your config file, and then you add settings for platform: and driverboards:.

Don’t worry if you do not have any hardware yet. You can run through the tutorial without hardware
by using the virtual hardware platform.

Remember earlier in this step, we provided links to the documentation for each platform. Here is a list
of supported hardware platforms and how to set them up.

You only need look at those docs for the specifics parts of the config that vary depending on your
hardware. The good news is that 99.9% of the MPF config files are identical regardless of the
hardware you’re using.

Here are some various examples of different types of hardware configs. Please understand that these
are just some examples! Do not copy them for your own use, rather, follow the instructions from the
link to the list above.

FAST Pinball with FAST IO driver boards:

hardware:

platform: fast

driverboards: fast

fast:

ports: com4, com5

switches:

s_left_flipper:

number: 00

P-ROC installed in an existing WPC machine:

hardware:

platform: p_roc

driverboards: wpc

switches:

s_left_flipper:

number: SF2

P3-ROC with P-ROC driver & switch boards:

Tutorial step 3: Get flipping! 76

Mission Pinball Framework Documentation, Version

hardware:

platform: p3_roc

driverboards: pdb

switches:

s_left_flipper:

number: 0-0

In case you are using the Virtual Pinball (VPX) Platform the config file will look like:

hardware:

platform: virtual_pinball

switches:

s_sling:

number: 0

s_flipper:

number: 3

coils:

c_sling:

number: 0

c_flipper:

number: 1

allow_enable: true

Video about developing your game without hardware:

https://youtu.be/7XmIIhzEREk

See? They’re all different.

7a. Understand the “virtual” hardware

If you just added a platform: setting to your config file which specifies a physical hardware platform,
now every time you run MPF with that config, it will try to connect to the physical hardware. But what
happens if you want to use MPF without your physical pinball hardware attached? In that case, you
can run MPF with either the -x or -X command line options. (Lowercase “x” is the “virtual” platform,
and uppercase “X” is the “smart virtual” platform.)

We’ll talk more about those later. The point is that if you have configured your machine for physical
hardware and then you want to run MPF without the physical hardware, you need to add either -x or
-X to your mpf command when you run it.

8. One last check before powering up

Okay, now we’re really close to flipping. Before you proceed take a look at your config file to make
sure everything looks good. It should look something like this one, though of course that will depend
on what platform you’re using, whether you have dual-wound or single- wound flipper coils, and what
type of driver boards you have (which will affect your coil and switch numbers). But here’s the general
idea. (This is the exact file we use with a FAST WPC controller plugged into an existing Demolition
Man machine.)

Tutorial step 3: Get flipping! 77

https://youtu.be/7XmIIhzEREk

Mission Pinball Framework Documentation, Version

#config_version=5

hardware:

platform: fast

driverboards: wpc

switches:

s_left_flipper:

number: SF4

s_right_flipper:

number: SF6

coils:

c_flipper_left_main:

number: FLLM

c_flipper_left_hold:

number: FLLH

allow_enable: true

c_flipper_right_main:

number: FLRM

c_flipper_right_hold:

number: FLRH

allow_enable: true

playfields:

playfield:

tags: default

default_source_device: None # use None in steps before 8

flippers:

left_flipper:

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_left_flipper

enable_events: machine_reset_phase_3

right_flipper:

main_coil: c_flipper_right_main

hold_coil: c_flipper_right_hold

activation_switch: s_right_flipper

enable_events: machine_reset_phase_3

Note that the individual sections of the config file can be in any order. We put the hardware: section at
the top, but that’s just our personal taste. It really makes no difference.

9. Running your game and flipping!

At this point you’re ready to run your game, and you should be able to flip your flippers! Run your
game with the following command:

C:\your_machine\mpf -t -b

Watch the console log for the entry about the attract mode starting. Once you see that then you
should be able to hit your flipper buttons and they should flip as expected! You might notice that your
flippers seem weak. That’s okay. The default flipper power settings are weak just to be safe. We’ll

Tutorial step 3: Get flipping! 78

Mission Pinball Framework Documentation, Version

show you how to adjust your flipper power settings in the next step of this tutorial. You’ll also notice
that switch events are posted to the console. State:1 means the switch flipped from inactive to active,
and State:0 means it flipped from active to inactive.

INFO : SwitchController : <<<<< switch: s_left_flipper, State:1 >>>>>

INFO : SwitchController : <<<<< switch: s_left_flipper, State:0 >>>>>

INFO : SwitchController : <<<<< switch: s_right_flipper, State:1 >>>>>

INFO : SwitchController : <<<<< switch: s_right_flipper, State:0 >>>>>

Here’s a companion video which shows running your game at this point in the tutorial based on the
config file above: (Note that this companion video is showing Judge Dredd, and it’s based on an older
version of MPF, but the basic concepts are the same.)

https://youtu.be/SkxZxkHHmXw

What if it doesn’t work?

If your game doesn’t flip while you’re running this config, there are a few things it could be: If the
game software runs but you don’t have any flipping, check the following:

∙ Make sure you’re not using the -x or -X command line options, since those tells MPF to run in
with the “virtual” hardware (e.g. software-only) mode meaning it won’t talk to your actual
physical hardware.

∙ Verify that your switch and coil numbers are set properly. Remember the values of “0” and “1”
and stuff that we used here are just for the sake of this tutorial. In real life your coil numbers are
going to be something like A8 or FLLH or C15 or A1-B0-7, and your switches will be something
more like E5 or 0/4 or SD12. Again look the how to guides for your specific platform for details on
how their numbers should be set.

∙ Make sure you added enable_events: machine_reset_phase_3 to each of your flipper
configurations.

∙ Make sure your coin door is closed! If you’re running MPF on an existing Williams or Stern
machine, remember that when the coin door is open, there’s a switch that cuts off the power to
the coils. (Ask us how we knew to add this to the list. :)

∙ It’s possible that your flippers are working, but their power level is so low that they’re not
actually moving. (In this case you might hear them click when you hit the flipper button.) In this
case you can move on to the next step in the tutorial where we adjust the flipper power.

If MPF crashes or gives an error:

∙ If you’re using a P-ROC and you get a bunch of really fast messages about Error opening P-ROC
device and Failed, trying again. . . , this is because (1) your pinball machine is not turned on, (2)
your P-ROC is not connected to your computer (via USB), or (3) you have a problem with the
P-ROC drivers. If you’re running MPF in a virtual machine, make sure the USB connection is set
to go to the VM.

∙ If you’re using FAST or OPP hardware and you get an error about a port configuration, or not
being able to open a port, then make sure your port numbers are correct. If you were previously
connecting to one of those ports via a terminal emulator, make sure you’ve disconnected from
the port in that software before running MPF.

If a flipper gets stuck on:

Tutorial step 3: Get flipping! 79

https://youtu.be/SkxZxkHHmXw

Mission Pinball Framework Documentation, Version

∙ Really this shouldn’t happen. :) But it did on our machine just now and we really really confused.
:) It turns out it was our flipper button which was stuck in the “on” position. The Judge Dredd
machine we were using at the time had those aftermarket magnetic sensor buttons with the little
magnets on the button flags, one of them came unglued and slipped out of alignment, making the
switch stuck in the “on” position.

If you’re still running into trouble, feel free to post to the mpf-users Google group. We’ll incorporate
your issues into this tutorial to make it easier for everyone in the future!

If you get YAML errors either copy the complete example below or read our Debugging YAML Parse
Errors guide.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, there’s a “tutorial” machine in the
mpf-examples repo that you downloaded in Step 1. (This is the same repo that contains the Demo Man
game that you ran in Step 1.)

The complete machine config is in the mpf-examples/tutorial/step_3 folder.

C:\mpf-examples\tutorial>mpf -t

Tutorial step 4: Adjust your flipper power

We casually mentioned in the previous step that MPF uses a very low default power setting for
coils–mainly because we don’t want to risk blowing apart some 40-year-old coil mechanism with a
power setting that’s too high. (Ask us how we know this! :)

So at this step in the tutorial, we’re going to look at how you can adjust and fine-tune the power of
your flipper coils. The good news is that everything you learn here will 100% apply to all the other
coils in your machine (slingshots, pop bumpers, ball ejects, the knocker, drop target resets, etc.)

1. Adjust coil pulse times

Modern pinball controllers that MPF uses have the ability to precisely control how long (in
milliseconds) the full power is applied to a coil. (Longer time = more power.) This is called the “pulse
time” of a coil, as it controls how long the coil is pulsed when it’s fired.

You can set the default pulse time for each coil in the coil’s entry in the coils: section of your config
file. If you don’t specify a time for a particular coil, then MPF will use a default pulse time of 10ms.

So in the last step, we got your flipper coils working, but as they are now, they each use 10ms for their
pulse times. (Remember for flippers we’re talking about the strong initial pulse to move the flipper
from the down to up position. Then after that pulse is over, if you have dual-wound coils, the main
winding is shut off while the hold winding stays on, and if you have single wound coils the pulse time
specifies how long the coil is on solid for before it goes to the on/off pwm switching.)

So right now your flippers have a pulse time of 10ms. But what if that’s too strong? In that case you
risk breaking something. Or if your coil is too weak, then your ball will be too slow or not be able to
make it to the top of the playfield or up all your ramps. So now you have to play with different settings
to see what “feels” right.

Tutorial step 4: Adjust your flipper power 80

Mission Pinball Framework Documentation, Version

Unfortunately there’s no universal pulse time setting that will work on every machine. It depends on
how many windings your coils have, how worn out your coils are, how clean your coil sleeves are, how
tight your flipper bats are to the playfield, how free-moving your linkages are, and how much voltage
you’re using. Some machines have coil pulse times set really low, like 12 or 14ms. Others might be 60
or 70ms. Our 1974 Big Shot machine has several coils with pulse times over 100ms. It all really
depends.

You adjust the pulse time for each coil by adding a default_pulse_ms: setting to the coil’s entry in the
coils: section of your config file. (Notice that you make this change in the coils: section of your
config, not the flippers: section.) So let’s try changing your flipper coils from the default of 10ms to
20ms. Change your config file so it looks like this:

coils:

c_flipper_left_main:

number: 00

default_pulse_ms: 20

c_flipper_left_hold:

number: 01

allow_enable: true

c_flipper_right_main:

number: 02

default_pulse_ms: 20

c_flipper_right_hold:

number: 03

allow_enable: true

Notice that we only added default_pulse_ms: entries to the two main coils, since the hold coils are
never pulsed so it doesn’t matter what their pulse times are. Now play your game and see how it feels.
Then keep on adjusting the default_pulse_ms: values up or down until your flippers feel right. In the
future we’ll create a coil test tool that makes it easy to dial-in your settings without having to manually
change the config file and re-run your game, but we don’t have that yet. You might find that you have
to adjust this default_pulse_ms: setting down the road too. If you have a blank playfield then you
might think that your coils are fine where they are, but once you add some ramps you might realize
it’s too hard to make a ramp shot and you have to increase the power a bit. Later on when you have a
real game, you can even expose these pulse settings to operators via the service menu.

2. Adjusting coil “hold” strength

If you’re using single-wound flipper coils, you should also take a look at the default_hold_power:
values. (Again, to be clear, you only have to do this if your flippers have a single winding. If you have
dual-wound coils then the hold winding is designed to be held on for long periods of time so you can
safely keep it on full strength solid and you can skip to the next step.)

We don’t have any good guidance for what your default_hold_power: values should be. Really you can
just start with a value of 0.125 or 0.25 and then keep increasing it (0.0 for 0% power to 1.0 for 100%
power) until your flipper holds are strong enough not to break their hold when a ball hits them. Some
hardware platform have additional options for fine-turning the hold power if this setting result in
weird buzzing sounds or don’t feel right. See the coils: section of each hardware platform’s How To
guide for details for your platform.

By the way there are a lot of other settings you can configure for your flippers. (As detailed in the
flippers: section of the config file reference.) They’re not too important now, but we wanted to at least
look at the power settings to make sure you don’t get too far into this tutorial with a risk of burning
them up.

Tutorial step 4: Adjust your flipper power 81

Mission Pinball Framework Documentation, Version

3. Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s available in the “tutorials” folder of
the mpf-examples package that you should have downloaded in Step 1 of this tutorial.

There are config files for each step, so the config for Step 4 should be at
/mpf-examples/tutorial/config/step_4.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf

Tutorial step 5: Add a display

In this step, we’re going to add a graphical on-screen window which will help show what’s happening
in your machine as it runs. If you’re planning to put an LCD display in the backbox of your machine,
this is what we’ll set up now. And if you want to use a physical DMD (whether it’s an older-style mono
DMD, or a newer full color LED-based DMD), you’ll be able to use the screen window we set up in this
step to show a software version of your DMD. If you are looking to set up a Segment or Alphanumeric
display, follow this guide to set up them up: Alpha-Numeric / Segment Displays

Regardless of what type of display you want to use in your final machine, follow this step in the
tutorial and then you can set up your final display later.

1. Run the media controller to see how it works

Remember from the MPF MPF Overview section (you read that, right?) that MPF is actually two
separate pieces–the game engine and the media controller.

Up until this point in the tutorial, we’ve been running the MPF game engine only. In this step, since
we’re adding a display, we’ll be working with the media controller.

So first, let’s run the MPF media controller from your machine folder so you can see how it works. You
do that with the mpf mc command, like this:

C:\pinball\your_machine>mpf mc

When you do this, you should see an 800x600 popup window that’s completely black with the title
“Mission Pinball Framework”. Here’s an example from Mac OS X:

Tutorial step 5: Add a display 82

Mission Pinball Framework Documentation, Version

You can close this window (and exit the MPF MC) by hitting the Esc key. (If this doesn’t work, click
your mouse in the popup window to give it focus and try again.)

You can also exit the MPF MC and close the popup window from the command line via CTRL+C.

2. Add a “display” to your config file

Now that you know how to run the MPF media controller (or “MPF-MC”, as we often call it), let’s
configure your machine config so that window actually shows some content.

The MPF game engine and MPF-MC both read the same configuration files, so we’ll be editing the
same config.yaml file we’ve been working with all along.

The first step is to create a “display” in your MPF config, which is like an internal representation of a
blank canvas that holds graphical content which can be shown on an LCD screen or a DMD. The
MPF-MC can have multiple display canvases at the same time, and you can map different ones to
different physical displays. (This means ultimately you can support multiple displays at the same time.)

The only setting for each display we need to worry about now is the height and width, both defined in
terms of the number of pixels. So for now, create a single display called “window” set to 800x600
pixels. To do this, add the following to your config.yaml file:

Tutorial step 5: Add a display 83

Mission Pinball Framework Documentation, Version

displays:

window:

width: 800

height: 600

Make sure that the word displays: has no spaces in front of it, since it’s a top-level config item.

Note that in the example above, we used 2 spaces for the indentation instead of 4. That’s fine, YAML
doesn’t care. (And you can even mix-and-match in the same file.) The only spacing thing that matters
is items at the same level are indented the same number of spaces (like “width” and “height”). Also,
no tabs.

The configuration above is creating a display called “window” which MPF will automatically map to
the on screen popup window. There are more options here (especially when you get to using multiple
displays) covered in the Displays, DMDs, & Graphics section of the documentation, but we don’t need
to worry about that.

Also, again, if your machine is going to use a physical DMD (whether mono or color), or if you want to
have the “dot look” of an on-screen DMD on an LCD screen, for now just follow along the tutorial as is,
and then you can read full display documentation afterwards to configure your displays. Everything
we do in the tutorial will transfer over even if you ultimately use a different kind of display.

3. Add a slide & a text widget

Ok, so now we have a display called “window”. If you run mpf mc, you will still see the black popup
window (just like Step 2) since we haven’t actually told the window to show anything. So in this step,
we’re going to add some content to the window display, starting with some simple text.

To do this, you need to understand some basic concepts about how the display system works in the
MPF media controller.

Since the folks who originally started MPF spend a lot of time giving presentations, the display
concepts and terminology are pulled from presentation software like Microsoft PowerPoint or Apple
Keynote. So if you’re familiar with those, you should be familiar with the display concepts in the MPF
MC.

First is the concept of slides. Just like a PowerPoint presentation, an MPF display is essentially a
window frame that shows slides. Many slides can exist, but only one is shown at a time, and that slide
takes up the entire display. (Just like how a PowerPoint slide takes up the whole display when you’re
playing the slide show.)

In MPF-MC, when one slide switches to another, there can be an animated “transition”, like fade, push
in, move out, etc.

A slide is like a blank canvas that you put things on. The “things”, in this case, are called widgets.
MPF has different types of widgets, for example, text, images, videos, shapes, lines, etc. When you put
a widget on a slide, you can specify all sorts of properties, like the size, position, alignment, colors, etc.

One slide can have lots of different widgets, and you can specify the order widgets are drawn to
control which ones are “on top” of others. You can add and remove widgets from existing slides at any
time, and you can also animate widget properties, meaning you can change the opacity (to make them
flash), or you can animate their position, size, etc.

All of this will become more clear throughout the tutorial, so let’s just jump right in.

Tutorial step 5: Add a display 84

Mission Pinball Framework Documentation, Version

In order to show some text, we first have to create a slide, add a text widget to that slide, and make
that slide the active slide on the display.

So first let’s create the slide. There are several ways to do this, so we’re just going to show you one
way here and then you can read the full documentation on slide later.

In MPF, all slides have names. You can define slides in the slides: section of the config. So let’s
create a slide called “welcome_slide”, like this:

slides:

welcome_slide:

Now let’s add a widgets: section under that slide, then under that, we’ll start creating some widgets.

slides:

welcome_slide:

widgets:

You can add as many widgets as you want to a slide. (And it’s pretty common for slides to be made up
of lots of widgets). For now let’s add a text widget that reads “PINBALL!”. Do this by adding the
following to your config:

slides:

welcome_slide:

widgets:

- type: text

text: PINBALL!

There are a few things going on there.

First, notice that before the word type:, there’s a dash (hyphen), followed by a space. This is how you
specify a list of items in YAML. (Think of it kind of like the YAML version of a bullet list.) You need to
do this when adding widgets to a slide since a single slide can have more than one widget, so the dash
tells the YAML file (and MPF-MC) where the settings for one widget end and the next begin.

Second, the space AFTER the dash is important. WRONG: -type: text RIGHT: - type: text

The type: text line is telling MPF-MC that this entry is for a text widget. And the text: PINBALL! is
setting the text for this widget to be “PINBALL!”. (For now we’re just hard-coding the text to be
“PINBALL!”, but in the future we’ll look at how you can use dynamically-updating text (like for the
player score) that updates automatically whenever it changes.

Now run mpf mc and what do you see?

A blank window again! :(

The reason the window is still empty is because even though we created a slide (called
“welcome_slide”) and we added a widget to that slide, we didn’t actually configure MPF-MC to show
that slide. So let’s do that now.

4. Add a slide_player config

Next, create a new section in your config called slide_player:. The slide_player watches for certain
events to occur, and when they do, it “plays” a slide.

To see this in action, add the following section to your machine config:

Tutorial step 5: Add a display 85

Mission Pinball Framework Documentation, Version

slide_player:

init_done: welcome_slide

What this is doing is saying, “When the event called init_done happens, play the slide called
welcome_slide.” The init_done is an event that’s posted by MPF-MC at the earliest possible point when
it is ready after it initially starts up (literally it’s saying “the MC is ready”). So what we’re doing here
is telling MPF-MC to show our welcome slide as soon as it can. (Check out the events documentation
for details on what events are.)

To verify, run mpf mc again, and hopefully you see something like this:

Cool! We have text! Of course it’s kind of small, and white, but it confirms that everything is working.
Again, what’s actually happening here is:

∙ You have a display called “window”,

∙ which is showing a slide called “welcome_slide”,

∙ because the slide_player was configured to show that slide when the “init_done” event
happened, and

∙ that slide has a single widget,

∙ which is a text widget with its text set to “PINBALL!”.

Tutorial step 5: Add a display 86

Mission Pinball Framework Documentation, Version

There are lots of settings for each widget type that you can use in your config file. Since this is a text
widget, we can look at the documentation for text widgets to see what options we have.

For example, let’s change the font size and the color, by adding font_size: and color: lines:

slides:

welcome_slide:

widgets:

- type: text

text: PINBALL!

font_size: 50

color: red

Now when you run mpf mc again, you should see this:

By default, the widget is centered in the slide, but you can play with different settings to position it
wherever you want. (Check out How to position widgets on slides for details.)

5. Add a second widget

We already mentioned that you can add as many widgets as you want to a slide and that there are lots
of different kinds of widgets. Let’s add a second widget to your welcome slide. This one will be a
rectangle which appears behind the word “PINBALL!”.

Tutorial step 5: Add a display 87

Mission Pinball Framework Documentation, Version

slides:

welcome_slide:

widgets:

- type: text

text: PINBALL!

font_size: 50

color: red

- type: rectangle

width: 240

height: 60

Again, note that you use a dash followed by a space to denote the start of the second widget. This
widget’s type is “rectangle”, with its height and width specified. Since we’re not specifying any
position, it will be centered (just like the text widget), and since we’re not specifying a color, it will be
white.

Now when you run mpf mc, you should see this:

Note that the word “PINBALL!” is “on top” of the white rectangle. That’s because the order of the
widgets on the display matches the order they’re entered into the config file. So in this example, since
the text widget comes first in the list of widgets for the welcome slide, the text widget is on top. If you
switch the order and run mpf mc again, you’ll just see the white rectangle with no text, since the
rectangle would be “on top” and it would completely cover the PINBALL! text.

Tutorial step 5: Add a display 88

Mission Pinball Framework Documentation, Version

6. Run MPF-MC and the MPF game engine at the same time

Ok, so now you’re able to run the media controller to get some widgets to show up. But so far, you
were just running mpf mc which is running the media controller by itself, without the MPF game
engine running.

So in this step, we’re going to run them both at the same time.

The first thing you need to do is add another slide to your config for the MC to play, and this time we’ll
make that slide play on a different event.

So in your slides: section, add another slide called attract_started, like this:

slides:

welcome_slide:

widgets:

- type: text

text: PINBALL!

font_size: 50

color: red

- type: rectangle

width: 240

height: 60

attract_started:

widgets:

- text: ATTRACT MODE

type: text

Note that attract_started: is indented the same number of spaces as welcome_slide:. Also note that
in the attract_started slide, we switched the order of text: and type:. We did that here just to
demonstrate that the order of settings in the config doesn’t matter.

If you run this, nothing different will happen because all we did here in the slides section is define a
slide. We need to use the slide_player: section to actually play the slide when some event happens.

So next, go to the slide_player: section of your config and add an entry for the event
mode_attract_started. (This is the event that is posted whenever a mode starts, in the form of
mode_<mode_name>_started.)

By the way, if you’re wondering how we know what events to use, there’s an event reference in the
documentation which has a list of all the events in MPF as well as descriptions of when they’re posted.
You can use any of these as triggers for your slides via the slide_player:.

Anyway, add the mode_attract_started to your slide_player: like this:

slide_player:

init_done: welcome_slide

mode_attract_started: attract_started

Again, this is saying you want the slide called “attract_started” to play when the event called
“mode_attract_started” happens.

Now run mpf mc again. At this point you should see the welcome slide with the PINBALL! text. (You
see the welcome slide because the MPF game engine isn’t running, and the game engine is
responsible for starting and stopping modes. So no game engine means no attract mode, and no
attract mode means no attract_mode_started event, which means no attract_started slide.)

Tutorial step 5: Add a display 89

Mission Pinball Framework Documentation, Version

Now open a second terminal window and switch into your game folder and launch the MPF game
engine. Remember from prior steps that we ran MPF with the -b option which told MPF to not try to
connect to the MPF-MC. But now we have the MC running, so we want to run MPF without -b so it
connects.

So this time, just run mpf -t, like this:

C:\pinball\your_machine>mpf -t

We added -t to disable the text ui on MPF because it might hide errors. When you run MPF, after
some stuff scrolls by, you should see the attract_started slide replace the welcome_slide, like this:

So now MPF is running, it’s talking to the MC, and you have the world’s most boring attract mode!

To quit MPF, just make sure the graphical window has focus and hit the Esc key. That should cause
both the MPF game engine and the MC to exit. (If they hang for some reason, you can click in the
console window of the one that’s hanging and press CTRL+C to kill it.)

Note that in the screen shot above, the colors of the command windows were changed. The magenta
window is where mpf mc was run, and the blue window is where mpf was run.

Since the attract_started slide only has one widget, and since all we did with that widget is specify
text (but not size, color, position, font, etc.), we just get the default text properties which are small,
arial, and white.

7. Launching the MPF game engine and MPF MC at the same time

In the previous step, you used two separate console windows to launch mpf mc and mpf separately. (If
you do this, by the way, you can launch either one first and it will wait for the other one.)

That’s nice for learning purposes, but kind of annoying for everyday use. Fortunately there’s a
command called mpf both which launches both the game engine and the MC together.

Tutorial step 5: Add a display 90

Mission Pinball Framework Documentation, Version

Note: If you’re using a Mac, you need to use MPF 0.32 or newer for mpf both to work.

Use it just like the others:

C:\pinball\your_machine>mpf both

When you do this, you should see the graphical window pop up (most likely showing the
welcome_slide for a quick flash), then when the MPF game engine is up and running, you should see
the graphical window flip over to the attract_started slide. Here’s a screen shot:

This time we omitted -t and you will see the text ui again instead of the console log. You can also use
mpf both -t if you prefer the log.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s available in the “tutorials” folder of
the mpf-examples package that you should have downloaded in Step 1 of this tutorial.

There are config files for each step, so the config for Step 5 should be at
/mpf-examples/tutorial/step_5.

You can run this file directly by switching to that folder and then running the following command:

Tutorial step 5: Add a display 91

Mission Pinball Framework Documentation, Version

C:\mpf-examples\tutorial>mpf both

What if it doesn’t work?

If you can’t get it to work, there are a few things to look at.

If you get some kind of “KeyError” like KeyError: 'welcome_slde', that means that it’s looking for
something it didn’t find. Most likely this is the slide player looking for a slide that doesn’t exist, so
make sure the slide’s entry in the slides: section matches the slide’s name in the slide_player:
section.

If the welcome slide works but you never see the attract slide, make sure you have the
mode_attract_started: event name spelled properly. Also make sure you do NOT run MPF with the -b
option since that tells it not to connect to the MC.

If you get YAML errors either copy the complete example below or read our Debugging YAML Parse
Errors guide.

Most of the other errors should be pretty self-explanatory. If you get stuck, feel free to post to the
mpf-users Google group.

Tutorial step 6: Add keyboard control

Once you get to this point, you should be able to run the MPF game engine as well as the media
controller, and you should have a pop-up window which shows some text. You should have your
flippers configured, and if you have a physical machine connected, you should be able to flip.

In this step, we’re going to add some keyboard settings to your machine config which will let you map
keyboard keys on your computer to switches in your pinball machine. This lets you “play” your game
on your computer, which is useful for (1) cases where you don’t have a physical machine nearby, and
(2) scenarios where your pinball machine is all the way on the other side of the room and you don’t
feel like getting up every time you start MPF.

1. Create your key-to-switch mappings

The first step is to create your key-to-switch mappings in your config file. You do this by adding a
keyboard: section, and then in there you add entries for each keyboard key and what type of action in
MPF you want to map them to. (Switches, in this case.)

Here’s an example where we map the left flipper button to the Z key and the right flipper button to the
? key:

keyboard:

z:

switch: s_left_flipper

'?':

switch: s_right_flipper

Note that the question mark is in quotes since it’s a non-standard character, and if you don’t put it in
quotes, it will confuse the YAML parser.

Tutorial step 6: Add keyboard control 92

https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Also it’s weird that the key is the question mark, because if you push that key normally it types a
slash. (The question mark is the shift option for that key.) So if you set a key mapping and it doesn’t
work, try the other character on the key.)

Again make sure that you have proper YAML formatting. The z: and "?": entries should indented the
same number of spaces, and the “switch” words should be indented further. Also make sure you have
a space to the right of the colon after switch:. At first you might think it’s a bit tedious to have to
write the word “switch” for each line. After all, why can’t you just enter them as z: s_left_flipper?
This is because the MPF keyboard interface can actually be used to control a lot more than just keys.
The details of that are not important now, so for now just make sure your keyboard: section looks like
the example above.

2. Test your new keyboard interface

At this point we’re ready to test this out. Pretty simple. Save your config file and run your game again.
(Seriously, we can’t tell you how many times things don’t work only to realize we didn’t save our
config after changing it!). So now run your game, starting both the media controller and the MPF
core. Again you can either do this by running both commands manually in separate windows or by
running mpf both -t.

Note that if you have a physical machine connected, your physical flippers will not flip with the
keyboard keys.

Let’s repeat this to be clear. If MPF is connected to physical hardware, pushing flipper button keys on
your keyboard will not actually operate your physical switches. (We’ll cover why not in Step 3 below.)

In order for the keys to work, the catch is that the graphical popup window (the one with the attract
mode slide in it) has to be the active window for it to receive the keys. (It has to have “focus”, in OS
parlance.) Just like how your typing is only sent to the current active window on your desktop, the
media controller’s graphical window has to be active for your game to see your keystrokes and
convert them to switches. So make sure this window is active (you can ALT+TAB to it or click on it).

Then try hitting the “Z” and “/” keys, and you should see them show up in your console window which
is running the MPF game engine as MPF switch events, like this:

INFO : SwitchController : <<<<< switch: s_left_flipper, State:1 >>>>>

INFO : SwitchController : <<<<< switch: s_left_flipper, State:0 >>>>>

INFO : SwitchController : <<<<< switch: s_right_flipper, State:1 >>>>>

INFO : SwitchController : <<<<< switch: s_right_flipper, State:0 >>>>>

When you hit a key that you’ve configured on your keyboard, it’s actually received by the media
controller which in turn converts it to switch name and sends it to the MPF game engine. (This is
because the MC controls the popup window, not MPF, and you need a window to track key states.)

Notice that there are actually state changes each time you hit and release a key. The “State: 1” means
that switch has become active (i.e. when you press down the key), and the “State: 0” means that
switch has just become inactive (when you release the key). You can experiment with this by holding
down a key and seeing the log event for the associated switch becoming active, and then when you
release it you’ll see that switch becoming inactive. Go ahead and play around with this, and notice
that you can push and hold the two keys in different orders and combinations.

Tutorial step 6: Add keyboard control 93

Mission Pinball Framework Documentation, Version

3. Why can’t you “flip” your physical machine with the keyboard?

If you’re working with a physical machine with this tutorial, you might be surprised to see that your
flippers don’t fire when you hit the Z or / keys! Even more confounding is that you will still see the
flipper switch events in your console log, and if you reach over and hit the physical buttons on your
machine, the flippers will work. So what gives?!?

This happens because MPF uses “hardware rules” to program quick-response mechanisms (like
flippers), meaning the flippers are activated by the control system rather than MPF software.

Read the How MPF handles “quick response” mechs (flippers, slingshots, etc.) guide for details.

4. Install the MPF Monitor (optional)

While pressing keyboard switches is great and fast it would be a lot of work to map all your switches
to the keyboard (and remembering which key does what). Therefore you can later use the MPF
monitor to lay them out visually and trigger them with your mouse (you can start using it right now if
you want).

What if it doesn’t work?

If you don’t see your switch events in the console when you press your keys, there are a few things
you can try to troubleshoot:

∙ Double-check to make sure you actually saved your updated config file. :)

∙ Make sure no modifier keys (shift, control, etc.) are being pressed at the same time. Since there
are way more switches in a pinball machine than keys on a keyboard, MPF lets you add modified
keys to your keyboard: map. This means that MPF will see Z, SHIFT+Z, CRTL+Z, SHIFT+CTRL+Z, etc.
all as different switches.

∙ Remember that the media controller’s pop-up window has to be in focus. Make sure it’s the
active window on your desktop and try hitting your keys again.

∙ Remember that your physical flippers will not flip if you hit the keyboard keys for your flipper
buttons.

∙ Check if numlock is enabled. This seems to be common issue on Windows 10. Disable numlock in
this case.

∙ Make sure you started mpf both -t and did not omit -t as this would hide the log and show the
text ui instead.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_6 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf both -t

Tutorial step 6: Add keyboard control 94

Mission Pinball Framework Documentation, Version

Tutorial step 7: Add your trough

At this point you have a flipping machine with a display, but you don’t have a “working” pinball
machine since you can’t start or play games.

So the next two steps in this tutorial, we’re going to get your first two ball devices set up—your trough
and plunger lane. (A ball device is anything in MPF that holds a ball).

1. Read about ball devices

In MPF, a “ball device” is any physical mechanism in your machine that holds a ball.

You can read more about ball devices in the Ball Devices documentation, which we recommend that
you do now to familiarize yourself with the concepts. (You don’t have to understand everything about
them for now, just skim through that link so you get the basics.)

2. Add your trough and/or drain

Now that you understand what a ball device is, lets add your first ball device, which is going to be
trough (or drain) device which collects balls that drain from the playfield and stores them while
they’re not in play.

Since there are so many different types of ball drain and trough configurations, we can’t write a single
tutorial that walks you through all of them.

Instead, we have several tutorials. :)

So your next step is to visit the Troughs / Ball Drains documentation which lists all the options (with
pictures), as well as links to step-by-step guides which walk you through the setup of the particular
type of trough or ball drain you have in your machine.

3. Enable debugging so you can see cool stuff in the log

Once you have your trough or drain device (or devices, in some cases) set up, add one more setting to
that device:

debug: true

This setting causes MPF to write detailed debugging information about this ball device to the log file.
You have to run MPF with the -v (verbose) option to see this.

This will come in handy in the future as you’re trying to debug things, and it’s nice because you can
just turn on debugging for the things you’re troubleshooting at that moment which helps keep the
debug log from filling up with too much gunk.

For example, if you have a modern style trough with a jam switch, you’d add the debug setting like
this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

(continues on next page)

Tutorial step 7: Add your trough 95

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

debug: true

4. Don’t test yet

Since the trough or drain device works hand-in-hand with the plunger lane, and since we haven’t set
up a plunger lane yet, it’s not worth testing your config at this point. We’ll get the plunger lane set up
in the next step.

Check out the complete config.yaml file so far

If you’re following along with the example tutorial configurations, at this point there could be some
significant divergence between the examples and your machine since the examples are based on a
Demolition Man machine with a modern opto-based trough.

We still have the examples which you can try, and they’ll work fine because they use the “virtual”
platform which doesn’t connect to real hardware. So you can run them and follow along, but just be
aware that they might not match your own files exactly.

The complete machine config is in the mpf-examples/tutorial/step_7 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf both

Tutorial step 8: Add your plunger lane

In this step we’re going to create your plunger lane (or shooter lane or ball launcher or catapult or
whatever you want to call it).

This is the device that holds the ball after it’s been ejected from the trough or drain where it sits
waiting for the player to put it into play.

It’s important to understand that a ball device is anything that holds a ball, even if that’s just a divot in
the wood with no switch where the ball sits waiting for the player to pull back on a spring plunger.

MPF’s ball tracking only works if MPF knows where all the balls are at all times, which is why it needs
to “know” about the plunger lane, and you let MPF know about a plunger lane by configuring it as
another ball device.

1. Add your plunger/catapult/launcher/etc.

Like the trough, there are several different plunger designs. Some are purely mechanical, some
launch the ball with a button which fires a coil, and some have both options. Also, some plunger lanes
have a switch which the ball sits on while it’s waiting to be plunged, and others don’t.

Visit the Plungers & Ball Launch Devices documentation for pictures that show each option and
step-by-step guides which walk you through configuring each type for MPF.

Tutorial step 8: Add your plunger lane 96

Mission Pinball Framework Documentation, Version

2. Revisit your trough/drain device and add it as source_device to your playfield

Even though this is mentioned in the how-to guides, once you have your plunger device set up, be sure
to go back to your trough or ball drain device and add the new plunger lane as an eject target, like
this:

eject_targets: bd_plunger

Of course you’d add the name that you gave your plunger device, which could be something like
“bd_catapult” or whatever you called it.

Also, if you have a two-stage drain (like a System 11 machine), you’d add this to the second device
(the one that feeds the plunger).

Tell the playfield to use the plunger for new balls:

playfields:

playfield:

tags: default

default_source_device: bd_plunger

3. Check out the complete config.yaml file so far

Again, our example config will probably diverge from yours since you might have different types of
drain and plunger devices, but we do have a complete machine conform for Demolition Man for this
step which you can view in the mpf-examples/tutorial/step_8 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf both

4. Fire up your game and test

Unfortunately there are a few more things we need to configure before you can play a full game, but if
you want to test what you have so far, you can launch MPF and drop a ball into your trough and you
should see some cool things in your log file. To do this, launch the MPF game engine with the -v
command line options so it shows the verbose information in the log file, like this:

C:\pinball\your_machine>mpf -vbt

You don’t have to launch the media controller this time since we’re just looking at the console output
of the MPF game engine, which is why we added the b command line option too. (The b option tells the
MPF game engine not to use the BCP protocol and not to try to connect to the MC.) You also have to
add t to disable the text ui to see the verbose log. Otherwise, you would only see the verbose output in
the logfile in the logs directory of your machine.

Note: For more information about command line options take a look at MPF commands and mpf game
(command-line utility) .

Once your game is running, drop a ball into your trough and you should see a whole bunch of trough
switches changing between active (State: 1) and inactive (State: 0).

If you don’t have a physical machine, you can run MPF with the -v option and see a bunch of stuff in
the log too by hitting the keyboard keys for the trough switches which will add and remove balls.

Tutorial step 8: Add your plunger lane 97

Mission Pinball Framework Documentation, Version

Now quit MPF and open the MPF log file (which is in your machine’s /logs folder). Grab the latest file
with “mpf” in the name (if you ran mpf both then you’ll have separate log files from MPF and the MC).

Search (or filter) the log for the name of your trough or drain device, and you should see all sorts of
interesting things. Here’s a small snippet:

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Counting balls by checking switches

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Confirmed active switch: s_trough1

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Confirmed active switch: s_trough2

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Confirmed active switch: s_trough3

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Confirmed active switch: s_trough4

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Confirmed active switch: s_trough5

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Confirmed inactive switch: s_trough_jam

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Counted 5 balls

2016-11-18 03:54:06,103 : DEBUG : ball_device.bd_trough : Switching to state idle

What if it doesn’t work?

If you’ve gotten this far and your trough, drain, and/or plunger isn’t working right, there are a few
things you can try:

If your log file shows a number of balls contained in one of your devices doesn’t match how many balls
you actually have, that could be:

∙ You didn’t add all the ball switches to the ball_switches: section of the device’s config.

∙ Your trough uses opto switches but you didn’t add type: NC to each switch’s configuration.

∙ A a switch isn’t adjusted properly so the ball is not actually activating it. (Seriously, we can’t tell
you how many times that’s happened! We’ve also found that on some machines, if you only have
one ball in the trough that the single ball isn’t heavy enough to roll over the top of the eject coil
shaft. In that case we just add a few more balls to the machine and it seems to take care of it.)
Either way, if you have a ball in the trough, the switch entry in your log should show that the
switch is active (State:1), like this:

2014-10-27 20:05:29,891 : SwitchController : <<<<< switch: trough1, State:1 >>>>>

If you see State:1 immediately followed by another entry with State:0, that means the ball isn’t
activating the switch even though it might be in the trough.

If you get a YAML error, a “KeyError”, or some other weird MPF error, make sure that all the switch
and coil names you added to your ball device configs exactly match the switch and coil names in the
switches: and coils: sections of the machine config.

Also make sure that all your names are allowable names, meaning they are only letters, numbers, and
the underscore, and that none of your names start with a number.

Finally, make sure your YAML file is formatted properly, with spaces (not tabs) and that you have no
space to the left of your colons and that you do have a space to the right of your colons. See our
Debugging YAML Parse Errors guide if you got YAML errors. At this point your trough is ready to go!
Next we have to configure your plunger lane.

Tutorial step 8: Add your plunger lane 98

Mission Pinball Framework Documentation, Version

Tutorial step 9. Add the start button

Obviously in order to play an actual game, you have to be able to start a game, and that requires a
start button. So let’s add that now.

1. Add a switch for your Start button

First, add the switch for your start button to the switches: section of your config file. Again this
should be easy by now. In this tutorial we’ll just call this button s_start and add it like this:

switches:

s_start:

number: 11

2. Add a “start” tag to your Start button

Just like the special-purpose tags we used when configuring the ball devices, MPF uses some special
purpose tags for switches, too. One of them is start, as MPF watches for switches tagged with “start”
to start games and add players to running games.

Sometimes people ask “Why do you use a tag for this? Why not just look for a switch named “start?”
Again, we want MPF to be as flexible as possible, and we feel that game builders should be able to
name their switches whatever they want. (Some want to preface with s_, others might not, etc.) So we
use a “start” tag behind the scenes to make whatever switch you want act as the start button. So now
your start switch in your switches: section should look like this:

switches:

s_start:

number: 11

tags: start

3. Add keyboard entries for your start switch

If you’re keeping your keyboard shortcuts up to date, you can create a keyboard entry for your start
switch. This is especially helpful if you’re building a custom machine from scratch and you don’t have
a physical start button wired up yet. In that case just enter some dummy value for the number: of your
start switch. Then when you run a physical machine (without the -x command line option), you can
start the game with your computer keyboard but actually play it on physical hardware. For your start
button keyboard key, how about using the S key? To do so, add an entry like this to the keyboard:
section of your config file:

keyboard:

s:

switch: s_start

4. Add at least one playfield switch

Another thing you need to do is to configure at least one playfield switch. Why? Because when a ball is
launched from your plunger onto the playfield, MPF “confirms” that the ball actually made it onto the

Tutorial step 9. Add the start button 99

Mission Pinball Framework Documentation, Version

playfield when a playfield switch is activated. How do you configure a switch as a playfield switch?
You use tags, by adding a playfield_active tag to a switch.

At this point you might be wondering, “Wait, I thought the eject_timeouts for the plunger was used to
let MPF know when a ball really made it out of the plunger?” That’s true, and technically at this point
you don’t need a playfield switch. However, this will speed up your ejects in a real machine and you’ll
eventually tag all your playfield switches with playfield_active, so we’re just getting starting on this
now. To do this, create a new entry in your switches: section for one of your playfield switches, for
example:

switches:

s_right_inlane:

number: 12

tags: playfield_active

Note: The tags playfield_active and above the start tag are special purpose tags for switches.

While you’re at it, create a keyboard key mapping for this switch in the keyboard: section of your
config, like this:

keyboard:

q:

switch: s_right_inlane

If you want you can go ahead and add entries for all your playfield switches, though that will take
awhile. For now just make sure you have at least one, and make sure the ball hits that switch after it
launches from the plunger before it drains. (There are lots of options for what you can do if a ball
drains before it hits a switch, but we’re not going to go into those now.)

If you do decide to add all your playfield switches now, you’ll want to add the playfield_active tag to all
the switches that might be hit by a ball being loose on the playfield. (So lane switches, ramp switches,
rollovers, standups etc.) You do not want to tag ball device switches with playfield_active since if a
ball is in a ball device, then it’s not loose on the playfield.

At this point we’re really, really close! There are a few more quick things we want to do, then run
some checks. But then we’re ready to play a real game!

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_9 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf both

Tutorial step 10: Run a real game

Holy Moly! It’s actually time to run your first real game with MPF. When we say a “real” game, we’re
talking about with multiple players and balls machine flow from attract to game mode and back to
attract once the game is over.

Tutorial step 10: Run a real game 100

Mission Pinball Framework Documentation, Version

1. Make one quick addition to your display configuration

We know that at this point, you just want to run your game. The problem is if we run it now, the
display will continue to show “ATTRACT MODE” throughout the entire game since we haven’t
configured it for anything else. So let’s make a quick addition to the slide_player: section of your
config so it will show the player and ball number when a game is in progress. (Later in this tutorial
we’ll revisit this and explain what’s actually going on. For now just make this change.) In your config
file, add a ball_started: entry with the following information. Your complete slide_player: section
should now look like this:

slide_player:

init_done: welcome_slide

mode_attract_started: attract_started

ball_started:

widgets:

type: text

text: PLAYER (number) BALL (ball)

2. Add initial active switches and bind trough switches to your keyboard

If you are not using physical hardware you need some way to control the ball inside your trough. We
will first make sure that the trough switches will be active (as if there was a ball sitting on them) when
your virtual machine starts up. Additionally, we add keyboard bindings for ball switches to the
numbers 1 to 5 and the plunger switch to p.

virtual_platform_start_active_switches:

- s_trough1

- s_trough2

- s_trough3

keyboard:

1:

switch: s_trough1

toggle: true

2:

switch: s_trough2

toggle: true

3:

switch: s_trough3

toggle: true

4:

switch: s_trough4

toggle: true

5:

switch: s_trough5

toggle: true

p:

switch: s_plunger

toggle: true

This way you can drain balls by activating trough switches.

Tutorial step 10: Run a real game 101

Mission Pinball Framework Documentation, Version

3. Change your flipper config so they don’t automatically enable on machine boot

Almost there! The other quick change we need to make is to remove the enable_events: from the
flipper configuration that we added back in the Get Flipping! step.

This is because by default, MPF will automatically enable your flippers when a ball starts and disable
them when a ball ends. But since we added a configuration setting to your flippers that set them to
automatically enable themselves immediately when MPF loaded, that setting overwrote the default
setting which enables your flippers when a ball starts. So as your config file is now, the flippers enable
when MPF boots, then they disable when the first ball ends, and that’s it. They won’t enable again for
Ball 2.

To make this change, simply remove the enable_events: machine_reset_phase_3 line from each of
your two flipper sections of your config file. So now your `flippers: section should look like this: (It
might not be 100% identical since you might have single-wound flipper coils and/or EOS switches.)

flippers:

left_flipper:

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_left_flipper

right_flipper:

main_coil: c_flipper_right_main

hold_coil: c_flipper_right_hold

activation_switch: s_right_flipper

4. Running your game with physical hardware

If you have a physical machine attached, go ahead and run your game without the -x or -X command
line options. (If you don’t have a physical machine and you want to simulate a game using the
keyboard keys, skip to Step 4 below.)

C:\pinball\your_machine>mpf both -X

Make sure you have at least one ball in the trough and then run your game. The display should display
“ATTRACT MODE.” Hit the start button. A ball should be kicked out of the trough and into the plunger
lane, and the display should change to “PLAYER 1 BALL 1.” If you have a coil- fired plunger, you
should be able to hit the launch button and the coil should fire. If you have a manual plunger, you
should be able to plunge and flip. If you hit the start button a second time during Ball 1, a second
player should be added. (The display won’t show this since we haven’t configured it to show a
message, but you can see this in the logs and when the ball drains then it should go to Player 2 Ball 1
instead of Player 1 Ball 2.)

A few caveats to this early bare-bones game:

∙ Since you haven’t configured any scoring yet, this game will be boring and nothing will score.
But hey, you’re playing!

∙ If your flippers, trough eject, or plunger coil is too weak or too strong, you can adjust them in the
coil’s default_pulse_ms: setting in the config file.

∙ If you start MPF with a ball in the plunger lane and you have a coil-fired plunger, MPF will
immediately fire the plunger to kick out the ball. This is by design since you don’t have a “home”
tag in your plunger ball device’s configuration, which means that MPF will automatically eject
the ball to get all the balls into ball devices tagged with “home.”

Tutorial step 10: Run a real game 102

Mission Pinball Framework Documentation, Version

∙ If you shoot a ball into a playfield lock or any other ball device, it will get stuck there since you
haven’t configured that device. (In this case you need to add configuration entries for those ball
devices so MPF can know about them. Then it will automatically kick out any balls that enter.
We’ll get to that later.)

∙ By default MPF is configured to allow a maximum of 4 players per game, with 3 balls per game.
You can change this in the game: section of the machine config.

5. “Playing” a game without a physical machine attached

If you’ve been adding keyboard switch map entries to your config file as you’ve been going through
this tutorial, you can actually “play” a complete game on your computer keyboard. Here’s how you do
it:

1. Launch the MPF game engine and the MC. Note that in order for this to work, we want to use
the “smart virtual” platform. This will be the default, but make sure you do not have platform:
virtual in your config. (If you do have a platform entry in your config, make sure it’s platform:
smart_virtual.) If you have a different platform setting for your physical hardware, you can still
run without the hardware connected by using the -X (uppercase X) command line option to
specify the smart virtual platform interface.

2. Push the “S” key to start a game. At this point MPF will eject a ball from the trough to the
plunger

3. If you have a coil-fired plunger, push the “L” key (or whatever key you mapped to your launch
button) to launch the ball.

4. If you do not have a coil-fired plunger, push the “P” key (or whatever key you mapped to your
plunger lane switch) to un-toggle that switch which simulates the ball leaving the plunger lane.
Note: The toggle option in the keyboard: section is useful for testing your game from your
computer when you’re not around your physical machine.

5. Now you can “flip” with the “Z” and “?” keys.

6. After you get bored of this, push the “1” key to activate a trough ball switch. At this point MPF
will think a ball drained and you should see the display switch to Ball 2 and the trough switch
should open and the plunger lane switch should close as the “smart virtual” platform ejects a
ball from the trough to the plunger.

7. Repeat until you’re bored.

8. After Ball 3 is over the display will change back to the “ATTRACT MODE” text and you can push
“S” again to start another game.

9. Congrats! You just played your first virtual pinball game. Yeah, it’s boring, but you did it!

6. What if your game won’t start?

If your game doesn’t start or doesn’t work, hopefully we’ve given you enough information in this
tutorial to work out what the problem is. That said, here’s a list of things that could go wrong:

∙ If you see a config error try running mpf both -t -v -V -X to disable the text ui and add verbose
logging.

∙ No ball in the trough.

Tutorial step 10: Run a real game 103

Mission Pinball Framework Documentation, Version

∙ Virtual games need balls too; add the virtual_platform_start_active_switches section of the
complete config file. (Alternatively, if you are using the smart_virtual platform with -X press 1
and 2 to add balls to the trough via keyboard)

∙ Ball in the trough, but not activating the switch.

∙ Trough switches are optos but you didn’t add type: NC to your switch configurations.
(Mechanical trough switches do not need a type: setting.)

∙ Trough is trying to eject, but the trough coil’s default_pulse_ms: setting is too weak and the ball
can’t get out.

∙ Incorrect switch or coil numbers which don’t match up to your actual hardware inputs and
outputs.

∙ Some other setting isn’t configured properly, which could lead to who-knows-what error? (Maybe
compare your config file to the complete config from mpf-examples?)

If you’re still having problems, feel free to post to the mpf-users Google group.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_10 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf both -X

Remember though that unless you’re following this tutorial with an actual Demolition Man, you’ll have
some differences in your config file.

Tutorial step 11: Add the rest of your coils and switches

Okay, so at this point you have a working game. The biggest problem you might run into is that if you
shoot your ball into a playfield device like a VUK or popper, the ball will get stuck. Why? Because you
haven’t yet added the switches to your config file while let MPF know that a ball is there, and you
haven’t added the coils which MPF needs to fire to eject a ball. So MPF literally has no idea that those
switches and coils even exist, which means it has no ability to detect a ball entering a device and to
eject it. So when we’re building a config for a new game, at this point we go through our config and
add all the remaining switches and coils to and switches: and coils: sections of the config file.

1. Add the rest of your switches

This step is pretty simple. If you building a config for an existing machine, we usually use the
operators manual as our starting point and just move down the list and add all the switches as they’re
listed in there. We don’t worry about tags at this point except for playfield_active tag. We add this
tag to any switch the ball can hit when it’s active and rolling around on the playfield. (So this is going
to be your lanes, slingshots, pop bumpers, ramp entry & exit switches, rollovers, stand up targets, and
anything else the ball can hit when it’s in motion. The tricky thing is that you do not add a
playfield_active tag to switches in other ball devices (drop_targets, kickbacks, troughs or the shooter
lane). For example, if you have a hole in the playfield that the ball rolls into which requires a coil pulse

Tutorial step 11: Add the rest of your coils and switches 104

Mission Pinball Framework Documentation, Version

to kick it out of – that is not a playfield switch (since when the ball is in that hole, it’s not actively
rolling around the playfield). We’ll actually set that switch up as a part of a ball device in a later step.

2. Add the rest of your coils

Next add entries for the rest of your coils, again using the operators manual as a guide if you’re
building a config for an existing machine. You don’t have to worry about pulse times at this point—just
get the coils added.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_11 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf both -X

Note that starting with this step, the actual coil, switch, and ball_device names don’t 100% match with
what we have in the tutorial. This shows you that there are lots of different options when it comes to
naming things.

Tutorial step 12: Add the rest of your ball devices

Now that you’ve added all your switches and coils, you’ll probably notice that the ball is still getting
stuck in devices on the playfield when it enters them. This is because MPF doesn’t know that certain
switches and coils are associated with ball devices, so MPF doesn’t know that it should fire a coil
when a certain switch becomes active. So the next step is to create configuration entries for the rest
of your ball devices.

The good news is that once you do this, a ball entering a device will automatically be ejected, so when
you’re done with this step, your ball shouldn’t get stuck anywhere.

To do this, take a look at all the ball devices around your playfield and then create entries for each one
in the ball_devices: section of your config file. Depending on your machine, you might have 5 or 6 of
these. (Ball devices are anything where the ball could go where it’s held and not actively rolling
around on the playfield.) At a bare minimum, you need to add ball_switches:, eject_coil:, and
eject_timeouts: settings for each ball device you add. The eject_timeouts: entry is critical, because
if a ball ejects to the playfield but then doesn’t hit a switch right away, this is the how long MPF will
wait before assuming the ball made it out of the device successfully. (Again, set this timeout to be the
longest amount of time that could pass with a ball failing to eject and falling back in.) Simple playfield
kickouts might be fine with 500ms or 750ms, and VUKs might be around 2 or 3 seconds.

After you add all your ball devices, you should be able to play a game without the ball getting stuck
anywhere! (And if you start MPF with balls already stuck in devices, MPF will automatically eject the
balls when it boots because these additional devices do not have “home” listed as one of their tags.)
Here’s the ball_devices: section from a Demolition Man config file:

ball_devices:

bd_trough:

tags: trough, home, drain

(continues on next page)

Tutorial step 12: Add the rest of your ball devices 105

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough_jam

eject_coil: c_trough_eject

entrance_count_delay: 300ms

jam_switch: s_trough_jam

eject_targets: bd_plunger

debug: true

bd_plunger:

ball_switches: s_plunger_lane

entrance_count_delay: 300ms

eject_timeouts: 3s

eject_coil: c_plunger_eject

player_controlled_eject_event: sw_launch

bd_retina_hole:

ball_switches: s_eject

eject_coil: c_retina_eject

eject_timeouts: 1s

bd_lower_vuk:

ball_switches: s_bottom_popper

eject_coil: c_bottom_popper

eject_timeouts: 2s

bd_upper_vuk:

ball_switches: s_top_popper

eject_coil: c_top_popper

eject_timeouts: 2s

bd_elevator:

ball_switches: s_elevator_hold

mechanical_eject: true

eject_timeouts: 500ms

playfields:

playfield:

tags: default

default_source_device: bd_plunger

Remember that if you need to adjust the eject coil pulse time, you do that in the coil’s property in the
coils: section of your config file, not in the ball device configuration.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_12 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf both

Tutorial step 12: Add the rest of your ball devices 106

Mission Pinball Framework Documentation, Version

Tutorial step 13: Add slingshots, pop bumpers, and other “autofire” devices

While we’re setting up the basic playfield devices, let’s configure the “autofire” devices like slingshots
and pop bumpers. (An “autofire device” is anything where you have one switch and one coil and the
switch being hit automatically causes the coil to fire.) This makes the game more fun since it’s kind of
sad to see a ball hit a slingshot and nothing happen. You add these autofire devices in the
autofire_coils: section of your machine configuration. It’s pretty simple. Just create an entry for the
name you’d like to give that device, and then add sub-entries for the switch: and coil: for that
device. For example, here’s the autofire_coils: configuration for Demolition Man, which has two
standard slingshots, and upper slingshot near the pop bumpers, and two pop bumpers (which we
happen to refer to as “jets” in this config):

autofire_coils:

left_slingshot:

coil: c_left_slingshot

switch: s_left_slingshot

right_slingshot:

coil: c_right_slingshot

switch: s_right_slingshot

upper_slingshot:

coil: c_top_slingshot

switch: s_top_slingshot

left_jet:

coil: c_left_jet_bumper

switch: s_left_jet

right_jet:

coil: c_right_jet_bumper

switch: s_right_jet

Autofire devices in MPF are somewhat intelligent. They will only be activated while a ball is in play
during a game, which means they automatically deactivate themselves during attract mode and if the
player tilts. (You can override these default settings as well as configure additional MPF events that
will cause them to activate or deactivate. See the autofire_coils: section of the configuration file
reference for details, though you don’t have to do that now.)

Remember if you want to adjust the strength of these coils, you can do that in the coil’s
default_pulse_ms: setting in the coils: section of your config.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_13 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial>mpf both

Tutorial step 14: Add your first game mode

By this point in the tutorial you should have a “playable” game, though it’s pretty boring because
there’s no scoring, no modes, and the display just shows PLAYER X BALL X the whole time.

Tutorial step 13: Add slingshots, pop bumpers, and other “autofire” devices 107

Mission Pinball Framework Documentation, Version

So in this step the real fun will begin as we configure our first game mode! So far all of the
configuration you’ve been doing has been machine-wide configuration which was stored in the /config
folder in your game’s machine folder.

All of the configuration options you added to the config.yaml applied machine-wide.

In this step, we’re going to add a /modes folder to your machine folder. Then we’ll add a subfolder for
each game mode, and in each we’ll create a YAML config file that controls what happens in that
specific mode.

What’s cool about MPF’s modes system is that all of the configuration you do for a mode is only active
when that mode is active. In fact from here on out, almost everything you configure will be at the
mode-level rather than the machine-wide level. As we go deeper into the tutorial and the How To
guides, you’ll start to get a feel for what types of things should be in the machine-wide configuration
versus the types of things that should be in mode-specific configurations. Pretty much all the
hardware (coils, switches, lights, leds, ball devices, platform, DMD, etc.) are configured as
machine-wide settings, and then game logic-type things (scoring, shots, sound effects, animations,
light shows, etc.) are configured as mode-specific settings.

MPF can have as many modes running at once as you want. In fact you’ll probably use this to your
advantage, breaking up your game into lots of little modes to make the programming easier. (Many of
these modes will not be “in your face” modes that the player is aware of. Things like skill shot, combo
timers, super jet counters, etc., will all be configured as modes even though the player wouldn’t think
of them as modes.)

1. Read the documentation about modes

The first step to setting up a game mode is to understand how game modes work in MPF. So read that
documentation now to get an overview, and then come back here for the step-by-step walk-through of
doing your first mode.

2. Set up the folders & files for your “base” mode

The first mode we’re going to create is a mode called “base.” (Don’t call it “game” because MPF has a
built in mode called “game” that you don’t want to overwrite.) This “base” mode will be running at all
times while a game is in play and can be thought of as the “default” game mode. We’ll set up default
shots, scoring, configure the display to show the score, etc. Everything in the base game mode will be
available if no other higher-priority modes are running. To create the base game mode:

1. Create a folder called modes in your machine’s folder.

2. Create a subfolder for your modes folder called base. (You will ultimately create one subfolder for
each mode you have, and the name of the folder controls the name of the mode.)

3. Inside your base folder, create a folder called config. (This folder will hold your mode-specific
config files.)

4. Inside your config folder, create a file called base.yaml. (This is the default config file for your
base mode. We use the naming scheme <mode_name>.yaml instead of config.yaml for these to
make it easier to keep track of which files are which if you open a bunch of them at once in your
editor.)

At this point your machine’s folder & file structure should look like this:

Tutorial step 14: Add your first game mode 108

Mission Pinball Framework Documentation, Version

3. Add your base game mode’s settings to its config file

The settings that control a mode are configured in the mode’s own configuration file. We do this
because it allows modes to be completely self-contained. In other words, as long as you have a mode’s
folder and all its content, then you have everything you need for that mode.

So let’s configure some settings for the base mode in the base mode’s config file. To do this, open your
new mode’s base.yaml in your code editor. Add the config_version, then create a top-level
configuration section called mode:. On the next line, indent four spaces and add the entry
start_events: ball_starting. On the following line, also indent four spaces and type priority: 100.
Your base.yaml file should now look like this:

##! mode: my_mode

#config_version=5

mode:

start_events: ball_started

priority: 100

There are lots more settings besides start_events and priority which you can set for a mode. See
mode: for details.

The two settings we added here should be pretty obvious. The start_events: ball_starting means
that this mode will automatically start when the MPF event ball_starting is posted. (In other words,
this mode will start whenever a ball starts.) You can also enter a list of stop_events to control how the
mode ends, though if you don’t enter one here then the mode will automatically stop when the ball
ends, so you don’t have to specify a stop event now.

Tutorial step 14: Add your first game mode 109

Mission Pinball Framework Documentation, Version

The priority: 100 means that everything this mode does will have a base priority of 100. We’ll create
future modes at higher priorities so they can take over the display, control lights, filter and block
scoring, etc. (You read the documentation about modes, right?)

Also, when you create your own modes, keep them between 100 and 1,000,000. MPF has some built-in
modes above and below those values that should stay at the top and bottom of the priority stack.

4. Add your mode to your machine-wide config file

Now that you have a mode set up, you need to go back to your machine- wide configuration file to add
this new mode to the list of modes that your game will use. At first you might think this is a bit
confusing. After all, you just created a folder and a config file for your new mode, so why do you have
to specify that mode in another location too?

The reason is we don’t want to automatically include a mode in a game just because that mode has a
folder in the modes folder. (After all, what if you’re testing something out, or if you have multiple
versions of a mode you’re playing with? It would be dangerous if MPF just automatically loaded every
mode it found.)

So instead we built MPF so that you have to add all the modes you want to be available in a game to a
list in the machine-wide config file. To do this, go back to your machine-wide config.yaml file (in
<your_machine>/config/config.yaml) and add a top-level section called modes:. (Like all the sections in
your config file, you can put this section anywhere you want in your file. Maybe up towards the top so
it’s easy to find later?) Then on the next line, type two spaces, then a dash, then another space, then
type base. So now that section of your config.yaml should look like this:

modes:

- base

Note that it’s very important that you put dashes in front of each mode in this list? Why? Because with
dashes, MPF will be able to combine settings together in this list from different config files.

For modes that’s important, because MPF has several built-in modes it uses for its own things. (For
example, “attract” and “game” are both modes, and we’ll be creating future ones that you might want
to use too for tilt, volume control, game statistics, high score entry, credits, etc.)

5. Run your game to verify your new mode works

Be sure to save the changes to base.yaml and config.yaml, and then run your game again. For this
test, you do not need to use verbose logging since mode information is reported in the basic level of
logging. Once MPF is running, start a game and you should see something like on the console and/or
the log file when you run mpf both -t:

INFO : Mode.attract : Mode Starting. Priority: 10

INFO : SwitchController : <<<<< switch: s_start, State:1 >>>>>

INFO : SwitchController : <<<<< switch: s_start, State:0 >>>>>

INFO : Mode.game : Mode Starting. Priority: 20

INFO : Mode.game : Player added successfully. Total players: 1

INFO : Mode.base : Mode Starting. Priority: 100

INFO : SwitchController : <<<<< switch: s_trough_1, State:0 >>>>>

INFO : SwitchController : <<<<< switch: s_shooter_lane, State:1 >>>>>

INFO : SwitchController : <<<<< switch: s_shooter_lane, State:0 >>>>>

Tutorial step 14: Add your first game mode 110

Mission Pinball Framework Documentation, Version

6. Make your base mode do something useful

We already mentioned that there are lots of different things you could add to your base mode. For
now, let’s configure the display so that it shows the player’s score, as well as which player is up and
what ball it is, like this:

To do this, go back to your base mode’s config file (<your_machine>/modes/base/config/base.yaml) and
add a section called slide_player:. Then add the following subsections so your complete base.yaml
looks like this:

##! mode: base

#config_version=5

mode:

start_events: ball_starting

priority: 100

slide_player:

mode_base_started:

widgets:

- type: text

text: (score)

number_grouping: true

min_digits: 2

(continues on next page)

Tutorial step 14: Add your first game mode 111

Mission Pinball Framework Documentation, Version

(continued from previous page)

font_size: 100

- type: text

text: PLAYER (number)

y: 10

x: 10

font_size: 50

anchor_x: left

anchor_y: bottom

- type: text

text: BALL (ball)

y: 10

x: right-10

anchor_x: right

anchor_y: bottom

font_size: 50

We briefly touched on the slide_player: functionality earlier in this tutorial and how you can
configure it to show certain slides when various MPF events happen.

Every time a mode starts in MPF, an event called mode_(name)_started is posted. So in this case, we
set our slide player entry to play when it sees the event mode_base_started which means it will play
that slide as soon as the base mode starts. (And since you configured your base mode to start based
on the ball_starting event, this means this slide will be created and shown whenever a new ball is
started.)

You may be wondering why we don’t set that slide to play on the ball_starting event? The key to
remember with game modes is that all the settings in your mode-specific config file are only active
when the mode itself is active. In the case of our base mode, the ball_starting event is what actually
causes the mode to start. When ball_starting is posted, the base mode starts and loads its
configuration. At that point that ball_starting event has already happened, so if you set a slide to play
within that mode then it will never play because it doesn’t start watching for that event until after it
happened. (Hopefully that makes sense?)

Anyway, if you look at the slide_player: settings, you’ll see that the slide that is shown when the
event mode_base_started is posted contains three text widgets. One that shows the score, one that
shows the player and one that shows the current ball number. Note that the text: entries for those
have have some words in parentheses.

Words in parenthesis signs are variables that are replaced in real time when they’re updated. In this
case these are “player variables” because they are values that belong to the current player. More on
using dynamic text (that is, text that automatically updated itself as underlying values change), is
here.

Also note that there are some additional positioning settings, like x:, y:, anchor_x:, and anchor_y:.
You can read about these in our How to position widgets on slides guide.

Finally, note that the text widget showing the score has settings for number_grouping: and
min_digits:. You can read about what those do in the documentation for the text display widget .

7. Remove the old slide_player: ball_started entry

Now that you have this cool score display from your new base mode, you can go into your
machine-wide config.yaml and remove the slide_player: entry for ball_started:. So now the
slide_player: in your machine-wide config.yaml should just look like this:

Tutorial step 14: Add your first game mode 112

Mission Pinball Framework Documentation, Version

slide_player:

init_done: welcome_slide

mode_attract_started: attract_started

What if it didn’t work?

∙ Make sure you actually start a game. Remember that this new base mode is only active when a
ball starts from a game that’s in progress, so you won’t see the mode until a game starts. (If
you’re not able to start a game, check the troubleshooting tips in the previous step.)

∙ If you get some kind of crash or error, specifically any errors that mention anything about
“config” or “path,” double-check that you put all the files in the proper locations back in Step 2.
(A common mistake is to put base.yaml in the /modes/base folder rather than the
/modes/base/config folder.)

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_14 folder.

You can run this file directly by switching to that folder and then running the following command:

C:\mpf-examples\tutorial_step_14>mpf both

Tutorial step 15: Add scoring

By now you have a “playable” game with a base game mode, and you’ve got a score showing on the
display, but it’s still pretty boring since nothing is actually configured to register a score yet. So in this
step we’re going to add some scoring.

1. Understand in scoring works in MPF

MPF includes a core module called the Variable Player which is responsible for adding (or
subtracting) points from a player’s score. Actually, that’s not a completely accurate description. We
should really say that the variable player is responsible for adding or subtracting value from any
player variable. (A player variable is just a key/value pair that is stored on a per-player basis.) The
score is the most obvious player variable. But MPF also uses player variables to track what ball the
player is on, how many extra balls the player has, etc. You can create player variables to track
anything you want. Ramps made, combos made, number of modes completed, aliens destroyed, etc.

The variable player is responsible for adding and subtracting value from any player variable based on
events that happen in MPF. You configure which events add or subtract value to which player
variables in the variable_player: section of a mode’s configuration file.

Tutorial step 15: Add scoring 113

Mission Pinball Framework Documentation, Version

2. Add a variable_player: section to your base.yaml mode config file

The first step is simply to add a variable_player: section to your base mode’s base.yaml config file.
So in this case, that will be <your_machine>/modes/base/config/base.yaml. Add a new top level
configuration item called variable_player:, like this:

variable_player:

3. Add point values for events

Then inside the variable_player: section, you create sub-entries for MPF events that you map back to
a list of player variables whose value you want to change. By default, whenever a switch is hit in MPF,
it posts an event <switch_name>_active . (A second event called <switch_name>_inactive is also
posted when the switch opens back up.) To give the player points when a switch is hit, add sub-entries
to the variable_player: section of your config file, with some switch name followed by “_active”, like
this:

##! mode: base

variable_player:

s_right_inlane_active:

score: 100

s_left_flipper_active:

score: 1000

Now save your config, start a game (S), hit the L key to launch a ball, then hit the Q key to trigger the
right inlane switch . You should immediately see a score of 100 points. Then if you hit the Z key for the
left flipper, you’ll see the player’s score increase by 1000 points. You can hit it as many times as you
want to see the score increase:

Remember from the previous step that the slide_player: section of the config contains a text widget
with a value of (score) in parentheses, and any values in parentheses are updated automatically when
the underlying player variable changes. So that’s how the display is updating automatically here.

By the way, there’s a reference list of many built-in events in the documentation, so you can browse
through that to get an idea of the various types of events that exist which you can use to trigger
display slides or score events.

Note that variable_player: events in a mode’s config file are only actually active when that mode is
active. So the section we’re adding in this step is in the base mode’s config, which we’ve set to start
any time a ball starts. But if the base mode ever wasn’t running, then the s_right_inlane_active and
s_left_flipper_active events wouldn’t trigger a score.

When you create more modes in the future, you can actually configure that a score event in a
higher-priority mode “blocks” the variable_player/scoring event in a lower-priority mode. So you could
have a pop bumper that is worth 100 points in a base mode, but then you could also make it worth
5,000 points in a super jets mode while blocking the 100 point score from the base mode since if the
scoring from both modes was active, you’d get two scoring events–the 100 from the base mode and
the 5,000 from the super jets mode. (More on that later.)

Later on you can also configure shots which can control lights and manage sequences of switches and
lots of other cool things, so that’s how you can track the ball moving left-to-right or right-to-left
around a loop, and from there you’ll be able to configure different scoring events for each direction.
(Again, we’ll get to this later. For now you can just wire up scoring to a switch to see it working.)

Tutorial step 15: Add scoring 114

Mission Pinball Framework Documentation, Version

4. Play with more player variables

As we said, you can add or subtract value from any player variable via the variable_player:
section–even player variables that you make up.

For example, try changing your scoring section to this:

we will initially set the value to 0 when the machine starts up

player_vars:

potato:

initial_value: 0

##! mode: base

in your base mode (modes/base/config/base.yaml)

variable_player:

s_right_inlane_active:

score: 100

s_left_flipper_active:

score: 1000

potato: 1

s_right_flipper_active:

potato: -2

We use the word “potato” here to illustrate that player variables can be anything. So now when the
left flipper is active, the player variable called “score” will increase by 1000, and the player variable
called “potato” will increase by one. (If you make a reference to a player variable that hasn’t been
defined before, it will automatically be created with a value of 0.)

Also notice that when the right flipper is hit, the player variable called “potato” will have a value of 2
subtracted from it.

Player variables exist and are tracked even if they’re not displayed anywhere. So if you run your game
now and start flipping, the potato value will change. Again, player variables are stored on a per-player
basis, so if you start adding additional players to the game, they’ll each have their own copies of their
own player variables. Also the player variables are destroyed when the game ends. (It is possible to
save certain variables from game-to-game, but we’ll discuss those later, as those are not player
variables.)

So now that we’re tracking this potato variable, let’s add it to the display. To do this, let’s add another
widget to the slide that is show when the base mode starts. (So we’re going to be editing
<your_machine>/modes/config/base.yaml again. Add the potato text entry, like this:

##! mode: base

in your base mode (modes/base/config/base.yaml)

slide_player:

mode_base_started:

widgets:

- type: text

text: (score)

number_grouping: true

min_digits: 2

font_size: 100

- type: text

text: PLAYER (number)

y: 10

x: 10
(continues on next page)

Tutorial step 15: Add scoring 115

Mission Pinball Framework Documentation, Version

(continued from previous page)

font_size: 50

anchor_x: left

anchor_y: bottom

- type: text

text: BALL (ball)

y: 10

x: right-10

anchor_x: right

anchor_y: bottom

font_size: 50

- type: text

text: 'POTATO VALUE: (potato)'

y: 40%

Notice that we put text: 'POTATO VALUE: (potato)' in quotes. That’s because we actually want to
show the colon as part of the text that’s displayed on the screen. However colons are important in
YAML files. So if we made our entry like this: text: POTATO VALUE: (potato), then we would get a
YAML processing error because the YAML processor would freak out. “OH MY THERE ARE TWO
COLONS?? WHAT’S THIS MEAN??? <crash>”

So we use quotes to tell it that the second colon is just part of our string.

Now you can run your game (via mpf both), S to start a game, L to launch a ball, then use the Z and /
keys to left and right flip which will adjust the potato value accordingly.

Notice that when you first start a game, the onscreen text says POTATO VALUE: (potato). That’s
because when this slide is first displayed, there is no player variable called “potato”–it’s not created
until you hit a flipper button–so the text widget doesn’t know what to do with “potato”, so it just prints
it as is. Later we’ll learn how to properly initialize variables, but the main thing for now is to see how
the scoring and slide player works.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_15 folder with the name config.yaml. You can run it be switching to that
folder and running mpf both:

C:\mpf-examples\tutorial_step_15>mpf both

Tutorial step 16: Create an attract mode display show

Now that we have a running game and some basic scoring, let’s continue to make the display more
useful by creating a slide show that plays during the attract mode and cycles through a few different
slides. (“GAME OVER”, “PRESS START”, . . . that sort of thing.)

1. Create an attract mode folder structure

So far it looks like your game only has one mode. (The base mode you created a few steps ago.) But
MPF actually has a few built-in modes that it uses to do its thing. For example, there’s a mode called
“attract” which runs the attract mode (including watching for the start button press to start a game),

Tutorial step 16: Create an attract mode display show 116

Mission Pinball Framework Documentation, Version

and there’s a mode called “game” which actually runs your games. (You may have noticed these
modes in your logs. Attract runs at priority 10 and game runs at priority 20.)

Even though the attract mode is built-in, you can still create an attract mode folder and an attract
mode config which enable you to extend the attract mode for your own use. So let’s do that now.

Go into your machine’s /modes folder (which should only have your base folder in it) and create a new
folder called attract. Now you should see two folders in your machine’s /modes folder, the base folder
and the attract folder.

Now create a /config folder in your attract folder, and then create a new config file called
attract.yaml. So the attract folder is pretty much just like the base folder, with the file attract.yaml
used to control the settings that will be used when the attract mode is active.

Finally, create a folder called /shows in your new attract mode folder, and inside that folder, create a
new file called attract_display_loop.yaml.

Your new machine folder structure should look like this:

2. Edit your show yaml file

MPF has the ability to run “shows” which are coordinated series of lights, sounds, slides, flashers,
images, videos, etc. These show files also use the .yaml file format, though they’re different than the
yaml config files. You can name the show whatever you want. In this case we called it
attract_display_loop.yaml since that pretty much describes what it does.

Note that we put this show file in a folder called “shows” in our attract mode folder. Technically you
can play any show from any mode (and you could add a machine-wide /shows folder if you want), but
we prefer to add the shows used by a mode inside that mode’s /shows folder since it keeps everything
from one mode together.

Here’s a complete sample attract_display_loop.yaml file you can use as a starting point:

#show_version=5

##! show: attract_display_loop

- duration: 3s

slides:

awesome_slide:

widgets:
(continues on next page)

Tutorial step 16: Create an attract mode display show 117

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: text

text: YOU ARE AWESOME

font_size: 50

transition:

type: push

duration: 1s

direction: left

- duration: 3s

slides:

press_start:

widgets:

- type: Text

text: PRESS START

animations:

pre_show_slide:

- property: opacity

value: 0

duration: .5s

- property: opacity

value: 1

duration: .5s

repeat: false

- type: Text

text: FREE PLAY

color: green

y: 10

anchor_y: bottom

transition:

type: move_in

duration: 1s

direction: right

- duration: 3

slides:

mission_pinball:

widgets:

- type: Text

text: MISSION PINBALL

color: red

transition:

type: move_in

duration: 1s

direction: top

- duration: 3

slides:

last_game_score_slide:

widgets:

- type: text

text: LAST GAME

font_size: 50

y: 60%

- type: text

(continues on next page)

Tutorial step 16: Create an attract mode display show 118

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: (machine|player1_score)

number_grouping: true

min_digits: 2

font_size: 50

y: 40%

##! mode: attract

First, notice the first line is #show_version=5. This is similar to the config_version in config files, except
since this is a show file, it’s “show_version”.

Next, notice that the show file is broken into steps, each beginning with a dash and then a duration:
entry. The duration: entry controls how long each step is. The default unit for this value is seconds, so
duration: 3 is valid, though you can enter standard time strings like duration: 3s or duration:
300ms, etc.

By the way, when you play back a show, you can set the playback speed. So even though all the steps
are 3 seconds long in our example show, when you play the show, you could (for example), set the
playback speed to 2.0, and each step would be 1.5 seconds instead of 3 (since it’s playing 2x as fast).

There’s a whole section of documentation on shows, so review that at some point for all sorts of
details about show files, formats, etc.

In addition to the duration: setting in each step, also notice that each step has a slides: setting. The
format and content of the slides: section of a show is identical to the slide_player: section in a
config file. (In the future you’ll see this applies to other “players”; for example, light_player: in a
config file is the same as lights: in a show, sound_player: in a config file is the same as sounds: in a
show, etc.)

Then in the slides: section of each step, we’ve added a slide name. These slides are named
awesome_slide, press_start, mission_pinball, and last_game_score_slide in the example above. The
slide names don’t really matter, but since none of these slides have been defined yet, we add a
widgets: section to each one and define them here. (The slides are only created once, the first time
they’re displayed. After that they are kept in memory so they can be used over and over. They’re only
removed from memory when the attract mode stops.)

Also notice that we added transition: settings which control how one slide transitions to the next.
Without transitions, the new slide appears instantly. But with transitions, we can make one slide move
in from the side, or cross fade, etc.

The last slide deserves special mention - it displays the score of the previous game. Player variables
such as score are only valid during a game and lose their value once the game ends. To allow access to
the score of a previous game, MPF saves this player variable to a machine variable which can be
accessed outside the running game. A discussion of this and other machine variables is found here.

3. Configure your show to play automatically

Now that you’ve created your show, we need to make it so it plays. In this case we want this show to
play whenever the attract mode is running. To do this, go back to the config file for the attract mode (
<your_machine>/modes/attract/config/attract.yaml) and add the following:

#config_version=5

##! show: attract_display_loop

(continues on next page)

Tutorial step 16: Create an attract mode display show 119

Mission Pinball Framework Documentation, Version

(continued from previous page)

##! mode: attract

show_player:

mode_attract_started: attract_display_loop

Note that we don’t need a mode: section here because those settings are already configured in the
default attract mode settings folder contained inside of MPF. So instead all we need to do is add a
show_player: entry. Like the slide_player: we’ve used in the past, the show_player: section contains
sub-sections for MPF events, and when that event is posted the shows underneath it are started.

In this case we’re going to start the show when the mode_attract_started event is posted.

You can also use the show_player: section of a config to set events that stop shows, but shows that are
started from modes automatically stop when that mode stops. (The beauty of mode-based configs!) So
in this case, the attract_display_loop will automatically stop when the attract mode stops (which it
does when a game starts).

4. Remove the attract mode stuff from your machine config

One last thing you should do here while you’re at it is go back into the machine-wide config
<your_machine>/config/config.yaml and remove the attract_started slide from the slides: section,
and the mode_attract_started entry from your slide_player: section.

OLD machine-wide config (partial):

old

slides:

welcome_slide:

widgets:

- type: text

text: PINBALL!

font_size: 50

color: red

- type: rectangle

width: 240

height: 60

attract_started:

widgets:

- text: ATTRACT MODE

type: text

slide_player:

init_done: welcome_slide

mode_attract_started: attract_started

NEW machine-wide config:

slides:

welcome_slide:

widgets:

- type: text

text: PINBALL!

font_size: 50

(continues on next page)

Tutorial step 16: Create an attract mode display show 120

Mission Pinball Framework Documentation, Version

(continued from previous page)

color: red

- type: rectangle

width: 240

height: 60

slide_player:

init_done: welcome_slide

The reason we remove this is because it’s not necessary now that we have our new attract mode
display show running.

Plus, even if you don’t remove this entry, the original “ATTRACT MODE” text from the machine-wide
config won’t show up anymore. Why? Because the attract mode runs at Priority 10, and the
machine-wide config is Priority 0. So the display show from the attract mode config will show on top of
the slide from the machine-wide config, so we may as well remove the machine-wide one.

Now when you run your game via mpf both, you should see the attract mode display show. Then when
you press Start (or the S key), everything else should proceed as it did before.

If you play through a complete game (3 balls), then when the game is over, you should see the attract
mode display show start up again.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_16 folder. You can run it be switching to that folder and running mpf both:

C:\mpf-examples\tutorial_step_16>mpf both

Tutorial step 17: Add lights (or LEDs)

Now that you’re able to run a complete (albeit boring) game, let’s get your lights or LEDs configured
and make it so they play a show while your machine is in attract mode.

If you’re following this tutorial with virtual hardware, it’s still worth doing this step because use can
use The MPF Monitor to see your lights and LEDs in realtime against a picture of your playfield.

1. Understand “lights”

In MPF, “lights” refers to bulbs that are plugged into a lamp matrix, or to direct-connected LEDs
(which are usually RGB). So lights might be either LEDs or lamps in a matrix. See “Lights” versus
“LEDs” (Some LEDs are lights?!?) for details.

2. Add your lights/LEDs to your machine config file

Once you figure out whether you have lights or LEDs, you need to add the relevant section to your
machine configuration file. There’s probably not much to explain here. Adding lights is pretty similar
to adding switches and coils.

See the relevant documentation for each for instructions how to enter them:

Tutorial step 17: Add lights (or LEDs) 121

Mission Pinball Framework Documentation, Version

∙ Lights

In the following we assume that l_light1 and l_light2 exist. If you do not have lights with that name
make sure to adjust all examples accordingly or you will run into issues.

If you would like to see a fully working example you can take a look at the two example configurations
in LEDs.

3. Create an attract mode light/LED show

Once you add your lights, you need a simple way to test them to make sure they’re working. We
typically throw together a quick attract mode light show so we can see some blinking lights as soon as
MPF boots up.

The easiest way to create a complex series of light actions is with MPF’s show functionality. This is the
exact same type of show that we use for the display loop, except this time we configure lights for each
step instead of slides.

So the first thing to do is to create another show file in your attract mode shows folders. Let’s call this
one attract_light_show.yaml. Your attract mode shows should now look like this:

Note that we started both of these file names with the word “attract”. That is certainly not required
and you can name them whatever you want. We find it’s a bit easier to add the mode name so we can
know which files are which when we have a bunch of files open in the editor at the same time.

4. Add some entries to your show

There are all sorts of things you can do with a light show file that you’ll become familiar with as you
get deeper into your game configuration. For now we’re just going to create a simple show that cycles
through three lights. We’ll call them l_light1, l_light2, and l_light3, though there’s a good chance
that you don’t have lights with those names in your machine so you’ll have to change them to names
that actually exist for you. If you have matrix lights, add entries to your attract_light_show.yaml file
so that it looks something like like this:

Tutorial step 17: Add lights (or LEDs) 122

Mission Pinball Framework Documentation, Version

##! show: attract_light_show

#show_version=5

- duration: 1

lights:

l_light2: 0

l_light1: ff

- duration: 1

lights:

l_light1: 0

l_light2: ff

- duration: 1

lights:

l_light2: 0

l_light3: ff

- duration: 1

lights:

l_light3: 0

l_light2: ff

Matrix lights don’t have color setting since their color is determined by the color of the bulb and/or
the color of the insert. So the 0 and ff values here just represent “off” (0) and “on” (255). If you look
at the four steps in this show, you’ll see the first step turns off l_light2 and turns on l_light1, the next
one turns l_light2 and turns off l_light1, etc. In other words, if this show runs in a loop you’ll get a
never ending 1-2-3-2-1-2-3-2-1-2-3-2. . . pattern. If you have RGB LEDs, then you can have some more
fun and actually specify different colors for each light at each step. For example, if you just wanted to
have a show that cycled three RGB LEDs through the colors of the rainbow, you could create a show
like this:

##! show: attract_light_show

#show_version=5

- duration: 1

lights:

l_led1: red

l_led2: red

l_led3: ff0000

- duration: 1

lights:

l_led1: ff6600

l_led2: ff6600

l_led3: ff6600

- duration: 1

lights:

l_led1: ffcc00

l_led2: ffcc00

l_led3: ffcc00

- duration: 1

lights:

l_led1: lime

l_led2: 00ff00

l_led3: 00ff00

- duration: 1

lights:

l_led1: blue

l_led2: 0000ff

(continues on next page)

Tutorial step 17: Add lights (or LEDs) 123

Mission Pinball Framework Documentation, Version

(continued from previous page)

l_led3: 0000ff

- duration: 1

lights:

l_led1: ff00aa

l_led2: ff00aa

l_led3: ff00aa

Obviously this is just the very beginning of what you can do. You can create shows that are hundreds
of steps involving dozens of lights. (Notice that if you don’t specify a change for a particular light for a
step then that light just stays at whatever it was before. In other words, you only have to enter the
new values for the lights that change each step-—you don’t have to enter all the lights from scratch
every step.)

Again, notice that for the color of the LEDs, you can specify a color either in the form of a string name
or a 6-digit hex color codes. If you go with names, you can use any of these colors.

5. Configure your show to play

This new show file is just like your existing display show, except this one contains settings for lights.
So to get it to play, add it to the show_player: section of your attract mode config file, set to play on
the mode_attract_started event just like the display show.

The only catch here is that the YAML file cannot have the same setting entered twice. (If you did this,
the second one would overwrite the first one which would be really confusing. In fact if MPF sees that,
MPF will exit and print a warning about the duplicate so you can fix it.)

MPF offers a way around this though, in that you can add a .1 to the end of the event name, like this:

##! mode: test_mode

#config_version=5

show_player:

mode_attract_started: attract_display_loop

mode_attract_started.1: attract_light_show

Adding the .1 doesn’t really affect anything in terms of how this works, it just makes it so this is valid
YAML and both entries get set. (And you can have more than one, .2, etc. In fact you can have any
number, they don’t have to be in order or anything.

You also might be wondering why we don’t just make a single attract show and put the slides and
lights in the same show?

Certainly that’s possible, but we like to keep things separate, as this will let you start and stop them
on their own, and it will make it easier to tweak things (like the playback speed) of one thing without
breaking other things.

Save your files, and run your game. You should see your light show and the display show start playing
once the attract mode starts up.

If you’re using the virtual interface without a real pinball machine, this is probably a good time to use
the MPF Monitor to see that the light show is actually working. (Expand the “light” or “LED” section
in the devices window to see your lights and watch the colors cycle.

Tutorial step 17: Add lights (or LEDs) 124

http://htmlcolorcodes.com/color-names/

Mission Pinball Framework Documentation, Version

6. Speed things up

While it’s cool that the show is working, it’s kind of lame because it runs so slow with 1 second
between steps. So let’s speed it up.

You could go into your show and adjust the duration: of each step, but that’s kind of a pain since you
have to change every single step, and it makes it annoying when you’re playing with different values.

Instead, we like to tweak the playback speed of the show which is something we can do in the
show_player: entry. (In fact, we almost always use the duration values in shows as a sort of “relative”
duration of one step to another, and then set the actual speed at play time.

So if we want each step to be 1/4th of a second, we need to play the show at 4x the speed. Simple, just
add a speed: 4 to the show_player entry.

#config_version=5

show_player:

mode_attract_started: attract_display_loop

mode_attract_started.1: attract_light_show

speed: 4

don't try this, it won't work

If you try to run MPF with the config above, MPF will halt with the following error (scroll to the right
to see it all):

ValueError: YAML error found in file /mpf-examples/tutorial_step_17/modes/attract/config/attract.yaml.␣

→˓Line 6, Position 10

What gives?

The problem is that entries in YAML files can be either setting names and values or section names
with subsections, but not both. So in the example above, it sees mode_attract_started.1:
attract_light_show as a setting name and value, but then it also sees speed: 4 indented under it. The
YAML processor doesn’t know what to do?

To fix this, we need to make a slight change to our YAML file, like this:

##! mode: test_mode

#config_version=5

show_player:

mode_attract_started: attract_display_loop

mode_attract_started.1:

attract_light_show:

speed: 4

What we’ve done is moved the show name (attract_light_show) under the event name
(mode_attract_started.1), and then we added the speed setting under there.

If you wanted to, you could consolidate the duplicate mode_attract_started entries like so:

##! mode: test_mode

#config_version=5

show_player:

mode_attract_started:

attract_display_loop:

(continues on next page)

Tutorial step 17: Add lights (or LEDs) 125

Mission Pinball Framework Documentation, Version

(continued from previous page)

speed: 1

attract_light_show:

speed: 4

Either option is fine, and you’ll probably end up with both techniques scattered throughout your
configs.

7. Configure more light shows to all run at once

The simple light show with two or three lights is a good first step, but it’s hardly what could be
considered a “real” attract mode light show. Unfortunately if you look at a real pinball machine, you
might be overwhelmed by all the crazy light action. But if you really look closely, you’ll realize that the
super-complex looking light shows on real pinball machines are just lots of little shows all running at
the same time.

For example, look at how we can break down the attract mode light show of Demolition Man:

https://youtu.be/_h_rhHExmX4

So if we were creating the attract mode light show like this for MPF, we would actually create lots of
little shows each with just a few lights in them. Then we’d end up with a list of show files, like this:

∙ flipper_red_flashing.yaml

∙ purple_mode_sweep.yaml

∙ inlane_alternating.yaml

∙ random_flashing.yaml

∙ car_chase_sweep.yaml

∙ ramp_orbit_sweep.yaml

∙ right_orbit_sweep.yaml

∙ claw_sweep.yaml

∙ mtl_sweep.yaml

∙ center_ramp_sweep.yaml

∙ standups_sweep.yaml

Again, we’d make every step of every show have a duration of 1. Then in our show_player:
configuration, we’d configure the list of shows to play when the attract mode starts instead of just one.
For example:

show_player:

mode_attract_started:

attract_display_loop:

speed: 1

flipper_red_flashing:

speed: 2

purple_mode_sweep:

speed: 4

inlane_alternating:

speed: 3

(continues on next page)

Tutorial step 17: Add lights (or LEDs) 126

https://youtu.be/_h_rhHExmX4

Mission Pinball Framework Documentation, Version

(continued from previous page)

random_flashing:

speed: 2

car_chase_sweep:

speed: 3

ramp_orbit_sweep:

speed: 5

...(truncated. you get the idea)

(If you were really duplicating the Demolition Man attract mode light show, you’d also want to
implement a play list which plays sets of shows in timed sequences since the real machine does one
thing with the lights for a few seconds, then another, etc.

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_17 folder with the name config.yaml. You can run it be switching to that
folder and running mpf both:

C:\mpf-examples\tutorial_step_17>mpf both

Tutorial step 18: Add your first shot

At this point you have a machine you can turn on, lights flash, the display works plays, you can hit
start, you have a base mode with some simple scoring, and you can play complete games. Not bad! In
this step we’re going to introduce you to a key MPF concept called “shots”, which is an important
concept in MPF and something that you’ll use a lot when you’re putting together your game logic.

1. What’s a shot?

First, take a look at the introduction to shots documentation to understand what a shot is.

2. Create your first shot

To define your a shot, you add a shots: entry to a config file in a mode, and then under there, you set
the switch, timing, and other details that make up that shot.

You’d typically define your shots per mode, since the behavior differs depending on the mode. If you
want a shot to be available in every mode you can also put them in the base mode which is usually
active all the time.

Note: Before 0.30 you could define shots per machine-wide. This caused very complex configs and is
no longer supported. You can put shots into your base mode if you want them to be active all the time
during a game.

Let’s start by creating our first shot in the base mode’s config file (base.yaml).

Tutorial step 18: Add your first shot 127

Mission Pinball Framework Documentation, Version

##! mode: base

shots:

my_first_shot:

switch: s_right_inlane # pick a switch that's valid in your machine

Depending on your machine, you might not actually have a switch called “s_right_inlane”, so feel free
to pick a different switch name. For now just keep it simple—a standup or a lane switch or something.

Also, to make following the tutorial easier, go ahead and call this shot “my_first_shot” even if you’re
using a different switch name. You can change the name of the shot to something more meaningful
later.

Next, find the variable_player: section that you added in Step 15, and change the first entry from
s_right_inlane_active: to my_first_shot_hit, like this:

##! mode: base

variable_player:

my_first_shot_hit: # this was s_right_inlane_active

score: 100

s_flipper_lower_left_active:

score: 1000

potato: 1

s_flipper_lower_right_active:

potato: -2

Do you understand what this is doing?

Remember that the variable_player section will add (or remove) value from a player variable when
certain events happen. So the OLD entry from Step 15 would increase the score by 100 points when
the event “s_right_inlane_active” happened, and the NEW entry changes that so the 100 points are
added when the event “my_first_shot_hit” happens.

This illustrates something to know about shots: Whenever a shot is “hit”, then an event is posted with
the name of the shot plus “_hit” added onto it.

So in this case, the shot “my_first_shot” will post then event “my_first_shot_hit” whenever that shot is
made.

If you save your changed config file and run MPF again, start a game with the S key, then hit the right
inlane switch with the Q key, you should see the player’s score increase by 100 points.

So it kind of looks like nothing really changed, except now we’re using a real shot instead of scoring
based on the switch entry.

At this point you might think that this is overly complicated. After all, everything worked fine before
without having to mess with shots and all, so why bother?

Again, this is just a simple example to get you started. The real power of shots comes in as you define
more complex shots, as you get into shot profiles (doing different things depending on the state of the
shot), and enabling, disabling, blocking, and overriding shots based on different modes.

3. Change the shot profile

Every shot in MPF has a “shot profile” applied to it. (Since we didn’t specify a profile in the shot we
just created, it uses a default profile called, wait for it. . . “default”.)

Tutorial step 18: Add your first shot 128

Mission Pinball Framework Documentation, Version

A shot profile is a list of steps (or states) for a shot. For example, the default profile (which is built-in
to MPF) has two states:

1. unlit

2. lit

When a new game starts, the shots in MPF start at the first step of the profile. In other words, the shot
called “my_first_shot” starts in the “unlit” state. Then, when the shot is hit, the profile is advanced to
the next step. (So when “my_first_shot” is hit, that shot advances from the “unlit” to the “lit” state.)

You can apply the same profile to multiple shots (and the state of each shot is tracked separately), so if
you have “my_first_shot” and “my_second_shot”, they both start “unlit”, but if you hit
“my_second_shot”, then it advances to “lit” but “my_first_shot” stays in the “unlit” state.

Shot profiles have all sorts of settings (which we’ll get to in a bit), including options for what happens
when the shot is hit when it’s in the final state—does it just stay there or does it go back to the first
state? (The built in “default” shot profile will stay in the lit state even if it’s repeatedly hit.)

Also, tracking which state a shot is at is done on a per-player basis, so if Player 1 advances a shot from
“unlit” to “lit”, then when Player 2 starts, that shot will be back in the “unlit” state.

One of the cool things about shot profiles is you can tie them to shows, and then when you define your
shots, you can specify how those shows are played. In other words, you can associate a light or LED
with your shot, and then that light will be off when the shot is “unlit” and then turn on when the shot
is lit.

Let’s do that now.

3a. Associate a light/led with your shot

To do this, go back to the mode config where you defined the shot (base.yaml) and change the shots:
section.

If you have LEDs in your machine, change it to this:

##! mode: base

shots:

my_first_shot:

switch: s_right_inlane

show_tokens:

led: led_1 # pick an LED that's valid in your machine

If you have a lamp matrix, change it to this:

##! mode: base

shots:

my_first_shot:

switch: s_right_inlane

show_tokens:

light: l_light_quick_freeze # pick a light that's valid in your machine

In either case, be sure to pick an LED or light name that is a valid light in your machine.

For now don’t worry about what “show_tokens” is or what’s happening. (We’ll get to that.)

Save your config, then re-run MPF and start a game. The light or LED you picked should be off.

Tutorial step 18: Add your first shot 129

Mission Pinball Framework Documentation, Version

Now hit the switch for the shot. You should see the 100 point score increase, and you should also see
the light or LED turn on. (If it’s an RGB LED, it will turn on white. We can change that later.)

If you hit the switch again, you’ll still get 100 points each time (since the “my_first_shot_hit” is
happening each time), but the light won’t turn off since the shot is staying in the “lit” state since the
default shot profile isn’t configured to go back to the first step when it gets to the last step.

3b. Create a custom shot profile

Next, let’s create a custom shot profile that has more than the “lit” and “unlit” steps.

To do this, we’ll add a section to the mode’s config file (base.yaml) called shot_profiles:. Create that
section now, and define a shot profile called “my_first_profile” with the following settings:

##! mode: base

shot_profiles:

my_first_profile:

states:

- name: unlit # step 1

show: off

- name: flashing # step 2

show: flash

- name: lit # step 3

show: on

loop: true

Take a look at this shot profile to see what’s happening.

First, notice that in the my_first_profile: section, there’s a subsection called “states”. This is a list of
all the states (steps) that shots will use when this profile is applied. (Note the dashes to separate each
step.)

The states/steps are listed in the order they’ll cycle through as the shot is hit.

Each step has a name: setting which is the name of the step (or, more accurately, the name of the state
that shot is in when a shot with that profile applied to it is at the step).

Also notice that each step has a show: setting. This is the name of the MPF show (just like display
show we created in Step 16 or the light show we created in Step 18). These shows need to be valid
shows within MPF. In this case we’re using shows named “off”, “flash”, and “on”, as those are valid
names for three shows that are built-in to MPF.

What’s basically happening here is that when a shot with this profile applied is at the first step of the
profile, the state name will be called “unlit” and the show called “off” will be played. Then when the
shot is hit, it will advance to the next step, which is called “flashing” in this case. The show called
“unlit” will be stopped, and then the show called “flash” will be played. If the shot is hit again, it will
advance to the “lit” state, the “flash” show will stop, and the show called “on” will be started.

This shot profile also includes a loop: true setting that means when a shot is hit that’s in the last step
of the profile, it will loop back to the first step. (So hitting the shot when it’s lit means the shot will
loop back to “unlit”.)

3c. Apply the new profile to the shot

Simply creating a shot profile doesn’t mean that any shots use it. It just means that profile is available
to be used, much like how creating a show is separate from playing the show.

Tutorial step 18: Add your first shot 130

Mission Pinball Framework Documentation, Version

So next we need to tell our shot that it should use the new profile we just created by adding a profile:
setting.

##! mode: base

shots:

my_first_shot:

switch: s_right_inlane

show_tokens:

led: l_led1 # or use light: here, depending on your machine

profile: my_first_profile

Save your config and re-run MPF. Once you start a game, the light or LED from your shot should be
off. Hit the switch for the shot, and the light or LED should starting flashing. (It will be slow—1
second on, 1 second off.) Hit it again, and it should go on solid. Hit it again and the shot will go back
to the “unlit” state. Hit it again and the light or LED should flash. Etc.

Note that you must actually start a game for this to work. Shots are only active when games are in
progress, and the state is tracked per-player which means that players must exist, etc.

If you play a multi-player game, you should see that the state of that shot is maintained and restored
separately for each player.

3d. Apply custom scoring based on state

Remember that the scoring: section of the base mode config scores 100 points each time that shot is
hit. So as you’re hitting the switch over and over to cycle through the states, each time you do that the
player gets 100 points.

That scoring entry is based on the my_first_shot_hit, which is generated every time that shot is hit
since shots make events in the form <shot_name>_hit.

However, each time a shot is hit, there’s two ADDITIONAL events posted which are
<shot_name>_<profile>_hit and <shot_name>_<profile>_<state>_hit.

For example, when you start a new game with the shot and shot profile we’ve been working with,
when you hit the switch for that shot, three shot-related events will be generated:

∙ my_first_shot_hit (shot + “hit”)

∙ my_first_shot_my_first_profile_hit (shot + profile + “hit”)

∙ my_first_shot_my_first_profile_unlit_hit (shot + profile + state + “hit”)

When you hit that same shot a second time, the following three events will be generated: The first two
are the same since they’re based on shot name and profile name, but the last one is different because
the shot’s state is different.

∙ my_first_shot_hit (shot + “hit”)

∙ my_first_shot_my_first_profile_hit (shot + profile + “hit”)

∙ my_first_shot_my_first_profile_flashing_hit (shot + profile + state + “hit”)

Hitting that shot again will generate the following three events:

∙ my_first_shot_hit (shot + “hit”)

∙ my_first_shot_my_first_profile_hit (shot + profile + “hit”)

∙ my_first_shot_my_first_profile_lit_hit (shot + profile + state + “hit”)

Tutorial step 18: Add your first shot 131

Mission Pinball Framework Documentation, Version

And so on. . .

Now let’s look at how we can give the player a different number of points when they hit that shot
depending on what state the shot’s in.

Here’s the existing variable_player section from the base mode config:

##! mode: base

variable_player:

my_first_shot_hit:

score: 100

s_flipper_lower_left_active:

score: 1000

potato: 1

s_flipper_lower_right_active:

potato: -2

Again, the player gets 100 points each time that shot is made regardless of what state it’s in since the
scoring event is the generic shot hit event which does not include details of what state the shot is in.

Now let’s change the variable_player section to this:

##! mode: base

variable_player:

my_first_shot_my_first_profile_unlit_hit:

score: 100

my_first_shot_my_first_profile_flashing_hit:

score: 1000

s_flipper_lower_left_active:

score: 1000

potato: 1

s_flipper_lower_right_active:

potato: -2

We changed the name of the event for the first variable_player entry from “my_first_shot_hit” to
“my_first_shot_my_first_profile_unlit_hit”. This means those 100 points will only be added if that shot
is hit while it has the “my_first_profile” applied AND while that profile is in the state “unlit”.

The next entry, for 1000 points, will only be called when that shot is hit with “my_first_profile” applied
while it’s in the state “flashing”.

Save your config and run your game. If you hit the switch for the shot, you should get 100 points and
the light should start flashing. Hit it again, and you should get 1000 points and the light should turn
on steady. Hit it a third time, and you should get no points, but the light will also turn off since the
profile is set to loop and it will go back to the first (unlit) state.

In other words, hitting the Q key (or the actual switch if you have a real machine) should result in the
following sequence of total score (one for each hit): 100, 1100, 1100, 1200, 2200, 2200, 2300, 3300,
3300. . .

4. Add a second mode and score the shot from there

One of the most powerful features of shot profiles is that shots can have multiple profiles defined at
the same time (with each active mode having the ability to apply its own profile).

Tutorial step 18: Add your first shot 132

Mission Pinball Framework Documentation, Version

To illustrate this, we’re going to create a new mode, called “mode2”. So go ahead and create a mode2
folder in your modes folder, then add the config folder into that folder, and then create the mode2.yaml
mode configuration file for that mode.

Open up the mode2.yaml file and add the following lines. (We’ll explain them step-by-step next.)

##! mode: mode2

#config_version=5

mode2 config file

mode:

start_events: mode2_start

stop_events: mode2_stop

priority: 200

widgets:

mode2_start_banner:

type: text

text: MODE 2 STARTED

font_size: 50

color: lime

y: 80%

expire: 1s

widget_player:

mode_mode2_started: mode2_start_banner

variable_player:

my_first_shot_hit:

score: 1

Remember that you also have to go back into your machine-wide config file to add the new - mode2
entry to your modes: section. While we’re in there, let’s also add keyboard: entries for some events we
can use to stop and start the mode.

Here are changes you’ll make to the machine-wide config file:

from the machine-wide config.yaml file

modes:

- base

- mode2

...

keyboard: # existing keyboard entries not shown.

n:

event: mode2_start

m:

event: mode2_stop

Now save your files and run your machine. Then press the following keys:

∙ S - starts the game

∙ Q - hits your shot, score jumps to 100

∙ Q - hits your shot, score jumps to 1100

Tutorial step 18: Add your first shot 133

Mission Pinball Framework Documentation, Version

∙ N - starts mode2. You should see a 1-second green message showing this

∙ Q - hits your shot, score jumps to 1101

∙ Q - hits your shot, score jumps to 1202

You can press M to stop mode2 (though there is no on-screen message) and then continue to hit Q and
notice the score jumps through the [+100, +1000, 0] cycle over and over.

You can press N again to start mode2 and notice that every time you press Q, you the score increases
+1 (in addition to the [+100, +1000, 0] from the base mode.

Press M to stop mode2 again and notice that the +1 scoring stops.

So what’s happening here?

First, notice that in the mode2.yaml file, we configured the following variable_player entry:

##! mode: mode2

variable_player:

my_first_shot_hit:

score: 1

Notice that that variable_player entry is just based on “my_first_shot” being hit. It does not contain
any of the profile or state information in it, which means that it will always score the +1 regardless of
the state of that shot.

Of course even while mode2 is running, the base mode is also running. That means that when both
modes are running, mode2 is always scoring +1 per hit, and the base mode is cycling through the
[+100, +1000, 0] scoring depending on what state the shot is in.

When you stop mode2 (with the M key), that removes the scoring from mode2, but since the base mode
is still running, you still get the scoring from there.

5. Configure a new shot profile in mode2

In the previous step, we added a new mode and accessed the shot from within that mode, but that new
mode still used the same shot profile as the base mode.

However, it’s also possible to create a brand-new shot profile in a mode that will be applied to the shot
when that mode is active.

This is useful if you want to “override” a shot profile from a lower mode based on a higher priority
mode. For example, maybe you have a stand-up target in your base mode that you’re using for some
basic scoring. But then in a jackpot mode, you want that target to flash a light instead of just the
regular on/off behavior from the base mode. You would do this by applying a different shot profile in
the jackpot mode.

To illustrate this, open up your mode2.yaml file and:

1. Updated the variable_player: section from the example below

2. Add the shots: section from below

3. Add the shot_profiles: section from below

##! mode: mode2

snippet from mode2.yaml

variable_player:

(continues on next page)

Tutorial step 18: Add your first shot 134

Mission Pinball Framework Documentation, Version

(continued from previous page)

my_first_shot_mode2_flashing_hit:

score: 10000

my_first_shot_mode2_lit_hit:

score: 100

shots:

my_first_shot_mode2:

switch: s_right_inlane

profile: mode2

shot_profiles:

mode2:

states:

- name: flashing

show: flash

speed: 5

- name: lit

show: on

loop: false

block: true

Save your files and run your game again, pressing the following keys:

∙ S - starts the game

∙ Q - hits your shot, score jumps to 100,

∙ Q - hits your shot, score jumps to 1100

∙ N - starts mode2. You should see a 1-second green message showing this

∙ Q - hits your shot, score jumps to 11,100

∙ Q - hits your shot, score jumps to 11,200

∙ Q - hits your shot, score jumps to 11,300

∙ M - stops mode2

∙ Q - hits your shot, no score change

∙ Q - hits your shot, score jumps to 11,400

∙ Q - hits your shot, score jumps to 12,400

Let’s deconstruct the changes to the mode2.yaml config file too see what’s going on.

First, notice that we added a shots: section and then added “my_first_shot” to it, like this:

##! mode: mode2

shots:

my_first_shot:

profile: mode2

However, unlike the “my_first_shot” entry in the base mode config, in the mode2 config we did NOT
redefine the switch: or show_tokens: entries. Instead, we just added the profile: setting and told it
to use a profile called mode2.

Tutorial step 18: Add your first shot 135

Mission Pinball Framework Documentation, Version

So what this means is that we’re not creating a new shot or changing the configuration of the shot,
rather, we’re just saying that when mode2 is active, we want to apply a different shot profile to the
shot. (Remember that settings from mode configuration files are only active when that mode is active.)

Next, take a look at the shot_profiles: section:

##! mode: mode2

shot_profiles:

mode2:

states:

- name: flashing

show: flash

speed: 5

- name: lit

show: on

loop: false

block: true

In this case, we defined a profile called mode2 which has two states: “flashing” and “lit”. (These state
names could be whatever you want, “incomplete” and “complete” or whatever.) Note also that we
added speed: 5 to the flashing step. That setting will be applied to the “flash” show when it’s played,
and you can use any of the show_player: settings there. In this case that will play the show at 5x
speed, so we’ll see a very fast flashing.

Also note that we added block: true to this profile. That means that when this profile is active, any
shot profiles from lower priority modes will be disabled. Since mode2 runs at priority 200, the profile
“my_first_profile” which we assigned in the base mode config (base.yaml) will be blocked.

And, since the variable_player events in the base mode are based on the shot being hit with the
“my_first_profile” applied, this is why when mode2 is running, we don’t get the variable_player events
from the base mode. Those events are not posted because my_first_profile is not active because the
higher priority profile attached to the shot in mode2 is blocking it.

If you were to remove the block: true from the mode2 profile in the mode2 config, then when you hit
the shot while mode2 was active then you would get the scoring from both the base mode and mode2
mode applied.

(not done writing yet. . .)

Next steps to write

∙ Show tokens

∙ Shot groups

∙ advancing shots

∙ shot reset events

Check out the complete config.yaml file so far

If you want to see a complete config.yaml file up to this point, it’s in the
mpf-examples/tutorial/step_18 folder. You can run it be switching to that folder and running mpf both:

C:\mpf-examples\tutorial_step_18>mpf both

Tutorial step 18: Add your first shot 136

Mission Pinball Framework Documentation, Version

Even if you have real hardware, it’s probably worth running the MPF Monitor which will show you the
events as they’re posted that correspond to the shot being hit and it changing profiles.

Tutorial step 19: Testing your machine

Before you continue with your machine, we want to take a moment to let you know about MPF’s
automated testing features.

One of the cool things about MPF is that you can write “tests” which actually launch and run MPF and
your machine config and then check to make sure everything is alright. These tests can hit switches
and check to make sure that coils fired, or that lights are the right color, or that a certain mode is
running, or that certain text is on the display, etc.

What’s great about these tests is that they’re easy to write, so you can write them bit-by-bit as you’re
creating your MPF config files. Eventually you’ll have tests that cover hundreds of little things, and
you can run them every time you change something in your config. Then down the road when your
config is very advanced, you might be changing something in one area that accidentally breaks
something else. (Maybe a mode doesn’t stop properly so an unrelated playfield light is the wrong
color.) Without tests, you might only find the bug after hours of play, but with the tests, you’ll know
immediately that something isn’t right.

The only “catch” with the tests is that they’re written in Python, so you have to learn a little Python to
be able to use them. If you don’t want to worry about tests right now because you’re just learning
MPF or just getting started, that’s fine. No problem! But we wanted to make sure that you knew that
these automated tests were available.

We have a tutorial which explains how to write tests on our developer site which follows this general
tutorial (that you’re reading now) 1-to-1. In other words, Step 2 in the MPF tutorial created an empty
config file and got MPF up and running with the attract mode active, and Step 2 in the test writing
tutorial shows how to write a test that verifies everything is ok.

In fact we have tests for every step in the tutorial in the MPF Examples repository. (That’s what’s in
the “tests” folder in each step’s machine folder.) You can even run the tests yourself (even if you don’t
know Python or don’t know how to write tests) to verify that the config files you typed in are entered
correctly.

More information about writing unit tests for your machine, as well as the test writing tutorial, is
available here: http://developer.missionpinball.org/en/dev/testing/writing_machine_tests.html.

Overview video about testing your machine:

https://youtu.be/DPX-1FbBaYM

Tutorial step 20: Next steps

So you got a basic running machine. Where to go next?

∙ Setup the MPF monitor for faster development and light show testing

∙ Try the service cli to debug all kinds of stuff

∙ Configure your remaining mechs.

∙ Add more game logic (more modes)

Tutorial step 19: Testing your machine 137

http://developer.missionpinball.org/en/dev/testing/writing_machine_tests.html
https://youtu.be/DPX-1FbBaYM

Mission Pinball Framework Documentation, Version

Video about how to structure your modes:

https://youtu.be/JLgeGBc03bM

Video about developing your game without hardware:

https://youtu.be/7XmIIhzEREk

Tutorial step 20: Next steps 138

https://youtu.be/JLgeGBc03bM
https://youtu.be/7XmIIhzEREk

CHAPTER6

MPF compatible control systems / hardware

MPF controls a pinball machine by interfacing to a modern pinball control system. (See the MPF
Overview for details.) MPF itself is hardware-independent, meaning that MPF (and the configs and
code you build) runs on a normal/embedded PC and can work with lots of different kinds of control
systems and hardware devices.

Not only does this give you a choice of what type of pinball control hardware you want to use, it also
means that you have the flexibility to change your hardware at any time without having to change any
game code. You could even release a game code update that works on multiple platforms—all with the
same code!

Here’s a demo video of us switching out a P-ROC controller for a FAST controller in 3 minutes and
running the same game code on both:

https://youtu.be/_Zw_cHw2CXY

It’s possible to mix-and-match multiple types of hardware in a single MPF machine config. For
example, you could combine the SmartMatrix RGB DMD with a FAST Core controller, or a FadeCandy
LED controller with a P-ROC, etc. (You can even mix-and-match platforms within the same type of
device, meaning you could have some LEDs attached to a FAST Pinball controller and others attached
to a FadeCandy. See the Mixing-and-Matching hardware platforms guide for details.)

MPF currently supports the following hardware control systems. We are always adding more, so if
there’s a hardware device that you’d like to use that we don’t support, let us know. (Or better yet,
write your own interface to it and submit a pull request to the MPF codebase!)

Also see our guide on voltages found in a pinball machine.

List of supported control systems & hardware

Here’s a list of all the different types of control systems and hardware that MPF currently supports. If
there’s a type of hardware you’d like us to support that you don’t see on this list, please post a
message to the MPF Users Google Group and we’ll go from there.

139

https://youtu.be/_Zw_cHw2CXY
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Primary control systems

You’ll need to pick one of these three as the main interface between MPF and your pinball machine.

∙ Open Pinball Project (OPP) controllers

∙ Gen 2 OPP hardware, with many combinations of wing boards for drivers, switches,
switch matrix, LEDs & incandescent lights

∙ CobraPin Pinball Controller

∙ Arduino Pinball Controller (APC)

∙ New in MPF 0.53

∙ System 3 to System 11c

∙ Segment displays

∙ External sounds

∙ Switches, rules and coils

∙ Lights and enable triggers

∙ LISY

∙ New in MPF 0.50

∙ Gottlieb System 1 (LISY1)

∙ Gottlieb System 80 (LISY80)

∙ Bally and Stern Games manufactured from 1977 to 1985 (LISY35) New in MPF 0.53

∙ Segment displays

∙ External sounds

∙ Switches, rules and coils

∙ Lights and enable triggers

∙ Multimorphic

∙ P-ROC with PDB driver boards (PD-16, PD-8x8, PD-LED)

∙ P-ROC in all supported existing machines (Williams, Stern, etc.)

∙ P3-ROC with PDB driver boards (PD-16, SW-16, PD-LED)

∙ Plasma & LED mono DMDs (P-ROC)

∙ Accelerometer-based tilt (P3-ROC)

∙ I2C slave boards (see below for which I2C boards are supported) (P3-ROC)

∙ Alphanumeric displays via aux port (P-Roc)

∙ FAST Pinball

∙ Core Controller, Nano Controller, WPC Controller

∙ 0804, 1616, 3208 I/O Boards

∙ Servo controller daughter board

∙ Power Filter Driver Board coin-door interconnect

List of supported control systems & hardware 140

Mission Pinball Framework Documentation, Version

∙ Plasma & LED mono DMDs (Core & WPC controllers)

∙ FAST RGB LED-based DMD

∙ Stern SPIKE / SPIKE 2 machines

∙ New in MPF 0.33

∙ A computer running MPF can directly connect to a SPIKE machine with a simple “USB
to serial” converter which you plug into the SPIKE main board.

∙ Penny K Pinball PKONE Platform

∙ Nano Controller

∙ PKONE Extension (switches, coils, rules, servos)

∙ PKONE Lightshow (simple LEDs, WS281x RGB/RGBW LEDs)

∙ Virtual (software-only) controllers

∙ MPF includes virtual hardware interfaces you can use to run MPF when it’s not
connected to physical hardware. (This is good for working on your game when you’re
not around your machine, or if you don’t have real hardware yet.)

∙ You can also integrate MPF with a Virtual Pinball (VPX) table to play your game with
simulated hardware.

∙ The MPF Monitor is a graphical tool you can also use to visually interact with MPF
which is especially useful if you’re not using MPF with physical hardware.

Additional supported hardware

The following hardware devices can be combined with primary control sytstems to provide additional
functionality.

∙ Snux System 11 driver board

∙ Supported in combination with the P-ROC or FAST WPC controller

∙ Supported for System 11, 11A, 11B, 11C

∙ Should work in Data East machines too, though it’s never been tried

∙ I2C Servo Controllers

∙ Servos connected to I2C-based servo controllers

∙ Fadecandy RGB LED controllers

∙ 512 RGB LEDs per Fadecandy

∙ Can connect multiple Fadecandys to support more LEDs

∙ Pololu Maestro servo controllers

∙ Supports up to 24 servos per board

∙ SmartMatrix RGB LED display controller

∙ Supports a “real” color DMD made up of RGB LED matrix

∙ RGB.DMD RGB LED display controller

∙ Supports a “real” color DMD made up of RGB LED matrix

List of supported control systems & hardware 141

Mission Pinball Framework Documentation, Version

∙ MyPinballs Segment Display Controller

∙ New in MPF 0.50

∙ Alphanumeric segment displays

∙ Also supports TNA Numeric Score Displays

∙ Light Segment Displays

∙ Control segment displays via light outputs or driver on another platform

∙ BCD segment displays

∙ 7-segment displays

∙ Serial driven displays

∙ RGB segment displays

∙ Other formats and custom built displays

∙ Trinamics StepRocker

∙ New in MPF 0.50

∙ StepRocker stepper controller

∙ Raspberry Pi

∙ New in MPF 0.50

∙ Local (MPF on the RPi) or remote via ethernet

∙ All inputs and outputs

∙ I2C and SPI

∙ PIN2DMD RGB DMD

∙ New in MPF 0.54

∙ 128x32 or 192x64 RGB LED DMD

∙ Connected via USB

∙ Native I2C on Linux

∙ New in MPF 0.50

∙ I2C devices on any nativ I2C bus

∙ MMA8451-based accelerometers

∙ New in MPF 0.50

∙ Connected to I2C

∙ Pololu Tic

∙ New in MPF 0.52

∙ Stepper controller connected to USB

∙ Open Sound Control (OSC)

∙ Control lights via OSC (i.e. your DMX controller)

∙ Receive incoming switch changes (i.e. from your MIDI keyboard)

List of supported control systems & hardware 142

Mission Pinball Framework Documentation, Version

∙ Receive incoming events (i.e. from your MIDI keyboard)

∙ Send events to OSC (to generate sounds or trigger actions)

There is a hardware roadmap for other hardware which we want to support in the future.

Video on how platforms work internally and how to implement them:

https://youtu.be/PvQVoUzL8Cc

Configuration Guides

We have configuration guides which show you how to setup and use different types of pinball
mechanisms with the various control systems and hardware that MPF supports:

How to configure Open Pinball Project (OPP) hardware for MPF

This how to guide explains how to set up your MPF configuration files to interface with an Open
Pinball Project (OPP) pinball controller.

This page is about the software side of things. Hardware and electrical engineering stuff is
documented at the OPP section in the pinballmakers.com Wiki.

Overview video about OPP:

https://youtu.be/WU98MRDeYeQ

Connecting OPP to your computer

Connect the OPP board to your computer via USB. Make sure that your OPP chains do not get too long
since the serial throughput is limited per chain. You can connect multiple chains.

Verify Connected Boards via mpf hardware scan

You can run mpf hardware scan to see all connected node boards:

$ mpf hardware scan

Connected CPUs:

- Port: com1 at 115200 baud

-> Board: 0x20 Firmware: 0x10100

-> Board: 0x21 Firmware: 0x10100

Incand cards:

- CPU: com1 Board: 0x20 Card: 0 Numbers: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,␣

→˓31]

Input cards:

- CPU: com1 Board: 0x20 Card: 0 Numbers: [0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15]

- CPU: com1 Board: 0x21 Card: 1 Numbers: [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,␣

→˓18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

(continues on next page)

Configuration Guides 143

https://youtu.be/PvQVoUzL8Cc
http://pinballmakers.com/wiki/index.php/OPP
https://youtu.be/WU98MRDeYeQ

Mission Pinball Framework Documentation, Version

(continued from previous page)

Solenoid cards:

- CPU: com1 Board: 0x20 Card: 0 Numbers: [0, 1, 2, 3]

- CPU: com1 Board: 0x21 Card: 1 Numbers: [12, 13, 14, 15]

LEDs:

- CPU: com1 Board: 0x21 Card: 1

If your boards do not show up checkout our OPP troubleshooting guide.

On Linux: Blacklist cytherm module

If you are using OPP hardware on linux you should blacklist the cypress thermometer because it
conflicts with OPP.

In /etc/modprobe.d/blacklist.conf add:

blacklist cytherm

If blacklist.conf does not exist, just create a new empty file as root. Afterwards, reboot your PC.

On Linux: Add udev rules to ensure persistent device names

If you have more than one ttyACM connected to your PC (e.g. multiple OPP chains or other USB-serial
adapters) you can assign a name to your ports based on the USB port they are connected to.

First identify the port of your OPP hardware. Usually it should be /dev/ttyACM0 or /dev/ttyACM1.

Then run udevadm info on your port:

udevadm info /dev/ttyACM0

This will show you the DEVPATH. Now replace the last part ttyACMX with an asterisk and add an udev
rules like this in /etc/udev/rules.d/opp.rules:

SUBSYSTEM=="tty", ACTION=="add", DEVPATH=="/devices/pci0000:00/0000:00:14.0/usb1/1-4/1-4:1.1/*",␣

→˓SYMLINK+="ttyOPP1", GROUP="adm", MODE="0660"

After a reboot you should get a /dev/ttyOPP1 device if you connect an OPP device to that specific USB
port. You can use that port in your config.

On Ubuntu: Stop ModemManager

ModemManager tries to initialise all /dev/ttyACMxx devices as modem. That might cause delays after
attaching OPP hardware and might also leave the hardware in a weird state with garbage on the bus.
If you do not use any modems just disable and stop ModemManager:

sudo systemctl disable ModemManager

sudo systemctl stop ModemManager

Configuration Guides 144

Mission Pinball Framework Documentation, Version

What if it did not work?

Have a look at our OPP troubleshooting guide.

Configuring your machine for OPP

Related Config File Sections
hardware:
opp:

1. Configure the Hardware platform for OPP

To use MPF with OPP, you need to configure your platform as opp, like this:

hardware:

platform: opp

2. Configure the OPP-specific hardware settings

When you use OPP hardware with MPF, you also need to add an opp: section to your machine-wide
config which contains some OPP- specific hardware settings. MPF’s default config file
(mpfconfig.yaml) contains enough default settings to get you up and running. The only thing you
absolutely have to configure is your ports.

Understanding OPP hardware ports

Even though OPP controllers are USB devices, they use “virtual” COM ports to communicate with the
host computer running MPF. On your computer, if you look at your list of ports and then plug-in your
OPP controller, you will see a new port appear. The exact names and numbers of these ports will vary
depending on your computer and what else you’ve plugged in in the past.

Note: USB to serial converters add latency when communicating between the host computer, and the
target device. It probably will not matter, but if given the choice between a “real” serial port, and a
USB-serial port converter, the “real” serial port will have less latency. The real serial port must use 5V
signal levels when talking to OPP hardware.

Adding the port to your config file

If you’re using an OPP controller, you need to add the serial port to your MPF config. So if you plug in
the OPP controller and see a port such as COM7 appear, you’d set your config like this:

opp:

ports: COM7

Full details of the port options as well as the other options available here are in the opp: section of the
configuration file reference. Note that if you’re using Windows and you have COM port numbers
greater than 9, you may have to enter the port names like this: \\.\COM10 \\.\COM11 \\.\COM12, etc.

Configuration Guides 145

Mission Pinball Framework Documentation, Version

(It’s a Windows thing. Google it for details.) That said, it seems that Windows 10 can just use the port
names like normal: com10, com11, com12, so try that first and then try the alternate format if it doesn’t
work. On Linux, the port usually is /dev/ttyACM0 or /dev/ttyACM1. On Mac, look for some
/dev/cu.modemXXXX device.

What if it did not work?

Have a look at our OPP troubleshooting guide.

OPP Switches

Related Config File Sections
switches:

For switches, you can use most of the settings as outlined in the switches: section of the config file
reference. There are only a few things that are OPP-specific:

Number:

OPP switches are numbered sequentially depending on which wing board is the switch input. Wing
position 0 contains switch numbers 0 to 7. Wing position 1 contains switch numbers 8 to 15. Wing
position 2 contains switch numbers 16 to 23. Wing position 3 contains switch numbers 24 to 31. The
switch is numbered using the position of the OPP card (starting at 0), then a ‘-’, and finally the switch
number on the card.

Enter them as a combination of board-switch, like 0-12.

switches:

some_switch:

number: 0-15

The above example configures a switch input as the first OPP card, and the second wing board, last
input. On the microprocessor card, the input is marked as 1.7 (wing port 1, position 7).

Switch inputs for solenoids follow the same number convention. Since only four inputs are available
for each wing card, it uses the first four switch numbers. Solenoid wing 0 uses switch numbers 0 to 3.
Solenoid wing 1 uses switch numbers 8 to 11. Solenoid wing 2 uses switch numbers 16 to 19. Solenoid
wing 3 uses switch numbers 24 to 27.

Switch inputs for a switch matrix are number slightly differently. To configure an 8x8 switch matrix
wing 2 is configured as the matrix input and wing 3 is configured as a matrix output. The OPP
hardware strobes the eight outputs while reading from the eight inputs. This allows 64 inputs to be
read using only 16 wires. The matrix switch inputs are numbered from 32 to 95. Switches 32 - 39 are
column 0, switches 40 - 47 are column 1, switch 48 - 55 are column 2, switches 56 - 63 are column 3,
switches 64 - 71 are column 4, switches 72 to 79 are column 5, switches 80 to 87 are column 6, and
switches 88 to 95 are column 7.

Configuration Guides 146

Mission Pinball Framework Documentation, Version

Fully working Example

Lets bring above informaton together and learn by example. Though the following example is a fully
working minimal set for the Cobra controller, it is as well helpful to understand the concpet more if
you use a different set of hardware. For this example to work physically, you only need to power up
the micro controllers, no need for any other power supply on the Cobra board. You need to connect a
switch to the switch inputs. See as well in CobraPin Pinball Controller powered by OPP how to
connect a switch. In this example I am using 0-0-16 if you use a different switch input, then you need
to change the config file. This config.yaml is the only configuration file you need in your project. The
config file is fully valid for the Cobra board connected to a Linux PC running mpf. If you have a Cobra
board but run Windows or macOS you have to change the ports. If you run a completely different
hardware you have to adapt the hardware section.

#config_version=5

hardware:

platform: opp

driverboards: gen2

opp:

ports: /dev/ttyACM0, /dev/ttyACM1 # change this if you are not using Linux

switches:

my_test_switch:

debug: true

number: 0-0-16 # change this if you have connected the switch to a different input

tags: switch_tag1, switch_tag2

events_when_activated: active_event1, active_event2

events_when_deactivated: inactive_event1

The important part for this example is to understand the events which are being posted. First of all
please obey that we have set debug:true, this is necessary to see the events in the mpf monitor. Events
are only visible in the mpf monitor when they are either consumed or if the debug:true flag is set.
Since we don’t consume the event in our example we need to set debug to true. Before you start this
mpf project with mpf both please start mpf monitor and activate the window in the monitor to view the
events. Now you can press and release the switch and monitor the events being posted. When
pressing the switch you should be able to see the following events:

∙ my_test_switch_active based on the switch <switch_name>_active

∙ sw_switch_tag1 based on the tags sw_<tag_name>

∙ sw_switch_tag1_active based on the tags sw_<tag_name>_active

∙ Same as the last two, just for the second tag switch_tag2

∙ active_event1 based on the configuration events_when_activated

∙ active_event2 based on the configuration events_when_activated

Once you release the switch again some events are being fired:

∙ my_test_switch_inactive based on the switch <switch_name>_active

∙ sw_switch_tag1_inactive based on the tags sw_<tag_name>_active

∙ sw_switch_tag2_inactive based on the tags sw_<tag_name>_active

Configuration Guides 147

Mission Pinball Framework Documentation, Version

∙ inactive_event1 based on the configuration events_when_activated

Please obey the difference in activating and releasing a switch in terms of what events are being fired.
When activating a switch the event sw_<tag_name> is being fired, there is no corresponding event when
a switch goes inactive. See as well the Events reference.

What if it did not work?

Have a look at our OPP troubleshooting guide.

OPP coils / drivers

Related Config File Sections
coils:

There are a few things to know about controlling drivers and coils with OPP hardware.

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

Number

OPP coils are numbered sequentially depending on which wing board is the coil output. Wing position
0 contains coil numbers 0 to 3. Wing position 1 contains coil numbers 4 to 7. Wing position 2 contains
coil numbers 8 to 11. Wing position 3 contains coil numbers 12 to 15. The coil is numbered using the
position of the OPP card (starting at 0), then a ‘-’, and finally the coil number on the card.

coils:

some_coil:

number: 0-12

The above example configures a coil output as the first OPP card, and the third wing board, first
output. On the microprocessor card, the output is marked as 3.4 (wing port 3, position 4).

Configuration Guides 148

Mission Pinball Framework Documentation, Version

Pulse time

The OPP hardware also has the ability to specify the “pulse time”. Pulse time is the coil’s initial kick
time. For example, consider the following configuration:

coils:

some_coil:

number: 0-12

default_pulse_ms: 30

When MPF sends this coil a pulse command, the coil will be fired for 30ms.

Hold Power

If you want to hold a driver on at less than full power, MPF does this by using default_hold_power
parameter which works for all platforms. It can range from 0.0 to 1.0 and defines the time share the
coil is on (0%-100%).

The period is fixed at 16ms for OPP. To set the hold power to 25%, set default_hold_power to .25 and
OPP will use 4ms/16ms = 25%.

coils:

some_coil:

number: 0-3

default_pulse_ms: 32

default_hold_power: 0.5

This will configure OPP card 0, solenoid wing 0, last solenoid to have an initial pulse of 32 ms, and
then be held on at 50% power.

Pulse Power

Note: This feature is only available on OPP firmware version 2.3.0.5 and above.

If you want to pulse a driver on at less than full power, MPF does this by using default_pulse_power
parameter. This can be used along with default_pulse_ms to fully tune the response of a coil. This can
be especially useful when controlling lower voltage coils from a 48V source.

It can range from 0.0 to 1.0 and defines the time share the coil is on (0%-100%). Any value under
0.03125 will be forced to output 3.125%.

coils:

some_coil:

number: 0-3

default_pulse_ms: 32

default_pulse_power: 0.8125

default_hold_power: 0.125

This will configure OPP card 0, solenoid wing 0, last solenoid to have an initial pulse of 32 ms at
81.25% power, and then be held on at 12.5% power.

Configuration Guides 149

Mission Pinball Framework Documentation, Version

Recycle Factor

OPP allows you to fine tune the recycle time of your coils. If you add recycle: True to your coil you
can set recycle_factor in the platform_settings secton of your coil to set the recycle time. The time
will be default_pulse_ms * recycle_factor. For instance, if you set a pulse time of 10ms and a
recycle_factor of two the coil will cool down for at least 20ms. This is an example:

coils:

some_coil:

number: 0-3

default_pulse_ms: 10

default_recycle: true

platform_settings:

recycle_factor: 2

What if it did not work?

Have a look at our OPP troubleshooting guide.

Related How To guides

∙ Coil Resistance and Hardware Details

∙ Wiring Dual Wound Coils

∙ Dual-Wound versus Single-Wound coils

∙ Adjust coil hold power

∙ Adjust coil strength (pulse times)

∙ Recycle / “Cool Down” Time

∙ Details About Flippers

∙ How to configure single-wound flippers

∙ How to configure dual-wound flippers

∙ Flipper end-of-stroke (EOS) switches

OPP Lights

Related Config File Sections
lights:

If you’re using an OPP incandescent wing card, the lights are numbered the same as the input
switches. OPP bulbs are numbered sequentially depending on which wing board controls the output.
Wing position 0 contains bulbs 0 to 7. Wing position 1 contains bulbs 8 to 15. Wing position 2 contains
bulbs 16 to 23. Wing position 3 contains bulbs 24 to 31. The bulb is numbered using the position of
the OPP card (starting at 0), then a ‘-’, and finally the bulb number on the card.

Configuration Guides 150

Mission Pinball Framework Documentation, Version

lights:

some_light:

number: 1-16

subtype: matrix

The above example configures a bulb on the second OPP card, and the third wing board, first bulb On
the microprocessor card, the input is marked as 2.0 (wing port 2, position 0).

What if it did not work?

Have a look at our OPP troubleshooting guide.

OPP LEDs

Related Config File Sections
lights:

OPP hardware can directly drive LED strips. This features is currently being developed.
Documentation will be added as the feature becomes more mature.

LEDs work similar to matrix lights (chain 0, board 1, LED 1):

lights:

some_led:

number: 0-1-1

subtype: led

type: rgb

Note, counting starts always with 0, so LED 1 in aboves example is the 2nd LED of the strip.

Overview video about serial LEDs:

https://youtu.be/Q9BG9T7Kj4A

Channel and Number Syntax

In MPF lights abstract a light source which emits arbitrary colors. However, this is not true for all real
lights. Some support only white (GIs), others only a single-color (i.e. red inserts) and others support
full RGB. For that reason MPF knows light numbers and channel numbers. Internally, a light consists
of one or multiple channels. For instance, a single-color GI will contain a single white channel. While a
RGB light will control a red, green and a blue channel. A white light behind a red insert should be a
single red channel (because it cannot emit other colors through the red insert). You can configure
those channels using the channels setting or use start_channel and type to define the channels. See
Lights for details.

However, in most cases a platform supports one type of lights (per subtype) this would be overly
verbose and we added the number setting for configuring lights in the common platform way. For
instance a platform for GIs will configure single channel white lights or a serial LED controller will
configure RGB lights with three channels.

OPP assumes RGB lights by default. For everything else (i.e. RGBW) you have to use channels.

Configuration Guides 151

https://youtu.be/Q9BG9T7Kj4A

Mission Pinball Framework Documentation, Version

Light Numbers

OPP numbers use the format: serial_chain-card_num-index

chain_serial is only relevant if you got multiple chains connected via USB. See Connecting OPP to
your computer for details about chains. If you only got one chain you can omit this part and your
format becomes card_num-index.

card_num` is the index of the board on the chain. As the first board is always at addr 0x20 you can
calculate the addr using 0x20 + card_num. If you only got one board you can omit the board and your
format becomes just index.

For instance, 0-0-0 for the first RGB LED on chain 0 on card 0x20. In this case you can also use 0-0 or
0 (channel 0-2). 0-0-1 or 0-1 or 1 is the second LED on the chain (channels 3-5).

3-2-6 is the 6th LED on board 2 (addr 0x22) of chain 3 (channels 18-20).

Channels

OPP channels use the format: serial_chain-card_num-internal_index

This is mostly the same as numbers above except that internal_index = 3 * index. This is because
serial LEDs are traditionally RGB (or GRB) LEDs with exactly three channels. However, this is not true
for RGBW or similar LEDs which do not work with this style of numbering. Luckily, you can chain
them instead and have MPF calculate the internal channels for you:

lights:

led_0:

start_channel: 0-0-0

subtype: led

type: rgb # will use red: 0-0-0, green: 0-0-1, blue: 0-0-2

led_1:

previous: led_0

subtype: led

type: rgbw # will use red: 0-0-3, green: 0-0-4, blue: 0-0-5, white: 0-0-6

led_2:

previous: led_1

subtype: led

type: rgbw # will use red: 0-0-7, green: 0-0-8, blue: 0-0-9, white: 0-0-10

See WS2811 and WS2812 LEDs in Pinball for details.

What if it did not work?

Have a look at our OPP troubleshooting guide.

CobraPin Pinball Controller powered by OPP

This page is under development. . . don’t believe a word you read.

Configuration Guides 152

Mission Pinball Framework Documentation, Version

Features:

∙ 24 solenoid outputs broken into 3 banks

∙ 38 direct inputs <OR> 22 direct inputs + 8x8 switch matrix

∙ Neopixel support for 512 RGB pixels (RGBW also possible but may be limited to ~460 pixels)

∙ 24-50V power filter. Board also provides the common ground for the supplies.

∙ Fuses for solenoid banks and Neopixels

The size of the board is about 197 x 115 mm. Mounting holes are available in the corners of the board,
spaced 184 mm and 103 mm respectively. Mounting holes are good for M4 screws.

Overview video about Cobrapin:

https://youtu.be/UQNMaLv3woo

Overview video about OPP:

https://youtu.be/WU98MRDeYeQ

Video about cobrapin extension board:

https://youtu.be/lfxKcaiZyMs

Power Input and Filter

J9: Solenoid power input (24-50V).

J10: Neopixel 5V input.

The filter provides consistent power to solenoids while also protecting the power supply from sudden
current surges that may otherwise cause a fault. The connectors for the power supply on the board
are JST VH style connectors.

Configuration Guides 153

https://youtu.be/UQNMaLv3woo
https://youtu.be/WU98MRDeYeQ
https://youtu.be/lfxKcaiZyMs

Mission Pinball Framework Documentation, Version

Switch Inputs

J1, J2, J3: Direct input switches.

J4, J5: Remaining direct input switches or switch matrix input/output.

If you do have either 38 direct inputs or 22 direct inputs + a 8x8 switch matrix depends on your Cobra
board. You specify this as an option when you order your board. The switch inputs are labeled in
silkscreen with the MPF compatible numbers. The two pins labeled “N/C” are not connected to
anything.

The connectors for the switches on the board are KF2510 style connectors. Each connector also
includes a logic ground pin. Use this for the direct input return. If you measure the voltage between
GND and a switch (in below picture 0-0-16) you should measure 3.3V.

For that to measure only the micro controllers need to be powered up, no need to apply any other
voltage on the Cobra board. To perform a simple test connect any kind of switch to one of the inputs
and setup a little mpf test configuration.

Configuration Guides 154

Mission Pinball Framework Documentation, Version

Do not apply any voltage to the switches, most likely that will destroy your CPU. For further details
and fully working Cobra board configuration example please check OPP Switches. For autofire
devices please see for additional remarks in the solenoid section below.

Solenoid Outputs

J6, J7, J8: Solenoid outputs.

The 24 solenoids are broken up into 3 banks of 8 outputs. The connectors for the solenoids on the
board are JST VH style connectors. There is a ninth pin on the connector that can be used as a key.
Each solenoid has a diode to help protect the transistor. You may still use coils with axial diodes
installed, but you MUST ensure that you connect them with the correct polarity.

The solenoid outputs are labeled in silkscreen with the MPF compatible numbers. OPP coils / drivers.
You need to obey that some of these outputs are controlled by the first micro controller and some by
the second. The first digit of the solenoid number shows by which micro controller it is addressed, e.g.
1-0-7 is controlled by micro controller 1. This is important later for the autofire devices (flippers,

Configuration Guides 155

Mission Pinball Framework Documentation, Version

slingshots, bumpers), because they are hardware controlled and the switch and the coil must use the
same controller. In other words a coil on 0-x-y of an autofire device must be controlled by switch with
number 0-a-b.

Each bank has an LED next to it to indicate if that bank has power. Check these if you are concerned
you have blown a fuse.

In above picture you see that the LED for bank A is alight but not for bank B. In order to have the LED
alight you only need to have connected your high power supply, no need for the 5V power supply or to
have micro controllers booted up. Please be aware that once you remove the power supply the LED
will still glow for a while until the the capacitors have discharged.

Each solenoid has an associated LED to indicate it is being driven by the processor. It is highly
recommended to test a new setup without high voltage power or without the coils plugged in. Using
these LEDs, you can verify that each output is being driven correctly, in the picture below coil 1-0-1 is
being driven at this very moment.

Configuration Guides 156

Mission Pinball Framework Documentation, Version

To run the above test, there is no need for a high voltage power supply neither for any coil. Only the
mirco controllers need to be powered up. The config.yaml below is the only configuration file you
need in your project. The config file is fully valid for the Cobra board connected to a Linux PC running
MPF. If you have a Cobra board but run Windows or macOS you have to change the ports.

#config_version=5

hardware:

platform: opp

driverboards: gen2

opp:

ports: /dev/ttyACM0, /dev/ttyACM1 # change if your Cobra board uses different ports

coils:

c_my_coil:

number: 1-0-1

pulse_events: s_my_switch_active

switches:

s_my_switch:

number: 0-0-16

Some remarks on above config.yaml

∙ Obey that we don’t have an autofire device in this example, and thus the coil and the switch can
be connected to the different micro controllers.

∙ In the coil section pulse_events is being used, don’t mix it up with enable_events which would
not only pulse the coil but have it on permanently.

Configuration Guides 157

Mission Pinball Framework Documentation, Version

∙ When a switch is being activated automatically an event (switch_name)_active is being fired. The
above example makes use of this fact.

To have a fully working example for setting up autofire coils see the Autofire Coils section of the
documentation.

Solenoid Power Output and Fuses

J13: Solenoid power outputs.

F1, F2, F3: Solenoid power bank fuses.

The fuses are 5x20mm. Each fuse provides power to a bank of 8 solenoids.

Note: Solenoids in bank A should only be powered by the HV_A pin, bank B should only be powered
by HV_B, bank C should only be powered by HV_C. Failure to do so may confuse future
troubleshooting and could eventually blow out a transistor.

Neopixel Support

J10: Power input for Neopixels, most likely 5V, but if you use 12V Neopixels you need to provide 12V
power here. Power input is used for both Neopixel chains.

J11, J12: Neopixel outputs

Configuration Guides 158

Mission Pinball Framework Documentation, Version

F4: 5V fuse for neopixels

J14: Fused 5V output

The connectors J10, J11, J12 and J14 are JST connectors VH style. There are lots of Neopixels which
come with a JST connector SM style. You might want to craft a little converter cable in such a case.

There are two neopixel chains that support 256 RGB pixels each for a total of 512. RGBW pixels are
also possible, but the number may be limited to 230 pixels per chain for a total of 460.

The J14 fused output can be used to provide additional power taps in a neopixel chain. Each pin is
rated for 7A continuous. The fuse holder is rated for 10A. The red D25 LED can be used to confirm
you have a good fuse and are providing power for neopixels. For the LED to light up there is no need
to run any MPF configuration, you don’t even have to power up the micro controllers.

When you order the micro controllers you have various options, one option to choose from is Regular
vs NoGlow. If you order the Regular version then after power is provided for the Neopixel and the
micro controllers are powered up (still no need to run any MPF on them), the LEDs of your strip will
glow blue, which is a good first test.

Configuration Guides 159

Mission Pinball Framework Documentation, Version

In order to addess the LEDs in MPF you need to know their address

J11: NEO 0 Neopixel output, all these lights have MPF numbers with the format 0-0-##. The first
LED in the chain is 0-0-0.

J12: NEO 1 Neopixel output, all these lights have MPF numbers with the format 1-0-##. The first
LED in the chain is 1-0-0.

Details on how to configure LEDs in your mpf project can be found here OPP LEDs.

Two fully working example for the Cobra board can be found in the generic LED section LEDs where
as well the more general concept is explained.

Microcontrollers

The brains of the CobraPin are two STM32 microcontroller boards programmed with OPP firmware.
They are connected to the host computer via micro USB connectors.

Note: It is important to have your config file refer to the silkscreen board numbers (0 and 1) in the
correct order, otherwise the labels on the solenoids, switches, etc. will refer to incorrect pin numbers.

Configuration Guides 160

Mission Pinball Framework Documentation, Version

The microcontrollers are removable so you can replace them if they fail for whatever reason. They are
widely available and often referred to as “STM32 Blue Pill” boards. The right angle header that is
normally used as a programming port is replaced with a vertical header so that those pins can be used
on the CobraPin board.

Test Rig

For an easy start you might want to setup a test rig similar to the one shown above. The advantage is
that you can use push in clamps to change connected hardware easily without the need to crimp lots
of cables. For the connection from the board to the push in clamps you can use pre-fabricated headers
with wires, then there is no need to crimp anything.

BOM (Bill of material)

Configuration Guides 161

Mission Pinball Framework Documentation, Version

Item Amount Description
board 1 A wooden board about 30x30cm
Cobra board 1
DIN rail 2 each rail about 20cm or longer
Spacer 8 Spacer (plastic) to mount the board, one spacer above and one below

the board. Diameter M4.
Screws 4 About 4,0x20mm (depending on the length of your spacer)
Screws 4 About 3,0x15mm to mount the rails, length can vary depending on board

thickness
KF2510 wires, 9
pins

5 KF2510 plugs with wire, 9 pins

KF2510 wires, 4
pins

1 KF2510 plugs with wire, 4 pins

JST VH wires, 9
pins

4 JST VH plugs with wires, 9 pins

JST VH wires, 4
pins

3 JST VH plugs with wires, 4 pins

JST VH wires, 3
pins

3 JST VH plugs with wires, 3 pins

push in connec-
tor 1:1

>10 1:1 wire connection, for each switch and each coil you need one, buy
plenty.

push in connec-
tor 1:n

5 1:n wire connection, for ground of the switches and power for the soils,
amount varies.

You can use as well bridges to connect multiple cage clamps together, that might be handy for ground
connection. See the two cage clamps at the top right, they have a little bridge (this light grey/white
box) to have all inputs internally connected.

Example Config

#config_version=5

#CobraPin Example Config

hardware:

platform: opp

driverboards: gen2

opp:

#Use the USB ports defined by your OS for the two STM32 boards

ports: /dev/ttyACM0, /dev/ttyACM1

#USING SERIAL NUMBERS INSTEAD OF CHAINS

Board 0 has serial number 0, Board 1 has serial number 1.

This is convenient if your OS tends to reassign the serial port.

MPF will automatically address the correct board even if the ports

are swapped.

#For multiple CobraPin boards in a game, you will either have to give

the STM32 boards on the second CobraPin board new serial numbers

(continues on next page)

Configuration Guides 162

Mission Pinball Framework Documentation, Version

(continued from previous page)

(10 and 11 are suggested for the 2nd board since 2 is used by the

CobraPin Xpansion Board)

<OR> Use the chains section to assign a port to a board number.

Mixing these up could cause blown FETs, coils, and fuses. Proceed

with caution. Test without coil power and use the yellow coil LEDs

for feedback.

#chains:

#0: /dev/ttyACM0

#1: /dev/ttyACM1

psus:

default:

#Gives the capacitors extra time to recharge after firing a coil

and eases the load on the power supply. Doesn't affect autofire

devices like flippers, pops, slings.

release_wait_ms: 50

#One giant config file can get difficult to manage. You can put any of

these config sections in its own yaml file and link to it with the

config section here

config:

#- switches_config.yaml

#- lights_config.yaml

#- coils_config.yaml

...

switches:

#DIRECT SWITCHES

#switch numbers are labelled in silkscreen on the board

s_left_flipper:

number: 0-0-27

tags: left_flipper

s_right_flipper:

number: 0-0-26

tags: right_flipper

s_startButton:

number: 0-0-25

tags: start

#MATRIX SWITCHES

#valid numbers are 1-0-32 through 1-0-95

s_lowerDrop1:

number: 1-0-32

...

s_topRollunder:

number: 1-0-95

ignore_window_ms: 250ms #tune to assist in debouncing

(continues on next page)

Configuration Guides 163

Mission Pinball Framework Documentation, Version

(continued from previous page)

lights:

#SERIAL LEDS (neopixels)

#NEO0 output supports 256 LEDs numbered 0-0-0 to 0-0-255

l_shootAgain:

number: 0-0-0

subtype: led

type: grb #Most WS2812-based LEDs are grb color order.

#This line not required for rgb ordered LEDs like the

WS2811 LEDs shown below

...

#NEO1 output supports 256 LEDs numbered 1-0-0 to 1-0-255

l_gi_1:

number: 1-0-0

subtype: led

tags: gi #you can group similar LEDs with user defined tags

l_gi_2:

number: 1-0-255

subtype: led

tags: gi

coils:

#coil numbers are labelled in silkscreen on the board

#There are multiple ways to configure flippers, use the one that

matches your hardware

c_flipper_left:

number: 0-0-8

allow_enable: true

default_hold_power: 1.0

default_pulse_ms: 50

c_flipper_right:

number: 0-0-4

allow_enable: true

default_hold_power: 1.0

default_pulse_ms: 50

c_ballRelease:

number: 1-0-1

default_hold_power: 0.15

default_pulse_ms: 30

flippers:

#Add your flipper config

autofire_coils:

#Add your autofire cofigs for pops, slings, etc.

(continues on next page)

Configuration Guides 164

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_devices:

#Add your ball devices

playfields:

#Define your playfields

machine:

balls_installed: 3 #How many balls are physically in your game

min_balls: 3 #How few balls can be accounted for before you can start a game

game:

balls_per_game: 3

max_players: 4

modes:

#Add all your mode names here

#- attract

#- base

#- etc

keyboard: #use to drive your game from the computer for testing

z:

switch: s_left_flipper

"/":

switch: s_right_flipper

NeoSeg (CobraPin) Serial Segment Displays

Video about CobraPin serial segment displays (This was a prototype 7-digit 16-segment version versus
the production 8-digit 14-segment version):

https://youtu.be/iMeX1qC4EA0

Add Segment Display Platform

NeoSeg displays consist of a string of serial LED controllers connected to segment display LEDs. Each
LED channel is connected to a segment. You must add light_segment_displays as the
segment_displays platform so MPF knows to send segment display commands to the light controller:

hardware:

segment_displays: light_segment_displays

Configuration Guides 165

https://youtu.be/iMeX1qC4EA0

Mission Pinball Framework Documentation, Version

Create the NeoSeg Light Groups

The creation of the mpf lights for a NeoSeg display is handled by creating a light_group using
“neoseg_displays.” This is much easier than defining each light for each of the 120 segments in an
8-digit display.

neoseg_displays:

neoSeg_0:

start_channel: 0-0-0

size: 8digit

light_template:

type: w

subtype: led

color_correction_profile: NeoSeg_orange

Here we have created a neoseg_display light_group named “neoSeg_0.” The group starts at light
channel 0-0-0, which is the first light channel on Board 0 on CobraPin, for example. It is an 8-digit
display.

Note that we are dealing with light channel numbers, not light numbers. If you have all RGB LEDs,
the channel number is 3 times your light number. An 8-digit NeoSeg display occupies 120 channels
while the 2-digit display occupies 30 channels. So if we added another NeoSeg display after neoSeg_0,
its start_channel would be 0-0-0 plus 120. . . so 0-0-120.

We had to add a light template so that we could identify it as a single channel LED.

Also, the use of a color_correction_profile enables you to change the brightness of a NeoSeg display.
This is especially handy when using NeoSeg displays of different colors since each color has a
different default brightness. Use the whitepoint setting to vary the brightness:

light_settings:

color_correction_profiles:

NeoSeg_orange:

whitepoint: [.9, .9, .9]

Create Segment Displays

Once you have the light groups defined, you can arrange them into displays. These are the displays
that can be targeted by a segment_display_player.

segment_displays:

neoSegTop:

number: 1

size: 16

integrated_dots: true

use_dots_for_commas: true

default_transition_update_hz: 30

platform_settings:

light_groups:

- neoSeg_0

- neoSeg_1

type: 14segment

Here we create a 16-digit display called “neoSegTop” built from 2 8-digit displays – “neoSeg_0” and
“neoSeg_1”. The “integrated_dots” and “use_dots_for_commas” settings are required to use the

Configuration Guides 166

Mission Pinball Framework Documentation, Version

comma segments built into NeoSeg displays. NeoSeg displays have a type of “14segment.”

Be sure to change “size” to the total number of digits that you intend to use in the display. In some
cases, the opening in your backglass may only be wide enough for 7 digits for example. In that case,
change the size to 7 and the 8th digit will remain unused.

Complete Example Config

#config_version=5

hardware:

platform: opp

driverboards: gen2

segment_displays: light_segment_displays

#create light group for each NeoSeg display

neoseg_displays:

neoSeg_0:

start_channel: 0-0-0

size: 8digit

light_template:

type: w

subtype: led

color_correction_profile: NeoSeg_orange

neoSeg_1:

start_channel: 0-0-120

size: 8digit

light_template:

type: w

subtype: led

color_correction_profile: NeoSeg_white

neoSeg_7:

start_channel: 0-0-660

size: 2digit

light_template:

type: w

subtype: led

color_correction_profile: NeoSeg_blue

neoSeg_8:

start_channel: 0-0-690

size: 2digit

light_template:

type: w

subtype: led

color_correction_profile: NeoSeg_red

#use light groups to arrange into a segment display

segment_displays:

neoSegTop:

number: 1

size: 16

integrated_dots: true

use_dots_for_commas: true

(continues on next page)

Configuration Guides 167

Mission Pinball Framework Documentation, Version

(continued from previous page)

default_transition_update_hz: 30

platform_settings:

light_groups:

- neoSeg_0

- neoSeg_1

type: 14segment

neoSegBot:

number: 1

size: 4

integrated_dots: true

use_dots_for_commas: true

default_transition_update_hz: 30

platform_settings:

light_groups:

- neoSeg_8

- neoSeg_7

type: 14segment

#use color_correction_profile whitepoint to adjust the brightness of each

#NeoSeg display

light_settings:

color_correction_profiles:

NeoSeg_red:

whitepoint: [.8, .8, .8]

NeoSeg_white:

whitepoint: [.55, .55, .55]

NeoSeg_blue:

whitepoint: [.5, .5, .5]

NeoSeg_orange:

whitepoint: [.9, .9, .9]

NeoSeg_yellow:

whitepoint: [1, 1, 1]

NeoSeg_green:

whitepoint: [.5, .5, .5]

Troubleshooting OPP

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps:

Run Hardware Scan

Using mpf hardware scan you can find out if your OPP boards are talking properly to MPF using USB:

$ mpf hardware scan

Connected CPUs:

- Port: com1 at 115200 baud

-> Board: 0x20 Firmware: 0x10100

-> Board: 0x21 Firmware: 0x10100

(continues on next page)

Configuration Guides 168

Mission Pinball Framework Documentation, Version

(continued from previous page)

Incand cards:

- CPU: com1 Board: 0x20 Card: 0 Numbers: [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30,␣

→˓31]

Input cards:

- CPU: com1 Board: 0x20 Card: 0 Numbers: [0, 1, 2, 3, 8, 9, 10, 11, 12, 13, 14, 15]

- CPU: com1 Board: 0x21 Card: 1 Numbers: [0, 1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17,␣

→˓18, 19, 20, 21, 22, 23, 24, 25, 26, 27]

Solenoid cards:

- CPU: com1 Board: 0x20 Card: 0 Numbers: [0, 1, 2, 3]

- CPU: com1 Board: 0x21 Card: 1 Numbers: [12, 13, 14, 15]

LEDs:

- CPU: com1 Board: 0x21 Card: 1

See mpf hardware (command-line utility) for details.

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your opp config section:

opp:

debug: true

This will add a lot more debugging and might slow down MPF a bit. We recommend to disable/remove
it after finishing debugging.

Reducing the polling rate

If you encounter issues with the polling rate (in other words: Your OPP processor boards can’t answer
MPF’s polls fast enough) you may want to change it. This can be done by simply adding the poll_hz:
line to the opp: section:

opp:

ports: COM7

poll_hz: 50 # defaults to 100

Note: You only want to do this if you encounter issues. This will increase the time between two
switches beeing read. If you set this too log you could miss hits if multiple hits happened between two
polls.

Coils Are Not Firing

What to do if your coils are not working?

Configuration Guides 169

Mission Pinball Framework Documentation, Version

Check if Your Hardware is Working at all

Sounds stupid but this is a good start: Is the hardware working at all? Do you see switch hits in the
logs? If not, check our section Your hardware is not working at all.

Check the Watchdog

If switches (or other features of the platform) are working but coils are not we have to dig deeper.
Most hardware platforms have some kind of watchdog. Often there is some LED which indicates if the
watchdog is received. The MPF log might also contain clues (especially if you have enabled debug and
run MPF with verbose flags -v -V). If the watchdog is not received by your platform it will not enable
coils.

In most cases watchdog related problems indicate wiring problems. Check if your boards are properly
wired.

Test Your Coil Numbers using MPF Service CLI

Hardware is connected and generally working, watchdog is good but still your coils are not working?
Maybe something with the numbering is odd. Lets tests that using the MPF Service CLI . Alternatively,
you can also use service mode if you have already configured it. Both ways work similarly.

To use service cli:

1. Open two consoles

2. Start your game (e.g. using mpf both)

3. Start the service cli from within your game folder using mpf service.

4. Type list_coils and press ENTER to see a list of coils.

5. Type coil_pulse your_coil and press ENTER to pulse it.

Does it work? If not check the log and try verify the coil number. If you do not specify
default_pulse_ms MPF will use 10ms which might not be enough for some mechs. Try to increase that
gently (maybe 20ms or 30ms).

Reducing light update rate

If you got a lot of lights you might run into bus contention issues. You can reduce the light update rate
in MPF:

mpf:

default_light_hw_update_hz: 30 # defaults to 50

If you set this too low fades will be less smooth but otherwise it should not affect your game.

Your hardware is not working at all

If your hardware is not working at all make sure that you removed the options -X, -x and --vpx from
your mpf both or mpf game command line. Those options will overwrite the settings in your hardware

Configuration Guides 170

Mission Pinball Framework Documentation, Version

section and MPF will not even try to connect to your hardware. If you got config errors we suggest
you add -X to figure things out without interfacing real hardware all the time. Just keep that option in
mind.

Another stupid thing to check: Is your hardware connected to your PC? We know it is stupid but a
loose USB connector has happened to most of us.

On Linux you might want to run the command lsusb which should show both of your micro controllers
connected. You should see two lines similar to

Bus 002 Device 014: ID 0483:5740 STMicroelectronics Virtual COM Port

Bus 002 Device 015: ID 0483:5740 STMicroelectronics Virtual COM Port

If you are unsure about the output, run the command once with your controllers connected and once
without. If there is no difference, then for sure the USB device is not properly connected.

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the
documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

How to use MPF with the LISY platform

Related Config File Sections
hardware:
lisy:
switches:
coils:

Configuration Guides 171

Mission Pinball Framework Documentation, Version

MPF can directly control Gottlieb System 1 or System 80 machines via the LISY1 or LISY80 controller
boards (with firmware 4.02+). Additionally, LISY35 can control Bally and Stern Games manufactured
from 1977 to 1985 with MPU AS-2518-17 or AS-2518-35.

Note: For general installation instruction and some background information on the LISY hardware
platform, visit www.lisy80.com.

There are two ways this can be done:

a. Run MPF on a standalone PC which connects to the LISY hardware operating in “slave” mode via
Ethernet, WiFi, or serial. This is generally recommended during development since it’s easier to
work on your MPF config using your own computer. You can also use this configuration if you
want to add an LCD or DMD to the older Gottlieb machine.

b. Run MPF on the LISY hardware directly (“master” mode). (Technically MPF is running on the
LISY controller’s Raspberry Pi Zero.) This option is nice when your game is finished and you no
longer want to connect a PC. Note that the Raspberry Pi on the LISY is not powerful enough to
run the MPF media controller, so this option is really only valid for simpler, segment display type
games. If you want to run a full LCD or DMD, then just run MPF on a separate computer (which
can still be small and inside your machine) and connect to the LISY controller via Option (a)
above.

See the following image for an architecture overview:

LISY can controll all features of your Gottlieb System1/80 machine. This includes:

∙ Switches (LISY1 and LISY80)

Configuration Guides 172

https://lisy.dev/lisy35.html
http://www.lisy80.com/

Mission Pinball Framework Documentation, Version

∙ Coils

∙ Lights

∙ Enabling/disabling flipper, slings and popbumpers

∙ Segment displays

∙ Original sounds of your game

∙ Text to speech and additional sounds

Connecting a System1/80 Machine to LISY1/80

1. Replace your original MPU with LISY1/80.

For Gottlieb System80/80A/80B games, replace the existing Gottlieb CPU with the “LISY80” board.
For System 1 machines, replace the existing Gottlieb CPU board with the “LISY1” board.

Note: See documentation at www.lisy80.com for details. Basically you replace the MPU with the
LISY board. You can still play the original ROM using PinMAME on LISY.

More details can be found in the LISY user manual.

2. Configure LISY to Run MPF

There are two ways this can be done:

a. Run MPF on a standalone PC which connects to the LISY hardware operating in “slave” mode via
Ethernet, WiFi, or serial. This is generally recommended during development since it’s easier to
work on your MPF config using your own computer. You can also use this configuration if you
want to add an LCD or DMD to the older Gottlieb machine.

b. Run MPF on the LISY hardware directly (“master” mode). (Technically MPF is running on the
LISY controller’s Raspberry Pi Zero.) This option is nice when your game is finished and you no
longer want to connect a PC. Note that the Raspberry Pi on the LISY is not powerful enough to

Configuration Guides 173

http://www.lisy80.com/
http://www.lisy80.com/english/documentation-lisy/

Mission Pinball Framework Documentation, Version

run the MPF media controller, so this option is really only valid for simpler, segment display type
games. If you want to run a full LCD or DMD, then just run MPF on a separate computer (which
can still be small and inside your machine) and connect to the LISY controller via Option (a)
above.

See the following image for an architecture overview:

If you want to run MPF on the LISY controller itself, set DIP 4 (option1) and DIP 8 (autostart) to ‘ON’
and all other DIPs on that switch to ‘OFF’. This will configure the LISY board to boot to MPF instead of
the default PinMAME.

If you want to use the LISY board in “slave” mode where you run MPF on a separate computer and
remotely control the LISY board, set DIP 6 to ‘ON’. Then to control the mode that the LISY board will
communicate with the host PC running MPF, set DIP 2 to ‘ON’ for network mode or ‘OFF’ for serial
mode.

Note: If you are using a USB connection you have also to disconnect it in order to be able to reboot,
as it will power the Raspberry Pi over the USB connection.

Configuration Guides 174

Mission Pinball Framework Documentation, Version

3. Configure your Game

As usual, configure your specific Game Hardware via Switch ‘S2’. For instance, for Devils Dare, which
is internal number ‘18’, set S2 DIP 2 and DIP 5 to ‘ON’ and all others to ‘OFF’ (binary coding of
decimal 18).

A list of all game numbers is included in the LISY user manual.

4a. Add MPF config to SD Card (only needed for MPF Master Mode)

If you’re using the “master” mode where MPF runs on the LISY board itself, you need to get your MPF
config installed onto the LISY board. You can do this via the SD card.

Place your MPF config in the folder /boot/mpfcfg/lisyx/yyy/ on the SD Card (replace “y” with 1 for
LISY1 and with “80” for LISY80. Replace “xxx” with your game number with leading zeros if it’s
shorter than three digits). For instance with Dare Devil, the game would be at
/boot/mpfcfg/LISY80/018/ on the SD card.

It’s easiest to do this with an SD card reader on your computer, though you could also copy the files
using SSH connected to a running LISY controller (see the LISY user manual for details).

Again, we only recommend this option for your “final” config, as it’s much easier to use the LISY board
in slave mode and run MPF off your computer while you’re developing your game.

Warning: This mode of operation will not allow you to run the MPF-MC since the LISY’s
Raspberry Pi Zero is not powerful enough. If you want to add an LCD or DMD to your machine, use
the slave option detailed below.

4b. Connect your PC running MPF to LISY via network or serial (only needed for MPF Slave Mode)

If you’re using the “slave” mode where you run MPF on a standalone computer and then connect to
the LISY board via the network or serial, once you configure the LISY board’s DIP switches from Step
2 then you need to update your machine config file for MPF running on your computer to be able to
connect to the LISY board.

Serial mode

If you want to use the serial port, add/update the following sections in your machine config:

hardware:

platform: lisy

lisy:

connection: serial

port: com1 # replace this with your com port

baud: 115200

Connection to LISY can be made via IP or via direct USB connection. For the USB connection no
special driver Software nor a special USB cable is needed, a “normal” USB charging cable (Micro-USB
cable) will do the job. Once connected to the host computer, it will (hopefully) identify a new serial
device. This is usually COMX on windows:

Configuration Guides 175

http://www.lisy80.com/english/documentation-lisy/
http://www.lisy80.com/english/documentation-lisy/

Mission Pinball Framework Documentation, Version

Or /dev/ttyACMX on Linux:

dmesg

usb 1-3: new high-speed USB device number 11 using ehci-pci

usb 1-3: New USB device found, idVendor=0525, idProduct=a4a7

usb 1-3: New USB device strings: Mfr=1, Product=2, SerialNumber=0

usb 1-3: Product: Gadget Serial v2.4

usb 1-3: Manufacturer: Linux 4.4.50+ with 20980000.usb

cdc_acm 1-3:2.0: ttyACM0: USB ACM device

usbcore: registered new interface driver cdc_acm

cdc_acm: USB Abstract Control Model driver for USB modems and ISDN adapters

Network mode

Alternatively, if you want to connect using WiFi or Ethernet, add/update the following sections in your
machine config:

hardware:

platform: lisy

lisy:

connection: network

network_port: 5963

network_host: a.b.c.d # replace this with the IP of LISY

LISY is configured to get its IP address by DHCP, the default hostname is lisy. For WLAN your
WLAN-SSID and password can be put into a text file on the SD-card (see the LISY user manual for
details). LISY will show the IP address on the first two displays of the pinball during boot time (or “NO
IP” if no IP address could be found).

5. Power up LISY

Power up your system and enjoy.

5a. Start MPF (only needed for MPF Slave Mode)

Start MPF on you PC. Optionally start MPF-MC (if you want to use an additional DMD or LCD).

What if it did not work?

Have a look at our LISY troubleshooting guide.

Configuration Guides 176

http://www.lisy80.com/english/documentation-lisy/

Mission Pinball Framework Documentation, Version

Configuring Switches with LISY1

Related Config File Sections
switches:

LISY1 supports the System 1 switch matrix which consists of a maximum of 40 switches. The switch
number in the manual of your machine can be used within MPF. However, some of the switches in
Gottlieb System 1 games are not part of the switch matrix. These are the outhole switch, the SLAM
switch and the “RESET” switch on the board itself. The mpfserver for LISY1 is numbering these
switches in the same way as pinmame does it:

∙ SLAM: #76

∙ Outhole: #66

∙ Reset: #56

Note: As the SLAM switch is usually closed, the logic is inverted here. A closed SLAM switch is
interpreted as open within mpfserver and does not have to be configured as normally closed NC in MPF.

You can start with this config:

switches:

slam:

number: 76

outhole:

number: 66

reset:

number: 56

Then just add your switches according to the manual of your machine. See switches: for more details
about switches.

What if it did not work?

Have a look at our LISY troubleshooting guide.

Configuring Switches with LISY80

Related Config File Sections
switches:

LISY80 supports the System 80 switch matrix which consists of a maximum of 64 switches. The switch
number in the manual of your machine can be used within MPF. However, you may not find all
switches in your game manual as some switches are the same along all System80/80A/80B games and
Gottlieb decided not to document them ;-). Those are the following (according to pinwiki.com):

∙ 06 - left advance button (Sys80B only)

∙ 07 - play / test switch

Configuration Guides 177

Mission Pinball Framework Documentation, Version

∙ 16 - right advance button (Sys80B only)

∙ 17 - left coin switch

∙ 27 - right coin switch

∙ 37 - center coin switch

∙ 47 - replay button

∙ 57 - plumb bob and ball roll tilts (these have the same switch assignment as the playfield tilt
switch)

Note: The SLAM switch in system80, which is not part of the switch matrix and cannot be used in
mpfserver for LISY80 in the current release.

You can start with this config:

switches:

tilt:

number: 57

Then just add your switches according to the manual of your machine. See switches: for more details
about switches.

What if it did not work?

Have a look at our LISY troubleshooting guide.

Configuring Drivers in LISY

Related Config File Sections
coils:

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

Configuration Guides 178

Mission Pinball Framework Documentation, Version

Configure drivers according to the manual of your machine. LISY does not support any hold_power or
pulse_power other than 1.0. So the coil will always enable with full power (which is fine in older
machines and should not break things). However, you can still choose the pulse length using pulse_ms.

coils:

c_some_coil:

number: 04

default_pulse_ms: 10

allow_enable: true

In some Gottlieb machines coils were connected to the lights bank. To address those you have to add
100 to their number from the manual. For instance, to address a coil which is connected to the light
output 05 use coil 105:

coils:

c_coil_on_light_bank:

number: 107

default_pulse_ms: 10

What if it did not work?

Have a look at our LISY troubleshooting guide.

Related How To guides

∙ Coil Resistance and Hardware Details

∙ Wiring Dual Wound Coils

∙ Dual-Wound versus Single-Wound coils

∙ Adjust coil hold power

∙ Adjust coil strength (pulse times)

∙ Recycle / “Cool Down” Time

∙ Details About Flippers

∙ How to configure single-wound flippers

∙ How to configure dual-wound flippers

∙ Flipper end-of-stroke (EOS) switches

Configuring and Enabling Flippers/Pop Bumpers/Slingshots in LISY

Related Config File Sections
digital_outputs:

System 1/80 does not support rules in software for flippers/pop bumpers/slingshots because CPUs
were not fast enough at that time. Instead, they installed a hardware relay to enable flippers/pop
bumpers/slingshots by connecting them physically to the corresponding switches (similar to
fliptronics).

Configuration Guides 179

Mission Pinball Framework Documentation, Version

All you have to do is to configure the game_over_relay (which is connected as light) in LISY1 and
LISY80:

digital_outputs:

game_over_relay:

number: 1

type: light

enable_events: ball_started

disable_events: ball_will_end

In LISY35 the same relay is connected to a driver. You can use this example to enable flippers:

digital_outputs:

flipper_enabling_relay:

type: driver

number: 16

enable_events: ball_started

disable_events: ball_will_end

This config will automatically enable the flippers on ball start and disable them on ball end. You can
add more events to enable/disable them during the game.

What if it did not work?

Have a look at our LISY troubleshooting guide.

Configuring Lights in LISY

Related Config File Sections
lights:

Lights in LISY can be configured as lights using their number from the game manual.

This is an example:

lights:

your_light:

number: 03

There are some features in the light list like the game_over_relay which are not real lights. Those can
be configured as digital outputs. See Configuring and Enabling Flippers/Pop Bumpers/Slingshots in
LISY for details about the game_over_relay.

What if it did not work?

Have a look at our LISY troubleshooting guide.

Configuration Guides 180

Mission Pinball Framework Documentation, Version

Configuring Segment Displays in LISY

Related Config File Sections
segment_displays:
segment_display_player:

MPF can control all segment displays on your machine with LISY. Configure them like this:

segment_displays:

info_display:

number: 0

player1_display:

number: 1

player2_display:

number: 2

player3_display:

number: 3

player4_display:

number: 4

Note that the Alpha-Numeric / Segment Displays guide has more details on using alpha numeric and
segment displays.

Video about segment displays:

https://youtu.be/Jyf3jxGXnTw

What if it did not work?

Have a look at our LISY troubleshooting guide.

Configuring Sound in LISY

Related Config File Sections
hardware_sound_systems:
hardware_sound_player:

With LISY your can use the sound card of your original game including all the sounds of your game.

Note: You can alternatively use the built-in MPF sound system which supports more modern audio
features. In that case you need to connect the sound card of your PC to the audio amp of your machine
(not covered here).

You can configure the external LISY hardware sound interface like this:

hardware_sound_systems:

default:

label: LISY

Configuration Guides 181

https://youtu.be/Jyf3jxGXnTw

Mission Pinball Framework Documentation, Version

Built-in sounds

Any built-in sounds can be played using their number in the original game:

hardware_sound_player:

some_event_to_play_sound2:

2:

action: play

some_event_to_stop_any_playing_sound: stop

Whatever those sounds loop or do not depends on the sound and the game. In this case the event
some_event_to_play_sound2 will play the sound number 2. The event
some_event_to_stop_any_playing_sound will stop any sound.

Additional sounds

You can play additional sounds by placing mp3 files on the SD-card. Soundfiles need to be placed in
the mpf config directory on the SD card of the LISY system in the subdirectory hardwaresounds. For
LISY1 this is /boot/mpfcfg/LISY1/xxx and for LISY80 this is /boot/mpfcfg/LISY80/xxx (where xxx is the
game number set via S2 according to the appendix in the LISY user manual).

hardware_sound_player:

play_file:

"some_file": play_file

play_file_loop:

"some_file":

action: play_file

platform_options:

loop: true

no_cache: false

Text-to-speech

LISY can also do text-to-speech:

hardware_sound_player:

event_to_play_text:

text:

action: text_to_speech

value: "Hello MPF"

platform_options:

loop: false

no_cache: true

Changing volume

Similarly, you can change volume:

Configuration Guides 182

http://www.lisy80.com/english/documentation-lisy/

Mission Pinball Framework Documentation, Version

hardware_sound_player:

event_to_set_volume_to_05:

set_volume:

action: set_volume

value: 0.5

increase_volume:

increase_volume:

action: increase_volume

value: 0.1

decrease_volume:

decrease_volume:

action: decrease_volume

value: 0.1

Sounds in a show

You can also use any of the actions above in a show instead of in a standalone Hardware Sound player:

##! show: test

- hardware_sounds:

text:

action: text_to_speech

value: "Hello MPF"

platform_options:

loop: false

no_cache: true

duration: 2s

What if it did not work?

Have a look at our LISY troubleshooting guide.

LISY Protocol

The LISY protocol is a generic serial protocol to control pinball machines. It was developed for the
LISY platform but is also used in other custom pinball platforms such as APC .

Theory of operations

All communication is initiated from the host PC. Commands are binary and generally have a fixed
length. They may contain a length byte to indicate how many entries are to expect (i.e. three color
values). Strings are zero terminated in both command and response.

At startup MPF resets the hardware and queries the count of all peripherals (i.e. switches, coils,
lamps). Afterwards, it will query the state of switches and configure coils/lamps.

During the runtime MPF periodically polls changed switches and sends a watchdog every 500ms. The
platform is expected to disable all outputs after 1s without watchdog.

Configuration Guides 183

Mission Pinball Framework Documentation, Version

Limitations

Let us know if you hit any of those and we can develop a plan forward.

∙ Max 127 switches are supported (because polling uses the upper bit as state)

∙ Max 256 hardware sounds (alternatively, you can use the MPF sound system)

∙ Max 256 simple lamps (on/off only)

∙ Max 256 lights (with fading and brightness)

∙ Max 256 coils (MPF currently only supports 100 of them; let us know if you need more)

∙ Max 7 alphanumeric displays (BCD, 7-segment or 14-segment displays)

∙ No error correction on the wire (your serial should be reliable)

Protocol reference (v0.08)

Table 1: General command format

Byte Length Description
0 1 Command Byte (see table below
1 - n n - 1 Payload (n-1 bytes)

Table 2: String format (in both payload and response)

Byte Length Description
0 to (n-1) n - 1 String
n 1 Null byte

Get Connected Hardware (0x00)

Get the name of the connected hardware. Does not have any payload.

Example:

Table 3: Command 0x00 - Get Connected Hardware

Byte Length Example Comment
0 1 0 Command 0 - Get Connected Hardware

Returns a null terminated string.

Example: LISY80.

MPF uses this string to identify the platform and might perform certain quirks based on this info if
necessary. Currently, there is quirk coils_start_at_one for LISY1, LISY35 and APC to index coils
starting at one instead of zero.

Configuration Guides 184

Mission Pinball Framework Documentation, Version

Get Firmware Version (0x01)

Get firmware version of the hardware board. Does not have any payload.

Example:

Table 4: Example Command 0x01 - Get Firmware Version

Byte Length Example Comment
0 1 1 Command 1 - Get Firmware Version

Returns a null terminated string.

Example: 4.01.

MPF parses this string as semantic version. It exposes the version as variable and in the logs. This
might be used to perform quirks around known bugs.

Get API Version (0x02)

Get the API version. Does not have any payload.

Example:

Table 5: Example Command 0x02 - Get API Version

Byte Length Example Comment
0 1 2 Command 2 - Get API Version

Returns a null terminated string.

Example: 0.08.

MPF parses this string as semantic version. This is expected to be 0.08 for this version. MPF might
refuse old API versions at some point.

Get Simple Lamp Count (0x03)

Get count of lamps connected to the hardware platform. Does not have any payload.

Example:

Table 6: Example Command 0x03 - Get Simple Lamp Count

Byte Length Example Comment
0 1 3 Command 3 - Get Simple Lamp Count

Returns one byte:

Table 7: Response to 0x03 - Get Simple Lamp Count

Byte Length Description
0 1 Simple Lamp count l (0 to 255). 0 if no simple lamps exist.

Example:

Configuration Guides 185

Mission Pinball Framework Documentation, Version

Table 8: Example Response to 0x03 - Get Simple Lamp Count

Byte Length Example Comment
0 1 64 Platform supports 64 simple lamps with numbers

0 to 63.

MPF uses this number to refuse any lights with a number larger or equal than l and subtype lamp.
Lamps in LISY are expected to be on/off type devices and do not support fading or dimming. Use this
for older style lamps and GIs.

Get Solenoid Count (0x04)

Get count of solenoids connected to the hardware platform. Does not have any payload.

Example:

Table 9: Example Command 0x04 - Get Solenoid Count

Byte Length Example Comment
0 1 4 Command 4 - Get Solenoid Count

Returns one byte:

Table 10: Response to 0x04 - Get Solenoid Count

Byte Length Description
0 1 Solenoid count c (0 to 127). 0 if no solenoids exist.

Example:

Table 11: Example Response to 0x04 - Get Solenoid Count

Byte Length Example Comment
0 1 64 Platform supports 64 solenoids with numbers 0

to 63.

MPF uses this number to refuse any solenoids with a number larger or equal than c.

Get Sound Count (0x05)

Get count of sounds available. Does not have any payload.

Example:

Table 12: Example Command 0x05 - Get Sound Count

Byte Length Example Comment
0 1 5 Command 5 - Get Sound Count

Returns one byte:

Configuration Guides 186

Mission Pinball Framework Documentation, Version

Table 13: Response to 0x05 - Get Sound Count

Byte Length Description
0 1 Sound count o (0 to 255). 0 if no sounds exist.

Example:

Table 14: Example Response to 0x05 - Get Sound Count

Byte Length Example Comment
0 1 128 Platform supports 128 sounds with numbers 0 to

127.

MPF uses this number to refuse any sounds with a number larger or equal than o. This is used for
older machines with a hardware soundcard. In LISY it can be used to play sounds from the ROM of
the original game. Return 0 if you do not support sounds in your platform.

Get Segment Display Count (0x06)

Get count of segment displays available. Does not have any payload.

Example:

Table 15: Example Command 0x06 - Get Segment Display Count

Byte Length Example Comment
0 1 6 Command 6 - Get Segment Display Count

Returns one byte:

Table 16: Response to 0x06 - Get Segment Display Count

Byte Length Description
0 1 Segment display count sd (0 to 255). 0 if no sounds exist.

Example:

Table 17: Example Response to 0x06 - Get Segment Display
Count

Byte Length Example Comment
0 1 6 Platform supports 6 segment displays with num-

bers 0 to 5.

MPF uses this number to refuse any segment display with a number larger or equal than sd. Return 0
if you do not support displays in your platform.

Get Segment Display Details (0x07)

Get type of segment displays.

Configuration Guides 187

Mission Pinball Framework Documentation, Version

Table 18: Payload of Command 0x07 - Get Segment Display
Details

Byte Length Description
1 1 Index sd of the segment display to query

Example:

Table 19: Example Command 0x07 - Get Segment Display De-
tails

Byte Length Example Comment
0 1 7 Command 7 - Get Segment Display Details
1 1 0 Query the first display

Returns two bytes:

Table 20: Response to 0x07 - Get Segment Display Details

Byte Length Description
0 1 Type of segment display (see list below)
1 1 Number of segments sw(sd) (0-255)

sw(sd) is the segment width for display index sd.

Example:

Table 21: Example Response to 0x07 - Get Segment Display
Details

Byte Length Example Comment
0 1 1 Segment display is a BCD7 display
1 1 12 Segment display is 12 segments wide

Options are:

Configuration Guides 188

Mission Pinball Framework Documentation, Version

Table 22: Types in Response of 0x07 - Get Segment Display
Details

Byte of seg-
ment type
st

Name Description Bytes per Segment bs(st)

0 Invalid Display index
is invalid or
does not exist
in machine.

∙

1 BCD7 BCD Code for
7 Segment
Displays with-
out comma

1 byte (4 bit BCD in the first four byte)

2 BCD8 BCD Code
for 8 Seg-
ment Displays
(same as
BCD7 but
with comma)

1 byte (4 bit BCD in the first four byte, 7th byte
is the comma)

3 SEG7 Fully address-
able 7 Seg-
ment Display
(with comma)

1 byte (a-g encoded as bit 0 to 6 and bit 7 as
comma)

4 SEG14 Fully address-
able 14 Seg-
ment Display
(with comma)

2 bytes (a-g encoded as bit 0 to 6 in first byte. h
to r encoded as bit 0 to 6 in second byte. comma
as bit 7 in second byte)

5 ASCII ASCII Code 1 ascii byte per segment
6 ASCII_DOT ASCII Code

with comma
(every seg-
ment has an
additional
comma)

1 ascii byte per segment. Additionally bit 7 en-
codes the comma.

Not yet used in MPF but will be added soon.

Get Game Info (0x08)

Get the game number. Does not have any payload.

Example:

Table 23: Example Command 0x08 - Get Game Info

Byte Length Example Comment
0 1 8 Command 8 - Get Game Info

Returns null terminated string. This is the internal Gottlieb number in LISY. MPF does not use the
command at all (and we are not planning to). It is used in PinMAME on LISY.

Configuration Guides 189

Mission Pinball Framework Documentation, Version

Get Switch Count (0x09)

Get count of switches available. Does not have any payload.

Example:

Table 24: Example Command 0x09 - Get Switch Count

Byte Length Example Comment
0 1 9 Command 9 - Get Switch Count

Returns one byte:

Table 25: Response to 0x09 - Get Switch Count

Byte Length Description
0 1 Switch count s (0 to 127)

Example:

Table 26: Example Response to 0x09 - Get Switch Count

Byte Length Example Comment
0 1 70 Platform supports 70 switches with numbers 0 to

69.

MPF uses this number to refuse any switches with a number larger or equal than s. Please note that
the procotol is currently limited to 127 switches since the upper byte is used to indicate inverted
switches in commands.

Get Status of Simple Lamp (0x0A)

Get the status of a simple lamp. Payload is the lamp index:

Table 27: Payload of Command 0x0A - Get Status of Simple
Lamp

Byte Length Description
1 1 Index l of the lamp to query

Example:

Table 28: Example Command 0x0A - Get Status of Simple Lamp

Byte Length Example Comment
0 1 10 Command 10 - Get Status of Simple Lamp
1 1 25 Query status of lamp 25

Returns one byte:

Table 29: Response to 0x0A - Get Status of Simple Lamp

Byte Length Description
0 1 0=Off, 1=On, 2=Lamp not existing

Configuration Guides 190

Mission Pinball Framework Documentation, Version

Example:

Table 30: Example Response to 0x0A - Get Status of Simple
Lamp

Byte Length Example Comment
0 1 0 Status of lamp is off

MPF will not use this. After init/reset MPF assumes all lights to be in state off.

Set Status of Simple Lamp to On (0x0B)

Set simple lamp to on. Payload is the lamp index:

Table 31: Payload of Command 0x0B - Set Status of Simple
Lamp to On

Byte Length Description
1 1 Index l of the lamp to set to on

Example:

Table 32: Example Command 0x0B - Set Status of Simple Lamp
to On

Byte Length Example Comment
0 1 11 Command 11 - Set Status of Simple Lamp to On
1 1 25 Set lamp 25 to on

No response is expected.

Set Status of Simple Lamp to Off (0x0C)

Set simple lamp to off. Payload is the lamp index:

Table 33: Payload of Command 0x0C - Set Status of Simple
Lamp to Off

Byte Length Description
1 1 Index l of the lamp to set to off

Example:

Table 34: Example Command 0x0C - Set Status of Simple Lamp
to Off

Byte Length Example Comment
0 1 12 Command 12 - Set Status of Simple Lamp to Off
1 1 25 Set lamp 25 to off

No response is expected.

Configuration Guides 191

Mission Pinball Framework Documentation, Version

Get Status of Solenoid (0x14)

Get the status of a solenoid. Payload is the solenoid index:

Table 35: Payload of Command 0x14 - Get Status of Solenoid

Byte Length Description
1 1 Index c of the solenoid to query

Example:

Table 36: Example Command 0x14 - Get Status of Solenoid

Byte Length Example Comment
0 1 20 Command 20 - Get Status of Solenoid
1 1 25 Query status of solenoid 25

Returns one byte:

Table 37: Response to 0x14 - Get Status of Solenoid

Byte Length Description
0 1 0=Off, 1=On, 2=Solenoid not existing

Example:

Table 38: Example Response to 0x14 - Get Status of Solenoid

Byte Length Example Comment
0 1 0 Status of solenoid is off

MPF will not use this. After init/reset MPF assumes all solenoids to be in state disabled.

Enable Solenoid at Full Power (0x15)

Enable solenoid at full power. Payload is the solenoid index:

Table 39: Payload of Command 0x15 - Enable Solenoid at Full
Power

Byte Length Description
1 1 Index c of the solenoid to enable

Example:

Table 40: Example Command 0x15 - Enable Solenoid at Full
Power

Byte Length Example Comment
0 1 21 Command 21 - Enable Solenoid at Full Power
1 1 25 Enable solenoid 25 at full power

Configuration Guides 192

Mission Pinball Framework Documentation, Version

No response is expected. This is mostly used in older machines where solenoids could be enabled
without PWM.

Disable Solenoid (0x16)

Disable solenoid. Payload is the solenoid index:

Table 41: Payload of Command 0x16 - Disable Solenoid

Byte Length Description
1 1 Index c of the solenoid to disable

Example:

Table 42: Example Command 0x16 - Disable Solenoid

Byte Length Example Comment
0 1 22 Command 22 - Disable Solenoid
1 1 25 Disable solenoid 25

No response is expected.

Pulse Solenoid (0x17)

Pulse solenoid with it’s configured pulse time. Payload is the solenoid index:

Table 43: Payload of Command 0x17 - Pulse Solenoid

Byte Length Description
1 1 Index c of the solenoid to pulse

Example:

Table 44: Example Command 0x17 - Pulse Solenoid

Byte Length Example Comment
0 1 23 Command 23 - Pulse Solenoid
1 1 25 Pulse solenoid 25

No response is expected. Use command 0x18 to configure the pulse time.

Set Solenoid Pulse Time (0x18)

Configure the pulse time of a solenoid in milliseconds. Payload is the solenoid index and pulse time.

Table 45: Payload of Command 0x18 - Set Solenoid Pulse Time

Byte Length Description
1 1 Index c of the solenoid to configure
2 1 Pulse time in ms (0-255)

Configuration Guides 193

Mission Pinball Framework Documentation, Version

Example:

Table 46: Example Command 0x18 - Set Solenoid Pulse Time

Byte Length Example Comment
0 1 21 Command 24 - Set Solenoid Pulse Time
1 1 25 Configure solenoid 25
2 1 50 Set pulse time to 50ms

No response is expected. This will affect pulses in command 0x17.

Set Segment Display 0-6 (0x1E - 0x24)

Set content of segment display d 0-6. Payload is a null terminated string. Content encoding depends
on the type of the display (from command 0x7).

Table 47: Command 0x1E - 0x24 - Set Segment Display d

Byte Length Value Comment
0 1 30 + d Command byte for set segment depending on

segment number d

1 1 sw(sd) *
bs(st)

Bytes which will follow. Number of segments (0-
127) multiplied by bytes per segment for this dis-
play (1 or 2 bytes).

2 sw(sd) *
bs(st)

Number of
segments
(0-127) multi-
plied by bytes
per segment
for this dis-
play (1 or 2
bytes)

One or two bytes per segment for all segments.
Encoding depends on segment type (see com-
mand 0x7).

Example:

Table 48: Example Command 0x1E - 0x24 - Set Segment Display
d

Byte Length Example Comment
0 1 31 Command 31 - Set Segment display 1
1 1 12 12 Bytes will follow
2 12 Hello World! Set display1 to hello world (ASCII type display)

No response is expected.

Get Status of Switch (0x28)

Get the status of a switch. Payload is the switch index:

Configuration Guides 194

Mission Pinball Framework Documentation, Version

Table 49: Payload of Command 0x28 - Get Status of Switch

Byte Length Description
1 1 Index s of the switch to query

Example:

Table 50: Example Command 0x28 - Get Status of Switch

Byte Length Example Comment
0 1 40 Command 40 - Get Status of Switch
1 1 25 Query status of switch 25

Returns one byte:

Table 51: Response to 0x28 - Get Status of Switch

Byte Length Description
0 1 0=Off, 1=On, 2=Switch not existing

Example:

Table 52: Example Response to 0x28 - Get Status of Switch

Byte Length Example Comment
0 1 0 Status of switch is off

MPF will read all switches at startup using this command.

Get Changed Switches (0x29)

Check is switches changed. Does not have any payload.

Example:

Table 53: Example Command 0x29 - Get Changed Switches

Byte Length Example Comment
0 1 41 Command 41 - Get Changed Switches

Returns one byte:

Table 54: Response to 0x29 - Get Changed Switches

Byte Length Description
0 1 127=No change. Otherwise: The numer of changed switch.

Bit 7 is the status of that switch.

Example:

Table 55: Example Response to 0x29 - Get Changed Switches

Byte Length Example Comment
0 1 10 Switch 10 turned off

Configuration Guides 195

Mission Pinball Framework Documentation, Version

MPF will poll this at 100 Hz by default.

Play Sound (0x32)

Play a sound on a hardware sound card. This is used to trigger sounds on existing sound interfaces on
older machines. The behavior of sounds usually differs per sound number (looping/not looping/stop
other sounds etc) and cannot be influenced by the CPU.

Payload is the sound number.

Table 56: Payload of Command 0x32 - Play Sound

Byte Length Description
1 1 Track to play (default track is 1)
2 1 Index of sound to play

Example:

Table 57: Example Command 0x32 - Play Sound

Byte Length Example Comment
0 1 50 Command 50 - Play Sound
1 1 1 Play on track 1
2 1 42 Play sound 42

No response is expected.

Stop Sound (0x33)

Stop the current playing sound.

Payload is the sound number.

Table 58: Payload of Command 0x33 - Stop Sound

Byte Length Description
1 1 Track to stop (default track is 1)

Example:

Table 59: Example Command 0x33 - Stop Sound

Byte Length Example Comment
0 1 51 Command 51 - Stop Sound
1 1 1 Stop all sounds on track 1

No response is expected.

Configuration Guides 196

Mission Pinball Framework Documentation, Version

Play Sound File (0x34)

Play a sound file on external hardware. This is used to extend sound capabilities on older machines in
LISY. Alternatively, you can use the MPF sound system.

Payload is a null terminated string containing track, flags and the filename of the sound.

Table 60: Payload of Command 0x34 - Play Sound File

Byte Length Description
1 1 Track to play (default track is 1)
2 1 Flags (bit 0=loop, 1=no cache)
3 n Filename (length n)
3 + n 1 Null terminator

Example:

Table 61: Example Command 0x34 - Play Sound File

Byte Length Example Comment
0 1 52 Command 52 - Play Sound File
1 1 1 Use Track 1
2 1 1 Loop file
3 9 test.mp3 Play sound test.mp3. Last character is null byte.

No response is expected.

Text to speech (0x35)

This is used to extend sound capabilities on older machines in LISY.

Payload is a null terminated string containing track, flags and the text to play.

Table 62: Payload of Command 0x35 - Text to speech

Byte Length Description
1 1 Track to play (default track is 1)
2 1 Flags (bit 0=loop, 1=no cache)
3 n Text to play (length n)
3 + n 1 Null terminator

Example:

Table 63: Example Command 0x35 - Text to speech

Byte Length Example Comment
0 1 53 Command 53 - Text to speech
1 1 Track to play

(default track
is 1)

2 1 1 No loop. Use Cache.
3 6 Hello Play text ‘hello’. Last character is null byte.

Configuration Guides 197

Mission Pinball Framework Documentation, Version

No response is expected.

Set Sound Volume (0x36)

Set volume of amplifier. This may be connected either to a hardware soundcard or to the output of the
MPF sound system.

Payload is the sound number.

Table 64: Payload of Command 0x36 - Set Sound Volume

Byte Length Description
1 1 Volume in percent (0-100)
2 1 Track to change (default track is 1)

Example:

Table 65: Example Command 0x36 - Set Sound Volume

Byte Length Example Comment
0 1 54 Command 54 - Set Sound Volume
1 1 Change track

1
2 1 50 Set volume to 50%

No response is expected.

Init/Reset (0x64)

Reset and initialize the platform. MPF will expect this command to reset all coil configs and to disable
all coils and lights. Does not have any payload.

Example:

Table 66: Example Command 0x64 - Init/Reset

Byte Length Example Comment
0 1 100 Command 100 - Init/Reset

Returns one byte:

Table 67: Response to 0x64 - Init/Reset

Byte Length Description
0 1 0=OK. Otherwise an error code. MPF will retry on error.

Example:

Table 68: Example Response to 0x64 - Init/Reset

Byte Length Example Comment
0 1 0 Reset ok.

Configuration Guides 198

Mission Pinball Framework Documentation, Version

This will be the first command send by MPF.

Watchdog (0x65)

Will be send every 500ms. The hardware is expected to disable all solenoids and light if it did not get a
watchdog for 1s. Does not have any payload.

Example:

Table 69: Example Command 0x65 - Watchdog

Byte Length Example Comment
0 1 101 Command 101 - Watchdog

Returns one byte:

Table 70: Response to 0x65 - Watchdog

Byte Length Description
0 1 0=OK. Otherwise an error code

Example:

Table 71: Example Response to 0x65 - Watchdog

Byte Length Example Comment
0 1 0 Watchdog ok.

This be send periodically at 2 Hz in MPF.

Protocol reference (v0.09) - RFC

This section contains a proposal for new methods. This is still in development. Requests and
commends are welcome. All commands are considered in “Request for Comments (RFC)” state. They
will likely end up in v0.09 in some way.

Get Count of Modern Lights (0x13)

Get count of modern lights available. Does not have any payload.

Example:

Table 72: Example Command 0x13 - Get Count of Modern
Lights

Byte Length Example Comment
0 1 19 Command 19 - Get Count of Modern Lights

Returns one byte:

Configuration Guides 199

Mission Pinball Framework Documentation, Version

Table 73: Response to 0x13 - Get Count of Modern Lights

Byte Length Description
0 1 Light count m (0 to 255). 0 if no modern lights exist.

Example:

Table 74: Example Response to 0x13 - Get Count of Modern
Lights

Byte Length Example Comment
0 1 128 Platform supports 128 modern lights with num-

bers 0 to 127.

MPF uses this number to refuse any lights with a number larger or equal than m and subtype light.
Return 0 if you do not support modern lights in your platform.

Fade Modern Light (0x0d)

Fade a group of modern lights.

Table 75: Payload of Command 0x0d - Fade Modern Light

Byte Length Description
1 1 Index m of the first light
2 2 Fade time in ms (0-65535). Can be 0 to set the brightness

instantly.
4 1 Number n of lights to fade. Can be 1 to set or fade a single

light.
5 n One byte of brightness per light (0-255). n bytes in total

Example:

Table 76: Example Command 0x0d - Fade Modern Light

Byte Length Example Comment
0 1 19 Command 13 - Fade Modern Light
1 1 42 First light is 42
2 2 50 Fade to color in 50ms.
4 1 3 Fade three lights (i.e. RGB in sync)
5 1 127 Fade light 42 to 50% brightness
6 1 0 Fade light 43 to 0% brightness
7 1 255 Fade light 44 to 100% brightness

No response is expected.

Set Solenoid Recycle Time (0x19)

Configure the recycle time of a solenoid in milliseconds. The platform will prevent any new
pulse/enable until recycle time has passed after a pulse end or disable. This prevents overheating

Configuration Guides 200

Mission Pinball Framework Documentation, Version

through “machine gunning” on pops, flaky switches or repeated pulses through bad code. By default
MPF will set recycle to two times the pulse time but it can be changed.

Payload is the solenoid index and recycle time.

Table 77: Payload of Command 0x19 - Set Solenoid Recycle
Time

Byte Length Description
1 1 Index c of the solenoid to configure
2 1 Recycle time in ms (0-255)

Example:

Table 78: Example Command 0x19 - Set Solenoid Recycle Time

Byte Length Example Comment
0 1 25 Command 25 - Set Solenoid Recycle Time
1 1 25 Configure solenoid 25
2 1 50 Set recycle time to 100ms

No response is expected. This will affect pulses, enables and all hardware rules.

Pulse and Enable Solenoid with PWM (0x1A)

Pulse solenoid and then enable solenoid with PWM. Payload is the solenoid index, pulse time, pulse
power and hold power:

Table 79: Payload of Command 0x1A - Pulse and Enable
Solenoid with PWM

Byte Length Description
1 1 Index c of the solenoid to enable
2 1 Pulse time in ms (0-255)
3 1 Pulse PWM power (0-255). 0=0% power. 255=100% power
4 1 Hold PWM power (0-255). 0=0% power. 255=100% power

Example:

Table 80: Example Command 0x15 - Pulse and Enable Solenoid
with PWM

Byte Length Example Comment
0 1 26 Command 26 - Enable Solenoid with PWM and

Pulse
1 1 25 Enable solenoid 25
2 1 30 30ms initial pulse
3 1 191 191/255 = 75% pulse power
4 1 64 25% hold power

No response is expected. This command can also be used to just pulse a coil with PWM if “Hold PWM
power” is set to 0.

Configuration Guides 201

Mission Pinball Framework Documentation, Version

Configure Hardware Rule for Solenoid (0x3C)

Program a hardware rule into the controller to control a solenoid based on one to three switches. This
is used in modern machines to implement low latency responses (because responding to switch hits in
software causes too much latency and jitter). There can be only one hardware rule per solenoid. A
new rule will always overwrite an old one for the solenoid.

Flags decide what the three switches do:

Table 81: Flags for Command 0x3C - Configure Hardware Rule
for Solenoid

Bit Description
0 When switch becomes active trigger the rule. Usually set on the first

switch to trigger the rule. Sometimes a second switch is used just to dis-
able a rule (such as on EOS of a flipper).

1 When switch becomes inactive disable the rule. This is what you want on
flipper fingers but not on slings/pops.

2 reserved
3 reserved
4 reserved
5 reserved
6 reserved
7 reserved

Payload is the solenoid index, one to three switches, pulse time, pulse power, hold power and some
flags:

Table 82: Payload of Command 0x3C - Configure Hardware Rule
for Solenoid

Byte Length Description
1 1 Index c of the solenoid to configure
2 1 Switch sw1. Set bit 7 to invert the switch.
3 1 Switch sw2. Set bit 7 to invert the switch.
4 1 Switch sw3. Set bit 7 to invert the switch.
5 1 Pulse time in ms (0-255)
6 1 Pulse PWM power (0-255). 0=0% power. 255=100% power
7 1 Hold PWM power (0-255). 0=0% power. 255=100% power
8 1 Flag for sw1

9 1 Flag for sw2

10 1 Flag for sw3

Example:

Configuration Guides 202

Mission Pinball Framework Documentation, Version

Table 83: Example Command 0x3C - Configure Hardware Rule
for Solenoid

Byte Length Example Comment
0 1 60 Command 60 - Configure Hardware Rule for

Solenoid
1 1 25 Configure rule for solenoid 25
2 1 5 Use Switch 5 as sw1

3 1 134 Use inverted Switch 6 as sw2

4 1 127 No switch as sw3

5 1 30 30ms initial pulse
6 1 191 191/255 = 75% pulse power
7 1 64 25% hold power
8 1 3 sw1 will enable the rule and disable it when re-

leased.
9 1 2 sw2 will disable the rule if it closes (because it is

inverted).
10 1 0 Do not use sw3

No response is expected. To disable a rule just set all flags to 0.

Troubleshooting LISY

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps:

Run Hardware Scan

Using mpf hardware scan you can find out if your LISY based platform is talking properly to MPF.
Additionally, it will show you details about the hardware:

$ mpf hardware scan

LISY connected via network at localhost:1234

Hardware: LISY1 Lisy Version: 4.01 API Version: 0.8

Input count: 88 Input map: ['0', '1', '2', '3', '4', '5', '6', '7', '8', '9', '10', '11', '12', '13',

→˓'14', '15', '16', '17', '18', '19', '20', '21', '22', '23', '24', '25', '26', '27', '28', '29', '30',

→˓'31', '32', '33', '34', '35', '36', '37', '38', '39', '40', '41', '42', '43', '44', '45', '46', '47',

→˓'48', '49', '50', '51', '52', '53', '54', '55', '56', '57', '58', '59', '60', '61', '62', '63', '64',

→˓'65', '66', '67', '68', '69', '70', '71', '72', '73', '74', '75', '76', '77', '78', '79', '80', '81',

→˓'82', '83', '84', '85', '86', '87']

Coil count: 9

Modern lights count: 0

Traditional lights count: 40

Display count: 5

See mpf hardware (command-line utility) for details about the command.

Configuration Guides 203

Mission Pinball Framework Documentation, Version

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your lisy config section:

lisy:

debug: true

This will add a lot more debugging and might slow down MPF a bit. We recommend to disable/remove
it after finishing debugging.

Coils Are Not Firing

What to do if your coils are not working?

Check if Your Hardware is Working at all

Sounds stupid but this is a good start: Is the hardware working at all? Do you see switch hits in the
logs? If not, check our section Your hardware is not working at all.

Check the Watchdog

If switches (or other features of the platform) are working but coils are not we have to dig deeper.
Most hardware platforms have some kind of watchdog. Often there is some LED which indicates if the
watchdog is received. The MPF log might also contain clues (especially if you have enabled debug and
run MPF with verbose flags -v -V). If the watchdog is not received by your platform it will not enable
coils.

In most cases watchdog related problems indicate wiring problems. Check if your boards are properly
wired.

Test Your Coil Numbers using MPF Service CLI

Hardware is connected and generally working, watchdog is good but still your coils are not working?
Maybe something with the numbering is odd. Lets tests that using the MPF Service CLI . Alternatively,
you can also use service mode if you have already configured it. Both ways work similarly.

To use service cli:

1. Open two consoles

2. Start your game (e.g. using mpf both)

3. Start the service cli from within your game folder using mpf service.

4. Type list_coils and press ENTER to see a list of coils.

5. Type coil_pulse your_coil and press ENTER to pulse it.

Does it work? If not check the log and try verify the coil number. If you do not specify
default_pulse_ms MPF will use 10ms which might not be enough for some mechs. Try to increase that
gently (maybe 20ms or 30ms).

Configuration Guides 204

Mission Pinball Framework Documentation, Version

Reducing light update rate

If you got a lot of lights you might run into bus contention issues. You can reduce the light update rate
in MPF:

mpf:

default_light_hw_update_hz: 30 # defaults to 50

If you set this too low fades will be less smooth but otherwise it should not affect your game.

Your hardware is not working at all

If your hardware is not working at all make sure that you removed the options -X, -x and --vpx from
your mpf both or mpf game command line. Those options will overwrite the settings in your hardware
section and MPF will not even try to connect to your hardware. If you got config errors we suggest
you add -X to figure things out without interfacing real hardware all the time. Just keep that option in
mind.

Another stupid thing to check: Is your hardware connected to your PC? We know it is stupid but a
loose USB connector has happened to most of us.

On Linux you might want to run the command lsusb which should show both of your micro controllers
connected. You should see two lines similar to

Bus 002 Device 014: ID 0483:5740 STMicroelectronics Virtual COM Port

Bus 002 Device 015: ID 0483:5740 STMicroelectronics Virtual COM Port

If you are unsure about the output, run the command once with your controllers connected and once
without. If there is no difference, then for sure the USB device is not properly connected.

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the

Configuration Guides 205

Mission Pinball Framework Documentation, Version

documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

Arduino Pinball Controller

MPF can control System3 to System11c machines directly using the Arduino Pinball Controller (APC).
It contains CPU and drivers so it can also be used to build full custom machines. Uses the LISY
protocol .

This is how APC generally works:

https://youtu.be/w4Po8OE5Zkw

See Arduino Pinball Controller Documentation on github for details.

This is an example config:

#config_version=5

hardware:

platform: lisy

lisy:

connection: serial

port: com1 # change this for your setup

baud: 115200

digital_outputs:

game_over_relay:

number: 1

type: light

enable_events: ball_started

disable_events: ball_will_end

segment_displays:

info_display:

number: 0

player1_display:

number: 1

player2_display:

number: 2

player3_display:

number: 3

player4_display:

number: 4

hardware_sound_systems:

default:

label: APC

See the LISY platform for more details on configuring hardware.

Connecting a System3 to System11c Machine to APC

1. Replace your original MPU and driver board with APC

See the APC documentation for build up and installation instructions.

Configuration Guides 206

https://youtu.be/w4Po8OE5Zkw
https://github.com/AmokSolderer/APC
https://github.com/AmokSolderer/APC

Mission Pinball Framework Documentation, Version

2. Configure APC to Run MPF

Select USB Control in APC to ensure that MPF can connect. If you did not install an SD card (not
needed for MPF if you do not want to use the sound card of APC) this should be the default.

3. Connect your PC running MPF to APC via USB

Connect APC to your PC via USB. The arduino on APC will behave as a USB-serial device and your PC
should show a new serial device. For the USB connection no special driver Software nor a special USB
cable is needed, a “normal” USB A-B cable will do the job. APC uses the LISY protocol which is why
we have to configure it similarly.

Add/update the following sections in your machine config:

hardware:

platform: lisy

lisy:

connection: serial

port: com1 # replace this with your com port

baud: 115200

Once connected to the host computer, it will (hopefully) identify a new serial device. This is usually
COMx on windows or /dev/ttyUSBx on Linux.

4. Power up APC

Power up your system and enjoy.

5. Start MPF

Start MPF and MPF-MC on you PC:

mpf both

What if it does not work?

Have a look at the LISY troubleshooting guide.

How to configure Multimorphic (P-ROC & P3-ROC) hardware

Here’s a list of all the How To guides which explain how to use MPF with Multimorphic P-ROC and
P3-ROC control systems. These guides include the numbering format (how you map specific entries in
your config files to board and connector locations) as well as overall settings that affect how your
hardware performs.

Overview video about the Multimorphic P3-Roc system:

https://youtu.be/rLKUrv4hWqI

Configuration Guides 207

https://www.multimorphic.com/category/circuit-boards/
https://www.multimorphic.com/category/circuit-boards/
https://youtu.be/rLKUrv4hWqI

Mission Pinball Framework Documentation, Version

3 steps to using a P-ROC/P3-ROC

1. Install the hardware drivers to support the P-ROC/P3-ROC .

2. Configure your platform.

3. Configure the individual pinball mechanisms from the list below.

P-ROC/P3-ROC pinball mech configuration

The following pinball mechanisms are supported by the P-ROC and/or P3-ROC. Click each one for
details on how to configure these types of mechanisms for the P-ROC or P3-ROC.

Connecting P/P3-Roc to your Computer

This page is about connecting the P/P3-Roc to your computer. It roughly covers connecting the bus
between the nodes. For electronic details see the P-Roc section in the pinballmakers.com Wiki.

P-Roc

If you got a P-Roc just connect it to your computer using USB.

Configuration Guides 208

http://pinballmakers.com/wiki/index.php/P-ROC_Main_Page

Mission Pinball Framework Documentation, Version

Then connect switches and driver according to the manual (see Using MPF with existing pinball
machines (Williams, Stern, Gottlieb, etc.) for specific machines). If you are using a PD-Master board
see below for switches and drivers.

mpf hardware scan will show the firmware version and revision of your P-Roc if it is connected
correctly.

P3-Roc

If you got a P3-Roc just connect it to your computer using USB.

Connect all your SW-16 boards to the switch bus and all your PD-16 and PD-8x8 boards to your driver
bus. Use twisted wires but connect + to + and - to - on all nodes.

Configuration Guides 209

Mission Pinball Framework Documentation, Version

mpf hardware scan will show the firmware version and revision of your P3-Roc if it is connected
correctly.

Configuration Guides 210

Mission Pinball Framework Documentation, Version

SW-16

Set a unique address on every SW-16 board on your bus. Those addresses can overlap with the driver
addresses. It does not matter on which of the two switch busses the boards are connected. Terminate
the bus at the last board. See How to configure switches (P3-ROC) for how to configure those boards.

You can list all SW-16 using mpf hardware scan:

$ mpf hardware scan

Firmware Version: 2 Firmware Revision: 6 Hardware Board ID: 1

SW-16 boards found:

- Board: 0 Switches: 16 Device Type: A3 Board ID: 0

- Board: 1 Switches: 16 Device Type: A3 Board ID: 1

- Board: 2 Switches: 16 Device Type: A4 Board ID: 2

Configuration Guides 211

Mission Pinball Framework Documentation, Version

PD-16/PD-8x8

Set a unique address on every PD-16/PD-8x8 board on your bus. Those addresses can overlap with the
switch addresses. However, they overlap with the PD-LED addresses so plan accordingly. It does not
matter on which of the two driver busses the boards are connected. Terminate the bus at the last
board. See How to configure coils/drivers/magnets (P-ROC/P3-ROC) and How to configure Matrix
Lights (P-ROC/P3-ROC) for how to configure those boards.

MPF and the P3-Roc do not know if those boards are connected as the communication is one-way only.

Configuration Guides 212

Mission Pinball Framework Documentation, Version

PD-LED

Set a unique address on every PD-LED board on your bus. Those addresses can overlap with the
switch addresses. However, they overlap with the PD-16 addresses so plan accordingly. It does not
matter on which of the two driver busses the boards are connected. Terminate the bus at the last
board. See How to configure LEDs on the PD-LED (P-ROC/P3-ROC) for how to configure those boards.

MPF and the P3-Roc do not know if those boards are connected as the communication is one-way only.

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to use install drivers for the P-ROC / P3-ROC

Using a P-ROC or P3-ROC with MPF is pretty straightforward. The first step is to download and install
the hardware drivers and libraries for your OS that the P-ROC/P3-ROC needs to communicate with
your computer. The exact process for that is OS-specific, so click the link to follow the guide for your
specific OS:

Configuration Guides 213

Mission Pinball Framework Documentation, Version

How to install P-ROC / P3-ROC drivers on Windows (32-bit)

This guide explains how to install the USB drivers for the P-ROC or P3-ROC on 32-bit Windows (x86).

1. Download and install the FTDI drivers

The P-ROC and P3-ROC boards use a chip from a company called “FTDI Chip” to handle the USB
communication, so you need to install the FTDI driver so Windows can properly see the device when
you plug it in.

You can download the latest version from here:

http://www.ftdichip.com/Drivers/D2XX.htm

Here’s a screen shot of the download section of that page. Note that the actual version number of the
driver might be newer that the screen shot below. That should be ok.

Download and run the setup executable from the “1” link in the screen shot. (We like to use that
because it’s easier than the manual process you get from using the “2” link in that screen shot.)

Now MPF will be able to communicate with the P-ROC or P3-ROC.

Continue on with the How to configure MPF for the P-ROC/P3-ROC platform documentation to finish
your MPF configuration for the P-ROC/P3-ROC.

Configuration Guides 214

http://www.ftdichip.com/Drivers/D2XX.htm

Mission Pinball Framework Documentation, Version

2. Install Visual C++ Redistributable for Visual Studio 2019

You might already have those but in case you do not install Visual C++ Redistributable for Visual
Studio 2019 (32-bit).

What if it did not work?

MPF is erroring out on start-up? Cannot connect to your P/P3-Roc? Have a look at the troubleshooting
guide for P/P3-Roc.

How to install P-ROC / P3-ROC drivers on Windows (64-bit)

This guide explains how to install the USB drivers for the P-ROC or P3-ROC on 64-bit Windows (x64).

1. Download and install the FTDI drivers

The P-ROC and P3-ROC boards use a chip from a company called “FTDI Chip” to handle the USB
communication, so you need to install the FTDI driver so Windows can properly see the device when
you plug it in.

You can download the latest version from here:

http://www.ftdichip.com/Drivers/D2XX.htm

Here’s a screen shot of the download section of that page. Note that the actual version number of the
driver might be newer that the screen shot below. That should be ok.

Download and run the setup executable from the “1” link in the screen shot.

Configuration Guides 215

https://aka.ms/vs/16/release/vc_redist.x86.exe
https://aka.ms/vs/16/release/vc_redist.x86.exe
http://www.ftdichip.com/Drivers/D2XX.htm

Mission Pinball Framework Documentation, Version

2. Now download and unzip the other package

Next you need to download the other package (from the “2” link in the screen shot) which is a zip file.

Unzip it and find the file called ftd2xx64.dll. (Probably in the amd64 folder.)

Copy it to C:\Windows\System32

Rename it from ftd2xx64.dll to ftd2xx.dll

Now MPF will be able to communicate with the P-ROC or P3-ROC.

Continue on with the How to configure MPF for the P-ROC/P3-ROC platform documentation to finish
your MPF configuration for the P-ROC/P3-ROC.

3. Install Visual C++ Redistributable for Visual Studio 2019

You might already have those but in case you do not install Visual C++ Redistributable for Visual
Studio 2019 (64-bit).

Configuration Guides 216

https://aka.ms/vs/16/release/vc_redist.x64.exe
https://aka.ms/vs/16/release/vc_redist.x64.exe

Mission Pinball Framework Documentation, Version

What if it did not work?

MPF is erroring out on start-up? Cannot connect to your P/P3-Roc? Have a look at the troubleshooting
guide for P/P3-Roc.

How to install P-ROC / P3-ROC drivers on Mac OS

Installing the P-ROC drivers (libpinproc and pypinproc) on the Mac is a manual process that requires a
few prerequisites and some supporting software. We chose to use the homebrew package manager to
help us with the install, which is similar to the apt-get package manager in Linux. The following
instructions will help you get homebrew installed, along with everything else.

These instructions assume you have already installed MPF.app. If you haven’t, you will need to go
back and do that first , since it has to be installed before you can build the P-ROC drivers.

1. Install Brew

Open a Terminal and paste in the following commands (and then press <Enter> after each one):

cd /usr/local

/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/master/install)"

If you’re prompted to install Xcode, click Install, followed by Agree.

After Xcode installs (or right away if you already had it), press Return to continue and then enter your
password.

You’ll see a bunch of stuff scroll by as things are downloaded and installed.

2. Create a folder in your user folder called “proc”

From the same terminal window, run:

mkdir ~/proc

3. Download osx-proc-support

Change to that new folder:

cd ~/proc

And run the following command which will clone (download) the files you need to make the P-ROC run
on the Mac. (Even though this is called “osx-proc-support”, it also works with MacOS Sierra.)

git clone https://github.com/missionpinball/osx-proc-support

Configuration Guides 217

http://brew.sh

Mission Pinball Framework Documentation, Version

4. Install prerequisites via Brew

Now run:

brew install libftdi libusb-compat cmake

5. Install yaml-cpp

The P-ROC/P3-ROC requires a library called yaml-cpp. While there is a yaml-cpp package in brew, it’s
too new to use here. Adding to the fuss is that the version we need is no longer available, so we
included it on the osx-proc-support package that you downloaded earlier.

Run the following commands to compile it from scratch:

cd ~/proc/osx-proc-support

tar -xzf yaml-cpp-0.2.5.tar.gz

cd yaml-cpp-0.2.5

mkdir bin

cd bin

cmake ..

make

sudo make install

6. Download & install libpinproc

Libpinproc is the P-ROC/P3-ROC library that lets the host computer talk to the P-ROC/P3-ROC
hardware. Run the following commands:

cd ~/proc

git clone --branch=dev https://github.com/missionpinball/libpinproc

Copy the Mac version of CMakeLists.txt to the libpinproc folder:

cp -r ~/proc/osx-proc-support/CMakeLists.txt ~/proc/libpinproc

That avoids having to edit the file manually. It should work for nearly all situations, but if libpinproc
won’t compile in the next steps, you should make sure the paths in include_dirs within
CMakeLists.txt are correct.

cd libpinproc

mkdir bin

cd bin

cmake -DBUILD_SHARED_LIBS=ON ..

make

sudo make install

7. Download & install pypinproc 2.1

Pypinproc is a wrapper library that allows Python apps (like MPF) to talk to the libpinproc that you
installed in the previous step. Unfortunately the version that is available from the multimorphic.com

Configuration Guides 218

Mission Pinball Framework Documentation, Version

website only works with Python 2.x, and MPF uses Python 3.x, so you have to download a version that
we modified to work with Python 3:

cd ~/proc

git clone https://github.com/missionpinball/pypinproc

cd pypinproc

python3 setup.py build

sudo python3 setup.py install

(If you prefer to install pypinproc in a virtualenv, make sure it’s activated before this step, and omit
sudo from the last line.)

8. Install D2xxHelper

D2xxHelper is provided by FTDI Chips, the maker of the chip which acts as the USB interface on the
P-ROC/P3-ROC boards. Mac OS comes with its own FTDI driver that’s loaded by default and prevents
other FTDI drivers from running. D2xxHelper adjusts the priorities of FTDI driver loading so that the
FTDI driver we need loads first, preventing the Apple FTDI driver from loading. This is Apple
Support’s recommended method of solving the problem, so you’re safe. You’ll be prompted by
Gatekeeper to enter your password to accept installation of the package- this is normal. You’ll also be
warned that this package may be incompatible with future versions of macOS.

cd ~/proc/osx-proc-support

sudo installer -pkg D2xxHelper_v2.0.0.pkg -target /

9. Reboot

You have to reboot in order to have the changes D2xxHelper made take effect. After that, you should
be all set and can continue on with the How to configure MPF for the P-ROC/P3-ROC platform
documentation to finish your MPF configuration for the P-ROC/P3-ROC.

What if it did not work?

MPF is erroring out on start-up? Cannot connect to your P/P3-Roc? Have a look at the troubleshooting
guide for P/P3-Roc.

How to install P-ROC / P3-ROC drivers on Linux

If you want to use MPF on a Debian-based version of Linux (which includes Ubuntu), you can use our
all-in-one Debian installer which is detailed in the Installing MPF on Linux guide.

Note that when you run that installation script, it will ask you what type of hardware you’ll be using. If
you choose the “P3 or P-ROC” option, then it will install all of the libraries and drivers you need, and
everything should work.

After that, you can continue on with the How to configure MPF for the P-ROC/P3-ROC platform
documentation to finish your MPF configuration for the P-ROC/P3-ROC.

Configuration Guides 219

Mission Pinball Framework Documentation, Version

What if it did not work?

MPF is erroring out on start-up? Cannot connect to your P/P3-Roc? Have a look at the troubleshooting
guide for P/P3-Roc.

How to configure MPF for the P-ROC/P3-ROC platform

Related Config File Sections
hardware:
p_roc:

Once you have your P-ROC/P3-ROC drivers installed , you need to configure your machine to use the
P-ROC or P3-ROC.

1. Set your platform

In your machine-wide config file, set the platform.

For the P-ROC:

hardware:

platform: p_roc

For the P3-ROC:

hardware:

platform: p3_roc

2. Set your driver boards:

Next, configure the driver boards setting which tells MPF which type of driver boards you’re using. If
you’re using the P-ROC driver boards (like the PD-16 or PD-8x8), then you set it like this:

For the P-ROC:

hardware:

platform: p_roc

p_roc:

driverboards: pdb

For the P3-ROC:

hardware:

platform: p3_roc

p_roc:

driverboards: pdb

Note that if you’re using a P-ROC with an existing machine, then your driver boards will be either wpc,
stern, etc. See the documentation on configuring MPF for use in existing machines for details.

Configuration Guides 220

Mission Pinball Framework Documentation, Version

3. Configure your watch dog timeout

The P-ROC has the ability to use a watch dog timer. This is enabled by default with a timeout of 1
second. If you would like to disable this, or you’d like to change the timeout, you can do so in either
the p_roc: or p3_roc: section of your machine-wide config.

For the P-ROC or P3-Roc:

p_roc:

use_watchdog: true

watchdog_time: 1s

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to configure switches (P-ROC)

Related Config File Sections
switches:

To configure switches on a P-ROC, you can follow the guides and instructions in the Switches docs.

Configuration Guides 221

Mission Pinball Framework Documentation, Version

However there are a few things to know about using switches with a P-ROC.

number:

Switches are directly connected to the P-ROC board itself. There are two types of switches—matrix
and direct—and they each have a different number format.

Note: If you’re using your P-ROC in an existing machine, then don’t use the number settings here.
Instead use the numbers from the existing machine section of the documentation.

Direct Switches

The P-ROC has 32 direct switch inputs (which are switches that are directly connected to the P-ROC
that do not require a switch matrix). Direct switches are numbered 0-31. (See the P-ROC
documentation for the connector mappings.)

Direct switches are configured in your machine config file by starting the number with “SD”, like this:

switches:

my_switch:
(continues on next page)

Configuration Guides 222

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: SD0

my_other_switch:

number: SD1

another_switch:

number: SD12

Matrix Switches

If you’re using a switch matrix, then the switch numbers are entered using the column number, then a
slash, then the row number.

switches:

my_switch:

number: 0/0 # column 0, row 0

my_other_switch:

number: 0/1 # column 0, row 1

another_switch:

number: 3/4 # column 3, row 4

Mixing and matching direct and matrix switches

You can mix-and-match direct and matrix switches. However you should be aware of the hardware
limitations of combining both. The P-ROC gives you the ability for ONE of the following:

∙ 32 direct switches and an 8x8 (64 switches) matrix

∙ 24 direct switches and an 8x16 (128 switches) matrix

Basically the P-ROC has the ability to repurpose 8 of the direct switch inputs as row inputs to extend
the switch matrix from 8 to 16 rows. This means that valid values are:

∙ Direct switches, SD0 - SD31

∙ Matrix switches, 0/0 - 7/7

OR

∙ Direct switches, SD8 - SD31

∙ Matrix switches, 0/0 - 7/15

In other words, if any switch uses a row number (the number after the slash) greater than 7, then you
can’t use direct switches 0 through 7.

The configuration of this is automatic based on the numbers you use, but currently there is no error
checking to ensure that SD0 - SD7 are not used if you have any switch which a row that’s 8-15.

Choosing direct versus matrix switches

The only difference between direct and matrix switches is in how they’re wired. Matrix switches use
less wire, but require diodes on the switches and are harder to troubleshoot. Direct switches are
easier to wire, but they require more wire and you’re limited to 24 (or 32) of them.

Configuration Guides 223

Mission Pinball Framework Documentation, Version

If you’re using opto switches then you must connect the IR receivers to direct switch inputs, since the
direct switch inputs are always powered.

There’s a misconception that direct switches are “faster” than matrix switches. That is false. The
P-ROC scans the 8 columns of the matrix (one at a time), then it reads the direct switches, then the
matrix switches again, then the directs, etc. So from a practical sense, the directly switches are really
like a single column matrix with either 24 or 32 rows, and they’re scanned after the rows of the matrix
are scanned. So whether a switch is direct or in the matrix doesn’t affect the scanning speed or
response time of the switch.

Debounce options

The P-ROC has the ability to configure debounce settings for switches. A non-debounced switch which
report its state change immediately, while a debounced switch will report its state change after it’s
been in the new state for two consecutive reads.

By default, MPF will enable debouncing in both directions (open and close) for all switches. However
you can override this on a per-switch basis with a switch’s debounce: setting.

Valid options are normal, quick, and auto.

To disable debouncing for a switch, add debounce: quick to the switch config, like this:

switches:

my_switch:

number: 0/0

debounce: quick

To force debouncing to always be used (which is also the default on the P-ROC, so not really needed),
configure it like this:

switches:

my_switch:

number: 0/0

debounce: normal

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to configure switches (P3-ROC)

Related Config File Sections
switches:

To configure switches on a P3-ROC, you can follow the guides and instructions in the Switches docs.

However there are a few things to know about using switches with a P3-ROC.

Configuration Guides 224

Mission Pinball Framework Documentation, Version

number:

Unlike the P-ROC, the P3-ROC does not have switch inputs on the P3-ROC itself. Instead, you add
SW-16 boards which each have 16 direct switch inputs. (e.g. there is no switch matrix.) You can
connect up to 16 SW-16s to support as many as 256 switches.

Each SW-16 has a unique board number which is set using DIP switches (find that out now). On each
board there are two banks (A and B) of 8 switches. Then each switch has an input number (0 to 7).

To configure the number: of a switch connected to an SW-16 board and a P3-ROC, you have two
options:

Board Bank Switch Syntax

The first (and easier) option is to enter the number as a combination of the SW-16 board address
(0-15, as configured by the DIP switches), then the bank number (Bank A is 0, Bank B is 1), then the
switch input number (0-7).

For example:

switches:

my_switch:

number: A0-B0-0 # SW-16 board at address 0, Bank A, Switch 0

my_other_switch:

number: A2-B1-5 # SW-16 board at address 2, Bank B, Switch 5

Configuration Guides 225

Mission Pinball Framework Documentation, Version

Direct Numbering

You can also use the internal number. As mentioned in the SW-16 manual you can calculate those
using:

Bank A switch: P3-ROC switch # = SW-16 address * 16 + Bank A switch input Bank B switch:
P3-ROC switch # = SW-16 address * 16 + 8 + Bank B switch input

However, we recommend the above syntax because it will perform this calcuation for you.

For example:

switches:

my_switch:

number: 0 # SW-16 board at address 0, Bank A, Switch 0

my_other_switch:

number: 45 # SW-16 board at address 2, Bank B, Switch 5

Connecting Switches

Switches are connected between the input pin and ground. On SW-16 revision 1 those are pins 1, 3-9
for switch 0 to 7 on bank A (J2) and 1, 2, 4-9 for switch 0 to 7 on bank B (J6). Ground is on 10 for both
banks. On SW-16 revision 2 those are pins 2 to 9 for switch 0 to 7 and 10 for ground on headers J2
(Bank A) and J6 (Bank B). Revision two has an additional low current 12V output on pin 1.

Burst Switch Inputs

Burst switch inputs (J3 to J10) on the P3-Roc can be used in two ways in MPF.

∙ Burst Optos - As burst switch inputs in combination with a burst switcher driver can drive
long-beam optos. This is how they were originally intended.

∙ Local Inputs - Alternatively you can use them as direct local inputs (and the burst drivers as
outputs; see How to configure coils/drivers/magnets (P-ROC/P3-ROC) section for details).

Configuration Guides 226

Mission Pinball Framework Documentation, Version

Burst Switches as Burst Optos

You can configure burst optos using the following syntax:

switches:

burst_opto_1_20:

number: burst-1-20 # burst input with switch 1 and driver 20

burst_opto_2_20:

number: burst-2-20 # burst input with switch 2 and driver 20

burst_opto_10_5:

number: burst-10-5 # burst input with switch 10 and driver 5

Make sure to disable DIP switches 1 and 2 on the P3-Roc. You can configure up to five switches per
driver.

Note: There is currently no reliable way to read the initial state of burst optos. MPF will assume that
all burst IRs are open on start-up. This might cause if you use it to track balls in a ball lock which
might contain balls from a previous game. This limitation will probably go away in future firmware
update of the P3-Roc.

Configuration Guides 227

Mission Pinball Framework Documentation, Version

Burst Opto PCBs

Burst optos are unlike normal optos and you cannot use normal optos. Instead, they use 40kHz
infrared transmitters and receivers. Multimorphic sells them as single transmitter/receiver (part
number: PCBA-0011-0002) and as bank of 8 (part number: PCBA-0003-0003).

Burst Switches as Local Inputs

If you want to use burst switches as local inputs set DIP switch 2 to on on the P3-Roc. You can use
those 64 inputs as direct inputs:

switches:

local_switch0:

number: direct-0 # local input 0

local_switch20:

number: direct-20 # local input 20

Make sure to assign IDs >= 4 to all SW-16 boards if you set DIP 2. Local switches behave just like any
other switch on the P3-Roc. Hardware rules, debouncing etc. will behave exactly the same way.

Note: You need at least Firmware version 2.6 to use burst switches as local inputs on the P3-Roc.

Warning: There is no electronic protection on the P3-Roc for burst switches (neither as local
inputs nor as burst optos). Do not use them without additional protection. Any voltage above 3.3V
or below 0V will irreversibly damage the P3-Roc. Make sure you know what you are doing before
turning this on. We advise to use SW-16 for normal playfield/mech inputs and only use local inputs
with additional circuits (not directly). If you plan to use burst optos have a look at the PCBs offered
from Multimorphic for that purpose.

Debounce options

The P-ROC has the ability to configure debounce settings for switches. A non-debounced switch which
report its state change immediately, while a debounced switch will report its state change after it’s
been in the new state for two consecutive reads.

By default, MPF will enable debouncing in both directions (open and close) for all switches. However
you can override this on a per-switch basis with a switch’s debounce: setting.

Valid options are normal, quick, and auto.

To disable debouncing for a switch, add debounce: quick to the switch config, like this:

switches:

my_switch:

number: A0-B0-0

debounce: quick

To force debouncing to always be used (which is also the default on the P-ROC, so not really needed),
configure it like this:

Configuration Guides 228

Mission Pinball Framework Documentation, Version

switches:

my_switch:

number: A0-B0-0

debounce: normal

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to configure coils/drivers/magnets (P-ROC/P3-ROC)

Related Config File Sections
coils:

To configure coils, drivers, motors, and/or magnets (basically anything connected to PD-16 board’s
driver outputs) with P-ROC/P3-ROC hardware, you can follow the guides and instructions in the Coils
(Solenoids) docs.

(If you’re using a P-ROC with an existing machine’s driver board, like a WPC machine, then see the
existing machine documentation.) If you are using the P-Roc with PDB drivers you can use the local
drivers as number 0 to 31.

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

The only specific thing you have to know for this platform is the number format:

Configuration Guides 229

Mission Pinball Framework Documentation, Version

number:

For PD-16-based devices, the numbering format is:

number: Ax-By-z

The “A” and “B” capital letters are required. (A means Address, B means Bank). The lowercase x, y,
and z letters should be replaced with numbers to represent the following on a PD-16 driver board:

∙ x : Board address (0-31)

∙ y : Bank address (0 for A, 1 for B)

∙ z : Output number (0-7)

Note: The output number is the logical number, not the pin number. For example, Output 0 is on Pin
1, and there is a key pin at 2 or 3. Check the manual for the exact mapping.

For example:

coils:

some_coil:

number: A0-B1-6

default_pulse_ms: 30

Configuration Guides 230

Mission Pinball Framework Documentation, Version

Burst Switches as Local Outputs (P3-Roc only)

If you want to use burst switches as local outputs set DIP switch 1 to on on the P3-Roc. You can use
those 64 output as direct outputs:

coils:

local_output0:

number: direct-0 # direct driver 0

local_output20:

number: direct-20 # direct driver 20

Make sure to assign IDs >= 2 to all PD-16 boards if you set DIP 1 (MPF cannot check this for you).
Local outputs behave just like any other output on the P3-Roc. Hardware rules, pulse, hold, pwm etc.
will behave exactly the same way.

You may also use outputs as digital_outputs. For instance, to control a motor driver circuit:

digital_outputs:

motor_left:

number: direct-5

type: driver

motor_rigth:

number: direct-6

type: driver

Configuration Guides 231

Mission Pinball Framework Documentation, Version

Note: You need at least Firmware version 2.6 to use burst switches as local outputs on the P3-Roc.

Warning: There is no electronic protection on the P3-Roc for burst switches (neither as local
outputs nor as burst optos). Additionally, there are no drivers attached to the outputs and they
cannot drive any pinball mechs. Make sure not to draw too much current out of those outputs.
Also, any voltage above 3.3V or below 0V will irrevisibly damage the P3-Roc. Make sure you know
what you are doing before turning this on. We advise to use PD-16 for normal playfield/mech
drivers and only use local outputs with additional circuits (not directly).

Pulse time

The P-Roc, P3-Roc and/or PD-16 have the ability to specify the “pulse time”. Pulse time is the coil’s
initial kick time. For example, consider the following configuration:

coils:

some_coil:

number:

default_pulse_ms: 30

When MPF sends this coil a pulse command, the coil will be fired for 30ms.

Pulse Power

You can also set the power of pulses on your coil:

coils:

some_coil:

number:

default_pulse_ms: 30

default_pulse_power: 0.5

See the hold power section below for internal details about PWM times. With the P-Roc and P3-Roc it
is not possible to use default_hold_power and default_pulse_power at the same time.

Hold Power

If you want to hold a driver on at less than full power, MPF does this by using default_hold_power
parameter which works for all platforms. It can range from 0.0 to 1.0 and defines the time share the
coil is on (0%-100%).

The P-Roc internally uses two parameters which determine how many milliseconds the coil will be on
(pwm-on time) and off (pwm-off time). MPF will calculate those based on your power settings.

coils:

some_coil:

number:

default_pulse_ms: 32

default_hold_power: 0.5

Configuration Guides 232

Mission Pinball Framework Documentation, Version

When enabled, this driver will be pulsed for 32ms and then hold on at 50% duty which will convert to
1ms on, 1ms off, 1ms on, 1ms off and so on.

With the P-Roc it is not possible to use default_hold_power and default_pulse_power at the same time.

Recycle

You can set recycle time to your coil to prevent it from overheating by repeated pulses. The recycle
time is not configurable on the P-Roc but you can turn it on or off (default on). Default recycle time
(called reload in the P/P3-Roc) is 64ms.

This is an example:

coils:

some_coil_with_recycle:

number:

default_pulse_ms: 32

default_recycle: true

some_coil_without_recycle:

number:

default_pulse_ms: 32

default_recycle: false

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

Related How To guides

∙ Coil Resistance and Hardware Details

∙ Wiring Dual Wound Coils

∙ Dual-Wound versus Single-Wound coils

∙ Adjust coil hold power

∙ Adjust coil strength (pulse times)

∙ Recycle / “Cool Down” Time

∙ Details About Flippers

∙ How to configure single-wound flippers

∙ How to configure dual-wound flippers

∙ Flipper end-of-stroke (EOS) switches

How to configure LEDs on the PD-LED (P-ROC/P3-ROC)

Related Config File Sections
lights:

Configuration Guides 233

Mission Pinball Framework Documentation, Version

This guide explains how to configure MPF to use LEDs attached to a Multimorphic PD-LED board with
either a P-ROC or P3-ROC.

Note that if you’re using a P-ROC/P3-ROC and you want to use serial-controlled LEDs (NeoPixels,
etc.), then you can do that with a P-ROC/P3-ROC by using a FadeCandy instead of a PD-LED. You can
also mix-and-match PD-LEDs and FadeCandy LEDs. If you are using a PD-8x8 or a local matrix on the
P-Roc see the instructions about Matrix lights for P/P3-Roc.

Channel and Number Syntax

In MPF lights abstract a light source which emits arbitrary colors. However, this is not true for all real
lights. Some support only white (GIs), others only a single-color (i.e. red inserts) and others support
full RGB. For that reason MPF knows light numbers and channel numbers. Internally, a light consists
of one or multiple channels. For instance, a single-color GI will contain a single white channel. While a
RGB light will control a red, green and a blue channel. A white light behind a red insert should be a
single red channel (because it cannot emit other colors through the red insert). You can configure
those channels using the channels setting or use start_channel and type to define the channels. See
Lights for details.

However, in most cases a platform supports one type of lights (per subtype) this would be overly
verbose and we added the number setting for configuring lights in the common platform way. For
instance a platform for GIs will configure single channel white lights or a serial LED controller will
configure RGB lights with three channels.

The PD-LED assumes that you want to use RGB LEDs by default. For anything else you have to use
channels.

Light Numbers

PD-LED numbers use the format: board_number-led_index1-led_index2-led_index3

Since the PD-LED board directly drives single color LED outputs, when you use it with RGB LEDs, you
combine three outputs into a single RGB LED. The PD-LED supports both common cathode (common
ground) and common anode (common 3.3v) LEDs, so each LED you buy has four pins (red, green,
blue, and common). When you configure the hardware number for a PD-LED RGB LED, you specify
four parts, separated by dashes:

1. The address of the PD-LED board on the serial chain (as configured via the DIP switches on the
PD-LED.

2. The output number of the red element.

3. The output number of the green element.

4. The output number of the blue element.

You separate those with dashes, so an example PD-LED configuration might look like this:

lights:

l_led0:

number: 8-0-1-2

subtype: led

The example above configures “l_led0” as the LED connected to PD-LED board at address 8, using
outputs 0, 1, and 2 as its red, green, and blue connections.

Configuration Guides 234

Mission Pinball Framework Documentation, Version

subtype: led is only needed on the P-Roc since subtype defaults to led on the P3-Roc defaults. The
P-Roc defaults to matrix.

Channels

Channels use the format: board_number-led_index

This is almost the same as above but it addresses only one output (instead of three). You can use the
channel syntax as for l_led0 above:

lights:

l_led0:

channels:

red:

- number: 8-0

green:

- number: 8-1

blue:

- number: 8-2

You might connect different color channels to your PD-LED. For instance you might have only a red
channel:

lights:

my_red_only_insert:

channels:

red:

- number: 8-0 # board 8 and first channel

Or you can configure a white LED:

lights:

my_white_light:

channels:

white:

- number: 8-4

Starting from MPF 0.54 you can also have MPF calculate the numbers for you:

lights:

led_0:

start_channel: 8-0

subtype: led

type: rgb # will use red: 8-0, green: 8-1, blue: 8-2

led_1:

previous: led_0

subtype: led

type: rgbw # will use red: 8-3, green: 8-4, blue: 8-5, white: 8-6

led_2:

previous: led_1

subtype: led

type: rgbw # will use red: 8-7, green: 8-8, blue: 8-9, white: 8-10

You can also configure two red channel, green plus white or any other combination. See LEDs for
more details about how to configure channels for different types of LEDs.

Configuration Guides 235

Mission Pinball Framework Documentation, Version

Understanding the PD-LED board

The PD-LED controls up to 84 individual LED elements, which can be used to control individual single
color LEDs, or (more likely), combined into groups to control RGB LEDs.

The PD-LED uses a “direct/parallel” connection method for LEDs, where each LED has connections for
each color element running back to the PD-LED. This requires at least two wires per LED (or four for
RGB LEDs). In addition you can also use serial LEDs starting with PD-LED v2 (see below).

Parallel LEDs

Those LEDs are wired individually to the PD-LED.

This is an example:

lights:

l_led_1:

number: 4-0-1-2

subtype: led

LED number:

You can use number 0 to 83 to address your LEDs. The number format is defined above.

Configuration Guides 236

Mission Pinball Framework Documentation, Version

Polarity

The PD-LED allows you to use either common anode or common cathode LEDs. (See the PD-LED
documentation for details. The type of LED would dictate whether you hook it up between the
PD-LED’s output and ground, or between the output and 3.3v.) You can then use the config file to
specify which type of LED you have, such as:

lights:

l_shoot_again:

number: 8-60-61-62

platform_settings:

polarity: true

True = common cathode (or common ground), False = common anode (or common 3.3V)

Note that DIP Switch 6 on the PD-LED board controls whether the “default” state of the LEDs after a
reset is high or low. Basically it’s whether all the LEDs turn on or turn off when the board is reset.
Which position does what is dependent on whether you’re controlling the anode or the cathode with
your outputs, so basically if you turn on your PD-LED and all your LEDs turn on, then flip DIP switch 6
on the PD-LED to the opposite position and power cycle the board. Note: If servos are connected to a
PD-LED board, DIP switch 6 also effects servo signal on power up. See Servos on a PD-LED
(P-ROC/P3-ROC) for additional information.

Breakout boards for parallel LEDs

You likely want to buy or build some breakout boards for your LEDs when you are using parallel LEDs
in your machine. Otherwise, you might end up in wiring hell for your lights. Luckily, there breakout
boards exist which connect via a ribbon cable to your PD-LED.

Breakout boards:

∙ Four LEDs breakout (Multimorphic) - PCBA-0025-0002

∙ Five equally spaced LEDs + three LEDs breakout (Multimorphic) - PCBA-0030-0001

∙ Breakout wire harness (PBL) for four LEDs - #600-0274-00

Part numbers of lights and flashers:

∙ GI RGB LED (PBL) - #600-0230-00

∙ RGB Insert LED (PBL) - #600-0220-01

∙ RGB Insert LED (Multimorphic) - PCBA-0004-0001

∙ Flasher (Multimorphic) - PCBA-0024-0001

∙ Pop bumber RGB LED (PBL) - #600-0258-00

Additionally, they got a PCB with five equally spaced LEDs which breaks out another three LEDs (part
number:). Make sure to check those out because it will make your live easier. In your final machine
you will probably build some larger PCBs and connect them using ribbon cables.

Serial LEDs on the PD-LED

Overview video about serial LEDs:

Configuration Guides 237

Mission Pinball Framework Documentation, Version

https://youtu.be/Q9BG9T7Kj4A

Starting with PD-LED v2 you can use the PD-LED to drive serial LEDs. To enable a serial LEDs you
need to configure your PD-LED board in your p_roc section. Assuming your PD-LED has the address 4
you can use the following config to enable all serial LEDs and and define a few:

p_roc:

pd_led_boards:

4:

use_lpd880x_0: true

use_lpd880x_1: true

use_lpd880x_2: true

use_ws281x_0: true

use_ws281x_1: true

use_ws281x_2: true

lights:

l_serial_chain_0_first:

start_channel: 0-100

type: rgb

subtype: led

l_serial_chain_0_second:

previous: l_serial_chain_0_first

type: rgb

subtype: led

l_serial_chain_1_first:

start_channel: 4-250

type: rgb

subtype: led

l_serial_chain_2_first:

start_channel: 4-400

type: rgb

subtype: led

LED number:

By default MPF maps the first chain (of both LPD880x and WS281x) to LEDs 100 to 249. The second
chain to 250 to 399 and the third to 400 to 599. You can change those settings in the pd_led_boards:
section.

The number format is the same as for parallel LEDs (see above). Board number is the number the at
the PD-LED’s DIP switches. Index is the number of your LED (starting at 0) in the chains plus the
chain start offset (100 for the first chain, 250 for the second or 400 for the third).

Color Correction

If you are using RGB LEDs, they might not be perfectly white when you turn them on. They might be
pinkish or blueish instead depending on the brand of the LED. To a certain extend this is
normal/expected and you can compensate for it by configuring color_correction profiles in
light_settings.

Configuration Guides 238

https://youtu.be/Q9BG9T7Kj4A

Mission Pinball Framework Documentation, Version

Amplifying PD-LED channels with FETs

PD-LED drives LEDs with a current of 22mA. Also, it cannot exceed its output voltage of 3.3 V
effectively limmiting it to a single LED per channel. If you want to drive more LEDs on a channel (e.g.
GIs or long strips) you can connect a MOSFET (as stated in the manual). Choose a logic-level
N-Channel MOSFET with an Output Characteristics curve showing current saturation meeting the
needs of the strip with a voltage between the gate and source (VGS) of 3.3 V or less. This is an
example of such a circuit:

Please make sure to connect your PD-LED and the FET to the same common ground or your FET will
smoke when connecting power.

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to configure Matrix Lights (P-ROC/P3-ROC)

Related Config File Sections
lights:
p_roc:

Configuration Guides 239

Mission Pinball Framework Documentation, Version

To configure matrix lights connected to a PD-8x8 and a P-ROC or P3-ROC, you can follow the guides
and instructions in the Lights docs. If you are using PD-LED with see the instructions about LEDs on
PD-LED for P/P3-Roc.

However there are a few things to know about using matrix lights with a P3-ROC.

Note: If you’re using your P-ROC in an existing machine, then don’t use the number settings here.
Instead use the numbers from the existing machine section of the documentation.

number:

Configure the number for each lamp in your lights: section with an entry that contains a bunch of
letters and numbers which specify the specific columns and row outputs that make up each lamp. It’s
probably easiest to look at an example.

lights:

some_light:

subtype: matrix

number: C-A2-B0-0:R-A2-B1-0

Notice there are two parts to the number, separated by a colon.

The first part is the column information:

∙ C means “Column”

∙ A2 means “the PD-8x8 at Address 2”

∙ B0 means “Bank 0”

∙ 0 means output “0”

The second part is the row information:

∙ R means “Row”

∙ A2 means “the PD-8x8 at Address 2”

∙ B1 means “Bank 1”

∙ 0 means input “0”

Luckily this is only something you have to work out once. :)

You only need subtype: matrix on the P3-Roc since subtype defaults to led. The P-Roc defaults to
matrix so you may omit it there.

Fine tuning column strobe times

The lamp matrix works by quickly cycling through the columns and then activating the rows for the
individual lamps that are supposed to be on in that specific column.

Back in the day when only incandescent bulbs were used, this pretty much worked the same
everywhere and you didn’t have to worry about any other settings. However now that it’s possible to
use LEDs replacement bulbs in your lamp matrices, and there are all sorts of LEDs like “anti-ghosting”

Configuration Guides 240

Mission Pinball Framework Documentation, Version

and things like that, you may want to fine-tune the timing of how the columns are activated. You can
do that in the p_roc: section of your machine-wide config.

For P-ROC:

p_roc:

lamp_matrix_strobe_time: 100ms

For P3-ROC:

p_roc:

lamp_matrix_strobe_time: 100ms

100ms is the default setting (which is used if you don’t add this entry), but you can play with this value
to see how it affects your lights or LEDs.

This is a system-wide setting, so if you have multiple lamp matrices on multiple PD-8x8 boards, then
this setting will be used for all of them.

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to configure mono/traditional DMD (P-ROC)

Related Config File Sections
dmds:
p_roc:

The P-ROC can drive a traditional single-color pinball DMD via the 14-pin DMD connector cable that’s
been in most pinball machines for the past 25 years, like this:

Note: If you want to drive an RGB LED DMD and you’re using a P-ROC, you can do that by adding a
SmartMatrix or RGB.DMD board which you would then use in place of the P-ROC’s 14-pin DMD

Configuration Guides 241

Mission Pinball Framework Documentation, Version

connector.

1. Connect your hardware

2. Add a physical DMD device entry

Once you have your hardware and port set, you need to create the actual device entry for the DMD.

You do this in the dmds: section of the machine config. This section is like the other common sections
(switches, coils, etc.) where you enter the name(s) of your device(s), and then under each one, you
enter its settings.

(And yes, in case you’re wondering, it’s possible to have more than one physical DMD.)

To do this, create a section in your machine-wide config called dmds:, and then pick a name for the
DMD, like this:

dmds:

my_dmd:

shades: 16

Configuration Guides 242

Mission Pinball Framework Documentation, Version

You need to have at least one setting for this to be a valid YAML file, so we usually just pick the shades
and add that with a value of 16 (which means the DMD runs will convert the display content to 16
mono shades when it displays it).

The “shades” option is how many brightness shades you want. 1990s WPC machines supported 4
shades, and modern Stern DMD machines support 16. The P-ROC supports 16 shades (even on older
1990s plasma DMDs). Most modern games will probably be 16 shades, but you can do 4 (or even 2) if
you want an old school look.

There are lots more options for the physical_dmd: section than just the “shades” option listed here.
Check the dmds: for a list of all the options.

Note that one option you do NOT have for physical DMDs is the color. That’s because the color of the
DMD is determined by the DMD itself. You don’t actually send it color values, rather, you just send it
brightness levels, and the DMD shows those brightness levels with whatever color the DMD is.

3. Set a source display

Now that you have everything configured, the last step is to make sure the DMD knows what content
to show. In MPF, you do this by mapping a physical DMD to an MPF display.

By default, the DMD will look for a display (in your displays: section called “dmd”. However you can
override this and configure the DMD to use whatever logical display you want by setting a
source_display: setting. (Just make sure that the width and height of your source display match the
physical pixel dimensions of the DMD or else it will be weird.)

4. Setting the DMD update rate

By default, MPF will send new DMD frames to the P-ROC at about 30 frames per second. (Technically
it sends a new frame every 33ms.)

5. Fine tuning the DMD timing cycles

The P-ROC is able to drive a traditional DMD with 16 shades of intensity, ranging from off (0) to full on
(15). Note that the P-ROC doesn’t control (or even know) what color the DMD is as that’s dictated by
the DMD itself.

The P-ROC creates the appearance of 16 levels of brightness by rapidly turning individual dots on and
off.

For years, DMD’s have been high-voltage gas plasma displays, though more recently they’re
LED-based (even the single color ones with the 14-pin connectors).

Some people have reported less-than-optimal quality when using a P-ROC with certain types of DMDs.
To address this, the P-ROC allows you to fine-tune the timings of the individual bit planes that make up
the image.

For details on this, you can search the P-ROC forums (now defunct) for “high_cycles” to find a few
threads where people are talking about these settings. Then you can set them in the p_roc:
dmd_timing_cycles: section of your machine-wide config, like this:

p_roc:

dmd_timing_cycles: 90, 190, 50, 377

Configuration Guides 243

https://en.wikipedia.org/wiki/Bit_plane

Mission Pinball Framework Documentation, Version

Note that we do not have specific recommendations for values here and based on our experience, we
haven’t found a need to change this. However, if you do have issues and you get new values by talking
to the P-ROC folks, this is how you adjust them in MPF.

Our recommendation is that you leave the dmd_timing_cycles: setting out of your p_roc: config unless
you need it and really know what you’re doing. (There’s potential that bad values here could
permanently damage your DMD hardware, so again, only change these if you know what you’re doing.)

A final config you can test

At this point you’re all set, and whatever slides and widgets are shown on the DMD’s source display in
MPF-MC should be shown on the physical DMD.

That said, all these options can be kind of confusing, so we created a quick example config you can use
to make sure you have yours set right. (You can actually just save this config to config.yaml in a blank
machine folder and run it to see it in action which will verify that you’ve got everything working
properly.)

To run this sample config, you can either run mpf both.

When you run it, do not use the -x or -X options, because either of those will tell MPF to not use
physical hardware which means it won’t try to connect to the Teensy.

Note that the Using a traditional (single color) physical DMD guide has more details on the window
and slide settings used in this machine config.

hardware:

platform: p_roc

p_roc:

driverboards: pdb

displays:

window: # on screen window

width: 600

height: 200

dmd: # source display for the DMD

width: 128

height: 32

default: true

window:

width: 600

height: 200

title: Mission Pinball Framework

source_display: window

dmds:

my_dmd:

brightness: 1.0

slides:

window_slide_1: # slide we'll show in the on-screen window

- type: display

effects:

- type: dmd

dot_color: ff5500

width: 512

height: 128

- type: text

(continues on next page)

Configuration Guides 244

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: MISSION PINBALL FRAMEWORK

anchor_y: top

y: top-3

font_size: 30

- type: rectangle

width: 514

height: 130

color: 444444

dmd_slide_1: # slide we'll show on the physical DMD

- type: text

text: IT WORKS!

font_size: 25

slide_player:

init_done:

window_slide_1:

target: window

dmd_slide_1:

target: dmd

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to configure an RGB DMD (P-ROC/P3_ROC)

Related Config File Sections
rgb_dmds:
smartmatrix:

Neither the P-ROC nor the P3-ROC has direct support for RGB DMDs. However you can still use an
RGB DMD with a P-ROC/P3-ROC by using one of the standalone RGB DMD controllers. (Basically you
buy the RGB DMD hardware and another small controller, and then you have two USB connections
from your computer—one to the P-ROC/P3-ROC, and a second to the RGB DMD controller.)

Standalone RGB DMD options which you can use with a P-ROC/P3-ROC include:

∙ SmartMatrix

∙ RGB.DMD

How to configure alpha-numeric displays (P-ROC)

Related Config File Sections
segment_displays:
p_roc:

The P-ROC includes support four alpha-numeric displays (0-3). You can configure them in MPF:

Configuration Guides 245

Mission Pinball Framework Documentation, Version

segment_displays:

display1:

number: 0

display2:

number: 1

display3:

number: 2

display4:

number: 3

Note that the Alpha-Numeric / Segment Displays guide has more details on using alpha numeric and
segment displays.

Video about segment displays:

https://youtu.be/Jyf3jxGXnTw

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to configure the accelerometer (P3-ROC)

Related Config File Sections
accelerometers:

THe P3-ROC includes an accelerometer which you can use with MPF to detect g-force changes (to use
as a tilt) as well as 3-axis leveling (to use to determine whether the machine is level).

To use the accelerometer on the P3-ROC, add it to your machine-wide config file like this:

accelerometers:

p3_roc_accelerometer:

number: 1

The name (which is “p3_roc_accelerometer” in the example above) doesn’t really matter.

Other than that, use it like you would any accelerometer in MPF, by following the docs and guides in
the Accelerometers section of the documentation.

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to use I2C on the P3-ROC

Related Config File Sections
hardware:

Configuration Guides 246

https://youtu.be/Jyf3jxGXnTw

Mission Pinball Framework Documentation, Version

The P3-ROC contains an I2C port (J17) which is accessible to MPF. You can use this port to control any
I2C-based device.

You need to connect SDA, SCL and ground. You may not need the 3.3V from the P3-ROC as your
controller might be a different voltage (which you can then get directly from your power supply), but
again that depends on the board.

I2C Servo Controller

For instance you can connect a servo controller via I2c. You can’t plug the servo directly into the
P3-ROC, rather, you can buy an I2C-based servo controller and plug it into the P3-ROC. However, a
better option would be to use a servo on a PD-LED .

See I2C Platforms in MPF for other I2C hardware in MPF.

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

Power Entry Board

This board can be used to fan out your power rails. See Voltages and Power in Pinball Machines for
details.

Configuration Guides 247

Mission Pinball Framework Documentation, Version

The Multimorphic Power Filter board serves four purposes. 1. It serves as a central connection point
for 230V/110V AC and all your PSUs using connectors J1, J2 or J3. 2. It provides a bank of capacitors
to buffer current surges on the high voltage rail. 3. It provides safety relay control of the high voltage
rail. 4. It connects the ground (negative) terminals of each of the power supplies to prevent a
differential in ground levels between the coil supply and the logic supply which is a common cause of
unstable operation.

The Multimorphic Power Entry Board allows connections for up to four DC rails:

∙ 5V

∙ 12V

∙ 15V

∙ High Voltage (HV)

You might use different voltages but the LEDs might operate outside the spec in this case (consult the
manual).

DC Outputs are J11 to J17. DC Inputs are J6 to J9. J10 will turn on HV on the ouput. You should
connect it to your door switch to cut high power when the door is opened. Make sure that J10 is
closed during development or HV will be off.

Configuration Guides 248

Mission Pinball Framework Documentation, Version

Servos on a PD-LED (P-ROC/P3-ROC)

Related Config File Sections
servos:
pd_led_boards:

Starting with PD-LED v3 you can configure up to twelve steppers on a PD-LED.

To enable servos you need to configure your PD-LED board in your p_roc section. Assuming your
PD-LED has the ID 4 you can use the following config to enable all servos and and define two of them:

p_roc:

pd_led_boards:

4:

max_servo_value: 300 # rougly maps to 2ms.

use_servo_0: true

use_servo_1: true

use_servo_2: true

use_servo_3: true

use_servo_4: true

use_servo_5: true

use_servo_6: true

use_servo_7: true

use_servo_8: true

(continues on next page)

Configuration Guides 249

Mission Pinball Framework Documentation, Version

(continued from previous page)

use_servo_9: true

use_servo_10: true

use_servo_11: true

servos:

servos_4_0:

number: 4-0

servos_4_1:

number: 4-1

The number of your servos has to be id_of_your_ped_led-number. In this case 4-0 and 4-1 for the first
and second servo on PD-LED 4. You will not be able to use LED 72 to LED 83 on the PD-LED when
enabling all servos.

max_servo_value determines the width of the pulses sent to the servo. This value can be altered to
increase of decrease the servo arc within the physical limits of the device. Higher values widen
pulsewidth increasing the range of motion.

DIP switch 6 of the PD-LED controls the default state of the LED outputs when the board first receives
power. Because servos receive signal from LED outputs, placing this DIP switch in the on position can
activate a servo prior to the PD-LED receiving instructions from the controller and MPF. This in turn
may lead to a servo thermal overload state and failure. When using servos, DIP switch 6 should be
maintained in the OFF position.

You should hook up your servos to an external power source (usually 5V) and not draw that power
from the PD-LED. However, make sure to connect the ground of your power supply. See Voltages and
Power for details.

Overview video about servos:

https://youtu.be/wA6KEODwQ5w

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

Steppers on a PD-LED (P-ROC/P3-ROC)

Related Config File Sections
steppers:
pd_led_boards:

Starting with PD-LED v3 you can configure up to two steppers on a PD-LED. You need an additional
cheap external stepper driver to drive the load of the stepper. Those are sold for a few bucks as
StepStick or DRV8825 on amazon, ebay, aliexpress or similar platforms.

Configuration Guides 250

https://youtu.be/wA6KEODwQ5w

Mission Pinball Framework Documentation, Version

To enable steppers you need to configure your PD-LED board in your p_roc section. Assuming your
PD-LED has the ID 4 you can use the following config to enable and define two steppers:

p_roc:

pd_led_boards:

4:

use_stepper_0: true

use_stepper_1: true

stepper_speed: 13524 # uncomment to tune the speed

switches:

s_stepper_4_0_home:

number: A4-B0-0

s_stepper_4_1_home:

number: A4-B0-1

steppers:

stepper_4_0:

number: 4-0

homing_mode: switch

homing_switch: s_stepper_4_0_home

stepper_4_1:

number: 4-1

homing_mode: switch

homing_switch: s_stepper_4_1_home

The number of your stepper has to be id_of_your_ped_led-number. In this case 4-0 and 4-1 for the first
and second stepper on PD-LED 4. Every stepper needs a homing switch so MPF can home it at

Configuration Guides 251

Mission Pinball Framework Documentation, Version

startup. You will not be able to use LED 75 to LED 80 on the PD-LED when enabling both steppers.

You might have to fine-tune the stepper_speed setting to your steppers. Increasing the value will
reduce the speed of your steppers.

You should hook up your steppers to an external power source and not draw that power from the
PD-LED. However, make sure to connect the ground of your power supply. See Voltages and Power for
details. Connect those stepper drivers as described in How to use Step Stick Steppers in MPF (but
use the PD-LED outputs).

Overview video about steppers:

https://youtu.be/YaRNBU0OHGc

What if it did not work?

Have a look at our troubleshooting guide for the P/P3-Roc.

How to update the Firmware of the P-Roc or P3-Roc

If you experience problems around hardware rules or such consider upgrading your P/P3-Roc
firmware. Sometimes bugs in the firmware get fixed or stuff becomes more robust. For some known
cases MPF will crash intentionally and tell you to upgrade but there might be cases which we do not
know.

Finding out the current firmware version

You can find out your current firmware version using mpf hardware scan:

$ mpf hardware scan

Firmware Version: 2 Firmware Revision: 6 Hardware Board ID: 1

SW-16 boards found:

- Board: 0 Switches: 16 Device Type: A3 Board ID: 0

- Board: 1 Switches: 16 Device Type: A3 Board ID: 1

- Board: 2 Switches: 16 Device Type: A4 Board ID: 2

In this example the P3-Roc is running firmware 2.6.

Upgrading the firmware of the P-Roc or P3-Roc

Warning: DO NOT POWER DOWN THE P/P3-ROC OR YOUR PC DURING THIS PROCESS!

1. Log on to your account on Multimorphic.com (or create one) and go to the Firmware page on the
Multimorphic Wiki.

2. Read the Multimorphic upgrade instructions (they know their boards better than we do)

3. Download the firmware for your board (either P-Roc or P3-Roc)

4. Get the Upgrade tool

Configuration Guides 252

https://youtu.be/YaRNBU0OHGc
https://www.multimorphic.com/support/projects/customer-support/wiki/Firmware
https://www.multimorphic.com/support/projects/customer-support/wiki/Firmware

Mission Pinball Framework Documentation, Version

∙ On Windows: Download the pinprocfw.exe from the Multimorphic site as well

∙ On Linux: Change to mpf-debian-installer/libpinproc/bin

∙ On Mac: Change to libpinproc/bin (likely in ~/proc/libpinproc/bin if you followed the
installer)

5. Run the upgrade tool: ./pinprocfw path/to/the/firmware/file

What if it did not work?

In case you got troubles with the upgrade we recommend you to contact the Multimorphic support
team. If you got a problem with MPF have a look at the Troubleshooting P-Roc/P3-Roc section.

Troubleshooting P-Roc/P3-Roc

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps:

P/P3-Roc Does Not Show Up In Device Manager or dmesg Log

If your P/P3-Roc does not show up in device manager (Windows) or does not create a line in dmesg or
lsusb (Linux/Mac) have a look at the USB cable and connection. Bad cables are a thing (especially for
longer cables). Try removing USB hubs.

Is the board powered up? Are the four blue LEDs circling? If not check your power supply.

ImportError in MPF Log

If you see something along this in your log:

in <module>

from mpf.platform.pinproc.x86.python36 import pinproc

ImportError: DLL load failed: The specified module could not be found

This usually means that the FTDI libs are not installed in the correct version. On Linux pinproc might
not be installed at all. On Windows Visual C++ Redistributable for Visual Studio might also be
missing in the correct version. Have a look a the install instructions for your OS to find and install the
correct requirements.

Failed to reset P/P3-Roc

If you see this repeatedly in the log of MPF:

Failed to reset P/P3-Roc: OSError: Error in WriteData: wrote 0 of 8 bytes. Is your P/P3-Roc connected␣

→˓and powered up?

Will retry creating PinPROC and resetting it in 1s.

This usually means that the P/P3-Roc is either not powered up or not connected.

Configuration Guides 253

Mission Pinball Framework Documentation, Version

Random Crashes of MPF

You might see errors such as the following (usually in p_roc_common.py):

OSError: Error in WriteData: wrote 0 of 8 bytes

This error is triggered by communication issues with the P/P3-Roc. Often this is caused by an
unreliable power supply or overload on the 5V rail of that supply. This might also be caused by a bad
USB cable. In any case you should also find USB communication errors in your operating system
which might give you further clues.

Run Hardware Scan

Using mpf hardware scan you can find out if your P/P3-Roc is talking properly to MPF using USB.
Additionally, it will show you which SW-16 are connected:

$ mpf hardware scan

Firmware Version: 2 Firmware Revision: 6 Hardware Board ID: 1

SW-16 boards found:

- Board: 0 Switches: 16 Device Type: A3 Board ID: 0

- Board: 1 Switches: 16 Device Type: A3 Board ID: 1

- Board: 2 Switches: 16 Device Type: A4 Board ID: 2

Unfortunately, MPF cannot know which PD-16 or PD-LED are connected as this information is not
available. See mpf hardware (command-line utility) for details.

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your p_roc config section:

p_roc:

debug: true

This will add a lot more debugging and might slow down MPF a bit. We recommend to disable/remove
it after finishing debugging.

Enable Bus Tracing

If your hardware behaves different from the way you told it to in MPF or if you are seeing lags or
delays it might be wise to turn on bus tracing.

p_roc:

debug: true

trace_bus: true

This logs all calls to libpinproc. This will cause a lot of additional log lines and might considerably
slow down MPF. Definitely disable this after you finished debugging.

Configuration Guides 254

Mission Pinball Framework Documentation, Version

Upgrade the Firmware of Your P/P3-Roc

If you experience problems around hardware rules or such consider upgrading your P/P3-Roc
firmware. Sometimes bugs in the firmware get fixed or stuff becomes more robust. For some known
cases MPF will crash intentionally and tell you to upgrade but there might be cases which we do not
know.

See How to update the Firmware of the P-Roc or P3-Roc for details about firmware upgrades.

Switches Are Not Registering

If your coils are working but switches are not registering please check the following points:

On the P-Roc

∙ Is 12V power available? This will disable switches but not much else.

∙ Is ground connected properly to your switches?

On the P3-Roc

∙ Do your SW-16 show in mpf hardware scan? (see above)

∙ If not: Is the SW-16 bus connected properly (and not twisted)?

∙ Is ground connected properly to your switches? Should be connected to pin 10 on J2 or J6 of
SW-16.

Some Drivers Are Not Working

If some drivers are working but other are not.

On the P-Roc

If you see the following message on your console (not log; you might have to use the -t commandline
flag to see them):

Refusing to update driver #144; polarity differs on non-custom machine.

This means that the polarity which is defined for your machine type (i.e. WPC) does not match your
driver definition. If you see this please tell us in the MPF user forum and we will investigate this with
you.

All Coils Turn OnWhen I Power Up My Machine

If this happens and MPF is not yet running you likely do not have common ground between high
voltage and logic power. Turn your machine off and only turn it back on when you have fixed and
verified common ground. Read the section about common ground for details or consult an electrical
engineer.

Configuration Guides 255

Mission Pinball Framework Documentation, Version

If this happens shortly after MPF started and you are using a P-Roc this might have to do with the
polarity of your coils. Check the polarity setting and make sure you configured the correct machine
type as there are different defaults in different machine types.

In any case we recommend that you test this with either less voltage (i.e. 12V instead of 48V) or by
using lamps instead of coils on your outputs as that will prevent hardware damage due to overcurrent.

Serial Bus Issues

Bad Cables/Interference

Each serial bus connector has a + and a - pin. The serial cables connect from board to board like
jumper-cables + to + and - to -. Connecting ground pins on the serial bus is not required. A bad serial
cable can be difficult to diagnose, particularly if it is the first serial cable in a chain as it will prevent
signals to all boards downstream of the bad connection. One clue that a bad serial cable is present is
if some of the boards function but others do not. Another clue which is sometimes present on the
driver bus is discovered looking at the driver boards watchdog timer indicator. On the PD-LED the
watchdog is indicated by a lit diode D3. On the PD-16 it is diode D11. The watchdog turns off when
the board is receiving signal over the driver bus from the P3-ROC when MPF is running (including
attract mode). If wiggling serial cables causes the watch dog to light, a loos connection or bad cable is
present. While the switches bus does not have an equivelent watchdog, the game’s switch status
screen can be monitored while wiggling cables looking for a loose connection. It is possible for the
vibration of a mechanism (notoriously from a pop bumper) to cause intermittent faults in a poorly
connecting serial cable. Such intermittent faults are difficult to diagnose.

Termination

The P3-ROC interfaces to the playfield through two serial busses. The switches serial bus connects
SW-16 boards through J11 and/or J14. The driver serial bus connects PD-16 and PD-LED boards
through J12 and J15. The serial busses are designed to allow boards to be connected in a daisy chain
fashion to each plug. A sourse of unreliable communication on the buses is improper termination. The
last board on each chain (not to be confused with the board with the highest address) should have
dipswitch 8 set to ON. For example is the switches serial bus has 6 boards with J11 connecting to
board A B and C and J14 connecting to boards D, E and F, dipswitch 8 should be set to ON on boards C
and F and set to OFF on all other SW 16 boards. (Terminating board B would prevent communication
from board C on that side of the chain.) The same termination strategy also applies to driver boards.
For example if a mix of PD-LED and PD-16 boards connect through J15 as A, B, C, D, and E with E
being the last board, board E would have dipswitch 8 set to ON.

Additionally, the P3-ROC board itself also has termination dip switches (7 and 8) for the switches
serial bus plugs. These should be set to ON. There are no termination dip switches for the driver bus
on the P3-ROC board.

Correct Addressing

Each of the SW-16 boards requires a unique binary address which is set by the board’s dipswitches 1
through 6. Although the P3-ROC has two serial switch connectors (J11 and J14) there is only one serial
switch bus. Meaning, if one SW-16 board connects to the P3-ROC through J11 and another through
J14 the SW-16 boards will still require separate addresses to be properly registered.

Configuration Guides 256

Mission Pinball Framework Documentation, Version

Similarly, the PD-16 and PD-LED driver boards also each require an unique address on the driver bus
accessed through J12 and J15 on the P3-ROC. If for instance a PD-16 and a PD-LED share on the same
address, commands through the driver serial bus meant to drive LEDs can acutate coils even if the
boards are interfacing through different plugs.

On the SW-16, PD-16 and PD-LED boards themselves dipswitch addressing is somewhat
counterintuitive. Switch one is the lowest address bit and on the SW-16 switch 6 is the highest.
Reading the switch block from left (starting at switch 1) to right, binary address zero would be
000000, address one through four would be 100000, 010000, 110000 and 001000, respectively. The
PD-LED sets addresses on dipswitches 1 through 5 and the PD-16 uses dipswitches 1 through 4 giving
these boards fewer address possibilities than the SW-16 which uses switches 1 through 6.

Coils Are Not Firing

What to do if your coils are not working?

Check if Your Hardware is Working at all

Sounds stupid but this is a good start: Is the hardware working at all? Do you see switch hits in the
logs? If not, check our section Your hardware is not working at all.

Check the Watchdog

If switches (or other features of the platform) are working but coils are not we have to dig deeper.
Most hardware platforms have some kind of watchdog. Often there is some LED which indicates if the
watchdog is received. The MPF log might also contain clues (especially if you have enabled debug and
run MPF with verbose flags -v -V). If the watchdog is not received by your platform it will not enable
coils.

In most cases watchdog related problems indicate wiring problems. Check if your boards are properly
wired.

Test Your Coil Numbers using MPF Service CLI

Hardware is connected and generally working, watchdog is good but still your coils are not working?
Maybe something with the numbering is odd. Lets tests that using the MPF Service CLI . Alternatively,
you can also use service mode if you have already configured it. Both ways work similarly.

To use service cli:

1. Open two consoles

2. Start your game (e.g. using mpf both)

3. Start the service cli from within your game folder using mpf service.

4. Type list_coils and press ENTER to see a list of coils.

5. Type coil_pulse your_coil and press ENTER to pulse it.

Does it work? If not check the log and try verify the coil number. If you do not specify
default_pulse_ms MPF will use 10ms which might not be enough for some mechs. Try to increase that
gently (maybe 20ms or 30ms).

Configuration Guides 257

Mission Pinball Framework Documentation, Version

Reducing light update rate

If you got a lot of lights you might run into bus contention issues. You can reduce the light update rate
in MPF:

mpf:

default_light_hw_update_hz: 30 # defaults to 50

If you set this too low fades will be less smooth but otherwise it should not affect your game.

Your hardware is not working at all

If your hardware is not working at all make sure that you removed the options -X, -x and --vpx from
your mpf both or mpf game command line. Those options will overwrite the settings in your hardware
section and MPF will not even try to connect to your hardware. If you got config errors we suggest
you add -X to figure things out without interfacing real hardware all the time. Just keep that option in
mind.

Another stupid thing to check: Is your hardware connected to your PC? We know it is stupid but a
loose USB connector has happened to most of us.

On Linux you might want to run the command lsusb which should show both of your micro controllers
connected. You should see two lines similar to

Bus 002 Device 014: ID 0483:5740 STMicroelectronics Virtual COM Port

Bus 002 Device 015: ID 0483:5740 STMicroelectronics Virtual COM Port

If you are unsure about the output, run the command once with your controllers connected and once
without. If there is no difference, then for sure the USB device is not properly connected.

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the

Configuration Guides 258

Mission Pinball Framework Documentation, Version

documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

How to configure MPF for FAST Pinball hardware

Here’s a list of all the How To guides which explain how to use MPF with FAST Pinball hardware.
These guides include the numbering format (how you map specific entries in your config files to board
and connector locations) as well as overall settings that affect how your FAST hardware performs.
(Watch dogs, update speeds, etc.)

Video about FAST:

https://youtu.be/uS_dNWOL8mw

Connecting FAST to your Computer

This page is about connecting the FAST system to your computer. It roughly covers connecting the bus
between the nodes. For electronic details see the FAST section in the pinballmakers.com Wiki.

FAST Nano

Connect your FAST NANO controller to your PC using USB.

Configuration Guides 259

https://youtu.be/uS_dNWOL8mw
http://pinballmakers.com/wiki/index.php/Fast

Mission Pinball Framework Documentation, Version

Then connect the OUT port of your NANO to the IN port of your first node board. Consequently,
connect the OUT port of the first node to the IN port of your second board. Connect the OUT port of
the last board back to the IN port of your NANO.

The number: setting for each driver/switch is its board’s position number in the chain, then the dash,
then the driver/switch number. Note that the position number starts with zero, so the first IO board in
the chain is 0, the second is 1, etc.

Node boards

Fast offers three different types of node boards:

0804 - 8 Switches, 4 Drivers

Configuration Guides 260

Mission Pinball Framework Documentation, Version

1616 - 16 Switches, 16 Drivers

3208 - 32 Switches, 08 Drivers

Verify Connected Boards via mpf hardware scan

You can run mpf hardware scan to see all connected node boards:

$ mpf hardware scan

NET CPU: NET FP-CPU-002-1 01.03

RGB CPU: RGB FP-CPU-002-1 00.89

DMD CPU: DMD FP-CPU-002-1 00.88

Boards:

(continues on next page)

Configuration Guides 261

Mission Pinball Framework Documentation, Version

(continued from previous page)

Board 0 - Model: FP-I/O-3208-2 Firmware: 01.00 Switches: 32 Drivers: 8

Board 1 - Model: FP-I/O-0804-1 Firmware: 01.00 Switches: 8 Drivers: 4

Board 2 - Model: FP-I/O-1616-2 Firmware: 01.00 Switches: 16 Drivers: 16

Board 3 - Model: FP-I/O-1616-2 Firmware: 01.00 Switches: 16 Drivers: 16

If your boards do not show up checkout our FAST troubleshooting guide.

On Linux: Add udev rules to ensure persistent device names

If you have more than one ttyUSB device connected to your PC (e.g. the FAST Nano and a FAST DMD)
you can assign a name to your ports based on the USB port they are connected to.

First identify the port of your FAST hardware. Usually it should be /dev/ttyUSB0 or /dev/ttyUSB5.

Then run udevadm info on your port:

udevadm info /dev/ttyUSB0

This will show you the DEVPATH. Now replace the last part ttyUSBX with an asterisk and add an udev
rules like this in /etc/udev/rules.d/fast.rules:

SUBSYSTEM=="tty", ACTION=="add", DEVPATH=="/devices/pci0000:00/0000:00:14.0/usb1/1-4/1-4:1.1/*",␣

→˓SYMLINK+="ttyNET", GROUP="adm", MODE="0660"

After a reboot you should get a /dev/ttyNET device if you connect a FAST device to that specific USB
port. You can use that port in your config.

What if it did not work?

Have a look at our FAST troubleshooting guide.

How to use install drivers & configure COM ports (FAST Pinball)

Related Config File Sections
hardware:
fast:

This guide explains how to configure MPF to work with a FAST Pinball controller. It applies to all
three of their models—the Core, Nano, and WPC controllers.

1. Install the FAST USB driver

FAST Pinball controllers use a USB chip from FTDI, so you need to download and install the FTDI
driver. It’s pretty simple. Go to this this page and scroll down to the VCP Drivers section and
download the driver for your OS. If you’re using Windows, we think it’s easier to use the “setup
executable” they link to in the comments.

Once this is done, when you plug in and power on your FAST controller, you should see some kind of
notification that new hardware has been detected. What exactly you see will depend on which FAST

Configuration Guides 262

http://www.ftdichip.com/Drivers/VCP.htm

Mission Pinball Framework Documentation, Version

controller you’re using and what OS you have. For example, here’s what happens when you plug a
FAST WPC controller into Windows 10 for the first time (after you’ve installed the FTDI driver):

(This is just a progress bar which shows Windows configuring the drivers. You don’t have to click
anything to get it started, and it should only take 5-10 seconds. It will only happen the first time you
plug in the hardware.)

2. Configure your hardware platform for FAST

To use MPF with a FAST, you need to configure your platform as fast in your machine-wide config file,
like this:

hardware:

platform: fast

fast:

driverboards: fast

You also need to configure the driverboards: entry for what kind of driver boards you’re controlling.

Use driverboards: fast if you’re using FAST I/O boards (like the 3208, 0804, etc.), or use
driverboards: wpc if you’re using an existing WPC or Snux System 11 driver board.

3. Find the FAST COM ports

Even though the FAST controllers are USB devices, they use “virtual” COM ports to communicate with
the host computer running MPF. On your computer, if you look at your list of ports and then connect
and power on your FAST controller, you will see 4 new ports appear. The exact names and numbers of
these ports will vary depending on your computer, what other devices you have, and which port you
plug the FAST controller into, but the order of which ports do what is the same everywhere:

∙ First (lowest numbered) port: DMD Processor

Configuration Guides 263

Mission Pinball Framework Documentation, Version

∙ Second: NET processor (the main processor)

∙ Third: RGB LED processor

∙ Fourth: Unused (available for your own custom use!)

Note that the FAST Nano controller does not have a DMD processor, so on that device, both the first
and fourth ports are unused.

You need to tell MPF which ports are used for the FAST Controller, and the first step to doing that is to
figure out what the port names are on your system:

Finding the COM ports on Windows

On Windows, it’s easiest to use the Device Manager. Right-click on the Start button (or whatever it’s
called now) and choose “Device Manager” from the popup menu.

Then expand the “Ports (COM & LPT)” menu section to see which ports the FAST Controller is using.
The easiest way to do this is to open the Device Manager to that section, then plug your FAST
Controller in (or power it on) and just see which four port names appear.

The port names will start with “COM” and then be a number, and there will be four consecutive
numbers to represent the four FAST ports.

Finding the COM ports on Max or Linux

On Mac or Linux, it’s easiest to find the port numbers via the terminal window (or console window). To
do that, open a new window and run the following command:

ls /dev/tty.*

This will list all the devices whose names begin with “tty”.

The four FAST ports will have the name that starts with “tty.usbserial-”, then a number, then a letter
A-D. (The number will be different on every system.) The port ending with the “A” is the first port, the
“B” is the second, etc.

For example, the four FAST ports might be something like on MAC:

/dev/tty.usbserial-141A

/dev/tty.usbserial-141B

/dev/tty.usbserial-141C

/dev/tty.usbserial-141D

On linux it would look like this:

/dev/ttyUSB0

/dev/ttyUSB1

/dev/ttyUSB2

/dev/ttyUSB3

If you have multiple FAST devices they will enumerate more or less randomly dependent on the order
they are plugged in. Unfortunately, the USB devices do not contain any serial number. However, we
can pin them based on the USB port they are plugged into. On linux this can be achieved using a
UDEV rules such as this:

Configuration Guides 264

Mission Pinball Framework Documentation, Version

SUBSYSTEM=="tty", ATTRS{idVendor}=="0403", ATTRS{idProduct}=="6011", ENV{ID_PATH_TAG}=="pci-0000_00_14_

→˓0-usb-0_12_1_0", SYMLINK+="ttyDMD1"

The device will then be available as /dev/ttyDMD1. You can run the following command while plugging
in the device to get the relevand ID_PATH_TAG (and also idVendor and idProduct in case they changed
with other revisions):

udevadm monitor --property

4. Add the ports to your config file

Next you need to add the ports to your machine config file. To do this, create a new section called
fast:, and then add a ports: setting under it.

Then if you have a FAST Core or WPC controller, enter the names of the first three ports. If you have a
FAST Nano controller, enter the names of the middle two ports (the second and third, since the first
isn’t used on a Nano).

So an example for Windows might look like this:

fast:

ports: com3, com4, com5

And an example for Mac or Linux might look like this:

fast:

ports: /dev/tty.usbserial-141B, /dev/tty.usbserial-141C

Note that if you have a FAST Core controller but you’re not actually using the hardware DMD, then
you don’t have to enter the first port in your config. (Same is true if you’re not using the LED
controller.) MPF queries each port in this list to find out what’s actually on the other end and then sets
itself up appropriately.

Note that if you’re using a version of Windows before Windows 10 and you have COM port numbers
greater than 9, you will have to enter the port names like this: \\.\COM10, \\.\COM11, \\.\COM12, etc.
(It’s a Windows thing. Google it for details.)

There are more settings in the fast: section of the machine config that we have not covered here, but
the ports are the bare minimum you need to get up and running.

5. Configure your watch dog timeout

FAST Pinball controllers have the ability to use a watch dog timer. This is enabled by default with a
timeout of 1 second. If you would like to disable this, or you’d like to change the timeout, you can do
so in the fast: section of your machine-wide config.

fast:

ports: com3, com4, com5 # or whatever your ports are

watchdog: 1000

The watchdog: setting is the timeout in milliseconds. Use 0 to disable it.

Configuration Guides 265

Mission Pinball Framework Documentation, Version

Note that at this time, FAST Pinball controllers only use the watch dog for the NET processor (which
controls stuff on the IO boards, like coils). The watch dog is not used for the DMD or LEDs.

What if it did not work?

Have a look at our FAST troubleshooting guide.

How to configure switches (FAST Pinball)

Related Config File Sections
fast:
switches:

To configure switches with FAST Pinball hardware, you can follow the guides and instructions in the
Switches docs.

However there are a few things to know and some additional options you get with FAST hardware that
is discussed here.

number:

When you’re using FAST IO boards, switches plug into individual IO boards. Then the IO boards are
connected together in a loop.

The number: setting for each switch is its board’s position number in the chain, then the dash, then the
switch input number. Note that the position number starts with zero, so the first IO board in the chain
is 0, the second is 1, etc.

switches:

my_switch:

number: 0-0 # first board, switch 0

some_other_switch:

number: 2-24 # third board, switch 24

Configuration Guides 266

Mission Pinball Framework Documentation, Version

Notes:

∙ The first board in the chain is board 0.

∙ The boards are counted in the direction of the “out” connector on the controller board.

∙ Different models of IO boards have different numbers of switches, and MPF will make sure that
the numbers work for each type of board. (e.g. a switch number 10 isn’t valid on an 0804 board
since that board only has 8 switches numbered 0-7).

Also note that prior versions of MPF just numbered all the switches in one continuous sequence from
the first board through the last, but that was confusing. You can still do that if you want (in integer
format), but we feel the board-input format is much easier to understand.

Debounce options

FAST controllers have advanced capabilities when it comes to debouncing switches. (More on what
that is here).

Since FAST switches are directly connected (e.g. there is no switch matrix), and since every FAST IO
board has its own processor and firmware, the states of switches are checked often (every 1ms). You
can specify the exact debounce time that a switch must consistently be in a new state in both the open
and close directions.

Specifying default debounce settings

By default, MPF provides two debounce profiles for switches (“normal” and “quick”). When using
FAST pinball controllers, the “normal” debounce profile is 4ms for both the debounce open and
debounce closed times, and the “quick” debounce profile is 2ms for both debounce open and closed
times.

You can change any of these in the fast: section of your machine-wide config, like this:

fast:

default_quick_debounce_open: 2ms

default_quick_debounce_close: 2ms

default_normal_debounce_open: 4ms

default_normal_debounce_close: 4ms

(Note that other settings from the fast: section of your config have not been included here for clarity.)

Per-switch debounce settings

When using FAST Pinball controllers, you can also specify the debounce open and debounce closed
settings on a per-switch basis. To do that, just add a debounce_open: and/or debounce_close: setting to
an individual switch, like this:

switches:

my_switch:

number: 1-0

platform_settings:

debounce_open: 5ms

debounce_close: 20ms

(continues on next page)

Configuration Guides 267

Mission Pinball Framework Documentation, Version

(continued from previous page)

some_other_switch:

number: 3-24

Valid values are 1 to 255 ms.

What if it did not work?

Have a look at our FAST troubleshooting guide.

How to configure coils/drivers/magnets (FAST Pinball)

Related Config File Sections
fast:
coils:

To configure coils, drivers, motors, and/or magnets (basically anything connected to an IO board’s
driver outputs) with FAST Pinball hardware, you can follow the guides and instructions in the Coils
(Solenoids) docs.

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

However there are a few things to know and some additional options you get with FAST hardware that
are discussed here.

number:

When you’re using FAST IO boards, drivers plug into individual IO boards. Then the IO boards are
connected together in a loop.

Configuration Guides 268

Mission Pinball Framework Documentation, Version

The number: setting for each driver is its board’s position number in the chain, then the dash, then the
driver output number. Note that the position number starts with zero, so the first IO board in the
chain is 0, the second is 1, etc.

coils:

my_coil:

number: 0-0 # first board, driver 0

some_other_coil:

number: 2-14 # third board, driver 14

Notes:

∙ The first board in the chain is board 0.

∙ The boards are counted in the direction of the “out” connector on the controller board.

∙ Different models of IO boards have different numbers of drivers, and MPF will make sure that
the numbers work for each type of board. (e.g. a driver number 10 isn’t valid on an 0804 board
since that board only has 4 drivers numbered 0-3).

Also note that prior versions of MPF just numbered all the drivers in one continuous sequence from
the first board through the last, but that was confusing. You can still do that if you want (in integer
format), but we feel the board-input format is much easier to understand.

Pulse Power

In the Coils (Solenoids) section of the documentation, we talked about how adjusting a coil’s pulse
time can affect its strength . Adjusting the coil’s pulse times still assumes that 100% power will be
applied to that coil during that pulse time.

However, FAST Pinball controllers allow you to specify the power that’s applied to the coil during the
initial pulse time. This is similar to the Adjust coil hold power, except it applies to the initial pulse
time instead of the extended hold time.

You can configure the pulse power by adding a default_pulse_power: setting to a coil definition and
then specifying the power value from 0-1. (Like default_hold power, 0% to 100%)

For example, consider the following configuration:

Configuration Guides 269

Mission Pinball Framework Documentation, Version

coils:

some_coil:

number: 1-3

default_pulse_ms: 30

default_pulse_power: 0.5

When MPF sends this coil a pulse command, the coil will be fired for 30ms at 50% power. You can
even combine default_pulse_power and default_hold_power, like this:

coils:

some_coil:

number: 1-3

default_pulse_ms: 30

default_pulse_power: 0.5

default_hold_power: 0.25

In this case, if MPF enables this coil, the coil will be fired at 50% power for 30ms, then drop down to
25% power for the remainder of the time that it’s on.

Setting Recycle Times

FAST Pinball controllers allow you to precisely control the recycle time for coils or drivers.

A coil’s recycle: setting is a boolean (True/False), which is set to False by default. When using FAST
Pinball hardware, if you set recycle: true, then the recycle time is automatically set to twice the
coil’s default_pulse_ms: setting. (e.g. a coil with a default_pulse_ms: 30 and recycle: true will have
a 60ms recycle time).

However, with FAST Pinball hardware, you can manually set a coil’s recycle time by adding a
recycle_ms: setting, like this:

coils:

slingshot_r:

number: 1-4

default_pulse_ms: 30

platform_settings:

recycle_ms: 100

If you manually specify a recycle_ms value, then that’s the value that’s used and the coil’s recycle:
(true/false) setting is ignored.

Replacing FETs on FAST Driver Boards

In case you burned one of your FETs on a FAST board those can be replaced. Usually, FETs will turn
on permanently when burned. As a result your coils will be stuck on and your fuse should burn (if not
your coil will). If you output does not activate at all a burned FET is rather unlikely the culprit.

Consult the FAST support for an official repair. Alternatively, you can buy IRL540NSTRLPBF FETs from
your electronics supplier and replace them yourself. Replacing SMD FETs is possible with a decent
soldering iron and some practise.

Configuration Guides 270

Mission Pinball Framework Documentation, Version

What if it did not work?

Have a look at our FAST troubleshooting guide.

Related How To guides

∙ Coil Resistance and Hardware Details

∙ Wiring Dual Wound Coils

∙ Dual-Wound versus Single-Wound coils

∙ Adjust coil hold power

∙ Adjust coil strength (pulse times)

∙ Recycle / “Cool Down” Time

∙ Details About Flippers

∙ How to configure single-wound flippers

∙ How to configure dual-wound flippers

∙ Flipper end-of-stroke (EOS) switches

How to configure Flippers, Slingshots, Pop Bumpers, and other “quick response” devices (FAST Pinball)

MPF uses some special tricks to ensure that “quick response” devices like flippers, slingshots, and pop
bumpers are able to respond to switch changes as fast as possible. (Read more about that here.)

When using FAST Pinball hardware, there are a few things you should know about these hardware
rules.

First, remember that FAST IO boards contain both switch inputs and driver outputs.

For best performance, either:

1. Make sure switches & drivers for hardware rules are on the same IO board, or

2. Make sure switches are the first 8 switches on the first IO board

In other words, if you have a pop bumper or slingshot, make sure that the activation switch for that
device and the coil for that device are plugged into the same IO board. That shouldn’t be too hard,
since you’ll have multiple IO boards underneath your playfield.

For flippers, however, that’s probably not possible, so FAST Pinball controllers use the concept of
“priority” switches which are the first 8 switches plugged into the first board in the chain. (These will
be the switches numbered 0-0 through 0-7.)

These priority switches are sent across the FAST loop network immediately which means they can be
used with hardware rules to trigger drivers (coils) on any IO board in the network.

If you only have two flippers in your machine, this is probably nothing you’ll ever need to worry about
since it will be easy to connect the flipper switches and coils to the same IO board (and of course the
same will be true for all the other quick response devices in your machine).

But if you have more than two flippers, there’s a good chance that the additional flippers will be
somewhere far away from the flipper buttons and the main flippers. In that case, no problem, but
make sure the IO board that has your flipper buttons connected to it is the first one in the chain, and

Configuration Guides 271

Mission Pinball Framework Documentation, Version

make sure your flipper buttons are connected to one of the 0-7 positions on that IO board, and then
everything will be fine.

What if it did not work?

Have a look at our FAST troubleshooting guide.

How to configure LEDs (FAST Pinball)

Related Config File Sections
leds:
fast:

Each FAST Pinball Controller has a built-in 4-channel RGB LED controller which can drive up to 64
RGB LEDs per channel. This controller uses serially-controlled LEDs (where each LED element has a
little serial protocol decoder chip in it), allowing you to drive dozens of LEDs from a single data wire.
These LEDs are generally known as “WS2812” (or similar). You can buy them from many different
companies, and they’re what’s sold as the “NeoPixel” brand of products from Adafruit. (They have all
different shapes and sizes.)

Configuration Guides 272

Mission Pinball Framework Documentation, Version

Most of the settings in the Lights documentation apply to LEDs connected to FAST Pinball controllers,
however there are a few FAST-specific things to know.

Overview video about serial LEDs:

https://youtu.be/Q9BG9T7Kj4A

Channel and Number Syntax

In MPF lights abstract a light source which emits arbitrary colors. However, this is not true for all real
lights. Some support only white (GIs), others only a single-color (i.e. red inserts) and others support
full RGB. For that reason MPF knows light numbers and channel numbers. Internally, a light consists
of one or multiple channels. For instance, a single-color GI will contain a single white channel. While a
RGB light will control a red, green and a blue channel. A white light behind a red insert should be a
single red channel (because it cannot emit other colors through the red insert). You can configure
those channels using the channels setting or use start_channel and type to define the channels. See
Lights for details.

However, in most cases a platform supports one type of lights (per subtype) this would be overly
verbose and we added the number setting for configuring lights in the common platform way. For
instance a platform for GIs will configure single channel white lights or a serial LED controller will
configure RGB lights with three channels.

FAST assumes RGB lights by default. For everything else (i.e. RGBW) you have to use channels.

The FAST Nano supports 256 LEDs across four chains (listed as “CH 1” - “CH 4” on the Nano). LEDs
0-63 are on chain 1, 64-127 on chain 2, 128-191 on chain 3 and 192-255 on chain 4 (please note that
FAST diagrams label these 4 headers as “channels” but we are using the term “chains” to avoid
confusion with the non-RGB “Channels” section below).

Light Numbers

FAST numbers use the format: number

This is as easy as it gets. Just provide the number of you LED in the chain. Internally, FAST assumes
three channels per LED (RGB/GRB WS2811/WS2812 LEDs).

Channels

FAST channels use the format: number-index

number is the same as above and index is a an index from 0 to 2. This is because serial LEDs are
traditionally RGB (or GRB) LEDs with exactly three channels. However, this is not true for RGBW or
similar LEDs which do not work with this style of numbering. Luckily, you can chain them instead and
have MPF calculate the internal channels for you:

lights:

led_0:

start_channel: 0 # you could also use number: 0

subtype: led

type: rgb # will use red: 0-0, green: 0-1, blue: 0-2

led_1:

(continues on next page)

Configuration Guides 273

https://youtu.be/Q9BG9T7Kj4A

Mission Pinball Framework Documentation, Version

(continued from previous page)

previous: led_0

subtype: led

type: rgbw # will use red: 1-0, green: 1-2, blue: 1-3, white: 2-0

led_2:

previous: led_1

subtype: led

type: rgbw # will use red: 2-1, green: 2-2, blue: 3-0, white: 3-1

See WS2811 and WS2812 LEDs in Pinball for details.

RGB LED buffering

Most computers have the ability to send LED updates to the FAST Pinball controller faster than the
controller can process them. If this happens, then the LED command messages can get backlogged
and it will appear that you have a “delay” in your LEDs and/or you might get weird colors due to
corrupt messages.

To help combat this, there are two settings you can adjust:

mpf:

default_light_hw_update_hz: 50

fast:

rgb_buffer: 3

If you notice that your LEDs seem to be getting behind, you can adjust the default_led_hw_update_hz:
setting to be lower. (Frankly the 50hz by default is too high and we should lower it to 30.) You can
probably drive 128 or so LEDs at 50Hz, but if you have more than that then you might need to start
playing with this number.

Hardware LED fading

You can globally set the fade rate for LEDs connected to a FAST Pinball controller via the
fast:hardware_led_fade_time: setting. (This is 0ms by default, meaning it’s disabled.)

See the fast: section of the config file reference for details.

Color Correction

If you are using RGB LEDs, they might not be perfectly white when you turn them on. They might be
pinkish or blueish instead depending on the brand of the LED. To a certain extend this is
normal/expected and you can compensate for it by configuring color_correction profiles in
light_settings.

What if it did not work?

Have a look at our FAST troubleshooting guide.

Configuration Guides 274

Mission Pinball Framework Documentation, Version

How to configure Matrix Lights (FAST Pinball)

Related Config File Sections
lights:

Matrix lights are currently only supported on FAST Pinball via their WPC Controller. Like the other
WPC-related settings in MPF, you can enter the numbers right out of your operators manual, so
there’s nothing FAST-specific you have to do.

What if it did not work?

Have a look at our FAST troubleshooting guide.

How to configure mono/traditional DMD (FAST Pinball)

Related Config File Sections
dmds:

The FAST WPC and Core controllers can drive traditional single-color pinball DMDs via the 14-pin
DMD connector cable that’s been in most pinball machines for the past 25 years, like this:

It makes no difference as to whether you’re using an LED or an original plasma gas DMD. (Also it
doesn’t matter what color it is.)

1. Verify your port settings

In order to use a DMD with a FAST Pinball controller, you need to have the port that’s connected to
the DMD processor on the FAST board listed in the ports: section in the fast: section of your
machine-wide config.

See the How to use install drivers & configure COM ports (FAST Pinball) guide for details.

Configuration Guides 275

Mission Pinball Framework Documentation, Version

2. Add a physical DMD device entry

Once you have your hardware and port set, you need to create the actual device entry for the DMD.

You do this in the dmds: section of the machine config. This section is like the other common sections
(switches, coils, etc.) where you enter the name(s) of your device(s), and then under each one, you
enter its settings.

(And yes, in case you’re wondering, it’s possible to have more than one physical DMD.)

To do this, create a section in your machine-wide config called dmds:, and then pick a name for the
DMD, like this:

dmds:

my_dmd:

shades: 16

You need to have at least one setting for this to be a valid YAML file, so we usually just pick the shades
and add that with a value of 16 (which means the DMD runs will convert the display content to 16
mono shades when it displays it).

The “shades” option is how many brightness shades you want. 1990s WPC machines supported 4
shades, and modern Stern DMD machines support 16. The FAST Pinball controllers support 16 shades
(even on older 1990s plasma DMDs). Most modern games will probably be 16 shades, but you can do
4 (or even 2) if you want an old school look.

There are lots more options for the physical_dmd: section than just the “shades” option listed here.
Check the dmds: for a list of all the options.

Note that one option you do NOT have for physical DMDs is the color. That’s because the color of the
DMD is determined by the DMD itself. You don’t actually send it color values, rather, you just send it
brightness levels, and the DMD shows those brightness levels with whatever color the DMD is.

3. Set a source display

Now that you have everything configured, the last step is to make sure the DMD knows what content
to show. In MPF, you do this by mapping a physical DMD to an MPF display.

By default, the DMD will look for a display (in your displays: section called “dmd”. However you can
override this and configure the DMD to use whatever logical display you want by setting a
source_display: setting. (Just make sure that the width and height of your source display match the
physical pixel dimensions of the DMD or else it will be weird.)

A final config you can test

At this point you’re all set, and whatever slides and widgets are shown on the DMD’s source display in
MPF-MC should be shown on the physical DMD.

That said, all these options can be kind of confusing, so we created a quick example config you can use
to make sure you have yours set right. (You can actually just save this config to config.yaml in a blank
machine folder and run it to see it in action which will verify that you’ve got everything working
properly.)

To run this sample config, you can run mpf both.

Configuration Guides 276

Mission Pinball Framework Documentation, Version

When you run it, do not use the -x or -X options, because either of those will tell MPF to not use
physical hardware which means it won’t try to connect to the Teensy.

Note that the Using a traditional (single color) physical DMD guide has more details on the window
and slide settings used in this machine config.

hardware:

platform: fast

fast:

ports: com3, com4, com5 # be sure to change this to your actual ports

driverboards: fast

displays:

window: # on screen window

width: 600

height: 200

dmd: # source display for the DMD

width: 128

height: 32

default: true

window:

width: 600

height: 200

title: Mission Pinball Framework

source_display: window

dmds:

my_dmd:

brightness: 1.0

slides:

window_slide_1: # slide we'll show in the on-screen window

- type: display

effects:

- type: dmd

dot_color: ff5500

width: 512

height: 128

- type: text

text: MISSION PINBALL FRAMEWORK

anchor_y: top

y: top-3

font_size: 30

- type: rectangle

width: 514

height: 130

color: 444444

dmd_slide_1: # slide we'll show on the physical DMD

- type: text

text: IT WORKS!

font_size: 25

slide_player:

init_done:

window_slide_1:

target: window

dmd_slide_1:

target: dmd

Configuration Guides 277

Mission Pinball Framework Documentation, Version

What if it did not work?

Have a look at our FAST troubleshooting guide.

How to configure an RGB DMD (FAST Pinball)

Related Config File Sections
rgb_dmds:

If you would like to use the FAST RGB LED DMD, follow the instructions for the How to configure a
“SmartMatrix” RGB LED DMD .

You can copy the following example (and replace com12 with your com port):

hardware:

rgb_dmd: smartmatrix

smartmatrix:

smartmatrix_1:

port: com12

baud: 4000000

old_cookie: false

What if it did not work?

Have a look at our FAST troubleshooting guide.

How to configure servos (FAST Pinball)

Related Config File Sections
servos:

You can drive servos from any FAST IO board by adding the FAST Servo Controller daughter board to
it. You then configure and use the servos like normal. The only real “FAST-specific” thing is the
number.

Overview video about servos:

https://youtu.be/wA6KEODwQ5w

number:

The number of the servo requires a bit of math. Each FAST IO board “reserves” six slots for daughter
board accessories (regardless of whether there’s a daughter board there are not). So the numbers go
like this:

∙ First board in the chain (Board 0), numbers 0, 1, 2, 3, 4, 5

∙ Second board in the chain (Board 1), numbers 6, 7, 8, 9, 10, 11

∙ Third board in the chain (Board 2), numbers 12, 13, 14, 15, 16, 17

Configuration Guides 278

https://youtu.be/wA6KEODwQ5w

Mission Pinball Framework Documentation, Version

∙ Fourth board in the chain (Board 3), numbers 18, 19, 20, 21, 22, 23

∙ etc.

So to figure out the number for your servo, first figure out which board it’s plugged into, then look at
which connection on that board it uses, then figure out the number based on the list above.

By default, standalone numbers like this have to be entered in hex format, so once you find your
number, enter it as the hex equivalent:

Regular Hex
0 0
1 1
2 2
3 3
4 4
5 5
6 6
7 7
8 8
9 9
10 a
11 b
12 c
13 d
14 e
15 f
16 10
17 11
18 12
19 13
20 14
21 15
22 16
23 17

If you don’t want to mess with all this hex stuff, you can set the config number format to “int” via the
fast: config_number_format: setting. See the fast: section of the config file reference for details.

What if it did not work?

Have a look at our FAST troubleshooting guide.

Power Filter Board

This board can be used to fan out your power rails. See Voltages and Power in Pinball Machines for
details.

Configuration Guides 279

Mission Pinball Framework Documentation, Version

The board supports 5 power rails with one fuse per rail:

∙ High Voltage (HV)

∙ Aux V1

∙ Aux V2

∙ 5V

∙ 12V

There are capacitors on HV and Aux V1. This is the theory of operations:

Configuration Guides 280

Mission Pinball Framework Documentation, Version

Additionally, there is a high voltage enable switch on the board on J2. You can connect it to your door
switch to cut power when the door opens. Make sure to close this switch when you operate the
machine or HV will be off. During development you may use a jumper but be careful since HV will be
always on.

Connect all your PSUs to J3 and the playfield and controller to J4. This is how FAST envisions the
wiring of the board:

Configuration Guides 281

Mission Pinball Framework Documentation, Version

Troubleshooting FAST

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps:

Run Hardware Scan

Using mpf hardware scan you can find out if your Nano is talking properly to MPF using USB.
Additionally, it will show you which node boards are connected:

$ mpf hardware scan

NET CPU: NET FP-CPU-002-1 01.03

RGB CPU: RGB FP-CPU-002-1 00.89

DMD CPU: DMD FP-CPU-002-1 00.88

Boards:

Board 0 - Model: FP-I/O-3208-2 Firmware: 01.00 Switches: 32 Drivers: 8

Board 1 - Model: FP-I/O-0804-1 Firmware: 01.00 Switches: 8 Drivers: 4

Board 2 - Model: FP-I/O-1616-2 Firmware: 01.00 Switches: 16 Drivers: 16

Board 3 - Model: FP-I/O-1616-2 Firmware: 01.00 Switches: 16 Drivers: 16

Configuration Guides 282

Mission Pinball Framework Documentation, Version

If you are missing boards here check your wiring. Also verify that firmware versions match. In the
example above the NET CPU has firmware 1.03 but the nodes still run on 1.00 which indicates an
issue. See mpf hardware (command-line utility) for details about the command.

Stuck on Drivers

See the section about Replacing FETs on FAST Driver Boards if you suspect burned FETs.

Permission Denied on Linux

If you see an error such as:

serial.serialutil.SerialException: [Errno 13] could not open port /dev/ttyUSB1: [Errno 13] Permission␣

→˓denied: '/dev/ttyUSB1'

Your user does not have sufficient permissions to access that port. You could run MPF as root but we
do not recommend that. Alternatively, you can create a udev rule or add your user to the dialout group:

sudo usermod -a -G dialout $USER

After a restart of your PC MPF should be able to access that serial port.

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your fast config section:

fast:

debug: true

This will add a lot more debugging and might slow down MPF a bit. We recommend to disable/remove
it after finishing debugging.

Firmware Upgrade

MPF generally works with the latest firmware for FAST. There have been some protocol changes
between firmware and we do not usually test our software with older firmware version. Consider
upgrading to the latest firmware. You can find out your current firmware version using mpf hardware
scan (see above).

Coils Are Not Firing

What to do if your coils are not working?

Check if Your Hardware is Working at all

Sounds stupid but this is a good start: Is the hardware working at all? Do you see switch hits in the
logs? If not, check our section Your hardware is not working at all.

Configuration Guides 283

Mission Pinball Framework Documentation, Version

Check the Watchdog

If switches (or other features of the platform) are working but coils are not we have to dig deeper.
Most hardware platforms have some kind of watchdog. Often there is some LED which indicates if the
watchdog is received. The MPF log might also contain clues (especially if you have enabled debug and
run MPF with verbose flags -v -V). If the watchdog is not received by your platform it will not enable
coils.

In most cases watchdog related problems indicate wiring problems. Check if your boards are properly
wired.

Test Your Coil Numbers using MPF Service CLI

Hardware is connected and generally working, watchdog is good but still your coils are not working?
Maybe something with the numbering is odd. Lets tests that using the MPF Service CLI . Alternatively,
you can also use service mode if you have already configured it. Both ways work similarly.

To use service cli:

1. Open two consoles

2. Start your game (e.g. using mpf both)

3. Start the service cli from within your game folder using mpf service.

4. Type list_coils and press ENTER to see a list of coils.

5. Type coil_pulse your_coil and press ENTER to pulse it.

Does it work? If not check the log and try verify the coil number. If you do not specify
default_pulse_ms MPF will use 10ms which might not be enough for some mechs. Try to increase that
gently (maybe 20ms or 30ms).

Reducing light update rate

If you got a lot of lights you might run into bus contention issues. You can reduce the light update rate
in MPF:

mpf:

default_light_hw_update_hz: 30 # defaults to 50

If you set this too low fades will be less smooth but otherwise it should not affect your game.

Your hardware is not working at all

If your hardware is not working at all make sure that you removed the options -X, -x and --vpx from
your mpf both or mpf game command line. Those options will overwrite the settings in your hardware
section and MPF will not even try to connect to your hardware. If you got config errors we suggest
you add -X to figure things out without interfacing real hardware all the time. Just keep that option in
mind.

Another stupid thing to check: Is your hardware connected to your PC? We know it is stupid but a
loose USB connector has happened to most of us.

Configuration Guides 284

Mission Pinball Framework Documentation, Version

On Linux you might want to run the command lsusb which should show both of your micro controllers
connected. You should see two lines similar to

Bus 002 Device 014: ID 0483:5740 STMicroelectronics Virtual COM Port

Bus 002 Device 015: ID 0483:5740 STMicroelectronics Virtual COM Port

If you are unsure about the output, run the command once with your controllers connected and once
without. If there is no difference, then for sure the USB device is not properly connected.

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the
documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

How to use MPF with Stern SPIKE / SPIKE 2 machines

Related Config File Sections
hardware:
spike:

If you haven’t done so already, be sure to read the MPF Overview page to understand how MPF talks
to physical pinball machines in general.

Stern pinball machines from early 2015 (Wrestlemania) onwards use a control system called SPIKE (or
SPIKE 2 from Batman 66 onwards). The complete list of SPIKE machines is available in IPDB (click
here for SPIKE and SPIKE 2 machines).

You can read all about how SPIKE works in the operators manuals for the games, but the important
thing to know here is that SPIKE machines essentially have a full linux computer inside them (the
“SPIKE CPU Node”) which runs the game code from an SD card.

Configuration Guides 285

http://ipdb.org/search.pl?searchtype=advanced&mpu=61
http://ipdb.org/search.pl?searchtype=advanced&mpu=65

Mission Pinball Framework Documentation, Version

If you want to use MPF to control or power a Stern SPIKE system, you can make some small changes
to the SD card to enable external control and then connect the computer running MPF to the CPU
Node via USB.

Note: When you use MPF with a Stern SPIKE machine, MPF itself does not run “on” the SPIKE CPU
Node. Rather you still run MPF on a host computer (your laptop, a Raspberry Pi, a mini-ATX
motherboard in the machine, etc.), and it connects to the SPIKE CPU node via a serial or USB
connection to control the machine.

Doing so gives you full control of the machine. You can read the states of switches, fire coils, set LEDs,
etc. Then you can use MPF to write your own game code, just like any other platform.

Note that you cannot access any of the existing Stern game rules, code, or assets (videos, images,
sounds, etc.) All of that is compiled into the original game code on the SD card and protected by
copyright. So if you just want to do a “small tweak” to the rules of a Stern SPIKE machine, then MPF
is not the right tool for that. Instead MPF would be used to completely rewrite the game from scratch,
either to write a different version for the existing machine or to retheme the machine into something
of your own creation.

Note: The MPF to Stern SPIKE bridge & support is new and EXPERIMENTAL. Much of this will
change in the next weeks and months as we get more real world experience with it.

Warning: It’s possible that using the MPF SPIKE bridge will void your warranty. For example,
maybe you build a config or MPF contains a bug that holds a coil on too long and it burns up your
machine. Use it at your own risk. It’s also possible that you will not void your warranty. We are not
lawyers and don’t know.

Warning: If you break or corrupt your original SD card with your Stern game code on it, you may
have to get a new one from Stern support. Again, proceed at your own risk only if you know what
you’re doing.

Fundamentally, using MPF with a Stern SPIKE system is like putting a P-ROC in a Williams WPC
machine. All it does is expose the hardware to a computer which you can then control, and you’re on
your own in terms of rules and assets and code and everything. The advantage of using a SPIKE
machine is you don’t have to buy a $325 P-ROC, and you can swap back-and-forth between the original
rules and your own code by changing an SD card versus having to unplug and re-plug a bunch of wires
to swap out a board.

Stern SPIKE features that work today

∙ Coils / drivers

∙ Switches

∙ LEDs & GIs

∙ Backbox LEDs

Configuration Guides 286

Mission Pinball Framework Documentation, Version

∙ Hardware Rules (flippers, pop bumpers, slingshots, etc.)

∙ DMDs

∙ Steppers

How does the MPF SPIKE interface work?

Here’s a more technical overview of how MPF talks to a Stern SPIKE machine. You don’t have to read
this section if you don’t care.

Stern SPIKE hardware is a series of node boards that are connected via Cat-5 cables which is known
as the SPIKE node bus. The CPU running the game code from the SD card on the CPU node sends
commands to individual node boards to actuate drivers and set LEDs and stuff like that, and it
receives switch state updates from node boards with switches attached.

When you use a Stern SPIKE machine with MPF, you install a piece of software called the “MPF SPIKE
Bridge” on the SD card (ideally you first make a copy of your existing SD card and keep the original in
a safe place), and then when the machine powers on, instead of running the existing game code from
the SD card, the CPU runs the MPF SPIKE bridge software.

The MPF SPIKE bridge is fairly simple. Essentially all it does is relay messages from the SPIKE node
bus to the debug port on the CPU node, and it also accepts commands sent via the debug port and
retransmits them to the node bus.

So in order to connect a computer running MPF to the Stern SPIKE machine, you buy a small
USB-to-serial adapter (Amazon.com has them for under $10) and connect one end of it to the CPU
node’s debug header, and you plug the other end into your computer which is running MPF. (That can
be Windows, Mac, Linux, Raspberry Pi, etc. Just a regular computer running the regular version of
MPF.)

From there you just configure MPF like regular. You set the platform to “spike”, you set the port that
your USB-to-serial adapter is using, and you set all your coils, switches, and LEDs based on their node
board & IDs from the operator’s manual.

Configuration Guides 287

Mission Pinball Framework Documentation, Version

If you ever want to go back to the original game code from Stern, then just swap out the SD card with
the MPF SPIKE Bridge on it and replace it with the original card from Stern and you’re all set.

Stern SPIKE features that do not work (yet)!

Sound

Currently if you want to use sound (which of course you do), the way to do it is to use the sound card
in the computer running MPF and speakers connected there.

The SPIKE system has sound capabilities, and it would be nice to be able to use it along with its
existing speakers and amps, but the way MPF connects via the debug port does not allow for enough
bandwidth for us to do sound this way.

This is something that might change in the future, or perhaps we can find an easy way to connect the
sound output from the computer to the SPIKE amp.

Servos

Once we get access to a SPIKE machine with servos, we’ll get support for them added.

Small LCD fromWWE

WWE LEs have a small playfield LCD which is controlled via the SPIKE node bus. MPF does not yet
support this, though of course you could use any HDMI display connected to the machine running
MPF.

How to modify a Stern SPIKE SD card & install the MPF SPIKE bridge

1. Backup the existing SD card

When you download firmware updates from Stern’s websites to a USB stick, the updates only contain
the specific parts of the code that have changed since the original version.

In other words, if you break or somehow screw up the SD card with the SPIKE game code on it, you
will not be able to fix it by re-downloading the latest firmware. (You’ll have to call Stern and get a new
SD card with the software already on it.)

So be very careful here.

Our recommendation is to create an image of the original SD card, and then put the original in a safe
place and then copy the image to a new SD card. That way you’re always working with a copy and the
original SD card is never touched.

Note that we do not yet know which cards are best or will be fully compatible, so our recommendation
is to get a card that’s around the same size as the current one. Let us know what you find in terms of
what works and what doesn’t!

Known SD Cards that work: SanDisk Ultra Plus 16GB purchased from Best Buy

Configuration Guides 288

Mission Pinball Framework Documentation, Version

One tool you can use to backup an image of your SD Card is HDD Raw Copy. This tool will back up a
copy to your local drive and you can restore it to the new SD card. For a tutorial on backing up your
Stern SD card using HDD Copy check out the following video (starting from second 35):

https://youtu.be/KlKw8raWixI

Note: Save a copy of your SD card image in case you need to restore your SD card. If, at one point,
your SD memory card becomes corrupted, restoring from the backed up image fixes the issue.

2. Mount the SD card

You need to mount the Linux root partition (which is probably #3).

On Windows you need an additional tools to mount ext3. We got a report that “Paragon ExtFS for
Windows” works fine for this.

On Mac OS X, the tool “FUSE-ext2” is an option. You will most likely need to use sudo, and depending
on your configuration the appropriate disk device may vary. In the following example, the Linux root is
on partition 3 of the SD card, which is disk2:

sudo fuse-ext2 /dev/disk2s3 /Volumes/SD -o force

3. Edit /etc/inittab

Last line needs to be changed to enable login without a password:

S0:2345:respawn:/sbin/getty 115200 ttyS0 -n -l /bin/sh

Furthermore, you might want to add this line to allow USB login (e.g. if your board does not have
DBGU populated).

USB0:2345:respawn:/sbin/getty 115200 ttyUSB0 -n -l /bin/sh

If your USB to serial adapter has a “RTS” and “CTS” pin or if you are using a null-modem cabel you
can enable hardware flow control. In that case use the following line (notice that we added -h):

USB0:2345:respawn:/sbin/getty 115200 ttyUSB0 -h -n -l /bin/sh

4. Edit /etc/rc2.d/S95game

Add the following two lines as the new second and third lines in this file:

/usr/local/bin/avrisp /usr/local/spike/netbridge.hex /usr/local/spike/netbridge.fuses

exit 1

This causes this script to exit instead of running the original Stern game code. (You can remove this
line again if you want to run the original game again.)

Configuration Guides 289

https://youtu.be/KlKw8raWixI

Mission Pinball Framework Documentation, Version

5. Install the spike bridge

Add mpf-spike-bridge to /bin/bridge and mark it as executable.

On Linux this can be done with chmod +x bridge from within the folder.

Get the bridge from https://github.com/missionpinball/mpf-spike

Note that we have a precompiled binary in there (as well as the Rust source code).

Note: It might be hard to mark the bridge binary as executable on Windows (but should be possible).
If you cannot do this proceed to the next step and afterwards do the following:

1. Download PuTTY from www.putty.org. PuTTY is a free telnet app that allows you to remotely
connect to the Linux OS running on the SPIKE system. PuTTY was also useful for verifying the
connection from your Windows machine to the Linux OS running on SPIKE.

2. In PuTTY, select the “Serial” buttont, change to correct COM (COM1, COM3, COM4, etc) port
and set speed to 115200 baud. If you are unsure of which COM port Windows used when you
plugged in your cable, open the Device Manager in the Control Panel. Click open the PORTS
drop down to find which COM port is in use.

3. Power up spike

4. Press enter and you should get a command promt (if not, your serial connection is probably not
working).

5. Type the following:

mount -o remount,rw /

chmod +x /bin/bridge

mount -o remount,ro /

Note: On OS X with fuse-ext2, overwriting files can fail without a message. When updating
mpf-spike-bridge, you may want to remove the old bridge file before copying the new one.

:: rm <sd_mount>/bin/bridge cp <your_path>/mpf-spike-bridge/bridge <sd_mount>/bin/bridge
chmod 755 <sd_mount>/bin/bridge

6. Unmount the SD card. Put it back in your spike system

Unmount the card. Really! Do that! Spike will not boot from a corrupted filesystem. SD cards may
need a while to write everything. Give them those extra 10s. This is particularly important on
Windows. If the red LED in the middle of the Stern CPU board is not blinking your SD card may be
corrupt.

Note: The SD card can become corrupted when removing the card without ejecting it properly. You
can fix this by restoring your backup from above.

Configuration Guides 290

https://github.com/missionpinball/mpf-spike

Mission Pinball Framework Documentation, Version

Now when you power up the pinball machine, instead of running the original game code, it will run
the spike bridge which will listen for commands from the CN2 connector and will send out information
about the state of the machine via that connector.

What if it did not work?

Have a look at our SPIKE troubleshooting guide.

Connecting your computer to the Stern SPIKE CPU node

Related Config File Sections
hardware:
spike:

There are at least 3 options to connect a computer running MPF to the SPIKE CPU via a serial
connection.

1. USB to USB Null Modem Cable

2. USB to Serial Adapter

3. Using two USB to Serial Adapters

OPTION 1: USB to USB Null Modem Cable

Probably the cleanest and easiest method is to purchase the USB to USB Null Modem Cable. With this
cable, you can plug one end into the USB port on your computer and the other end into one of the two
USB ports on the SPIKE board. On a Windows computer, use the Device Manager to determine which
COM port the cable has been assigned by Windows. Update you machine configuration with the
correct COM port (example, COM5).

spike:

port: COM5

Null modem cables used to be a common way to connect two computers together. This is the most
expensive solution at about $50 USD. However it looks just like a USB cable. The only vendor that has
the USB to USB Null Modem Cable is the FDTI company.

https://ftdichip.com/products/usb-nmc-2-5m/

This particular cable also provides faster data transfer rates (up to 3 MBaud) than Options 2 and 3.

OPTION 2: USB to Serial Adapter

The second method is to purchase a USB-to-serial adapter and connect it to the DBGU header (CN2)
on the SPIKE CPU node. The problem you may have is that not all SPIKE boards have the header
soldered onto the board. A header is essentially a 6 pin socket that the adapter can plug into. If you do
have the header at location CN2, great! Read on.

Ok, you have a header on the SPIKE board. Simply purchase an inexpensive USB to serial adapter and
plug it in. There are lots of them, most for less than $10, and they’re all pretty much the same.

Configuration Guides 291

https://ftdichip.com/products/usb-nmc-2-5m/

Mission Pinball Framework Documentation, Version

Some examples that should work (though we don’t guarantee it and we’re happy to hear feedback or
recommendations):

https://www.amazon.com/FICBOX-CP2102-Serial-Downloader-Arduino/dp/B01CU12324/
https://www.amazon.com/HiLetgo-CP2102-Module-Serial-Converter/dp/B00LODGRV8
https://www.amazon.com/HiLetgo-Ft232rl-Serial-Adapter-Arduino/dp/B00IJXZQ7C
https://www.adafruit.com/products/3309 https://www.sparkfun.com/products/12731
https://www.sparkfun.com/products/13830

Make sure you have a 3.3v adapter (or that your adapter can be set for 3.3v).

Note: If you’re using a Raspberry Pi, you can use its built-in serial pins and don’t need a
USB-to-serial adapter.

Connecting using DBGU

Connect the USB serial adapter to the DBGU header (CN2) on the SPIKE CPU node.

Pins are marked GND, RX, TX. You do not need more than these.

Todo: Add a photo and more detailed pinout instructions (Help us to write it).

Unfortunately, this header seems to be missing on some revisions of Spike. You can solder it in
though. However, it does not contain any flow-control pins to it will not work at higher baud rates (up
to 400k roughly).

OPTION 3: Connect using two USB-Serial Adapters

Newer versions of the SPIKE CPU node do not have a connector attached to the CN2/DBGU header.
The newer board is the same, but you see a blank spot instead of the plug-in connector attached. If
you do not want to solder a header onto the SPIKE board then you need to go back to Option 1 or use
this option. Soldering on the SPIKE board is risky if you lack experience with a solder iron and will
likely void your warranty.

For this option, you can buy two USB serial adapters and then use the USB connection on the SPIKE
CPU node.

The one you connect to the SPIKE CPU node needs to have an actual FTDI brand chip because the
FTDI drivers are included in the code on the SPIKE board. The second adapter for your computer can
be any brand since it’s easy to install whatever drivers it needs on your computer. Whatever serial
port appears on your computer when you plug in this adapter is the port name you’ll use in your
machine config.

These two adapters will have connectors or headers on them that you need to connect together.
Connect the “RX” (receive) from one to the “TX” (transmit) on the other and vice-versa. Also connect
the grounds (possible labeled “GND”) together. It’s probably a good idea to twist the wires together to
reduce interference, especially if your wires are more than a few inches long.

In addition to above you should also “CTS” to “DTS” and “DTS” to “CTS”. This will allow you to enable
hardware flow control which is essential at higher baud rates (up to 3M).

Configuration Guides 292

https://www.amazon.com/FICBOX-CP2102-Serial-Downloader-Arduino/dp/B01CU12324/
https://www.amazon.com/HiLetgo-CP2102-Module-Serial-Converter/dp/B00LODGRV8
https://www.amazon.com/HiLetgo-Ft232rl-Serial-Adapter-Arduino/dp/B00IJXZQ7C
https://www.adafruit.com/products/3309
https://www.sparkfun.com/products/12731
https://www.sparkfun.com/products/13830

Mission Pinball Framework Documentation, Version

The following diagram illustrates how everything fits together:

You’ve essentially created a null modem cable as described in Option 1. This option may be a little
cheaper but the solution is far less elegant and stable.

What if it did not work?

Have a look at our SPIKE troubleshooting guide.

How to configure MPF for Stern SPIKE hardware

Related Config File Sections
hardware:
spike:

This guide explains how to configure MPF to work with Stern SPIKE pinball machines. It applies to
SPIKE and SPIKE 2 systems.

1. Install the drivers for your USB-to-serial adapter

Before you proceed, make sure that you have the drivers properly installed for your USB-to-serial
adapter and that when you plug it in, you see the serial port.

Configuration Guides 293

Mission Pinball Framework Documentation, Version

2. Configure your hardware platform for SPIKE

To use MPF with a SPIKE hardware, you need to configure your platform as spike in your
machine-wide config file. You’ll also need to add a “spike:” section with some additional settings:

hardware:

platform: spike

spike:

port: /dev/ttyUSB0

baud: 115200

flow_control: false

debug: false

nodes: 0, 1, 8, 9, 10, 11

runtime_baud: 115200

Some notes on the settings:

port: Use the port of your USB-serial adapter or of the internal serial on your computer. On Windows,
this will have a name like “COM5”.

baud: This needs to match the value from Step 3 in the MPF SPIKE bridge instructions. It is used to
initialise the connection to SPIKE only. Afterwards, the bridge will switch to runtime_baud.

flow_control: If your hardware supports flow control and you connected “RTS” and “CTS” in the
previous steps set this to True. It will make the connection much more stable at higher speeds.
It can be False for a first test.

runtime_baud: Note that since only control and switch information is sent across this bus, 115k
baud is plenty fast enough if you choose not to use a DMD. However, if you want to use a DMD
you need more speed (see below for details).

debug: Set this to true for print more details in the log.

nodes: This is a list of the node board addresses that your system has. You can get this from the
manual. Here’s an example from Wrestlemania Pro:

Configuration Guides 294

Mission Pinball Framework Documentation, Version

Only map the node boards and ignore the extension boards because those are transparent to
MPF. Just consider 8 and 8a/8b to be the same node.

Once you got your game running you can increase the speed using runtime_baud:

hardware:

platform: spike

spike:

port: /dev/ttyUSB0

baud: 115200

runtime_baud: 2000000

flow_control: true

debug: false

nodes: 0, 1, 8, 9, 10, 11

This will increase the baudrate after the start of the mpf-spike-bridge. You do not have to change
anything to use this setting. The following baudrate are supported:

∙ 230400

∙ 460800

∙ 576000

∙ 1000000

∙ 1152000

∙ 2000000

∙ 2500000

∙ 3000000

∙ 3500000

Configuration Guides 295

Mission Pinball Framework Documentation, Version

∙ 4000000

Depending on your hardware setup they might or might not work. Most setups communicate reliably
up to something beween 1Mbaud and 2.5Mbaud. To stream full 30fps to your DMD you need about
2Mbaud. You need flow_control at rates higher than about 0.5MBaud.

What if it did not work?

Have a look at our SPIKE troubleshooting guide.

How to configure coils & drivers (Stern SPIKE)

Related Config File Sections
spike:
coils:

To configure coils, drivers, motors, and/or magnets (basically anything connected to an node’s driver
outputs) for Stern SPIKE machines, you can follow the guides and instructions in the Coils (Solenoids)
docs.

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

However there are a few things to know and some additional options you get with SPIKE hardware
that are discussed here.

number:

The number: setting for each driver is a combination of the node it’s connected to and its address from
the manual. For example, here’s the driver reference table from Page 11 of the Wrestlemania Pro
manual:

Configuration Guides 296

Mission Pinball Framework Documentation, Version

The address for each driver is in the highlighted column. To enter the number for the driver into MPF,
remove the middle “DR” letters so you just have the node number and address number (with a dash
between them). For example, the driver for the left flipper coil with the address 8-DR-0 would be
entered into the MPF config as 8-0, etc.

coils:

c_shaker:

number: 1-10 # Node 1, coil 10

default_pulse_ms: 100

allow_enable: true

c_flipper:

number: 8-1 # Node 8, coil 1

What if it did not work?

Have a look at our SPIKE troubleshooting guide.

Related How To guides

∙ Coil Resistance and Hardware Details

∙ Wiring Dual Wound Coils

∙ Dual-Wound versus Single-Wound coils

∙ Adjust coil hold power

∙ Adjust coil strength (pulse times)

∙ Recycle / “Cool Down” Time

Configuration Guides 297

Mission Pinball Framework Documentation, Version

∙ Details About Flippers

∙ How to configure single-wound flippers

∙ How to configure dual-wound flippers

∙ Flipper end-of-stroke (EOS) switches

How to configure LEDs & GI (Stern SPIKE)

Related Config File Sections
lights:
spike:

Stern SPIKE machines have replaced all incandescent lights with LEDs. Instead of a lamp matrix,
individual LEDs are connected to node boards and can be controlled with 256 levels of brightness.

GI (general illumination) are regular LEDs, and so are flashers, and so are the white backlight LEDs in
the backbox. So pretty much everything is an LED.

Many LEDs are single element, single color, with colored insers in front of them. This means that you
cannot control the color of the LED, rather, you just control the brightness and the color is what it is.

Most machines also have RGB LEDs that can be set to any color. In those cases the individual red,
green, and blue channels each have their own addresses, and then you can group them together into a
single, logical RGB LED that you can set to whatever color you want.

Finally, in SPIKE machines, you’ll sometimes see several LEDs connected to a single output, meaning
that when you set the brightness of that output, you’re setting the brightness for all those LEDs.

MPF uses the lights: section of the machine config to define LEDs. Most of the settings in the Lights
documentation apply to LEDs in Stern SPIKE machines, though there are a few SPIKE-specific things
to know.

number:

The main thing you need to know about configuring LEDs (besides the fact that you add them to the
lights: section of your config) is how the hardware numbering works.

Pretty much you just look up the number in the manual for your machine and then enter it without any
letters. For example, here is (part of) the lighting chart from Wrestlemania Pro:

Configuration Guides 298

Mission Pinball Framework Documentation, Version

Use the address column (highlighted in yellow) to get the numbers for each LED. Remove the “LP”
letters, and also remove any lowercase letters (like the “a”) from the node. What you’re left with is the
node address and LED number.

For example, the Shoot Again light with the address 8a-LP-47 would be entered as number: 8-47.

lights:

backlight:

number: 0-0 # 0-0 is the special address for the backlight

start_button:

number: 1-2

tourney_start_button:

number: 1-3

shoot_again:

number: 8-47

The backbox backlight Stern SPIKE systems have controllable brightness for the white lights in the
backbox that illuminate the translight. All of those LEDs are tied together and controlled as one
with the address 0-0.

GI (General Illumination) GI in Stern SPIKE systems are just regular LEDs. You can tag them with
the tag gi and then turn them on in the attract mode and/or use them in shows for special
effects. Really there’s nothing special about them. They’re just lights. (Just remember they’re
controlled and defined as “lights”, not as “GIs”.)

Flashers Flashers in Stern SPIKE systems are also controlled just like normal lights. They just
happen to be super bright, but other than that, use them like any other LED. (Just remember
they’re controlled and defined as “lights”, not as “flashers”.)

RGB LEDs

You’ll notice in the operator’s manual that RGB LEDs are actually three separate LEDs with a separate
address for the red, green, and blue channel. Since MPF deals with RGB LEDs as single objects you
can set to any color, you need to group the three individual channels of RGB LEDs into single RGB
objects.

Here’s an example from the Wrestlemania Pro manual:

Configuration Guides 299

Mission Pinball Framework Documentation, Version

You could enter the three channels as three separate lights in the lights: section of your machine
config. However, that would complicate your light shows and lights would not show up nicely in the
MPF monitor.

Therefore, you can define a RGB light with multiple channels. What this does is create a new virtual
RGB LED which is a grouping of the three LED channels into the RGB LED. Then you can use it like
any light.

lights:

left_lane_arrow_rgb:

channels:

red:

number: 1-10

green:

number: 1-11

blue:

number: 1-12

What if it did not work?

Have a look at our SPIKE troubleshooting guide.

How to configure DMDs (Stern SPIKE)

Related Config File Sections
spike:
dmds:
displays:

Stern Spike 1 machines support a monochrome DMD. MPF can drive the DMD over serial but you
have to make sure that your serial is fast enough to provide sufficient throughput (at least 1.5Mbaud).
This can be configured using runtime_baud (as described in How to configure MPF for Stern SPIKE
hardware):

hardware:

platform: spike

spike:

port: /dev/ttyUSB0

baud: 115200

runtime_baud: 2000000 # play with this setting

nodes: 0, 1, 8, 9, 10, 11

Then configure your dmd like in this example:

displays:

window: # on screen window

width: 600

(continues on next page)

Configuration Guides 300

Mission Pinball Framework Documentation, Version

(continued from previous page)

height: 200

dmd: # source display for the DMD

width: 128

height: 32

default: true

dmds:

my_dmd:

platform: spike

fps: 30

some default slides (you don't need those but they are a nice start)

slides:

window_slide_1: # slide we'll show in the on-screen window

- type: display

width: 512

height: 128

effects:

- type: dmd

dmd_slide_1: # slide we'll show on the physical DMD

- type: text

text: MPF

font_size: 30

color: red

x: 0

animations:

add_to_slide:

- property: x

value: 250

duration: 30

relative: true

slide_player:

init_done:

window_slide_1:

target: window

dmd_slide_1:

target: dmd

Note that the Using a traditional (single color) physical DMD guide has more details on the window
and slide settings used in this machine config.

What if it did not work?

Have a look at our SPIKE troubleshooting guide.

How to configure switches (Stern SPIKE)

Related Config File Sections
spike:
switches:

To configure switches on Stern SPIKE machines, you can follow the guides and instructions in the
Switches docs.

Configuration Guides 301

Mission Pinball Framework Documentation, Version

The only special thing to know is how the number works.

number:

The number of a switch on a Stern SPIKE machine is a combination of the address of the node its
plugged into, and then its individual ID.

You can find the switch numbers are in the manual. Omit the “SW” and letters for extension boards.
Here’s an example from Wrestlemania Pro:

This would result in the following switch entries:

switches:

s_left_inlane:

number: 11-0

s_right_inlane:

number: 11-8

s_left_outlane:

number: 11-1

s_right_outlane:

number: 11-9

s_left_sling:

number: 8-7

s_right_sling:

number: 8-6

s_center_drops_right:

number: 9-6

type: false

s_center_drops_middle:

number: 9-5

type: false

s_center_drops_left:

(continues on next page)

Configuration Guides 302

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 9-4

type: false

s_left_flipper:

number: 8-2

s_right_flipper:

number: 8-3

s_left_lane:

number: 11-3

s_left_orbit:

number: 9-11

s_tourney_start:

number: 1-12

s_trough_6:

number: 9-17

type: false

s_trough_5:

number: 9-18

type: false

Note that optos (highlighted in green) need to have the type: NO added to them.

What if it did not work?

Have a look at our SPIKE troubleshooting guide.

How to configure steppers (Stern SPIKE)

Related Config File Sections
spike:
switches:
steppers:

Node board on Spike support up to four steppers. Steppers connect to light outputs on the board and
a homing switch (which may be on another board). We guess that they are hardware-wise similar to
the StepStick (but that does not matter if you are using an existing machine).

To configure a stepper in Spike you can use the following example:

switches:

s_stepper_home:

number: 11-4

steppers:

stepper0:

number: 10-0

homing_mode: switch

homing_switch: s_stepper_home

platform_settings:

speed: 20

light_number: 10-10

named_positions:

(continues on next page)

Configuration Guides 303

Mission Pinball Framework Documentation, Version

(continued from previous page)

100: test_1

200: test_2

500: test_3

This will configure Stepper 0 on node 10. You can choose a number from 0 to 3. Which ones does not
matter but you can only use every number once.

Then you need to look up the motor reference number in your manual. This is an example from Game
of Thrones LE:

We are interested in 10-LP-10. This is used as light_number above. 10-LP-11 is not used and we guess
that Spike automatically uses the next output as well.

The home switch is called Dragon Home in GoT and has the number 11-SW-4 according to the manual.
We configure is as s_stepper_home in this example.

You can change speed and homing_speed to configure how fast the stepper will move. See Stepper
Motors for more details about steppers.

What if it did not work?

Have a look at our SPIKE troubleshooting guide.

Troubleshooting Spike

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps:

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your spike config section:

spike:

debug: true

This will add a lot more debugging and might slow down MPF a bit. We recommend to disable/remove
it after finishing debugging.

Configuration Guides 304

Mission Pinball Framework Documentation, Version

Debugging the MPF-Spike Bridge

To debug the bridge you can enable more logging to a USB drive. First open a shell to your serial port
(the one connected to your Spike). Stick some USB drive to a USB port on Spike and mount it to /mnt/.

If you USB drive contains a partition use:

mount /dev/sda1 /mnt

Alternatively use:

mount /dev/sda /mnt

If you did not get an error your operation succeeded. You can have a look at the content of your stick
using:

ls /mnt

Afterwards, add the following options to your spike config:

spike:

debug: true

bridge_debug: true

bridge_debug_log: /mnt/spike.log

Now close your shell and start MPF. MPF will instruct the bridge to create a log file on your USB drive
with more debug information about the nodebus and other things. This will be helpful to find issues
with incorrect commands or responses.

To safely unmount your drive stop MPF, open the console again and type:

umount /mnt

sync

You can now safely remove the USB drive and download the file on your PC.

Capturing the Bus Traffic of Your Game Using Interceptty

To understand what the game does it is sometimes helpful to capture what it sends and receives on
netbus. Unfortunately, we don’t know how to enable debugging or verbose mode in the game binary.
(Please let us know if you find out.)

Instead, we redirect the serial in Linux and capture the bus this way. Unfortunately, this is not perfect
and at least on Spike 1 causes timing issues. Nevertheless, this shows us how things work and also
sometimes teaches us how error recovery works in Spike.

Get our interceptty binary and put it on your USB drive. Mount the USB drive as above and run the
following command:

Spike 1

cd /mnt && chmod +x interceptty-arm

mv /dev/ttyS4 /dev/ttyS4_real; interceptty-arm -s 'ispeed 460800 ospeed 460800' -l /dev/ttyS4_real /dev/

→˓ttyS4 > /mnt/serial_dump & (continues on next page)

Configuration Guides 305

https://github.com/missionpinball/interceptty/raw/master/bin/interceptty-arm

Mission Pinball Framework Documentation, Version

(continued from previous page)

Spike 2

cd /mnt && chmod +x interceptty-arm

mv /dev/ttymxc1 /dev/ttymxc1_real; interceptty-arm -s 'ispeed 460800 ospeed 460800' -l /dev/ttymxc1_

→˓real /dev/ttymxc1 > /mnt/serial_dump &

This command should return instantly and run in the background. Now start the game binary in the
foreground:

/games/game

Some versions of some games give you a nice service CLI here. Play the game and make sure you
activate all relevant features. Flippers might not work some times. Just try again as this unfortunately
sometimes messes up timings.

When you are done after a while stop the game using ctrl+c. Then type fg to get interceptty in the
foreground and stop it using ctrl+c.

Restore the serial:

Spike 1

mv /dev/ttyS4_real /dev/ttyS4

Spike 2

mv /dev/ttymxc1_real /dev/ttymxc1

Now unmount the USB drive as above and you are done. Please share the capture on the MPF user
forum.

Coils Are Not Firing

What to do if your coils are not working?

Check if Your Hardware is Working at all

Sounds stupid but this is a good start: Is the hardware working at all? Do you see switch hits in the
logs? If not, check our section Your hardware is not working at all.

Configuration Guides 306

Mission Pinball Framework Documentation, Version

Check the Watchdog

If switches (or other features of the platform) are working but coils are not we have to dig deeper.
Most hardware platforms have some kind of watchdog. Often there is some LED which indicates if the
watchdog is received. The MPF log might also contain clues (especially if you have enabled debug and
run MPF with verbose flags -v -V). If the watchdog is not received by your platform it will not enable
coils.

In most cases watchdog related problems indicate wiring problems. Check if your boards are properly
wired.

Test Your Coil Numbers using MPF Service CLI

Hardware is connected and generally working, watchdog is good but still your coils are not working?
Maybe something with the numbering is odd. Lets tests that using the MPF Service CLI . Alternatively,
you can also use service mode if you have already configured it. Both ways work similarly.

To use service cli:

1. Open two consoles

2. Start your game (e.g. using mpf both)

3. Start the service cli from within your game folder using mpf service.

4. Type list_coils and press ENTER to see a list of coils.

5. Type coil_pulse your_coil and press ENTER to pulse it.

Does it work? If not check the log and try verify the coil number. If you do not specify
default_pulse_ms MPF will use 10ms which might not be enough for some mechs. Try to increase that
gently (maybe 20ms or 30ms).

Reducing light update rate

If you got a lot of lights you might run into bus contention issues. You can reduce the light update rate
in MPF:

mpf:

default_light_hw_update_hz: 30 # defaults to 50

If you set this too low fades will be less smooth but otherwise it should not affect your game.

Your hardware is not working at all

If your hardware is not working at all make sure that you removed the options -X, -x and --vpx from
your mpf both or mpf game command line. Those options will overwrite the settings in your hardware
section and MPF will not even try to connect to your hardware. If you got config errors we suggest
you add -X to figure things out without interfacing real hardware all the time. Just keep that option in
mind.

Another stupid thing to check: Is your hardware connected to your PC? We know it is stupid but a
loose USB connector has happened to most of us.

Configuration Guides 307

Mission Pinball Framework Documentation, Version

On Linux you might want to run the command lsusb which should show both of your micro controllers
connected. You should see two lines similar to

Bus 002 Device 014: ID 0483:5740 STMicroelectronics Virtual COM Port

Bus 002 Device 015: ID 0483:5740 STMicroelectronics Virtual COM Port

If you are unsure about the output, run the command once with your controllers connected and once
without. If there is no difference, then for sure the USB device is not properly connected.

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the
documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

How to configure MPF for Penny K Pinball PKONE hardware

Here’s a list of all the How To guides which explain how to use MPF with Penny K Pinball PKONE
hardware. These guides include the numbering format (how you map specific entries in your config
files to board and connector locations) as well as overall settings that affect how your PKONE
hardware performs. (Watch dogs, update speeds, etc.).

For additional information, please visit the Penny K Pinball website.

Connecting PKONE to your Computer

This page is about connecting the PKONE system to your computer. It roughly covers connecting the
bus between the boards.

Configuration Guides 308

https://pennykpinball.com

Mission Pinball Framework Documentation, Version

PKONE Nano

Connect your PKONE NANO controller to your PC using USB.

Then connect the OUT port of your NANO to the IN port of your first board (Extension or Lightshow).
Consequently, connect the OUT port of the first board to the IN port of your second board (etc.). Be
sure each Extension board or Lightshow board has a unique Address ID set using the Address ID
switches on each board. Finally, be sure the last board in the chain has the CANBUS Protocol
Termination Jumper set to properly terminate the bus.

Notes:

∙ Address ID values are numbered starting with zero (Extension boards have addresses 0 to 7
while Lightshow boards have addresses 0 to 3).

∙ An Extension board cannot have the same Address ID number as a Lightshow board (all
connected boards must have unique Address ID values).

∙ You do not have to chain the boards in the same order as their Address ID numbers.

How to use install drivers & configure COM ports (Penny K Pinball PKONE)

Related Config File Sections
hardware:
pkone:

This guide explains how to configure MPF to work with a Penny K Pinball controller (PKONE NANO)

Configuration Guides 309

Mission Pinball Framework Documentation, Version

and add-on boards.

1. Install the USB driver

PKONE Pinball controllers use a USB chip from STM. On most operating systems the driver is built-in
(Windows 10, Linux, MacOS), so there is no need to download and install the STM driver.

Once this is done, when you plug in and power on your PKONE controller, you should see some kind of
notification that new hardware has been detected. What exactly you see will depend on what OS you
have.

TODO: Finish this section

2. Configure your hardware platform for PKONE

To use MPF with a PKONE controller system, you need to configure your platform as pkone in your
machine-wide config file, like this:

hardware:

platform: pkone

3. Find the PKONE COM port

Even though the PKONE controllers are USB devices, they use “virtual” COM ports to communicate
with the host computer running MPF. On your computer, if you look at your list of ports and then
connect and power on your PKONE controller, you should see a new port appear. The exact name and
number of this port will vary depending on your computer, what other devices you have, and which
port you plug the PKONE controller into.

You need to tell MPF which port is used for the PKONE Controller, and the first step to doing that is to
figure out what the port names are on your system:

Finding the COM ports on Windows

On Windows, it’s easiest to use the Device Manager. Right-click on the Start button (or whatever it’s
called now) and choose “Device Manager” from the popup menu.

Then expand the “Ports (COM & LPT)” menu section to see which ports the FAST Controller is using.
The easiest way to do this is to open the Device Manager to that section, then plug your PKONE
Controller in (or power it on) and just see which port name appears.

The port name will start with “COM” and then be a number.

Finding the COM ports on Max or Linux

On Mac or Linux, it’s easiest to find the port numbers via the terminal window (or console window). To
do that, open a new window and run the following command:

ls /dev/tty.*

Configuration Guides 310

Mission Pinball Framework Documentation, Version

This will list all the devices whose names begin with “tty”.

The PKONE port will have the name that starts with “/dev/cu.usbmodem”, then a number. (The
number will be different on every system.)

For example, the PKONE port might be something like on MAC:

/dev/cu.usbmodem (141)

On linux it would look like this:

/dev/ttyASM0

4. Add the port to your config file

Next you need to add the port to your machine config file. To do this, create a new section called
pkone:, and then add a port: setting under it.

Then if you have a PKONE Nano controller, enter the name of the port.

So an example for Windows might look like this:

pkone:

port: com3

And an example for Mac or Linux might look like this:

pkone:

port: /dev/cu.usbmodem

Note that if you’re using a version of Windows before Windows 10 and you have COM port numbers
greater than 9, you will have to enter the port names like this: \\.\COM10, \\.\COM11, \\.\COM12, etc.
(It’s a Windows thing. Google it for details.)

There are more settings in the pkone: section of the machine config that we have not covered here,
but the port is the bare minimum you need to get up and running.

What if it did not work?

Have a look at our PKONE troubleshooting guide.

How to configure switches (Penny K Pinball PKONE)

Related Config File Sections
pkone:
switches:

To configure switches with Penny K Pinball PKONE hardware, you can follow the guides and
instructions in the Switches docs.

However there are a few things to know and some additional options you get with Penny K Pinball
PKONE hardware that is discussed here.

Configuration Guides 311

Mission Pinball Framework Documentation, Version

number:

When you’re using PKONE Extension boards, switches plug into individual Extension boards. Then the
Extension boards are connected together in a chain.

The number: setting for each switch is its board’s Address ID number in the PKONE chain, then the
dash, then the switch input number (1-35).

switches:

my_switch:

number: 0-0 # Extension board at address 0, switch 0

some_other_switch:

number: 2-24 # Extension board at address 2, switch 24

Notes:

∙ The PKONE Extension board Address ID switches can be set from 0 to 7.

∙ Switches 31-35 are setup in the hardware to support optos and other normally closed (NC)
switches. Do not list them as NC switches in your configuration as the hardware already inverts
the values before sending them to MPF.

What if it did not work?

Have a look at our PKONE troubleshooting guide.

Configuration Guides 312

Mission Pinball Framework Documentation, Version

How to configure coils/drivers/magnets (Penny K Pinball PKONE)

Related Config File Sections
pkone:
coils:

To configure coils, drivers, motors, and/or magnets (basically anything connected to a PKONE
Extension board’s driver outputs) with Penny K Pinball hardware, you can follow the guides and
instructions in the Coils (Solenoids) docs.

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

There are a few things to know about controlling drivers and coils with PKONE hardware that are
discussed here.

number:

When you’re using PKONE Extension boards, drivers plug into individual Extension boards. Then the
Extension boards are connected together in a chain to the controller.

Configuration Guides 313

Mission Pinball Framework Documentation, Version

The number: setting for each coil/driver is its board’s Address ID number in the PKONE chain, then the
dash, then the coil/driver output number (1-10).

coils:

my_coil:

number: 0-1 # Extension board with Address ID 0, coil/driver 1

some_other_coil:

number: 2-10 # Extension board with Address ID 2, coil/driver 10

Notes:

∙ The PKONE Extension board Address ID switches can be set from 0 to 7.

Pulse Power

In the Coils (Solenoids) section of the documentation, we talked about how adjusting a coil’s pulse
time can affect its strength . Adjusting the coil’s pulse times still assumes that 100% power will be
applied to that coil during that pulse time.

Penny K Pinball PKONE controllers allow you to specify the power that’s applied to the coil during the
initial pulse time. This is similar to the Adjust coil hold power, except it applies to the initial pulse
time instead of the extended hold time.

You can configure the pulse power by adding a default_pulse_power: setting to a coil definition and
then specifying the power value from 0-1. (Like default_hold power, 0% to 100%)

For example, consider the following configuration:

coils:

some_coil:

(continues on next page)

Configuration Guides 314

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 1-3

default_pulse_ms: 30

default_pulse_power: 0.5

When MPF sends this coil a pulse command, the coil will be fired for 30ms at 50% power. You can
even combine default_pulse_power and default_hold_power, like this:

coils:

some_coil:

number: 1-3

default_pulse_ms: 30

default_pulse_power: 0.5

default_hold_power: 0.25

In this case, if MPF enables this coil, the coil will be fired at 50% power for 30ms, then drop down to
25% power for the remainder of the time that it’s on.

Setting Recycle Times

Penny K Pinball controllers allow you to precisely control the recycle time for coils or drivers.

A coil’s recycle: setting is a boolean (True/False), which is set to False by default. When using Penny
K Pinball hardware, if you set recycle: true, then the recycle time is automatically set to twice the
coil’s default_pulse_ms: setting. (e.g. a coil with a default_pulse_ms: 30 and recycle: true will have
a 60ms recycle time).

With Penny K Pinball hardware, you can manually set a coil’s recycle time by adding a recycle_ms:
setting, like this:

coils:

slingshot_r:

number: 1-4

default_pulse_ms: 30

platform_settings:

recycle_ms: 100

If you manually specify a recycle_ms value, then that’s the value that’s used and the coil’s recycle:
(true/false) setting is ignored.

What if it did not work?

Have a look at our PKONE troubleshooting guide.

Related How To guides

∙ Coil Resistance and Hardware Details

∙ Wiring Dual Wound Coils

∙ Dual-Wound versus Single-Wound coils

∙ Adjust coil hold power

Configuration Guides 315

Mission Pinball Framework Documentation, Version

∙ Adjust coil strength (pulse times)

∙ Recycle / “Cool Down” Time

∙ Details About Flippers

∙ How to configure single-wound flippers

∙ How to configure dual-wound flippers

∙ Flipper end-of-stroke (EOS) switches

How to configure WS281XLEDs (Penny K Pinball)

Related Config File Sections
leds:
pkone:

Each PKONE Lightshow add-on board has a built-in 8-group RGB or RGBW LED controller (depending
upon which firmware is loaded on the Lightshow) which can drive up to 64 RGB or RGBW LEDs per
group (a total of up to 512 LEDs). This controller uses serially-controlled LEDs (where each LED
element has a little serial protocol decoder chip in it), allowing you to drive dozens of LEDs from a
single data wire. These LEDs are generally known as “WS2812” (or similar). You can buy them from
many different companies, and they’re what’s sold as the “NeoPixel” brand of products from Adafruit.
(They have all different shapes and sizes.)

Most of the settings in the Lights documentation apply to LEDs connected to PKONE Lightshow
boards, however there are a few PKONE-specific things to know.

Overview video about serial LEDs:

https://youtu.be/Q9BG9T7Kj4A

Configuration Guides 316

https://youtu.be/Q9BG9T7Kj4A

Mission Pinball Framework Documentation, Version

Channel and Number Syntax

In MPF lights abstract a light source which emits arbitrary colors. However, this is not true for all real
lights. Some support only white (GIs), others only a single-color (i.e. red inserts) and others support
full RGB. For that reason MPF knows light numbers and channel numbers. Internally, a light consists
of one or multiple channels. For instance, a single-color GI will contain a single white channel. While a
RGB light will control a red, green and a blue channel. A white light behind a red insert should be a
single red channel (because it cannot emit other colors through the red insert). You can configure
those channels using the channels setting or use start_channel and type to define the channels. See
Lights for details.

However, in most cases a platform supports one type of lights (per subtype) this would be overly
verbose and we added the number setting for configuring lights in the common platform way. For
instance a platform for GIs will configure single channel white lights or a serial LED controller will
configure RGB lights with three channels.

PKONE assumes RGB or RGBW lights by default (depending upon which firmware your Lightshow
board is running). For everything else (i.e. RGBW) you have to use channels.

The PKONE Lightshow supports 512 LEDs on eight groups (64 in each group).

Light Numbers

The number: setting for each LED is its board’s Address ID number in the PKONE chain, a dash, the
LED output group number (1-8), another dash, then finally the LED output number in the group chain
(1-64) (address id-group-number). Internally, PKONE assumes three channels per LED (RGB/GRB)
when running RGB firmware and four channels per LED (RGBW) when running RGBW firmware.
While assigning numbers manually will work, it is recommended you use the newer chaining syntax
referenced below in the Channels section.

Channels

PKONE channels use the format: address id-group-index

address id and group are the same as above and index is a an index from 0 to 191 for RGB firmware
and 0 to 255 for RGBW firmware. The channel syntax makes it easy to mix LEDs of various types in
the same group chain (as long as they are WS281X compatible). The easiest, and recommended,
method of numbering is to chain the LEDs in your configuration file and have MPF calculate the
internal channel numbers for you (please note the type setting is required when using
start_channel/previous settings):

lights:

led_0:

start_channel: 0-1-0

subtype: led

type: rgb # will use red: 0-1-0, green: 0-1-1, blue: 0-1-2

led_1:

previous: led_0

subtype: led

type: rgbw # will use red: 0-1-3, green: 0-1-4, blue: 0-1-5, white: 0-1-6

led_2:

previous: led_1

(continues on next page)

Configuration Guides 317

Mission Pinball Framework Documentation, Version

(continued from previous page)

subtype: led

type: rgbw # will use red: 0-1-7, green: 0-1-8, blue: 0-1-9, white: 0-1-10

This method of chaining your LEDs works exactly the same way whether your Lightshow board is
running RGB or RGBW firmware.

See WS2811 and WS2812 LEDs in Pinball for additional details.

Color Correction

If you are using RGB LEDs, they might not be perfectly white when you turn them on. They might be
pinkish or blueish instead depending on the brand of the LED. To a certain extend this is
normal/expected and you can compensate for it by configuring color_correction profiles in
light_settings.

subtype:

Single value, type: string. Defaults to empty.

This value is used to distinguish between simple LEDs and WS281X RGB LEDs in the PKONE
hardware system. This value must be set to led or left empty when setting up WS281X RGB/RGBW
LEDs.

What if it did not work?

Have a look at our PKONE troubleshooting guide.

How to configure Simple LEDs (Penny K Pinball)

Related Config File Sections
lights:

Up to 45 Simple LED lights are supported on Penny K Pinball PKONE Lightshow boards. Simple LED
lights are single channel monochromatic LEDs most frequently used under colored inserts in the
playfield or behind colored artwork behind a backglass.

number:

When you’re using PKONE Lightshow boards, simple LEDs plug into individual Lightshow boards.
Then the Lightshow boards are connected together in a chain with other add-on boards (such as
PKONE Extension boards) to the controller.

Configuration Guides 318

Mission Pinball Framework Documentation, Version

The number: setting for each simple LED is its board’s Address ID number in the PKONE chain, then
the dash, then the simple LED output number.

lights:

special_light:

number: 0-1 # Lightshow board with Address ID 0, simple LED 1

subtype: simple

some_other_light:

number: 2-10 # Lightshow board with Address ID 2, simple LED 10

subtype: simple

Notes:

∙ The PKONE Lightshow board Address ID switches can be set from 0 to 3.

subtype:

Single value, type: string. Defaults to empty.

This value is used to distinguish between simple LEDs and WS281X RGB LEDs in the PKONE
hardware system. This value must be set to simple when setting up simple LEDs (WS281X RGB LEDs
use led as the subtype: value).

What if it did not work?

Have a look at our PKONE troubleshooting guide.

Configuration Guides 319

Mission Pinball Framework Documentation, Version

How to configure servos (Penny K Pinball PKONE)

Related Config File Sections
servos:

You can drive up to four servos from any PKONE Extension board.

Overview video about servos:

https://youtu.be/wA6KEODwQ5w

number:

When you’re using PKONE Extension boards, coils plug into individual Extension boards. Then the
Extension boards are connected together in a chain to the controller.

The number: setting for each servo is its board’s Address ID number in the PKONE chain, then the
dash, then the servo output number (11-14).

servos:

servo_1:

number: 0-11 # Extension board with Address ID 0, servo 11 (the first one)

some_other_servo:

number: 2-14 # Extension board with Address ID 2, servo 14

Notes:

∙ The PKONE Extension board Address ID switches can be set from 0 to 7.

∙ Servos are numbered from 11 to 14 on the PKONE Extension board and not from 1 to 4.

Configuration Guides 320

https://youtu.be/wA6KEODwQ5w

Mission Pinball Framework Documentation, Version

All the servo config options are explained in-depth in the servos: section of the config file reference.

What if it did not work?

Have a look at our PKONE troubleshooting guide.

Troubleshooting Penny K Pinball PKONE Hardware

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps:

Run Hardware Scan

Using mpf hardware scan you can find out if your PKONE boards are talking properly to MPF using
USB:

$ mpf hardware scan

Penny K Pinball Hardware

- Connected Controllers:

-> PKONE Nano - Port: com3 at 115200 baud (firmware v1.1, hardware rev 2)

- Extension boards:

-> Address ID: 0 (firmware v1.1, hardware rev 2)

-> Address ID: 1 (firmware v1.1, hardware rev 2)

- Lightshow boards:

-> Address ID: 2 (RGB firmware v1.0, hardware rev 1)

-> Address ID: 3 (RGBW firmware v1.0, hardware rev 1)

See mpf hardware (command-line utility) for details.

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your opp config section:

pkone:

debug: true

This will add a lot more debugging and might slow down MPF a bit. We recommend to disable/remove
it after finishing debugging.

Configuration Guides 321

Mission Pinball Framework Documentation, Version

Snux System 11 Driver Board

Related Config File Sections
hardware:
snux:
system11:
switches:
coils:

MPF can be used with Williams System 11 machines. (Also since Data East’s system was a clone of
Williams System 11, everything here also applies to those machines.) This How To guide walks you
through the process of buying the hardware you need and configuring MPF to work with it.

(A) Understand the challenges of System 11 hardware

The original System 11 Williams/Bally hardware (and the Data East clone) was created in a time when
computing resources were scarce and hardware was expensive. It’s sort of a “crossover” between the
early solid state machines of the ’80s and the more modern WPC machines. Because of this, there are
a lot of, umm. . . “quirks” to the design which were necessary at the time but which may seem a bit
strange in today’s world. Even though we tend to lump all “System 11” machines into a single
category, there were actually four different generations of System 11 machines, called System 11,
System 11A, System 11B, and System 11C. (And just to make things even more fun, some changes
were made part way through System 11B.) So technically-speaking there are actually five different
types of System 11 machines out there!

Flippers

On modern WPC pinball machines, flipper buttons are just regular switches that send their inputs to
the CPU, and flipper coils are just regular coils that are controlled by the CPU. Typical flippers in MPF
are configured via the flippers: section of the config file, and when flippers are enabled, hardware
rules are written to the pinball controller to allow them to be fired “instantly” when the flipper buttons
are hit. Back in the days of System 11, the CPUs in those machines didn’t have enough horsepower to
constantly poll the status of the flipper buttons and to drive the flippers in software while also doing
everything else the CPU needed to do to run the game. So instant, System 11 machines had the flipper
buttons directly connected to the flipper coils, meaning that hitting the flipper button would activate
the flipper coil directly without any intervention of the CPU. Of course the machine still needed a way
to enable or disable the flippers, since the flippers needed to be disabled when a game was not going
on and when the player tilted. To do this, System 11 machines used a “flipper enable” relay. This was
a mechanical relay connected to a driver output on the driver board. When that driver was enabled,
the relay was energized and the flippers worked. When that relay was disabled, the relay
de-energized, the electrical connection to the flipper buttons was broken, and the flippers stopped
working. While this meant that the CPU didn’t have to directly control the flippers, it also meant that
many modern conveniences are not available on that hardware. For example, on modern machines
you can control the strength of the flipper by adjusting the pulse times of the flipper coils with
millisecond-level accuracy. But these older machines gave full power to the flipper until the flipper bat
hit the end-of-stroke (EOS) switch, and that switch mechanically cut off power to the high-power
winding (while keeping power enabled on the low-power hold winding). So in those days, changing the
strength of a flipper was done by physically swapping out the flipper coil with a stronger or weaker
one.

Configuration Guides 322

Mission Pinball Framework Documentation, Version

“Special” Solenoids

Flippers are not the only types of devices that require instant response in pinball machines. They also
need instant response action for slingshots, pop bumpers, and (sometimes) diverters. In many System
11 machines, these types of devices were also controlled by the flipper enable relay. So when that
relay was enabled, it enabled not just the flippers but also the pop bumpers and slingshots. Of course
pop bumpers and slingshots are a bit different than flippers:

∙ The CPU needs to know when pop bumpers and slingshots are hit so it can assign points, flash
lights, play sounds, etc.

∙ The CPU needs to be able to manually fire pop bumpers and slingshots for things like ball search
and the coil test options in the operators menu.

In other words, it seems that pop bumpers and slingshots really need to be controlled the “new” way
since the CPU needs to know when they’re hit and the CPU needs to be able to manually fire them.
But of course firing a pop bumper or slingshot when their switch is hit needs to happen instantly, and
as we just discussed, that was not possible in the System 11 days. So how did they get around it?
System 11 machines call these types of solenoids special solenoids (that is literally what they’re called
in the manual) because they’re actually controllable via two different ways:

∙ When the flipper enable relay is enabled, a hit to these devices’ switches creates a direct
electrical connection to their coils which fires them.

∙ These devices’ coils also have a second (additional) control input which lets the CPU fire them
from the service test menu or for ball search.

Furthermore you’ll also notice that there are switches in the switch matrix for many of these devices
which are used to let the CPU know that these devices have been hit to assign points and to do effects.
At this point you might think, “Great! So these devices have CPU- controlled coils, and they have
switches in the switch matrix, so I can just set them up like regular devices since I’m using modern
hardware!” Not so fast. In many System 11 machines, the switches in the switch matrix which tell the
CPU that a pop bumper or slingshot has been hit are not the same switches that fire the coil! For
example, the switch attached to the skirt of the pop bumper that the ball hits is a high-voltage switch
that is physically connected to the pop bumper’s coil. The CPU does not see that switch at all. When
that switch is hit (if the flipper enable relay is active), then it grounds the connection to the coil and
the coil fires. When the coil fires, its shaft hits a second switch underneath, and that’s the switch that
is connected to the switch matrix and the CPU. (And actually there’s a third switch under there too
which is the EOS switch which cuts power to the coil after it’s been fired.) So in reality, yeah, you may
see a switch in the switch matrix for a pop bumper, but that switch is not, “Hey the pop bumper skirt
switch was hit, so fire the pop bumper now,” rather, that switch is, “Hey the pop bumper just fired.
Just FYI.” The exact details of how these special solenoids work depends on the specific machine and
which version of System 11 it is. For example, some devices (like pop bumpers and slingshots) should
always be on whenever the flippers are enabled, so the flipper enable relay enables them too. Other
devices (like diverters) should only be active sometimes, so they have their own enable driver (which
is like the flipper enable relay, but separate from it) so they can be controlled individually.

The A/C Relay & Switched Solenoids

But wait! There’s more! System 11 machines also have this concept of the A/C relay. This is not A/C in
the terms of alternating current. It has nothing to do with that. It’s actually used to control things
called A-side and C-side devices. The basic concept is that since the driver circuitry was expensive,
Williams decided they could get double their “bang for their buck” by connecting two devices so a

Configuration Guides 323

Mission Pinball Framework Documentation, Version

single output. So you might see on a schematic that a single driver output is connected to both a ball
kickout coil and a flasher. Then there was a relay (called the A/C relay, or sometimes the C-select
relay) connected in there too. If the A/C relay was in the A position, then firing that driver would fire
the coil connected to the A side of that output, and if the A/C relay was in the C position, then firing
that driver would fire the device connected to the C side of that output. This worked because they had
a single A/C relay that was connected to an entire bank of 8 drivers. So they could actually control 16
different devices (8 drivers with two devices each) from just 9 driver outputs (8 drivers plus 1 for the
A/C relay). They were also smart about what types of devices they connected to each side of the relay.
System 11 machines put the “important” devices on the A side (things that interact with the ball on
the playfield, like diverters, kickout holes, motors, etc.), and they put the “less important” things on
the C side (flashers and the knocker coil). So this means they will constantly enable and disable the
A/C relay to do different effects, but if two things need to happen at exactly the same time, they can
service the A-side first (since those are the important ones) and then flip the relay to the C-side and
pick those up after a few hundred milliseconds of delay.

Controlled Solenoids

In addition to switched, controlled, and flipper solenoids, System 11 machines also included what they
called “controlled” solenoids which was their name for normal, modern-style solenoids. So in addition
to all the craziness of the other control schemes, some solenoids were regular. No special switches.
No special handling. Just regular solenoids.

GI (General Illumination)

In WPC machines, GI strings are controlled via separate GI drivers (which are alternating current and
which may or may not be dimmable). In System 11, GI strings were regular driver outputs, just like
any solenoid. The catch is that most (maybe all?) GI strings on System 11 machines are “backwards”
in the sense that the GI is on when the driver is disabled, and you enable the driver to turn off the GI.
This was done because the GI is almost always on all the time, though there are periods when you
might want to turn it off for special effects. So to save on wear of the relays and make things simpler,
in System 11 machines, the GI is just always on until the CPU turns it off.

Putting it all together

If you look at the solenoid table in the operators manual of a System 11 machine, you’ll see that all the
drivers fall into these categories. Some are are switched, some are controlled, some are flippers, and
some are special. Check out the solenoid table from PinBot. Note that the first 16 solenoids are the
A/C switched solenoids, and there are two coils for each number 1-8 with an “A” and “C” suffix
denoting which side they’re on. Then the next 8 (numbers 9-16) are controlled solenoids. These are
the regular modern-style drivers which also include the GI (remember they’re active off) and
important flashers they don’t want to share with A/C switched drivers. Then you have the next batch
17-22 which are the special solenoids that are enabled when the flipper enable relay is enabled, but
they can also be manually controlled for ball search and testing. And finally you have the left and right
flipper solenoids which don’t have numbers because they’re not connected to the driver board. Also
notice solenoid 14 is the “Solenoid Select Relay.” That’s the A/C select which when inactive means
that drivers 1-8 are connected to the A-side devices, and when active means drivers 1-8 are connected
to the C-side devices.

Configuration Guides 324

Mission Pinball Framework Documentation, Version

(B) The Snux board

Okay, so now that you’re caught up with the intricacies of System 11 hardware, how do you actually
control this via MPF? The usual way you control an existing machine is to remove the original CPU
board and to replace it with either a P-ROC controller. The new pinball controller plugs into the
backbox and uses the existing driver board. The problem with System 11 is that unlike more modern
machines, the System 11 CPU board and driver board were actually combined into one single huge
board. So when you take out the CPU board, you also lose the driver board. This means if you put a
P-ROC controller into a System 11 machine, you don’t have a driver board. :(This is where the Snux
board comes in. The Snux board (which is our name for it) is a System 11 driver board created by
Mark Sunnucks. (His online handle is Snux which is why we call it the Snux board.) Mark developed
this board a few years ago because he wanted to control an F-14 machine with a P-ROC. The Snux
board can be thought of kind of like the WPC power driver board except that it’s made to work with
System 11 machines instead of WPC machines. Since the original System 11 combo CPU board /
driver board was so huge, when you remove it from your System 11 machine there’s plenty of room to
put the Snux board and a P-ROC controller in it’s place. The Snux board connects to the P-ROC
controller via the standard 34-pin ribbon cable, and then it has all the connectors (in their proper
locations) to connect the existing wiring connectors from the System 11 machine to it. So in order to
control a System 11 machine with MPF, you need to get a Snux board. Mark has a day job and built
this board as a hobby, but he sells them to other folks who are interested in modernizing System 11
machines. Mark lives in the UK, so the exact price you pay depends on the exchange rate, shipping to
your country but it’s around $180 US (Then you also have to buy a P-ROC to drive it.) You can contact
Mark via PM (on Pinside as Snux). In addition to the board there are 3 or 4 cables you’ll need, Mark
can advise.

Displays

All System 11 machines used various combinations of segment displays and these cannot be directly
controlled via the P-ROC. If you do want to use the original segment displays, Jim at mypinballs.com
sells an adaptor board that will connect between the P-ROC and the displays. Otherwise you can use
the various other display options that MPF provides.

(C) Understand howMPF works with the Snux board

Once you have your P-ROC controller and the Snux board installed in your System 11 machine, you
need to build your machine- wide configuration file for your machine. MPF has a Snux interface which
is actually implemented as a platform overlay. A platform overlay, in MPF, is like a second layer that
sits on top of the regular platform interface and modifies the way it works. So since the Snux board
works with the P-ROC controller, the main platform interface MPF uses is the P-ROC platform. Then
the Snux platform overlay layers on top of it to handle the special cases that arise when using the
P-ROC with a Snux board. (For example, automatically controlling the A/C relay to make sure it’s in
the right position when an A-side or C-side driver is activated, and preventing the activation of C-side
drivers when the A/C relay is in the A position and vice-versa.) The Snux driver overlay completely
hides the nuances of the System 11 hardware from you. You can freely enable, disable, or pulse any
A-side or C-side driver you want, and MPF will automatically control the A/C relay and make sure it’s
in the proper position. Since A-side drivers are more important in the machine, MPF will always give
them priority. If simultaneous requests for an A-side and C-side driver come in at the same time, MPF
will service the A-side driver and add the C-side driver to a queue, and then when the A-side driver is
done, MPF will flip the relay to the C-side and then service the C-side driver. Similarly if drivers on the
C-side are active and an A-side request comes in, MPF will deactivate the C-side drivers, flip the relay,

Configuration Guides 325

Mission Pinball Framework Documentation, Version

and then service the A-side drivers. The takeaways from this are (1) A-side drivers always have
priority, and (2) the handling of the A/C relay is automatic.

(D) System 11-specific MPF configuration

Once you have your hardware setup, there are a few things you need to do in your config file.

1. Configure your hardware interface

The first thing to do is to configure your hardware options in the hardware section of your
machine-wide config. You configure the main platform as p_roc, but then for driverboards you
configure it as snux, like this:

hardware:

platform: virtual

driverboards: wpc

coils: snux

switches: snux

2. Configure snux options

The MPF machine-wide config file contains a few options for the Snux driverboard. These options are
set in the default mpfconfig.yaml file which means you don’t have to add them to your own config file,
but we’re including them here just for completeness:

coils:

c_diag_led_driver:

number: c24

default_hold_power: 1.0

snux:

diag_led_driver: c_diag_led_driver

The Snux board maps driver c_diag_led_driver which is driver 24 to the “diag” LED on the board.
When you power on your machine, the diag LED is off. Then when MPF connects to the board, this
LED turns on solid. Finally when MPF is done loading and it starts the main machine loop, this LED
flashes twice per second. If this LED stops flashing, that means MPF crashed. :)

3. Configure system11 options

Next you need to add a system11: section to your machine-wide config and specific some System 11
options. At this point you might be wondering, “Why aren’t these options in the snux section?” The
reason is that the settings in the snux section apply to the Snux board itself, whereas the settings in
this system11 section apply to any System 11 machine that MPF might control. Of course at this point,
that’s only possible via the Snux board, but they’re technically separate settings since the architecture
allows for future System 11 boards that may exist at some point. Here’s the system11 configuration
section from Pin*Bot:

Configuration Guides 326

Mission Pinball Framework Documentation, Version

system11:

ac_relay_delay_ms: 75

ac_relay_driver_number: c14

The ac_relay_delay_ms is the number of milliseconds MPF waits before and after flipping the A/C
select relay to allow for it to fully switch positions. For example, if you have a C-side driver active and
you need to activate an A-side driver, MPF cannot simply deactivate the A/C relay and the C-side
device and activate the A-side device all at the same time. If it does then power will “leak” from one
side to the other as the relay is transitioning. So what actually happens in this scenario is that MPF
will deactivate the C-side devices, then wait 75ms for them to really be “off”, then deactivate the A/C
relay, then wait another 75ms for the relay to flip, then activate the A-side device. We did some
experimentation with different delay times. On Pin*Bot, 50ms was definitely too short as we’d see
some weak flashes from C-side flashers connected to A-side devices we were activating on the
transition. 75ms seems fine, though really this is all faster than humans can perceive (and C-side
devices aren’t as time sensitive), so even setting this to 100ms is probably fine. 75ms is the default if
you don’t add this section to your config. The ac_relay_driver_number is the driver (with a “C” added
to it) from the manual for the A/C select relay. Be sure you check the A/C relay driver number from
your manual. It’s different in the two System 11 machines we tested. (C14 in Pin*Bot and C12 in
Jokerz!) Also it’s labeled differently in different manuals. In the Jokerz! manual it’s called the “A/C
Select Relay,” and in the Pin*Bot manual it’s called the “Solenoid Select Relay.”

4. Enable flippers

The Snux board uses driver 23 to enable the flippers:

digital_outputs:

flipper_enable_relay:

number: c23

type: driver

enable_events: ball_started

disable_events: ball_will_end

You can change the events when the flipper should enable and disable. By default we will enable the
flippers on ball start and disable them on ball end.

5. Configuring driver numbers

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

Configuration Guides 327

Mission Pinball Framework Documentation, Version

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

When you configure coils, flashers, and gis in your MPF hardware config, you can enter the numbers
straight out of the operators manual. The only thing to note here is that you must add a “C” to the
beginning of the driver number (even for flashers and GI), since that’s what triggers MPF to do a
WPC-style lookup to convert the driver number to the internal hardware number the platform uses.
(It’s an WPC-style lookup since the Snux driver board emulates a WPC driver board.) Also for
switched solenoids which use the A/C relay, you also need to add an “A” or a “C” to the end of the
driver number. Here’s a snippet (incomplete) from the Pin*Bot machine-wide config file:

coils:

outhole:

number: c01a

knocker:

number: c01c

trough:

number: c02a

visor_motor:

number: c13

allow_enable: true

upper_pf_and_topper_1:

number: c02c

left_insert_bottom:

number: c03c

right_insert_bottom:

number: c04c

lower_pf_and_topper_2:

number: c05c

energy:

number: c06c

left_playfield:

number: c07c

sun:

number: c08c

robot_face_insert_bottom:

number: c09

topper_3:

number: c15

topper_4:

number: c16

Again, don’t forgot the “a” or the “c” at the end of the switched solenoids, since that’s how MPF
knows it needs to use the A/C relay logic for those devices!

6. Configure lamps

Configuring the numbers for matrix lamps is pretty straightforward and something you can also use
the manual for. The format for lamp number is the letter “L” followed by the column, then the row. In
other words, light number L25 is the light in column 2, row 5. This is a bit confusing because these

Configuration Guides 328

Mission Pinball Framework Documentation, Version

are not the numbers that the lamps use in the manual! The lights in the lamp matrix table are simply
numbered from 1 to 64. So you need to use the chart in the manual to get the column and row
positions, not to get the actual light numbers! (When Williams switched to WPC, they switched to
lamp numbers based on the column and row. So in WPC machines, the lamps in column 1 are numbers
11-18, the lamps in column 2 are 21-28, etc. System 11 numbers would be 1-8 for column 1, 9-16 for
column 2, etc. Basically since System 11 machines have an 8x8 lamp matrix, there should be no
numbers 9 or 0 anywhere in your lamp numbers. Here’s a snippet of the configuration from Pin*Bot:

lights:

game_over_backbox:

number: L11

match_backbox:

number: L12

bip_backbox:

number: L13

mouth1_backbox:

number: L14

mouth2_backbox:

number: L15

mouth3_backbox:

number: L16

mouth4_backbox:

number: L17

mouth5_backbox:

number: L18

bonus_2x:

number: L21

bonus_3x:

number: L22

Again, don’t forget that they should all start with “L”, and they’re based on the positions in the matrix,
not on the numbers from the manual.

7. Configure switches

Switch numbering in System 11 machines is the same as lamp numbering, except the numbers start
with “S”. Again the numeric portion of the number is based on the column/row, not the switch number
in the manual. So even though the manual says that the switch in column 5, row 6 is number 38, you
actually enter “L56”. Here’s another snippet from Pin*Bot :

switches:

left_outlane:

number: S24

label: Left Outlane

tags: playfield_active

left_inlane:

number: S25

label: Left Inlane

tags: playfield_active

right_inlane:

number: S26

label: Right Inlane

tags: playfield_active

(continues on next page)

Configuration Guides 329

Mission Pinball Framework Documentation, Version

(continued from previous page)

right_outlane:

number: S27

label: Right Outlane

tags: playfield_active

You might have to do some detective work to figure out where the switches are and how they work.
For example, remember that switches from slingshots or pop bumpers are most likely activated by the
physical action of the device’s coil, not by the switch above the playfield. So on Pin*Bot hitting the pop
bumper skirt does not activate the pop bumper switch, but manually pushing the pop bumper ring
down with your fingers will activate that switch. Also you might see switches with names along the
lines of “Right Lane Change.” If the lane change in that machine is activated by a slingshot, then most
likely the Right Lane Change switch is under the playfield and activated by the physical slingshot arm
hitting it. Same for flipper- controlled lane changes. You’ll have to hunt to see whether there’s a
second switch in the flipper EOS stack under the playfield or perhaps a second switch in the stack
behind the flipper button.

8. Create your System 11-style trough

Troughs in System 11 machines are not like troughs in modern machines. Rather than a single ball
device which acts as the drain as well as the feeder to the plunger lane, System 11 machines have two
separate devices with two solenoids. One device is typically called the “outhole” (or “drain”) which
receives the ball from the playfield, and it kicks the ball over to the trough where the ball is stored.
Then the trough has a second coil which kicks the ball into the plunger lane when it needs it. We have
a separate How To guide which details how to setup a System 11 1980s- style trough, link below (since
many games do this, even ones that aren’t System 11), so you can read that for more details. The
result though will look something like this:

ball_devices:

outhole:

ball_switches: outhole

eject_coil: outhole

confirm_eject_type: target

eject_targets: trough

tags: drain

trough:

ball_switches: trough1, trough2

eject_coil: trough

eject_targets: plunger_lane

tags: home, trough

plunger_lane:

ball_switches: plunger_lane

mechanical_eject: true

eject_timeouts: 3s

The key is that you’re setting up a “chain” of devices (from outhole to trough to plunger lane), and
you’re breaking up the special tags so that each device is tagged with it’s exact role. (And hey! Now
you know why these are all separate tags in MPF instead of a single tag called “trough”.)

See Setting up a System 11 Style Trough for details.

Configuration Guides 330

Mission Pinball Framework Documentation, Version

(E) Final Steps and additional information

MPF’s System 11 interface is new, and we haven’t yet built a complete game using it. There are most
likely things that we haven’t thought of yet, so if you’re using MPF with a System 11 machine, please
post to the forum if you find anything that’s weird or that doesn’t work as expected.

Snux on Pinside.

This is an example code block with the main Sys11 elements in.

hardware:

platform: virtual

driverboards: wpc

coils: snux

switches: snux

system11:

ac_relay_delay_ms: 75

ac_relay_driver: c_ac_relay

snux:

diag_led_driver: c_diag_led_driver

digital_outputs:

flipper_enable_relay:

number: c23

type: driver

enable_events: ball_started

disable_events: ball_will_end

coils:

c_diag_led_driver:

number: c24

default_hold_power: 1.0

c_ac_relay:

number: c25

default_hold_power: 1.0

c_side_a1:

number: c11a

c_side_a2:

number: c12a

default_hold_power: 0.5

c_side_c1:

number: c11c

c_side_c2:

number: c12c

default_hold_power: 0.5

What if it did not work?

Have a look at our hardware troubleshooting guide.

Configuration Guides 331

https://pinside.com/pinball/community/pinsiders/snux

Mission Pinball Framework Documentation, Version

How to configure a FadeCandy RGB LED Controller

Related Config File Sections
hardware:
lights:
fadecandy:
open_pixel_control:

MPF allows you to use a FadeCandy LED controller to drive the LEDs in your pinball machine. A
FadeCandy is a small, cheap ($25) USB controller which can drive up to 512 serially-controlled RGB
LEDs.

You can use the FadeCandy in place of connecting your LEDs to a P-ROC/P3-ROC controller, or you
can choose to drive some LEDs via your primary pinball controller and some via the FadeCandy. (This
is useful if you want to use more LEDs than what your controller platform supports.)

You can connect up to four FadeCandy boards to drive a total of 2048 LEDs (Which would be insane.
And awesome.)

You can read more about the FadeCandy on the main page of the FadeCandy software repository in
GitHub or on Adafruit or SparkFun, where you can buy one for $25. The FadeCandy is very advanced,
offering advanced light processing capabilities such as dithering and interpolation that are not
available if you just control LEDs directly.

If you’re not familiar with the FadeCandy, check out this intro video from SparkFun:

https://youtu.be/-4AUBjV7Y-w

Overview video about serial LEDs:

https://youtu.be/Q9BG9T7Kj4A

1. Understanding all the parts and pieces

Before we dig in to setting up a FadeCandy with MPF, let’s look at how all the various components will
fit together:

∙ The FadeCandy is a piece of hardware that talks to your host computer via USB. (So if you use it
in a pinball machine then you’ll have two devices connected via USB—your pinball controller and
your FadeCandy.)

Configuration Guides 332

https://github.com/scanlime/fadecandy
http://www.adafruit.com/products/1689
https://www.sparkfun.com/products/12821
https://youtu.be/-4AUBjV7Y-w
https://youtu.be/Q9BG9T7Kj4A

Mission Pinball Framework Documentation, Version

∙ The FadeCandy hardware is driven a FadeCandy server software that you’ll run on your host
computer along side the MPF game engine and the MPF media controller. The FadeCandy server
talks to the FadeCandy hardware via a USB driver.

∙ The FadeCandy server receives instructions for LEDs connected to the FadeCandy via a protocol
called Open Pixel Control (OPC).

Putting it all together, MPF talks to the FadeCandy server via OPC, and the FadeCandy server talks to
the FadeCandy hardware via USB.

2. Download the FadeCandy package from GitHub

The first step is to download the FadeCandy package from GitHub. You can unzip it to wherever you
want.

3. Install the FadeCandy drivers

When I plugged the FadeCandy hardware into my Windows computer, the driver did not install
automatically. Running the fcserver (next step) said it was installing the drivers, but that didn’t do
anything for me. (It just said “this may take awhile” but I killed it when it didn’t seem like it was
actually doing anything.)

In my case, I googled and found this procedure to build custom .inf files for Windows. It seems crazy
but it wasn’t too bad. I had to build two: One for the FadeCandy device and one for the FadeCandy
boot loader. Either way, you can follow the docs and the forums around the FadeCandy and get it
setup.

4. Setup the fcserver

The FadeCandy download package includes pre-built binaries for Mac and Windows. On Linux you can
compile it. Again, the FadeCandy documentation has details about how to do this.

At this point you should be able to run the fcserver and to talk to your FadeCandy LEDs and get them
to do things. There are a bunch of sample apps in the FadeCandy package that are kind of cool.

5. Set your LEDs to use the “fadecandy” platform

Next you need to configure your LEDs in MPF to use the fadecandy platform. By default, all types of
devices are assumed to be using the same platform that you have set in the hardware: of your
machine config file. So if your platform is set to fast, MPF assumes your LEDs are connected to a
FAST controller, and if your platform is set to p_roc or p3_roc, MPF assumes your LEDs are connected
to a PD-LED board.

To configure MPF to use FadeCandy LEDs, you can add an entry to the hardware: section of your
machine config to tell it to override the default platform for your LEDs and to instead use the
fadecandy platform, like this:

hardware:

platform: p_roc

driverboards: pdb

lights: fadecandy

Configuration Guides 333

http://openpixelcontrol.org/
https://github.com/scanlime/fadecandy/releases/latest
http://www.libusb.org/wiki/winusb_driver_installation

Mission Pinball Framework Documentation, Version

See the Mixing-and-Matching hardware platforms guide for more information about setting
device-specific default platforms versus overriding the platform for individual devices.

6. Understanding FadeCandy LED numbering

The FadeCandy hardware has 8 connectors for LEDs, each of which can support up to 64 RGB LEDs
(for 512 RGB LEDs total). The connectors are numbered 0-7.

The individual LED numbers are sequential across channels. The first LED on Connector 0 is #0, the
second is #1, etc., up #63 on Connector 0. Then Connector 1 picks up where Connector 0 leaves off,
with the first LED on Connector 2 being #64, and so on. The FadeCandy doesn’t actually know how
many LEDs are connected to each connector, so the first LED on Connector 1 is always LED #64 even
if you have less than 64 LEDs physically connected to Connector 0.

The following diagram explains how the numbering works:

Consider the following config:

lights:

l_led0:

number: 0 # first LED on connector 0

l_led1:

number: 1 # second LED on connector 0

l_led2:

number: 128 # first LED on connector 2

(If you’re familiar with the Open Pixel Control protocol, all of the LEDs on a single FadeCandy board
are on the same OPC channel, which is technically what you’re specifying with the number before the
dash.)

6a. Numbering with multiple channels

You can also assign different OSC channels to your connectors. This has certain performance
advantages and allows nicer numbering.

Start your fadecandy server with the following config:

Configuration Guides 334

Mission Pinball Framework Documentation, Version

{

"listen": ["127.0.0.1", 7890],

"verbose": true,

"color": {

"gamma": 2.5,

"whitepoint": [1.0, 1.0, 1.0]

},

"devices": [

{

"type": "fadecandy",

"serial": "YOUR_FADECANDY_SERIAL",

"map": [

[0, 0, 0, 64],

[1, 0, 64, 64],

[2, 0, 128, 64],

[3, 0, 192, 64],

[4, 0, 256, 64],

[5, 0, 320, 64],

[6, 0, 384, 64],

[7, 0, 448, 64]

]

}

]

}

Replace YOUR_FADECANDY_SERIAL with the serial of your fadecandy. The serial will be shown on
the console of fcserver when connecting your fadecandy.

Then configure your lights as follows:

lights:

l_led0_0:

number: 0-0 # first LED on connector 0

l_led1_0:

number: 1-0 # first LED on connector 1

l_led1_1:

number: 1-1 # second LED on connector 1

l_led7_20:

number: 7-20 # twentyth LED on connector 7

6b. Numbering with multiple Fadecandy Boards

If you want to use multiple FadeCandy boards we suggest the following config:

{

"listen": ["127.0.0.1", 7890],

"verbose": true,

"color": {

"gamma": 2.5,

"whitepoint": [1.0, 1.0, 1.0]

},

"devices": [

{

"type": "fadecandy",
(continues on next page)

Configuration Guides 335

Mission Pinball Framework Documentation, Version

(continued from previous page)

"serial": "YOUR_FADECANDY_SERIAL1",

"map": [

[0, 0, 0, 64],

[1, 0, 64, 64],

[2, 0, 128, 64],

[3, 0, 192, 64],

[4, 0, 256, 64],

[5, 0, 320, 64],

[6, 0, 384, 64],

[7, 0, 448, 64]

]

},

{

"type": "fadecandy",

"serial": "YOUR_FADECANDY_SERIAL2",

"map": [

[8, 0, 0, 64],

[9, 0, 64, 64],

[10, 0, 128, 64],

[11, 0, 192, 64],

[12, 0, 256, 64],

[13, 0, 320, 64],

[14, 0, 384, 64],

[15, 0, 448, 64]

]

},

{

"type": "fadecandy",

"serial": "YOUR_FADECANDY_SERIAL3",

"map": [

[16, 0, 0, 64],

[17, 0, 64, 64],

[18, 0, 128, 64],

[19, 0, 192, 64],

[20, 0, 256, 64],

[21, 0, 320, 64],

[22, 0, 384, 64],

[23, 0, 448, 64]

]

}

]

}

Replace YOUR_FADECANDY_SERIAL1, YOUR_FADECANDY_SERIAL2 and
YOUR_FADECANDY_SERIAL3 with the serials of your fadecandy boards (you can use more or less
than three). The serial will be shown on the console of fcserver when connecting your fadecandy.

Afterwards, configure your lights as follows:

lights:

l_led0_0:

number: 0-0 # first LED on connector 0 on board 0

l_led1_0:

number: 1-0 # first LED on connector 1 on board 0

(continues on next page)

Configuration Guides 336

Mission Pinball Framework Documentation, Version

(continued from previous page)

l_led1_1:

number: 1-1 # second LED on connector 1 on board 0

l_led7_20:

number: 7-20 # twentyth LED on connector 7 on board 0

l_led8_0:

number: 8-0 # first LED on connector 0 on board 1

l_led8_1:

number: 8-63 # last LED on connector 1 on board 1

l_led17_1:

number: 17-1 # second LED on connector 1 on board 2

7. Unterstanding MPF light numbers and channels

In MPF lights abstract a light source which emits arbitrary colors. However, this is not true for all real
lights. Some support only white (GIs), others only a single-color (i.e. red inserts) and others support
full RGB. For that reason MPF knows light numbers and channel numbers. Internally, a light consists
of one or multiple channels. For instance, a single-color GI will contain a single white channel. While a
RGB light will control a red, green and a blue channel. A white light behind a red insert should be a
single red channel (because it cannot emit other colors through the red insert). You can configure
those channels using the channels setting or use start_channel and type to define the channels. See
Lights for details.

However, in most cases a platform supports one type of lights (per subtype) this would be overly
verbose and we added the number setting for configuring lights in the common platform way. For
instance a platform for GIs will configure single channel white lights or a serial LED controller will
configure RGB lights with three channels.

Fadecandy assumes RGB lights by default. For everything else (i.e. RGBW) you have to use channels.

Light Numbers

Fadecandy numbers use the format: osc_channel-number

If you mapped OSC channels as described in (6b/c) set them as osc_channel. number is the index of
your light in the chain.

Internally, Fadecandy assumes three channels per LED (RGB/GRB WS2811/WS2812 LEDs).

Channels

Fadecandy channels use the format: osc_channel-channel_index

channel_index is number * 3. This is because serial LEDs are traditionally RGB (or GRB) LEDs with
exactly three channels. However, this is not true for RGBW or similar LEDs which do not work with
this style of numbering. Luckily, you can chain them instead and have MPF calculate the internal
channels for you:

lights:

led_0:

start_channel: 0-0

subtype: led

(continues on next page)

Configuration Guides 337

Mission Pinball Framework Documentation, Version

(continued from previous page)

type: rgb # will use red: 0-0, green: 0-1, blue: 0-2

led_1:

previous: led_0

subtype: led

type: rgbw # will use red: 0-3, green: 0-4, blue: 0-5, white: 0-6

led_2:

previous: led_1

subtype: led

type: rgbw # will use red: 0-7, green: 0-8, blue: 0-9, white: 0-10

See WS2811 and WS2812 LEDs in Pinball for details.

8. Launch the fcserver

In order for MPF to communicate with the FadeCandy, the fcserver has to be running. Refer to the
FadeCandy documentation for instructions for this. On Windows, for example, it’s just called
fcserver.exe.

There are several command line options you can use with the server, though you don’t need any of
them with MPF unless you have more than one FadeCandy board connected.

You should launch fcserver in its own window since it will take over the console when it’s running. It’s
also safe to keep it running all the time, or you can add it to a batch file to run it automatically. On my
system, the fcserver puts some error message on the screen about not being able to connect to
something, but everything still works even with that message continually being written to the console.
(I think it’s something to do with the P-ROC’s FTDI driver? It only comes up when the P-ROC is on.)

9. Additional FadeCandy LED options

The FadeCandy hardware supports some advanced options which are configured in the fadecandy:
section of your machine configuration file. Specifically, you can set the keyframe interpolation,
dithering, gamma, white point, linear slope, and linear cutoff. The defaults should be fine for almost
everyone, though you can go nuts if you want.

10. Color Correction

If you are using RGB LEDs, they might not be perfectly white when you turn them on. They might be
pinkish or blueish instead depending on the brand of the LED. To a certain extend this is
normal/expected and you can compensate for it by configuring hardware color correction in the
fadecandy. If you need more than one correction profile (e.g. for multiple LED models) you need to
fall back to software color_correction profiles in light_settings. Hardware correction should be
preferred and give you much more dynamic range.

What if it did not work?

Have a look at our fadecandy hardware troubleshooting guide.

Configuration Guides 338

Mission Pinball Framework Documentation, Version

Troubleshooting Fadecandy

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps:

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your fadecandy config
section:

fadecandy:

debug: true

This will add a lot more debugging and might slow down MPF a bit. We recommend to disable/remove
it after finishing debugging.

Flickering Lights after a few Restarts

At some point fadecandy might exhibit erratic behaviour or flickering lights after a few restarts of
MPF. This usually can be fixed by power cycling the fadecandy (i.e. unplug it from USB and plug it in
again). We created a bug report in the fadecandy repository for this case. We suspect a race which
triggers some data corruption in the fadecandy firmware. If you are an embedded engineer or know
anybody who could help to fix this issue please let us know. Nevertheless, we have never seen this
outside of debugging sessions where we restart MPF frequently so it manageable once you know what
it is.

Your hardware is not working at all

If your hardware is not working at all make sure that you removed the options -X, -x and --vpx from
your mpf both or mpf game command line. Those options will overwrite the settings in your hardware
section and MPF will not even try to connect to your hardware. If you got config errors we suggest
you add -X to figure things out without interfacing real hardware all the time. Just keep that option in
mind.

Another stupid thing to check: Is your hardware connected to your PC? We know it is stupid but a
loose USB connector has happened to most of us.

On Linux you might want to run the command lsusb which should show both of your micro controllers
connected. You should see two lines similar to

Bus 002 Device 014: ID 0483:5740 STMicroelectronics Virtual COM Port

Bus 002 Device 015: ID 0483:5740 STMicroelectronics Virtual COM Port

If you are unsure about the output, run the command once with your controllers connected and once
without. If there is no difference, then for sure the USB device is not properly connected.

Configuration Guides 339

https://github.com/scanlime/fadecandy/issues/112

Mission Pinball Framework Documentation, Version

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the
documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

I2C Servo Controllers

Related Config File Sections
hardware:
servo_controllers:
servos:

MPF currently supports PCA9685/PCA9635 based servo controllers via I2C. One example for such a
controller is the Adafruit 16-Channel 12-bit PWM/Servo Driver. You can use any I2C platform
supported by MPF (see I2C Platforms in MPF).

Overview video about servos:

https://youtu.be/wA6KEODwQ5w

1. Installing I2C Servo Controllers

Connect the controller to the I2C port and add the following config section:

hardware:

servo_controllers: i2c_servo_controller

0x40 is actually the default I2C address for this chip but it might be different for some chips.

Configuration Guides 340

https://www.adafruit.com/product/815
https://youtu.be/wA6KEODwQ5w

Mission Pinball Framework Documentation, Version

2. Add your servos

Add your servos to config:

servos:

servo1:

number: 0 # first servo on controller

All these config options are explained in-depth in the servos: section of the config file reference.

You can also provide an I2C address per servo:

servos:

servo_on_controller_63_0:

number: 63-0 # first servo on board with ID 0x3F / 63

servo_on_controller_63_1:

number: 63-1 # second servo on board with ID 0x3F / 63

What if it did not work?

Have a look at our hardware troubleshooting guide.

Pololu Maestro Servo Controller

Related Config File Sections
pololu_maestro:
servos:

MPF supports servos connected to Pololu Maestro servo controllers. Each Maestro can control
multiple servos, with models that control 6, 12, 18, or 24 servos.

Here is an explanation video by the pinball amigos on how to setup a pololu maestro (and more):

Configuration Guides 341

Mission Pinball Framework Documentation, Version

https://youtu.be/1QOOJNtsGxw

Overview video about servos:

https://youtu.be/wA6KEODwQ5w

1. Install the Pololu Maestro drivers

Just like any hardware device you connect to a computer, you need to install the drivers so your
computer can see it. It is easier to do the initial hardware configuration on a Windows PC. Follow the
“Getting Started” section of the Pololu Maestro Servo Controller User’s Guide. You will need to set
Maestro’s serial mode to USB Dual Port on the Serial Settings tab of the Maestro Control Center.

2. Configure your hardware platform section

Next, you need to tell MPF that you want to use the pololu_maestro platform for servos. (MPF
supports several different models of servo controllers.)

To do this, add servo_controllers: pololu_maestro to the hardware: section of your machine-wide
config file, like this:

hardware:

servo_controllers: pololu_maestro

This tells MPF that you want the default servo platform to be pololu_maestro. If you happen to be
using multiple different types of servo controllers, you can override the default by adding a platform:
entry to individual servo devices (just like any device in MPF that can have its platform overwritten in
the device config).

3. Configure the serial port

Next, you need to tell MPF what port the Maestro is connected to. (Note that when you plug in the
Maestro, you’ll see two serial ports appear. You want to use the first one (the lower number).

Add a section to your machine-wide config like this:

pololu_maestro:

port: COM5

On Linux or Mac, it will probably look like this:

pololu_maestro:

port: /dev/ttyACM0

4. Add your servo devices

Now that all your hardware is configured, you can add the actual servos to your machine config. In
MPF, servos are just like any other device (light, LEDs, coils, etc.) You add a servos: section to your
config, and then create sub entries in there for each servo you have.

For example:

Configuration Guides 342

https://youtu.be/1QOOJNtsGxw
https://youtu.be/wA6KEODwQ5w
https://www.pololu.com/docs/0J40/all

Mission Pinball Framework Documentation, Version

servos:

servo1:

servo_min: 0.2

servo_max: 0.8

positions:

0.1: servo1_down

0.9: servo1_up

reset_position: 0.5

reset_events: reset_servo1

speed_limit: 0.5

acceleration_limit: 0.5

number: 1

servo2:

positions:

0.2: servo2_left

1.0: servo2_home

reset_position: 1.0

reset_events: reset_servo2

number: 2

Okay, there’s a lot going on in there. Let’s break it down.

First, all these config options are explained in-depth in the servos: section of the config file reference.
But let’s point out a few Maestro-specific things here.

The number: of the servo is simply which channel on the Maestro board each servo is connected to.
These numbers start with 0, so a Micro Maestro 6 supports six servos via numbers 0-5, the Mini
Maestro 12 supports twelve servos numbered 0-11, etc.

All servo positioning in MPF is controlled via a floating point value from 0.0 to 1.0. In other words, if
you tell a servo to go to position 0.0, that will be one end of its motion, and position 1.0 will be the
other end. A value of 0.4 will tell the servo to move to a position that’s 40% along from the start limit
to the stop limit, etc.

So that’s universal, 0.0 - 1.0, throughout MPF.

The way servos actually move to a position is that the servo controller sends a series of
microsecond-level pulses which the servo reads and can then translate into a certain position. The
actual value of these pulses varies depending on the servo controller and servos you actually have.

You may also set servo_min and servo_max if the servo is trying to move beyond its (hardware) limits
when setting it to position 0.0 or 1.0. Those two values will be applied to all positions. For instance, if
you move it to 0.0 it will actually move to servo_min (0.2 in the example) and to servo_max for 1.0 (0.8
in the example). Everything in between will be interpolated.

The Pololu Maestro servo controllers can accept speed and acceleration settings which specify how
fast the servo moves to the new position, and how (or whether) it accelerates and decelerates when
starting and stopping. If you want to use these add the speed_limit: and acceleration_limit:
settings to your config.

5. Using the servo in your game

The servo’s position: setting contains a list of numerical servo values mapped to MPF events. So to
move a servo in your game, just add the position you want to the list and then post that event.

Again, see the servos: section of the config file reference for details.

Configuration Guides 343

Mission Pinball Framework Documentation, Version

6. Future enhancements

Multiple Pololu Maestro controllers can be chained together (via a single USB port). We don’t have
support for that yet. (It requires adding and additional address setting to the servo config.) If you
want that, let us know and we’ll add it.

What if it did not work?

Have a look at our hardware troubleshooting guide.

How to use Pololu Tic in MPF

Related Config File Sections
hardware:
pololu_tic:
tic_stepper_settings:
switches:
steppers:

The Pololu Tic is a stepper controller which can control one stepper via USB. Multiple versions with
different power rating exist but they all work the same from the perspective of MPF.

TODO: Add a picture of a Pololu Tic

Overview video about steppers:

https://youtu.be/YaRNBU0OHGc

Installation

To use the Pololu Tic you need to install ticcmd from Pololu. Follow their Installation instructions for
ticcmd.

Connecting your stepper

Connect your stepper according to the Pololu manual.

Configuring your stepper

Afterwards, you can use steppers from MPF. This is an example:

#config_version=5

hardware:

stepper_controllers: pololu_tic

switches:

s_home:

number: 1

(continues on next page)

Configuration Guides 344

https://youtu.be/YaRNBU0OHGc
https://www.pololu.com/docs/0J71/3
https://www.pololu.com/docs/0J71/3

Mission Pinball Framework Documentation, Version

(continued from previous page)

steppers:

stepper1:

number: 1

homing_mode: switch

homing_switch: s_home

named_positions:

10: test_00

20: test_01

50: test_10

platform_settings:

max_acceleration: 20000

You can set certain pololu-specific settings in platform_settings. See tic_stepper_settings: for details.

What if it did not work?

Have a look at our hardware troubleshooting guide.

How to configure a “SmartMatrix” RGB LED DMD

Related Config File Sections
hardware:
rgb_dmds:
smartmatrix:
displays:

This guide explains how to connect a SmartMatrix RGB LED DMD to a pinball machine running MPF.

A SmartMatrix is a cheap ($20) board that you attach to a Teensy ($25) microcontroller which lets you
connect an RGB DMD matrix display to the computer running MPF. It’s a standalone solution which
you can use to add an RGB DMD to a pinball machine that’s using FAST Pinball, P-ROC/P3-ROC, or
OPP controller hardware.

MPF supports several different types of RGB DMDs, and the SmartMatrix is just one of the options.
More information about this type of display and other options that MPF supports is available in the
Using an RGB full-color LED DMD documentation.

Here’s an image of the SmartMatrix RGB DMD in action:

Configuration Guides 345

http://docs.pixelmatix.com/SmartMatrix/shieldref.html

Mission Pinball Framework Documentation, Version

And a video which explains it all:

https://youtu.be/zbZQCByeXOU

The following diagram shows how all the components fit together:

1. Buy all the parts you need

This solution is very much a “home brew” solution that will require you to buy a lot of parts from
various sources.

Alternatively, FAST pinball also offers a RGB DMD which contains controller, panels and mounting
brackets (ask them directly since it is not currently listed on their website). If you go with this solution
skip steps 1 to 3. You still need a power supply (step 4).

Configuration Guides 346

https://youtu.be/zbZQCByeXOU

Mission Pinball Framework Documentation, Version

(1) The Panels

We originally had to buy the panels directly from China via AliExpress, but now FAST Pinball sells a kit.
The FAST Pinball option is nice because the price is great and they also include a mounting bracket
that fits a standard DMD cutout (ask them directly since it is not currently listed on their website).

If you buy the panels yourself on AliExpress, you’ll pay about the same price for just the panels, you
won’t have a mounting bracket, and you’ll have to deal with customer support from China. Also FAST
tests the panels to make sure all the pixels work—a problem people were running into when buying
from AliExpress.

(2) The Teensy

Once you have your panel, you need a way to talk to them via a computer. The panels use some kind of
16-pin signalling system which is some kind of standard in the gigantic advertising display industry.

The solution for MPF is to use a Teensy 3.2 or 3.5 (which is kind of like an Arduino). The Teensy is
available from multiple sources for about $20. Here’s the link to the website of the guy who actually
built it, and you can also get it from Adafruit which is nice because you also need the shield (from the
next step) which is also available from them.

The Teensy runs the same software sketches as Arduinos, though it has a slightly different processor
architecture which is needed for the rapid bit-shifting of data needed to control these panels.

Here’s a Teensy:

The software to run the Teensy is open source (more on that in Step 3) and the Teensy has a USB port
which you connect to your computer which MPF uses to send the display data to the panels.

(3) The SmartMatrix Shield

Next you need a way for the Teensy to connect to the displays. That can be done with the SmartMatrix
shield (V4 of the shield is $20 at Adafruit).

Configuration Guides 347

https://www.pjrc.com/store/teensy32.html
https://www.adafruit.com/products/2756
http://www.adafruit.com/products/1902

Mission Pinball Framework Documentation, Version

The SmartMatrix shield is a “dumb” device that basically just connects the Teensy’s GPIO pins to the
16-pin ribbon cable that drives the displays.

The Teensy mounts onto the SmartMatrix shield, creating a single unit which accepts data via USB on
one end and spits out the 16-pin signal for the display panels on the other.

Configuration Guides 348

Mission Pinball Framework Documentation, Version

(4) The Power Supply

These RGB LED displays require 5vdc for power. At first you might think, “Cool! I have 5v elsewhere
in my machine, so I’ll just tap into that!” Not so fast. These displays require a lot of power. After all,
each pixel is actually three separate LEDs (one each for red, green, and blue), and a 128x32 display
means that you have 4,096 pixels. So that’s 12,228 LEDs you need to power!

If you’re ordering your RGB LED display panels from FAST Pinball, you can also order a 5v, 10A power
supply from them for $19.

Configuration Guides 349

https://squareup.com/store/fast-pinball-llc/item/five-volt-ten-amp-switching-power-supply
https://squareup.com/store/fast-pinball-llc/item/five-volt-ten-amp-switching-power-supply

Mission Pinball Framework Documentation, Version

An ATX computer power supply will probably have a decent amount of amps also, so that could be an
option too, just check the specs. Any other 5V supply with decent power should also work.

One thing about these RGB LED-based displays is they are bright. Like, really, really bright. (We’re
talking “burn your retinas if you stare straight at them” kind of bright.)

So even though you can do the math and read that if every pixel is on, full white, 100%, that might
take more power than you have, there is no way you’re going to run these things at full brightness.

Even at 50% brightness, (which would draw only 50% power) most people find these panels to be too
bright. One user runs his at 25%, another at 18%. So it’s possible that you might be fine with 5-7
amps of power.

You’ll need to connect the power supply up to both panels (the 128x32 display is made up of two
64x32 panels), and while you’re at it you can also use it to power your Teensy.

Configuration Guides 350

Mission Pinball Framework Documentation, Version

There’s a trace you have to cut on the Teensy to control whether it’s powered externally or by USB.
Don’t hook it up to external power if you haven’t cut that trace!

2. Load the SmartMatrix code onto the Teensy

Once your hardware’s built, you need to load the code onto the Teensy which receives the display data
via USB and converts and sends it to the pins connected to the SmartMatrix controller. The people
who make the SmartMatrix controller have code sample code available. We just took their sample
code, removed all the clutter we don’t need, and made it available in the tools folder in the MPF
download package. (Here’s a direct link to the code which you can use since you probably installed
MPF via pip and don’t have the download package available.

Also, here’s the original sample code we based our code on.

If you are using V4 of the shield, you need to insert this line of code in the first line:

#include <SmartLEDShieldV4.h> // this line must be first

The V4 shield’s library uses more RAM which can causes the Teensy 3.2 to crash during animations or
video playback. Using a Teensy 3.5 or 3.6 solves this issue as they have more RAM.

Note that the width and height of your display is set in lines 11 & 12. You can change that if you want
to use a different size display.

Mark Sunnucks was able to run a 128x64 display by setting the height there and also by changing the
DMAs from 4 to 2 in line 14.

Also note that you can set the brightness of the display in this code too. You can control the brightness
in MPF as well, but if you know for sure (maybe due to power limitations) that you never want the
brightness to go over a certain amount, then you can set it here and it will be “hard coded” into your
Teensy. (You can change this and re-flash your Teensy at any time.)

Here’s a quick overview of how to install this code onto the Teensy. Full instructions are here.

∙ Install the Arduino IDE v1.8.5

∙ Install the Teensyduino add-in which adds support for the Teensy

∙ Load the smart_matrix_dmd_teensy_code.ino sketch from the mpf/tools folder or this link

∙ Push the button on the Teensy to put it into programming mode

∙ Compile & load the code onto the Teensy from the Arduino IDE

3. Configure your SmartMatrix hardware settings

Once you have your hardware all set, you need to add a smartmatrix: section to your machine-wide
config and which tells MPF how to talk to RGB DMDs that use the SmartMatrix platform.

The main thing you have to figure out is the port that the Teensy uses. On Windows, you can just open
Device Manager and see which port appears when you plug in the Teensy.

On Mac or Linux, open up the terminal window and type the following command: ls /dev/tty.* The
output of this command will look something like this on Mac:

/dev/tty.Bluetooth-Incoming-Port

/dev/tty.usbmodem1448891

Configuration Guides 351

https://raw.githubusercontent.com/missionpinball/mpf/dev/tools/smart_matrix_dmd_teensy_code/smart_matrix_dmd_teensy_code.ino
https://github.com/pixelmatix/SmartMatrix/blob/sm3.0/examples/FeatureDemo/FeatureDemo.ino
https://github.com/pixelmatix/SmartMatrix
https://raw.githubusercontent.com/missionpinball/mpf/dev/tools/smart_matrix_dmd_teensy_code/smart_matrix_dmd_teensy_code.ino

Mission Pinball Framework Documentation, Version

Or this on linux:

/dev/ttyUSB0

/dev/ttyACM0

The port will be the one that has “usbmodem” in the name on Mac. On Linux it will probably be
ttyUSBx or ttyACMx. (The actual number will likely be different on your system.) You can run this
command with the Teensy unplugged, then plug it in, then run the command again, and see which
port appears.

So on Windows, you’ll end up with something like:

hardware:

rgb_dmd: smartmatrix

smartmatrix:

smartmatrix_1:

port: com12

baud: 2500000

old_cookie: false

And on Mac or Linux, it will look something like:

hardware:

rgb_dmd: smartmatrix

smartmatrix:

smartmatrix_1:

port: "/dev/tty.usbmodem1448891"

baud: 2500000

old_cookie: false

Just enter the baud: and old_cookie: settings like they are in the example above. These are the
settings that are needed for the SmartMatrix. If you are using the FAST DMD board set baud to
3000000.

3. Add a physical RGB DMD device entry

Once you have your SmartMatrix hardware platform set, you need to create the actual device entry
for the RGB DMD and map it back to the SmartMatrix platform.

You do this in the rgb_dmds: section of the machine config. This section is like the other common
sections (switches, coils, etc.) where you enter the name(s) of your device(s), and then under each
one, you enter its settings.

(And yes, in case you’re wondering, it’s possible to have more than one physical DMD.)

To do this, create a section in your machine-wide config called rgb_dmds:, and then pick a name for the
DMD, like this:

rgb_dmds:

smartmatrix_1:

hardware_brightness: .17

source_display: dmd

There are several settings you can enter here. (See the rgb_dmds: for details.)

Configuration Guides 352

Mission Pinball Framework Documentation, Version

You’ll probably also want to configure the brightness, which is a multiplier from 0.0 to 1.0 that’s
applied to every pixel that’s sent to the DMD. In other words, the example of brightness: .17 means
that each pixel will be shown at 17% brightness. (These things are crazy bright!)

Note: If you set the brightness multiplier in the sketch code .INO file you loaded onto the Teensy,
then that will multiply the brightness after MPF sends it. In other words, if you set .5 in the config file
and .5 in the sketch, then the final brightness will be 25%. You might want to set the absolute max
brightness in the .INO file once and then fine-tune it via the config file later.

4. Set a source display

Now that you have everything configured, the last step is to make sure the DMD knows what content
to show. In MPF, you do this by mapping a physical DMD to an MPF display.

By default, the DMD will look for a display (in your displays: section called “dmd”. However you can
override this and configure the DMD to use whatever logical display you want by setting a
source_display: setting. (Just make sure that the width and height of your source display match the
physical pixel dimensions of the DMD or else it will be weird.)

A final config you can test

At this point you’re all set, and whatever slides and widgets are shown on the DMD’s source display in
MPF-MC should be shown on the physical RGB DMD.

That said, all these options can be kind of confusing, so we created a quick example config you can use
to make sure you have yours set right. (You can actually just save this config to config.yaml in a blank
machine folder and run it to see it in action which will verify that you’ve got everything working
properly.)

Note: Be sure to change the smartmatrix:port: setting in this example config to match whatever
port your Teensy is connected to.

To run this sample config, you can either run mpf both.

When you run it, do not use the -x or -X options, because either of those will tell MPF to not use
physical hardware which means it won’t try to connect to the Teensy.

Note that the Using an RGB full-color LED DMD guide has more details on the window and slide
settings used in this machine config.

hardware:

rgb_dmd: smartmatrix

displays:

window: # on screen window

width: 600

height: 200

dmd: # source display for the DMD

width: 128

height: 32

default: true

(continues on next page)

Configuration Guides 353

Mission Pinball Framework Documentation, Version

(continued from previous page)

round_anchor_x: left

window:

width: 600

height: 200

title: Mission Pinball Framework

smartmatrix:

smartmatrix_1:

port: com5 # this will most likely be a different port for you

baud: 2500000

old_cookie: false

rgb_dmds:

smartmatrix_1:

brightness: .2

slides:

window_slide_1: # slide we'll show in the on-screen window

- type: display # this widget shows the DMD content in this slide too

effects:

- type: color_dmd

width: 512

height: 128

- type: text

text: MISSION PINBALL FRAMEWORK

anchor_y: top

y: top-3

font_size: 30

color: white

- type: rectangle

width: 514

height: 130

color: 444444

dmd_slide_1: # slide we'll show on the physical DMD

- type: text

text: IT WORKS!

font_size: 30

color: red

slide_player:

init_done:

window_slide_1:

target: window

dmd_slide_1:

target: dmd

What if it did not work?

Have a look at our hardware troubleshooting guide.

Configuration Guides 354

Mission Pinball Framework Documentation, Version

RGB.DMD Controller

Related Config File Sections
hardware:
rgb_dmds:
smartmatrix:
displays:

The RGB.DMD controller was designed as a variant to the SmartMatrix that would be capable of both
controlling RGB LED panels and accepting and decoding the DMD signal from an existing commercial
pinball machine. As soon as RGB LED panels with spacing matching that of a DMD became available
in September of 2015, Eli worked with the MPF developers to modify the SmartMatrix software and
make it possible to stream color DMD images from MPF to SmartMatrix and RGB.DMD displays so
that MPF machines can have color displays in the traditional 32x128 DMD form factor.

It’s likely that no one would be using RGB LED DMDs if it wasn’t for the efforts of Eli Curtz. Eli first
posted about these types of panels in the P-ROC forum (now defunct) in 2014. At that time we could
only find panels with 3mm spacing between pixels which was a bit larger than traditional pinball
DMDs, but that’s what kicked off the conversation about, “Whoa, maybe we could use these for ‘real’
color DMDs some day.” Then in September 2015, Eli posted again telling us that we could now get
panels with 2.5mm spacing which is the perfect size we need. Eli also showed us how to connect them
and what software we needed to make everything work. So really everything here is because of Eli.
All we did is take everything he showed us and write it down. (Well, that and we also created the
interface for MPF, but that was the easy part.) So thanks Eli!

The Eagle files are available along with the code for those who’d like to build their own RGB.DMD
board. Connect your panels and you are good to go.

In MPF, RGB.DMD works just like How to configure a “SmartMatrix” RGB LED DMD (go there for
details). Can copy the following example (and replace com12 with your com port):

hardware:

rgb_dmd: smartmatrix

smartmatrix:

smartmatrix_1:

port: com12

baud: 3000000

old_cookie: false

rgb_dmds:

smartmatrix_1:

platform: smartmatrix

source_display: dmd

What if it did not work?

Have a look at our hardware troubleshooting guide.

Configuration Guides 355

https://github.com/ecurtz/RGB_DMD
https://github.com/ecurtz/RGB_DMD

Mission Pinball Framework Documentation, Version

How to configure a PIN2DMD RGB LED DMD

Related Config File Sections
hardware:
rgb_dmds:
pin2dmd:
displays:

This guide explains how to connect a PIN2DMD RGB LED DMD to a pinball machine running MPF.

PIN2DMD is a RGB DMD display which connects to a PC via USB. It exists in a 128x32 (traditional
pinball) and 192x64 pixel (large SEGA/Data East displays) version.

MPF supports several different types of RGB DMDs, and the PIN2DMD is just one of the options.
More information about this type of display and other options that MPF supports is available in the
Using an RGB full-color LED DMD documentation.

Overview video about Pin2DMD:

https://youtu.be/Q5fH-Q2umV4

This is how a 128x32 pixel PIN2DMD looks in action:

And this is how a 192x64 pixel PIN2DMD looks:

Configuration Guides 356

https://pin2dmd.com/
https://youtu.be/Q5fH-Q2umV4

Mission Pinball Framework Documentation, Version

1. Buy and Assemble your PIN2DMD

To use PIN2DMD in MPF you should first install your panel as described on the PIN2DMD homepage
(steps hardware and firmware).

2. Install pyusb

MPF uses libusb via pyusb to drive your PIN2DMD. To use your PIN2DMD you need to install pyusb
using pip:

pip3 install pyusb

3. Configure your PIN2DMD hardware settings

Once you have your hardware all set, you need to add a smartmatrix: section to your machine-wide
config and which tells MPF how to talk to RGB DMDs that use the SmartMatrix platform.

1. Add pin2dmd to your hardware section:

Configuration Guides 357

https://pin2dmd.com/

Mission Pinball Framework Documentation, Version

hardware:

rgb_dmd: pin2dmd

pin2dmd:

debug: True # uncomment this if you experience any issues and need debug output

resolution: 128x32 # or 192x64 depending on your panel

panel: rgb # or rbg if colors are swapped

3. Add a physical RGB DMD device entry

Once you have your SmartMatrix hardware platform set, you need to create the actual device entry
for the RGB DMD and map it back to the SmartMatrix platform.

You do this in the rgb_dmds: section of the machine config. This section is like the other common
sections (switches, coils, etc.) where you enter the name(s) of your device(s), and then under each
one, you enter its settings.

(And yes, in case you’re wondering, it’s possible to have more than one physical DMD.)

To do this, create a section in your machine-wide config called rgb_dmds:, and then pick a name for the
DMD, like this:

rgb_dmds:

default: # your DMD

hardware_brightness: .5 # adjust the brightness of your display if it is too bright

fps: 30

There are several settings you can enter here. (See the rgb_dmds: for details.). For PIN2DMD the
display currently has to be named default because there can be only one PIN2DMD connected.

You’ll probably also want to configure the brightness, which is a multiplier from 0.0 to 1.0 that’s
applied to every pixel that’s sent to the DMD. In other words, the example of hardware_brightness: .2
means that each pixel will be shown at 20% brightness. (These things are crazy bright!)

4. Set a source display

Now that you have everything configured, the last step is to make sure the DMD knows what content
to show. In MPF, you do this by mapping a physical DMD to an MPF display.

displays:

window: # on screen window - useful for debugging without real hardware

width: 600

height: 200

dmd: # source display for the DMD

width: 128 # 192 if you got a 192x64 pin2dmd panel

height: 32 # 64 if you got a 192x64 pin2dmd panel

round_anchor_x: left

default: true

By default, the DMD will look for a display (in your displays: section called “dmd”. However you can
override this and configure the DMD to use whatever logical display you want by setting a
source_display: setting. (Just make sure that the width and height of your source display match the
physical pixel dimensions of the DMD or else it will be weird.)

Configuration Guides 358

Mission Pinball Framework Documentation, Version

A final config you can test

At this point you’re all set, and whatever slides and widgets are shown on the DMD’s source display in
MPF-MC should be shown on the physical RGB DMD.

That said, all these options can be kind of confusing, so we created a quick example config you can use
to make sure you have yours set right. (You can actually just save this config to config.yaml in a blank
machine folder and run it to see it in action which will verify that you’ve got everything working
properly.)

To run this sample config, you can either run mpf both.

When you run it, do not use the -x or -X options, because either of those will tell MPF to not use
physical hardware which means it won’t try to connect to the Teensy.

Note that the Using an RGB full-color LED DMD guide has more details on the window and slide
settings used in this machine config.

hardware:

rgb_dmd: pin2dmd

pin2dmd:

debug: True # uncomment this if you experience any issues and need debug output

resolution: 128x32 # or 192x64 depending on your panel

panel: rgb # or rbg if colors are swapped

displays:

window: # on screen window

width: 600

height: 200

dmd: # source display for the DMD

width: 128 # 192 if you got a 192x64 pin2dmd panel

height: 32 # 64 if you got a 192x64 pin2dmd panel

default: true

round_anchor_x: left

window:

width: 600

height: 200

title: Mission Pinball Framework

rgb_dmds:

default:

hardware_brightness: .2

fps: 30

slides:

window_slide_1: # slide we'll show in the on-screen window

- type: display # this widget shows the DMD content in this slide too

effects:

- type: color_dmd

width: 512

height: 128

- type: text

text: MISSION PINBALL FRAMEWORK

anchor_y: top

y: top-3

font_size: 30

color: white

- type: rectangle

width: 514

(continues on next page)

Configuration Guides 359

Mission Pinball Framework Documentation, Version

(continued from previous page)

height: 130

color: 444444

dmd_slide_1: # slide we'll show on the physical DMD

- type: text

text: IT WORKS!

font_size: 30

color: red

slide_player:

init_done:

window_slide_1:

target: window

dmd_slide_1:

target: dmd

What if it did not work?

Have a look at our Pin2DMD hardware troubleshooting guide.

Troubleshooting Pin2DMD

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps:

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your pin2dmd config section:

pin2dmd:

debug: true

This will add a lot more debugging and might slow down MPF a bit. We recommend to disable/remove
it after finishing debugging.

Check Brightness

Your display is not showing your slides? Check if your brightness is set high enough. You can adjust
brightness in your rgb_dmds section:

rgb_dmds:

default: # your DMD

brightness: .8 # adjust the brightness of your display if it is too bright or dim

fps: 30

Your hardware is not working at all

If your hardware is not working at all make sure that you removed the options -X, -x and --vpx from
your mpf both or mpf game command line. Those options will overwrite the settings in your hardware

Configuration Guides 360

Mission Pinball Framework Documentation, Version

section and MPF will not even try to connect to your hardware. If you got config errors we suggest
you add -X to figure things out without interfacing real hardware all the time. Just keep that option in
mind.

Another stupid thing to check: Is your hardware connected to your PC? We know it is stupid but a
loose USB connector has happened to most of us.

On Linux you might want to run the command lsusb which should show both of your micro controllers
connected. You should see two lines similar to

Bus 002 Device 014: ID 0483:5740 STMicroelectronics Virtual COM Port

Bus 002 Device 015: ID 0483:5740 STMicroelectronics Virtual COM Port

If you are unsure about the output, run the command once with your controllers connected and once
without. If there is no difference, then for sure the USB device is not properly connected.

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the
documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

Raspberry PI DMD (rpi-rgb-led-matrix)

Related Config File Sections
hardware:
rpi_dmd:
rgb_dmds:
displays:

The rpi dmd platform can be used to control a RGB LED matrix on your Raspberry Pi (any model).

Configuration Guides 361

Mission Pinball Framework Documentation, Version

1. Connect the hardware

We suggest that you follow the tutorial in the rpi-rgb-led-matrix library.

2. Install the extension

You need to install the rgbmatrix extension on your RPi using the following command:

git clone https://github.com/hzeller/rpi-rgb-led-matrix.git

cd rpi-rgb-led-matrix

sudo apt-get update && sudo apt-get install python3-dev python3-pillow -y

make build-python PYTHON=$(which python3)

sudo make install-python PYTHON=$(which python3)

3. Configure your DMD

This is an example config:

hardware:

platform: rpi_dmd

rpi_dmd:

cols: 32

rows: 32

gpio_slowdown: 2

pwm_lsb_nanoseconds: 300

window:

width: 600

height: 200

title: Mission Pinball Framework

displays:

window: # on screen window

width: 600

height: 200

dmd: # source display for the DMD

width: 32

height: 32

default: true

round_anchor_x: left

rgb_dmds:

rpi_dmd:

source_display: dmd

slides:

window_slide_1: # slide we'll show in the on-screen window

- type: display # this widget shows the DMD content in this slide too

effects:

- type: color_dmd

width: 512

height: 128

- type: text

text: MISSION PINBALL FRAMEWORK

anchor_y: top

y: top-3

font_size: 30

(continues on next page)

Configuration Guides 362

https://github.com/hzeller/rpi-rgb-led-matrix

Mission Pinball Framework Documentation, Version

(continued from previous page)

color: white

- type: rectangle

width: 514

height: 130

color: 444444

dmd_slide_1: # slide we'll show on the physical DMD

- type: text

text: IT WORKS!

font_size: 30

color: red

slide_player:

init_done:

window_slide_1:

target: window

dmd_slide_1:

target: dmd

The size of your dmd (32x32 pixel in the example) should match your physical matrix. Also make sure
to configure the rpi_dmd: section accordingly.

Note that the Using an RGB full-color LED DMD guide has more details on the window and slide
settings used in this machine config.

4. Start MPF as root

For this library to work you need to start MPF as root like this:

sudo mpf game

This is needed for the matrix to access the hardware and it will drop privileges after it started.

Related How To guides
Installing Fantastic with RPI DMD

What if it did not work?

Have a look at our hardware troubleshooting guide.

MyPinballs Segment Display Controller

Related Config File Sections
hardware:
mypinballs:
segment_displays:
segment_display_player:

Those segment displays are controlled by a very simple serial protocol. Two variants exist: The
original MyPinball controller which can controll existing segments and the TNA segment displays sold
by PBL which includes four segments. Both can be controlled using this platform.

Configuration Guides 363

https://github.com/yetifrisstlama/Fan-Tas-Tic-machine#installing-everything-on-the-raspberry-pi-from-scratch

Mission Pinball Framework Documentation, Version

Video about segment displays:

https://youtu.be/Jyf3jxGXnTw

Mypinballs Segment Displays Controller

MyPinballs sells segment display controller which can be used with MPF to control existing
Bally/Stern segment displays (or replacement displays). See the Direct-wiring MyPinballs to 3rd-Party
Segment Displays section for details about how to wire those. Connect it to your PC using USB and
control up to six segment displays.

Config looks like this:

hardware:

segment_displays: mypinballs

mypinballs:

port: /dev/ttyUSB0

segment_displays:

display1:

number: 1

display2:

number: 2

display3:

number: 3

display4:

number: 4

display5:

number: 5

display6:

number: 6

You can configure your serial port in port. See segment_display for more informations about how to
drive segment display in your game.

Total Nuclear Annihilation Remake Serial Score Display Assembly

Alternative, PBL sells TNA segment displays which use the same serial protocol. The board is
ready-made with four segment displays and a controller which can be controlled by MPF via USB.

Part number:

∙ PBL-600-0473-00

Config looks like this:

hardware:

segment_displays: mypinballs

mypinballs:

port: /dev/ttyUSB0

segment_displays:

display1:

number: 1

display2:

number: 2

display3:

(continues on next page)

Configuration Guides 364

https://youtu.be/Jyf3jxGXnTw

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 3

display4:

number: 4

You can configure your serial port in port. See segment_display for more informations about how to
drive segment display in your game.

See Scotts description of the display for details.

Direct-wiring MyPinballs to 3rd-Party Segment Displays

The following is a wiring diagram for connecting the preloaded Arduino board (provided by
MyPinballs) to 3rd-party, Bally-compatible 7 segment displays.

What if it did not work?

Have a look at our hardware troubleshooting guide.

Configuration Guides 365

https://www.scottdanesi.com/?p=4220
../../_images/mypinballs-7segment-wiring.jpg

Mission Pinball Framework Documentation, Version

What if it did not work?

Have a look at our hardware troubleshooting guide.

How to Connect Segment Displays as Lights to MPF

Related Config File Sections
hardware:
segment_displays:
lights:
light_segment_displays:

MPF can map segment displays to arbitrary lights which can be controlled via any hardware platform.
You can select from multiple mappings (see platform_settings for details). Let us know if you need
another mapping.

Video about segment displays:

https://youtu.be/Jyf3jxGXnTw

Hardware

BCD Seven Segment

Segment displays are readily available at most electronics suppliers. Most of them use some BCD
encoder to save connectors. Those are easily recognizable because they got less than 8 connectors.
You can use any driver or digital outputs on those. Be a bit careful with current driven light
controllers (i.e. the PD-LED) here. Those cannot be dimmed currently (let us know if you need that).

Parallel Seven Segment

Those are not as common as BCD segment displays but still available. You can recognize them by
more than 8 connectors. Make sure that your display is not multiplexed or it will not work without an
additional controller chip. Those can be driven by any parallel LED controller (see LEDs for details). If
you use drivers you will probably need current limiting resistors. In most cases BCD is simpler to use
and will save you some outputs.

Those are also available as RGB. However, they often are multiplexed and will not work without an
additional chip.

Serial Segment Displays

Additionally, there are serial segment displays which use chips such as WS2811 internally. Those can
also be used here using a serial LED controller (see LEDs for details).

There is a hackaday project for monochrome serial segment displays. Furthermore, there are also full
RGB serial segment displays. Both are controlled using WS2811 controllers.

You can also buy WS2811 controller with PCB in China (bulk 100 pcs) for about ten bucks solder your
own display.

Configuration Guides 366

https://youtu.be/Jyf3jxGXnTw
https://hackaday.com/2019/01/12/addressable-7-segment-displays-may-make-multiplexing-a-thing-of-the-past/
https://www.rgbdigit.com/rgbdigit/
https://www.rgbdigit.com/rgbdigit/

Mission Pinball Framework Documentation, Version

Color and Brightness

There is no color or brightness support for segment displays in MPF yet. Let us know if you need that.
However, you can control both using normal light shows.

Config

This is an example:

hardware:

segment_displays: light_segment_displays

lights:

segment1_a:

number: 1

segment1_b:

number: 2

segment1_c:

number: 3

segment1_d:

number: 4

segment1_e:

number: 5

segment1_f:

number: 6

segment1_g:

number: 7

segment2_a:

number: 8

segment2_b:

number: 9

segment2_c:

number: 10

segment2_d:

number: 11

segment2_e:

number: 12

segment2_f:

number: 13

segment2_g:

number: 14

segment_displays:

display1:

number: 1

platform_settings:

lights:

- a: segment1_a

b: segment1_b

c: segment1_c

d: segment1_d

e: segment1_e

f: segment1_f

g: segment1_g

(continues on next page)

Configuration Guides 367

Mission Pinball Framework Documentation, Version

(continued from previous page)

- a: segment2_a

b: segment2_b

c: segment2_c

d: segment2_d

e: segment2_e

f: segment2_f

g: segment2_g

type: 7segment

Here is another example for a monochrome serial 16-segment display using a WS2811 controller on
OPP:

hardware:

segment_displays: light_segment_displays

lights:

l_neoseg_0_0_a:

start_channel: 0-0-60 #When using other RGB pixels in the chain before the display,

start_channel = 3 x start_pixel

#Using RGBW, start_channel = 4 x start pixel

#Here, there are 20 RGB neopixels before the display

type: w

subtype: led

l_neoseg_0_0_m:

previous: l_neoseg_0_0_a

type: w

subtype: led

l_neoseg_0_0_k:

previous: l_neoseg_0_0_m

type: w

subtype: led

l_neoseg_0_0_h:

previous: l_neoseg_0_0_k

type: w

subtype: led

l_neoseg_0_0_u:

previous: l_neoseg_0_0_h

type: w

subtype: led

l_neoseg_0_0_s:

previous: l_neoseg_0_0_u

type: w

subtype: led

l_neoseg_0_0_t:

previous: l_neoseg_0_0_s

type: w

subtype: led

l_neoseg_0_0_g:

previous: l_neoseg_0_0_t

type: w

subtype: led

l_neoseg_0_0_f:

previous: l_neoseg_0_0_g

type: w

(continues on next page)

Configuration Guides 368

Mission Pinball Framework Documentation, Version

(continued from previous page)

subtype: led

l_neoseg_0_0_e:

previous: l_neoseg_0_0_f

type: w

subtype: led

l_neoseg_0_0_dp:

previous: l_neoseg_0_0_e

type: w

subtype: led

l_neoseg_0_0_d:

previous: l_neoseg_0_0_dp

type: w

subtype: led

l_neoseg_0_0_r:

previous: l_neoseg_0_0_d

type: w

subtype: led

l_neoseg_0_0_p:

previous: l_neoseg_0_0_r

type: w

subtype: led

l_neoseg_0_0_c:

previous: l_neoseg_0_0_p

type: w

subtype: led

l_neoseg_0_0_n:

previous: l_neoseg_0_0_c

type: w

subtype: led

l_neoseg_0_0_b:

previous: l_neoseg_0_0_n

type: w

subtype: led

l_neoseg_0_0_na:

previous: l_neoseg_0_0_b

type: w

subtype: led

segment_displays:

display1:

number: 1

platform_settings:

lights:

- a: l_neoseg_0_0_a

b: l_neoseg_0_0_b

c: l_neoseg_0_0_c

d: l_neoseg_0_0_d

e: l_neoseg_0_0_e

f: l_neoseg_0_0_f

g: l_neoseg_0_0_g

h: l_neoseg_0_0_h

k: l_neoseg_0_0_k

m: l_neoseg_0_0_m

(continues on next page)

Configuration Guides 369

Mission Pinball Framework Documentation, Version

(continued from previous page)

n: l_neoseg_0_0_n

p: l_neoseg_0_0_p

r: l_neoseg_0_0_r

s: l_neoseg_0_0_s

t: l_neoseg_0_0_t

u: l_neoseg_0_0_u

type: 16segment

What if it did not work?

Have a look at our hardware troubleshooting guide.

Trinamic’s StepRocker

Related Config File Sections
hardware:
trinamics_steprocker:
steppers:

Connect the StepRocker to USB and MPF can control any steppers connected to it.

TODO: Add a picture of a StepRocker

This is an example:

hardware:

platform: virtual

stepper_controllers: trinamics_steprocker

trinamics_steprocker:

port: /dev/ttyACM0

steppers:

Scenario: 1.8 degree stepper attached to a 7:1 gear ratio with homing flag that you want to␣

→˓control in units of revolutions

positionStepper:

number: 0

homing_direction: clockwise # when facing the shaft

homing_mode: hardware

reset_position: 0

reset_events: test_reset

named_positions:

0.0: test_00

0.6: test_01

1.0: test_10

platform_settings:

move_current: 25 # percent

hold_current: 5 # percent

homing_speed: 0.1 # user units/sec

microstep_per_fullstep: 16 # 1/16 mode (1 step = 1/16 of a full step)

fullstep_per_userunit: 1400 # UU=1 Revolution = 200 full steps per rev (1.8 deg␣

→˓stepper) * 7 gear ratio (continues on next page)

Configuration Guides 370

Mission Pinball Framework Documentation, Version

(continued from previous page)

velocity_limit: 0.5 # user units/sec (so, 0.8 RPS of output gear)

acceleration_limit: 2.0 # user units/sec^2 (so, 2 RPS^S of output gear)

Overview video about steppers:

https://youtu.be/YaRNBU0OHGc

What if it did not work?

Have a look at our hardware troubleshooting guide.

How to use Step Stick Steppers in MPF

Related Config File Sections
hardware:
step_stick_stepper_settings:
digital_outputs:
switches:
steppers:

MPF can drive steppers on a StepStick (or DRV8825) connected via a digital output . Depending on
the jitter of the output the speed might be limited to a few steps per second (like 50-200).

TODO: Add a picture of a step stick or DRV8825

Overview video about steppers:

https://youtu.be/YaRNBU0OHGc

Configuring your stepper

A step stick stepper needs two or three outputs which define the hardware number:
direction_output:step_output or direction_output:step_output:enable_output. In addition, you need
a homing_switch so MPF can find the 0 position of your stepper at startup.

This is an example:

#config_version=5

hardware:

stepper_controllers: step_stick

digital_outputs:

c_direction:

number: 1

type: driver

c_step:

number: 2

type: driver

c_enable:

number: 3

type: driver

(continues on next page)

Configuration Guides 371

https://youtu.be/YaRNBU0OHGc
https://youtu.be/YaRNBU0OHGc

Mission Pinball Framework Documentation, Version

(continued from previous page)

switches:

s_home:

number: 1

steppers:

stepper1:

number: c_direction:c_step:c_enable # enable is optional

homing_mode: switch

homing_switch: s_home

named_positions:

10: test_00

20: test_01

50: test_10

platform_settings: # optional speed settings

low_time: 20ms

high_time: 20ms

You might want to change the speed in the platform_settings section. 1000 / (low_time + high_time)
will be your number of steps per second.

Connecting your stepper driver

Connect the DIR pin to your direction_output, STP to your step_output and GND to your ground. If use
an enable_output connect it to EN. Otherwise, pull it to GND or the driver will not work. Connect SLP
and RST to VDD (not all driver have all of them). In addition, you need to pull M0, M1 and M2 to VDD or
GND to configure the step resolution. Your stepper will connect to 1A, 1B, 2A and 2B. Connect power to
VMOT (do not forget to also connect ground of your stepper power supply; see Voltages and Power). See
the datasheet for details about your driver.

What if it did not work?

Have a look at our hardware troubleshooting guide.

Choosing a PC for MPF

In addition to picking a pinball controller platform, you also need to decide what type of host
computer you’ll use. (By “host computer,” we’re talking about the computer that will run MPF which
will talk to the pinball controller via USB.) There are lots of host computer options, including small
single-board computers, laptops, small-form factor x86 motherboards, etc. You’re also going to have
to decide on what OS you use (Windows, Linux, or Mac).

Generally speaking, MPF will run on any PC or embedded system which can run Python 3. In most
cases you also need a graphics card with working OpenGL to run the MPF Media Controller
(MPF-MC). Most operating systems work fine (we test on Linux, Windows, Mac OS X) but be careful
with virtualized environments because OpenGL might not work perfectly.

What kind of performance is required?

One of the biggest things that will affect your choice of host computer will be the performance you
need. Obviously the host computer has to “keep up” with your game, so if you pick an under-powered
host computer then your game loop can slow down and you’ll have issues. The computing needs of a

Configuration Guides 372

Mission Pinball Framework Documentation, Version

pinball machine are actually pretty small. The core game, modes, ball tracking, dealing with switches,
etc.—-all of that can probably be done on a very tiny computer. The real driver these days is your
video and graphics. If you have a hi-def LCD window with lots of full video and layers and on-screen
elements all blended together, then you’re going to need a “real” computer to drive it and will not be
happy with a small single-board computer.

CPU

The trend in computing these days (for both “real” computers and small single-board computers) is
multi-core. Almost every computer these days has a dual-core or quad-core processor.

MPF uses two processes (one for the game engine and one for the media controller), so it can make
use of a dual-core system. However there is probably not much benefit to MPF running on machines
with more than 2 cores (other than it frees up more cores for other non-MPF things.) During startup,
when playing sound or loading assets additional cores may be used. Therefore, we recommend a CPU
with at least two cores. MPF certainly benefits from four cores but everything above that will not help
during normal games. However, during development, when using MPF Monitor and an IDE more
cores will certainly help.

Disk

Disk space it not really an issue these days. The real question is disk performance in terms of SSD
versus traditional spinning magnetic hard disks. SSD is fast, you can can get away with less memory
since MPF can dynamically load and unload assets. To load assets quickly a SSD helps. You definitely
want that during development but you might use a cheaper option (such as a SD-card) for the final
game.

Filesystems can become corrupted by unsafe shut downs, so consider running a journaling filesystem
or even mount them read-only.

Memory

MPF itself doesn’t require much memory. The real memory use comes from loading all the images,
sounds, and videos into memory. MPF can load those on demand (or automatically when a mode
starts, and unload them when the mode ends). This works well if you have a fast disk (SSD).

However, if you have enough memory, MPF can pre-load everything when it starts. This will increase
the startup time of your machine, but will make it so that everything runs fast once its booted.

Note that 32-bit OSes only allow individual applications to access 2GB of memory, so if you have 6 gigs
of assets and want to buy an machine with 8GB of RAM, you need to run a 64-bit OS. (MPF supports
both 32-bit and 64-bit systems. If you run on 64-bit, make sure you also get the 64-bit version of
Python.)

MPF needs at least 512MB RAM but we recommend 2-4GB depending on the amount of assets. Again,
during development you want to have more RAM (8GB+) for your IDE and other tools.

Development setup

∙ CPU with at least four cores

Configuration Guides 373

Mission Pinball Framework Documentation, Version

∙ 8GB RAM or more

∙ SSD

Final game

We cannot emphasize this enough: Do not use such a setup for game development.

∙ CPU with two to four cores

∙ 2-4GB RAM (mostly for assets)

∙ SD-Card/Embedded flash/SSD

See also the discussion about the hardware in your final game.

How to use native I2C on Linux (SMBUS2)

Related Config File Sections
hardware:

MPF can control I2C devices on Linux using the Python smbus2_asyncio extension.

1. Install the smbus2_asyncio extension

Install smbus2_asyncio via pip:

pip3 install smbus2_asyncio

2. Figure out which bus to use

∙ Some boards such as the Raspberry Pi have native I2C buses. Figure out which bus to use and
make sure MPF has sufficient permissions to use it (Alternatively, you can also controll the I2C
on the RPi remotely using the RPi platform).

∙ You can build an adapter to tap I2C out of a spare VGA, DVI or HDMI port:
http://www.instructables.com/id/Worlds-Cheapest-I2C-I-Squared-C-Adapter/

∙ Commercial USB-I2C adapters exist but are usually very expensive

∙ You can build your own USB-I2C adapter. Hardware can be bought ready-made for less than 10
bucks. Atiny85 based boards can be bought at Adafruit as Trinket (and elsewhere just google it).

This is an adafruit trinket used as USB-I2C adapter for an MMA8451-based accelerometer:

Configuration Guides 374

http://www.instructables.com/id/Worlds-Cheapest-I2C-I-Squared-C-Adapter/
https://github.com/harbaum/I2C-Tiny-USB
https://www.adafruit.com/product/1501

Mission Pinball Framework Documentation, Version

3. Connect your hardware

Connect the hardware to the bus. This will be at least SDA, SCL and ground. Usually, you have to
power your device somehow and in a lot of cases this power can be provided from the controller.

4. Set your I2C devices to use the “smbus2” platform

Next you need to configure I2C in MPF to use the smbus2 platform. By default, all types of devices are
assumed to be using the same platform that you have set in the hardware: of your machine config file.
So if your platform is set to fast, MPF assumes your I2C devices are connected to a FAST controller,
and if your platform is set to p3_roc, MPF assumes your I2C devices are connected to the P3-Roc
board.

To configure MPF to use native I2C, you can add an entry to the hardware: section of your machine
config to tell it to override the default platform for your I2C devices and to instead use the smbus2
platform, like this:

hardware:

i2c: smbus2

See the Mixing-and-Matching hardware platforms guide for more information about setting
device-specific default platforms versus overriding the platform for individual devices.

Configuration Guides 375

Mission Pinball Framework Documentation, Version

5. Understanding I2C numbering

When using I2C addresses in I2C devices smbus2 will interpret those as bus-address. If you only
provide an address it will use bus 0. On Linux bus 0 will ususally be /dev/i2c-0, 1 will be /dev/i2c-1 and
so on.

6. Add udev rules if you have multiple i2c devices

If you have more than one i2c device connected to your PC via USB you can assign a name to your
ports based on the USB port they are connected to.

First identify the port of your I2C hardware. Usually it should be /dev/i2c0 or /dev/i2c1.

Then run udevadm info on your port:

udevadm info /dev/i2c0

This will show you the DEVPATH. Now replace the last part i2cX with an asterisk and add an udev rules
like this in /etc/udev/rules.d/i2c.rules:

SUBSYSTEM=="i2c-dev", ACTION=="add", DEVPATH=="/devices/pci0000:00/0000:00:14.0/usb1/1-3/1-3.1/1-3.1:1.

→˓0/*", SYMLINK+="i2c-front", GROUP="adm", MODE="0660

After a reboot you should get a /dev/i2c-front device if you connect an i2c device to that specific USB
port. You can use that port in your config.

What if it did not work?

Have a look at our hardware troubleshooting guide.

Raspberry PI (pigpio)

Related Config File Sections
hardware:
raspberry_pi:
switches:
coils:
servos:

The rpi platform can be used to control inputs (switches), outputs (coils), I2C and servos on the RPi
remotely (or locally) using pigpio.

Video about the Raspberry PI and MPF:

https://youtu.be/ihj5O0J-mD0

Installation

You need to install the apigpio extension via pip to use it:

Configuration Guides 376

https://youtu.be/ihj5O0J-mD0

Mission Pinball Framework Documentation, Version

pip3 install apigpio_mpf

The pigpiod service needs to be running (in this example on localhost port 8888, which is the default
setting). To install it and enable is (on debian based systems):

apt install pigpiod

systemctl enable pigpiod.service

systemctl start pigpiod.service

The enable step gets the service running at startup, thus it is optional.

Using pigpio via network

If you want to use your RPi over ethernet you have to edit /lib/systemd/system/pigpiod.service and
change ExecStart=/usr/bin/pigpiod -l to ExecStart=/usr/bin/pigpiod. This is not needed if you run
MPF on the RPi itself. Make sure your Raspberry PI is not accessible from the internet and the
network is segmented properly.

Config

This is an example config:

hardware:

platform: rpi

raspberry_pi:

ip: localhost

port: 8888

switches:

s_switch_8:

number: 8

s_switch_7:

number: 7

coils:

output_2:

number: 2

default_pulse_ms: 1000

servos:

servo_26:

number: 26

Configure the ip of your RaspberryPi in the raspberry_pi section. You may use localhost if you are
running MPF on the RPi. Any pin on the RPi can be used as either input or output. Additionally, you
may use servos on any pin.

Available GPIOs

You check GPIO locations on your RPi at pinout.xyz. Please note that you have to use the Broadcom
GPIO numbers instead of the pin numbers. Those slightly differ between different RPi models. If you
get permission errors in your MPF log this is usually because you used a GPIO number which does not
exist on your hardware.

Configuration Guides 377

http://abyz.me.uk/rpi/pigpio/pigpiod.html
https://pinout.xyz/

Mission Pinball Framework Documentation, Version

Is this a real pinball controller?

No. The RPi is not a pinball controller for various reasons:

∙ Drivers are missing to drive coils

∙ Inputs are unprotected and any error current will fry the CPU

∙ Hardware rules are not supported by the pigpio daemon

∙ A watchdog is missing

This platform is meant as a cheap interface for peripherals such as DMDs, segment displays lights,
servos, steppers and more. You can also use it for inputs to some extend.

Can this be turned into a pinball controller?

Sure it can. We just did not do that here. Have a look at Arduino Pinball Controller which is kind of
that already.

If you want to do it with pigpio you would have to do the following (and probably more):

∙ Build a PCB with FETs to drive outputs. Add proper protection.

∙ Protect your inputs against high and negative voltages.

∙ Implement hardware rules in pigpio (might be possible with callbacks)

∙ Run a realtime linux for proper timing of your rules

∙ Add a some watchdog (either in Linux or in hardware)

What if it did not work?

Have a look at our hardware troubleshooting guide.

MMA8451-based accelerometers

Related Config File Sections
hardware:
accelerometers:

This chips can be connected to I2C and act a tilt and leveler. Available on adafruit (and elsewhere).

Configure using:

hardware:

accelerometers: mma8451

accelerometers:

my_accelerometer:

level_x: 0

level_y: 0

level_z: 1

number: 1-29

Configuration Guides 378

https://learn.adafruit.com/adafruit-mma8451-accelerometer-breakout/overview

Mission Pinball Framework Documentation, Version

This will configure an MMA8451 on I2C bus 1 with address 0x1D (29 decimal which is the default for
this device). The exact numbering depends on your i2c platform.

The device in the picture is using smbus on linux as i2c platform with an Atiny85-based I2C-USB
adapter.

What if it did not work?

Have a look at our hardware troubleshooting guide.

How to use SPI Bit Bang in MPF

Related Config File Sections
spi_bit_bang:
digital_outputs:
switches:

Sometimes you want to read switches from PCBs which contain a shift register or SPI chip (i.e. a
74HCT165). This platforms uses two digital_outputs: and one switches: on another platform to
address the SPI chip. Please note that this is relatively slow compared to platforms which interface to
SPI natively (such as How to use MPF with Stern SPIKE / SPIKE 2 machines). The main purpose of
this platform is to access Stern Spike boards using other control systems than Spike. Primarily, this

Configuration Guides 379

Mission Pinball Framework Documentation, Version

allows you to use the Spike Trough on any system. However, if you are on Spike or any other platform
which natively reads switches via SPI use those means since they are much more efficient.

This is an example:

hardware:

platform: your_platform, spi_bit_bang # add your platform first here

spi_bit_bang:

miso_pin: s_miso

cs_pin: o_cs

clock_pin: o_clock

bit_time: 50ms

inputs: 8

digital_outputs:

o_cs:

number: 1

type: driver

o_clock:

number: 2

type: driver

switches:

s_trough_0:

number: 0

platform: spi_bit_bang

s_trough_1:

number: 1

platform: spi_bit_bang

s_trough_2:

number: 2

platform: spi_bit_bang

s_trough_3:

number: 3

platform: spi_bit_bang

s_trough_4:

number: 4

platform: spi_bit_bang

s_trough_5:

number: 5

platform: spi_bit_bang

s_trough_6:

number: 6

platform: spi_bit_bang

s_trough_7:

number: 7

platform: spi_bit_bang

s_miso:

number: 10

The refresh rate of your platform will be bit_time / (inputs + 2). For instance 8 inputs with 50ms
bit_time will result in 2Hz update rate which is not terribly good.

bit_time determines how long MPF will wait after clocking the chip for miso_pin to settle. Depending
on your platform it might this might need a while. Especially if your platform is connected via USB
because of USB latency and jitter. If your inputs are local (i.e. on a RPi) this might be very short
compared and you might be able to achieve 50Hz. At the default 2Hz you will wait in average 250ms
for a switch change and 500ms in the worst case. Have that in mind.

Configuration Guides 380

Mission Pinball Framework Documentation, Version

What if it did not work?

Have a look at our hardware troubleshooting guide.

How to use MPF with OSC Devices or Hardware

Related Config File Sections
hardware:
osc:
switches:
lights:

MPF can use the Open Sound Control (OSC) to interface with other software or hardware devices. As
OSC messages are not standardized we define a few custom messages:

Incoming:

∙ /sw/switch_name with the state True or False as parameter to set the state of an OSC switch in
MPF

∙ /event/event_name with parameters in the form key1, value1, key2, value2, ... to post events
to MPF.

Outgoing:

∙ /light/light_name/color with the brightness of the color as float (0-1).

∙ /event/event_name with parameters in the form key1, value1, key2, value2, ... for all events
configured in events_to_send in your osc config section.

This is an example:

hardware:

platform: osc

osc:

remote_ip: 127.0.0.1

remote_port: 8000

events_to_send:

- player_score

- some_non_osc_switch_active

- some_non_osc_switch_inactive

lights:

test_light1:

channels:

red:

- number: light1/red

blue:

- number: light1/blue

green:

- number: light1/green

test_light2:

number: light2

(continues on next page)

Configuration Guides 381

https://en.wikipedia.org/wiki/Open_Sound_Control

Mission Pinball Framework Documentation, Version

(continued from previous page)

switches:

switch_1:

number: 1

switch_2:

number: 2

some_non_osc_switch: # not an OSC switch but used for the events above

number: 23

platform: virtual

You need to install python-osc to use the OSC platform:

pip3 install python-osc

What if it did not work?

Have a look at our hardware troubleshooting guide.

Using MPF without physical hardware

It’s possible to run MPF even if you don’t have a physical pinball machine attached to your computer.
This is great if you’re just starting out, or if you want to work on your MPF config when you’re not
around your pinball machine.

MPF achieves this through “virtual” platform interfaces, of which there are two options:

Video about developing your game without hardware:

https://youtu.be/7XmIIhzEREk

Note that if you want to use MPF without a physical pinball machine, you probably also want to use
the MPF Monitor which is a graphical tool that lets you interact with lights, switches, and pinball
mechs in MPF which works nicely with the smart virtual platform.

The “Smart Virtual” Platform

Related Config File Sections
hardware:
smart_virtual:

MPF’s Smart Virtual Platform is based on the virtual platform with one key difference: The Smart
Virtual platform watches for coil pulse events and adjusts switches in response to simulate how those
switches would have changed if that coil fired on real hardware.

To understand why the smart virtual platform exists, consider this simple machine config for a trough,
a plunger lane, and keyboard key mappings to simulate their switches:

switches:

s_trough1:

number: s31

(continues on next page)

Configuration Guides 382

https://youtu.be/7XmIIhzEREk

Mission Pinball Framework Documentation, Version

(continued from previous page)

s_trough2:

number: s32

s_trough3:

number: s33

s_trough4:

number: s34

s_plunger_lane:

number: s27

coils:

c_trough_eject:

number: c01

default_pulse_ms: 25

c_plunger_eject:

number: c03

default_pulse_ms: 25

ball_devices:

bd_trough:

tags: trough, home, drain

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4

eject_coil: c_trough_eject

eject_targets: bd_plunger

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger_eject

playfields:

playfield:

default_source_device: bd_plunger

tags: default

keyboard:

1:

switch: s_trough1

toggle: true

2:

switch: s_trough2

toggle: true

3:

switch: s_trough3

toggle: true

4:

switch: s_trough4

toggle: true

p:

switch: s_plunger_lane

toggle: true

MPF’s regular virtual platform interface is “dumb” in the sense that all switch actions need to be
controlled externally (either via keyboard keys, the OSC interface, etc.)

So if you have the above configuration and then MPF wants to eject a ball from the trough, it will fire
the trough coil but the switches won’t actually change. (In fact this will cause MPF to think that the
eject failed, because it will fire the eject coil and not see the ball leave.)

If you wanted to “play” an MPF game with the example config above, you’d have to manually simulate
the ball leaving the trough by hitting the “1” key to deactivate a trough switch, and then hitting the
“P” key to activate the plunger lane switch. (And you’d have to do this fast enough for the eject failure

Configuration Guides 383

Mission Pinball Framework Documentation, Version

detection not to kick in.)

A better solution? The “smart” virtual interface.

In order to address these challenges, MPF includes a smart virtual platform interface. The smart
virtual interface works by watching for coil pulse commands. If it sees a coil pulse from a coil that’s
configured in a mechanism that would ordinarily cause a switch to change state, then it will
automatically change that switches state.

For example, if you have the trough config from above and the trough’s eject coil fires, the smart
virtual platform will look to see if there are any balls in that device, and, if so, simulate the ball leaving
(which could be by deactivating one of the device’s ball switches).

The smart virtual platform also knows (thanks to the eject_targets: ball device setting) where the ball
is ejected to, so when a ball is ejected from a device, the smart virtual platform will also simulate the
ball going into the target ball device.

Going back to the example machine config above, if the smart virtual platform interface is being used,
when a game is started, you’ll see the s_trough1 switch automatically deactivate in response to the
trough coil pulsing, and then 100ms later you’ll see the s_plunger switch activate to simulate a ball
going into the plunger lane. So simply starting a game with the smart virtual platform puts the ball in
the plunger lane without you having to mess with the “1” and “P” keys.

Using the smart virtual platform

There are three ways you can use the smart virtual platform:

1. No platform setting

If you do not have a platform: setting in your machine config’s hardware: section (or if you don’t have
a hardware: section, then MPF will use the smart virtual platform anyone you run it.

2. Manually setting the platform

You can also manually specify the smart virtual interface in the machine config, like this:

hardware:

platform: smart_virtual

3. Via the command line

You can also specify the smart virtual platform interface via the -X (uppercase X) from the command
line, like this:

mpf -X

Or

Configuration Guides 384

Mission Pinball Framework Documentation, Version

mpf both -X

etc.

What does the smart virtual platform do?

The smart virtual platform currently simulates the following pinball mechanisms. You can configure
some of them in the smart_virtual section.

Ball Devices

If a ball device’s eject coil is pulses, it will simulate a ball leaving that device (as long as that device
has at least one ball). It is smart enough to know how many balls are in a device, and works with
special scenarios (such as timed entrance switches that are only active when the device is full and
eject confirmation switches).

It will also simulate a ball entering the target device when a ball is ejected, and again it knows how to
work with various ball switch and entrance switch combinations.

Drop Targets

The smart virtual platform will reset drop target switches if their associated reset coil is pulsed.

The Virtual Platform

Related Config File Sections
hardware:

MPF’s virtual platform interface is a software-only platform you can use if you don’t have a physical
pinball controller attached.

Note: MPF also has a smart virtual platform which is probably what you’d use in most cases instead
of the virtual platform.

Note for P-ROC and P3-ROC users: P-ROC’s pyprocgame includes a virtual P-ROC interface called
FakePinPROC. We don’t use that in the MPF because doing so requires that pyprocgame is installed,
and it’s likely that people using MPF won’t have pyprocgame. Using MPF’s virtual hardware interface
is conceptually similar to FakePinPROC.

Using the virtual platform

There are three ways you can use the virtual platform:

Configuration Guides 385

Mission Pinball Framework Documentation, Version

1. Manually setting the platform

You can manually specify the virtual platform in the machine config, like this:

hardware:

platform: virtual

3. Via the command line

You can also specify the smart virtual platform interface via the -x (lowercase X) from the command
line, like this:

mpf -x

Or

mpf both -x

etc.

The Virtual Pinball (VPX) Platform

Related Config File Sections
hardware:

VPX can be used (on Windows) to emulate the hardware of a pinball machine to test your game
without real hardware. For instructions to download and install Visual Pinball please see here.

This can be useful for software and hardware development. To use the VPX platform you need to
install it, along with the MPF-VPX bridge and add some VPX scripts to your VPX table.

The bridge will connect to the running MPF machine when you start your VPX table. As the VPX table
is used only to emulate the hardware and should not contain any game logic.

Installation

Copy the file register_vpcom.py to your local machine folder. To register the bridge run a CMD shell
as Administrator, then

python register_vpcom.py --register

(You can use --unregister to uninstall the bridge)

Use VPX in MPF

In your config.yaml configure virtual_pinball as your platform:

hardware:

platform: virtual_pinball

Configuration Guides 386

https://en.wikipedia.org/wiki/Visual_Pinball
https://www.vpforums.org/index.php?app=tutorials&article=1
https://github.com/missionpinball/mpf-vpcom-bridge

Mission Pinball Framework Documentation, Version

or if you already have physical hardware configured start MPF with the --vpx commandline option
(similar to -X):

mpf both --vpx

Configure VPX

In VPX you need to adjust your script to talk to MPF. You can also looks this up in the example project
inside the bridge repository. The GameName set in VPX is not used to check or validate the MPF
machine.

Setup controller and timers

∙ add Set Controller = CreateObject("MPF.Controller")

∙ add a Timer MPFTimer with an interval of 10 to 50ms. Keep this well below the minimal
default_pulse_ms set in MPF for solenoids

∙ add a Sub MPFTimer_Timer to update all the lights and solenoids

In Table_Init

∙ call Controller.run

∙ set the Trough switch(es) or create balls for a physical Trough (as in the demo table)

∙ init NC switches to False

In Drain_Hit (for 1-Ball games)

∙ set the Trough switch(es)

To use autofire_coils (Slings, Pops etc)

∙ add a droppable wall to each bumper. This will be used in Sub CheckAutofireCoils to
disable/enable the bumper

∙ if necessary place an invisible wall behind the slingshots to stop the ball once the slingshots are
disabled

∙ add each autofire object in VPX to Sub CheckAutofireCoils

∙ use the normal Slingshot_Slingshot and Bumper_Hit events

Switch Handling

∙ add Controller.Switch(MPFSwitchNumber)=SwitchState to the Switch_Hit/_Unhit events. Use “”
to include string type numbers

∙ add Controller.PulseSW(MPFSwitchNumber) to the Switch_Hit event of targets, slingshots and
bumpers

Configuration Guides 387

https://github.com/missionpinball/mpf-vpcom-bridge

Mission Pinball Framework Documentation, Version

Controlled Lights (all types)

∙ create a collection “ControlledLamps”

∙ assign all controlled VPX lamps (Matrix, GI, LED, Flashers) to the collection “ControlledLamps”
and call InitLamps

LEDs and Lamps

∙ in Sub UpdateLamps add a case for every MPF light and LED number, setting the state of the VPX
lamp/LED. Use “” to include string type numbers

GI strings

∙ create a collection for each GI string, assign the GI lamps to the collections as needed

∙ assign all GI lamps to the collection “ControlledLamps” and call‘‘ InitLamps‘‘

∙ in Sub UpdateGI add a case for every MPF gi string number, setting the state of the VPX GI
collection. Use “” to include string type numbers

Flashers

∙ assign all flasher lamps to the collection “ControlledLamps” and call InitLamps

∙ in Sub UpdateFlashers add a case for every MPF flasher number, setting the state of the VPX
flasher. Use “” to include string type numbers

Solenoids

∙ add all normal solenoids to the Sub InitSolenoids, to initialize them as False

∙ in Sub UpdateSolenoids add a case for every MPF coil number, setting the state of the VPX
solenoid. Use “” to include string type numbers

Flippers

∙ add the Flipper routines (Solenoids and KeyUp/KeyDown) as in the demo table. Flippers are
handled as autofire coils and can be enabled/disabled using hrdware rules.

To run a game

1. start VPX as Administrator

2. start MPF, wait until the display has been initialized

3. start VPX table

To exit a game shut down the VPX table first

Configuration Guides 388

Mission Pinball Framework Documentation, Version

What if it did not work?

Have a look at our hardware troubleshooting guide.

Connecting Your Computer Keyboard to MPF Switches

Related Config File Sections
keyboard:
switches:

The MPF media controller includes a keyboard interface which allows you to interact with your
running machine via a computer keyboard. In most cases you’d use this to simulate pinball switch
events via keys on your keyboard, but you can also post MPF events via keyboard presses. You can
map single key presses or combinations of keys, and you can use the keyboard module with or without
a physical pinball machine connected to your computer.

To use the keyboard interface, you add a keyboard: section to your machine configuration file and
then create a list which maps keyboard keys to pinball machine switch names or MPF events. Then
when you press a key on the keyboard, the switch controller receives that event and sends it to the
game. The keyboard module tracks both key-down and key-up events, so you can hold down a key to
represent a ball sitting on a switch. You can also set several options for each key, including:

∙ Specify that a key is a “toggle” key, meaning the switch stays in the state even after you let go of
the key. (In other words, tap the key once to activate the switch. Tap it again to deactivate it.)
This is helpful for things like your trough or ball locks where you want to simulate a ball sitting
on a switch but you don’t want to play a crazy game of keyboard Twister where you’re trying to
hold down all these keys at once.

∙ Specify that a key is inverted, so pressing (or holding) the keyboard key deactivates the switch,
and releasing it activates the switch. (Note this is not needed to compensate for normally-closed
switches, as the switch controller handles that automatically. This is just is you want to invert the
computer’s keyboard action.)

∙ Specify combo keys, so you can set up one switch action for the S``key, a different one for
``CTRL+S, another one for SHIFT+S, etc.

Note that you can also use the MPF Monitor for this. However, often it is faster to use the keyboard to
change switch states. You can also use the MPF monitor and your keyboard in tandem. Most people
use keyboard mappings to change balls in troughs for example.

Additionally, the keyboard: section is nice for posting ad-hoc and debug events. For instance, it can be
very useful to be able to start modes using the keyboards when you are testing them if it is nontrivial
to start them.

Here’s an example of it in action:

keyboard:

z:

switch: left_flipper

slash:

switch: right_flipper

s:

switch: start

(continues on next page)

Configuration Guides 389

Mission Pinball Framework Documentation, Version

(continued from previous page)

1:

switch: trough1

toggle: true

2:

switch: trough2

toggle: true

shift+p:

switch: lock_post

invert: true

q:

event: machine_reset

ctrl+shift+4:

event: advance_reel_test

params:

reel_name: score_1p_10

direction: 1

You can also read more about the keyboard: section in the Tutorial step 6: Add keyboard control
documentation.

Key & key combination entries

Once you create your keyboard: section, you create subsections for each key or key combination you
want to configure. For simple keys (without modifiers), you can just enter the key. (In the sample file
above, this is z, s, 1, 2, q, and 4.)

These entries are not case sensitive.

Using special keys

For “special” keys, it’s probably just easiest to enter the keys as words. Here are some examples of
words that map to keys:

∙ equals

∙ minus

∙ dash

∙ leftbracket

∙ rightbracket

∙ backslash

∙ apostrophe

∙ semicolon

∙ colon

∙ comma

∙ period

∙ slash

Configuration Guides 390

Mission Pinball Framework Documentation, Version

∙ question

Note that you can’t use the Escape key because that’s currently hard-coded to exit out of MPF when
you hit it.

Note that this keyboard interface focuses on keys, not symbols. In other words the “plus” key is if you
have a full size keyboard with a number pad which has a dedicated plus key. If you’re using a laptop
with the shared plus & equals key, that is the equals key, or the equals key with a shift modifier.

Adding SHIFT, CTRL, and ALT modifiers

Since there are probably more switches in your machine then there are keys on your keyboard, you
can also specify key combinations along with the key entries. These are called “modifier keys,” and
MPF supports them in combination with regular keys, like this:

t:

switch: foo

shift-t:

switch: tilt

shift+ctrl+t:

switch: slam_tilt

Starting in MPF 0.33, you an add debug: true in the keyboard: section to get a printout on the console
of the current key and/or modifiers that are pushed down which is helpful in figuring out exactly what
the modifier keys are called on your system.

Use it like this:

keyboard:

debug: yes

This will print out results live as you hit keys and combinations which will look something like this:

KEYS: d

KEYS: s

KEYS: shift

KEYS: shift+s

KEYS: f

KEYS: super

KEYS: meta+c

KEYS: shift

KEYS: shift+d

KEYS: lctrl

KEYS: ctrl+f

KEYS: escape

What if it did not work?

Make sure debug: true is set under keyboard as described above.

Look at your log files to see what your key strokes are.

It is possible that numlock key is on by default (especially with a laptop that does not have dedicated
numlock key and running Windows).

Configuration Guides 391

Mission Pinball Framework Documentation, Version

You might see something like this:

Keyboard : Processing key stroke for key s-numlock

Keyboard : Processing key stroke for key s-numlock

If that is the case you may have to edit your computer’s registry or run powershell to turn off numlock.

Virtual Segment Display Emulator

Related Config File Sections
hardware:
segment_displays:
segment_display_player:
widgets:

MPF’s virtual segment display emulator is supported by the virtual and smart virtual platform
interfaces in conjunction with the MPF-MC media controller. It is a software-only segment display
emulator you can use if you don’t have any physical segment display hardware connected.

Here is a simple example of what the display can be configured to look like:

Video about segment displays:

https://youtu.be/Jyf3jxGXnTw

For more information visit the following pages: * How to setup and use the virtual segment display
emulator * Segment Display Emulator widget * Segment Display Platforms in MPF * Segment Display
player

Using MPF with existing pinball machines (Williams, Stern, Gottlieb, etc.)

MPF supports all kinds of pinball machines. In this section, we highlight how to connect and configure
existing machines with MPF.

∙ Williams, Bally, Midway WPC, WPC-S, WPC-95

∙ Williams, Bally System 11

∙ Gottlieb System 1

∙ Gottlieb System 80

Configuration Guides 392

https://youtu.be/Jyf3jxGXnTw

Mission Pinball Framework Documentation, Version

∙ Data East

∙ Stern Whitestar

∙ Stern SAM

∙ Stern SPIKE / SPIKE 2

∙ Pinball 2000

∙ Williams System 3 to 9

∙ Bally/Stern with AS-2518-17 or AS-2518-35 MPU

See Controlling an existing machine with MPF for a platform machine matrix. Please let us know if
you want to connect any other machine.

How to use MPF with WPC machines

You can use MPF to control existing Williams / Bally / Midway WPC, WPC-S, and WPC-95 pinball
machines.

1. Connecting the physical hardware

The main options for pinball controller hardware is the Multimorphic P-ROC (not the P3-ROC). FAST
has a WPC controller too but it never hit general availability.

In all cases, you remove the existing MPU board from the backbox of your machine and replace it with
the new controller. You then connect up all the existing cables and connectors to the new controller,
so in effect the new WPC controller becomes the new MPU of your machine.

A few notes:

∙ Both the P-ROC and the FAST WPC controller have USB connections on them, and the actual
“code” that makes up MPF runs on a computer which remotely controls the pinball controller
(and therefore the machine)

∙ Switch connectors are connected directly to the P-ROC or FAST WPC controller.

∙ Drivers, coils, lamps, and GI are controlled via the existing WPC power driver board (which is
connected to the P-ROC or FAST WPC controller via the existing 34-pin ribbon cable).

∙ The existing WPC sound board in the backbox is not used, as sounds are generated via the
computer running MPF. There are articles online showing how you can modify the existing sound
board to add a headphone plug you can connect into the computer running MPF, though most
people end up replacing the speakers with new ones and a more powerful and better sounding
amp. This means you can remove the existing sound board from the backbox.

∙ The existing DMD, if you choose to use it, is unplugged from the WPC DMD driver board and
instead plugged into a 14-pin header on the P-ROC or FAST WPC controller. This means you can
remove the existing DMD driver board from the backbox.

For the P-Roc connect your machine according to the P-Roc connector mappings.

More technical information can be found in the PinWiki Williams WPC page.

Configuration Guides 393

https://www.multimorphic.com/content/uploads/2017/08/P-ROC_Connector_Mappings_v2.pdf
http://www.pinwiki.com/wiki/index.php?title=Williams_WPC

Mission Pinball Framework Documentation, Version

2. Configuring MPF for WPC machines

In order to use MPF in a WPC machine, you need to configure the driverboards: section of your
hardware platform.

If you’re using a FAST WPC controller, it will look like this:

hardware:

platform: fast

fast:

driverboards: wpc

And if you’re using a P-ROC:

hardware:

platform: p_roc

p_roc:

driverboards: wpc

Note that with the P-ROC, it is very important that you specify driverboards: wpc in your config if
you’re using a WPC machine. The reason for this is the P-ROC can be used to control either PD-16 (the
P-ROC driver boards) or WPC driver boards, but the polarity of each type is the inverse of the other.

In other words, if you put a P-ROC in a WPC machine but specify driverboards: pdb, when you run
MPF, it will disable all the drivers, but since the polarity is reversed, it will actually enable every
driver in your machine at once. This will (1) be very loud and cause you to jump back about 10 feet,
and (2) blow all your fuses.

3. Configuring switches

When using MPF with WPC machines, you can use the switch numbers from the machine’s operator’s
manual. The exact format depends on the type of switch:

Matrix switches

Matrix switches start with the letter S, followed by the switch number. For example:

switches:

s_left_slingshot:

number: s41

s_right_jet:

number: S45

Note that the “S” is not case-sensitive.

Switch numbers in WPC machines correspond to the column and row, so switch “11” is column 1, row
1, switch “26” is column 2, row 6, etc. This means that there are no 0s or 9s in a standard 8x8 switch
matrix.

Also, some WPC-95 machines have a 9th column in the switch matrix (meaning they’ll have switch
numbers 91-98). In this case, just enter those switch numbers like normal, and MPF will notice that
there are switch numbers in the 90s and automatically configure the controller hardware to use the
9th column.

Configuration Guides 394

Mission Pinball Framework Documentation, Version

Our experience with using MPF with many different WPC machines is that many times, the switch
numbers in the operator’s manual are incorrect. (We see this in many 25% of WPC machines.) Usually
it’s the case where two switches have been swapped, though sometimes there are unused switches
that really are used and vice-versa. So if you don’t get switch activities that you expect, check out
neighboring switches to see if the numbers are wrong.

Direct switches

Direct switches (which are typically the coin and front door switches) are entered with the SD prefix,
then the number, like this:

switches:

s_left_coin:

number: sd1

s_enter:

number: SD8

Again, case doesn’t matter.

Fliptronics switches

Fliptronics switches (on machines that have them) are entered with the SF prefix.

There are 8 Fliptronics switches on machines with Fliptronics. Typically four of them are used for
flipper buttons, and four are used for EOS switches. (The flipper buttons on most Fliptronics machines
actually have two switches stacked together behind each flipper button. If you push the flipper button
part way in, the switch connected to the lower flipper engages, and if you push the button the rest of
the way in, the switch connected to the upper flipper engages. This means if you’re good, it’s
technically possible to flip just the lower flipper without flipping the upper one (or it’s possible to hold
a ball on the lower flipper while flipping the upper one).

That said, some machines needed a few extra switches for other things, and if they don’t have four
flippers, it’s possible that the extra Fliptronics switches are used for other things.

You would use Fliptronics switches in your config like this:

switches:

s_flipper_lower_right_eos:

number: sf1

s_flipper_lower_right:

number: sf2

tags: player, right_flipper

s_flipper_lower_left_eos:

number: sf3

s_flipper_lower_left:

number: sf4

tags: player, left_flipper

4. Configuring coils & drivers

The drivers section of your WPC machine’s operators manual will list all the driver numbers as well as
the devices they’re attached to. Note that WPC machines use drivers for coils, motors, and flashers.

Configuration Guides 395

Mission Pinball Framework Documentation, Version

You only enter your coils and motors in the coils: section of your config. Flashers go in the flashers:
section (discussed below).

Configuring regular coils

To configure the regular coils (from the “Solenoid / Flasher” table in your machine’s operator’s
manual, enter the letter C followed by the solenoid number, like this:

coils:

c_trough_eject:

number: c01

default_pulse_ms: 25

c_bottom_popper:

number: c02

default_pulse_ms: 25

c_plunger_lane:

number: c03

default_pulse_ms: 25

Fliptronics coils

You’ll also see a section in the solenoid table in your ooperator’s manual with “Flipper Circuits”, like
this:

That section shows the 8 driver outputs that are connected to the Fliptronics board (if your machine
has one).

For those coil numbers, you can either enter C followed by the number, or the four-letter code
indicating which output the driver is connected to, like this:

Configuration Guides 396

Mission Pinball Framework Documentation, Version

∙ c29 or FLRM - Lower Right Main (Power)

∙ c30 or FLRH - Lower Right Hold

∙ c31 or FLLM - Lower Left Main (Power)

∙ c32 or FLLH - Lower Left Hold

∙ c33 or FURM - Upper Right Main (Power)

∙ c34 or FURH - Upper Right Hold

∙ s35 or FULM - Upper Left Main (Power)

∙ s36 or FULH - Upper Left Hold

Many machines do not use all eight of these, and many machines also connect Fliptronics coils up to
other random things (typically magnets and diverters).

An example in your config might be:

coils:

c_flipper_left_main:

number: fllm

default_pulse_ms: 30

c_flipper_left_hold:

number: fllh

allow_enable: true

c_flipper_right_main:

number: flrm

default_pulse_ms: 30

c_flipper_right_hold:

number: flrh

allow_enable: true

c_vanish_magnet:

number: c35

allow_enable: true

c_loop_post_diverter:

number: c36

allow_enable: true

5. Configuring lights (lamps)

Lights are configured with the letter L followed by the lamp number from the manual:

lights:

l_ball_save:

number: l11

subtype: matrix

l_fortress_multiball:

number: L12

subtype: matrix

l_museum_multiball:

number: L13

subtype: matrix

l_cryoprison_multiball:

number: l14

(continues on next page)

Configuration Guides 397

Mission Pinball Framework Documentation, Version

(continued from previous page)

subtype: matrix

l_wasteland_multiball:

number: L15

subtype: matrix

l_shoot_again:

number: l16

subtype: matrix

See lights: and light_player: for details on how to use them.

5. Configuring GI (general illumination)

GI strings are configured with G followed by the number, like this:

lights:

gi_back_panel:

number: g01

subtype: gi

gi_upper_right:

number: g02

subtype: gi

gi_upper_left:

number: g03

subtype: gi

gi_lower_right:

number: g04

subtype: gi

gi_lower_left:

number: g05

subtype: gi

See lights: and light_player: for details on how to use them.

6. Configuring flashers

Since flashers in WPC machines are technically drivers (coils), they are also configured with the letter
C followed by their number similar to coils.

coils:

f_claw:

number: c17

f_jets:

number: c21

f_side_ramp:

number: c22

f_left_ramp_upper:

number: c23

f_left_ramp_lower:

number: c24

See flashers: for details on how to use flashers.

Configuration Guides 398

Mission Pinball Framework Documentation, Version

Controlling Stern Whitestar Machines

You can connect a Multimorphic P-ROC (not the P3-ROC) to your Stern Whitestar machine. Connect
your machine according to the P-Roc connector mappings.

More technical information can be found in the PinWiki Stern White Star page.

Controlling Data East Machines

Data east machines can be controlled using the SNUX System 11 board connected to any WPC
controller such as the Multimorphic P-ROC (not the P3-ROC). This is similar to Controlling Williams,
Bally System 11 Machines.

More technical information can be found in the PinWiki Data East/Sega page.

Controlling Williams, Bally System 11 Machines

You can connect your machine using the SNUX System 11 board to any WPC controller such as the
Multimorphic P-ROC (not the P3-ROC). This solution requires the existing driver boards.

Another option is to use the Arduino Pinball Controller (APC) which also replaces the original driver
board. Nothing except the APC board is needed to control the machine using MPF. This can be
optionally used together with LISY to emulate the original ROM.

More technical information can be found in the PinWiki Williams System 9 and 11 page.

Controlling Gottlieb System 1 Machines

You can connect your machine using a LISY 1 board . The documentation regarding switch, coil and
light numbering can be found in LISY documentation.

More technical information can be found in the PinWiki Gottlieb System 1 page.

Controlling Gottlieb System 80 Machines

You can connect your machine using a LISY 80 board . The documentation regarding switch, coil and
light numbering can be found in LISY documentation.

More technical information can be found in the PinWiki Gottlieb System 80 page.

Controlling Williams System 3 to 9 Machines

You can use APC to connect your machine. It will replace the CPU, sound and driver board (almost all
the PCBs). All you need it a working playfield and the PSU of your machine.

Controlling Stern SAMMachines

You can connect a Multimorphic P-ROC (not the P3-ROC) to your Stern SAM machine. Connect your
machine according to the P-Roc connector mappings.

More technical information can be found in the PinWiki Stern S.A.M. page.

Configuration Guides 399

https://www.multimorphic.com/content/uploads/2017/08/P-ROC_Connector_Mappings_v2.pdf
http://www.pinwiki.com/wiki/index.php?title=Sega/Stern_White_Star_Repair
http://www.pinwiki.com/wiki/index.php?title=Data_East/Sega
http://www.pinwiki.com/wiki/index.php?title=Williams_System_9_-_11
http://www.pinwiki.com/wiki/index.php?title=Gottlieb_System_1
http://www.pinwiki.com/wiki/index.php?title=Gottlieb_System_80
https://www.multimorphic.com/content/uploads/2017/08/P-ROC_Connector_Mappings_v2.pdf
http://www.pinwiki.com/wiki/index.php?title=Stern_S.A.M._System_Repair

Mission Pinball Framework Documentation, Version

Controlling Stern SPIKE/SPIKE 2 Machines

MPF can control Stern Spike machines directly using the SPIKE platform.

More technical information can be found in the PinWiki Stern Spike page.

Controlling Pinball 2000 Machines

There is a libpinproc-compatible board by Jimmy which can connect to and controll Pinball 2000
machines. You can configure it like the P-ROC .

Let us know if you need more informations about this.

More technical information can be found in the PinWiki Williams Pinball 2000 page.

Bally/Stern Machines with AS-2518-17 or AS-2518-35 MPU

To support machines with AS-2518-17 MPU or AS-2517-35 MPU you can use LISY35 . See Pinwiki
Stern/Ball for more hardware details.

Voltages and Power in Pinball Machines

This section is about some general electric details in pinball machines.

Voltages and Power

A pinball machine uses multiple different voltages for different purposes. You need at least one power
supply unit (PSU) to transform the AC power to multiple DC rails. See Wiring and Connectors in
Pinball Machines for more details on the wire thickness and connectors to use for the different power
rails below.

Warning: If you are unsure ask a professional electric engineer. This guide does not provide all
information needed to design and operate a high-voltage/high-current system in a pinball machine.
Use this at your own risk. Electricity can be dangerous and might kill you or burn down your house.

Video about electronics basics:

https://youtu.be/3ZdSLruAYM0

Primary side - 230/110V

At the mains your machine usually runs at 230V or 110V depending on the region. Some PSUs are
able to work with both voltages. Sometimes there is a switch to select the input voltage. In other
cases a PSU might only work with a certain input voltage. Make sure to check this before connecting
the PSU to the mains.

In case you run a traditional transformer you usually have to wire the windings differently depending
on the input voltage. If you get this wrong the output voltages might be different or the transformer
may burst into flames.

Configuration Guides 400

http://www.pinwiki.com/wiki/index.php?title=Stern_SPIKE%E2%84%A2_System_Repair
http://www.pinwiki.com/wiki/index.php?title=Pinball_2000_Repair
https://www.ipdb.org/search.pl?searchtype=advanced&mpu=18
https://www.ipdb.org/search.pl?mpu=18&searchtype=advanced
http://www.pinwiki.com/wiki/index.php?title=Bally/Stern
http://www.pinwiki.com/wiki/index.php?title=Bally/Stern
https://youtu.be/3ZdSLruAYM0

Mission Pinball Framework Documentation, Version

In any case it is a good idea and common practise to add a fuse before your PSU or transformer in
case anything goes wrong. This is for your own safety and for the safety of your neighborhood because
if stuff starts burning it might cause a lot of damage.

High Voltage - 48V to 80V

High voltage (HV) is used to drive coils in your machine. In modern machines 48V is used which
technically classifies as low voltage in most countries around the world (it is still not safe to touch and
can kill you). This is preferred if you start a new design as PSUs for 48V are readily available at a
good price. Most machines use supplies with around 6A to 10A.

Older machines used transformers with 70V to 80V. Those are more expensive, heavier and harder to
get nowadays. They are generally not recommended for new designs. If you want to produce a
machine this will also be harder to certify in most countries. Some people use 24V supplies which
technically works but is not recommended because coils tend to be quite weak and unreliable in those
settings.

A large capacitor might help to keep this rail stable since pulsing and PWMing coil causes large
electric and magnetic spikes. In some cases a PSU might turn off while driving coils without a
capacitor on this rail. In other cases pulses might be unstable because the voltage will drop too much
during the pulse (seems to be common with 24V supplies). If you are increasing pulse times and there
seems to be no change in the power of the coil you are likely experiencing the second issue. Adding
large capacitors or using a power entry board (see below) is recommended in those cases.

You want to use at least one fuse on the HV rail to prevent coils from burning. Most coils will start
burning after a while if you enable them permanently without PWM (see hold_power in coils: for
details). You do not want that. Instead the fuse should trip and cut the power. It might be wise to use
multiple fuses (e.g. one per bank of coils).

Common power supplies for 48V:

∙ Meanwell SP320-48 - Used by Stern Spike (not recommended because it is a bit too weak)

∙ Meanwell RSP500-48 - Used by Stern Spike 1 (starting from Ghostbusters) and Spike 2

∙ Meanwell SE-600-48 - Used by Spooky

Common power supplies for 70V - 80V (not recommended for new designs):

∙ AnTek PS-4N70R5R12 - 70V + unregulated 5V and unregulated 12V

Light Power

Your lights will require a lot of power. Depending on the type of light the voltage might differ.
Traditional incandescent bulbs need something around 12V to 24V. LEDs usually run at 5V (sometimes
12V). Make sure to understand how much power you need for your lights. Then calculate which wires,
connectors, PSU and fuses you need. This is very likely a high-current setup and standard connectors
with thin wires will certainly cause problems (or fire) in your machine.

For instance, every LED will draw around 20mA. Triple that for RGB LEDs. With 80 RGB LEDs for
inserts and 80 RGB GIs you will end up at 10A power or 50W. Most connectors are rated for less than
10A and you will see some voltage drop with thin wires (check the resistance).

Make sure this is properly fused since this may easily burn down your machine.

Common power supplies:

Configuration Guides 401

Mission Pinball Framework Documentation, Version

∙ Standard ATX power supplies - Work well but you might have to cut the connectors

∙ Meanwell SP/MW for 12V or 24V - Precalculate your current and get one with some headroom

Display Power

RGB DMDs usually need either 5V or 12V and might draw a few amps at full brightness. Traditional
DMDs might need very high voltages. Definitely ask a professional before getting started with
traditional DMDs.

As with any power rail: Add a fuse.

Common power supplies (for 12V):

∙ Standard ATX power supplies

∙ Meanwell RD65A - A cheap 5V and 12V supply

Logic Power

In most cases this will be 5V and 12V. Most systems use 12V for switches and 5V to power logic
components. In most cases you don’t need many amps on those rails. It might be wise to run separate
12/5V rails for logic components and light/display power to prevent problems with interferences.

As with other rails: Add a fuse to be safe.

Common power supplies (for 12V):

∙ Standard ATX power supplies

∙ Meanwell RD65A - A cheap 5V and 12V supply

PC Power

Most machines run embedded PCs which come with their own PSU. Sometimes they run off 5V (such
as the Raspberry Pi). Others use standard ATX power supplies. See Controlling your machine &
computer power on / power off for details about power on/off.

Electromagnetic Compatibility EMC/EMI

You need to make sure that your machine complies with regulations and will not disturb police
radios/air traffic control or your neighbors Wifi. Especially pulsing or PWMing coils will cause a lot of
interferences. This might cause RF emissions and make you a lot of enemies. The most important step
to mitigate EMI is to run your power and return wire in parallel and make them the same length.
There will be a magnetic field between HV and GND to your coil when current flows. If current
changes, the field will change and you will transmit signal which is what you want to avoid.
Additionally, add free flow diodes to your coils to prevent self-induction voltage from travelling back to
your driver board and PSU (which will transmit another signal).

EMC is a complex topic. If in doubt consult an electic engineer.

Configuration Guides 402

Mission Pinball Framework Documentation, Version

Common Ground

Warning: It is very important to connect all grounds if you use multiple PSUs. We cannot stress
this enough. Not ensuring this will be very dangerous!

In general, it is preferred to connect the ground at the PSUs than below the playfield. Then run a
separate ground for each power rail from the PSU to the playfield.

Interferences on the ground of the HV rail might cause problems in other rails. Especially for serial
LEDs and logic power. In case you run into those problems consult with an electric engineer. The right
capacitors and the right wiring might help with this case for example.

Common “ground” generally refers to the neutral wire of your PSU which should not be confused with
ground/electric earth. See Ground and Appliance Classes for details about ground vs neutral.

Power Filter Boards

Some vendors sell power filter boards which help you to build your different power rails. Additionally,
those boards allow you to disconnect components at a central location. Usually, those boards will also
connect all ground for you.

Some common boards:

∙ Multimorphic Power Entry Board

∙ FAST Power Filter Board

∙ Spooky/PBL Power Entry Board (part number: #600-0253-00)

∙ OPP Power Filter Board

∙ Stern Spike Power Distribution Board (part number: 520-5343-01)

∙ CobraPin Pinball Controller has a built in power filter.

Have a look at the PCB section of hardware.missionpinball.org for DIY designs.

Wiring and Connectors in Pinball Machines

Usually there are two types of wires/connectors used in a pinball machine. One for all low current
connections (i.e. switches or logic) and one for high current connections (i.e. coils). See Voltages and
Power for details about the different voltages and power requirements.

Warning: If you are unsure ask a professional electric engineer. This guide does not provide all
information needed to design and operate a high-voltage/high-current system in a pinball machine.
Use this at your own risk. Electricity can be dangerous and might kill you or burn down your house.

Video about wiring in pinball:

https://youtu.be/3ZdSLruAYM0

Configuration Guides 403

http://pinballmakers.com/wiki/index.php/OPP#Power_Filter_Board
https://hardware.missionpinball.org/pcbs.html
https://youtu.be/3ZdSLruAYM0

Mission Pinball Framework Documentation, Version

High Current

High currents require proper wires and connectors. Otherwise stuff might get hot and start a fire.
This applies to coils and in some cases also to lights (if you power more than one light with a wire). In
general, everything above 1A current should use thick wires.

For high current wires you usually want to use AWG 18 or smaller (thicker). The metric equivalent
would be 1mm^2 or more. Also consider the resistance per meter/inch of your wire and calculate the
voltage drop in advance.

Your connectors should also be spec’d for your expected current. Most 100 mil Molex connectors
allow up to 1A which definitely is not enough for coils. For that reason, 156 mil Molex connectors are
used for coils. Usually, they are spec’d for 7A (depends on housing and crimp). If you need more than
7A use multiple pins.

Molex part numbers (KK series):

∙ 2 positions: 09-50-3021

∙ 3 positions: 09-50-3031

∙ 4 positions: 09-50-3041

∙ 5 positions: 09-50-3051

∙ 6 positions: 09-50-3061

∙ 8 positions: 09-50-3081

∙ 9 positions: 09-50-3091

∙ 10 positions: 09-50-3101

∙ 11 positions: 09-50-3111

∙ 12 positions: 09-50-3121

∙ Crimps: 39-00-0342 or 08-52-0072

Low Current/Logic Power

For logic power you don’t need thick wires. Typically, AWG 20-24 or 0.5mm^2 to 0.25mm^2 is used.
Connectors are usually 100 mil Molex connectors.

Molex part numbers (KK series):

∙ 2 positions: 22-01-2027

∙ 3 positions: 22-01-2037

∙ 4 positions: 22-01-2047

∙ 5 positions: 22-01-2057

∙ 6 positions: 22-01-2067

∙ 9 positions: 22-01-2097

∙ 10 positions: 22-01-2107

∙ 11 positions: 22-01-2117

∙ 12 positions: 22-01-2127

Configuration Guides 404

Mission Pinball Framework Documentation, Version

∙ Crimps: 08-51-0108 or 08-50-0114

There are also a lot of very cheap no-name replacements for 100 mil KK which work just fine since
there should not be any high current on those connectors.

Wire-to-Wire Connections

While most of the wiring in a pinball machine involves Wire-to-Board connections as referenced above,
you may also find yourself needing to make wire-to-wire connections with modular connectors. For
this purpose, the standard size connector is the .093” Molex connector from the “Standard .093” Pin
and Socket Connectors” series. These connectors and crimps are generally rated for 250V/14A.

For AWG 18-22 wires, use the following Molex parts (Note: there are not housings for 5, 7, 8, 10, 11,
13 or 14 circuit options):

∙ 1 position: 03-09-1011 (receptacle/female) / 03-09-2011 (plug/male)

∙ 2 positions: 03-09-1022 (receptacle/female) / 03-09-2022 (plug/male)

∙ 3 positions: 03-09-1032 (receptacle/female) / 03-09-2032 (plug/male)

∙ 4 positions: 03-09-1042 (receptacle/female) / 03-09-2042 (plug/male)

∙ 6 positions: 03-09-1064 (receptacle/female) / 03-09-2062 (plug/male)

∙ 9 positions: 03-09-1094 (receptacle/female) / 03-09-2092 (plug/male)

∙ 12 positions: 03-09-1126 (receptacle/female) / 03-09-2122 (plug/male)

∙ 15 positions: 03-09-1157 (receptacle/female) / 03-09-2159 (plug/male)

∙ Pin (male) crimp: 02-09-1118

∙ Socket (female) crimp: 02-09-1119

∙ Pin extractor: Molex 0011030006 or GC Electronics W-HT-2038

∙ Recommended crimping tool: IWISS SN-28B

Note: While you can purchase large quantities of the crimp pins above on a reel/tape for a slightly
cheaper price, you then have to cut off the side wings on each pin while being careful not to cut too
much off or the pins will not lock inside the housings. For people new to crimping, this can be a
frustrating experience so the “loose/bag” option listed above (02-09-1118 and 02-09-1119) is generally
worth the extra .02 or .03 per crimp terminal.

Sourcing Connectors

Those connectors and crimps can be purchased from Digikey or Mouser. Additionally, you can buy
those at your pinball supplier but they tend to be quite pricy.

Power Distribution Boards

Your power rails will fan out below the playfield to various mechs and boards. The simplest solution to
implement this are terminal blocks which work fine but make it hard to disconnect stuff temporarily.
Luckily, various boards exist to solve this issue:

∙ Spooky/PBL Power Distribution board (part number: #600-0224-00)

Configuration Guides 405

Mission Pinball Framework Documentation, Version

∙ FAST Playfield Interchange Board

∙ Multimorphic Power Distribution board (part number: PCBA-0031-0003)

Have a look at our PCB section of hardware.missionpinball.org for DIY designs.

Ground and Appliance Classes

Pinball machines commonly are classified as class 1 devices according to IEC 61140 (US) and EN
61140 (Europe). When building or modifying pinball machines you should understand which
requirements need to be met for safe operations.

Warning: If you are unsure ask a professional electric engineer. This guide does not provide all
information needed to design and operate a high-voltage/high-current system in a pinball machine.
Use this at your own risk. Electricity can be dangerous and might kill you or burn down your house.

Video about ground:

https://youtu.be/cFdT7YdXGO0

Class 1 appliances

Class 1 appliances typically connect to a 3-prong AC connector which contains separate
ground/electrical earth and neutral. They require that a single fault (e.g. a disconnected conductor
wire touching the lock down bar of the machine) may not cause an electric shock. For that reason, all
conducting parts need to be connected to the ground. In pinball machines, those are all metal parts
such as:

∙ Legs

∙ Backbox connector metal parts

∙ Speaker grills

∙ Lockdown bar

∙ Service door

∙ Screws on the cabinet side

In a lot of cases braid copper wire is used to connect those parts to ground. You should test that a
low-impedance connection between any conducting parts and ground exist. See Application classes
for details.

Common Ground

If you operate more than one power supplies in your machine make sure to connect all their neutral
connectors (N; 0V; commonly referred as ground). Funcionally, this is needed for logic components to
maintain a common reference. Additionally, a floating ground might become dangerous when working
with voltage multiple voltages. See Voltages and Power for details.

Configuration Guides 406

https://hardware.missionpinball.org/pcbs.html
https://youtu.be/cFdT7YdXGO0
https://en.wikipedia.org/wiki/Appliance_classes

Mission Pinball Framework Documentation, Version

Power Management in Software

Related Config File Sections
psus:
coils:

MPF will try to prevent concurrent pulses on the same power supply unit to reduce the maximum
current draw. This is important for certain switching power supplies since they might just shutdown
on over current. However, MPF will not mess with any timing critical things such as slings, pops or
flippers as they are controlled by hardware rules. Instead MPF will delay resets of drop target, ejects
of ball devices or advancing of score reels for up to a few milliseconds (configurable). You won’t notice
this in your machine but it makes eject power much more consistent and drop target resets more
reliable. Without this kind of magic most score reels won’t work at all because if you pulse 15 coils at
once none of them will move.

By default MPF assumes that you have only one single power supply unit for all your coils. If this is
not true you can configure multiple PSUs and assign them to coils:

psus:

default: # this is configured by default

voltage: 48

psu_12v:

voltage: 12

coils:

c_score_reel_1k_p1:

psu: psu_12v

number:

c_score_reel_100_p1:

psu: psu_12v

number:

c_score_reel_10_p1:

psu: psu_12v

number:

c_score_reel_1_p1:

psu: psu_12v

number:

This way MPF will sequentialize those coils independently from your coils on the other PSU.

To give your PSU some breathing room MPF will apply some spacing between two pulses. This can be
configured using release_wait_ms:

psus:

default:

voltage: 48

release_wait_ms: 50 # defaults to 10ms

Videos about wiring in pinball (series of 6 videos):

https://youtu.be/8ByqYkYKnFc

https://youtu.be/3ZdSLruAYM0

https://youtu.be/cFdT7YdXGO0

Configuration Guides 407

https://youtu.be/8ByqYkYKnFc
https://youtu.be/3ZdSLruAYM0
https://youtu.be/cFdT7YdXGO0

Mission Pinball Framework Documentation, Version

https://youtu.be/7G8LFBbYNOY

https://youtu.be/peVNGqb2Wp8

https://youtu.be/C9GzkMduEKY

HowMPF handles “quick response” mechs (flippers, slingshots, etc.)

As you can imagine, many types of mechanisms in a pinball machine require near “instant” response
to switches. For example, you do not want any “lag” between the time you press the flipper button and
the time the flipper physically moves.

To address this, MPF and the control systems handle “quick response” devices in a special way. This
includes things like:

∙ flippers

∙ pop bumpers

∙ slingshots

∙ kicking targets

∙ kickback lanes

∙ diverters

∙ and maybe others?

What’s the problem?

To understand why MPF and the hardware control systems work this way, first think about how MPF
works in general.

When you configure (and enable) a flipper in MPF, what you’re really doing is saying, “when this
switch becomes active, fire this coil” (and do that as fast as possible).

The challenge is that MPF is software running on a computer connected to a pinball control system via
USB. So if you think about the entire process that needs to happen to flip a flipper, you have:

1. The hardware control system is continuously scanning switches to see if they change state.

2. The player pushes the flipper button.

3. The hardware control system notices the change.

4. The hardware control system adds the message with the switch state change to the queue to be
sent to the computer via USB.

5. The computer processes the USB message.

6. MPF gets notification of the switch change.

7. MPF looks at its configuration and notices that a coil should be fired.

8. MPF creates the instruction to fire the coil.

9. That instruction is put in the queue to be sent to the hardware controller via USB.

10. The USB bus transfers that command to the hardware controller.

Configuration Guides 408

https://youtu.be/7G8LFBbYNOY
https://youtu.be/peVNGqb2Wp8
https://youtu.be/C9GzkMduEKY

Mission Pinball Framework Documentation, Version

11. The hardware controller receives that command and fires the coil attached to the flipper.

Of course computers are really fast, and this can all happen in 10 or 20ms. But again, with the desire
for “instant” response of these devices, that isn’t fast enough.

The solution? “Hardware rules”

So the way this is handled is that all the pinball control systems have the ability to have simple “rules”
written to them which lets them do simple things on their own.

These rules are very simple and only involve switches and coils. For example, a rule might be “when
this switch is activated, pulse that coil”, or “when this switch is released, cut off the power to that
coil”.

Then when one of these “hardware rules” (as we call them in MPF) is written to the hardware pinball
controller, that controller can handle it all by itself with minimal delay (usually in a millisecond or two)
without having to deal with USB and MPF and all that.

These rules are not permanently stored on the hardware controller, and in fact they’re constantly
added, removed, and updated throughout the course of a game. (Rules for flipper buttons and coils
are removed when a ball ends and added when a ball starts, etc.)

By the way, even when MPF writes hardware rules to the pinball controller, the switch notification is
still sent to MPF (since you might want to have scoring or play a sound or something when that switch
is hit). It’s just that in that case, the switch notification is sent to MPF for MPF’s game logic purposes,
but the actual coil firing would have already happened thanks to the hardware rule on the pinball
controller.

This is all automatic

The good news about these hardware rules is that there’s nothing you need to do to use them. This is
just one of the things that MPF does behind the scenes, thanks to the smart people who designed the
pinball controllers.

What kind of rules does MPF use?

1. Pulse + Cancel: This means that we pulse a coil when a switch becomes active and cancel the
pulse when the switch becomes inactive.

2. Pulse + Cancel + Hold: This means that we pulse and then enable a coil with pwm when a switch
becomes active and cancel the pulse when the switch becomes inactive.

3. Just Pulse: This means that we pulse a coil when a switch becomes active but never cancel the
pulse.

4. Pulse + Cancel + Hold + EOS: This means that we pulse and then enable a coil with pwm when
a switch becomes active and cancel the pulse when the switch becomes inactive. Additionally,
the pulse is changed to pwm when EOS becomes inactive (it’s usually normally closed).

For most platforms 1 and 2 is basically the same rule (e.g. rule 1 is rule 2 with hold power = 0).

We use type 2 for single wound flippers. For dual wound we use type 1 on the main/high power coils
and type 2 on the hold coil (often with 100% pwm = full enable). When flippers have EOS we use type
4 rules (for dual wound flippers with hold=0). Rule 3 is used for pop bumpers.

Configuration Guides 409

Mission Pinball Framework Documentation, Version

Not all platforms support all types of rules. In those cases we use the next best available rule (e.g. 1
instead of 3 or the other way around).

How to configure “number:” settings

All of the physical “hardware” mechanisms in MPF config files have a number: setting which is used by
the hardware platform to know which device is which.

Since MPF supports many different types of hardware, the exact way you configure the “number”
entry depends on what type of device and what type of hardware you’re using.

We have full guides that explain it all in the hardware controller documentation, but here are the links
all in one place to make it easy.

Switches

∙ FAST Pinball

∙ P-ROC

∙ P3-ROC

∙ Open Pinball Project (OPP)

∙ Stern SPIKE

∙ Snux (System 11)

Drivers / Coils

∙ FAST Pinball

∙ P-ROC / P3-ROC

∙ Open Pinball Project (OPP)

∙ Stern SPIKE

∙ Snux (System 11)

LEDs

∙ FAST Pinball

∙ P-ROC / P3-ROC (PD-LED)

∙ Open Pinball Project (OPP)

∙ Stern SPIKE

∙ FadeCandy

Configuration Guides 410

Mission Pinball Framework Documentation, Version

Lamp Matrix-based lights

∙ FAST Pinball (WPC Machine)

∙ P-ROC / P3-ROC (PD-8x8)

∙ P-ROC (WPC Machine)

∙ P-ROC (Stern SAM / Whitestar)

∙ Open Pinball Project (OPP)

∙ Snux (System 11)

Servos

∙ FAST Pinball (Servo daughterboard)

∙ I2C servo controllers

∙ Pololu Maestro

Mixing-and-Matching hardware platforms

In MPF it’s possible to mix-and-match your hardware platforms. For example, you could use a P-ROC
for your coils and switches while using a FadeCandy for your LEDs. (Or, if you wanted to be crazy, you
could use a FAST controller for your switches and a P-ROC for your coils and lamps.)

You can specify hardware platforms in three ways:

1. Machine-wide default platform

Whatever you set in the hardware: platform: section of your machine-wide config is the default
platform for all types of mechanisms across all of MPF.

For example:

hardware:

platform: p_roc

driverboards: pdb

In the above config, the P-ROC platform will be the default for everything. (switches, coils, lights,
LEDs, DMDs, servos, etc.)

2. Device-specific default platform

If you want to specify a default for a certain class of devices that is different than the machine-wide
default, you can also do that in the hardware: section by adding an entry for the type of device you
want to specify the default for.

For example, if you want to use a P-ROC as the default for everything except for LEDs, which you want
to be FadeCandy, you would do it like this:

Configuration Guides 411

Mission Pinball Framework Documentation, Version

hardware:

platform: p_roc

driverboards: pdb

lights: fadecandy

You can enter a device-specific default for the following types of devices here:

∙ coils:

∙ switches:

∙ matrix_lights:

∙ lights:

∙ dmd:

∙ rgb_dmd:

∙ gis:

∙ flashers:

∙ servo_controllers:

∙ accelerometers:

∙ i2c:

3. Overriding the platform of individual devices

Finally, you can override the platform of an individual device by adding a platform: setting to that
device.

For example, if you’re using a FAST Pinball controller which can control up to 256 LEDs, but you also
want to add some more LEDs that will be attached to a FadeCandy, you could set up your config like
this:

hardware:

platform: fast

lights:

led00:

number: 0-0

led01:

number: 0

platform: fadecandy

In this example, led00 will use the FAST platform (and the number 0-0 is a FAST configuration
number), and led01 will use the FadeCandy platform (and the number 0 is a Fadecandy number).

You could also invert this, like so:

hardware:

platform: fast

lights: fadecandy

lights:

led00:

number: 0-0

(continues on next page)

Configuration Guides 412

Mission Pinball Framework Documentation, Version

(continued from previous page)

platform: fast

led01:

number: 0

In the example above, led00 is still a FAST LED and led01 is still a FadeCandy LED, but the difference
is that while the default platform is FAST, the default platform for LEDs is FadeCandy. That means you
don’t have to specify the platform for LEDs attached to the FadeCandy, but you do need to specify the
platform for LEDs attached to the FAST controller.

Hardware Roadmap

There are a few hardware platforms we would like to add in the future because we think they would
be a good fit for custom/homebrew pinball machines:

∙ Pololu Jrk - An USB motor controller

∙ Ion Motion RoboClaw - A USB motor controller

∙ Stern Spike 2 - The bus is similar to Spike 1. Needs testing.

∙ MyPinballs Custom Pinball Board - Control System for older machines

∙ I2C Segment Displays (such as this display from adafruit)

Let us know in the MPF User Forum if you want to use any of those hardware platforms. Please also
let us know if you know other hardware which we should support.

Troubleshooting Hardware Platforms

If you got problems with your hardware platform we first recommend to read our troubleshooting
guide. Here are some hardware platform specific steps. This is a generic guide so please check if
there is a more specific guide for your specific platform.

Enable Debugging

If you got problems with your platform try to enable debug first. As described in the general debugging
section of our troubleshooting guide this is done by adding debug: true to your platform config
section. This will add a lot more debugging and might slow down MPF a bit. We recommend to
disable/remove it after finishing debugging.

Reducing light update rate

If you got a lot of lights you might run into bus contention issues. You can reduce the light update rate
in MPF:

mpf:

default_light_hw_update_hz: 30 # defaults to 50

If you set this too low fades will be less smooth but otherwise it should not affect your game.

Configuration Guides 413

https://www.adafruit.com/product/878
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Coils Are Not Firing

What to do if your coils are not working?

Check if Your Hardware is Working at all

Sounds stupid but this is a good start: Is the hardware working at all? Do you see switch hits in the
logs? If not, check our section Your hardware is not working at all.

Check the Watchdog

If switches (or other features of the platform) are working but coils are not we have to dig deeper.
Most hardware platforms have some kind of watchdog. Often there is some LED which indicates if the
watchdog is received. The MPF log might also contain clues (especially if you have enabled debug and
run MPF with verbose flags -v -V). If the watchdog is not received by your platform it will not enable
coils.

In most cases watchdog related problems indicate wiring problems. Check if your boards are properly
wired.

Test Your Coil Numbers using MPF Service CLI

Hardware is connected and generally working, watchdog is good but still your coils are not working?
Maybe something with the numbering is odd. Lets tests that using the MPF Service CLI . Alternatively,
you can also use service mode if you have already configured it. Both ways work similarly.

To use service cli:

1. Open two consoles

2. Start your game (e.g. using mpf both)

3. Start the service cli from within your game folder using mpf service.

4. Type list_coils and press ENTER to see a list of coils.

5. Type coil_pulse your_coil and press ENTER to pulse it.

Does it work? If not check the log and try verify the coil number. If you do not specify
default_pulse_ms MPF will use 10ms which might not be enough for some mechs. Try to increase that
gently (maybe 20ms or 30ms).

Your hardware is not working at all

If your hardware is not working at all make sure that you removed the options -X, -x and --vpx from
your mpf both or mpf game command line. Those options will overwrite the settings in your hardware
section and MPF will not even try to connect to your hardware. If you got config errors we suggest
you add -X to figure things out without interfacing real hardware all the time. Just keep that option in
mind.

Another stupid thing to check: Is your hardware connected to your PC? We know it is stupid but a
loose USB connector has happened to most of us.

Configuration Guides 414

Mission Pinball Framework Documentation, Version

On Linux you might want to run the command lsusb which should show both of your micro controllers
connected. You should see two lines similar to

Bus 002 Device 014: ID 0483:5740 STMicroelectronics Virtual COM Port

Bus 002 Device 015: ID 0483:5740 STMicroelectronics Virtual COM Port

If you are unsure about the output, run the command once with your controllers connected and once
without. If there is no difference, then for sure the USB device is not properly connected.

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the
documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

Browse Platforms by Capabilities

I2C Platforms in MPF

The following platforms allow controlling I2C devices in MPF:

∙ Linux Nativ I2C - If your linux PC has a driver for the I2C interface it will work in MPF

∙ P3-Roc (but not the P-Roc)

∙ Raspberry Pi - Remote via network or locally using pigpio

The following platforms need to be interfaced by one of the above platforms: * PCA9685/PCA9635 I2C
Servo Controllers * MMA8451 Accelerometers

Browse Platforms by Capabilities 415

Mission Pinball Framework Documentation, Version

Servo Platforms in MPF

The following platforms allow controlling servos in MPF:

∙ FAST servo daughter boards

∙ PCA9685/PCA9635-based servo controllers via I2C

∙ Raspberry Pi - Remote via network or locally using pigpio

∙ Pololu Maestro

∙ P3-Roc and P-Roc via PD-LED

∙ Penny K Pinball PKONE Extension boards

Overview video about servos:

https://youtu.be/wA6KEODwQ5w

Stepper Platforms in MPF

The following platforms allow controlling steppers in MPF:

∙ P3-Roc and P-Roc via PD-LED

∙ Trinamics Steprocker

∙ StepStick Steppers

∙ Pololu Tic

Overview video about steppers:

https://youtu.be/YaRNBU0OHGc

Segment Display Platforms in MPF

The following platforms support segment displays in MPF:

∙ LISY DMDs

∙ MyPinballs Displays

∙ Multimorphic P-Roc

∙ Segment Displays connected as Lights

∙ NeoSeg Serial Segment Displays

∙ Virtual Segment Display Emulator

Video about segment displays:

https://youtu.be/Jyf3jxGXnTw

DMD Platforms in MPF

The following platforms support DMDs in MPF:

Browse Platforms by Capabilities 416

https://youtu.be/wA6KEODwQ5w
https://youtu.be/YaRNBU0OHGc
https://youtu.be/Jyf3jxGXnTw

Mission Pinball Framework Documentation, Version

RGB DMDs

∙ SmartMatrix

∙ RGB.DMD

∙ FAST Pinball RGB DMD

∙ Raspberry Pi DMD

∙ PIN2DMD RGB DMD

Monochrome DMDs

∙ Multimorphic P-Roc

∙ Stern Spike 1

Segment Display Transitions

When MPF switches the current text on a segment display with another text entry, a transition effect
can be set that controls what text transition between the new and existing text looks like. You can use
these transitions with the Segment Display player and within shows. You can set transitions as a
property of the new text entry that comes in, or as a property of the outgoing transition when the
current text entry is removed (incoming transitions always take precedence over outgoing transitions).

Here’s a list of all the types of segment display text transitions that MPF supports.

none

Setting a transition type of none means that no transition will be used, and the incoming text instantly
replaces the current text.

push

The push transition means that the incoming text “pushes” the outgoing text out of the way. (e.g. the
outgoing text moves out while the incoming text moves in)

Options for the push transition:

∙ direction: left or right (defaults to right).

∙ text: An optional text string that is inserted between the old and new text during the transition.
Defaults to empty.

∙ text_colors: The color for each character in the optional transition text string (if the platform
supports it). If a single color is supplied, all characters in the transition text string will be set to
that color. See Specifying Colors in Config Files for more information on specifying colors in
config files.

Browse Platforms by Capabilities 417

Mission Pinball Framework Documentation, Version

cover

The cover transition means that the incoming text moves in on top of to cover the current text. The
outgoing text is not animated.

Options for the cover transition:

∙ direction: left or right (defaults to right).

∙ text: An optional text string that is inserted between the old and new text during the transition.
Defaults to empty.

∙ text_colors: The color for each character in the optional transition text string (if the platform
supports it). If a single color is supplied, all characters in the transition text string will be set to
that color. See Specifying Colors in Config Files for more information on specifying colors in
config files.

uncover

The uncover transition means that the current text is moved out to uncover the new incoming text.

Options for the uncover transition:

∙ direction: left or right (defaults to right).

∙ text: An optional text string that is inserted between the old and new text during the transition.
Defaults to empty.

∙ text_colors: The color for each character in the optional transition text string (if the platform
supports it). If a single color is supplied, all characters in the transition text string will be set to
that color. See Specifying Colors in Config Files for more information on specifying colors in
config files.

wipe

The wipe transition means that the display text is wiped/switched from the current text to the
incoming text.

Options for the wipe transition:

∙ direction: left or right (defaults to right).

∙ text: An optional text string that is inserted between the old and new text during the transition.
Defaults to empty.

∙ text_colors: The color for each character in the optional transition text string (if the platform
supports it). If a single color is supplied, all characters in the transition text string will be set to
that color. See Specifying Colors in Config Files for more information on specifying colors in
config files.

split

The split transition means that the text is split and either moved in or out to reveal the other text
value.

Options for the split transition:

Browse Platforms by Capabilities 418

Mission Pinball Framework Documentation, Version

∙ mode: push or wipe (defaults to push).

∙ direction: in or out (defaults to out).

Configuring Transitions

Transitions are specified as an additional property of a segment_display_player: config or the
segment_displays: section of a show config. For example:

segment_display_player:

jackpot_completed:

display1:

text: JACKPOT

priority: 1000

expire: 2s

transition:

type: push

direction: right

text: " *** "

transition_out:

type: push

direction: right

text: " *** "

When the event “jackpot_completed” occurs, MPF will update the text in the segment display called
“display1” using the push transition. After 2 seconds, the “JACKPOT” text will expire and be removed,
pushing the text out to the right, restoring the previous text.

Note: If the current text has a transition_out: setting, and the new text has a transition: setting,
then the new text’s transition setting will take precedence.

Browse Platforms by Capabilities 419

CHAPTER7

Pinball Mechanisms

MPF supports all the various pinball hardware mechanisms you’d expect. Some of these are basic
(switches, LEDs, coils), and others are built up by combining multiple simpler mechs (Switch X plus
Coil Y = Flipper 1, etc.)

Pinball mechs are mostly configured in machine-wide config files. Each one has a name, and there are
configuration options for each which control exactly how it behaves (or how its behavior changes
depending on what’s going on in your game).

Pinball Mechs in MPF include (but are not limited to):

Accelerometers

Related Config File Sections
accelerometers:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

An accelerometer is a device that measures proper acceleration; proper acceleration is not the same
as coordinate acceleration (rate of change of velocity). For example, an accelerometer at rest on the
surface of the Earth will measure an acceleration due to Earth’s gravity, straight upwards (by
definition) of g ~= 9.81 m/s2. By contrast, accelerometers in free fall (falling toward the center of the
Earth at a rate of about 9.81 m/s2) will measure zero.

TODO: Add a picture of an accelerometer

420

Mission Pinball Framework Documentation, Version

Accelerometers in pinball could be used to measure a machine’s TILT, replacing the tilt bob, to
measure vibration, or even the angle of the playfield at a given time.

Learn more at: https://en.wikipedia.org/wiki/Accelerometer

Monitorable Properties

For dynamic values and conditional events, the prefix for accelerometers is
device.accelerometers.<name>.

value A three-item tuple (x, y, z) of the current accelerometer values.

Related How To guides

Help us to write it

Related Events

None Varies based on the configured (you can configure events to be emitted when certain G-force
thresholds are exceeded).

Autofire Coils

Related Config File Sections
autofire_coils:

∙ First, some background. . .

∙ How MPF interacts with autofire rules

∙ How MPF handles autofire rules

∙ Debounce and Recycle in Autofire Coils

∙ Monitorable Properties

∙ Fully working basic example

∙ Related How To guides

∙ Related Events

An autofire coil in MPF is used for “instant response” type devices (like pop bumpers and slingshots)
where you want a switch activation to trigger a coil as close to instantaneous as possible.

First, some background. . .

The Mission Pinball Framework is based on Python. Running a “real” pinball machine means you have
some kind of computer-like board running Python (Mini ITX x86 computer, Raspberry Pi 3, etc.) which
runs your game, controls the display, and plays your sounds. That computer connects to your

Autofire Coils 421

https://en.wikipedia.org/wiki/Accelerometer

Mission Pinball Framework Documentation, Version

hardware controller (P-ROC, FAST, etc.) to interface with your actual pinball machine components
(switches, coils, lights, motors, LEDs. . .).

There are several types of devices in a pinball machine that you want to react “instantly.” For example,
when a switch in a slingshot or pop bumper is activated, you want the coil to fire as fast as possible.
When the player pushes a flipper button, you want that flipper to fire instantly, and when the player
releases the flipper button, you want the machine to cut power to that flipper coil instantly.
Unfortunately if you think about what the flow chart of activity looks like for that to happen, there are
a lot of steps. (And it’s certainly not instant.) For example, imagine what happens when a ball hits a
slingshot:

1. The slingshot switch is activated.

2. The hardware controller debounces that switch.

3. The hardware controller sends a notification that the slingshot switch changed state to your
Python game code via USB.

4. Something in your code says, “if the slingshot switch is activated, fire the slingshot coil.”

5. The Python game code sends the “fire the slingshot coil” command to the hardware controller
via USB.

6. That command is queued on the USB bus and transmitted.

7. The hardware controller fires the slingshot coil.

Wow! That’s a lot of steps just to fire a coil when a switch is hit! Unfortunately the entire process of all
this going from the hardware to the computer to the game code to the hardware to the coil takes some
time—-maybe 10ms or so. But with a fast moving pinball you might find that it’s not fast enough.
(What if your game code was in the middle of updating a bunch of lights and that delayed it another
5ms?) You might find that by the time your game code gets around to firing the coil it’s too late. In
effect your slingshot firing has lag and might miss the ball altogether. Not good!

Fortunately the people who designed the hardware controllers know this, so they have options where
“autofire” or “trigger” rules can be written into the hardware controller which the hardware
controller can handle on its own. In the Mission Pinball Framework, we call these types of rules
“Autofire” rules, because we specify that a coil fires automatically based on some switch event without
any involvement of our host computer or the Python game code.

To use an autofire rule, you specify the name of a switch, the state of the switch (whether it goes
active or inactive), the name of a coil or driver, and what you want that coil to do. (Turn on, turn off,
pulse for a certain number of milliseconds, receive a pwm pulse pattern, etc.)

So for example, if you want to configure a slingshot, you might use a rule on your hardware controller
which says, “when switch left_slingshot goes active, fire coil left_slingshot_coil for 30ms.” Or you
might have a rule which says, “When switch right_flipper becomes inactive, cut power to the coil
called right_flipper_hold.

You can set any combination of rules you want onto a hardware controller. In fact, MPF will use
several individual rules on the same set of switches and coils to do what might seem like simple
things. For example, think about what rules you’d need for a dual-wound (power and hold windings)
flipper coil:

∙ When the flipper button becomes active, enable the power coil.

∙ When the flipper button becomes active, enable the hold coil.

∙ When the EOS switch becomes active, disable the power coil.

Autofire Coils 422

Mission Pinball Framework Documentation, Version

∙ When the flipper button becomes inactive, disable the hold coil.

∙ When the flipper button becomes inactive, disable the power coil. (We need this one to “cancel”
the flip action if the player releases the flipper button before the flipper hits the EOS switch at
the top of its stroke.)

∙ If the flipper button is active and the EOS switch becomes inactive, enable the power coil. (This
causes the flipper to go back to the “up” position if for some reason it comes down when the
player is holding the flipper button.)

Now look at that above list. That’s six rules just for one flipper! If you have four flippers in your game,
you’ll have 24 autofire rules just to get your flippers set up!

Fortunately MPF makes this easy and hides the complexity from you. :)

HowMPF interacts with autofire rules

The hardware controllers in your pinball machine have no concept of what your game code is doing at
any given time. (Actually they don’t even know what a “game” is, or really what a “pinball machine”
is.) They just know that they have rules programmed into them, and those rules specify what
instantaneous actions they should take based on certain switches changing state. So your game code
can overwrite rules at any time (and as often as you want) to overwrite existing rules with new
actions. For example, if your player tilts the machine, then you need to disable the flippers. To do so
you would overwrite the above six rules with the following:

∙ When the flipper button becomes active, do nothing.

∙ When the flipper button becomes inactive, do nothing.

∙ When the EOS switch becomes active, do nothing.

∙ When the EOS switch becomes inactive, do nothing.

And just like that, your flippers are disabled! You can also see how you can use these autofire rules to
do all sorts of fun things, like reversing the flippers (so the right button controls the left flipper and
vice versa), or making “no hold” flippers, or inverting the flipper buttons so pushing them in disables
the flippers and letting go enables them. :)

The final thing that’s important to know about these autofire rules you program into your hardware
controller is that they do not prevent the hardware controller from doing everything else it might do.
For example, if you have a pop bumper then you will probably install an autofire onto your hardware
controller that causes the pop bumper coil to fire instantly to knock the ball away.

When that rule is installed, the hardware controller will do two things when the pop bumper switch is
activated. First, it will fire the coil, but second, it will also notify MPF that the pop bumper switch was
hit (since it notifies your game of any switch that was hit). Then your game code can respond how you
want, perhaps by scoring some points and playing a sound effect. When this happens, technically
speaking they won’t happen at the same time. The hardware controller will probably fire the coil in
under 1ms, and it might take your game code 5 or 10ms to add the score and play the sound. But
that’s fine. 10ms is still 1/100th of a second and no human player is going to notice that delay. (Heck,
the speed of sound is so slow it takes another 1/100th of a sound for the sound wave to travel from
your machine’s speaker in the back box to the player’s ear!)

The point is that just because you install autofire rules doesn’t mean you can’t also service those
switches in your game code. It’s just that you end up dividing the duties-—the hardware controller
handles the coil responses on its own, and you handle audio and scoring in your game code.

Autofire Coils 423

Mission Pinball Framework Documentation, Version

Oh, by the way, it’s not like you need to use these autofire rules for all your coil activity. Most things
like ejecting balls, resetting drop targets, and firing your plunger can all be handled in your game
code because in those cases you don’t care about the extra 1/100th of a second delay. You only need
autofire rules for things you want to happen instantly, which is usually only pop bumpers, slingshots,
and flippers.

HowMPF handles autofire rules

Now that you just read 1500 words on how autofire rules work, the good news is that you don’t really
have to worry about these details of them when using the Mission Pinball Framework. In MPF, you use
the configuration files to setup devices like pop bumpers, slingshots, and flippers, and the framework
handles all the autofire hardware rule programming based on the switches and coils you specify in
your config files.

In fact the framework automatically creates lists of your devices and gives them enable() and disable()
methods, so rather than having to know all the intricacies of all those different rules, enabling your
flippers is as simple as self.flippers.enable(). Nice! (But if you dig through the source code you’ll see
that the framework uses all these rules behind the scenes.)

You can also configure autofire coils manually for simpler things like pop bumpers and slingshots. See
the autofire_coils section of the configuration file reference for details.

Debounce and Recycle in Autofire Coils

In MPF you can configure debounce for each switch and recycle for each coil . If you do that MPF will
respect that configuration for autofire hardware rules. However, if you do not configure it (or set
debounce to auto) MPF will try to select a reasonable default. For autofire coils it selects debounce
quick if you either did not specify debounce or set it to auto. Recycle will be set to true if you do not
specify it.

In some platforms MPF might reconfigure your switch debounce settings when activating the
hardware rules (if the platform does not allow separate settings). This happens when debounce is set
to auto (or unspecified) as switches are then automatically configured as debounce normal and then
reconfigured as quick when the rule is send to the hardware (if the platform only supports one
configuration at a time).

You can overwrite both settings using switch_overwrite and/or coil_overwrite in your autofire_coils
section.

Monitorable Properties

For dynamic values and conditional events, the prefix for autofire coils is device.autofires.<name>.

enabled Boolean (true/false) which shows whether this autofire coil is enabled.

Fully working basic example

Let’s learn by example. Though the following example is a fully working minimal set for the Cobra
controller, it is as well helpful to understand the concpet more if you use a different set of hardware.
For this example to work physically, the Cobra board needs to have the micro controllers powered up
only. No need for a high voltage power supply, neither for any coil. The config.yaml below is the only

Autofire Coils 424

Mission Pinball Framework Documentation, Version

configuration file you need in your project. The config file is fully valid for the Cobra board connected
to a Linux PC running MPF. If you have a Cobra board but run Windows or macOS you have to change
the ports. If you run a completely different hardware you have to adapt the hardware section.

#config_version=5

hardware:

platform: opp

driverboards: gen2

opp:

ports: /dev/ttyACM0, /dev/ttyACM1

playfields:

playfield: #playfield must exist for autofire coils

tags: default

default_source_device: bd_plunger #value must be set, default "none" not allowed when having␣

→˓autofire coils

ball_devices:

bd_plunger:

ball_capacity: 1

mechanical_eject: true

coils:

c_my_coil:

number: 0-0-11

switches:

s_my_switch:

number: 0-0-16

autofire_coils:

my_autofire_1:

coil: c_my_coil

switch: s_my_switch

enable_events: simulate_start

disable_events: simulate_stop

keyboard:

1:

event: simulate_start

2:

event: simulate_stop

Now run mpf both to start above example. The Cobra board has a little LED next the coil output which
will light up yellow when the coil is activated, see the Cobra board documentation for details. Now
press the connected switch, you will see that the LED will not light up since the coil has not been
activated. Press key 1 and afterwards press again the switch, this time you will see the LED light up
for a short time. After you pressed the key 2, the LED won’t light up anymore when the switch is
activated, because you deactivated the coil.

A few comments on the above example:

∙ The playfield is needed even in this basic example, in a real setup you have it anyways.

∙ Coils are enabled by MPF upon the ball_started event and disabled by the events

Autofire Coils 425

Mission Pinball Framework Documentation, Version

ball_will_end, service_mode_entered. In our basic example we don’t have these events, thus
added our own events when the keys are pressed. In a real pinball most likely you won’t have
these additional events.

∙ Both, coil and switch, need to be controlled by the same micro controller for autofire coils, as
you can see both number value starts with 0. If you would use different values MPF will throw an
exception once the coil is being enabled, but not directly at startup. The error message is Config
File Error in OPP: Invalid switch being configured for driver. Driver = 1-0-1 Switch =
0-0-16. Driver and switch have to be on the same board.

∙ The auto fire rules are stored in the micro controller. If you execute the above example, then
change the coil to another coil (on micro controller 0) and run it again. Now the switch will then
trigger both coils. If you do these kind of changes you want to power down the micro controllers
to have a fresh start and avoid strange behavior.

Related How To guides

∙ Tutorial step 13: Add slingshots, pop bumpers, and other “autofire” devices

Related Events

None The autofire coils can be configured to enable or disable based on other events.

Ball Devices

Related Config File Sections
ball_devices:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

A ball device is any physical thing in a pinball machine which is able to hold (i.e. “capture”) a ball and
then release it. (Either automatically or based on some action by the player.) Examples of ball devices
include the trough, the plunger lane, VUKs, poppers, playfield locks, etc.—basically anything that can
hold a ball. (Even the playfield is technically a ball device since balls rolling around are “in” the
playfield device.)

Ball devices are usually made up of switches (which are typically used to count how many balls the ball
device has) and coils (which are typically used to eject a ball from a device.) Most games have several
ball devices. At a minimum they’ll have the device that holds the ball when it drains and the playfield.

Ball devices are probably the most important element of MPF (because no one likes it when a machine
gets confused about where the balls are) and something we’ve spent a lot of time on. They work
hand-in-hand with MPF’s Ball Controller to keep track of where all the balls are at any given time.

In MPF, ball devices are implemented as finite state machines.

Each ball device is responsible for managing its own state, which can be:

Ball Devices 426

https://en.wikipedia.org/wiki/Finite-state_machine

Mission Pinball Framework Documentation, Version

∙ idle

∙ missing_balls

∙ waiting_for_ball

∙ waiting_for_ball_mechanical

∙ ball_left

∙ wait_for_eject

∙ ejecting

∙ failed_eject

∙ eject_confirmed

Here’s a diagram which shows the relationships between the various states. A device can only
transition from its current state to one of the states an arrow is connected to.

When you configure ball devices in MPF, you configure the list of other devices that a ball device can
eject to. This allows MPF to have an understanding of the “chain” of devices and enables it to route
balls to where they need to go. (Diverters also figure into this chain, meaning MPF can ensure that
diverters are set properly as it’s routing balls around.)

Here’s a simplified example of how the “chain” of ball devices works:

A simple modern machine would have a minimum of three ball devices:

∙ The trough

∙ The plunger lane

∙ The playfield (remember in MPF, the playfield is technically a ball device)

Ball Devices 427

Mission Pinball Framework Documentation, Version

When you configure your ball devices, the trough is configured so that the plunger lane is its eject
target, the plunger lane is configured with the playfield as its eject target, and the playfield is
configured to know that it drains into the trough. So you have a complete loop of devices.

This means that, for example, if the playfield wants another ball (like for a multiball), MPF knows that
the playfield gets balls from the plunger lane, and if the plunger lane doesn’t have a ball, MPF knows
that the plunger lane can get a ball from the trough.

Pretty cool!

Of course in a real machine, you’ll have a lot more than the three ball devices listed above.

Picking a random machine as an example, Judge Dredd has eight(!) ball devices:

1. The trough

2. The right plunger lane

3. The left plunger lane

4. The Sniper VUK

5. The Hall of Justice VUK

6. The Deadworld orbit thingy

7. The crane

8. The playfield

MPF keeps track of how many balls are in each ball device at all times, and it knows which devices are
in the process of ejecting (and which target devices they’re ejecting to), so it also knows if balls get
stuck along the way.

Ball devices support all sorts of settings and events. You can also configure counting delays to account
for balls bouncing around before they settle, you can specify how devices confirm that balls have
successfully ejected, as well as dozens of other options that allow MPF to support every known type of
device in every pinball machine ever created. (Seriously.)

Video on ball tracking in MPF:

https://youtu.be/Yh8ittsuWIc

Monitorable Properties

For dynamic values and conditional events, the prefix for ball devices is device.ball_devices.<name>.

available_balls Number of balls that are available to be ejected. This differs from balls since it’s
possible that this device could have balls that are being used for some other eject, and thus not
available.

state What state this device is in.

balls How many balls this device is currently holding.

Related How To guides

∙ How to configure a modern trough with opto switches

∙ How to configure a modern trough with mechanical switches

Ball Devices 428

https://youtu.be/Yh8ittsuWIc

Mission Pinball Framework Documentation, Version

∙ How to configure an older style trough with two coils and switches for each ball

∙ How to configure an older style trough with two coils and only one ball switch

∙ How to configure a classic single-ball trough

Troubleshooting P-Roc/P3-Roc

If you got problems in general we first recommend to read our troubleshooting guide. Here we go into
details for ball devices (troughs, plungers, lock devices and more) in particular.

Add debug

First, add a debug: true entry into your trough config in the ball_devices: section. Then when you
run with verbose logging (-v), you’ll get extra debugging information in the log.

Received unexpected ball

You might get a line in your log telling your that the device received an unexpected ball. This is
usually not an issue. It means that the device did not expect the ball. For instance, if a ball drains into
a trough or jumps into the shooter that is unexpected for the device. In most cases you will see this
message when a ball drained.

So what are expected balls? In modern machines the trough ejects a ball into the shooter lane in
which case the shooter lane device expects the ball from the trough. This is connected to ball tracking
and retry behaviour of devices.

Ball Count Does Not Match

If your log file shows a number of balls contained in your trough that doesn’t match how many balls
you actually have, that could be:

∙ You didn’t add all the ball switches to the ball_switches: section of the trough configuration

∙ You’re using a physical machine but a switch isn’t adjusted properly so the ball is not actually
activating it. (Seriously, we can’t tell you how many times that’s happened! We’ve also found
that on some machines, if you only have one ball in the trough that the single ball isn’t heavy
enough to roll over the top of the eject coil shaft. In that case we just add a few more balls to the
machine and it seems to take care of it.) Either way, if you have a ball in the trough, the switch
entry in your log should show that the switch is active (State:1), like this:

2014-10-27 20:05:29,891 : SwitchController : <<<<< switch: trough1, State:1 >>>>>

If you see State:1 immediately followed by another entry with State:0, that means the ball isn’t
activating the switch even though it might be in the trough.

Add debugging to related devices

If you got problems with some switches also add debug: true to those as it will give to more insights
into the intentions of those devices. Same will work for flippers, coils, lights, servos, steppers and
more. See general debugging section for details.

Ball Devices 429

Mission Pinball Framework Documentation, Version

Run MPF with verbose flag

See general debugging section for details. TLDR: run mpf both -t -v -V.

Report Your Issue and Ask For Help

If you cannot find the issue yourself please prepare some information about your issue according to
our troubleshooting guide and ask in our forum.

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the
documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

Related Events

∙ balldevice_(name)_ball_count_changed

∙ balldevice_(name)_ball_eject_attempt

∙ balldevice_(name)_ball_eject_failed

∙ balldevice_(name)_ejecting_ball

∙ balldevice_(name)_ball_eject_success

∙ balldevice_(name)_broken

∙ balldevice_captured_from_(captures_from)

∙ balldevice_(name)_ball_enter

∙ balldevice_(name)_ball_entered

∙ balldevice_(name)_ball_missing

∙ balldevice_ball_missing

∙ balldevice_balls_available

Coils (Solenoids)

Related Config File Sections
coils:
coil_player:

Coils (Solenoids) 430

Mission Pinball Framework Documentation, Version

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

In MPF, you typically list all the coils in your machine in the coils: section of your machine
configuration file, along with default options for them, like pulse times, PWM values, whether they can
be enabled (held on), etc.

You don’t typically work with coils directly, rather, you tend to add them to other devices once they’ve
been defined (flippers, autofires, ball devices, diverters, etc). You can configure Dual-wound Coils on
top of coils.

That said, it is possible to perform actions on coils directly, such as pulsing, enabling, or disabling

Coils (Solenoids) 431

Mission Pinball Framework Documentation, Version

them. You can do this via the coil_player: section of a config file or via the coils: section of a show.

Hardware

Connecting Coils

If you coil has more than two terminals please have a look at Dual-wound Coils because you got a
dual-wound coil- If your coil has two terminals it is a single wound coil.

TODO: Add a picture a single wound coil with diode TODO: Add a electrical drawing a single wound
coil with diode

In general, polarity does not matter for a coil. However, there might be a diode between the terminals
of your coil which needs to be inverse to the voltage. This means that at the side of the stripe of the
diode is where you connect high voltage. Normally, diodes are in the opposite direction but in this
case this is intentional to short the coil when it deactivates (because of self-induction).

If you are unsure about the direction of your diode measure the resistance between the two terminals
in both directions. You should get 1-300 ohms (depending on the coil) in on direction and almost zero
in the other direction. Connect the coil in the direction with higher resistance. Plus/red plug of your
multimeter would be where high voltage is connected. We recommend a diode on any coil to prevent
interferences and damages to your driver boards.

Most machines use a common color for high voltage and an individual color for the return terminal of
the coil. The “output” of your driver board is usually considered ground for the coil and the other
terminal is connected to high voltage. Check with the documentation of your hardware platform to
confirm this but it should be the case for all modern machines.

Video about wiring coils:

https://youtu.be/peVNGqb2Wp8

Strength and Current

Coils vary in strength relative to the pulse time you use. The strength of the magnetic field of a coil is
a product of some constant u, the current I and the number of windings N divided by the length of the
coil L: B = u * I * N / L

The length of coils in pinball is almost the same for most coils (3.5cm; so ignore that). However, the
number of windings is not. Additionally, the thickness of the wire differs between coils which
influences how much current can flow though the coil. Thicker wires generally means stronger coils.
Unfortunately, this is not generally true for windings even though the formula above suggests it. The
reason is for that more windings also mean longer wires which will result in higher resistance and less
current. At least for typical coils in pinball more windings means slightly less powerful.

If you want to compare the strength of different coils you can get the number of windings and their
resistance from one of the following pages:

∙ Pinball Medic Coil Chart

∙ Flippers.com Coil Resistance

Get windings N and resistance R from the chart. To get the current you can use I = U/R. Depending on
your power supply U is either 48 or 70V. Length is roughly 3.5cm for most coils.

Coils (Solenoids) 432

https://youtu.be/peVNGqb2Wp8
https://www.pinballmedic.net/coilchart.html
https://flippers.com/coil-resistance.html

Mission Pinball Framework Documentation, Version

Relative strength: s = U / R * N / L. More is stronger. In most cases you can leave out L as this is not
terribly scientific anyway (and there is slightly more to it but this should be a good start). In general,
reducing resistance R (by using thicker wires) will give you more powerful coils.

Video about electronics basics:

https://youtu.be/8ByqYkYKnFc

Config

This is an example for a single-wound coil:

coils:

c_your_coil:

number: 00 # depends on your platform and hardware

default_pulse_ms: 20

This is an example for dual-wound coils which are configured separately:

coils:

c_your_coil_main:

number: 00 # depends on your platform and hardware

default_pulse_ms: 20

c_your_coil_hold:

number: 01 # depends on your platform and hardware

default_pulse_ms: 10

default_hold_power: .2

See Dual-wound Coils for more details.

Related How To guides

∙ Tutorial step 3: Get flipping!

Adjust coil strength (pulse times)

Modern pinball controller systems that MPF use have the ability to precisely control how long (in
milliseconds) the full power is applied to a coil. (Longer time = more power.) This is called the “pulse
time” of a coil, as it controls how long the coil is pulsed MPF sends the coil a pulse command.

You can adjust this setting for all the coils in your machine, including flippers, trough ejects, pop
bumpers, etc.

This is much nicer than the old days (even the 1990s WPC era) where pulse times were fixed, and you
adjusted the strength of a mechanism by literally swapping out the coil with a stronger or weaker one!

Note: If you have “dual wound” coils, which are common for flippers, diverters, and other mechs
which are “held” in the on position, you can use the pulse settings defined in this guide to control the
initial “pulse” portion of that coil’s activation.

Coils (Solenoids) 433

https://youtu.be/8ByqYkYKnFc

Mission Pinball Framework Documentation, Version

Adjusting the pulse time is a bit of an art. If the pulse time is too long, you’ll risk breaking something
and the ball will fly off the mechanism too fast. Times that are two low will make the machine seem
sluggish.

We suggest that you start with a slow time and slowly increase it until it feels right.

Unfortunately there’s no universal pulse time setting that will work on every machine since the “pulse
time” to “actual strength” mapping varies depending on:

∙ What type of coils you have (wire gauge and number of windings).

∙ How much voltage your power supply provides.

∙ How much current is available.

∙ How clean or worn your mechanisms, return springs, and/or coil sleeves are.

∙ How warm your coils are.

Pulse values can vary widely. One of our machines using new Williams flipper mechanisms with a
70vdc power supply has flipper pulse times of 14ms. Our 1974 Gottlieb Big Shot machine using the
original flipper mechs has a pulse time over 100ms.

You adjust the pulse time for each coil by adding a default_pulse_ms: setting to the coil’s entry in the
coils: section of your machine config file. (Notice that you make this change in the coils: section of
your config, not the section for the individual mech that coil is part of.)

If you don’t specify a time for a particular coil, then MPF will a default pulse time of 10ms. (10ms is
almost certainly too low, but it’s a very safe default starting point.)

For example, for coils used in dual-wound flippers:

coils:

c_flipper_left_main:

number: 00

default_pulse_ms: 20

c_flipper_left_hold:

number: 01

allow_enable: true

c_flipper_right_main:

number: 02

default_pulse_ms: 20

c_flipper_right_hold:

number: 03

allow_enable: true

Or for single-wound flipper coils:

coils:

c_flipper_left:

number: 0

allow_enable: true

default_hold_power: 0.125

default_pulse_ms: 20

c_flipper_right:

number: 1

allow_enable: true

default_hold_power: 0.125

default_pulse_ms: 20

Coils (Solenoids) 434

Mission Pinball Framework Documentation, Version

Again, you just need to play your game and see how it feels. Then keep on adjusting the
default_pulse_ms: values up or down until your flippers feel right.

You might find that you have to adjust this default_pulse_ms: setting down the road too. If you have a
blank playfield then you might think that your coils are fine where they are, but once you add some
ramps you might realize it’s too hard to make a ramp shot and you have to increase the power a bit.
Later on when you have a real game, you can even expose these pulse settings to operators via the
service menu.

Advanced settings vary based on hardware

In addition to being able to specify how long a coil is pulsed for, some pinball control systems allow
you to control the power that’s applied to the coil during the initial pulse. (So instead of 100% power
for 50ms, you might be able to set a coil to 75% power for 60ms.)

See the hardware documentation for your platform for links to specific coil settings your hardware
might allow.

Adjust coil hold power

In MPF, a coil is said to be “held” (or “enabled”) any time it’s activated for more than 255ms (since
255ms is the maximum pulse time for most platforms).

Most coils are only used in the “pulse” mode (slingshots, pop bumpers, trough and ball device ejects,
etc.).

However, some pinball devices need to hold a coil on for longer (flippers, diverters, some older types
of trough ball releases, etc.).

In MPF, you can adjust the power that’s applied when these coils are held on past their initial pulse
point.

Single-wound versus dual-wound coil holds

The way you configure coil holds depends on whether the coil in question is a “single wound” or “dual
wound” coil. See the Dual-Wound versus Single-Wound coils guide for details.

Adjusting single-wound coil “hold” strength

Coils in MPF have a default_hold_power: setting which is used to control the amount of power that’s
applied to the coil after the initial pulse time.

The default_hold_power setting is a value from 0.0-1.0, with 0 being 0% power (off), and 1.0 being
100% power.

Consider the following example:

coils:

some_coil:

number:

default_pulse_ms: 30

default_hold_power: 0.250

Coils (Solenoids) 435

Mission Pinball Framework Documentation, Version

In the example from a machine config file, the if the coil called some_coil is enabled (turned on) then
that coil will receive full (100%) power for 30ms, and then after 30ms, the power drops down to 25%.
The power will stay at 25% until the coil is turned off.

Note that the pinball control hardware cannot vary the voltage or current applied to a coil, rather it
simulates lower power by rapidly pulsing the power. The example of default_hold_power: 0.250
would equate to 25% power, which would mean the coil would get full power for 1ms, then it would
get no power for 3ms, then full power for 1ms, etc (details vary per platform).

The default_hold_power: setting is valid with every type of pinball control system that MPF supports.
However, some control systems have additional options which you can use to fine-tune how the hold
power is applied to a coil.

See the hardware documentation for your platform for links to specific coil settings your hardware
might allow.

The big question is what default_hold_power: setting is appropriate for your scenario? Unfortunately
we don’t have any good guidance for what your default_hold_power: values should be. Really you can
just start with a value of 0.1 or 0.2 and then keep increasing it until your holds are strong enough not
to break their hold when a ball hits them.

Adjusting dual-wound coil “hold” strength

If you have dual-wound coils then, the hold winding is designed to be held on, for long periods of time
so you can safely keep it on full strength solid and don’t have to mess with default_hold_power:
settings.

The important caveat there is that the hold windings are designed around certain voltages. So if you
have a dual-wound coil from a Stern machine that was designed to run at 48v, and you’re using it in a
new machine that’s running at 70v, you’d probably want to use a default_hold_power: setting that’s
lower.

Again, you’ll need to play with the settings to see what makes sense, and always choose the lowest
one that works since if you have a setting that’s too high, you probably won’t know it until it’s too late
and the coil has burned up.

Recycle / “Cool Down” Time

Related Config File Sections
coils:

Recycle time is the time a coil will rest after it has been pulsed. This is either calculated as ratio on
the pulse time (for instance, two times the pulse time) or as absolute time. In both cases this time is
used to prevent thermal overheating of coils similar to hold_power.

If your machine constantly triggers a coil with 50ms pulse time for some reason then it would
practically stay on permanently without recycle time. Howver, with a recycle factor of 2 (or 100ms
cool down time) it would be enabled for at most 33% of the time.

How this recycle is implemented differs between platforms. MPF exposes a very basic interface to
enable or disable recycle per coil. Usually, you want to keep it enabled. This is an example:

Coils (Solenoids) 436

Mission Pinball Framework Documentation, Version

coils:

c_coil_with_recycle:

number:

default_recycle: true

c_coil_without_recycle:

number:

default_recycle: false

Some platforms allow you to fine tune the recycle time.

∙ recycle_factor for OPP

∙ recycle_ms for FAST

Dual-wound Coils

Related Config File Sections
dual_wound_coils:
flippers:

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

A dual-wound coil is a coil (solenoid) with two windings–one “strong” power (or “main”) winding for
moving the coil, and a second weaker / lower-power winding for “holding” the coil in the active
position.

image:: /mechs/images/dual_coil_no_diode.jpg

Dual-wound coils are typically used for flippers, diverters, gates, and other devices in pinball
machines that need a strong initial movement followed by an extended hold period.

There are many places in MPF config files where you need to specify a coil name. Rather than adding
dual-wound coil logic in many different sections of MPF, we have a dual-wound coil config where you
can specify the settings for a particular dual-wound coil (and give it a new name), and then you can
use that dual-wound coil anywhere in MPF that a coil is configured.

Coils (Solenoids) 437

Mission Pinball Framework Documentation, Version

Hardware

Dual wound coils are like two coils in one but instead of two times two terminals they only have three
terminals. Both coils share one of those terminals. Unfortunately, this is not standardized and
different for different types of coils.

To make sure you connect things right you need a multimeter and measure the resistance between all
three terminals. It might be wise to remove all free-fly diodes while measuring (or at least make sure
to measure the inverse direction). You are looking for the main coil with low resistance (2-20 Ohm)
and one with higher resistance (50 to 200 Ohm). You can look up the expected resistance in one of the
linked charts in our coil hardware section.

Assumed you now got those three measurements:

∙ Terminal 1 to 2: 4 Ohm

∙ Terminal 2 to 3: 124 Ohm

∙ Terminal 1 to 3: 120 Ohm

What does that mean? It means that your main coil is between terminal 1 and 2 and your hold coil is
between terminal 1 and 3. Terminal 2 and 3 is just the sum of the resistance of both coils. In general,
the highest of the three readings is the combination you want to remove from your list.

How do you connect that? Typically, driver boards connect your coils to ground so you connect power
to the terminal which is common between both coils. In this case this would be terminal 1. Terminal 2
and 3 would be connected to your driver board. See the following picture for example:

The common terminal on the right (terminal 1) has both wires connected. You see that the diode band
is facing in that direction and that two copper wires for the coil are connected here. One wire is a bit
thicker, which means less resistance thus more current thus stronger. Hence, the thinner wire is for
the hold position. You might not be able to spot that on every coil.

Coils (Solenoids) 438

Mission Pinball Framework Documentation, Version

Please note, that you not just connect two wires across each diode. But that one pair of wires is across
one diode and the other pair of wires is across two diodes. If you don’t do it that way you will fry one
of your FETs on the driver board.

Warning: Please make sure that any diodes on your coil are in reverse to the voltage (i.e. the
stripe needs to be at the HV side). This is often not the case for older coils as they have been
connected differently in older machines. Ignoring this will fry the FET on your driver board.

See coil hardware for more details about the current, resistance, number of windings and the strength
of coils.

Config

This is an example for dual-wound coils which are configured separately:

coils:

c_your_coil_main:

number: 00 # depends on your platform and hardware

default_pulse_ms: 20

c_your_coil_hold:

number: 01 # depends on your platform and hardware

default_pulse_ms: 10

default_hold_power: .2

On top of that you can configure dual_wound_coils: or other devices such as flippers:.

Related How To guides

∙ Dual-Wound versus Single-Wound coils

∙ How to configure dual-wound flippers

Related Events
None

Dual-Wound versus Single-Wound coils

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Coils (Solenoids) 439

Mission Pinball Framework Documentation, Version

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

It’s common for pinball machines to include coils that are “held on” for periods of time longer than the
maximum pulse time of 255ms. The obvious example of this is for flipper coils, though other types of
devices use these too. (Diverters, the trolls in Medieval Madness, certain ball release coils, etc.)

In many cases, these types of coils need to have strong initial pulses to quickly move the mechanism
from its resting to active position, but they also need to be able to be held “on” for a long period of
time.

These two requirements are conceptually incompatible.

The way you make a coil strong is you give it lots of power and make it really big. Unfortunately the
byproduct of that is heat, which means if you make a nice, big, powerful coil that’s strong enough to
move the mechanism with the quick power it needs, then when the coil is left in the “on” state, it
generates so much heat that it will burn up the coil. :(

Fortunately the pinball companies solved this 60+ years ago with the concept of “dual wound” coils. A
dual-wound coil is essentially two separate coils in one. (There are literally two separate wires
wrapped around the coil sleeve instead of one.)

Dual-wound coils have a strong (often called the “main” or “power”) winding which is used for the
initial “kick” of the coil, and they also have a lower-powered (“hold”) winding which is used to hold the
active position.

Note: You can tell if a coil is dual-wound because the coil will have three wire connection points
instead of two. There’s a power winding connector, a hold winding connector, and a common
connector that’s shared by both.

The way these are used is that the strong winding is pulsed initially (usually for a fraction of a second)
to provide the initial strength to move the mechanism, then it cuts off, leaving just the weaker hold
winding active to keep the mechanism active. The hold winding can safely be enabled for a long time,
even multiple minutes. When the machine wants to disable the device (or when the player releases the
flipper button in the case of a flipper), the power to the hold winding is cut, and a spring causes the
mechanism to return to the initial position.

Transitioning from the power to the hold winding: The old way

In old pinball machines (from the 1940s through the early 2000s), the “transition” from the power
winding to the hold winding was purely mechanical and done using something called an “end of
stroke” (EOS) switch.

The EOS switch is a physical leaf switch in the mechanism under the playfield with a switch that is
mechanically opened by the movement of the device. When the coil is first activated, the current flows
to both the power and the hold windings, and the mech starts to move. A few fractions of a second

Coils (Solenoids) 440

Mission Pinball Framework Documentation, Version

later, the mech reaches its full “up” position, and a little arm under it hits the EOS switch which opens
it and breaks the connection to the power winding, leaving only the hold winding energized.

When the hold winding is de-energized, the spring causes the mechanism to move back to the original
position, and the EOS switch is closed (by the movement of the mech) meaning that the next time the
mech is activated, the current will again flow to both the power and hold windings.

Advantages of using this “old style” EOS switch

∙ It’s simple. No computers or fancy timing has to be involved, and the transition from the power
to the hold windings is automatic.

∙ If a coil gets dirty, gummed up, or weak, the transition from the power to the hold winding
always occurs only after the mech is all the way in the “active” position.

∙ Only a single “driver” connection from the control system is needed since that single control line
is used for both the power and hold windings.

Downsides to using this “old style” EOS switch

∙ No fine tuning. Since the transition from the power to the hold winding is purely mechanical, you
can’t change the power of the mechanism unless you physically switch out the coil and/or change
the voltage used.

∙ For flippers, you don’t get any “novelty” flipper modes. You can’t do things like “weak flippers”
or “no hold flippers” since the flipper behavior is mechanically controlled.

Transitioning from the power to the hold winding: The modern way

Modern machines do not use EOS switches in the same way they have been used in older machines.

The main reason for this is that modern pinball control systems (including all the control systems that
MPF supports) have the ability to activate coils with millisecond-level precision (something that was
not possible even in 1990s WPC machines).

Using flippers as an example, in modern machines, when the player presses the flipper button, the
control system will send current to both the power and hold windings at the same time, and then at a
very precise moment (e.g. 27ms later or 14ms later or whatever), the control system will cut off the
power winding, leaving just the hold winding active.

This has the same effect of the mechanical EOS switch in that the power winding is only used for the
initial power motion, and the lower-current hold winding is then used to keep the flipper in the up
position.

Advantages of using the modern transition from power to hold

∙ You can fine-tune coil strength by changing settings in software.

∙ You can use novelty modes like weak flippers, no hold flippers, etc.

Coils (Solenoids) 441

Mission Pinball Framework Documentation, Version

Downsides of using the modern transition from power to hold

∙ You have to play with your settings to get them right.

∙ A dirty, gummed up, or worn-out coil or mechanism might mean that the initial power timing
setting you originally configured might not be strong enough to move the mechanism all the way
into the “up” position.

Single-wound coils

So far both options (EOS and non-EOS) we discussed use dual-wound coils with power and hold
windings.

However there’s a third option that some modern machines use as well. The third option is to use
more traditional (e.g. “single wound”) coils for your machine that do not have the dual “power” and
“hold” windings.

Of course you might be thinking, “How does that work? Wouldn’t the coil burn up if the mechanism
was active for too long?”

This is another case where modern technology can be used to address that.

In electronics, there’s a concept called “Pulse Width Modulation” (or “PWM”), which (in this case)
basically means the control hardware turns the power on and off really fast. (Like, hundreds of times
per second.)

So the way this works is that you have a high-powered, strong coil which is activated a full strength in
order to provide the strong initial motion. However once the mechanism is in the up position (based
on either an EOS switch, or based on the millisecond-level precise timing), the control system stops
powering that coil at 100% and instead cuts the power back (using that PWM thing) to a smaller
percent (like maybe 12.5% or 25% or so). That reduced power is enough to keep the mech in the up
position, but not enough to cause the coil to overheat and burn out.

Advantages to using single-wound coils

∙ You only need a single driver output per coil (instead of two).

∙ You can still do the modern things, like use software to tune the strength of the coil and novelty
flipper modes.

Downsides to using single-wound coils

∙ You have to figure out the PWM (low power) settings which need to be strong enough to hold the
mechanism up but not too strong so they don’t burn it up.

∙ Sometimes the PWM “hold” makes an annoying buzzing sound (since the power is being turned
on and off hundreds of times per second).

We should note that the decision to use a single-wound versus dual-wound flipper coil is technically a
separate decision from whether or not to use an EOS switch. See the Flipper end-of-stroke (EOS)
switches for more on that decision.

Coils (Solenoids) 442

Mission Pinball Framework Documentation, Version

Which option should you choose?

Ok, so basically there are three options for coils that need to be held on for more than 255ms:

∙ Dual-wound, with a mechanical EOS switch to transition from power to hold.

∙ Dual-wound, with the control system timing to transition from power to hold.

∙ Single-wound

The good news is that MPF supports all three options.

If you’re retheming an existing machine, and you’re using the original driver boards and power
supplies, then you should probably just use whatever method was used in that machine and keep it
simple.

If you’re building a new machine, most people choose the second option, where you use a dual-wound
coil but with the transition of the power to hold windings done via software and the modern control
systems. The reasons for this include:

∙ It’s simple. You don’t have to mess with trying to figure out the PWM timings for the hold
winding.

∙ It works. You know the hold winding was designed to be held on at full power, so you don’t have
to worry about breaking things.

∙ It’s less wear-and-tear and emissions. Rapidly cycling power (in the PWM way) for the hold
phase in a single-wound coil has the potential to add wear to the components in your system and
potential to cause EMI emissions.

People have also pointed out that Stern’s S.A.M. system (which they used in from about 2006-2015)
used the single-wound PWM-style flippers, but then with the SPIKE system (from 2015 onwards) went
back to the dual-wound computer controlled option for a while. However, they later switched back to
single-wound PWM-style flippers. We can only speculate why they did that and it might involve that
dual-wound flippers are easier to control from software with a new control system.

Really the only reasons to use the single-wound coils are:

∙ You already have mechanisms that use single-wound coils

∙ You’re running out of driver outputs in your control system and you don’t want to “waste” two
drivers per mech.

∙ Single-wound are cheaper to produce

Related Events
None

Diverters

Related Config File Sections
diverters:

Diverters 443

Mission Pinball Framework Documentation, Version

∙ Understanding the difference between “enabling” and “activating” diverters

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

In MPF, a diverter (sometimes spelled “divertor”) is anything that alters the path of the ball based on
the state it’s in, including:

Diverters 444

Mission Pinball Framework Documentation, Version

∙ A traditional diverter which is a metal flap at the end of a rod, typically used on ramps to “divert”
the ball one way or the other.

∙ A coil-controlled post that pops up (or down) to let the ball either pass over it or bounce back in
some other direction. (This is sometimes called an “up/down” post.)

∙ A coil-controlled gate, typically which only allows the ball to flow through it in a single direction,
but lifted out of the way via a coil when active which allows the ball to travel through it in both
directions.

∙ A “trap door” pop-up which captures the ball when it’s up but lets the ball roll over it to another
shot when it’s down. (Like the trap door / basement in Theatre of Magic.)

∙ A single drop target that blocks the entrance to a shot when it’s up, such as in the back of the
saucer in Attack from Mars or the ones that block the ramps in Ghostbusters.

∙ Something else completely custom, such as the Ringmaster in Cirqus Voltaire. (When it’s up the
ball can hit it and drop down under the playfield, and when it’s down the ball rolls over it and
hits standup targets behind it.)

At this point you might be thinking, “Wait, you consider a trap door or the Ringmaster to be a
diverter?? What???” But if you think about it from the perspective of pinball software, yeah, trap doors
and the Ringmaster are diverters because when then are not active, a ball shot to them goes towards
one place, and when they’re active, a ball is “diverted” to go somewhere else.

Diverters 445

Mission Pinball Framework Documentation, Version

Note: MPF’s diverters are integrated with Ball Devices and MPF’s ball management and routing
system so they can be used to ensure that MPF is able to move balls to where they need to be.

Most diverters are held in their “on” position as long as their driver coil enabled, and then when
they’re disabled they return back to their off position. That said, some are different. The Ringmaster
has a motor which raises and lowers it, and drop targets have coils that are just pulsed to raise/lower
them, so this is not a hard and fast rule.

So based on all that, let’s look at how the MPF actually handles diverters. At the most basic level,
most diverters are just a coil, so fundamentally we don’t really need to do anything special to control a
diverter. As a game programmer you just need to enable a coil. But if you want to program your game
code to control a diverter, there’s a lot of glue you need to fully integrate it into your machine, and
that’s the glue that we’ve pre- written into our diverter device code.

For example, many diverters attached to ramps do not hold their coils in the “on” position for the
entire time that they’re on. Instead they use the ramp entry switch to see when a ball is coming their
way, and when one is they quickly activate so they can catch the ball in time to divert it. They also
typically have a timeout where they deactivate themselves if they don’t actually see a ball get
diverted, (like with a weak ramp shot that trips the ramp entry switch but that isn’t powerful enough
to make it all the way up the ramp to the diverter.)

MPF’s diverter devices also include support for automatic enabling and disabling (based on events),
and they include intelligence to know which target devices a diverter will send a ball to when it’s
enabled or disabled.

Understanding the difference between “enabling” and “activating” diverters

When talking about diverters in MPF, we use the terms activate and enable (as well as deactivate and
disable). Even though these words sound like they’re the same thing, they’re actually different, so it’s
important to understand them.

When a diverter is active, that means it’s physically activated in its active position. A diverter that is
enabled means that it’s ready to be activated, but it’s not necessarily active at this time. To
understand this, let’s step through an example.

Imagine a typical ramp in a pinball machine which has one entrance and two exits. These kinds of
ramps usually have a diverter at the top of them that can send the ball down one of the two paths.
When the diverter is inactive (its default state), the ball goes down one path, and when the diverter is
active, the ball is sent down the other path (perhaps towards a ball lock).

There is typically an entrance switch on the ramp which lets the game know that a ball is potentially
headed towards that diverter, so when the game wants to route the ball to the “other” ramp exit,
rather than turning on that diverter and holding it on forever, the game just watches for that ramp
entry switch and then quickly fires the diverter to route the ball to the other exit. Then once the ball
passes by the diverter, it hits a second switch which turns off the diverter. (Typically the diverter
activation also has a timeout which is used when a weak shot is made where the ball trips the ramp
entrance switch but doesn’t actually make it all the way up the ramp to the diverter.)

So in MPF parlance, we say that the diverter is enabled whenever it’s ready to be fired, but it’s not
actually active until the coil is physically on.

Again using our example, let’s say we have a ramp with a diverter, and when that diverter is active it
sends a ball into a lock. When the game starts, the diverter is disabled and inactive. Ramp shots just

Diverters 446

Mission Pinball Framework Documentation, Version

go up the ramp and come out the default path, and the diverter ignores the ramp entrance switch.

Then when the player does whatever they need to do to light the lock, the diverter is enabled. At this
point the diverter is not active since it’s not actually firing, but it’s enabled (which means it’s ready to
fire) and the diverter is watching that ramp entrance switch. (So the diverter is enabled but inactive.)
Then when the player shoots the ball up that ramp, the diverter sees the ramp entrance switch hit and
the diverter activates. (So now the diverter is enabled and active.)

Then once the ball passes by the diverter, the diverter deactivates. At this point whether the diverter
is disabled or enabled depends on the game logic. If the lock should stay lit, then the diverter remains
enabled even though it’s not active, and if the player has to do something else to re-light the lock, then
the diverter is disabled and inactive.

Hopefully that makes sense? :)

Monitorable Properties

For dynamic values and conditional events, the prefix for diverters is device.diverters.<name>.

active Boolean (true/false) as to whether this diverter is actively on and in the powered state.

enabled Boolean (true/false) as to whether this diverter is enabled (meaning it will be activated when
a ball approaches it).

eject_state Boolean (true/false) which shows whether this diverter will be activating to route a ball
eject from an upstream ball device.

Related How To guides

∙ Dual Coil Diverter

∙ Up-Down Ramps

Related Events

∙ diverter_(name)_enabling

∙ diverter_(name)_disabling

∙ diverter_(name)_activating

∙ diverter_(name)_deactivating

Up-Down Ramps

Related Config File Sections
diverters:

Some machines have ramps which can be moved up and down. Those mechanism typically act as a
diverter and should be configured as such.

Diverters 447

Mission Pinball Framework Documentation, Version

Hardware

Up-Down ramps either work with one coil or two coils. Single-coil ramps use the coil to move the ramp
up or down temporarily Typically, they use a spring or gravity to move it back, However, since the coil
has to stay energized those ramps can only be active for a short amount of time. Two-coil ramps only
pulse one coil to move the ramp up or down. This poses the advantage that the ramp stays at one
position without energizing a coil. However, this adds complexity (and a second coil) and is only used
if the ramp has to stay at both positions for extended periods of time.

Some part numbers:

∙ Getaway: B-12576 assembly

∙ RFM: A-22989

∙ Apollo 13: #500-6044-00-44 assembly

∙ Golden Eye: #515-6494-00

Config

Up-Down ramps are configured like a normal diverter:

diverters:

up_down_one_coil:

activation_coil: c_ramp1_up

type: hold

up_down_two_coils:

activation_coil: c_ramp2_up

deactivation_coil: c_ramp2_down

type: pulse

Related How To Guides
Diverters

Diverters 448

Mission Pinball Framework Documentation, Version

Using a Servo as Diverter

Related Config File Sections
diverters:
servos:

You can use a servo as a diverter by tying it into a diverter using events. Specifically, we are using
diverter_(name)_deactivating and diverter_(name)_activating. This is an example:

diverters:

d_diverter:

debug: true

feeder_devices: bd_trough

targets_when_active: playfield

targets_when_inactive: bd_target

servos:

s_diverter:

number:

positions:

0.7: diverter_d_diverter_activating

0.2: diverter_d_diverter_deactivating

This diverter will not wait for the servo to reach the position. If you need that let us know in the forum.

Using a Stepper as Diverter

Related Config File Sections
diverters:
steppers:

You can use a stepper as a diverter by tying it into a diverter using events. Specifically, we are using
diverter_(name)_deactivating and diverter_(name)_activating. This is an example:

diverters:

d_diverter:

debug: true

feeder_devices: bd_trough

targets_when_active: playfield

targets_when_inactive: bd_target

steppers:

s_diverter:

number:

named_positions:

20: diverter_d_diverter_activating

400: diverter_d_diverter_deactivating

This diverter will not wait for the stepper to reach the position. If you need that let us know in the
forum.

Diverters 449

Mission Pinball Framework Documentation, Version

Dual Coil Diverter

Related Config File Sections
diverters:
dual_wound_coils:

In this example we use a standard flipper mechanism with a dual wound coil as a diverter. Much like a
flipper, we’ll want to control the main coil for enabling the diverter, and then the hold coil to hold it in
the active position for as long as you need.

Config

First we need to define the coils in our hardware section:

coils:

c_diverter_upper_right_main:

number: 25

default_pulse_ms: 4

default_hold_power: 0.2

c_diverter_upper_right_hold:

number: 26

allow_enable: true

Next we’ll define the dual wound coil for the diverter to use:

dual_wound_coils:

c_diverter_dualcoil:

hold_coil: c_diverter_upper_right_hold

main_coil: c_diverter_upper_right_main

Then we define the Diverter itself:

diverters:

ramp_diverter:

activation_coil: c_diverter_dualcoil

type: hold

activation_time: .5s

activation_switches: s_r_rampexit, s_l_rampexit

enable_events: ball_started

disable_events: ball_ended

Related How To Guides
Diverters

Flippers

Related Config File Sections
flippers:

Flippers 450

Mission Pinball Framework Documentation, Version

∙ Debounce and Recycle on Flipper Coils

∙ Default Events

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

Flippers are probably the first thing you think of when you think about building your own pinball
machine. In fact when most people get their own hardware and start drilling holes in a piece of
plywood, the first visible thing they do is to get their flippers flipping.

MPF has support for lots of different kinds of flippers (as there are many different ways they’ve been
wired over the years), as well as a lot of different options for how flippers are fine tuned.

MPF also has support for various “novelty” flipper modes (no-hold flippers, reversed flipper buttons,
weak flippers, etc.)

We recommend you read the Dual-Wound versus Single-Wound coils guide to understand the
difference between “dual wound” and “single wound” coils, as flippers in pinball machines can be

Flippers 451

Mission Pinball Framework Documentation, Version

either type.

You should also probably read the EOS Switches guide if your machine has flipper EOS switches. (In
general EOS switches are not needed for flippers with MPF.)

See coil hardware for more details about the current, resistance, number of windings and the strength
of coils.

Debounce and Recycle on Flipper Coils

In MPF you can configure debounce for each switch and recycle for each coil . However, both will be
overwritten when you enable flippers. Debounce will be set to quick and recycle will be disabled. In
some platforms MPF might reconfigure your switch debounce settings when activating the hardware
rules (if the platform does not allow separate settings) which might lead to more switch events when
flippers are active.

Generally, this is how flipper work in most machines and this is how players will expect flippers to
behave. If you want to change this let us know in the forum (or you could change it in by overloading
the flipper device class).

Default Events

MPF contains built-in support for the flipper cancel combo. If you add the tag left_flipper to your
left flipper switch, and right_flipper to your right flipper switch, then whenever the player hits both
flippers at the same time, an MPF event called flipper_cancel will be posted. This is implemented as
combo switch .

Additionally, MPF contains a default timed switch for flipper cradle. It will post flipper_cradle when
a player cradles a ball for 3s. Later it will post flipper_cradle_release when the player releases the
ball.

Monitorable Properties

For dynamic values and conditional events, the prefix for flippers is device.flippers.<name>.

enabled Boolean (true/false) which shows whether this ball hold is enabled.

Related How To guides

How to configure dual-wound flippers

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Flippers 452

Mission Pinball Framework Documentation, Version

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

This guide shows you how to configure dual-wound flippers in MPF. If you don’t know what
“dual-wound” flippers are, or whether you have them, take a look at the coil that your flipper uses. If it
has three wires (or three tabs to connect three wires), then it’s a dual-wound coil and this guide is for
you.

If it has two wires (or two tabs), then read the How to configure single-wound flippers guide.

Read more about “dual wound” versus “single wound” coils in the Dual-Wound versus Single-Wound
coils guide.

See coil hardware for more details about the current, resistance, number of windings and the strength
of coils. See dual-wound hardware for details about how to find out which terminals on your coils are
hold, which are the main coil and how to connect them.

1. Add your flipper buttons

First, make sure you have entries in your machine config for your flipper buttons.

Here’s an example config.yaml with two switches added:

switches:

s_left_flipper:

number: 1

tags: left_flipper

s_right_flipper:

number: 2

tags: right_flipper

You can pick whatever names you want for your switches. We chose s_left_flipper and
s_right_flipper.

Note that we configured this switches with numbers 1 and 2, but you should use the actual switch
numbers for your control system that the flipper buttons are connected to. (See How to configure
“number:” settings for instructions for each type of control system.)

We also added tags called left_flipper and right_flipper. These are optional, but recommended.
The reason is that MPF includes a combo switch feature which posts events when player switches are
held in combination. If you add these tags to your flipper switches, an event called flipper_cancel will
be posted when the player hits both flipper buttons at the same time which you can use to cancel
shows and other things you want the player to be able to skip.

Flippers 453

Mission Pinball Framework Documentation, Version

2. Add your flipper coils

Next you need to add entries for your flipper coils to your machine-wide config. These will be added to
a section called coils:. Since we’re using dual-wound coils, there will actually be two coil entries for
each coil—one for the power (main) winding, and one for the hold winding.

coils:

c_flipper_left_main:

number: 0

c_flipper_left_hold:

number: 1

allow_enable: true

c_flipper_right_main:

number: 2

c_flipper_right_hold:

number: 3

allow_enable: true

Again, the number: entries in your config will vary depending on your actual hardware, and again, you
can pick whatever names you want for your coils.

Also note that the two hold coils have allow_enable: true entries added. (In MPF config files, values
of “yes” and “true” are the same.) The purpose of the allow_enable: true setting is that as a safety
precaution, MPF does not allow you to enable (that is, to hold a coil in its “on” position) unless you
specifically add allow_enable: true to that coil’s config.

So in the case if your flippers, the hold coil of a flipper needs to have allow_enable: true since in
order for it to act as a flipper, that coil needs to be allowed to be enabled (held on).

3. Add your flipper entries

At this point you have your coils and switches defined, but you can’t flip yet because you don’t have
any flippers defined. Now you might be thinking, “Wait, but didn’t I just configure the coils and
switches?” Yes, you did, but now you have to tell MPF that you want to create a flipper mechanism
which links together the switch and the coils to become a “flipper”.

You create your flipper mechanisms by adding a flippers: section to your machine config, and then
specifying the switch and coils for each flipper that you defined in Steps 1 and 2.

Here’s what you would create based on the switches and coils we’ve defined so far:

flippers:

left_flipper:

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_left_flipper

right_flipper:

main_coil: c_flipper_right_main

hold_coil: c_flipper_right_hold

activation_switch: s_right_flipper

Flippers 454

Mission Pinball Framework Documentation, Version

4. Enabling your flippers

By default, MPF only enables flippers when a game is in progress. So if this is a first-time config and
you haven’t configured your ball devices and start button and everything, you can’t actually start a
game yet, which means you can’t test your flippers.

Fortunately we can get around that by configuring your flippers to just automatically enable
themselves when MPF starts. To do this, add the following entry to each of your flippers in your config
file:

enable_events: machine_reset_phase_3

So now the flippers: section of your config file should look like this:

flippers:

left_flipper:

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_left_flipper

enable_events: machine_reset_phase_3

right_flipper:

main_coil: c_flipper_right_main

hold_coil: c_flipper_right_hold

activation_switch: s_right_flipper

enable_events: machine_reset_phase_3

5. Configure your control system hardware

At this point your flipper configuration is technically complete, though there are two other important
things you may have to do first:

If you’re using physical hardware, you may need an additional section in your machine config for your
control system. (For example, FAST Pinball and Open Pinball Project controllers require a one-time
port configuration, etc.) See the control system documentation for details.

6. Adjust your flipper power

As a safety precaution, MPF uses very low (10ms) default pulse times for coils. In most cases, 10ms
will not be enough power to physically move the flippers when you hit the button. (You might hear
them click or buzz without actually seeing them move.)

So check out the documentation in the coils section for instructions on how to adjust the pulse power
and the hold power for the coils you’re using for your flippers.

Here’s the complete config

Here’s the complete machine config file (or sections of the machine config file) we created in this How
To guide:

Flippers 455

Mission Pinball Framework Documentation, Version

Listing 1: /config/config.yaml

#config_version=5

hardware:

platform: fast

driverboards: fast

switches:

s_left_flipper:

number: 0-0

tags: left_flipper

s_right_flipper:

number: 0-1

tags: right_flipper

coils:

c_flipper_left_main:

number: 0-0

default_pulse_ms: 30

c_flipper_left_hold:

number: 0-1

default_hold_power: 1.0

c_flipper_right_main:

number: 0-2

default_pulse_ms: 30

c_flipper_right_hold:

number: 0-3

default_hold_power: 1.0

flippers:

left_flipper:

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_left_flipper

enable_events: machine_reset_phase_3

right_flipper:

main_coil: c_flipper_right_main

hold_coil: c_flipper_right_hold

activation_switch: s_right_flipper

enable_events: machine_reset_phase_3

Related How To guides

∙ Dual-wound Coils

∙ Dual-Wound versus Single-Wound coils

Flippers 456

/mpf_examples/flippers/config/hold_no_eos.yaml

Mission Pinball Framework Documentation, Version

How to configure single-wound flippers

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

This guide shows you how to configure single-wound flippers in MPF. If you don’t know what
“single-wound” flippers are, or whether you have them, take a look at the coil that your flipper uses. If
it has two wires (or two tabs to connect two wires), then it’s a single-wound coil and this guide is for
you.

If it has three wires (or three tabs), then read the How to configure dual-wound flippers guide.

Read more about “dual wound” versus “single wound” coils in the Dual-Wound versus Single-Wound
coils guide.

See coil hardware for more details about the current, resistance, number of windings and the strength
of coils.

1. Add your flipper buttons

First, make sure you have entries in your machine config for your flipper buttons.

Here’s an example config.yaml with two switches added:

switches:

s_left_flipper:

number: 1

tags: left_flipper

s_right_flipper:

number: 2

tags: right_flipper

You can pick whatever names you want for your switches. We chose s_left_flipper and
s_right_flipper.

Note that we configured this switches with numbers 1 and 2, but you should use the actual switch
numbers for your control system that the flipper buttons are connected to. (See How to configure
“number:” settings for instructions for each type of control system.)

Flippers 457

Mission Pinball Framework Documentation, Version

We also added tags called left_flipper and right_flipper. These are optional, but recommended.
The reason is that MPF includes a combo switch feature which posts events when player switches are
held in combination. If you add these tags to your flipper switches, an event called flipper_cancel will
be posted when the player hits both flipper buttons at the same time which you can use to cancel
shows and other things you want the player to be able to skip.

2. Add your flipper coils

Next you need to add entries for your flipper coils to your machine-wide config. These will be added to
a section called coils:.

coils:

c_flipper_left:

number: 0

allow_enable: true

default_hold_power: 0.125

c_flipper_right:

number: 1

allow_enable: true

default_hold_power: 0.125

Again, the number: entries in your config will vary depending on your actual hardware, and again, you
can pick whatever names you want for your coils.

Also note that the coils have allow_enable: true entries added. (In MPF config files, values of “yes”
and “true” are the same.) The purpose of the allow_enable: true setting is that as a safety
precaution, MPF does not allow you to enable (that is, to hold a coil in its “on” position) unless you
specifically add allow_enable: true to that coil’s config.

Since flippers need to be held on (as long as the flipper button is active), you need allow_enable: true
in the coil config for them.

Finally, notice that there’s a default_hold_power: 0.125 setting for each coil. That is the power value
(from 0-1) which controls how much power is applied to the flipper when it’s held on. A value of 0.125
is 12.5% power, a value of 2 is 25% which, a value of 0.375 is 37.5%, 0.5 is 50%, etc.

We just start with the lowest setting for now and you can increase it later if it’s not enough.

3. Add your flipper entries

At this point you have your coils and switches defined, but you can’t flip yet because you don’t have
any flippers defined. Now you might be thinking, “Wait, but didn’t I just configure the coils and
switches?” Yes, you did, but now you have to tell MPF that you want to create a flipper mechanism
which links together the switch and the coils to become a “flipper”.

You create your flipper mechanisms by adding a flippers: section to your machine config, and then
specifying the switch and coils for each flipper that you defined in Steps 1 and 2.

Here’s what you would create based on the switches and coils we’ve defined so far:

flippers:

left_flipper:

main_coil: c_flipper_left

activation_switch: s_left_flipper

(continues on next page)

Flippers 458

Mission Pinball Framework Documentation, Version

(continued from previous page)

right_flipper:

main_coil: c_flipper_right

activation_switch: s_right_flipper

4. Enabling your flippers

By default, MPF only enables flippers when a game is in progress. So if this is a first-time config and
you haven’t configured your ball devices and start button and everything, you can’t actually start a
game yet, which means you can’t test your flippers.

Fortunately we can get around that by configuring your flippers to just automatically enable
themselves when MPF starts. To do this, add the following entry to each of your flippers in your config
file:

enable_events: machine_reset_phase_3

So now the flippers: section of your config file should look like this:

flippers:

left_flipper:

main_coil: c_flipper_left

activation_switch: s_left_flipper

enable_events: machine_reset_phase_3

right_flipper:

main_coil: c_flipper_right

activation_switch: s_right_flipper

enable_events: machine_reset_phase_3

5. Configure your control system hardware

At this point your flipper configuration is technically complete, though there are two other important
things you may have to do first:

If you’re using physical hardware, you may need an additional section in your machine config for your
control system. (For example, FAST Pinball and Open Pinball Project controllers require a one-time
port configuration, etc.) See the control system documentation for details.

6. Adjust your flipper power

As a safety precaution, MPF uses very low (10ms) default pulse times for coils. In most cases, 10ms
will not be enough power to physically move the flippers when you hit the button. (You might hear
them click or buzz without actually seeing them move.)

So check out the documentation in the coils section for instructions on how to adjust the pulse power
and the hold power for the coils you’re using for your flippers.

Flippers 459

Mission Pinball Framework Documentation, Version

Here’s the complete config

Here’s the complete machine config file (or sections of the machine config file) we created in this How
To guide:

#config_version=5

switches:

s_left_flipper:

number: 1

tags: left_flipper

s_right_flipper:

number: 2

tags: right_flipper

coils:

c_flipper_left:

number: 0

allow_enable: true

default_hold_power: 0.125

c_flipper_right:

number: 1

allow_enable: true

default_hold_power: 0.125

flippers:

left_flipper:

main_coil: c_flipper_left

activation_switch: s_left_flipper

enable_events: machine_reset_phase_3

right_flipper:

main_coil: c_flipper_right

activation_switch: s_right_flipper

enable_events: machine_reset_phase_3

How to temporarily disable flippers

Help us to write it

switches:

s_left_flipper:

number: 1

tags: left_flipper

s_right_flipper:

number: 2

tags: right_flipper

coils:

c_flipper_left:

number: 0

allow_enable: true

default_hold_power: 0.125

c_flipper_right:

number: 1

allow_enable: true

default_hold_power: 0.125

flippers:

(continues on next page)

Flippers 460

Mission Pinball Framework Documentation, Version

(continued from previous page)

flipper_left:

main_coil: c_flipper_left

activation_switch: s_left_flipper

hold_coil:

enable_events: ball_started, flipper_on

disable_events: ball_will_end, flipper_off

flipper_right:

main_coil: c_flipper_right

activation_switch: s_right_flipper

hold_coil:

enable_events: ball_started, flipper_on

disable_events: ball_will_end, flipper_off

##! mode: flipper_mode

mode:

priority: 1000

event_player:

mode_flipper_mode_started: flippers_on

timer_flippers_disabled_started: flippers_off

timer_flippers_disabled_complete: flippers_on

timers:

flippers_button_active_left:

control_events:

- event: s_flipper_left_active

action: restart

- event: s_flipper_left_inactive

action: stop

start_value: 0

end_value: 10

direction: up

tick_interval: 1s

flippers_button_active_right:

control_events:

- event: s_flipper_right_active

action: restart

- event: s_flipper_right_inactive

action: stop

start_value: 0

end_value: 10

direction: up

tick_interval: 1s

flippers_disabled:

control_events:

- event: timer_flippers_button_active_left_complete

action: start

- event: timer_flippers_button_active_right_complete

action: start

- event: timer_flippers_disabled_complete

action: reset

start_value: 0

end_value: 3

direction: up

tick_interval: 1s

Flippers 461

Mission Pinball Framework Documentation, Version

How to enable “secondary playfield” flippers

Related Config File Sections
flippers:

Secondary or upper flippers (e.g. on an upper playfield) are enabled and defined just like normal
lower flipper.

This is an example:

flippers:

lower_left:

main_coil: c_flipper_lower_left_main

activation_switch: s_flipper_left

label: Left Main Flipper

lower_right:

main_coil: c_flipper_lower_right_main

activation_switch: s_flipper_right

label: Right Main Flipper

upper_left:

main_coil: flipperUpLMain

activation_switch: flipperUpL

enable_events: ball_started, enable_upper_flippers

disable_events: ball_will_end, service_mode_entered, disable_upper_flippers

label: Upper Left Flipper

upper_right:

main_coil: flipperUpRMain

activation_switch: flipperUpR

enable_events: ball_started, enable_upper_flippers

disable_events: ball_will_end, service_mode_entered, disable_upper_flippers

label: Upper Right Flipper

Additionally, we defined disable_upper_flippers as event to disable the upper flippers and
enable_upper_flippers to re-enable them. This might be useful if you want to disable flippers in some
mode. If you do not want them to be enabled by default remove ball_started from enable_events.

How to enable “weak flippers” (novelty mode)

Some machines have modes which reduce the flipper power. This can be implemented in two ways.
Either by reducing pulse_power or by reducing pulse_ms (some platforms only support the latter).

This is an example:

switches:

s_left_flipper:

number: 1

s_right_flipper:

number: 2

coils:

c_flipper_left:

number: 0

default_pulse_ms: 30

default_pulse_power: 0.5

(continues on next page)

Flippers 462

Mission Pinball Framework Documentation, Version

(continued from previous page)

default_hold_power: 0.125

c_flipper_right:

number: 1

default_pulse_ms: 30

default_pulse_power: 0.5

default_hold_power: 0.125

flippers:

left:

main_coil: c_flipper_left

activation_switch: s_left_flipper

enable_events: normal_flippers_enable, ball_started

disable_events: weak_flipper_enable, ball_will_end, service_mode_entered

right:

main_coil: c_flipper_right

activation_switch: s_right_flipper

enable_events: normal_flippers_enable, ball_started

disable_events: weak_flipper_enable, ball_will_end, service_mode_entered

left_weak:

main_coil: c_flipper_left

main_coil_overwrite:

pulse_power: 0.3 # alternatively you can use pulse_ms: 20 here

activation_switch: s_left_flipper

enable_events: weak_flipper_enable

disable_events: normal_flippers_enable

right_weak:

main_coil: c_flipper_right

main_coil_overwrite:

pulse_power: 0.3 # alternatively you can use pulse_ms: 20 here

activation_switch: s_right_flipper

enable_events: weak_flipper_enable

disable_events: normal_flippers_enable

We define two sets of flippers: Normal and weak flippers. Post weak_flipper_enable in your mode to
enable weak flippers. Later post normal_flippers_enable to reenable normal flippers. You can also use
your mode start/stop events here.

Related Events

None

Flipper end-of-stroke (EOS) switches

Here’s the thing about EOS switches in a modern pinball machine: they’re optional.

To be very clear, EOS switches are only optional if the software is written to not use them. You can’t
just walk up to an existing game and cut the wires to the EOS switches or you’ll probably burn up your
coils. (I say “probably” because some games will detect that the EOS switch wasn’t hit when it should
have been and cut the power anyway.)

If you wanted to program a game without EOS switches, you could do that. The way you’d do that is to
flip from “power” to “hold” mode after a predefined time (like 30ms), rather than waiting for an EOS
switch to be engaged.

Flippers 463

Mission Pinball Framework Documentation, Version

Why would you want to use the “pulse timing” method versus the “EOS switch” method for the flipper
power stroke? There are a few reasons:

∙ You can control the “strength” of the flippers in software, rather than with hardware. This means
you can fine tuning the flipper feel for your game without having to swap coils or adjust voltages.

∙ You can allow operators to change flipper strength via a service menu item, compensating for
mismatched coils, coil age, machine slope, etc. However, this could also be implemented using
PWMed pulses with full stroke and EOS cut-off.

∙ Your software can change the strength as part of a game feature. (For example, Wizard of Oz has
a “weak flippers” mode which makes the shots harder.) This can also be implemented with EOS
by reducing the pulse time below the EOS (tpyical) cut-off time.

Having said this, there’s still a reason you might want to use the EOS switches today—-the EOS switch
can be used to detect if a fast-moving ball has hit the flipper so hard that it broke through the hold
power and caused the flipper bat to fall down. The idea is you’d use the EOS switch to reactivate the
power winding (or to reapply full power if you’re using the pulse method) until the EOS switch is
activated again, and then you’d go back to holding the coil.

Whether you actually want to do this is a matter of opinion. Finding the proper strength for your hold
power—-especially if you’re using the pulse method—-is a balance between applying enough power to
keep the flipper bat up without using so much power that your coil overheats. Some argue that if you
get this balance right, your hold power should be enough to stand up to a fast ball hitting an upheld
flipper. The other thing to consider with this is that even if a fast-moving ball does knock the flipper
bat down, there’s no agreement on whether automatically re-applying full power to raise the bat is the
right thing to do. Some have argued that that’s confusing to the player, and that if the flipper bat does
fall down when the player is not expecting it, that the player should choose to re-engage it by
releasing and reapplying the flipper button.

Even if you don’t use EOS switches for action purposes in your game, chances are your flipper
mechanisms have them. Assuming you have enough switch inputs available, we like the idea of wiring
up your EOS switches anyway and just audit logging whether an EOS switch is deactivated while its
associated flipper button is still active. Doing so means you capture the number of times a ball
inadvertently moves a flipper bat, and you can make power adjustments to your hold phase
accordingly. It also lets the machine know if the flippers are broken.

How does the machine know when the flipper is “up”?

You might notice that both of the options for not burning up the flipper coils when they’re held up
require that the machine “knows” when the coil is up in order to switch over to hold mode. So how
exactly does a machine know this?

Many flippers in pinball machines today have an “end of stroke” (or “EOS”) switch for each flipper.
This switch was located under the playfield near the flipper coil, and it is physically activated by the
flipper mechanism once it has rotated fully into the “up” position. In the old days (like in EM
machines), the flipper coils all used the dual winding (i.e. “Option 1” from above) approach, and the
EOS switch was a normally-closed switch connected in series with the flipper cabinet button which
activated the power winding. So when the flipper button was pressed, both the power and hold
windings were activated, and then when the flipper was all the way up it would open the EOS switch,
cutting off power to the power winding. The hold winding remains energized until the player releases
the flipper button.

When EOS switches are used in modern machines, they’re typically connected into into the game like
any other switch, so the CPU can process the EOS activation and disable the power winding or start

Flippers 464

Mission Pinball Framework Documentation, Version

pulsing the power.

Option 2: The flipper has one winding, and the game lowers the power once the flipper is up

The other type of flipper uses a normal coil with just a single winding. When the flipper button is
pressed, the machine fires the flipper coil with normal full power. Then once the flipper makes it to
the “up” position, the game starts pulsing the power really quickly. (So fast that it doesn’t move the
flipper back down, but with enough “spaces” between the pulses that the coil doesn’t burn up.)

Then when the flipper button is released, the power is cut to the altogether. In case you’re wondering
why the machine pulses the power, it’s because the pinball machine doesn’t have the ability to actually
change the voltage and current that is supplied to the coil. That’s fine, though, because what actually
causes a coil to burn is the heat generated from the current flowing through it. So a coil which is
pulsed on then off every millisecond would only have a “duty cycle” of 50%, thereby generating far
less heat and not burning up. (The 1ms on / 1ms off is just an example for this illustration. In a real
machine it might be 1 on / 10 off, or 2/18, or 1/6—the exact pulse ratio depends on the coil type and
the amount of voltage used.)

This single-winding coil is less common. Stern used to do it though in their current SPIKE system
they’ve moved back to dual-wound flippers.

Design Decision 2: Pulse timings or EOS switch to indicate “up” position?

Next you have to figure out how you’re machine will know when to switch to the low power hold mode.
(How it switches depends on Design Decision 1, where it either cuts off the high power winding, or
switches over from the solid pulse to the quick on/off modulated pulses.) If you use pulse timings then
it switches over after a certain number of milliseconds. If you use the EOS switch then it activates full
power until the EOS switch is activated. Our view is that using the EOS switch to switch over to
low-power hold mode is far less flexible than configuring specific initial pulse times. We like that this
allows game designers and operators to precisely configure flipper power, and certainly this is a much
more modern approach than physically swapping out flipper coils to increase or decrease power. Then
again, if you’re old school and want to fire that flipper with full power until that EOS switch is
activated, fine, go for it.

Design Decision 3: Will you use EOS switches to notify the game that a ball has “broken through” the hold?

Modern machines use pulse-width modulation (PWM) to keep flipper bats up because most coils will
instantly burst into flames if you enable them at 48V which are typically used in today’s machines.
PWM uses a so called duty-cycle which determines how much energy moves into the flippers. More
energy strictly results in more power but that energy also turns into heat. Unfortunately, the
resistance in copper wires in the coil increases with the temperature and, consequently, the less
current and energy will flow through the coil. As a result the coil will become weaker of time when it
heats up. Since we do not know the temperature in software this cannot easily be compensated as
runtime (and the coil would probably become even hotter and burn if we would try).

Finding the right spot where the coil is strong enough, knockdowns do not happen and the
temperature stays low enough is not generally easy. Parts age over time, environment temperature
differs between location and even the voltage might fluctuate. We have seen overheating of coils in
some machines by newer manufacturers.

Flippers 465

https://en.wikipedia.org/wiki/Pulse-width_modulation

Mission Pinball Framework Documentation, Version

So what can we do about this? We can detect when the EOS switch opens while the flipper button is
active and repulse the flipper coil. Ideally, this should happen inside the pinball hardware but this is
not supported by all hardware platform in MPF. For all remaining platforms, we mitigate this in
software in MPF. This introduces a few milliseconds of delay but it should be fast enough that the
player does not notice it.

This is how you can enable it in MPF:

flippers:

single_wound_flipper:

main_coil: c_flipper_single_main

activation_switch: s_flipper_single

eos_switch: s_flipper_single_eos

use_eos: true

repulse_on_eos_open: true

eos_active_ms_before_repulse: 500

dual_wound_flipper:

main_coil: c_flipper_dual_wound_main

hold_coil: c_flipper_dual_wound_hold

activation_switch: s_flipper_dual_wound

eos_switch: s_flipper_dual_wound_eos

use_eos: true

repulse_on_eos_open: true

eos_active_ms_before_repulse: 500

To prevent repeated activations MPF will wait eos_active_ms_before_repulse ms before a repulse can
happen. There are certain races between hardware rules and this mechanism which MPF tries to
handle (but we might have missed cases - let us know if you find any rough edges or weird behaviour
with this).

In general, this should allow you to reduce PWM power by a lot and instead use repulses in the rare
case of knockdowns. This should work with all platforms and will use hardware rules if your platform
supports them.

Kickbacks

Related Config File Sections
kickbacks:
ball_saves:

∙ Monitorable Properties

∙ Related Events

A kickback mechanism is a type of autofire coil that kicks the ball back into play, typically located in
an outlane. It is often paired with a ball_save to compensate for missed kickbacks.

TODO: Add a picture of a kickback

This is an example:

Kickbacks 466

Mission Pinball Framework Documentation, Version

switches:

s_kickback:

number: 5

coils:

c_kickback:

number: 7

default_pulse_ms: 15

kickbacks:

ac_kickback:

coil: c_kickback

switch: s_kickback

ball_saves:

kickback_ball_save:

active_time: 5s

enable_events: kickback_ac_kickback_fired

auto_launch: true

balls_to_save: 1

Monitorable Properties

For dynamic values and conditional events, the prefix for kickbacks is device.kickbacks.<name>.

enabled Boolean (true/false) which shows whether this kickback is enabled.

Related Events

∙ kickback_(name)_fired

Lights

Related Config File Sections
lights:
light_settings:
light_player:

∙ Fully working Example 1 - basics

∙ Fully working Example 2 - light_stripes

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

In MPF 0.50 all LEDs, matrix lights and GIs are configured as lights:. See “Lights” versus “LEDs”
(Some LEDs are lights?!?) for details.

There are multiple types of lights (read those for specific details):

Lights 467

Mission Pinball Framework Documentation, Version

∙ LEDs

∙ GI (general illumination)

∙ Matrix Lights (Bulbs)

∙ Flashers

∙ Coils as Lights

This is an example of for a light:

lights:

my_led:

number: 7 # the exact number format depends on your platform

For WS2812 LEDs use type: grb (WS2811 does not need this):

lights:

my_ws2812_led:

number: 23 # the exact number format depends on your platform

type: grb

You can also map individual color channels:

Lights 468

Mission Pinball Framework Documentation, Version

lights:

rgb_led:

type: rgb

channels:

red:

number: 9-29 # the exact number format depends on your platform

green:

number: 9-30

blue:

number: 9-31

white:

number: 9-32

Starting with MPF 0.54 there is a new syntax to chain lights:

lights:

led_0:

start_channel: 0-0 # the exact number format depends on your platform

subtype: led

type: rgb # will use red: 0-0, green: 0-1, blue: 0-2

led_1:

previous: led_0

subtype: led

type: rgbw # will use red: 0-3, green: 0-4, blue: 0-5, white: 0-6

led_2:

previous: led_1

subtype: led

type: rgbw # will use red: 0-7, green: 0-8, blue: 0-9, white: 0-10

If your light is connected to a driver use this example:

coils:

light_connected_to_a_driver:

number: 42 # number depends on your platform

allow_enable: true # this will allow 100% enable without pwm

lights:

light_on_a_driver:

number: light_connected_to_a_driver # map this light to a driver

platform: drivers

Fully working Example 1 - basics

Let’s bring above informaton together and learn by example. Though the following example is a fully
working minimal set for the Cobra controller, it is as well helpful to understand the concpet more if
you use a different set of hardware. For this example to work physically, the Cobra board needs to
have 5V power supply and a Neopixel strip connected to NEO0. No need for a high voltage power
supply like you need for coils. The example has been built for a WS2811 strip, but can be used as well
for a WS2812 strips and others. This config.yaml is the only configuration file you need in your
project. The config file is fully valid for the Cobra board connected to a Linux PC running MPF. If you
have a Cobra board but run Windows or macOS you have to change the ports. If you run a completely
different hardware you have to adapt the hardware section.

Lights 469

Mission Pinball Framework Documentation, Version

#config_version=5

hardware: # change in case you don't use OPP

platform: opp

driverboards: gen2

opp:

ports: /dev/ttyACM0, /dev/ttyACM1 # change if your Cobra board uses different ports

lights:

led_strip_0_led_1:

number: 0-0-1 # the exact number format depends on your platform

subtype: led

type: rgb

tags: group1

led_strip_0_led_2:

number: 0-0-2 # the exact number format depends on your platform

subtype: led

type: rgb

tags: group1

led_strip_0_led_3:

previous: led_strip_0_led_2

subtype: led

type: rgb

tags: group1

light_player:

led_code:

led_strip_0_led_1: DFFF00

led_off:

led_strip_0_led_1: off

led_strip_0_led_2: off

led_strip_0_led_3: off

led_name:

led_strip_0_led_1: LightSalmon

group_light:

group1: green

led_fade:

led_strip_0_led_1:

color: slateblue

fade: 2000ms

keyboard:

1:

event: led_off

2:

event: led_code

3:

event: led_name

4:

event: group_light

5:

event: led_fade

When you run this configuration, you can use the keys 1 - 5 to set certain lights. Each key submits one

Lights 470

Mission Pinball Framework Documentation, Version

event. That event is being used in the light_player section. Each event in the light_player section is
assigned to an LED (or group of LEDs), these LEDs are defined in the lights section of the config file.
In the light_player section each LED is assigned a color. For the colors you can use:

∙ off: to switch an led off

∙ hex code: e.g. DFFF00 to define each color channel, here red=DF, green=FF, blue=00. Note that
the code has no leading # since that would be a comment in your config file

∙ html name: e.g. LightSalmon, you can check the available names here
https://htmlcolorcodes.com/color-names/ Capitalization doesn’t matter in the config file, e.g.
LightSalmon or lightsalmon are equally good

In the light_player section you can either define the color as value of the specified LED, which turns
that LED immediately to the given color. Or you can specifiy a color and a fade value, then the color
will transition to the new value in the specified time. In the config file this is configured for key 5, see
led_fade in the light_player section.

In the light_player section after each event you can specify one or multiple lights. In the section
led_off both LEDs are specified, hence both are turned off when the event led_off is sent.

Note that the defined lights have tags, here the tag value is group1. In the light_player section you
can either address a single LED by its name or you can use a group name to address all LEDs in that
group. When you press key 4 then LED 1, 2, and 3 are switched to green. A few notes on above
example:

∙ It is kept as simple as possible to learn by example.

∙ Keep in mind that numbering starts with 0, so LED 1 and 2 in above config are your 2nd and 3rd
LED of the strip

∙ If you use a WS2812 strip then the green and red channel are swapped. Which means that if you
see a red light when pressing button 4, then you have a WS2812 strip. In order to get this fixed
change the type value in the config file from rgb to grb.

∙ After you run that example and understand how it works, then change the type of
led_strip_0_led_2 to ggg. Now run the setup again and press key 4. The first LED will still show
green, but the second LED will show white. That is because you told the configuration that that
LED has only green channels so it turns all of them on when you want to show green, but in fact
the other channels show red and blue. Depending on what you do, this might be helpful to know.

∙ The above example uses NEO0 of the Cobra controller, if you want to use NEO1 you have to
change the number value in the lights section of your config file, the first 0 has to be a 1 in this
case.

∙ Note that in the definition of led_strip_0_led_3 the hardware addess is not specified (unlike
led_strip_0_1 and led_strip_0_2. Instead what is specified is what the previous LED is. That is
handy in case you need to add a new LED somewhere in your chain. Instead of changing all
hardware addresses you can just change the one previous tag.

Fully working Example 2 - light_stripes

From a hardware perspective the same remarks as in the example above are true. This example will
show a fully working example using the parameter light_stripes (yes written with an e). The
adavantage of this paramater is that you are able to define a full serial LED light strip with a few lines
of config. See as well the corresponding config file section light_stripes:

Lights 471

https://htmlcolorcodes.com/color-names/

Mission Pinball Framework Documentation, Version

#config_version=5

hardware:

platform: opp

driverboards: gen2

opp:

ports: /dev/ttyACM0, /dev/ttyACM1

light_stripes: #yes there is a spelling mistake, make the same mistake

led_strip_0:

number_start: 0

count: 50

number_template: 0-0-{}

light_template:

type: rgb

tags: strip0

light_player:

full_strip_on:

strip0: DFFF00

led_off:

led_strip_0: off

keyboard:

1:

event: led_off

2:

event: full_strip_on

Monitorable Properties

For dynamic values and conditional events, the prefix for lights is device.lights.<name>.

brightness The numeric value of the brightness of this light, from 0-255.

color The current color.

Related How To guides

∙ Tutorial step 17: Add lights (or LEDs)

Related Events

None

Lights 472

Mission Pinball Framework Documentation, Version

LEDs

Related Config File Sections
lights:
light_settings:
light_stripes:
light_rings:
light_player:

∙ Serial LEDs

∙ Hardware

∙ Config in MPF

∙ Parallel LEDs

∙ Serial vs Parallel LEDs

∙ Can I used RGB LEDs below colored inserts?

∙ Which LED Types Are Supported in MPF?

∙ Color Correction

∙ Monitorable Properties

MPF can control LEDs, including single-channel (single color) and full RGB LEDs. (You can control the
order too, so you can control RGB, BRG, etc.) You can set default fade rates and control strips and
rings of LEDs.

In general there are two ways to wire LEDs in a pinball machine. Either parallel or serial. With serial
LEDs you got a chain of LEDs which are connected to a controller board on one side. In contrast, with
parallel LEDs every LED has its own wire(s) to the controller. While parallel LEDs are more robust in
general they also require much more wiring. Which kind of LEDs you’re using usually depends on
what is supported in your platform (some support both).

Serial LEDs

With serial LEDs the order of colors is usually fixed. For instance, in WS2811 LEDs (a common serial
LED controller embedded inside the LED), the first channel is red, the second green and third is blue
(RGB order). Newer WS2812 LEDs have GRB order (green, red and blue). Some LEDs also contain an
additional white channel and thereby have four channels (either RGBW or GRBW order). Other serial
LEDs contain three white LEDs (WWW order). If nothing is specified MPF assumes RGB order so you
need to specify it for any LED with a different channel order.

Overview video about serial LEDs:

https://youtu.be/Q9BG9T7Kj4A

Lights 473

https://youtu.be/Q9BG9T7Kj4A

Mission Pinball Framework Documentation, Version

Hardware

There are two common types of serial LEDs: WS281x and LPD880x. (See WS2811 and WS2812 LEDs
in Pinball for more details about WS2811/WS2812 in pinball.) Those LEDs are chained which means
that the controller only connects to the first LED. The first LED will connect to the second. The second
to the third and so on.

Both types are spec’d for 4.5V to 5.5V operations and you should make sure that the voltage does not
drop below 4.5V inside the chain at full brightness. Otherwise, your colors will be off and the LEDs
might start to flicker. We recommend you to turn on all your LEDs and measure this. In most cases it
is helpful to run your power supply at 5.5V instead of 5V to give your LEDs some headroom.

Additionally, make sure to run separate ground lines for serial LEDs from your PSU. We recommend
you to connect the ground at the PSU and not below the playfield because coils will create a lot of
spike in the ground line otherwise. However, make sure that you connect your grounds or you will be
in danger!

Video about wiring of lights:

https://youtu.be/C9GzkMduEKY

Config in MPF

You can define serial LEDS in MPF as lights::

lights:

my_ws2811:

number: 0 # first LED in chain (with three channels)

type: rgb

my_ws2812:

number: 1 # second LED in chain (with three channels)

type: grb

my_serial_white_leds:

number: 2 # third LED in chain (with three channels)

type: www

The numbering depends on your platform. Internally the first LED will map to the first three LEDs in
the chain (because one LED contains three interal LEDs). The second will map to LED four to six and

Lights 474

https://youtu.be/C9GzkMduEKY

Mission Pinball Framework Documentation, Version

so on.

The config above is equivalent to the following (again numbers may be different per platform):

lights:

my_ws2811:

channels:

red:

- number: 0-0

green:

- number: 0-1

blue:

- number: 0-2

my_ws2812:

channels:

red:

- number: 1-1

green:

- number: 1-0

blue:

- number: 1-2

RGBW LEDs are special in most serial LED controllers since the controller assumes that every LED
has exactly three channels. Therefore, you have to assign the channels directly:

lights:

my_rgbw_serial_led:

channels:

red:

- number: 3-0

green:

- number: 3-1

blue:

- number: 3-2

white:

- number: 4-0

my_ws2812_after_rgbw:

channels:

red:

- number: 4-1

green:

- number: 4-2

blue:

- number: 5-0

The RGBW shifts all the channels by one internally. As you can see this can quickly become confusing
so it might be wise to run RGBW LEDs (or any non-three-channel LEDs) as a separate chain.

Starting with MPF 0.54 there is a new syntax to chain lights:

lights:

led_0:

start_channel: 0-0 # the exact number format depends on your platform

subtype: led

type: rgb # will use red: 0-0, green: 0-1, blue: 0-2

led_1:

(continues on next page)

Lights 475

Mission Pinball Framework Documentation, Version

(continued from previous page)

previous: led_0

subtype: led

type: rgbw # will use red: 0-3, green: 0-4, blue: 0-5, white: 0-6

led_2:

previous: led_1

subtype: led

type: rgbw # will use red: 0-7, green: 0-8, blue: 0-9, white: 0-10

Parallel LEDs

TODO: Add a picture of a parallel RGB LED

With parallel LEDs you usually got a bit more flexibility with your channel assignments. You can
decide to make an LED with only a red channel for example. MPF cannot guess your hardware layout
in most platforms. Therefore your have to explicitly tell MPF your channel layout:

lights:

my_red_only_insert:

channels:

red:

- number: 0

my_rgb_insert:

channels:

red:

- number: 1

green:

- number: 3

blue:

- number: 2

my_white_light:

channels:

white:

- number: 4

You can also have multiple channels per color (if you do not want to make them different lights):

lights:

multi_white_channels:

channels:

white:

- number: 5

- number: 6

- number: 7

With parallel LED you can also use start_channel to define the color (starting from MPF 0.54):

lights:

my_red_only_insert:

start_channel: 0 # the exact number format depends on your platform

type: r # will use red: 0

my_rgb_insert:

start_channel: 1 # the exact number format depends on your platform

(continues on next page)

Lights 476

Mission Pinball Framework Documentation, Version

(continued from previous page)

type: rbg # will use red: 1, green: 3, blue: 2

my_white_light:

previous: my_rgb_insert # you can also chain those if you want

type: w # will use white: 4

Serial vs Parallel LEDs

There is a controversy if serial LEDs are feasible below the playfield or not. In general, serial LEDs
require much less wiring which make them much cheaper during assembly. However, if one LED fails
within a chain all subsequent ones will likely also fail until the broken LED is changed. Interference
will happen below a playfield and might disturb the colors. In practise the refresh rate of serial LEDs
are so high that you will not notice any incorrect colors. It is unclear how interference affects the
reliability of the controller chips of serial LEDs. Jersey Jack Pinball tried serial LEDs in the Wizard of
Oz (WoZ) and ran into a lot of reliability issues. Finally, they reverted back to parallel LEDs (one I2C
driver chip per chain). One of the problems they had was interferences in the ground line which is
why we recommend a separate power supply for serial LEDs and a separate ground line (but still
common ground; see the voltages and power guide for details).

For production runs you should probably be careful with serial LEDs. At least test extensively.
However, you might take some risks in a homebrew machine because serial LEDs are quite cheap and
easy to replace once broken. In practise they seem to work just fine for all homebrew machines we
know.

Can I used RGB LEDs below colored inserts?

There is no point to use RGB LEDs below colored inserts. That simply does not work physically. Those
colored inserts act as filter and any other color simply shall not pass.

We recommend white LEDs below colored inserts. Then define them as red or whatever color your
insert is. If you use parallel LEDs below colored inserts just buy plain white ones. For serial LEDs you
can buy bulk WS2811 PCBs from china and connect white LEDs to any of the channels.

Which LED Types Are Supported in MPF?

MPF supports any white, single-color or multi-color LED. This includes RGB, RGBW or any other
combination you can imagine. The type parameter just reads the channels and maps them without
thinking too much of it. For instance you can use GRBW LEDs with a green, red, blue and white
channel. Similarly, RRBRGWBGWWR or even more crazy combinations work fine.

Currently, MPF support red, blue, gree and white channels. White it calculated as the minimum
brightness of all channels. If you need other channels such as orange let us know in the forum.

Color Correction

If you are using RGB LEDs, they might not be perfectly white when you turn them on. They might be
pinkish or blueish instead depending on the brand of the LED. To a certain extend this is
normal/expected and you can compensate for it by configuring color_correction profiles in
light_settings.

Lights 477

Mission Pinball Framework Documentation, Version

Monitorable Properties

For dynamic values and conditional events, the prefix for LEDs is device.lights.<name>.

∙ color

∙ corrected_color

Related How To Guides
Tutorial step 17: Add lights (or LEDs)

Related Events
None

“Lights” versus “LEDs” (Some LEDs are lights?!?)

In MPF 0.33 and earlier not all LEDs had to be configured as LEDs. This changed in 0.50+ where all
lights, GIs and matrix_lights were unified as lights. The distinction is now only the subtype in the
lights config.

Taking a step back. There are two types of lighting systems in pinball machines: lamp matrices and
direct-connected LEDs. All commercial pinball machines from about 1979 through 2012 (give or take)
used lamp matrices (typically with 8 rows and 8 columns of lights). Historically these were used with
incandescent light bulbs, (#44, #555, etc.).

However, in more recent years various manufacturers have released LED “replacement” bulbs that fit
the old-style sockets but that are actually LEDs. If your machine uses a lamp matrix, then you will add
your lights (whether they’re LEDs or incandescent) as lights with subtype matrix in your machine
config. You’ll do this even if you have LED bulbs in your lamp matrix.

Alternately, if you have directly-controlled LEDs (i.e. no lamp matrix), whether single color or RGB,
then you’ll configure them as subtype led in the lights: section of your config.

The following diagram shows the different types. An easy way to tell is if your lights or LEDs have
mini bayonet or mini wedge bases, they’re Matrix Lights, and everything else is LEDs:

Lights 478

Mission Pinball Framework Documentation, Version

Note that it’s possible that you’ll have both matrix lights and direct connected LEDs in the same
machine. For example, maybe you’re writing code for an existing WPC machine and you’ll use the
existing matrix lights as they are while also adding new direct connected LEDs for some new toys.

GI (general illumination)

Related Config File Sections
lights:
light_player:
coils:

∙ Hardware

∙ Config

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

Lights 479

Mission Pinball Framework Documentation, Version

MPF includes support for GI (general illumination) light strings which are common in existing
Williams and Stern machines. You can specify GI strings which you can then enable, disable, or (if the
hardware supports it) dim. Typically, there are one to four GI strings.

Note: In MPF 0.50 GIs became lights: with subtype gi. They behave like any other lights in MPF.

Hardware

TODO: Add a picture of a GI string TODO: Add a picture of GI LEDs

GI Strings are actually kind of complex. Many of them are AC (even in WPC machines), and some
Williams WPC machines include triacs (kind of like a transistor for AC) and “zero cross” AC waveform
detection circuits so they can sync their dimming commands with the AC current wave. Later Williams
WPC machines split their GI into non-dimmable (which used still used AC) and switched their
dimmable to DC. Some machines also have “enable” relays that must be activated first before certain
GI strings will work. In general those bulbs are the same models as used for inserts (#44 and #47 for
EM and early SS; #444/#555/#249 for later SS; #906 for later machines).

GI string might also be connected to a driver and not part of a light matrix. In recent machines LEDs
are used but still driven in strings.

Video about wiring of lights:

https://youtu.be/C9GzkMduEKY

Config

MPF hides all this complexity from you. You just define your GI strings in your machine lights: section
and then you can enable, disable, and dim the dimmable ones as you wish.

This is an example for a light with subtype: gi:

lights:

gi_string_left:

number: 3 # number depends on your platform

subtype: gi

In modern machines (such as Spike) your GIs might just be handled as lights. The details depend on
your hardware platform and are outlined in the platform documentation.

This is an example for a light in Spike:

lights:

gi_string_left:

number: 3 # number depends on your platform

subtype: led # might be matrix in some platforms

In some cases GIs are connected to normal drivers on your driver board (e.g. on a PD-16 on the
P3-Roc). If that is the case you should configure them as coils. Then add them as light with platform:
drivers:

Lights 480

https://youtu.be/C9GzkMduEKY

Mission Pinball Framework Documentation, Version

coils:

gi_string_left:

number: A1-B1-3 # number depends on your platform

allow_enable: true # this will allow 100% enable without pwm

lights:

gi_string_left:

number: gi_string_left # map this light to a driver

platform: drivers

Alternatively, you could also use coil_player but this gives you the convinience of being able to use GIs
in normal light shows.

Monitorable Properties

For dynamic values and conditional events, the prefix for lights is device.lights.<name>.

color The color of this string. If you set it to brightness values all color channels will have the same
value. Brightness 100 (of 255) will be hex 64 and color 646464.

Related How To guides

See the documentation of your platform on how to configure GIs.

Platform related How To
P/P3-Roc leds
P/P3-Roc matrix light
FAST leds
FAST matrix light
OPP leds
OPP matrix light

Related Events

None

Matrix Lights (Bulbs)

Related Config File Sections
lights:

∙ Hardware

∙ Config

∙ Monitorable Properties

Lights 481

Mission Pinball Framework Documentation, Version

Some hardware platforms support lamps in a matrix. Those lights are usually bulbs and single color
(white). Each of them is assigned to a unique column/row combination and driven sequentially by the
platform.

Video about wiring of lights:

https://youtu.be/C9GzkMduEKY

Hardware

TODO: Add a picture of bulbs in a matrix

There are various types of bulbs in pinball machines depending on when they were made. In EM and
early SS #44 and #47 bulbs were used. Later SS machines used #555 bulbs (or the vibration resistant
variant #444 or the #259 substitute). Those bulbs are rated at 6.3V but typically driven at 12V in a
matrix or using AC voltages in older machines. Newer machines (pre LED) use #906 bulbs which are
rated at 13.5V.

Config

Details differ by platform but the syntax for the number of such a light is usually column:row or
column:row (see your platform for details). The config looks like this:

lights:

my_matrix_light:

number: 2:10 # or 2/10

Monitorable Properties

For dynamic values and conditional events, the prefix for LEDs is device.lights.<name>.

∙ color

∙ corrected_color

Related How To Guides
Tutorial step 17: Add lights (or LEDs)

Related Events
None

Flashers

Related Config File Sections
coils:
coil_player:
lights:
light_player:
flasher_player:

Lights 482

https://youtu.be/C9GzkMduEKY

Mission Pinball Framework Documentation, Version

MPF includes support for flashers, which are essentially just really bright lights that are controlled via
high-power driver transistors instead of low-power lighting circuitry.

Lights 483

Mission Pinball Framework Documentation, Version

MPF’s flasher devices are only used in older machines (WPC, Stern SAM, System 11) since modern
LED-based machines typically use regular LED devices (or combinations of them) as flashers. (So
basically a “flasher” in MPF is any single-color light that’s connected to a driver output rather than a
light output.

Hardware

#89 and #906 bulbs are commonly used as flashers in pinball machines. Those are rated at 13V but
typically driven at higher voltages for only a very short amount of time. Turning them on permanently
will burn quickly in most machines.

Video about wiring of lights:

https://youtu.be/C9GzkMduEKY

Config

Starting with MPF 0.50 flashers and lights have been unified. Depending on your platform flashers
might be lights: or coils:. In most cases they are configured as coil :

Lights 484

https://youtu.be/C9GzkMduEKY

Mission Pinball Framework Documentation, Version

coils:

flasher_coil_4:

number: 4

allow_enable: true

Then add them as light :

lights:

flasher_4:

number: flasher_coil_4

platform: drivers

Now you can use them in flasher_player: (or also in light_player: if you want to enable the flasher
permanently).

flasher_player:

flash:

flasher_01: 100ms

Monitorable Properties

For dynamic values and conditional events, the prefix for lights is device.lights.<name>.

color

The color of this string. If you set it to brightness values all color channels will have the
same value. Brightness 100 (of 255) will be hex 64 and color 646464.

Related How To guides

See the documentation of your platform on how to configure GIs.

Platform related How To
P/P3-Roc leds
P/P3-Roc matrix light
FAST leds
FAST matrix light
OPP leds
OPP matrix light

Related Events
None

Lights 485

Mission Pinball Framework Documentation, Version

Coils as Lights

Related Config File Sections
lights:
light_player:
coils:
coil_player:

Sometimes you will find lights on a (coil) driver. There are various reasons for this and MPF supports
it. You can either use coil_player: to control those lights but it will be different from normal lights (and
light shows). Alternatively, you can map the coils to a light (recommended). To map a coil as light you
can use the following config:

coils:

your_light_coil:

number: 42 # number depends on your platform

allow_enable: true # this will allow 100% enable without pwm

lights:

your_light_on_a_coil:

number: your_light_coil # map this light to a driver

platform: drivers

This is sometimes done for GI (general illumination) and Flashers.

WS2811 and WS2812 LEDs in Pinball

The most common serial LEDs use WS2811 or WS2812 controllers. Both controllers differ in the order
of the channels. The WS2811 controller uses RGB and WS2812 uses GRB order. Unfortunately, some
controller (i.e. Fadecandy) expect WS2812 by default and shuffle pixels internally for you.

Overview video about serial LEDs:

https://youtu.be/Q9BG9T7Kj4A

Config

MPF tries to make this right for you and your can configure those LEDs as follows:

lights:

my_ws2811:

number: 0 # first LED in chain (with three channels) - exact number format depends on your␣

→˓platform

type: rgb

my_ws2812:

number: 1 # second LED in chain (with three channels)

type: grb

There are also RGBW LEDs which are compatible which usually use RGBW as order. They can be used
like this:

Lights 486

https://youtu.be/Q9BG9T7Kj4A

Mission Pinball Framework Documentation, Version

lights:

my_rgbw_serial_led:

channels:

red:

- number: 3-0

green:

- number: 3-1

blue:

- number: 3-2

white:

- number: 4-0

Starting with MPF 0.54 there is a new syntax to chain LEDs:

lights:

led_0:

start_channel: 0-0 # the exact number format depends on your platform

subtype: led

type: rgb # will use red: 0-0, green: 0-1, blue: 0-2

led_1:

previous: led_0

subtype: led

type: rgbw # will use red: 0-3, green: 0-4, blue: 0-5, white: 0-6

led_2:

previous: led_1

subtype: led

type: rgbw # will use red: 0-7, green: 0-8, blue: 0-9, white: 0-10

Hardware

Each pixel connects to the next pixel with three wires: VDD, signal, GND. According to the datasheet
VDD should be 4.5V to 5.5V. This means two things: First, you can safely dial to power supply up to
5.5V for serial LEDs and we recommend you to do so. Secondly, you should make sure that at
maximum brighness (i.e. maximum power consumption) the voltage should not drop below 4.5V. We
urge you to actually test this by dialing the brightness up the maximum and measuring the voltage at
the middle and the end of your chain.

What if the voltage drops below 4.5V? From our experience serial WS2811/WS2812 work down to
3.5V but the whitepoint shifts to more blueish and the chain becomes much more susceptible to noise
and flickering. If you see the voltage below 4.5V we strongly suggest that you fix your power setup.

First step should be to connect power from both sides to your chains. That does not harm and
practically halfs the length or your chain. Afterwards, measure the voltage in the middle of the chain.
If that still does not help try using thicker wires or dialing up your power supply (especially if the
voltage is also dropping at the beginning of your chain).

If all this does not help try shorter chains. Most controllers support multiple chains and you should
take advantage of that.

Do not underestimate the currents which are needed to drive LEDs. As a rule of thumb you can
calculate 60mA times the number of LEDs. If you got 100 LEDs that make it 6A. 300 LEDs result in
18A which at 5V are 90W. Size your power supply accordingly. Also remember that the voltage drop in
your wires is resistance times current R * I so size the wire between your PSU and your lights
accordingly. You can check this using the Voltage Drop Calculator. Also note that standard .156 molex

Lights 487

https://www.calculator.net/voltage-drop-calculator.html?material=copper&wiresize=10.45&voltage=5.5&phase=dc&noofconductor=1&distance=2&distanceunit=meters&eres=18

Mission Pinball Framework Documentation, Version

connectors are only rated for 7A and you do not want your board look like WPC boards with burned
connectors.

Video about electronics basics:

https://youtu.be/8ByqYkYKnFc

Video about wiring of lights:

https://youtu.be/C9GzkMduEKY

Types of LEDs

Single Chip LEDs

Those while small LEDs are in a 5050 package and often used on PCBs. All those light rings, stripes or
any PCBs are most likely WS2812. FAST pinball sells PCBs which can be mounted below an insert and
there are numerous other designs to buy around the internet.

TODO: Add a picture of WS2812 PCB

Christmas Lights

“Christmas Light” chains are very well known. You can buy them for around 15 bucks with 50 lights.
Those work well for GIs but you can also use them below inserts if you print or bend holders for this.

Those LEDs are WS2811 in most of the cases. You typically see the controller as a separate chip and a
RGB LED soldered to it.

Lights 488

https://youtu.be/8ByqYkYKnFc
https://youtu.be/C9GzkMduEKY

Mission Pinball Framework Documentation, Version

Bulk WS2811

You can actually buy WS2811 in bulk from China. They are usually used to build christmas light chain
but you can solder almost any LED to them. This could be flashers, custom playfield lights, segment
displays or any other light you want to control. The chip will provide around 18.5mA per LED at full
brightness.

TODO: Add a picture of a WS2811 PCB

Some of those controllers also support 12V power supply. The datasheet is inconsistent here. Absolute
maximum rating are 6-7V but they also talk about 12V and 24V. So take care about that voltage when
buying those PCBs.

WS2814 or SK6812

There is not much known about the inner working of those chips. But they work similar to the chips
above but at 18.5mA * 4 = 74mA total power.

TODO: Add a picture of a RGBW WS2814 and/or SK6812

WS2813

Those chips are similar to the WS2812 chips but they got an additional fallback input which connects
to the output of the second last LED. If the previous LED in the chain breaks the chain will continue to
work which is very convenient.

TODO: Add a picture of a WS2813

There exist four versions: * A and B run at 18mA * 3 = 53mA (similar to WS2812) * C and D are low
power version und run at 5mA * 3 = 15mA

WS2815

WS2815 is a 5050 chip similar to WS2813 but it runs at 12V instead of 5V which is pretty interesting
for pinball machines. This allows longer chains and thinner wires which is a huge improvement.
Additionally, it has the handy fallback pin of WS2813 so one broken chip will not bring down the whole
chain.

TODO: Add a picture of a WS2815

Loops / Orbits / Ramps

Related Config File Sections
sequence_shots:
sound_player:

Ramps, loops or orbits usually contain two switches. One at the entry and one to signal success. To
detect only shots where both switches were hit in order you can use sequence_shots.

TODO: Add a picture of an orbit

Loops / Orbits / Ramps 489

Mission Pinball Framework Documentation, Version

switches:

s_ramp_entry:

number: 1

s_ramp_success:

number: 2

sequence_shots:

ramp:

switch_sequence: s_ramp_entry, s_ramp_success

sequence_timeout: 3s

Additionally, most machines usually play a sound once the entry is hit to signal the player that he hit
the ramp and another sound on success to indicate that the ball made it. You can use sound_player: to
achieve that. In this example you would use the events s_ramp_entry_active and ramp_hit to play the
sounds:

sound_player:

s_ramp_entry_active: indicate_ramp

s_ramp_success: indicate_ramp_success

Magnets

Related Config File Sections
magnets:

∙ Hardware

∙ Connecting Magnets

∙ Part Numbers

∙ Config

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

MPF supports the ability to control precise timing for magnets which you can use to grab and release
balls. It also includes the ability to set timings to “fling” a ball by grabbing, releasing, then pulsing the
magnet again.

Magnets 490

Mission Pinball Framework Documentation, Version

Magnets 491

Mission Pinball Framework Documentation, Version

Magnets 492

Mission Pinball Framework Documentation, Version

Video about magnets:

https://youtu.be/XGnrfO3eJD0

Hardware

Magnets are quite strong single wound coils and everything in the coils section also applies to them.
Especially, the Strength and Current calculations apply to them. Expect a resistance in the range of 2
to 10 ohms for a magnet coil.

Connecting Magnets

Please refer to the Connecting Coils section for single wound coils.

If you do not have a diode on your magnet we recommend to add one. Magnets are strong coils and
they can easily fry your driver board otherwise.

Magnets often got a thermal fuse soldered inline to the connectors. Those should not limit you in any
way.

Magnets 493

https://youtu.be/XGnrfO3eJD0

Mission Pinball Framework Documentation, Version

Part Numbers

Assemblies:

∙ PBL-100-0007-00 (with 511-5065-ND coil)

Coils:

∙ 20-10197

∙ 20-9247

∙ 511-5065-ND

∙ 90-5064-02

∙ A-15685

Dedicated driver boards:

You can use a board such as 520-5068-01 to connect up to three drivers to four logic level outputs (3
inputs + 1 clock). The board contains FETs with flyback diode and a logic buffer for further protection.

Config

This is an example:

coils:

magnet_coil:

number:

default_pulse_ms: 100

default_hold_power: 0.375

switches:

grab_switch:

number:

magnets:

magnet:

magnet_coil: magnet_coil

grab_switch: grab_switch

release_ball_events: magnet_release

fling_ball_events: magnet_fling

Monitorable Properties

For dynamic values and conditional events, the prefix for magnets is device.magnets.<name>.

active Boolean (true/false) as to whether this magnet is actively on and in the powered state.

enabled Boolean (true/false) which shows whether this ball hold is enabled.

Related How To guides

How to use the Stern Magnet Processor Board

Magnets 494

Mission Pinball Framework Documentation, Version

Related Events

∙ magnet_(name)_grabbing_ball

∙ magnet_(name)_grabbed_ball

∙ magnet_(name)_releasing_ball

∙ magnet_(name)_released_ball

∙ magnet_(name)_flinging_ball

∙ magnet_(name)_flinged_ball

How to use the Stern Magnet Processor Board

Related Config File Sections
digital_outputs:
switches:
shows:
show_player:

Stern uses a Magnet Processor Board (part number #520-6801-00) in Metallica for the coffin under
the hammer. This board is special as it can detect the ball a ball near the magnet. In addition in can
grab and hold the ball.

Connecting the Board

TODO: Add an image of the magnet processor board.

Supply Voltage

The itself magnet runs on 50VDC and the board needs a logic supply of 5VDC. Both of the ground rails
seem do be isolated from each other and are not connected on the MPB itself. However, you need to
connect those two GNDs to maintain common ground (see common ground for details).

Zero Crossing

The MPB has a 13VAC input on J1-8 which seems to be unused and is not needed for its operation.

Inputs and Outputs

There are 3 logic level (5V) inputs and 1 logic level output on the MPB. The inputs are called DATA6
(J1-5), DATA7 (J1-6) and STROBE (J1-7) on the MPB and are used to control the mode of operations of
the MPB. The single output of the MPB is called Sw Drive (J1-4). This changes from low to high with
ball detection. To enable the output to pass sufficient current to power an opto isolator
(recommended) or to use it in a switch matrix, enable the output with +5V at Sw Return (J1-3).

Magnets 495

Mission Pinball Framework Documentation, Version

Controller States

So let’s go over the four states of the controller:

OFF:

Signals: D6 = low, D7 = low, pulse Strobe

The magnet does nothing.

GRAB:

Signals: D6 = high, D7 = low, pulse Strobe

The magnet activates for a second and then deactivates. This grabs the ball from centimeters away.
GRAB is a one time event. The controller does not GRAB again unless it passes through another state
or OFF- state first.

DETECT:

Signals: D6 = high, D7 = high, pulse Strobe

The magnet is pulsed with 4µs peaks to detect the ball. Ball detection requires a small distance of
seperation between the magnet core and the ball. 3.5 mm of wood appears to be a compromize
between detection and holding strength. The green LED on the MPB lights up when the ball is
detected and the output pin 4 goes high.

HOLD(+DETECT):

Signals: D6 = low, D7 = high, pulse Strobe

The magnet is pulsed with three 4µs peaks (presumably) for detection and a longer pulse
(presumably) for holding the ball on the magnet. The ball is held firmly, but the detection does not
always work. Sometimes it was very reliable, sometimes there was no detection at all. This might
require some more analysis.

Config

To use the magnet in MPF you can use the following config as starting point. Shows that pulse the
input pins are run as a sequence of events, not as loops. The board will maintain its mode until
instructed to change. Caution: if the board is in a hold mode and MPF crashes the board will remain
in the hold mode until power is lost or MPF instructs it to enter the OFF- state.

digital_outputs:

magnet_strobe:

number: 1 # number depends on your platform

type: driver

enable_events: magnet_strobe_on

disable_events: shutdown, magnet_strobe_off

(continues on next page)

Magnets 496

Mission Pinball Framework Documentation, Version

(continued from previous page)

magnet_d6:

number: 2 # number depends on your platform

type: driver

enable_events: magnet_d6_on

disable_events: shutdown, magnet_d6_off

magnet_d7:

number: 3 # number depends on your platform

type: driver

enable_events: magnet_d7_on

disable_events: shutdown, magnet_d7_off

switches:

s_detect:

number: 1 # number depends on your platform

shows:

magnet_state_off:

- time: 0

events:

- magnet_d6_off

- magnet_d7_off

- time: 20ms

events:

- magnet_strobe_on

- time: 30ms

events:

- magnet_strobe_off

- time: 50ms

events:

- magnet_d6_off

- magnet_d7_off

magnet_state_detect:

- time: 0

events:

- magnet_d6_on

- magnet_d7_on

- time: 20ms

events:

- magnet_strobe_on

- time: 30ms

events:

- magnet_strobe_off

- time: 50ms

events:

- magnet_d6_off

- magnet_d7_off

magnet_state_grab:

- time: 0

events:

- magnet_d6_on

- magnet_d7_off

- time: 10ms

events:

- magnet_strobe_on

(continues on next page)

Magnets 497

Mission Pinball Framework Documentation, Version

(continued from previous page)

- time: 20ms

events:

- magnet_strobe_off

- time: 50ms

events:

- magnet_d6_off

- magnet_d7_off

magnet_state_hold:

- time: 0

events:

- magnet_d6_off

- magnet_d7_on

- time: 20ms

events:

- magnet_strobe_on

- time: 50ms

events:

- magnet_strobe_off

- time: 70ms

events:

- magnet_d6_off

- magnet_d7_off

You can then turn the controller into detect in a mode by posting the magnet_state_detect event. Then
add an event_player based on s_detect_active to turn the controller into the grab state. Finally, after
a few seconds turn it into the hold state and check the state of s_detect to see if the grab succeeded.

TODO: Add some example config for this logic.

Motors

Related Config File Sections
motors:
digital_outputs:
switches:

Hardware

TODO: Add a picture of a kickback

Help us to write it

Config

In this example we configure a motorized drop target bank which can move up and down with two
position switches.

Motors 498

Mission Pinball Framework Documentation, Version

switches:

s_position_up:

number:

s_position_down:

number:

digital_outputs:

c_motor_run:

number:

type: driver

motors:

motorized_drop_target_bank:

motor_left_output: c_motor_run

position_switches: !!omap

- up: s_position_up

- down: s_position_down

reset_position: down

go_to_position:

go_up: up

go_down: down

The motor can run continuously and drives a camshaft which moves the bank up and down. MPF will
figure the position using two position switches s_position_up and s_position_down. To enable the
motor we use a digitial_output c_motor_run which maps to a driver. On reset the bank moves down
and can afterwards be commanded using the events go_up and go_down.

The following is an example to drive the slimer in Stern Ghostbusters:

switches:

s_slimer_home:

number: 8-1

s_slimer_away:

number: 8-2

digital_outputs:

c_slimer_motor_forward:

number: 8-3

type: light

c_slimer_motor_backward:

number: 8-4

type: light

motors:

ghostbusters_slimer:

motor_left_output: c_slimer_motor_forward

motor_right_output: c_slimer_motor_backward

position_switches: !!omap

- home: s_slimer_home

- away: s_slimer_away

reset_position: home

go_to_position:

slimer_home: home

slimer_away: away

Motors 499

Mission Pinball Framework Documentation, Version

The slimer motor can move in two directions using two digital_outputs c_slimer_motor_forward and
c_slimer_motor_backward which map to lights in Spike. The switches s_slimer_home and
s_slimer_away are used by to determine the current position. To command the slimer use the events
slimer_home or slimer_away.

Related Events

∙ motor_(name)_reached_(position)

Playfields

Related Config File Sections
playfields:
playfield_transfers:

∙ Monitorable Properties

∙ Related Events

∙ Other playfield concepts

Believe it or not, the playfield in MPF is technically a ball device. This is needed since MPF wants to
know where all the balls are at all times, so it needs to know which balls are “in” the playfield device.

TODO: Add a picture of a playfield

The playfield is also responsible for tracking balls that “disappeared” from it without going into other
devices—-a process which kicks off the ball search . The default playfield ball device (called playfield)
is created automatically based on settings in the mpfconfig.yaml default configuration file. Most
machines only have one playfield, though if you have a mini-playfield or a head-to-head machine then
you can configure additional playfield devices.

Ball tracking and ball search is performed per playfield in MPF. Therefore, most devices in MPF
belong to one playfield and mark it as active when they see a ball. You should configure the exact
playfield for every device as soon as you have more than one playfield in your machine. Otherwise,
MPF will complain about unexpected balls (e.g. you will see unexpected_ball_on_(name) events), ball
search might at the wrong time and ball tracking might go haywire. To transfer balls you can use
playfield transfer or ball devices. A ball device might capture from one playfield and eject to another.

Playfields are configured in the playfields: section of the configuration file.

Monitorable Properties

For dynamic values and conditional events, the prefix for playfields is device.playfields.<name>.

available_balls Balls which will be available eventually. If a ball is requested it will be included in
available_balls but not in balls until it arrives.

balls The number of balls on the playfield.

Playfields 500

Mission Pinball Framework Documentation, Version

Related Events

∙ (name)_ball_count_change

∙ (name)_active

∙ sw_(name)_active

∙ unexpected_ball_on_(name)

Other playfield concepts

HowMPF tracks the number of balls on a playfield

In MPF, the “playfield” is technically a ball device, just like anything else that holds a ball (the trough,
the plunger lane, a VUK, etc.). Any balls that are loose and rolling around the playfield can be
considered to be “in” the playfield ball device.

Most ball devices in MPF have either (1) switches that a ball sitting in the device activates while
sitting there (configured as ball_switches: in MPF), or (2) a switch that is momentarily activated
when a ball rolls over it on its way in. (Configured as an entrance_switch: in MPF.)

But a playfield has none of these.

However, there are many switches in a pinball machine which are only hit by a ball that’s on the
playfield, and MPF uses these switches to know whether there’s a ball on the playfield.

playfield_active switch tags

In MPF, you add a tag called playfield_active to the list of tags for every switch which is hit by a ball
that’s active on the playfield.

You do this in the switches: section of your machine config, like this:

switches:

s_trough1:

number:

s_trough2:

number:

s_plunger_lane:

number:

s_standup_1:

number:

tags: playfield_active

s_upper_right_rollover:

number:

tags: playfield_active

s_ramp_enter:

number:

tags: playfield_active

s_ramp_made:

number:

tags: playfield_active

Playfields 501

Mission Pinball Framework Documentation, Version

Note that not every switch has the playfield_active tag, rather, it’s just used for the switches that are
hit when a ball is on the playfield.

Note that all switches which can be hit by a ball on the playfield are tagged, even if they’re ramp
switches since a ball rolling around a ramp is a ball on the playfield.

Tracking new balls added to the playfield

MPF also uses the playfield_active tags to know whether a ball has successfully been ejected from a
ball device to the playfield.

If a ball device ejects to a playfield that has no balls on it, then the first time a switch tagged with
playfield_active is hit, MPF knows the ball successfully made it out of the device and onto the
playfield. Ball devices also have eject timeouts which will be used to confirm that a ball was ejected to
the playfield if the timeout expires and the ball has not fallen back into the device that ejected it,
which is useful since it’s possible for the ball to make it out of the device but then not to hit a switch
right away.

The playfield_active tagged switches are only used to confirm a ball ejects to the playfield if there are
no current balls on the playfield when the device ejects a ball to it. If there is a ball (or multiple balls)
on the playfield when a device ejects a ball to the playfield, then MPF doesn’t know whether a hit to a
playfield_active switch is from one of the current balls or the new ball, so in that case it always falls
back to using the eject timeout to confirm that the ball successfully made it out.

These switches are used for ball search

MPF’s ball search functionality uses the playfield_active switches to know whether a ball is stuck.
(Basically every activation of one of these switches resets the ball search timer, and if that timer runs
out and the player is not holding in a flipper button, then the ball search starts.)

So it’s important to add the playfield_active tag to every switch that can be hit by a ball on the
playfield.

Tagging switches with multiple playfields

If you have more than one playfield, then the “playfield_active” switch tag name should be adjusted to
match the name of your actual playfield. For example, if you have a playfield called “upper_playfield”,
then the switches which are hit by a ball on the upper playfield should be tagged
upper_playfield_active.

‘Playfield’ balls versus ‘balls in play’

One important concept for ball tracking to understand is that there’s a difference between the number
of balls on a playfield and the “balls in play”.

Most of the time, the number of balls rolling around the playfield is the same as the number of balls in
play. However this is not always the case.

For example, when the machine tilts, the player’s ball is “dead” and the number of balls in play is set
to zero. But of course when that happens, there are still balls loose on the playfield which MPF has to
track to make sure they all drain without getting stuck.

Playfields 502

Mission Pinball Framework Documentation, Version

Also, if you have more than one playfield (like with an upper or lower playfield), then the number of
balls on the individual playfields will be lower than the total number of balls in play.

Another time these two values are different is when the player shoots the ball into a lock. At that
moment the playfield has no balls (and the lock has one), though there’s technically still a ball in play.

Playfield transfer

Related Config File Sections
playfields:
playfield_transfers:

MPF Device

If you want to track balls across multiple playfields you can use a playfield_transfer device to move a
ball from one playfield to another. This is mostly useful in head2head games. However, you can also
use it to track balls on a mini-playfield. In some cases you can also use a ball_device which captures
from one playfield and ejects to another playfield to achieve the same result.

Related Events

∙ playfield_transfer_(playfield_transfer)_ball_transferred

Plungers & Ball Launch Devices

Related Config File Sections
ball_devices:

A Plunger is a type of ball device. MPF supports mechanical (traditional “spring” plungers), coil-fired
plungers, and combo auto/manual plungers.

Here are the options:

∙ Mechanical (spring) plungers

∙ Plunger lanes with no ball switch

∙ Coil-fired plungers / ball launchers

∙ Combo (mechanical + coil-fired) plungers

Since there are so many different options, you need to first identify which type of plunger or ball
launch system your machine has. So look at the following pictures to match up what you have, and
then follow the specific links to see how to configure MPF to use it in your machine.

Option 1: Spring plunger with ball switch

The most “traditional” style plunger is a spring-powered mechanical plunger lane. In modern
machines, there’s a switch at the bottom of the plunger lane which is activated by a ball sitting in the
plunger lane waiting to be plunged.

Plungers & Ball Launch Devices 503

Mission Pinball Framework Documentation, Version

Here’s an example of this from a Pin*Bot machine:

If you have this type of spring-powered plunger with a switch that’s active when a ball is sitting in it
ready to be plunged, follow the Mechanical (spring) plungers guide to configure it in MPF.

Option 2: Spring plunger with no ball switch

Older pinball machines (typically those that only have one ball) have what appear to be traditional
plungers like in Option 1, but if you look closely, you’ll notice that there is no switch which is active
when the ball is sitting in the plunger lane.

Here’s an example of this from Gottlieb Big Shot:

Plungers & Ball Launch Devices 504

Mission Pinball Framework Documentation, Version

If you have this type of spring-powered plunger with no switch that’s active when a ball is sitting in it
ready to be plunged, follow the Plunger lanes with no ball switch guide to configure it in MPF.

Option 3: Combo spring plunger with coil-fired autolauncher

Many modern machines have a combination-style plunger which combines a mechanical
spring-powered plunger with an autolauncher coil. These types of plungers allow game to decide
whether the player should manually pull back on the plunger handle to launch the ball with spring
power or whether the game should pulse a coil to eject the ball into play.

Here are two examples of slightly different versions of these, the left from a Stern Star Trek Premium,
and the right from a Gottlieb Brooks ‘n Dunn machine:

If you have this type of auto/manual combo plunger, follow the Combo (mechanical + coil-fired)
plungers guide to configure it in MPF.

Option 4: Coil-fired plunger (no mechanical spring option)

The final plunger option is the fully automatic coil-fired option that has no mechanical spring-based
option.

There are a few different physical forms of this. Here’s a typical example from Judge Dredd where a
coil shaft with a plastic tip is pulsed to launch the ball directly:

Plungers & Ball Launch Devices 505

Mission Pinball Framework Documentation, Version

And here’s an example from Williams Star Trek: The Next Generation which uses a catapult-style
mechanism in order to launch the ball into play.

Note that both of these options are “identical” as far as MPF is concerned. They both have switches
which are active when a ball is able to be launched, they both pulse coils to launch the ball, and
neither one has a manual plunge option.

If you have this type of coil-powered plunger, follow the Coil-fired plungers / ball launchers guide to
configure it in MPF.

Plungers & Ball Launch Devices 506

Mission Pinball Framework Documentation, Version

Related How To Guides
Tutorial step 8: Add your plunger lane
Troubleshooting P-Roc/P3-Roc

Related Events
balldevice_ball_missing
balldevice_balls_available
balldevice_(name)_ball_missing
balldevice_captured_from_(captures_from)
balldevice_(name)_ball_eject_attempt
balldevice_(name)_ball_eject_failed
balldevice_(name)_ball_eject_success
balldevice_(name)_ejecting_ball

Mechanical (spring) plungers

Related Config File Sections
ball_devices:
playfields:

This guide shows you how to configure a traditional mechanical spring plunger with MPF.

This guide is for use with a plunger lane that has a switch in the lane which is activated by a ball
waiting to be plunged, like this:

If you have a mechanical spring plunger but you do NOT have a switch there, then follow the Plunger
lanes with no ball switch guide instead.

If you have a mechanical spring plunger that also has an “auto launch” coil fired option, then follow
the Combo (mechanical + coil-fired) plungers guide instead.

Plungers & Ball Launch Devices 507

Mission Pinball Framework Documentation, Version

1. Add the switch

The first step is to add your plunger lane switches to the switches: section of your machine config file.
Here’s an example:

switches:

s_plunger_lane:

number: 2-6

Note that we configured this switches as number 2-6, but you should use the actual switch numbers
for your control system that the switches are connected to. (See How to configure “number:” settings
for instructions for each type of control system.)

Be sure to set the type: NC if this switch is an opto and to configure the other switch settings as
needed.

2. Add your plunger ball device

Remember a ball device is anything in your pinball machine that holds a ball (even if it’s just for a
short time). So your plunger lane is a ball device.

In this case, you can add an entry for your plunger to the ball_devices: section of your machine-wide
config, and then create sub entries for the ball switch.

Here’s an example. Note that in this case, we’ve left out the other ball devices (such as your trough
and/or drain):

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

mechanical_eject: true

In the example above, we named the plunger device bd_plunger, but if course you can name it
whatever you want. You might use bd_right_plunger and bd_left_plunger for a game like Red & Ted’s
Road Show that has plunger lanes on both sides.

Note that the ball_switches: entry will just be a single switch, which is fine. Since there’s only one
switch listed in the ball_switches: section, that will tell MPF that this device can hold one ball.

3. Add the mechanical eject setting

Most ball devices in MPF have a coil which MPF pulses to eject a ball from the device. But in the case
of a mechanical spring-powered plunger, there is no coil to eject the ball.

In this case, you have to tell MPF that this device has a mechanical eject option, which basically lets
MPF know that the ball might suddenly disappear from this device, and when that happens, and eject
attempt has been made.

To do that, add mechanical_eject: true to your plunger device, like this:

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

mechanical_eject: true

Plungers & Ball Launch Devices 508

Mission Pinball Framework Documentation, Version

4. Configure the eject confirmation, target & timeouts

Next you need to configure some settings that will let your plunger know whether ball launch events
were successful.

The first setting is called eject_targets:. (You may remember this from when you configured your
trough or drain device.) This setting is a list of one (or more, if there’s a diverter) ball devices that
your plunger lane ejects into.

In probably 99% of cases, the plunger device only ejects to the playfield. In that case you do not need
to configure your eject_targets: because the playfield is the default setting.

However, if your plunger lane ejects to some other device (maybe another launcher or a subway or
something) other than the playfield, then you’d configure that here.

Next up is the confirm_eject_type: which is how MPF knows that a ball really made it out of the
plunger and won’t fall back in.

In most cases, the default setting of “target” is fine (because that means that MPF just watches for the
target device (from above) to get a ball, and when it does, it assumes the eject from this device was
successful.

However, plunger lanes that eject to the playfield sometimes have a switch that’s activated when the
ball leaves the plunger. You can use this switch with a few caveats:

∙ If this switch has been hit, it means the ball is out for sure, and it’s not possible for it to roll back.

∙ This switch must always be hit, e.g. the ball can’t sneak around it.

∙ No other balls should be able to hit this switch while they’re in play.

What this means is that this switch is pretty limited and almost never used.

Finally, you need to configure the eject_timeouts: which is a time setting for how long MPF will wait
to confirm the eject. If a ball re-enters that device before the timeout happens, then MPF assumes the
eject failed and will try it again.

For the eject_timeouts:, you want to figure out what the MAXIMUM time is that a ball could be
ejected from the plunger but still not make it all the way out and then fall back into the plunger. You’ll
have to play with this setting in your machine, but in most machines it’s probably around 3s.

Here are some examples of these settings in action.

First, for a typical coil-fired plunger lane / catapult that ejects the ball directly to the playfield: (This is
probably 99% of all cases)

ball_devices:

bd_plunger:

...

eject_timeouts: 3s

Next, for a coil-fired plunger that has a switch at the exit of the plunger lane that is only hit if the ball
has made it out of the plunger and cannot be hit by a random ball on the playfield:

ball_devices:

bd_plunger:

...

confirm_eject_type: switch

(continues on next page)

Plungers & Ball Launch Devices 509

Mission Pinball Framework Documentation, Version

(continued from previous page)

confirm_eject_switch: s_plunger_lane_exit

eject_timeouts: 3s

Next, if your plunger lane ejects into another ball device (a cannon, in this case):

ball_devices:

bd_plunger:

...

eject_targets: bd_cannon

eject_timeouts: 2s

5. Set your trough/drain device eject_targets

Once you have your plunger device set up, you need to go back to your trough or ball drain device and
add the new plunger to your trough’s eject_targets:, like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

Of course you’d add the name that you gave your plunger device, which could be something like
“bd_catapult” or whatever you called it.

Also, if you have a two-stage drain (like a System 11 machine), you’d add this to the second device
(the one that feeds the plunger).

6. Add the plunger as default_source_device

Next you need to add your plunger lane ball device as default_source_device to your playfield to tell
MPF that this ball device is used to add a new ball into play.

To do that, add your new plunger ball device as default_source_device in the default playfield, like
this:

playfields:

playfield:

default_source_device: bd_plunger

tags: default

7. Tag your playfield switches

Since the plunger lane ejects balls to the playfield, it’s important that you have your playfield switches
tagged properly since that’s how MPF knows that a ball is loose on the playfield.

See the How MPF tracks the number of balls on a playfield documentation for details.

Plungers & Ball Launch Devices 510

Mission Pinball Framework Documentation, Version

Complete config example

Here’s a complete machine config with a “standard” coil-fired plunger that ejects the ball directly to
the playfield. Note that this config does not include the switches and coils for the trough.

This config is what probably 99% of machines with coil-fired plungers will use:

switches:

s_plunger_lane:

number: 2-6

s_launch_button:

number: 1-5

s_trough1:

number: 3-1

s_trough2:

number: 3-2

s_trough3:

number: 3-3

s_trough4:

number: 3-4

s_trough_jam:

number: 3-5

coils:

c_trough_eject:

number: 3-1

default_pulse_ms: 20

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

bd_plunger:

ball_switches: s_plunger_lane

mechanical_eject: true

eject_timeouts: 3s

playfields:

playfield:

default_source_device: bd_plunger

tags: default

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

Plunger lanes with no ball switch

Related Config File Sections
ball_devices:
playfields:

Plungers & Ball Launch Devices 511

Mission Pinball Framework Documentation, Version

Modern pinball machines have a switch in the plunger lane that tells the software that a ball is sitting
in the plunger lane waiting to be plunged.

This document describes how you configure MPF to work with plunger lanes when the plunger lane
has no switch which is active when a ball is sitting at the plunger. (This is common is older single-ball
machines, including many EM and early solid state machines.)

Here’s an example from a Gottlieb Big Shot

#config_version=5

playfields:

playfield:

default_source_device: trough

tags: default

coils:

trough_eject:

number:

switches:

s_trough_1:

number:

s_trough_2:

number:

s_trough_3:

number:

s_trough_4:

number:

s_trough_jam:

number:

s_playfield:

number:

tags: playfield_active

(continues on next page)

Plungers & Ball Launch Devices 512

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_devices:

trough:

eject_coil: trough_eject

ball_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4

debug: true

tags: trough, drain, home

1. Configure your trough / ball drain

MPF’s plunger lanes work hand-in-hand with the trough / ball drain devices. So if you haven’t
configured that yet, go back and do that now, then come back here and configure your plunger.

2. Understand that your plunger is not a ball device

Most pinball machines have a switch in the plunger lane which is used to tell MPF that there’s a ball
in the plunger waiting to be plunged.

However, this How To guide is for plunger lanes with no ball switch. (If your plunger lane has a ball
switch, then follow the Mechanical (spring) plungers guide instead.)

In machines where the plunger lane does not have a ball switch, that means that MPF has no idea
whether a ball is in the plunger lane. That’s totally fine, and MPF can support that no problem.
However, in this case, you do not configure your plunger lane as a ball device!

Instead the plunger lane area is considered part playfield, so a ball in the plunger lane that’s not
sitting on a switch is just like any other area of the playfield where the ball might be rolling around
while it’s not on a switch.

3. Add the trough as default_source_device

Normally you would use your plunger device as source device for your playfield. But since your
plunger lane with no switch is not a ball device, that means we have to go back to the trough ball
device and use it as source device. Therefore, you need to add your trough ball device as
default_source_device to your playfield to tell MPF that this ball device is used to add a new ball into
play.

To do that, add your trough device as default_source_device in the default playfield, like this:

playfields:

playfield:

default_source_device: bd_trough

tags: default

Then when MPF needs to add a live ball into play, it will eject a ball from the trough and you’re all set!

4. What happens if MPF starts with a ball in the plunger?

One of the downsides to not having a switch in the plunger lane is that MPF has no way of knowing if
there’s a ball in there. Throughout the ordinary course of operation, this is fine, because MPF “knows”

Plungers & Ball Launch Devices 513

Mission Pinball Framework Documentation, Version

that the trough ejected a ball, and it “knows” when the ball is on the playfield, so if the trough has
ejected a ball and that ball hasn’t yet entered the playfield, MPF can “assume” that ball is in the
plunger lane.

However, what happens if MPF boots up from scratch and there’s a ball in the plunger lane? In that
case, the ball is not activating any switches, so MPF really has no idea if the ball is in the plunger line
(which is fine) or if the ball is stuck somewhere on the playfield (which is not fine).

Todo: This does not work yet. Let us know in the forum if you need it.

5. Configuring the ball save timer

Be sure to set your ball save start event based on a tag from your switches tagged with
playfield_active rather than ball_starting or your trough eject confirmation, since you don’t want the
timer to start running when the ball is sitting in the plunger lane.

See the Ball Saves documentation for details.

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

Coil-fired plungers / ball launchers

Related Config File Sections
ball_devices:
playfields:

Many modern pinball machines use some kind of “launch” button to launch the ball into play.

Sometimes these look more-or-less like traditional plunger lanes, except there’s a solenoid instead of a
spring-powered plunger, like this:

Plungers & Ball Launch Devices 514

Mission Pinball Framework Documentation, Version

Other times these are more like “catapult” devices with a coil attached to the arm to launch the ball
into play:

Note that if you have a coil-fired ball launcher that’s combined with a spring plunger (giving the
option for manual spring launches or machine-controlled auto launches, stop here and follow the
Combo (mechanical + coil-fired) plungers guide instead.

1. Add the switches

The first step is to add your plunger’s switches to the switches: section of your machine config file.
Create an entry in the switches: section for both the switch in the device that’s active when a ball is

Plungers & Ball Launch Devices 515

Mission Pinball Framework Documentation, Version

sitting in the plunger ready to be launched, and also create the entry for the switch connected to the
button the player hits to launch the ball.

Here’s an example:

switches:

s_plunger_lane:

number: 2-6

s_launch_button:

number: 1-5

Note that we configured this switches with numbers 2-6 and 1-5, but you should use the actual switch
numbers for your control system that the switches are connected to. (See How to configure “number:”
settings for instructions for each type of control system.)

Be sure to set the type: NC if either of these switches is an opto and to configure the other switch
settings as needed.

2. Add the coil

Next, create an entry in your coils: section of your machine config file for your plunger’s eject coil.
Again, the name doesn’t matter. We’ll call this c_plunger and enter it like this:

coils:

c_plunger:

number: 2-1

default_pulse_ms: 20

Again, the number: entries in your config will vary depending on your actual hardware, and again, you
can pick whatever name you want for your coil.

You’ll also note that we went ahead and entered a default_pulse_ms: value of 20 which will override
the default pulse time of 10ms. It’s hard to say at this point what value you’ll actually need. You can
always adjust this at any time. You can play with the exact values in a bit once we finish getting
everything set up.

3. Add your plunger / launcher ball device

Remember a ball device is anything in your pinball machine that holds a ball (even if it’s just for a
short time). So your plunger lane / ball launcher is a ball device.

In this case, you can add an entry for your plunger to the ball_devices: section of your machine-wide
config, and then create sub entries for the ball switch and eject coil.

Here’s an example. Note that in this case, we’ve left out the other ball devices (such as your trough
and/or drain):

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger

Plungers & Ball Launch Devices 516

Mission Pinball Framework Documentation, Version

In the example above, we named the plunger device bd_plunger, but if course you can name it
whatever you want. You might use bd_catapult for a catapult-style launcher, or bd_right_plunger and
bd_left_plunger for a game like Judge Dredd that has plunger lanes on both sides.

Note that the ball_switches: entry will just be a single switch. It’s the switch that’s active when a ball
is sitting in the plunger waiting to be launched. (This is NOT the switch the player hits to launch the
ball.)

Since there’s only one switch listed in the ball_switches: section, that will tell MPF that this device
can hold one ball.

4. Configure the launch switch

Next you need to configure the plunger lane so it launches the ball when the player hits the launch
button. In MPF terms, this is technically the plunger “ejecting” the ball, so we use a setting called
player_controlled_eject_event: which you add to your plunger.

At this point, you might be wondering why we configure a player controlled eject “event”. Why is it an
“event” and not a “switch”?

This is due to MPF’s flexibility to support the myriad of different types of machines in the world.

For example, some machines launch the ball when a player hits a button. Others launch it when the
player releases a button. Still others play a little show then launch. Etc.

So we decided, “Hey, we have this great events system in MPF, so let’s just use that.”

Remember that by default, there are “active” events that are posted when a switch becomes active,
and “inactive” events that are posted when a switch that was active becomes inactive.

4.1 Launching the ball when a player hits the launch button

Assuming the switch tied to the launch button (or gun trigger or fishing rod button or whatever you
have) is called s_launch_button, then that means an event called s_launch_button_active will be posted
as soon as that switch is hit. In that case, you’d configure your plunger like this:

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger

player_controlled_eject_event: s_launch_button_active

Pretty straightforward.

4.2 Launching the ball when a player releases the launch button

If you want to launch the ball into play when the player releases the launch button, then just use that
switch’s inactive event:

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

(continues on next page)

Plungers & Ball Launch Devices 517

Mission Pinball Framework Documentation, Version

(continued from previous page)

eject_coil: c_plunger

player_controlled_eject_event: s_launch_button_inactive

Note that whenever the player_controlled_eject_event: is used, MPF has to specifically enable the
ability for that event to eject a ball. In other words, you don’t have to worry about the player hitting
that switch to launch extra balls into play, and it’s fine if that event is posted in other places in your
game.

5. Configure the eject confirmation, target & timeouts

Next you need to configure some settings that will let your plunger know whether ball launch events
were successful.

The first setting is called eject_targets:. (You may remember this from when you configured your
trough or drain device.) This setting is a list of one (or more, if there’s a diverter) ball devices that
your plunger lane ejects into.

In probably 99% of cases, the plunger device only ejects to the playfield. In that case you do not need
to configure your eject_targets: because the playfield is the default setting.

However, if your plunger lane ejects to some other device (maybe another launcher or a subway or
something) other than the playfield, then you’d configure that here.

Next up is the confirm_eject_type: which is how MPF knows that a ball really made it out of the
plunger and won’t fall back in.

In most cases, the default setting of “target” is fine (because that means that MPF just watches for the
target device (from above) to get a ball, and when it does, it assumes the eject from this device was
successful.

However, plunger lanes that eject to the playfield sometimes have a switch that’s activated when the
ball leaves the plunger. You can use this switch with a few caveats:

∙ If this switch has been hit, it means the ball is out for sure, and it’s not possible for it to roll back.

∙ This switch must always be hit, e.g. the ball can’t sneak around it.

∙ No other balls should be able to hit this switch while they’re in play.

What this means is that this switch is pretty limited and almost never used.

Finally, you need to configure the eject_timeouts: which is a time setting for how long MPF will wait
to confirm the eject. If a ball re-enters that device before the timeout happens, then MPF assumes the
eject failed and will try it again.

For the eject_timeouts:, you want to figure out what the MAXIMUM time is that a ball could be
ejected from the plunger but still not make it all the way out and then fall back into the plunger. You’ll
have to play with this setting in your machine, but in most machines it’s probably around 3s.

Here are some examples of these settings in action.

First, for a typical coil-fired plunger lane / catapult that ejects the ball directly to the playfield: (This is
probably 99% of all cases)

ball_devices:

bd_plunger:

(continues on next page)

Plungers & Ball Launch Devices 518

Mission Pinball Framework Documentation, Version

(continued from previous page)

...

eject_timeouts: 3s

Next, for a coil-fired plunger that has a switch at the exit of the plunger lane that is only hit if the ball
has made it out of the plunger and cannot be hit by a random ball on the playfield:

ball_devices:

bd_plunger:

...

confirm_eject_type: switch

confirm_eject_switch: s_plunger_lane_exit

eject_timeouts: 3s

Next, if your plunger lane ejects into another ball device (a cannon, in this case):

ball_devices:

bd_plunger:

...

eject_targets: bd_cannon

eject_timeouts: 2s

6. Set your trough/drain device eject_targets

Once you have your plunger device set up, you need to go back to your trough or ball drain device and
add the new plunger to your trough’s eject_targets:, like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

Of course you’d add the name that you gave your plunger device, which could be something like
“bd_catapult” or whatever you called it.

Also, if you have a two-stage drain (like a System 11 machine), you’d add this to the second device
(the one that feeds the plunger).

7. Add the plunger as default_source_device

Next you need to your plunger lane ball device default_source_device to your playfield to tell MPF
that this ball device is used to add a new ball into play.

To do that, add your new plunger ball device as default_source_device in the default playfield, like
this:

playfields:

playfield:

(continues on next page)

Plungers & Ball Launch Devices 519

Mission Pinball Framework Documentation, Version

(continued from previous page)

default_source_device: bd_plunger

tags: default

8. Tag your playfield switches

Since the plunger lane ejects balls to the playfield, it’s important that you have your playfield switches
tagged properly since that’s how MPF knows that a ball is loose on the playfield.

See the How MPF tracks the number of balls on a playfield documentation for details.

Complete config example

Here’s a complete machine config with a “standard” coil-fired plunger that ejects the ball directly to
the playfield. Note that this config does not include the switches and coils for the trough.

This config is what probably 99% of machines with coil-fired plungers will use:

switches:

s_plunger_lane:

number: 2-6

s_launch_button:

number: 1-5

s_trough1:

number: 3-1

s_trough2:

number: 3-2

s_trough3:

number: 3-3

s_trough4:

number: 3-4

s_trough_jam:

number: 3-5

coils:

c_plunger:

number: 2-1

default_pulse_ms: 20

c_trough_eject:

number: 3-1

default_pulse_ms: 20

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger

player_controlled_eject_event: s_launch_button_active

eject_timeouts: 3s
(continues on next page)

Plungers & Ball Launch Devices 520

Mission Pinball Framework Documentation, Version

(continued from previous page)

playfields:

playfield:

default_source_device: bd_plunger

tags: default

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

Combo (mechanical + coil-fired) plungers

Related Config File Sections
ball_devices:
playfields:

This guide explains how to configure a “combo” plunger lane which has both a mechanical
spring-powered plunger as well as a coil-fired auto plunge option.

Here’s an example of this:

Plungers & Ball Launch Devices 521

Mission Pinball Framework Documentation, Version

Plungers & Ball Launch Devices 522

Mission Pinball Framework Documentation, Version

If you have a purely mechanical plunger with no autolaunch option, follow the Mechanical (spring)
plungers guide instead. If you have a standard coil-fired plunger or launch device with no mechanical
spring plunger, follow the Coil-fired plungers / ball launchers guide instead.

Note: If you’re reading through this guide and comparing it to the guide for the coil-fired plunger
lane, you’ll find that they’re almost identical, except that this guide adds the mechanical_eject: true
setting to the plunger.

1. Add the switches

The first step is to add your plunger’s switches to the switches: section of your machine config file.
Create an entry in the switches: section for the switch which is in the plunger lane that’s activated by
a ball waiting to be plunged.

You might also have a button which the player can hit to launch balls into play. Some machines have
this (Like Stern Star Trek with the button on the apron), while others only let the player launch the
ball with spring plunger and they use the coil for ball save and multiballs only.

So add one (or both, if you have a launch button) to your machine config if you haven’t done so
already:

Plungers & Ball Launch Devices 523

Mission Pinball Framework Documentation, Version

switches:

s_plunger_lane:

number: 2-6

s_launch_button:

number: 1-5

Note that we configured this switches with numbers 2-6 and 1-5, but you should use the actual switch
numbers for your control system that the switches are connected to. (See How to configure “number:”
settings for instructions for each type of control system.)

Be sure to set the type: NC if either of these switches is an opto and to configure the other switch
settings as needed.

2. Add the coil

Next, create an entry in your coils: section of your machine config file for your plunger lane’s eject
coil. Again, the name doesn’t matter. We’ll call this c_plunger and enter it like this:

coils:

c_plunger:

number: 2-1

default_pulse_ms: 20

Again, the number: entries in your config will vary depending on your actual hardware, and again, you
can pick whatever name you want for your coil.

You’ll also note that we went ahead and entered a default_pulse_ms: value of 20 which will override
the default pulse time of 10ms. It’s hard to say at this point what value you’ll actually need. You can
always adjust this at any time. You can play with the exact values in a bit once we finish getting
everything set up.

3. Add your plunger / launcher ball device

Remember a ball device is anything in your pinball machine that holds a ball (even if it’s just for a
short time). So your plunger lane / ball launcher is a ball device.

In this case, you can add an entry for your plunger to the ball_devices: section of your machine-wide
config, and then create sub entries for the ball switch and eject coil.

Here’s an example. Note that in this case, we’ve left out the other ball devices (such as your trough
and/or drain):

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger

In the example above, we named the plunger device bd_plunger, but if course you can name it
whatever you want. You might use bd_catapult for a catapult-style launcher, or bd_right_plunger and
bd_left_plunger for a game like Judge Dredd that has plunger lanes on both sides.

Note that the ball_switches: entry will just be a single switch. It’s the switch that’s active when a ball
is sitting in the plunger waiting to be launched. (This is NOT the switch the player hits to launch the
ball if you have one of those.)

Plungers & Ball Launch Devices 524

Mission Pinball Framework Documentation, Version

Since there’s only one switch listed in the ball_switches: section, that will tell MPF that this device
can hold one ball.

4. Add the mechanical eject setting

Since your plunger ball device has an option for the player to manually plunge the ball with the spring
rod, we need to give MPF a “heads up” that a ball sitting in the plunger lane might suddenly disappear,
and that when that happens, that means the player has attempted to eject the ball from this device.

To do that, add mechanical_eject: true to your plunger device, like this:

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger

mechanical_eject: true

5. (Optional) Configure the launch switch

If your machine also has a launch button which you’d like to (optionally) use for the player to hit to
launch the ball into play with the plunger lane’s eject coil, then you can add a setting called
player_controlled_eject_event:.

At this point, you might be wondering why we configure a player controlled eject “event”. Why is it an
“event” and not a “switch”?

This is due to MPF’s flexibility to support the myriad of different types of machines in the world.

For example, some machines launch the ball when a player hits a button. Others launch it when the
player releases a button. Still others play a little show then launch. Etc.

So we decided, “Hey, we have this great events system in MPF, so let’s just use that.”

Remember that by default, there are “active” events that are posted when a switch becomes active,
and “inactive” events that are posted when a switch that was active becomes inactive.

5.1 Launching the ball when a player hits the launch button

Assuming the switch tied to the launch button (or gun trigger or fishing rod button or whatever you
have) is called s_launch_button, then that means an event called s_launch_button_active will be posted
as soon as that switch is hit. In that case, you’d configure your plunger like this:

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger

mechanical_eject: true

player_controlled_eject_event: s_launch_button_active

Pretty straightforward.

Plungers & Ball Launch Devices 525

Mission Pinball Framework Documentation, Version

5.2 Launching the ball when a player releases the launch button

If you want to launch the ball into play when the player releases the launch button, then just use that
switch’s inactive event:

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger

mechanical_eject: true

player_controlled_eject_event: s_launch_button_inactive

Note that whenever the player_controlled_eject_event: is used, MPF has to specifically enable the
ability for that event to eject a ball. In other words, you don’t have to worry about the player hitting
that switch to launch extra balls into play, and it’s fine if that event is posted in other places in your
game.

6. Configure the eject confirmation, target & timeouts

Next you need to configure some settings that will let your plunger know whether ball launch events
were successful.

The first setting is called eject_targets:. (You may remember this from when you configured your
trough or drain device.) This setting is a list of one (or more, if there’s a diverter) ball devices that
your plunger lane ejects into.

In probably 99% of cases, the plunger device only ejects to the playfield. In that case you do not need
to configure your eject_targets: because the playfield is the default setting.

However, if your plunger lane ejects to some other device (maybe another launcher or a subway or
something) other than the playfield, then you’d configure that here.

Next up is the confirm_eject_type: which is how MPF knows that a ball really made it out of the
plunger and won’t fall back in.

In most cases, the default setting of “target” is fine (because that means that MPF just watches for the
target device (from above) to get a ball, and when it does, it assumes the eject from this device was
successful.

However, plunger lanes that eject to the playfield sometimes have a switch that’s activated when the
ball leaves the plunger. You can use this switch with a few caveats:

∙ If this switch has been hit, it means the ball is out for sure, and it’s not possible for it to roll back.

∙ This switch must always be hit, e.g. the ball can’t sneak around it.

∙ No other balls should be able to hit this switch while they’re in play.

What this means is that this switch is pretty limited and almost never used.

Finally, you need to configure the eject_timeouts: which is a time setting for how long MPF will wait
to confirm the eject. If a ball re-enters that device before the timeout happens, then MPF assumes the
eject failed and will try it again.

For the eject_timeouts:, you want to figure out what the MAXIMUM time is that a ball could be
ejected from the plunger but still not make it all the way out and then fall back into the plunger. You’ll
have to play with this setting in your machine, but in most machines it’s probably around 3s.

Plungers & Ball Launch Devices 526

Mission Pinball Framework Documentation, Version

Here are some examples of these settings in action.

First, for a typical coil-fired plunger lane / catapult that ejects the ball directly to the playfield: (This is
probably 99% of all cases)

ball_devices:

bd_plunger:

...

eject_timeouts: 3s

Next, for a coil-fired plunger that has a switch at the exit of the plunger lane that is only hit if the ball
has made it out of the plunger and cannot be hit by a random ball on the playfield:

ball_devices:

bd_plunger:

...

confirm_eject_type: switch

confirm_eject_switch: s_plunger_lane_exit

eject_timeouts: 3s

Next, if your plunger lane ejects into another ball device (a cannon, in this case):

ball_devices:

bd_plunger:

...

eject_targets: bd_cannon

eject_timeouts: 2s

7. Set your trough/drain device eject_targets

Once you have your plunger device set up, you need to go back to your trough or ball drain device and
add the new plunger to your trough’s eject_targets:, like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

Of course you’d add the name that you gave your plunger device, which could be something like
“bd_catapult” or whatever you called it.

Also, if you have a two-stage drain (like a System 11 machine), you’d add this to the second device
(the one that feeds the plunger).

8. Add the plunger as a default_source_device

Next you need to add your plunger lane ball device default_source_device to your playfield to tell
MPF that this ball device is used to add a new ball into play.

Plungers & Ball Launch Devices 527

Mission Pinball Framework Documentation, Version

To do that, add your new plunger ball device as default_source_device in the default playfield, like
this:

playfields:

playfield:

default_source_device: bd_plunger

tags: default

9. Tag your playfield switches

Since the plunger lane ejects balls to the playfield, it’s important that you have your playfield switches
tagged properly since that’s how MPF knows that a ball is loose on the playfield.

See the How MPF tracks the number of balls on a playfield documentation for details.

Complete config example

Here’s a complete machine config with a “standard” coil-fired plunger that ejects the ball directly to
the playfield. Note that this config does not include the switches and coils for the trough.

This config is what probably 99% of machines with coil-fired plungers will use:

switches:

s_plunger_lane:

number: 2-6

s_launch_button:

number: 1-5

s_trough1:

number: 3-1

s_trough2:

number: 3-2

s_trough3:

number: 3-3

s_trough4:

number: 3-4

s_trough_jam:

number: 3-5

coils:

c_plunger:

number: 2-1

default_pulse_ms: 20

c_trough_eject:

number: 3-1

default_pulse_ms: 20

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

bd_plunger:

(continues on next page)

Plungers & Ball Launch Devices 528

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_switches: s_plunger_lane

eject_coil: c_plunger

mechanical_eject: true

player_controlled_eject_event: s_launch_button_active

eject_timeouts: 3s

playfields:

playfield:

default_source_device: bd_plunger

tags: default

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

Pop Bumpers

Related Config File Sections
autofire_coils:
switches:
lights:
coils:

Popbumpers are configured as autofire_coils in MPF.

Pop Bumpers 529

Mission Pinball Framework Documentation, Version

Hardware

Pop Bumpers 530

Mission Pinball Framework Documentation, Version

Pop bumpers are made of three elements relevant for MPF:

∙ A blade switch to notice balls

∙ A #444 or #249 bulb for light shows

∙ A coil to push the ball away.

There are of course other parts, like the pop bumper body, all parts need to match in size
and dimension of course. The complete assembly consists of parts above the playfield and
some parts below the playfield. Above the playfield the following parts need to be
assembled in the following order:

A few notes which might help to assemble the parts above the playfield:

∙ The nuts on the rod for the metal ring don’t use a metric threading. To fasten them a
8mm wrench is good, but don’t try to use a metric nut.

∙ The two screws to mount the cap are of size 3,0 x 12 mm, use pan head screws. When
you screw the parts multiple times together turn the screw first counter clockwise to
use exactly the same thread cut by the screw from the previous assembly. Otherwise
the body will be worn out after a while.

Pop Bumpers 531

Mission Pinball Framework Documentation, Version

∙ The two screws to mount the body to the board are of size 3,5 x 25mm, use pan head
screws.

∙ You need a 17mm Fostner drill to drill hole for the base.

∙ You need a 8mm drill for the metal ring rods.

Below the playfield the parts needed look like this:

A few notes which might help to assemble the parts below the playfield:

∙ The coil specification depends on the voltage you use and the strength you would like to have.
Probably a trial and error approach is needed to find the coil you want.

∙ The piece with the spring on the right hand side consists of 5 parts: yoke metal, yoke fiber,
spring, metal bracket (plunger bracket), plunger

∙ The screws are again not metric

∙ If your coil has a fly back diode make sure to connect it the right way around. The ring of the
diode has to point to positive voltage. You might not have a diode and you might not need one (if
your controller board has that already built in)

Last but not least below the playfield you need a leaf switch:

The leaf switch is closed by the pin of the pop bumper skirt when the skirt pressed down by the ball. It
is important to adjust it very precisely. Again a few notes:

∙ A diode on the switch is needed if you use a matrix input, for direct inputs no diode is needed

∙ You need the switch and a mounting bracket (like the left leaf switch on the picture above)

∙ The switches come in different heights, make sure to get the height you need. (compare the two
variations on the picture)

∙ Try to get a translucent leaf that helps to adjust it later since the skirt’s pin can be seen from
below

Pop Bumpers 532

Mission Pinball Framework Documentation, Version

When mounting the pop bumpers you have to drill quite a few holes for home brew machine, having a
stencil might be helpful.

The above stencil has been created with openSCAD. Feel free to use the scad file or the
stl file for your own purposes.

Part numbers:

∙ Older one part plastic bumpers: 500-5227-00, AS-2999 (Turbo bumpers)

∙ Modern bumpers: 515-6459-04/A-9415 and B-9414

Config

This is an example:

switches:

s_popbumper_left:

number: 7 # depends on your platform

coils:

c_popbumper_left:

number: 4 # depends on your platform

default_pulse_ms: 23 # tune this for your machine

lights:

l_popbumper_left:

number: 13 # depends on your platform

subtype: matrix # might be differnt

autofire_coils:
(continues on next page)

Pop Bumpers 533

Mission Pinball Framework Documentation, Version

(continued from previous page)

ac_popbumper_left:

coil: c_popbumper_left

switch: s_popbumper_left

Adjust default_pulse_ms and default_pulse_power in your coil to control the strength and sound of
your popbumpers.

Related How To Guides
Mechanical Switches
Matrix Lights (Bulbs)
Coils (Solenoids)
Autofire Coils

How to Configure Score Reels

Related Config File Sections
score_reels:
score_reel_groups:

Multiple score reels are grouped to show the player score. Score reels detect certain position using
switches (usually 0)

TODO: Add a picture of score reels

This is an example:

lights:

light_p1:

number:

tags: player1

light_p2:

number:

tags: player2

switches:

score_1p_10k_0:

number:

score_1p_1k_0:

number:

score_1p_100_0:

number:

score_1p_10_0:

number:

score_2p_10k_0:

number:

score_2p_1k_0:

number:

score_2p_100_0:

number:

score_2p_10_0:

number:

(continues on next page)

How to Configure Score Reels 534

Mission Pinball Framework Documentation, Version

(continued from previous page)

coils:

player1_10k:

number:

player1_1k:

number:

player1_100:

number:

player1_10:

number:

player2_10k:

number:

player2_1k:

number:

player2_100:

number:

player2_10:

number:

chime1:

number:

chime2:

number:

chime3:

number:

score_reels:

score_1p_10k:

coil_inc: player1_10k

switch_0: score_1p_10k_0

limit_hi: 9

limit_lo: 0

score_1p_1k:

coil_inc: player1_1k

switch_0: score_1p_1k_0

limit_hi: 9

limit_lo: 0

score_1p_100:

coil_inc: player1_100

switch_0: score_1p_100_0

limit_hi: 9

limit_lo: 0

score_1p_10:

coil_inc: player1_10

switch_0: score_1p_10_0

limit_hi: 9

limit_lo: 0

score_2p_10k:

coil_inc: player2_10k

switch_0: score_2p_10k_0

limit_hi: 9

limit_lo: 0

score_2p_1k:

coil_inc: player2_1k

switch_0: score_2p_1k_0

limit_hi: 9

limit_lo: 0

(continues on next page)

How to Configure Score Reels 535

Mission Pinball Framework Documentation, Version

(continued from previous page)

score_2p_100:

coil_inc: player2_100

switch_0: score_2p_100_0

limit_hi: 9

limit_lo: 0

score_2p_10:

coil_inc: player2_10

switch_0: score_2p_10_0

limit_hi: 9

limit_lo: 0

score_reel_groups:

player1:

reels: score_1p_10k, score_1p_1k, score_1p_100, score_1p_10, None

tags: player1

chimes: None, chime1, chime2, chime3, None

lights_tag: player1

player2:

reels: score_2p_10k, score_2p_1k, score_2p_100, score_2p_10, None

tags: player2

chimes: None, chime1, chime2, chime3, None

lights_tag: player2

Related Events

∙ reel_(name)_advanced

Scoops / Vertical up Kickers (VUKs) / Saucer holes

Related Config File Sections
ball_devices:
switches:
coils:

∙ Electronical details

∙ Config

Scoops usually capture balls from a playfield (sometimes via a subway) and eject them back to the
playfield after a short while. Saucer holes work like scoops but the ball stays visible all the time and
they are sometimes used as a lock. Similarly, vertical up kickers (VUKs) capture from the playfield but
they eject onto a ramp or a upper playfield.

Electronical details

Electronically, all of those mechs consist of a switch or opto and a coil to eject the ball.

Scoops / Vertical up Kickers (VUKs) / Saucer holes 536

Mission Pinball Framework Documentation, Version

Scoops / Vertical up Kickers (VUKs) / Saucer holes 537

Mission Pinball Framework Documentation, Version

Scoops / Vertical up Kickers (VUKs) / Saucer holes 538

Mission Pinball Framework Documentation, Version

Connect your switch according to Mechanical Switches or How to configure opto switches depending
on its type. Then connect your coil according to Coils (Solenoids) .

Config

In MPF, you configure them as ball devices since they can count balls and choose to keep or eject it.

This is an example:

Scoops / Vertical up Kickers (VUKs) / Saucer holes 539

Mission Pinball Framework Documentation, Version

switches:

s_scoop:

number: 2

coils:

c_scoop_eject:

number: 4

default_pulse_ms: 20

ball_devices:

bd_scoop:

ball_switches: s_scoop

eject_coil: c_scoop_eject

eject_timeouts: 1s

It is very common to delay the game when the ball is inside a scoop/VUK/saucer to show animations
and play sounds. You can achieve this using a queue_relay_player in your mode (you might want to
use conditional events to only trigger it when certain condition match):

switches:

s_scoop:

number: 2

coils:

c_scoop_eject:

number: 4

default_pulse_ms: 20

ball_devices:

bd_scoop:

ball_switches: s_scoop

eject_coil: c_scoop_eject

eject_timeouts: 1s

##! mode: my_mode

in your mode

queue_relay_player:

balldevice_bd_scoop_ball_eject_attempt:

post: start_mode_success_show

wait_for: mode_success_show_ended

show_player:

start_mode_success_show:

success_show:

loops: 0

events_when_completed: mode_success_show_ended

shows:

success_show:

- duration: 10

add lights/sounds/slides here

When your mode is running the eject will be delayed by 10s (duration of your show). Add all your
lights, shows and slides to this show. After the show ends it will eject normally.

The same can be achieved using a ball_hold device. If you want your saucer/VUK/scoop to lock a ball
for a multiball use a ball_lock device instead (see multiball in the game design section for more
details).

Scoops / Vertical up Kickers (VUKs) / Saucer holes 540

Mission Pinball Framework Documentation, Version

Servos

Related Config File Sections
servos:

A servo is device which can move to a certain position based on internal feedback. There is no need to
add position switches and the servo will hold its position even if something pushes it aside. On the
downside, there is no way to tell when the servo reached its position since it will not provide any
position feedback to the software side.

This is an example:

servos:

servo1:

(continues on next page)

Servos 541

Mission Pinball Framework Documentation, Version

(continued from previous page)

servo_min: 0.1

servo_max: 0.9

positions:

0.0: servo1_down

0.8: servo1_up

reset_position: 0.5

reset_events: reset_servo1

number: 1

servo2:

positions:

0.2: servo2_left

1.0: servo2_home

reset_position: 1.0

reset_events: reset_servo2

number: 2

∙ Monitorable Properties

∙ Related Events

Overview video about servos:

https://youtu.be/wA6KEODwQ5w

Monitorable Properties

For dynamic values and conditional events, the prefix for servos is device.servos.<name>.

position Value, stored in memory of what servo position should be, on a scale from 0.0 to 1.0.

Related How To guides
Programming Servo Sequences

Related Events

None

Programming Servo Sequences

Related Config File Sections
servos:
shows:
show_player:

You often want to move servos to different positions sequentially. For instance, an animated toy should
open and close its mouth three times on a hit to a target. The target will post one event and you could
use that to move the servo to one position. Servos do not prove position feedback so there is no way to
trigger something on arrival at that position (unless you add additional switches). Instead you usually

Servos 542

https://youtu.be/wA6KEODwQ5w

Mission Pinball Framework Documentation, Version

create a show which triggers a timed series of movements. The advantage of this solution is that you
can easily integrate and synchonize it with sounds and lights.

The following example will move the servo six times when my_toy_hit is posted (three times to open
and three times to close):

servos:

my_toy:

positions:

0.0: open_mouth

1.0: close_mouth

reset_position: 1.0

number: 1

shows:

toy_hit:

- duration: 1s

events: open_mouth

- duration: 2s

events: close_mouth

show_player:

my_toy_hit:

toy_hit:

loops: 2

To see how this can be used in a real machine we recommend this explanation video by the pinball
amigos:

https://youtu.be/1QOOJNtsGxw

You might also enjoy our video about servos in general:

https://youtu.be/wA6KEODwQ5w

Shakers

Related Config File Sections
coils:
coil_player:

Shaker motors cause vibrations to give the player tactile feedback.

Hardware

TODO: Add a picture of a shaker

Todo: Help us to write it

Part numbers:

∙ Spooky: #100-0054-00

∙ Stern Spike: #502-5027-01

Shakers 543

https://youtu.be/1QOOJNtsGxw
https://youtu.be/wA6KEODwQ5w

Mission Pinball Framework Documentation, Version

∙ Stern SAM: #502-5027-00

∙ Data East/Sega/Stern: #515-5893-01

Most shaker motors are not meant to be enabled without PWM. Depending on the voltage your PWM
should have a duty cycle between 10% and 30%.

Config

This is an example on how to use a shaker using coil_player:

coils:

c_shaker:

number:

default_pulse_ms: 1

default_hold_power: 0.125 # keep this low

##! mode: your_mode

coil_player:

enable_shaker_event:

c_shaker: enable

disable_shaker_event:

c_shaker: disable

Alternatively, you can use it inside a show:

coils:

c_shaker:

number:

default_pulse_ms: 1

default_hold_power: 0.125 # keep this low

##! mode: your_mode

shows:

my_show_with_shaker:

- duration: 1s

coils:

c_shaker: enable

add some slides, lights or sounds here

- duration: 1s

coils:

c_shaker: disable

add some more slides, lights or sounds here

show_player:

play_show_with_shaker:

my_show_with_shaker:

loops: -1

Slingshots

Related Config File Sections
autofire_coils:

Slingshots 544

Mission Pinball Framework Documentation, Version

Slingshots are configured as autofire_coils in MPF.

Slingshots 545

Mission Pinball Framework Documentation, Version

Hardware

Slingshots 546

Mission Pinball Framework Documentation, Version

Slingshots 547

Mission Pinball Framework Documentation, Version

A sling shot usually consists of two blade switches and one coil . Those switches are wired in parallel
because it does not matter which switch was closed to fire to slingshot. Connect one side of each
switch to ground and the other side of both switches to the same input.

Part numbers:

∙ Data East/Sega/Stern: #500-5849-00

∙ Spooky/American Pinball/Suncoast: PBL-5849-01

Config

This is an example:

switches:

s_sling_left:

number: 5

coils:

c_sling_left:

number: 7

default_pulse_ms: 15

autofire_coils:

ac_slingshot_left:

coil: c_sling_left

switch: s_sling_left

Adjust default_pulse_ms and default_pulse_power in your coil to control the strength and sound of
your slingshots.

Spinners

Related Config File Sections
switches:
spinners:

Spinners are rotating metal plates which close a switch once per rotation.

Spinners 548

Mission Pinball Framework Documentation, Version

Hardware

Part numbers:

∙ Stern: #511-5113-00 or #100-0014-00

Config

In MPF spinners are configured as follows:

switches:

s_my_spinner:

number: 42 # number depends on your platform

spinners:

basic_spinner:

switch: s_my_spinner

active_ms: 500

It is very common to count the rotations of your spinner per player. You can either use a player
variable or a counter for that. This is an example:

switches:

s_my_spinner:

(continues on next page)

Spinners 549

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 42 # number depends on your platform

spinners:

basic_spinner:

switch: s_my_spinner

active_ms: 500

##! mode: my_mode

in your base mode add 1 for every rotation to a player variable which you can use in slides

variable_player:

s_my_spinner_active:

spinner_rotations: 1

in a game mode the player needs to spin the spinner 10 times

counters:

spinner_rotations:

count_events: spinner_basic_spinner_hit

count_complete_value: 10

events_when_complete: mode_finished

Related Events

∙ spinner_(name)_hit

∙ spinner_(name)_inactive

∙ spinner_(name)_idle

∙ spinner_(name)_active

∙ spinner_(name)_(label)_hit

∙ spinner_(name)_(label)_active

Stepper Motors

Related Config File Sections
steppers:

Stepper Motors 550

Mission Pinball Framework Documentation, Version

Stepper motors offer digitally controlled precise movement of mechanisms. They require a separate
driver board that interfaces with the host computer by USB or through the pinball machine controller.
Steppers have a unique design with two or more sets of coils which when energized sequentially turn
the armature a set distance, typically 1.8 degrees.

Overview video about steppers:

Stepper Motors 551

Mission Pinball Framework Documentation, Version

https://youtu.be/YaRNBU0OHGc

Steppers vs Servos

It is useful to compare stepper motors to servo motors. While in many cases they can be used
interchangeably, each has advantages and disadvantages. The principle advantage of steppers is
precision. If used within their torque window, steppers can reproducibly count thousand of steps,
reverse them, and land back at the starting position. Generally steppers are faster than servo motors
which transmit torque through a gear assembly. Disadvantages of steppers include less torque than
offered by servo motors and requiring a driver controller. Also, unlike servos, steppers do not include
a feedback mechanism to report the rotational angle of the armature. This deficit requires that a
stepper use a homing mechanism (typically a switch) to inform software when the assembly is at an
extreme of linear or rotational position. Lastly, steppers are subject to rotational drift when not
energized, whereas servos maintain position in their off state.

Stepper controller boards require a minimum of two digital inputs, one for rotational direction and
one to trigger a rotational step. Usually one or more additional inputs are also used to control the
power state of the driver board and/or motor coils. Some driver boards also allow programming of
microstepping to command rotation at less than that of a full step.

MPF abstracts the nitty gritty of stepper control allowing steppers to be used with a minimum of
YAML programming. On startup, an event is issued to rotate the motor to a home position. Once
homed, further events can be issued which rotate the motor an arbitriary number of steps in either
direction as required by the application.

See Servos for more details.

Example config

#config_version=5

switches:

s_home:

number:

steppers:

stepper1:

number: 1 # depends on your hardware

homing_mode: switch

homing_switch: s_home

named_positions:

10: move_to_position_1

20: move_to_position_2

50: move_to_position_3

When you post move_to_position_1 the stepper will move to the position 10. Similarly, it will move to
20 when you post move_to_position_2 and to 50 when move_to_position_3 is posted. It will track its
current position internally.

Stepper Motors 552

https://youtu.be/YaRNBU0OHGc

Mission Pinball Framework Documentation, Version

Switches

Related Config File Sections
switches:
switch_overwrites:

∙ Switch Concepts

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

MPF’s switch device represents a switch in a pinball machine. This device is used for switches,
including cabinet buttons, rollovers, targets, optos, trough switches, DIP switches, etc.

There are two switch types most commonly seen in pinball machines (read those for details):

∙ Mechanical switches

∙ Optical switches

And an additional two types used in a handful of machines (read those for details):

∙ Proximity switches

∙ Reed switches

Typical switch applications in pinball machines are:

∙ Rollover/lane switches

∙ Standup targets

∙ Spinners

∙ Flipper buttons and Flipper end-of-stroke switches

∙ As part of a mech such as Drop targets, Popbumpers or Ball Devices/Troughs

∙ Service and door switches

MPF supports all types of switches found in all generations of pinball machines, including matrix
switches, direct switches, Fliptronics switches, switches connected to I/O boards, etc.

Switches only have two states: active and inactive. (We don’t say “open” or “closed” because
sometimes switches are normally-closed which mean they’re actually active when they’re open.) In
MPF, you configure your switches in the switches: section of your machine configuration file,
including options (like whether the switch is “active” when it’s in the open state or the closed state.)

You can also configure debounce settings for each switch, which controls how MPF responds to switch
events. Saying that a switch has to be “debounced” means that the pinball controller makes sure the
switch is actually in its current state for a few milliseconds before it send the switch event to MPF.
This can be useful to filter out unwanted or phantom switch events which might happen due to
electrical interference or other little weird things.

Switches 553

Mission Pinball Framework Documentation, Version

Most switches in pinball machines are debounced except for the ones that you absolutely want to fire
instantly, like flipper switches and the switches attached to automatically fired coils like slingshots and
pop bumpers.

This is an example:

switches:

my_switch:

number: 42 # number from your hardware platform

Switch Concepts

∙ Debouncing in Pinball Machines

∙ Switch Controller

Monitorable Properties

For dynamic values and conditional events, the prefix for switches is device.switches.<name>.

state Numeric value which represents the logic state of this switch. 0 is inactive, 1 is active.

recycle_jitter_count How many times this switch has activated within it’s configured
ignore_window_ms:. (These activations are ignored.)

Related How To guides

∙ Tutorial step 3: Get flipping!

∙ How to configure opto switches

∙ Mechanical Switches

∙ Rollover Switches

∙ Service and Door Switches

∙ Start, Tournament and Launcher Buttons

Related Events

∙ (name)_active

∙ (name)_inactive

∙ (name)_active

∙ (name)_inactive

∙ sw_(tag)

∙ sw_(tag)_active

∙ sw_(tag)_inactive

∙ switch_(name)_active

Switches 554

Mission Pinball Framework Documentation, Version

∙ switch_(name)_inactive

Debouncing in Pinball Machines

A pinball machine is a mechanical machine with a lot mechanical, electronic and electromagnetical
interferences. This has to be mitigated on multiple levels to prevent unwanted effects:

1. Prevent too much communication between hardware platform and CPU. A lot of switch changes
could easily overflow the communication bus or starve the CPU/controller.

2. Prevent too many switch events in the game. It is not uncommon to show slides or play sounds
on a switch event. If this event occurs very often this may easily slow down your game.

3. Prevent coils from pulsing too often. If a coil pulses on a switch hit and the switch activates
constantly it might essentially be stuck on for the whole time which in the best case would only
blow a fuse and in the worst case might burn down the machine.

As you can see there are multiple types of debouncing. We will explain how to use those in the
following:

Switch Debouncing at the Hardware Level

To prevent too much communication between you hardware platform and your CPU there is typically
some switch debouncing at the hardware level. This is what most electronic engineers will first think
about when taking about debouncing.

On the surface, switch debounce is pretty straightforward. Switches are mechanical things,
computers are fast, and your pinball software wants to make sure a switch is actually in a new state
before acting on a switch.

Pinball controllers set debounce in different ways. For example, some platforms (for instance, P-ROC,
P3-ROC) say “a switch must be in a new state for 2 consecutive reads” to be considered debounced,
while other platforms (e.g. FAST) focus on time-based durations rather than number of reads, saying,
“a switch must be in a new state for X milliseconds before it’s considered debounced.” In practise,
there is not much difference between those two.

When considering switch debounce, the switch usually is supposed to be active for the whole
debounce time. So this could also be called “minimum active time”. Usually this time is in the range of
two to four milliseconds. The reason for that is that waiting for a minimum active time induces some
lag to the switch event.

Still, switch debounce is often disabled for hardware rules (e.g. for pop bumpers or sling shots) to
render them more responsive. However, this also them more susceptible to interferences or phantom
hits. For that reason, in some platforms, even in that case a minimal debounce time is enforced
(around one millisecond).

There is very little reason to increase switch debounce time to more than about four ms (see next
section on what to do instead). Because if you set your debounce times too long, then you risk switch
events being missed. (It would be annoying if a ball brushed a pop bumper and the bumper not didn’t
fire.)

By default, MPF will enable switch debounce in all switches. For autofires such as pop bumpers or
sling shots it will be disabled. You can overwrite this using the debounce setting in your switches.

Switches 555

Mission Pinball Framework Documentation, Version

Preventing too many Switch Events in MPF

Depending on the type of switch you will see hits between five and fifty milliseconds. So any switch
debounce time above that will miss switch hits. However, if you set your debounces too short, you risk
getting multiple switch events for what should have been a single switch event. (Again it would be
annoying if a ball hit a pop bumper and that bumper fired once, but you actually got back multiple
switch events which led to multiple scores, multiple sound effects, etc.)

The solution to this is to combine switch debounce with a window to ignore multiple hits. There are
two ways to implement this.

Ignore Window

The first and most used way is to define a period after registered hit which ignores all further hits.
This setting is called ignore_window_ms in your switch config. For example, if you set
ignore_window_ms: 100, then a switch is activated once, then again 50ms later, the second activation
will be ignored. The timer is set based on the last switch hit that activated the switch, so if another
switch hit came in 105ms after the first (which would be 55ms after the second), it will also count.

In most cases you can easily set ignore_window_ms to a few hundred milliseconds. This will not affect
hardware rules. Use recycle on your coil instead.

This is what most javascript programmers understand when they hear debouncing. Kind of related but
also a bit different from what EEs understand by it.

Throttling

There is another technique which is commonly used in the javascript works when working with
computationally expensive callbacks which is called throttling. The goal here is similar but the
implementation is differerent. Instead of having a window after each activation this defines a
maximum number of calls per time unit. For instance a maximum of 10 calls per second. This would
certainly also be possible in MPF but is currently not supported. We think this would be inferior to
ignore_window_ms since it is more susceptible to bursts it might still cause temporary lags. However,
we might add this later to prevent permanent problems with bad or bouncy switches.

Preventing Coil Overheating

When enabling coils you usually use PWM to control the maximum power. However, when pulsing
coils they are often enabled without any PWM for a while. This works fine for a single activation but
might cause problems when a switch is activated repeatedly (i.e. because of interferences). In that
case, the coil would be permanently pulsed and, thereby, enabled all the time. That will hopefully only
blow a fuse on that coil but might as well burn down the machine. To prevent this there is recycle on
your coil . When set to true it will prevent any further pulse for a certain time after a pulse (similar to
ignore_window_ms on the switch above). The duration depends on your platform and might also be
configurable.

Understanding switch scanning loop speed

The other major factor which affects debounce involves the timing of how the switches are read.

Switches 556

Mission Pinball Framework Documentation, Version

In all modern pinball platforms, a switch changing state doesn’t interrupt the controller. Instead, the
controller reads the state of all switches at a certain interval.

But even this varies from platform-to-platform, and even based on whether you have matrix or direct
switches. (More on this in a bit.)

The important thing, though, is that different controllers and different types of switches are checked
at different intervals. That could be every millisecond, or every 1ms, or every 2ms. . . really it’s up to
the controller and switch type as they’re all different. Scanning speed induces some delay and jitter to
your debounce times. Refer to your platform documentation for details.

In most cases switch matrixes are scanned slighly slower than direct switches on a hardware platform.
However, they are usually still fast enough not to cause any problems with missed switches.

Switch Controller

The Switch Controller is responsible for receiving all hardware switch state changes and translating
them into MPF events which are broadcast out to all the other game modules. In other words, the
switch controller is the only part of the game that actually receives notification of the physical
switches-—it’s the only thing that “talks to” the switch hardware. Everything else in the game just
waits for the switch controller to tell it that a switch action happened, rather than all different parts of
the game all talking to hardware.

Why do we force everything to talk to the switch controller instead of letting individual modules talk
to the switches directly? Lots of reasons:

∙ The switch controller has the intelligence to know whether a switch is normally open (NO) or
normally closed (NC), based on how each switch is configured in the machine configuration files.
This means that all the game modules only have to listen for the switch active and switch
inactive events, rather than each module needing the intelligence to transpose the switch states
as needed.

∙ The switch controller can change the timing of switches, even applying software delays and
debouncing to switches, and this is all hidden from the other MPF modules.

∙ The switch controller can “hide” physical switch activities from the game. This is most useful for
broken switches that are firing like crazy. If the switch controller notices that a switch is going
nuts, it can suppress those events, slow them down, or just ignore them altogether. That way you
can just write your game code to say something like “when this switch is active, assign these
points” and you don’t have to worry about a bad switch giving all your players high scores! (This
functionality is not yet complete)

∙ The switch controller can also reprogram the game logic around broken switches. So if it knows
that a switch is broken, it can send the game switch events for the broken switch when some
alternate switch is hit. This means that each of your game modules can automatically get the
benefit of this intelligent switch substitution without you having to write anything special.
(Again, how this substitution takes place and which switches can be substituted for others is all
configurable in your config files.)

∙ Since the switch controller is the only interface into the game for switches, it can “inject” switch
events from any source. For example, MPF includes functionality to simulate switch events with
a computer keyboard (for testing and debugging), as well as switch events from a mobile phone
or table. We also have a plug-in to read and playback switch events from log files from games
that already ran, as well as the ability to write scripts that simulate games. All this is done by
interfacing to the switch controller—-your actual game code doesn’t know (or care) where the
original switch events came from.

Switches 557

Mission Pinball Framework Documentation, Version

How to configure opto switches

Related Config File Sections
switches:

Optical switches (short optos) are common in pinball machines. They usually cover ranges up to 10cm
and are used in places where normal roll over switches cannot be used (e.g. because a lane is too
wide or on a ramp). Optos are also commonly used in ball troughs.

Electronical details

Electronically they consist of a sender and a receiver. The sender is usually connected to 5-12V power
with a current limiting resistor in line (to limit the current to about 50-70 mA). Alternatively, a
constant current driver may be used (more expensive but better for the sender). The receiver is
usually connected to a direct input on a switch board (they cannot be used in a switch matrix without
further logic PCBs). Most direct inputs have an internal pull up which will pull the level to VCC
(usually around 10 kOhm). The opto receiver will then pull the current to GND when it receives light
from the sender. Once the light beam is interrupted the receiver will stop conducting and the input
will go up to VCC again. For this reason, the input will be closed when the beam is not interrupted and
open when the opto is interrupted. This is exactly inverse than a normal switch and you have to
configure your opto as normally closed (short NC) for that reason. If your opto is using an additional
PCB for optos it might invert the signal and revert this effect (just try normally closed first and change
it later - it will not break anything).

TODO: Add electronical drawing for sender and receiver.

Video about wiring optos:

https://youtu.be/7G8LFBbYNOY

Brightness and Current

The brightness of IR diodes (and diodes in general) depends only on the current flowing through the
diode. Usually IR diodes (i.e. the famous QED123) drop about 1.7V forward voltage. However, this is
not a constant and will fluctuate depending on manufacturer tolerances. That means that at about
1.7V current will start to flow through the diode and it will emit (IR) light. Unfortunately, just
connecting it to 1.7V is not sufficient because the current is non-linear for LEDs. Below the forward
voltage (i.e. 1.7V) the currency is 0 and above the forward voltage it increases exponentially.
According to the specifications most IR LEDs should use run at 20mA. However, in pinball machines
50-70mA is used because it allows larger distances. Unfortunately, that is also the reason why
transmitters often break in pinball machines because more current makes diodes age faster. 100mA is
the absolute maximum rating for most LEDs which means that the part is not indented to be operated
at this current for prolonged periods. Since the current increases exponentially above the forward
voltage, the forward voltage has huge tolerances during manufacturing and power supplies have
tolerances, too, it is absolutely necessary to limit the current instead of regulating the voltage. There
are two approaches which will be described in the following.

Switches 558

https://youtu.be/7G8LFBbYNOY

Mission Pinball Framework Documentation, Version

Constant Current Drivers

Technically, the best solution to drive a IR sender is a constant current driver. However, it is quite
costly compared to the next solution. In some cases a constant current driver might be embedded on
your optos (see below at the Stern Spike optos). In addition, there are opto driver boards which
contain constant current drivers. The main advantage of constant current drivers is that they are not
affected by any fluctuation in the supply voltages or manufacturing tolerances/aging of the IR diode.
Expect significant higher lifetimes of your transmitters with those drivers.

Common parts:

∙ Stern Spike Trough Boards

∙ FAST 4-Channel 12v Constant Current Opto Emitter Driver

∙ Stern Spike Opto Amplifier - 520-5239-01

Have a look at our PCB section of hardware.missionpinball.org for DIY designs. Have a look at
Switch/Opto Breakout Boards for details about breakout boards.

Current Limiting Resistor

A very cheap and common solution is to use a resistor in line with your transmitter to limit the
current. In practice, this will result in varying brightnesses depending on manufacturing tolerances of
the resistor (10%) and the diode (unknown but high). Additionally, changes in the supply voltage will
also affect the brightness. For this reason, it is wise to design your resistor a bit lower to account for
some tolerances.

If your supply voltage is 5V you probably want a 56ohm or 68ohm resistor at 1/2watt in line with your
sender (assuming a forward voltage of 1.7V and 50mA forward current). For 12V you need a 220ohm
at 1 watt which will get very hot (do not use a standard 1/2watt resistor).

Common parts:

∙ 4x Opto board - #600-0256-00

Have a look at our PCB section of hardware.missionpinball.org for DIY designs. Have a look at
Switch/Opto Breakout Boards for details about breakout boards.

Common Parts in Pinball Machines

In the following we will describe some common parts and how to connect them.

Switches 559

https://hardware.missionpinball.org/pcbs.html
https://hardware.missionpinball.org/pcbs.html

Mission Pinball Framework Documentation, Version

Williams/Bally Optos

In most platforms with direct inputs you can directly connect a receiver to an input. You connect the
collector to the input (C) and the emitter (E) to ground. Consult the documentation of your hardware
platform for details.

For the transmitter connect the kathode (K) to ground and the anode (A) to a current limiting resistor.
Connect the resistor to power. DO NOT omit the resistor to power without any current limiting or it
will break/burn.

Part numbers:

∙ Transmitter: A-16908 or A-14231

∙ Receiver: A-16909 or A-14232

Diodes used (in case you need to replace them):

∙ Transmitter: QED123

Switches 560

Mission Pinball Framework Documentation, Version

∙ Receiver: QSD124 or QSD124A4R0 (Pinball part numbers: 5163-14114-00 or 5163-12732-00)

Data East/Sega/older Stern Optos

TODO: Add a picture of those transceivers

Data East/Sega and later Stern used a diode which can serve as either transmitter or receiver called
“transceiver”. The advantage of this solution is that you only need one type of parts. Electronically
they work similar to Williams/Bally optos.

Part numbers:

∙ Transceiver: 500-6775-00/500-6775-01 or 500-6747-00

Stern Spike Optos

Labels on Stern Spike optos looks different but they work similarly:

On the transmitter (left) connect +5 to 5V and G to GND. A current limiting resistor is not required
since it is embedded on the sender.

The receiver also connects +5 to 5V and G to GND. Additionally, connect signal S to your input.

Part numbers:

∙ Transmitter: 520-6940-00/515-0215-00

∙ Receiver: 520-6940-01/515-0215-01

Switches 561

Mission Pinball Framework Documentation, Version

Multimorphic Optos:

Multimorphic produces and sells optos with a JST connector. The transmitter contains a current
limiting resistor for 12V (you only have to connect one of the 12V and GND pins). You don’t need an
additional resistor but you are also bound to 12V. They might work at 5V but the range will be much
lower. Though the surface mount resistor on the transmitter board is designed to run “hot,” it still
requires a surrounding air gap to dissipate heat. 3D printed parts mounted against this resistor will
melt.

Part numbers:

∙ Transmitter: PCBA-0019-EO03, PCBA-0019-EI03, PCBA-0020-CI03, PCBA-0020-CO03

∙ Receiver: PCBA-0021-EI03, PCBA-0021-CI03, PCBA-0021-EO03, PCBA-0021-CO03

Config

You can configure a normally closed opto like this:

Switches 562

Mission Pinball Framework Documentation, Version

switches:

trough1:

number: 81 # number depends on your platform

type: 'NC' # normally closed

orbit_opto:

number: 23 # number depends on your platform

type: 'NC' # normally closed

See switches: for details about the config options.

Mechanical Switches

Related Config File Sections
switches:

Most switches in pinball machines are mechanical switches which are open by default and close a
circuit when pushed.

Video about wiring switches:

https://youtu.be/7G8LFBbYNOY

There are two common types of mechanical switches:

Leaf switches/Blade switches

First, blade switches which are very cheap and reliable but cannot be used everywhere:

Switches 563

https://youtu.be/7G8LFBbYNOY

Mission Pinball Framework Documentation, Version

Switches 564

Mission Pinball Framework Documentation, Version

Typically, those are use for flipper buttons and flipper end of stroke switches.

Part numbers:

∙ Stern Flipper Leaf Switch: 500-6889-01 or 500-6890-01

∙ Data East/Sega Flipper Leaf Switch: 180-5122-00

∙ Williams/Bally Flipper Leaf Switch: SW-10A-48 or SW-1010A-13

∙ Data East End of Stroke Switch: 180-5018-00

∙ Williams/Classic Stern/Bally End of Stroke Switch: SW-10A-50, ASW-A20-23, SW-1A-193

Additionally, those are used for targets:

Part numbers (Data East/Sega/Stern):

∙ 515-5966-xx

∙ 500-5835-xx

∙ 515-5124-xx

∙ 500-5232-xx

∙ 515-5162-xx

∙ 515-5967-xx

∙ 515-6027-xx

xx defines the color of the target in most cases.

Micro switches

Second, micro switches which are very small and commonly used for roll over switches. Those usually
have three connectors:

∙ C - common pin for NO and NC

∙ NO - normally open - connected to C only when the switch is pressed

∙ NC - normally closed - connected to C only when the switch is not pressed

Usually, you connect C to ground and NO to your direct input (see below for switch matrices).

Switches 565

Mission Pinball Framework Documentation, Version

Electronically and logically both switches work similarly.

Part numbers (Data East/Sega/Stern):

∙ 180-5010-xx

∙ 180-5053-xx

∙ 180-5119-xx

∙ 180-5118-xx

∙ 180-5052-xx

∙ 180-5186-xx

∙ 180-5057-xx

∙ 500-5442-xx

∙ 180-5175-xx

xx defines the shape of the blade for most parts.

Direct inputs

Switches can be connected to a direct input and ground on almost all platforms. Most direct inputs
have an internal pull up which will pull the level to VCC (usually around 10 kOhm). When pushed the

Switches 566

Mission Pinball Framework Documentation, Version

switch will pull the input to ground which will be detected as a closed switch by the platform.

TODO: Add electronical drawing for switch on direct input.

Switch matrix

Additionally, you can use switches in a switch matrix. In a switch matrix columns are connected to
drivers and rows to switches. Columns are then pulsed sequentially and the rows are read. Each
switch has to use a diode to prevent closing other columns.

TODO: Add electronical drawing for switch in matrix.

Switch matrices are driven using your hardware platform and MPF will read the values from the
platform. Usually the numbers for switches reflect their row and column in the matrix. Consult your
hardware platform documentation for details.

MPF Config

This is an example of switches in MPF:

switches:

my_direct_switch:

number: 23 # number depends on your platform

my_matrix_switch_row_1_column_3:

number: 1/3 # number depends on your platform

Service and Door Switches

Related Config File Sections
switches:

Most pinball machines have service switches inside their service door. Additionally, there is usually a
switch to detect if the door is open.

Switches 567

Mission Pinball Framework Documentation, Version

You can configure those to control your service mode.

Rollover Switches

Related Config File Sections
switches:

Switches 568

Mission Pinball Framework Documentation, Version

Rollover switches in MPF are configured as normal switches. Furthermore, they are often paired with
a light (below an insert) which qualifies them as candidate for a shots in MPF. They are usually
mechanical micro switches.

Typical part numbers:

∙ Stern/Sega/Data East: 500-6227-01/500-6227-03 or 500-6227-02/500-6227-04 or 500-5707-00

∙ Spooky Pinball: SP-SW-001 or SP-SW-002

Switches 569

Mission Pinball Framework Documentation, Version

This is an example config:

this is in your machine-wide config

switches:

s_outlane_left:

number: 0

s_inlane_left:

number: 1

s_inlane_right:

number: 6

s_outlane_right:

number: 7

lights:

l_outlane_left:

number: 0

l_inlane_left:

number: 1

l_inlane_right:

number: 6

l_outlane_right:

number: 7

##! mode: my_mode

put this into a mode

shots:

shot_outlane_left:

switches: s_outlane_left

show_tokens:

leds: l_outlane_left

shot_inlane_left:

switches: s_inlane_left

show_tokens:

leds: l_inlane_left

shot_inlane_right:

switches: s_inlane_right

show_tokens:

leds: l_inlane_right

shot_outlane_right:

switches: s_outlane_right

show_tokens:

leds: l_outlane_right

shot_groups:

sg_lanes:

shots: shot_outlane_left, shot_inlane_left, shot_inlane_right, shot_outlane_right

rotate_left_events: s_flipper_left_active

rotate_right_events: s_flipper_right_active

reset_events:

sg_lanes_lit_complete: 1s

We configure four lane rollover switches (and their corresponding lights). Then inside a mode we
define one shot for each group and a shot_group which enables rotation of the shots using the flipper
buttons.

Switches 570

Mission Pinball Framework Documentation, Version

Start, Tournament and Launcher Buttons

Related Config File Sections
switches:
lights:

Probably all pinball machines have a start button which will start the game once you press it and
there are enough credits. Furthermore, machines have either a mechanical plunger or a launcher
button which will shoot the ball from the launcher. Additionally, some machines have tournament
buttons to start a tournament.

Hardware

Those buttons usually come with a micro switch and a #555 bulb . You can connect the switches to any
direct input on your controller or put them into your switch matrix (with an additional diode). The LED
is rated at 6.3V which works fine at either 5V or in a lamp matrix at 12V (the latter commonly used).

Config

To configure your start button you can use this config:

Switches 571

Mission Pinball Framework Documentation, Version

lights:

l_start_button:

number: 3 # number depends on your platform

subtype: matrix # depends on your platform

switches:

s_start:

number: 23 # number depends on your platform

tags: start

The tag start will hook the button into your game. See Tutorial step 9. Add the start button for
details. You might want to integrate the button into your attract light show.

Related How To Guides
Tutorial step 9. Add the start button
Mechanical Switches
Matrix Lights (Bulbs)

Switch/Opto Breakout Boards

Normally, eight switches are connected to one bank of a pinball controller (in almost all platforms).
Ground is then chained from one switch to the next to simplify wiring (as only one connector with one
ground pin is required on the board). This works well for all sub-playfield switches. However, it would
be tricky for optos or switches in ramps above the playfield.

To solve this breakout boards are used which connect to the bank and provide a separate connector
per switch. If you are building a homebrew game there are a few designs around which can be build in
China for a few bucks (just ask in our forum). Some of those boards also provide power for optos.

Stern occasionally also uses breakouts for optos (usually for two optos). In Stern Spike they added a
few “breakout” connectors to some of their node boards to add optos and above playfield features
without additional breakouts.

Common parts:

∙ PBL-600-0385-00 - Optos Breakout Board for 8 optos (emitter + receiver) intended to be used
with Multimorphic SW-16. (Should also work with FAST hardware)

∙ FAST - FAST 4-Channel 12v Constant Current Opto Emitter (4 emitter)

∙ Stern Spike Opto Amplifier - 520-5239-01 (2 emitter + receiver)

∙ Multimorphic PCBA-0018-0002 - One JST connector per switch and also distributes power to
optos.

Have a look at the PCB section of hardware.missionpinball.org for DIY designs.

See also How to configure opto switches for how this works technically.

Proximity Switches

Related Config File Sections
switches:

Switches 572

https://hardware.missionpinball.org/pcbs.html

Mission Pinball Framework Documentation, Version

Proximity switches operate via the interaction of the ball within a magnetic field created by the
switch. Unlike a reed switch, which also uses a magnetic field to sense the ball, proximity switches
differ in that they do not have any moving parts. However, a voltage must be applied and they require
additional circuitry compared to a reed switch. Alien pinball (heighway Pinball, 2017) makes
signifigant use of proximity switches in liu of the traditional thru-playfield mechanical leaf-blade style
switches. An advantage of proximity switches (other than not needing to make thru-playfield cuts or
have mechanical parts wear out), is that they can be designed with different levels of sensitivity, or
even made tunable.

Todo: Add a picture (Help us to write it).

For homebrew pinball applications, while they are not typically available from major pinball suppliers
due to their scarcity in current and past pinballs, there are a few online sources of these switches –
including the exact ones used in Alien Pinball.

Wiring will depend on the exact switch used. With SW-16 switch boards, the use of pull-up resistors
will likely be required when supplying a direct input to the switch ports. FAST boards should work
similarily.

Todo: Describe wiring (Help us to write it).

Reed Switches

Related Config File Sections
switches:

Todo: Help us to write it

Targets

Drop Targets

Related Config File Sections
drop_targets:
drop_target_banks:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

Targets 573

Mission Pinball Framework Documentation, Version

Mission Pinball Framework’s (MPF) drop target device represents a switch in a pinball machine. This
device is used for drop target banks with a coil for resetting. If the reset coil resets more than just this
one drop target configure all targets as a drop target bank and put the coil there. Additionally, there
may be a knockdown coil which allows the software to knock the target down.

Targets 574

Mission Pinball Framework Documentation, Version

Targets 575

Mission Pinball Framework Documentation, Version

Targets 576

Mission Pinball Framework Documentation, Version

Targets 577

Mission Pinball Framework Documentation, Version

This is an example:

switches:

s_drop_target:

number:

coils:

c_reset_drop_target:

number:

c_knock_down_coil:

number:

drop_targets:

d_drop_target:

switch: s_drop_target

reset_coil: c_reset_drop_target

knockdown_coil: c_knock_down_coil

Monitorable Properties

For dynamic values and conditional events, the prefix for drop targets is device.drop_targets.<name>.

complete Boolean (true/false) which shows whether this drop target is complete (down).

Related How To guides

∙ Drop Target Bank

∙ Fixing Drop Target Reset Issues

Related Events

∙ drop_target_(name)_down

∙ drop_target_(name)_up

Drop Target Bank

Related Config File Sections
drop_targets:
drop_target_banks:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

In MPF, you can combine multiple drop targets into drop target banks. The main reasons for doing
this are to combine reset coils (since one coil typically resets an entire bank) and to get additional
events posted when the entire bank is up, down or in a mixed state.

Targets 578

Mission Pinball Framework Documentation, Version

This is an example:

Targets 579

Mission Pinball Framework Documentation, Version

drop_targets:

front:

switch: s_drop_front

middle:

switch: s_drop_middle

back:

switch: s_drop_back

drop_target_banks:

vuk_bank:

drop_targets: front, middle, back

reset_coils: c_drop_reset

reset_on_complete: 1s

Monitorable Properties

For dynamic values and conditional events, the prefix for drop target banks is
device.drop_target_banks.<name>.

complete Boolean (true/false) which shows whether every target in this bank is complete (down).

down Number of drop targets in the bank that are in the down state.

up Number of drop targets in the bank that are in the up state.

Related How To guides

∙ Drop Targets

∙ Fixing Drop Target Reset Issues

Related Events

∙ drop_target_bank_(name)_down

∙ drop_target_bank_(name)_up

∙ drop_target_bank_(name)_mixed

Fixing Drop Target Reset Issues

Related Config File Sections
drop_targets:
drop_target_banks:
psus:

∙ Configuring PSU Magic

∙ Configuring Pulse Times

Targets 580

Mission Pinball Framework Documentation, Version

∙ Resetting a Drop Target Multiple Times

Sometimes your drop targets or drop target banks will not reset reliably. This often has mechanical
reasons but it could be also caused by a stressed power supply or bad electrical wiring. Try to rule
those out or fix them first. However, you still might have issues afterwards and we can ease them a bit
in software.

Configuring PSU Magic

Behind the scenes MPF performs some magic for you to prevent stress on your power supply unit . The
default should be fine for most machine but if your PSU is very weak try this config:

psus:

default:

release_wait_ms: 50 # defaults to 10ms

Configuring Pulse Times

Increasing the pulse time on your reset coil should help with reliably resetting your drop target or
drop target bank. However, it will also cause mechanical stress, heats up your reset coil and might
draw a lot of power out of your power supply.

One solution to this is to lower default_pulse_power to something between .5 and .8. Your hardware
will PWM the pulse and you can use much longer pulse times without too much stress on your
hardware. Also reduces the sound caused by the reset.

Resetting a Drop Target Multiple Times

If all the above does not help and you got an old mech which somehow does not like to snap in place
all the time you can also try to trigger the reset multiple times. MPF will not reset drop targets or
drop target banks if they are already completely up so this should not cause too much stress.

The following example will try to reset your drop target bank up to three times on ball start:

drop_targets:

front:

switch: s_drop_front

middle:

switch: s_drop_middle

back:

switch: s_drop_back

drop_target_banks:

vuk_bank:

drop_targets: front, middle, back

reset_coils: c_drop_reset

reset_on_complete: 1s

reset_events:

ball_started.1: 0

ball_started.2: 1s

ball_started.3: 2s

machine_reset_phase_3: 0

Targets 581

Mission Pinball Framework Documentation, Version

Kicking Targets

Related Config File Sections
switches:
kickbacks:

TODO: Add a picture of a kicking target

Mission Pinball Framework’s (MPF) kicking target device represents a switch in a pinball machine.
This device is used for kicking targets with a coil for kicking. Used rarely, these targets look like
stationary targets, but when hit they kick the back in the opposite direction much like a slingshot or
bumper.

switches:

s_kicking_target:

number: 1

coils:

c_kicking_target:

number: 1

default_pulse_ms: 10ms

kickbacks:

kicking_target:

coil: c_kicking_target

switch: s_kicking_target

Stationary or Standup Targets

Related Config File Sections
switches:

Targets 582

Mission Pinball Framework Documentation, Version

Targets 583

Mission Pinball Framework Documentation, Version

Mission Pinball Framework’s (MPF) stationary target device represents a switch in a pinball machine.
This might also be know as a stand-up target. It is essentially a switch above the playfield with a
scoring value associated with it. When the ball hits it the value is scored.

switches:

s_target:

number: 5

debounce: quick

ignore_window_ms: 1000ms

Most platforms support debouncing of switches for a few ms. Usually, you have to reduce debouncing
to 1-2ms because a strong hit to a target might be very short (see debounce in switches:). However,
targets sometimes start to swing after a hit and would cause multiple hits. To prevent that you can set
ignore_window_ms to prevent multiple hits within that window.

Vari Targets

Related Config File Sections
switches:

Mission Pinball Framework’s (MPF) vari target device represents a switch in a pinball machine. It is a
metal arm that pivots under the playfield and awards a scoring value associated with it that changes
depending on how hard the ball hits it. Typically the harder the ball hit the more points awarded.

This is a vari-target in a Gottlieb Playball (1971):

Targets 584

Mission Pinball Framework Documentation, Version

Targets 585

Mission Pinball Framework Documentation, Version

Technically, a vari-target has one switch per position and a reset coil to reset the target:

It can reset the target at any position. Either directly after a hit or once it has moved till the end (or
never). This is how a vari-target looks fully engaged:

Targets 586

Mission Pinball Framework Documentation, Version

If you got an example config for a vari target please contribute it .

Related Config File Sections
drop_targets:
drop_target_banks:
switches:

There are many types of targets on a pinball playfield some of which are described here. In the
Mission Pinball Framework(MPF) they are handled in a number of ways depending. In some instances
they are just a switch hit while in others they may require a coil to be fired to reset or fire the ball
back at the player.

Related How To Guides
Drop Targets
Kicking Targets
Stationary or Standup Targets
Vari Targets

Targets 587

Mission Pinball Framework Documentation, Version

Related Events
drop_target_(name)_down
drop_target_(name)_up
drop_target_bank_(name)_down
drop_target_bank_(name)_mixed
drop_target_bank_(name)_up

Tilt Bob

Related Config File Sections
switches:

TODO: Add a picture of a tilt bob

The tilt bob is a plumb pop centered in a metal ring which acts as a switch. On movement the switch
closes which usually triggers a tilt warning.

You can configure it just like a mechanical switch . In addition you want to add the tilt_warning tag
and add the built-in tilt mode in the list of your modes.

This is an example:

modes:

- tilt

switches:

s_tilt:

number: 23 # number depends on your platform

tags: tilt_warning

Part numbers:

∙ A-15361 or 04-10346 (Williams/Bally)

∙ 500-5023-00 (Stern)

∙ A-205-1 (Chicago Coin/early Stern)

∙ 95-0328-00 or PLABS (Bally/Capcom)

Related How To guides
Tilt

Troughs / Ball Drains

Related Config File Sections
ball_devices:

Every pinball machine will have some kind of ball trough / drain device. This is the place where the
balls go when they drain from the playfield before they’re ejected into the plunger lane.

Tilt Bob 588

Mission Pinball Framework Documentation, Version

In many cases, this device (or series of devices) holds multiple balls and is the location where unused
balls are stored.

There are several different designs for troughs and drains that have been used over the past 70 years,
and (as far as we know), MPF supports all of them. So regardless of what’s in your machine, we’re
talking about whatever is under here:

Here are the options:

∙ Modern trough with opto sensors

∙ Modern trough with mechanical switches

∙ Older style with two coils and switches for each ball

∙ Older style with two coils and only one ball switch

∙ Classic single ball, single coil

∙ Classic single ball, single coil, no shooter lane

Since there are so many different options, you need to first identify which type of trough or ball drain
system your machine has. So look at the following pictures to match up what you have, and then
follow the specific links to see how to configure MPF to use it in your machine.

Video on ball tracking in MPF:

https://youtu.be/Yh8ittsuWIc

Option 1: Modern trough with opto sensors

Modern-style troughs (which have been used since about 1993 or so) are mostly located underneath
the playfield and hold the balls at an incline so they roll down to the end. There is a single coil which
fires to eject a ball up and out where it’s directed to the plunger lane.

Todo: We need to add a photo of this type of trough (Help us to write it).

Troughs / Ball Drains 589

https://youtu.be/Yh8ittsuWIc

Mission Pinball Framework Documentation, Version

The advantage of modern troughs are (1) the balls entering are gravity-fed, meaning they only need
one coil, and (2) they can hold a lot of balls. (Most hold 4-6 balls but you can buy ones that hold up to
8.)

If you have a modern-style trough with a circuit board on each side, that means your trough uses opto
sensors to detect the presence of a ball. One of those circuit boards contains infrared LEDs which are
always on which shoot invisible beams across the ball paths, and the board has sensors that detect if a
light beam is broken, meaning a ball is sitting there blocking the path.

Common parts include:

∙ Williams: #A-16809

∙ Mantis Trough

∙ Stern #500-9820-00

If you have a modern trough with opto sensors, read the How to configure a modern trough with opto
switches guide to continue.

Option 2: Modern trough with mechanical switches

Some modern-style troughs use mechanical switches to detect the balls rather than infrared opto
boards. (Other than that, they’re the same as the opto-based troughs.) Here’s a photo of a modern
trough with mechanical switches from a Stern Star Trek Premium machine:

If you have a modern-style trough with mechanical switches instead of opto boards, then read the How
to configure a modern trough with mechanical switches guide to continue.

Common parts include:

∙ Stern: #500-6318-24 (trough assembly), #535-8393-00 (center drain ball guide), #535-7329-01
(entry/exit scoop)

Troughs / Ball Drains 590

Mission Pinball Framework Documentation, Version

∙ Spooky: #100-0015-00 (4 balls) or #100-0016-00 (8 balls), #100-0002-00 (drain guide + enter
exit scoop)

Option 3: Older style with two coils and switches for each ball

Many machines from the 1980s and early 1990s have a ball trough system that consists of two
separate coils and where the balls stay “on top” of the playfield (under the apron).

In this case, when a ball drains, a coil in the drain area pulses to eject the ball up over a hump where
the balls are stored. Then a second coil near the plunger lane is used to eject a single ball at a time
into the plunger lane.

Some of these types “two coil” systems have multiple switches on the side that stores the balls, with
there being one switch for each ball. That lets the machine know exactly how many balls are sitting
there because each ball is sitting on a switch.

Here’s a photo of this type of trough system from a Pin*Bot machine:

If you have this kind of trough system, read the How to configure an older style trough with two coils
and switches for each ball guide to continue.

Option 4: Older style with two coils and only one ball switch

Another option is similar to Option 3 above, except there’s only one switch on the trough side instead
of separate switches for each ball. In these types of trough systems, the behavior of that switch
changes depending on how many balls are in the trough.

If there are fewer than the max number of balls in the trough, when the drain coil pulses to eject the
ball from the drain into the trough, the ball will roll over that trough switch, meaning it’s activated
momentarily and then deactivated again.

Troughs / Ball Drains 591

Mission Pinball Framework Documentation, Version

However, if the ball ejecting into the trough will be the final ball that will fill the trough, then that ball
will rest on that trough switch, meaning that switch is solid active as long as the trough is full.

Here’s a photo from a Gottlieb System 3 machine (Brooks ‘n Dunn) which shows what this type of
system looks like:

If your machine has a system similar to this, then read the How to configure an older style trough with
two coils and only one ball switch guide to continue.

Option 5: Classic single ball, single coil

Older single-ball machines have a trough system that is on top of the playfield under the apron, but
they only have a single coil near the ball drain position. The ball is stored in the drain area, and when
it needs to be ejected, a coil pulses to eject it from the drain all the way into the plunger lane in a
single action.

Here’s an example from Gottlieb Big Shot:

Troughs / Ball Drains 592

Mission Pinball Framework Documentation, Version

If you have a system like this, read the How to configure a classic single-ball trough guide to continue.

Option 6: Classic single ball, single coil, no shooter lane

Very similar to Option 5 but the drain directly ejects back into the playfield. There is no shooter lane.
This was used in early EM machines.

Here’s an example from Gottlieb Playball:

Troughs / Ball Drains 593

Mission Pinball Framework Documentation, Version

If you have a system like this, read the How to configure a classic single-ball trough without shooter
lane guide to continue.

Option 7: Something we haven’t seen yet

If you’re using MPF with a machine that has some kind of trough or drain system that we haven’t
covered here, we would like to know about it so we can write a how to guide and/or add support for it
in MPF.

As far as we know, however, these 6 options should cover everything. For example, you might have a
machine that you think is different, but when you really look at it, it’s just a weird form of one of these
6 options. (Bally Fathom is a great example of this. It’s like a classic single-ball trough where there is
a drain that ejects a ball all the way into the plunger lane, but there are two additional switches in the
apron wall where balls rest before they land in the drain device. That style of drain and trough is
actually configured using Option 2, the modern trough with mechanical switches.)

If you have something weird that you can’t figure out, we’re happy to help! Just post a photo of it to
MPF Users Google Group and we’ll go from there.

Related How To Guides
Tutorial step 7: Add your trough
Troubleshooting P-Roc/P3-Roc

Troughs / Ball Drains 594

https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Related Events
ball_drain
balldevice_ball_missing
balldevice_balls_available
balldevice_(name)_ball_missing
balldevice_captured_from_(captures_from)
balldevice_(name)_ball_eject_attempt
balldevice_(name)_ball_eject_failed
balldevice_(name)_ball_eject_success
balldevice_(name)_ejecting_ball

How to configure a modern trough with opto switches

Related Config File Sections
ball_devices:
playfields:

This guide will show you how to configure MPF to use a modern-style trough with opto boards. (If you
have a modern-style trough which uses mechanical leaf switches, use this guide instead.)

Troughs / Ball Drains 595

Mission Pinball Framework Documentation, Version

The following diagram shows how the ball flow and eject coil work in a modern trough. (This is a side
view)

Troughs / Ball Drains 596

Mission Pinball Framework Documentation, Version

And this diagram shows how the “opto boards” are typically located. Note that one of the opto boards
is a “transmit” board that contains infrared LEDs which are always on, and the other side is the
“receive” board which contains photo transistors which are activated when the IR beam is hitting
them (i.e. when there is no ball blocking the path) and inactive when a ball is present and in the way.

Troughs / Ball Drains 597

Mission Pinball Framework Documentation, Version

If you got a Stern Spike Trough but are not using Stern Spike (not recommended) read the Stern
Spike Trough guide.

0. Connect your trough

Skip this step if your trough is already connected. Otherwise, you need to power your opto
transmitters and connect the opto receivers to your inputs. Make sure that you got proper current
limiting in place. This might be already present on the trough PCB (i.e. on older Stern troughs) or you
might need to add current limiting resistors. Read the Opto section for details if in doubt.

Bally/Williams Trough Opto Boards:

Part numbers:

∙ Transmitter: #A-18617-1 or 5768-14121-02 or #600-0035-00 or #600-0005-00

∙ Receiver: #A-18618-1 or 5768-14122-02 or #600-0036-00 or #600-0006-00

∙ Transmitter/Receiver: #600-0054-00 or #600-0055-00

Those boards need an additional current limiting resistor on the transmitter. Read the Opto section
for details if in doubt. You can connect the receivers one by one to your inputs. Don’t forget to connect
your the receiver board to ground.

Troughs / Ball Drains 598

Mission Pinball Framework Documentation, Version

FAST Trough Opto Boards:

Part numbers:

∙ Transmitter: FP-AUX-001-?

∙ Receiver: FP-AUX-001-2

The FAST transmitter already has parts for current limiting and you can connect it directly to 12V and
ground. You can connect the receivers one by one to your inputs. Don’t forget to connect your the
receiver board to ground.

Stern Trough Opto Boards:

Part numbers:

∙ Transmitter: 515-0173-00/520-5173-00

∙ Receiver: 515-0174-00/520-5174-00

This board only covers the first ball position and the jam position. All other positions are typically
covered by normal switches. Transmitter contains current limiting circuit and you can connect it
directly to 5V. The receiver needs to be powered and also inverts the optos. There is typically no need
to set NC on using those boards. You can follow the How to configure a modern trough with mechanical
switches guide to configure your trough.

Spike Trough Opto Boards:

Part numbers:

∙ Transmitter: 520-5344-00

∙ Receiver: 520-5345-00/520-5345-01

If you got a Stern Spike Trough but are not using Stern Spike (not recommended) read the Stern
Spike Trough guide.

1. Add your trough switches

The first step is to add your trough’s switches to the switches: section of your machine config file.
Create an entry in the switches: section for each switch in your trough, like this: (This example has
six switches plus the jam switch. Yours may have more or less.)

switches:

s_trough1:

number: 2

type: NC

s_trough2:

number: 3

type: NC

s_trough3:

number: 4

type: NC

s_trough4:

(continues on next page)

Troughs / Ball Drains 599

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 5

type: NC

s_trough5:

number: 6

type: NC

s_trough6:

number: 7

type: NC

s_trough_jam:

number: 8

type: NC

Note that we configured this switches with numbers 02 through 08, but you should use the actual
switch numbers for your control system that the trough optos are connected to. (See How to configure
“number:” settings for instructions for each type of control system.)

It makes no difference which switch is which (in terms of whether Switch 1 is on the left side or the
right side). Also the actual switch names don’t really matter. We use s_trough1 through s_trough6
plus s_trough_jam, though you can call them s_ball_trough_1 or trough_ball_1 or s_mr_potatohead.

Note: The “jam” switch position is the switch which detects if a ball is sitting on top of the lowest
ball. We think all modern opto troughs have optos to detect the jams, but if yours doesn’t, that’s
fine—just don’t enter it. (If you have it though you definitely want to use it because it makes MPF
smarter about how it handles balls that get stacked.)

2. Add your trough eject coil

Next, create an entry in your coils: section for your trough’s eject coil. Again, the name doesn’t
matter. We’ll call this c_trough_eject and enter it like this:

coils:

c_trough_eject:

number: 04

default_pulse_ms: 20

Again, the number: entries in your config will vary depending on your actual hardware, and again, you
can pick whatever name you want for your coil.

You’ll also note that we went ahead and entered a default_pulse_ms: value of 20 which will override
the default pulse time of 10ms. It’s hard to say at this point what value you’ll actually need. You can
always adjust this at any time. You can play with the exact values in a bit once we finish getting
everything set up.

3. Add your “trough” ball device

In MPF, the trough is a ball device, so you’ll add a configuration for it to the ball_devices: section of
your machine config. (If you don’t have that section add it now.)

Then in your ball_devices: section, create an entry called bd_trough:, like this:

Troughs / Ball Drains 600

Mission Pinball Framework Documentation, Version

ball_devices:

bd_trough:

This means that you’re creating a ball device called bd_trough. We use the preface bd_ to indicate that
this is a ball device which makes it easier when we’re referencing them later. Then under your
bd_trough: entry, start entering the configuration settings for your trough ball device:

3a. Add your trough switches to your trough ball device

Indented under bd_trough:, create an entry called ball_switches: and then add a comma-separated
list of all the switches in your trough, like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

So this is eight spaces, followed by the word “ball_switches”, then a colon, then a space, then the
name of your first switch, comma, then your second switch, comma, etc. . .

Again these switches can be in any order. The key is that you’re entering one switch for each position
that’s used to detect whether a ball is in the trough at that position.

If you have the switch in the jam position, enter it in this list too, since a ball sitting on top of another
one still “counts” as a ball in the trough.

The number of switches you enter here will tell MPF how many balls your trough can hold. When MPF
wants to know how many balls are in the trough, it will check all these switches to see which ones are
active, and the total number active represents how many balls it’s holding at that moment.

3b. Add your eject coil to your trough ball device

Next create a setting called eject_coil: which will be the name of the coil that MPF should fire when
it wants to eject a ball from the trough. This should be the name of the coil you added in Step 2,
c_trough_eject in our case:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

Note that MPF will simply pulse the eject coil at its default pulse time when it wants to eject a ball
from the trough.

3c. Add some tags to tell MPF about this device

The final configuration setting you need to enter for your trough is a list of tags which tell MPF certain
things about this device.

Tags are just a comma-separated list of words you add to the tags: setting for a device. Ball devices
can use some special tag names that tell MPF how it should use it.

Troughs / Ball Drains 601

Mission Pinball Framework Documentation, Version

First, add a tag called trough which tells MPF that a ball device wants to hold as many balls as it can.
This probably doesn’t make sense right now, which is fine, but without this tag then MPF won’t know
what to do with all the balls that are sitting in the trough waiting to be launched. This tag tells MPF
that it’s fine for this device to hold lots of balls.

Next, add a tag called home which tells MPF that any balls in this device are considered to be in their
“home” positions. When MPF first starts up, and after a game ends, it will automatically eject any
balls from any devices that are not tagged with “home.” When a player tries to start a game, MPF will
also make sure all the balls in the machine are contained in devices tagged with “home.”

Finally, you need to add a tag called drain which is used to tell MPF that a ball entering this device
means that a live ball has drained from the playfield. At this point you might be wondering why you
have to enter all three of these tags. Why can’t the simple trough tag be enough to tell MPF that a ball
entering it should trigger a drain and that balls are home? This is due to the flexibility of MPF and the
nearly unlimited variations of pinball machine hardware in the world. Some machines have multiple
troughs. Some machines have drain devices which aren’t troughs. Some machines consider balls
outside the trough to be home. So even though these all might seem similar, just know that for now
you have to add trough, home, and drain tags to your trough. You can specify the tags in any order, and
your tags: entry should look something like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

3d. Add & configure your jam switch

If you have a jam switch, add a setting called jam_switch: and add it there, like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

You can also configure an eject pulse time (in ms) that will be used when the trough wants to eject a
ball but the jam switch is active. You’ll have to play with your actual trough to see what this time
should be. In most cases it’s actually less time than the regular eject pulse time, because in most
cases, the regular pulse time will kick out two balls (the jammed ball and the one below it).

So for our example, we’ll set the jam pulse time to 15ms.

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

(Note that this setting is a time string, so you can include the “ms” in the setting value.)

Troughs / Ball Drains 602

Mission Pinball Framework Documentation, Version

4. Configure your virtual hardware to start with balls in the trough

While we’re talking about the trough, it’s probably a good idea to configure MPF so that when you
start it in virtual mode (with no physical hardware) that it starts with the trough full of balls. To do
this, add a new section to your config file called virtual_platform_start_active_switches:. (Sorry
this entry name is hilariously long.) As its name implies, virtual_platform_start_active_switches: lets
you list the names of switches that you want to start in the “active” state when you’re running MPF
with the virtual platform interfaces.

The reason these only work with the virtual platforms is because if you’re running MPF while
connected to a physical pinball machine, it doesn’t really make sense to tell MPF which switches are
active since MPF can read the actual switches from the physical machine. So you can add this section
to your config file, but MPF only reads this section when you’re running with one of the virtual
hardware interfaces. To use it, simply add the section along with a list of the switches you want to
start active. For example:

virtual_platform_start_active_switches:

- s_trough1

- s_trough2

- s_trough3

- s_trough4

- s_trough5

- s_trough6

5. Add your plunger lane

Remember that ball devices in MPF know what their “target” devices are, meaning that they
understand the chain of devices the ball path takes. (For example, the trough ejects to the plunger
lane which ejects to the playfield which drains to the trough. . .)

So in order to completely configure your trough, you need to tell it the name of thes devices that it
ejects to. For the purposes of this How To guide, we’ll just create a placeholder plunger lane called
bd_plunger, though you should see the Plungers & Ball Launch Devices documentation for full details
since there are lots of different types of plungers.

You add an eject target via the eject_targets: section, like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

Of course you should enter the name of your actual plunger lane / ball launcher device.

Note that the eject_targets: entry is “targets” (plural), but in this case we’re only adding a single
target. That’s fine and how you would configure a trough since it only ejects to one place (the plunger
lane). Some devices eject to pathways with diverters which can direct the ball to multiple different

Troughs / Ball Drains 603

Mission Pinball Framework Documentation, Version

places, so that’s the scenario where you’d enter more than one target. But for the trough, it’s just the
one.

6. Configure eject timeouts

Your trough will try to eject as fast as possible (i.e. during a multiball) but it has to wait that ball
cannot return and stack up. By default MPF will wait 10s after a ball to make sure that it settled in the
shooter lane or returned (in the latter case the trough will retry the eject). For the trough this works
fine if the ball actually settles in the shooter lane but sometimes a player might as well launch the ball
without hitting the plunger switch. For that reason it is important to set eject_timeouts to your
shooter lane and your trough. You should measure how long the maximum time is until a ball cannot
possibly return to your trough and plunger (with some safety margin). Usually this is about 2s - 4s for
a trough and 3s - 5s for a plunger.

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

eject_timeouts: 3s

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

Here’s the complete config

switches:

s_trough1:

number: 2

type: NC

s_trough2:

number: 3

type: NC

s_trough3:

number: 4

type: NC

s_trough4:

number: 5

type: NC

s_trough5:

number: 6

type: NC

s_trough6:

number: 7

type: NC

s_trough_jam:

number: 8

(continues on next page)

Troughs / Ball Drains 604

Mission Pinball Framework Documentation, Version

(continued from previous page)

type: NC

s_plunger:

number: 10

coils:

c_trough_eject:

number: 4

default_pulse_ms: 20

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

eject_timeouts: 3s

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

playfields:

playfield:

default_source_device: bd_plunger

tags: default

virtual_platform_start_active_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

How to configure a modern trough with mechanical switches

Related Config File Sections
ball_devices:
playfields:

This guide will show you how to configure MPF to use a modern-style trough which uses mechanical
leaf switches. If you have a modern trough that uses opto boards, use this guide instead.

Here’s an example from a Stern Star Trek Premium machine:

Troughs / Ball Drains 605

Mission Pinball Framework Documentation, Version

The following diagram shows how the ball flow and eject coil work in a modern trough. (This is a side
view)

And this diagram shows how the switches are typically arranged in a modern trough with mechanical
switches:

Troughs / Ball Drains 606

Mission Pinball Framework Documentation, Version

Note: Not all modern troughs have the “jam” switch, and depending on how many balls were
designed to go in your machine, it’s possible that not all the ball switches are populated. (Though you
can add more to increase the number of balls in your machine!)

1. Add your trough switches

The first step is to add your trough’s switches to the switches: section of your config file. Create an
entry in your switches: section for each switch in your trough, like this: (This example has six
switches plus the jam switch. Yours may have more or less.)

switches:

s_trough1:

number: 2

s_trough2:

number: 3

s_trough3:

number: 4

s_trough4:

number: 5

s_trough5:

number: 6

s_trough6:

number: 7

s_trough_jam:

number: 8

Troughs / Ball Drains 607

Mission Pinball Framework Documentation, Version

Note that we configured this switches with numbers 02 through 08, but you should use the actual
switch numbers for your control system that the trough switches are connected to. (See How to
configure “number:” settings for instructions for each type of control system.)

It makes no difference which switch is which (in terms of whether Switch 1 is on the left side or the
right side). Also the actual switch names don’t really matter. We use s_trough1 through s_trough6
plus s_trough_jam, though you can call them s_ball_trough_1 or trough_ball_1 or s_mr_potatohead.

Note: The “jam” switch position is the switch which detects if a ball is sitting on top of the lowest ball.
Not all troughs have this, so if yours doesn’t, that’s fine—just don’t enter it. (If you have it though you
definitely want to use it because it makes MPF smarter about how it handles balls that get stacked.)

2. Add your trough eject coil

Next, create an entry in your coils: section for your trough’s eject coil. Again, the name doesn’t
matter. We’ll call this c_trough_eject and enter it like this:

coils:

c_trough_eject:

number: 4

default_pulse_ms: 20

Again, the number: entries in your config will vary depending on your actual hardware, and again, you
can pick whatever name you want for your coil.

You’ll also note that we went ahead and entered a default_pulse_ms: value of 20 which will override
the default pulse time of 10ms. It’s hard to say at this point what value you’ll actually need. You can
always adjust this at any time. You can play with the exact values in a bit once we finish getting
everything set up.

3. Add your “trough” ball device

In MPF, the trough is a ball device, so you’ll add a configuration for it to the ball_devices: section of
your machine config. (If you don’t have that section add it now.)

Then in your ball_devices: section, create an entry called bd_trough:, like this:

ball_devices:

bd_trough:

This means that you’re creating a ball device called bd_trough. We use the preface bd_ to indicate that
this is a ball device which makes it easier when we’re referencing them later. Then under your
bd_trough: entry, start entering the configuration settings for your trough ball device:

3a. Add your trough switches to your trough ball device

Indented under bd_trough:, create an entry called ball_switches: and then add a comma-separated
list of all the switches in your trough, like this:

Troughs / Ball Drains 608

Mission Pinball Framework Documentation, Version

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

So this is eight spaces, followed by the word “ball_switches”, then a colon, then a space, then the
name of your first switch, comma, then your second switch, comma, etc. . .

Again these switches can be in any order. The key is that you’re entering one switch for each position
that’s used to detect whether a ball is in the trough at that position.

If you have the switch in the jam position, enter it in this list too, since a ball sitting on top of another
one still “counts” as a ball in the trough.

The number of switches you enter here will tell MPF how many balls your trough can hold. When MPF
wants to know how many balls are in the trough, it will check all these switches to see which ones are
active, and the total number active represents how many balls it’s holding at that moment.

3b. Add your eject coil to your trough ball device

Next create a setting called eject_coil: which will be the name of the coil that MPF should fire when
it wants to eject a ball from the trough. This should be the name of the coil you added in Step 2,
c_trough_eject in our case:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

Note that MPF will simply pulse the eject coil at its default pulse time when it wants to eject a ball
from the trough.

3c. Add some tags to tell MPF about this device

The final configuration setting you need to enter for your trough is a list of tags which tell MPF certain
things about this device.

Tags are just a comma-separated list of words you add to the tags: setting for a device. Ball devices
can use some special tag names that tell MPF how it should use it.

First, add a tag called trough which tells MPF that a ball device wants to hold as many balls as it can.
This probably doesn’t make sense right now, which is fine, but without this tag then MPF won’t know
what to do with all the balls that are sitting in the trough waiting to be launched. This tag tells MPF
that it’s fine for this device to hold lots of balls.

Next, add a tag called home which tells MPF that any balls in this device are considered to be in their
“home” positions. When MPF first starts up, and after a game ends, it will automatically eject any
balls from any devices that are not tagged with “home.” When a player tries to start a game, MPF will
also make sure all the balls in the machine are contained in devices tagged with “home.”

Finally, you need to add a tag called drain which is used to tell MPF that a ball entering this device
means that a live ball has drained from the playfield. At this point you might be wondering why you
have to enter all three of these tags. Why can’t the simple trough tag be enough to tell MPF that a ball
entering it should trigger a drain and that balls are home? This is due to the flexibility of MPF and the
nearly unlimited variations of pinball machine hardware in the world. Some machines have multiple

Troughs / Ball Drains 609

Mission Pinball Framework Documentation, Version

troughs. Some machines have drain devices which aren’t troughs. Some machines consider balls
outside the trough to be home. So even though these all might seem similar, just know that for now
you have to add trough, home, and drain tags to your trough. You can specify the tags in any order, and
your tags: entry should look something like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

3d. Add & configure your jam switch

If you have a jam switch, add a setting called jam_switch: and add it there, like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

You can also configure an eject pulse time (in ms) that will be used when the trough wants to eject a
ball but the jam switch is active. You’ll have to play with your actual trough to see what this time
should be. In most cases it’s actually less time than the regular eject pulse time, because in most
cases, the regular pulse time will kick out two balls (the jammed ball and the one below it).

So for our example, we’ll set the jam pulse time to 15ms.

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

(Note that this setting is a time string, so you can include the “ms” in the setting value.)

4. Configure your virtual hardware to start with balls in the trough

While we’re talking about the trough, it’s probably a good idea to configure MPF so that when you
start it in virtual mode (with no physical hardware) that it starts with the trough full of balls. To do
this, add a new section to your config file called virtual_platform_start_active_switches:. (Sorry
this entry name is hilariously long.) As its name implies, virtual_platform_start_active_switches: lets
you list the names of switches that you want to start in the “active” state when you’re running MPF
with the virtual platform interfaces.

The reason these only work with the virtual platforms is because if you’re running MPF while
connected to a physical pinball machine, it doesn’t really make sense to tell MPF which switches are
active since MPF can read the actual switches from the physical machine. So you can add this section
to your config file, but MPF only reads this section when you’re running with one of the virtual

Troughs / Ball Drains 610

Mission Pinball Framework Documentation, Version

hardware interfaces. To use it, simply add the section along with a list of the switches you want to
start active. For example:

virtual_platform_start_active_switches:

- s_trough1

- s_trough2

- s_trough3

- s_trough4

- s_trough5

- s_trough6

5. Add your plunger lane

Remember that ball devices in MPF know what their “target” devices are, meaning that they
understand the chain of devices the ball path takes. (For example, the trough ejects to the plunger
lane which ejects to the playfield which drains to the trough. . .)

So in order to completely configure your trough, you need to tell it the name of thes devices that it
ejects to. For the purposes of this How To guide, we’ll just create a placeholder plunger lane called
bd_plunger, though you should see the Plungers & Ball Launch Devices documentation for full details
since there are lots of different types of plungers.

You add an eject target via the eject_targets: section, like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

Of course you should enter the name of your actual plunger lane / ball launcher device.

Note that the eject_targets: entry is “targets” (plural), but in this case we’re only adding a single
target. That’s fine and how you would configure a trough since it only ejects to one place (the plunger
lane). Some devices eject to pathways with diverters which can direct the ball to multiple different
places, so that’s the scenario where you’d enter more than one target. But for the trough, it’s just the
one.

6. Configure eject timeouts

Your trough will try to eject as fast as possible (i.e. during a multiball) but it has to wait that ball
cannot return and stack up. By default MPF will wait 10s after a ball to make sure that it settled in the
shooter lane or returned (in the latter case the trough will retry the eject). For the trough this works
fine if the ball actually settles in the shooter lane but sometimes a player might as well launch the ball
without hitting the plunger switch. For that reason it is important to set eject_timeouts to your
shooter lane and your trough. You should measure how long the maximum time is until a ball cannot

Troughs / Ball Drains 611

Mission Pinball Framework Documentation, Version

possibly return to your trough and plunger (with some safty margin). Usually this is about 2s - 4s for
a trough and 3s - 5s for a plunger.

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

eject_timeouts: 3s

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

Here’s the complete config

switches:

s_trough1:

number: 2

s_trough2:

number: 3

s_trough3:

number: 4

s_trough4:

number: 5

s_trough5:

number: 6

s_trough6:

number: 7

s_trough_jam:

number: 8

s_plunger:

number: 10

coils:

c_trough_eject:

number: 4

default_pulse_ms: 20

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

eject_timeouts: 3s

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

(continues on next page)

Troughs / Ball Drains 612

Mission Pinball Framework Documentation, Version

(continued from previous page)

playfields:

playfield:

default_source_device: bd_plunger

tags: default

virtual_platform_start_active_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

How to configure an older style trough with two coils and switches for each ball

Related Config File Sections
ball_devices:
playfields:

This guide will show you how to configure MPF to use an older-style drain and trough combination
that uses two coils (one to eject the ball from the drain hole and a second to release a ball into the
plunger lane).

This guide is written for the types of systems where the trough side (after the “hump”) has multiple
switches—one for each ball that’s sitting there.

Here’s an example of a Williams System 11 trough that uses this system, from a Pin*Bot machine:

If your machine’s trough system is like this but you only have one switch on the trough side (like
Gottlieb System 3 machines), then use this guide instead.

The following diagram shows how the layout that this guide is written for works: (This is a side view)

Troughs / Ball Drains 613

Mission Pinball Framework Documentation, Version

This style of trough and drain was used in Williams System 11 machines and early WPC machines
(Addams Family, T2, Hurricane, and a few others).

1. Add the switches

The first step is to add all the switches to the switches: section of your config file. Create an entry in
your switches: section for the drain switch as well as each switch in your trough, like this: (This
example has three switches in the trough. Yours may have more or less.)

switches:

s_drain:

number: 1

s_trough1:

number: 2

s_trough2:

number: 3

s_trough3:

number: 4

Note that we configured this switches with numbers 01 through 04, but you should use the actual
switch numbers for your control system that the trough switches are connected to. (See How to
configure “number:” settings for instructions for each type of control system.)

It makes no difference which switch is which (in terms of whether Switch 1 is on the left side or the
right side). Also the actual switch names don’t really matter. We use s_trough1 through s_trough3
though you can call them s_ball_trough_1 or trough_ball_1 or s_mr_potatohead.

Troughs / Ball Drains 614

Mission Pinball Framework Documentation, Version

2. Add the coils

Next, create the entries in your coils: section for the drain eject coil and the trough release coil.
Again, the names don’t matter. We’ll call them c_drain_eject and c_trough_release and enter them like
this:

coils:

c_drain_eject:

number: 3

default_pulse_ms: 20

c_trough_release:

number: 4

default_pulse_ms: 20

Again, the number: entries in your config will vary depending on your actual hardware, and again, you
can pick whatever name you want for your coil.

You’ll also note that we went ahead and entered default_pulse_ms: values of 20 which will override
the default pulse times of 10ms. It’s hard to say at this point what values you’ll actually need. You can
always adjust this at any time. You can play with the exact values in a bit once we finish getting
everything set up.

Note that some trough coils use a shorter pulse to pop the ball into the plunger lane. However, some
machines have gates or rotational devices that need to be active for much longer. So having a long
pulse time, like default_pulse_ms: 1000 (for one second) is totally fine. However, if the pulse time is
over 255ms, then technically that coil is enabled and disabled versus pulsed, so in that case, you also
need to add allow_enable: true which tells MPF it’s ok to enable this coil for more than 255ms (since
255ms is the maximum pulse time for most platforms).

In other words, a trough release time of 1s would look like this:

coils:

c_trough_release:

number: 4

default_pulse_ms: 1000

allow_enable: true

3. Add your “drain” ball device

In MPF, anything that holds and releases a ball is a ball device. With this drain/trough setup, there are
actually two ball devices—one for the drain and a second for the trough.

Let’s add the drain device first, which we’ll add to the ball_devices: section of your machine config.
(If you don’t have that section add it now.)

Then in your ball_devices: section, create an entry called bd_drain:, like this:

ball_devices:

bd_drain:

This means that you’re creating a ball device called bd_drain. We use the preface bd_ to indicate that
this is a ball device which makes it easier when we’re referencing them later. Then under your
bd_drain: entry, you’ll start entering the configuration settings for your drain ball device.

Troughs / Ball Drains 615

Mission Pinball Framework Documentation, Version

∙ Add ball_switches: s_drain which means this device will use the s_drain switch to know
whether or not this device has a ball.

∙ Add eject_coil: c_drain_eject which is the name of the coil that will eject the ball from the
drain.

∙ Add eject_targets: bd_trough which tells MPF that this ball device ejects its balls into the
device called bd_trough. (We’ll create that device in the next step.)

∙ Add tags: drain which tells MPF that balls entering this device mean that a ball has drained
from the playfield.

Your drain device configuration should look now look like this:

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

eject_targets: bd_trough

tags: drain

4. Add your “trough” ball device

Next create a second entry in the ball_devices: section called bd_trough that will be for the trough
device that holds the balls that are ejected from the drain before they’re released into the plunger
lane.

The configuration is pretty straightforward:

∙ Add ball_switches: s_trough1, s_trough2, s_trough3 tells this device that those switches are
used to count balls in the trough. (You may have more or less than 3. Also the order of these
doesn’t matter.

∙ Add eject_coil: c_trough_release which is the name of the coil that will be pulsed to eject the
ball from the drain.

∙ Add eject_targets: bd_plunger_lane which tells MPF that this ball device ejects its balls into
the device called bd_plunger_lane. (We won’t actually create the plunger device in this How To
guide, but you need to have it, so see the Plungers & Ball Launch Devices documentation for full
details since there are lots of different types of plungers.

∙ Add tags: home, trough which tells MPF that it’s ok to store unused balls here and that it’s ok
for balls to be here when games start.

∙ Set eject_timeouts to the maximum time the ball can take to return if the eject fails.

Your trough device configuration should look now look like this:

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3

eject_coil: c_trough_release

eject_targets: bd_plunger_lane

tags: home, trough

eject_timeouts: 3s

Troughs / Ball Drains 616

Mission Pinball Framework Documentation, Version

5. Configure your virtual hardware to start with balls in the trough

While we’re talking about the trough, it’s probably a good idea to configure MPF so that when you
start it in virtual mode (with no physical hardware) that it starts with the trough full of balls. To do
this, add a new section to your config file called virtual_platform_start_active_switches:. (Sorry
this entry name is hilariously long.) As its name implies, virtual_platform_start_active_switches: lets
you list the names of switches that you want to start in the “active” state when you’re running MPF
with the virtual platform interfaces.

The reason these only work with the virtual platforms is because if you’re running MPF while
connected to a physical pinball machine, it doesn’t really make sense to tell MPF which switches are
active since MPF can read the actual switches from the physical machine. So you can add this section
to your config file, but MPF only reads this section when you’re running with one of the virtual
hardware interfaces. To use it, simply add the section along with a list of the switches you want to
start active. For example:

virtual_platform_start_active_switches: s_trough1, s_trough2, s_trough3

Here’s the complete config

#config_version=5

switches:

s_drain:

number: 1

s_trough1:

number: 2

s_trough2:

number: 3

s_trough3:

number: 4

s_plunger:

number: 10

coils:

c_drain_eject:

number: 3

default_pulse_ms: 20

c_trough_release:

number: 4

default_pulse_ms: 20

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

eject_targets: bd_trough

tags: drain

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3

eject_coil: c_trough_release

eject_targets: bd_plunger_lane

tags: home, trough

eject_timeouts: 3s

bd_plunger_lane:

(continues on next page)

Troughs / Ball Drains 617

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

playfields:

playfield:

default_source_device: bd_plunger_lane

tags: default

virtual_platform_start_active_switches: s_trough1, s_trough2, s_trough3

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

How to configure an older style trough with two coils and only one ball switch

Related Config File Sections
ball_devices:
playfields:

This guide will show you how to configure MPF to use an older-style drain and trough combination
that uses two coils (one to eject the ball from the drain hole and a second to release a ball into the
plunger lane).

This guide is written for the types of devices that have only have one switch on the trough side, like
this example of a Gottlieb System 3 machine (Brooks ‘n Dunn):

Troughs / Ball Drains 618

Mission Pinball Framework Documentation, Version

If your trough system has multiple switches in the trough (one for each ball), then use this guide
instead.

In the types of troughs this guide is for, a ball ejected from the drain over the hump into the trough
will only momentarily activate the trough switch as the ball rolls by, unless the trough is full, in which
case the last ball that goes into it sits on the switch.

The following diagram shows a more clear view of the type of trough system this guide is for: (This is
a side view)

1. Add the switches

The first step is to add all the switches to the switches: section of your config file. Create an entry in
your switches: section for the drain switch as well as each switch in your trough, like this: (This
example has three switches in the trough. Yours may have more or less.)

switches:

s_drain:

number: 1

s_trough_enter:

number: 2

Note that we configured this switches with numbers 01 and 02, but you should use the actual switch
numbers for your control system that the switches are connected to. (See How to configure “number:”
settings for instructions for each type of control system.)

It makes no difference what the actual switch names are. We use s_drain and s_trough_entry, though
you can call them whatever you want.

Troughs / Ball Drains 619

Mission Pinball Framework Documentation, Version

2. Add the coils

Next, create the entries in your coils: section for the drain eject coil and the trough release coil.
Again, the names don’t matter. We’ll call them c_drain_eject and c_trough_release and enter them like
this:

coils:

c_drain_eject:

number: 3

default_pulse_ms: 20

c_trough_release:

number: 4

default_pulse_ms: 20

Again, the number: entries in your config will vary depending on your actual hardware, and again, you
can pick whatever name you want for your coil.

You’ll also note that we went ahead and entered default_pulse_ms: values of 20 which will override
the default pulse times of 10ms. It’s hard to say at this point what values you’ll actually need. You can
always adjust this at any time. You can play with the exact values in a bit once we finish getting
everything set up.

Note that some trough coils use a shorter pulse to pop the ball into the plunger lane. However, some
machines have gates or rotational devices that need to be active for much longer. However, if the
pulse time is over about 50ms, then that coil should be enabled with PWM and disabled versus pulsed,
so in that case, you also need to add default_pulse_power: which tells MPF it’s ok to enable this coil
(with 25% hold power in this case).

In other words, a trough with long release time would look like this:

coils:

c_trough_release:

number: 4

default_pulse_ms: 20ms

default_hold_power: 0.25

3. Add your “drain” ball device

In MPF, anything that holds and releases a ball is a ball device. With this drain/trough setup, there are
actually two ball devices—one for the drain and a second for the trough.

Let’s add the drain device first, which we’ll add to the ball_devices: section of your machine config.
(If you don’t have that section add it now.)

Then in your ball_devices: section, create an entry called bd_drain:, like this:

ball_devices:

bd_drain:

This means that you’re creating a ball device called bd_drain. We use the preface bd_ to indicate that
this is a ball device which makes it easier when we’re referencing them later. Then under your
bd_drain: entry, you’ll start entering the configuration settings for your drain ball device.

∙ Add ball_switches: s_drain which means this device will use the s_drain switch to know
whether or not this device has a ball.

Troughs / Ball Drains 620

Mission Pinball Framework Documentation, Version

∙ Add eject_coil: c_drain_eject which is the name of the coil that will eject the ball from the
drain.

∙ Add eject_targets: bd_trough which tells MPF that this ball device ejects its balls into the
device called bd_trough. (We’ll create that device in the next step.)

∙ Add tags: drain which tells MPF that balls entering this device mean that a ball has drained
from the playfield.

∙ Set eject_timeouts to the maximum time the ball can take to return if the eject fails.

Your drain device configuration should look now look like this:

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

eject_targets: bd_trough

tags: drain

eject_timeouts: 4s

4. Add your “trough” ball device

Next create a second entry in the ball_devices: section called bd_trough that will be for the trough
device that holds the balls that are ejected from the drain before they’re released into the plunger
lane.

The configuration is pretty straightforward:

∙ Add entrance_switch: s_trough_enter which tells MPF which switch is used as the “entrance”
switch to this device. (An entrance switch is the switch that’s momentarily activated as balls
enter this device.)

∙ Add entrance_switch_full_timeout: 500ms which tells MPF that if the entrance switch stays
active for more than this amount of time, that means that this device is full.

∙ Add ball_capacity: 3 (or whatever the number of balls is that can be stored on the trough side).
This tells MPF how many balls are in this device when a ball is sitting on the entrance switch.

∙ Add eject_coil: c_trough_release which is the name of the coil that will be pulsed to eject the
ball from the drain.

∙ Add eject_targets: bd_plunger_lane which tells MPF that this ball device ejects its balls into
the device called bd_plunger_lane. (We won’t actually create the plunger device in this How To
guide, but you need to have it, so see the Plungers & Ball Launch Devices documentation for full
details since there are lots of different types of plungers.

∙ Add tags: home, trough which tells MPF that it’s ok to store unused balls here and that it’s ok
for balls to be here when games start.

Your trough device configuration should look now look like this:

ball_devices:

bd_trough:

entrance_switch: s_trough_enter

entrance_switch_full_timeout: 500ms

ball_capacity: 3

(continues on next page)

Troughs / Ball Drains 621

Mission Pinball Framework Documentation, Version

(continued from previous page)

eject_coil: c_trough_release

eject_targets: bd_plunger_lane

tags: trough, home

eject_timeouts: 3s

If you need to enable c_trough_release for 1s (more than a few ms) it would look like this:

ball_devices:

bd_trough:

entrance_switch: s_trough_enter

entrance_switch_full_timeout: 500ms

ball_capacity: 3

eject_coil: c_trough_release

eject_coil_enable_time: 100ms

eject_targets: bd_plunger_lane

tags: trough, home

eject_timeouts: 3s

5. Configure the balls installed

One of the downsides of only having one switch in the trough is that if that switch is not active, then
MPF doesn’t actually know how many balls are in it. (In the example diagram at the beginning of this
guide where the trough can hold three balls, if that trough entry switch is not active, then there could
be zero, 1, or 2 balls in the trough.)

MPF is able to keep track of how many balls are in the trough by tracking balls entered versus balls
released. However when MPF starts up, if that entrance switch isn’t active, then it won’t know how
many balls are there.

There’s a setting in the machine config called machine:balls_installed: that tells MPF how many
actual balls are installed in the machine. So when MPF starts, it can count up all the balls in all the
devices and see if they’re all there or if any are missing. Since that’s a bit tricky with the single switch
in the trough, you telling MPF how many total balls are installed in the machine help it know what to
do if that entrance switch isn’t active when MPF starts up.

Here’s an example from the machine config:

machine:

balls_installed: 4

6. Configure your virtual hardware to start with balls in the trough

While we’re talking about the trough, it’s probably a good idea to configure MPF so that when you
start it in virtual mode (with no physical hardware) that it starts with the trough full of balls. To do
this, add a new section to your config file called virtual_platform_start_active_switches:. (Sorry
this entry name is hilariously long.) As its name implies, virtual_platform_start_active_switches: lets
you list the names of switches that you want to start in the “active” state when you’re running MPF
with the virtual platform interfaces.

The reason these only work with the virtual platforms is because if you’re running MPF while
connected to a physical pinball machine, it doesn’t really make sense to tell MPF which switches are

Troughs / Ball Drains 622

Mission Pinball Framework Documentation, Version

active since MPF can read the actual switches from the physical machine. So you can add this section
to your config file, but MPF only reads this section when you’re running with one of the virtual
hardware interfaces. To use it, simply add the section along with a list of the switches you want to
start active. For example:

virtual_platform_start_active_switches: s_trough_enter

Here’s the complete config

switches:

s_drain:

number: 01

s_trough_enter:

number: 02

s_plunger:

number: 10

coils:

c_drain_eject:

number: 03

default_pulse_ms: 20

c_trough_release:

number: 04

default_pulse_ms: 20

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

eject_targets: bd_trough

tags: drain

eject_timeouts: 4s

bd_trough:

entrance_switch: s_trough_enter

entrance_switch_full_timeout: 500ms

ball_capacity: 3

eject_coil: c_trough_release

eject_targets: bd_plunger

tags: trough, home

eject_timeouts: 3s

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

playfields:

playfield:

default_source_device: bd_plunger

tags: default

machine:

balls_installed: 4

virtual_platform_start_active_switches: s_trough_enter

Troughs / Ball Drains 623

Mission Pinball Framework Documentation, Version

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

How to configure a classic single-ball trough

Related Config File Sections
ball_devices:
playfields:

This guide will show you how to configure MPF to use an older-style single ball drain. This is the type
of configuration that most (all?) single-ball machines use, from EM machines of the 1950s through
electronic single ball machines of the early 1980s.

Here’s an example from a Gottlieb Big Shot (1974 EM):

And here’s a diagram which shows this a bit more clearly: (This is a side view)

Troughs / Ball Drains 624

Mission Pinball Framework Documentation, Version

We assume that your machine has a shooter lane switch. If that is not the case see How to configure a
classic single-ball trough without shooter lane.

1. Add the drain and plunger switch

The first step is to add the drain and plunger switches to the switches: section of your machine config
file.

switches:

s_drain:

number: 01

s_plunger:

number: 02

Note that we configured those switches with number 01 and 02, but you should use the actual switch
number for your control system that the switch is connected to. (See How to configure “number:”
settings for instructions for each type of control system.)

2. Add the eject coil

Next, create the entry in your coils: section for the drain eject coil. Again, the name doesn’t matter.
We’ll call it c_drain_eject and enter it like this:

coils:

c_drain_eject:

number: 03

default_pulse_ms: 20

Again, the number: entry in your config will vary depending on your actual hardware, and again, you
can pick whatever name you want for your coil.

Troughs / Ball Drains 625

Mission Pinball Framework Documentation, Version

You’ll also note that we went ahead and entered a default_pulse_ms: value of 20 which will override
the default pulse times of 10ms. It’s hard to say at this point what values you’ll actually need. You can
always adjust this at any time. You can play with the exact values in a bit once we finish getting
everything set up.

3. Add your “drain” ball device

In MPF, anything that holds and releases a ball is a ball device. So in your ball_devices: section,
create an entry called bd_drain: like this: (If you don’t have that section add it now.)

ball_devices:

bd_drain:

This means that you’re creating a ball device called bd_drain. We use the preface bd_ to indicate that
this is a ball device which makes it easier when we’re referencing them later. Then under your
bd_drain: entry, you’ll start entering the configuration settings for your drain ball device.

∙ Add ball_switches: s_drain which means this device will use the s_drain switch to know
whether or not this device has a ball.

∙ Add eject_coil: c_drain_eject which is the name of the coil that will eject the ball from the
drain.

∙ Add eject_targets: bd_plunger_lane which tells MPF that this ball device ejects its balls into
the device called bd_plunger_lane. (We won’t actually create the plunger device in this How To
guide, but you need to have it, so see the Plungers & Ball Launch Devices documentation for full
details since there are lots of different types of plungers.

∙ Add tags: drain, home, trough which tells MPF that balls entering this device mean that a ball
has drained from the playfield, that it’s ok to start a game with a ball here, and that this device is
used to store unused balls.

∙ Set eject_timeouts to the maximum time the ball can take to return if the eject fails.

Your drain device configuration should look now look like this:

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

eject_targets: bd_plunger_lane

tags: drain, home, trough

eject_timeouts: 3s

4. Add your “plunger” ball device

We also add the plunger as ball_device bd_plunger_lane:

ball_devices:

bd_plunger_lane:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

Troughs / Ball Drains 626

Mission Pinball Framework Documentation, Version

5. Configure your virtual hardware to start with balls in the trough

While we’re talking about the trough, it’s probably a good idea to configure MPF so that when you
start it in virtual mode (with no physical hardware) that it starts with the trough full of balls. To do
this, add a new section to your config file called virtual_platform_start_active_switches:. (Sorry
this entry name is hilariously long.) As its name implies, virtual_platform_start_active_switches: lets
you list the names of switches that you want to start in the “active” state when you’re running MPF
with the virtual platform interfaces.

The reason these only work with the virtual platforms is because if you’re running MPF while
connected to a physical pinball machine, it doesn’t really make sense to tell MPF which switches are
active since MPF can read the actual switches from the physical machine. So you can add this section
to your config file, but MPF only reads this section when you’re running with one of the virtual
hardware interfaces. To use it, simply add the section along with a list of the switches you want to
start active. For example:

virtual_platform_start_active_switches: s_drain

Here’s the complete config

#config_version=5

switches:

s_drain:

number: 01

s_plunger:

number: 02

coils:

c_drain_eject:

number: 03

default_pulse_ms: 20

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

eject_targets: bd_plunger_lane

tags: drain, home, trough

eject_timeouts: 3s

bd_plunger_lane:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

playfields:

playfield:

default_source_device: bd_plunger_lane

tags: default

virtual_platform_start_active_switches: s_drain

What if it did not work?

Have a look at our troubleshooting guide for ball_devices.

Troughs / Ball Drains 627

Mission Pinball Framework Documentation, Version

How to configure a classic single-ball trough without shooter lane

Related Config File Sections
ball_devices:
playfields:

This guide will show you how to configure MPF to use an older-style single ball drain without shooter
lane. This is the type of configuration that some single-ball machines use, from EM machines of the
1950s through electronic single ball machines of the early 1980s.

Here’s an example from a Gottlieb Playball (1971 EM):

1. Add the drain switch

The first step is to add the drain switch to the switches: section of your machine config file.

switches:

s_drain:

number: 01

Note that we configured this switches with number 01, but you should use the actual switch number
for your control system that the switch is connected to. (See How to configure “number:” settings for
instructions for each type of control system.)

Troughs / Ball Drains 628

Mission Pinball Framework Documentation, Version

2. Add the eject coil

Next, create the entry in your coils: section for the drain eject coil. Again, the name doesn’t matter.
We’ll call it c_drain_eject and enter it like this:

coils:

c_drain_eject:

number: 03

default_pulse_ms: 20

Again, the number: entry in your config will vary depending on your actual hardware, and again, you
can pick whatever name you want for your coil.

You’ll also note that we went ahead and entered a default_pulse_ms: value of 20 which will override
the default pulse times of 10ms. It’s hard to say at this point what values you’ll actually need. You can
always adjust this at any time. You can play with the exact values in a bit once we finish getting
everything set up.

3. Add your “drain” ball device

In MPF, anything that holds and releases a ball is a ball device. So in your ball_devices: section,
create an entry called bd_drain: like this: (If you don’t have that section add it now.)

ball_devices:

bd_drain:

This means that you’re creating a ball device called bd_drain. We use the preface bd_ to indicate that
this is a ball device which makes it easier when we’re referencing them later. Then under your
bd_drain: entry, you’ll start entering the configuration settings for your drain ball device.

∙ Add ball_switches: s_drain which means this device will use the s_drain switch to know
whether or not this device has a ball.

∙ Add eject_coil: c_drain_eject which is the name of the coil that will eject the ball from the
drain.

∙ Add tags: drain, home, trough which tells MPF that balls entering this device mean that a ball
has drained from the playfield, that it’s ok to start a game with a ball here, and that this device is
used to store unused balls.

∙ Set eject_timeouts to the maximum time the ball can take to return if the eject fails.

Your drain device configuration should look now look like this:

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

tags: drain, home, trough

eject_timeouts: 3s

Troughs / Ball Drains 629

Mission Pinball Framework Documentation, Version

4. Add the trough as default_source_device

Normally you would use your plunger device as source device for your playfield. But since there is no
plunger lane, that means we have to go back to the trough ball device and use it as source device.
Therefore, you need to add your trough ball device as default_source_device to your playfield to tell
MPF that this ball device is used to add a new ball into play.

To do that, add your trough device as default_source_device in the default playfield, like this:

playfields:

playfield:

default_source_device: bd_drain

tags: default

Then when MPF needs to add a live ball into play, it will eject a ball from the trough and you’re all set!

5. Configure your virtual hardware to start with balls in the trough

While we’re talking about the trough, it’s probably a good idea to configure MPF so that when you
start it in virtual mode (with no physical hardware) that it starts with the trough full of balls. To do
this, add a new section to your config file called virtual_platform_start_active_switches:. (Sorry
this entry name is hilariously long.) As its name implies, virtual_platform_start_active_switches: lets
you list the names of switches that you want to start in the “active” state when you’re running MPF
with the virtual platform interfaces.

The reason these only work with the virtual platforms is because if you’re running MPF while
connected to a physical pinball machine, it doesn’t really make sense to tell MPF which switches are
active since MPF can read the actual switches from the physical machine. So you can add this section
to your config file, but MPF only reads this section when you’re running with one of the virtual
hardware interfaces. To use it, simply add the section along with a list of the switches you want to
start active. For example:

virtual_platform_start_active_switches: s_drain

Here’s the complete config

#config_version=5

switches:

s_drain:

number: 01

coils:

c_drain_eject:

number: 03

default_pulse_ms: 20

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

tags: drain, home, trough

eject_timeouts: 3s

playfields:

(continues on next page)

Troughs / Ball Drains 630

Mission Pinball Framework Documentation, Version

(continued from previous page)

playfield:

default_source_device: bd_drain

tags: default

virtual_platform_start_active_switches: s_drain

What if it did not work?

Have a look at our troubleshooting guide for ball_devices.

Using the Stern Spike Trough

Related Config File Sections
ball_devices:
playfields:
spi_bit_bang:
digital_outputs:

Unlike other troughs the Stern Spike trough contains an 74HCT165 chip and is interfaced via SPI.
This is a problem if your platform is not using SPI to read switches (which most platforms are not). If
you are on Stern Spike then just configure your trough as described in How to configure a modern
trough with opto switches.

Note: While the Stern Spike trough works with other platforms we do not recommend to buy it if you
are not using the Stern Spike platform. Instead, if you did not yet buy a trough buy one with normal
switches or optos (unless you are using Stern Spike). This will make your life easier.

Part numbers:

∙ Transmitter: 520-5344-00

∙ Receiver: 520-5345-00/520-5345-01

Config (if you are not on Stern Spike):

If you got a Stern Spike trough but are not using Stern Spike you can use our SPI Bit Bang platform to
read the switches of your trough:

hardware:

platform: your_platform, spi_bit_bang # add your platform first here

spi_bit_bang:

miso_pin: s_miso

cs_pin: o_cs

clock_pin: o_clock

digital_outputs:

o_cs:

(continues on next page)

Troughs / Ball Drains 631

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 1 # adjust this for your platform

type: driver

o_clock:

number: 2 # adjust this for your platform

type: driver

switches:

s_trough0:

number: 0

platform: spi_bit_bang

s_trough1:

number: 1

platform: spi_bit_bang

s_trough2:

number: 2

platform: spi_bit_bang

s_trough3:

number: 3

platform: spi_bit_bang

s_trough4:

number: 4

platform: spi_bit_bang

s_trough5:

number: 5

platform: spi_bit_bang

s_trough6:

number: 6

platform: spi_bit_bang

s_trough_jam: # this might be also number 0

number: 7

platform: spi_bit_bang

s_miso:

number: 10 # adjust this for your platform

s_plunger:

number: 11 # adjust this for your platform

the following is the same as in the "modern trough with opto switches" tutorial

coils:

c_trough_eject:

number: 4

default_pulse_ms: 20

ball_devices:

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough5, s_trough6, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 15ms

eject_targets: bd_plunger

eject_timeouts: 3s

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 5s

playfields:

playfield:

(continues on next page)

Troughs / Ball Drains 632

Mission Pinball Framework Documentation, Version

(continued from previous page)

default_source_device: bd_plunger

tags: default

What if it doesn’t work?

Have a look at our troubleshooting guide for ball_devices.

Let us know in the forum if you are missing a mech in MPF.

Troughs / Ball Drains 633

CHAPTER8

Game Logic

Most (potentially all) of your game logic can be configured in the MPF config files. For classical
language programmers new to MPF, an introduction to how the framework handles logical decisions
may be helpful. All game logic is tied to event posts. Mostly, this is achieved through config file
programming of timers, shots, counters, multiballs, accruals, etc. . . . These prebuilt modules (listed
below) listen for events to be posted then read the state of the hardware and/or perform
manipulations on player or device variables. In turn these modules issue their own event posts which
drive the behavior or other modules and devices to start and stop modes, control diverts, set bonus
multipliers and everything else game related.

A question beginners may have is “How do I tell MPF to perform an action when two or more
conditions are met simultaneously?” In an event driven framework this is not the correct way to
conseptualize the logic. Again, nothing game related happens without being driven by a posted event.
Because events only exist as a descrete moments in time, it does not work to attempt (pseudocode)
logic such as IF event1 and event2 then post event3. Nevertheless, MPF provides a flexible and robust
mechanism for performing logic on events. This is where Conditional Events come in.

In brief, the the way conditional events work is by telling MPF to process a particular event if and only
if additional conditions are met. These conditions (listed inside curly brackets) can relate to player
variables (such as score) machine variables (such as credit) or device variables (such as timer ticks or
number of balls locked). See <conditional/index> for specific examples.

With this flexibility in mind, Here is a list of pre-built game logic modules containing the description,
how to guides, links to tutorials, event listings, and configuration

Note: Most of the “How To” guides for these sections still need to be written.

634

Mission Pinball Framework Documentation, Version

Achievements

Related Config File Sections
achievements:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

MPF uses “achievements” to track major goals that a player must achieve throughout the progression
of a game. Achievements typically have an associated light or LED on the playfield (though not
always), and they’re tracked separately per player.

The biggest use for achievements is for modes, where you have a bunch of modes in a machine which
each have a light, and as you complete the modes, the light turns on. (In many cases the lights/LEDs
associated with achievements have multiple states, for example, they’re “off” when not complete,
“flashing” when active, “on” when complete, etc.)

Here are some examples from real machines that would map to “achievements” in MPF:

∙ Attack from Mars:

∙ The countries (France, Germany, Italy, England, USA)

∙ The Capture inserts (Capture 1, Capture 2, Capture 3)

∙ The Big -O- Beam inserts (1, 2, and 3)

∙ The Atomic Blaster inserts (1, 2, and 3)

∙ The Blue circles to Rule The Universe (Super Jackpot, Super Jets, Martian Attack
Multiball, Total Annihilation, Conquer Mars, and 5-way Combo)

∙ Indiana Jones: The Pinball Adventure:

∙ The Modes inserts (Streets of Cairo, Well of Souls, Monkey Brains, etc.)

∙ The Addams Family:

∙ Mansion Modes (Raise the Dead, Hit Cousin It, Mamushka, etc.)

∙ Star Trek: The Next Generation:

∙ Missions (Time Rift, Asteroid Threat, Rescue, Q’s Challenge, etc.)

∙ Red & Ted’s Road Show:

∙ The cities on the Map (each city is an achievement)

∙ The wheel (Lunch Time, Flying Rocks, Big Blast, Special, etc.)

You can have as many achievements as you want in your machine, and you can re-use the same
lights/LEDs for different achievements in different modes. (For example, you might have red arrow
inserts that turn on and off to highlight shots in your base mode, but then you might have a timed
mode where those inserts are mapped to achievements and they’re all lit, and they go out as they’re
hit.)

Achievements 635

Mission Pinball Framework Documentation, Version

You can also group individual achievements into “achievement groups”. This is useful for tracking
when all the achievements in the group have been complete (e.g. to light a wizard mode). You can also
use achievement groups to “rotate” lit achievements (e.g. every slingshot hit changes the achievement
that’s flashing, but it only rotates through incomplete achievements.)

Monitorable Properties

For dynamic values and conditional events, the prefix for achievements is
device.achievements.<name>.

state The string name of the state this achievement is in. Options will be one of the following:
disabled, enabled, started, stopped, or completed. If this achievement is in a mode that has not
been started yet, then its state will be an empty string.

selected boolean (true or false)

Related How To guides

∙ Recipe: The Addams Family Mansion Awards

Related Events

∙ achievement_(name)_changed_state

∙ achievement_(name)_state_(state)

∙ Plus any custom events as defined in the achievement’s configuration in your config files.

Achievement Groups

Related Config File Sections
achievement_groups:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

Achievement groups are used to group together individual achievements.

If you look at the real-world examples we used in the achievements documentation, each of the entries
in that list is an achievement “group” that’s made up of individual achievements.

For example, in The Addams Family, the mansion awards would be individual achievements, for
example:

∙ 9 Mil

∙ 6 Mil

∙ 3 Mil

Achievements 636

Mission Pinball Framework Documentation, Version

∙ Thing

∙ Quick Multiball

∙ Grave Yard at Max

∙ Raise the Dead

∙ Etc.

Each of those individual achievements has a state (enabled, started, completed, etc.)

If you were building a config for The Addams Family (TAF) with MPF, you would create an
achievement group called “Mansion Awards”, and then you would add the individual achievements to
that group.

The achievement group will let you perform group-level actions on the achievements in the group. For
example:

∙ Randomly select one of the incomplete achievements (so you can flash that achievement’s light
to indicate it’s selected).

∙ Change which achievement is selected. (In TAF, each hit to a pop bumper changes the lit
achievement, so you’d configure your achievement group to pick a new achievement when the
pop bumper hit event was posted.)

∙ Post an event when all achievements are complete (to start a wizard mode, etc.)

∙ Post a “start” event for whichever achievement is lit (In TAF, you shoot the lit electric chair or
the swamp to start the flashing achievement.)

Monitorable Properties

For dynamic values and conditional events, the prefix for achievement groups is
device.achievement_groups.<name>.

enabled Boolean (true/false) as to whether this achievement group is enabled.

selected_member The achievement in the group that is currently in the selected state, or None if no
achievement is selected.

Related How To guides

∙ Recipe: The Addams Family Mansion Awards

Related Events

∙ Custom events as defined in the achievement’s configuration in your config files.

Ball Holds

Related Config File Sections
ball_holds:

Ball Holds 637

Mission Pinball Framework Documentation, Version

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

MPF’s ball holds are used to temporarily hold a ball that has entered a Ball Devices while something
else happens.

The most common use cases are to hold a ball while you play a show, or while a video mode is going
on. Ball holds do not affect the balls in play count, and if all other balls drain while a ball hold is in
progress, the players ball does not end.

Ball holds are not used to lock balls for multiball. (See the multiball_locks device for that).

You can have lots of different ball holds in your game, typically configured per mode.

Video about ball locks and multiballs:

https://youtu.be/2mFkgIlksC4

Monitorable Properties

For dynamic values and conditional events, the prefix for ball holds is device.ball_holds.<name>.

balls_held The number of balls this ball hold is currently holding

enabled Boolean (true/false) which shows whether this ball hold is enabled.

Related How To guides

∙ Using ball_holds for a mystery award

Related Events

∙ ball_hold_(name)_held_ball

∙ ball_hold_(name)_full

∙ ball_hold_(name)_balls_released

Ball Locks

Related Config File Sections
multiball_locks:
ball_holds:

MPF supports ball locks which are used to hold a ball that has entered a Ball Devices. To separate
use-cases MPF supports two cases of ball locks:

Ball Locks 638

https://youtu.be/2mFkgIlksC4

Mission Pinball Framework Documentation, Version

∙ Multiball_locks which lock balls for a multiball. Locked balls are no longer in play (i.e. deducted
from ball count).

∙ Ball_holds which only hold balls temporarily. This is used to play animations or stop the ball
during a video mode. Those balls are technically still in play.

Ball Saves

Related Config File Sections
ball_saves:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

MPF uses ball saves to automatically re-serve a ball that has drained. (Essentially this means the ball
drain doesn’t count.)

Ball saves are typically used in several scenarios:

∙ Give the player their ball back if they drain right after their ball starts.

∙ Give the player their ball back if there’s a particularly wicked shot that tends to drain which the
game designers feel bad about. (You should avoid this if possible, and instead, as Lyman Sheets
would say, “Fix your f-ing game layout!”)

∙ Use to make a timed mode where the player has unlimited drains.

∙ Etc.

You can configure ball saves to have various start and stop events and timers, and you can configure
multiple ones in different modes that do different things.

This is an example:

ball_saves:

random_ball_save:

active_time: 5s

hurry_up_time: 2s

grace_period: 2s

enable_events: event_on_dangerous_action

auto_launch: true

balls_to_save: 1

When event_on_dangerous_action is posted the ball save will be active for 5s active_time + 2s
grace_period = 7s. Hurry up will start after 5s active_time - 2s hurry_up_time = 3s.

Monitorable Properties

For dynamic values and conditional events, the prefix for ball saves is device.ball_saves.<name>.

enabled Boolean (true/false) which shows whether this ball hold is enabled.

Ball Saves 639

Mission Pinball Framework Documentation, Version

saves_remaining How many balls saves are remaining.

state String value of the state of this ball save. Values will be one of the following: enabled, disabled,
hurry_up, or grace_period.

timer_started Boolean (true/false) which shows whether the timer is started.

Related How To guides

∙ Ball save at ball start

Center Post Ball Save

Some machines have a mechanical ball save called center post. It pops up between the flippers and
prevents the ball from draining.

Video about center posts:

https://youtu.be/eR0C5ft546c

To use it in MPF we reuse a diverter. A simple coil_player: would work as well but then we would have
to reimplement ball search and service mode logic. The diverter will already implement all that for us.

This is an example:

Ball Saves 640

https://youtu.be/eR0C5ft546c

Mission Pinball Framework Documentation, Version

in your machine config

coils:

c_ball_save_post_up:

number: 1-10 # yours might be different

default_pulse_ms: 15

c_ball_save_post_down:

number: 1-15 # yours might be different

default_pulse_ms: 15

lights:

ball_saver:

number:

diverters:

ball_save_post:

activation_coil: c_ball_save_post_up

deactivation_coil: c_ball_save_post_down

activate_events: ball_save_post_up

deactivate_events: ball_save_post_down

enable_events: ball_started

type: pulse

##! mode: base

in base mode

event_player:

ball_save_default_timer_start:

- ball_save_post_up

ball_save_default_disabled:

- ball_save_post_down

ball_saves:

default:

active_time: 10s

grace_period: 2s

hurry_up_time: 5s

enable_events: mode_base_started

timer_start_events: balldevice_bd_plunger_ball_eject_success

disable_events: ball_will_end

auto_launch: true

balls_to_save: 1

early_ball_save_events: s_right_outlane_active, s_left_outlane_active

show_player:

ball_save_default_timer_start:

ball_save_show:

action: play

speed: 5

ball_save_default_hurry_up:

ball_save_show:

action: play

speed: 10

ball_save_default_disabled:

ball_save_show:

action: stop

shows:

ball_save_show:

- time: 0

lights:

ball_saver:

color: black
(continues on next page)

Ball Saves 641

Mission Pinball Framework Documentation, Version

(continued from previous page)

- time: '+1'

lights:

ball_saver:

color: red

Related Events

∙ ball_save_(name)_enabled

∙ ball_save_(name)_disabled

∙ ball_save_(name)_timer_start

∙ ball_save_(name)_hurry_up

∙ ball_save_(name)_grace_period

∙ ball_save_(name)_saving_ball

Ball Search

Related Config File Sections
ball_devices:
switches:
playfields:
example ball_search

∙ Related How To guides

∙ Related Events

Note: Ball search is off by default in MPF because it might hurt users not expecting it. In a prototype
game it might trigger quite frequently and coils can seriously injure humans. To turn it on follow How
to configure Ball Search .

MPF contains ball search functionality which is used to try to dislodge a stuck ball if MPF thinks
there’s a ball loose on the playfield but it hasn’t hit any playfield switches in awhile and the player is
not holding the flipper button in.

Ball searching in MPF has multiple “rounds”, with the early rounds doing a simple search that doesn’t
screw anything up (like firing pop bumpers and pulsing eject coils from ball devices that don’t contain
any balls), but after a few rounds of that, if it still hasn’t found the ball, it can start to to things like
resetting drop targets.

Eventually MPF will give up and mark the ball as lost and kick a new ball into play.

Everything is fully configurable, including the timeouts, the order devices are searched, the number of
rounds, etc.

Ball Search 642

Mission Pinball Framework Documentation, Version

Ball search in MPF is fairly automatic. It’s enabled when MPF thinks that balls are on the playfield,
and disabled when no balls are free. (This means that even when a machine tilts, ball search is still
active until the balls drain, etc.)

Related How To guides

∙ How to configure Ball Search

Related Events

∙ ball_search_failed

∙ ball_search_started

∙ ball_search_stopped

∙ flipper_cradle

∙ flipper_cradle_release

How to configure Ball Search

To enable ball search set enable_ball_search to True for your playfield(s). In most cases, this is as
simple as this:

playfields:

playfield:

enable_ball_search: true

Ball search will run in multiple phases with increasing intensity (phase 1 to 3) and give up afterwards.
To change the timeout before ball search starts when no ball was seen by MPF, change
ball-search-timeout. Similarly, ball-search-interval determines the delay between coil fires during
search. You can further configure ball search per playfield .

Coils are included indirectly using their devices. Most devices allow you to configure their order in
ball search using the ball_search_order attribute (see the example ball_search). By default flippers
are not included in ball search. However, you might want to enable it for upper playfield flippers:

flippers:

f_upper_flipper_left:

ball_search_order: 15

include_in_ball_search: true

main_coil: c_flipper_left

activation_switch: s_flipper_left

Make sure to include the tag playfield_active in all playfield switches which are not bound to devices.
For instance do not put that tag into your plunger switch but put it to target, inlane and outlane
switches.

If you want to pulse a standalone coil which is not bound to any device, you can use pulse_events on
ball_search_phase_x_searches (replace x with phase 1 to 3).

Ball Search 643

Mission Pinball Framework Documentation, Version

Ball Start and End Behaviour

There are multiple ways to play show/lights/sounds during ball start or ending.

Triggering actions without delay on ball start

During game start (see Flowcharts for details) you can trigger shows/lights or any other player on the
ball_started event (see Ball Start Sequence). This will not delay the ball start and the ball will eject
instantly.

Shows/Lights

This might be useful to start music, flash some lights or start background shows:

##! mode: my_mode

in your mode

mode:

start_events: ball_started

show_player:

mode_my_mode_started:

short_start_show:

loops: 0

shows:

short_start_show:

- duration: .5s

add your show here

This can simply be embedded in any mode (e.g. in your base mode).

Ball Save

It is also very common to start a ball save on eject:

playfields:

playfield:

default_source_device: bd_plunger

lights:

l_ball_save:

number:

switches:

s_plunger:

number:

coils:

c_eject:

number:

ball_devices:

bd_plunger:

eject_coil: c_eject

ball_switches: s_plunger

tags: home, trough, drain

eject_timeouts: 1s

(continues on next page)

Ball Start and End Behaviour 644

Mission Pinball Framework Documentation, Version

(continued from previous page)

##! mode: my_mode

in your mode

mode:

start_events: ball_started

ball_saves:

ball_save_ball_save:

active_time: 10s

hurry_up_time: 3s

timer_start_events: balldevice_bd_plunger_ejecting_ball

auto_launch: true

balls_to_save: 1

show_player:

ball_save_ball_save_ball_save_timer_start:

flash_color:

key: ball_save

speed: 2

show_tokens:

lights: l_ball_save

color: orange

ball_save_ball_save_ball_save_hurry_up:

flash_color:

key: ball_save

speed: 4

show_tokens:

lights: l_ball_save

color: orange

ball_save_ball_save_ball_save_disabled:

ball_save: stop

The mode will start on ball_started. It will enable a ball save on mode start and start a timer once the
plunger ejects the ball. This will also work with mechanical eject. Once the timer is active the shoot
again led l_ball_save will flash. During the hurry up (last 2s) it will flash faster and turn off
afterwards.

Triggering simple actions without delay on ball end

Similarly, you can trigger events on ball end using the ball_ended event (see Ball End Sequence for
details). Unfortunately, normal game modes will stop on ball end and you will never see the
ball_ended event in a game mode. This approach will not delay the ball end and the next ball might
eject in the meantime. Use it for very short sounds or light flashes:

##! mode: my_mode

in your mode

mode:

start_events: ball_ending

stop_events: end_show_done

game_mode: false

show_player:

mode_my_mode_started:

short_stop_show:

loops: 0

events_when_completed: end_show_done

(continues on next page)

Ball Start and End Behaviour 645

Mission Pinball Framework Documentation, Version

(continued from previous page)

shows:

short_stop_show:

- duration: 2s

add your show here

Delaying ball start and end

To delay start and end of a ball use the following mode. It uses a queue_relay_player: to delay
ball_starting and ball_ending for the duration of a show. This can be used to show longer sequences
and delaying the game flow in the meantime:

##! mode: my_mode

in your mode

mode:

start_events: ball_will_start # in normal mode use ball_started instead

priority: 200

queue_relay_player:

ball_starting:

post: start_ball_starting_show

wait_for: mode_ball_starting_show_ended

ball_ending:

post: start_ball_ending_show

wait_for: mode_ball_ending_show_ended

show_player:

flipper_cancel:

ball_starting_show: stop

ball_ending_show: stop

start_ball_starting_show:

ball_starting_show:

loops: 0

events_when_stopped: mode_ball_starting_show_ended

start_ball_ending_show:

ball_ending_show:

loops: 0

events_when_stopped: mode_ball_ending_show_ended

shows:

ball_starting_show:

- duration: 5s

ball_ending_show:

- duration: 5s

Both shows can be canceled using both flippers which will post the flipper_cancel event. Remove
that show_player entry if you don’t want that. See the flipper mech documentation for details about
the flipper_cancel event.

You can combine this with conditional variables to only delay the first ball. E.g. use
ball_starting{ball==1 and not is_extra_ball} to only delay the first ball (excluding extra balls).
Similarly, you can use ball_starting{is_extra_ball} to delay any extra ball start and show some
animations there.

Ball Start and End Behaviour 646

Mission Pinball Framework Documentation, Version

More examples

See How to design a game in MPF using Modes and Game End Modes in particular for more examples.

Ball Tracking

Keeping track of where all the balls are at any given time is a big part of a pinball. There are four
components that make up MPF’s ball tracking and management system:

∙ The Ball Controller, which is a core MPF module that manages everything.

∙ Individual Ball Devices (troughs, locks, etc.) which track how many balls they’re currently
holding, request new balls, eject balls, etc.

∙ The Playfields device which is a special type of ball device that tracks how many balls are loose
on the playfield at any given time.

∙ Individual Diverters which are integral in routing balls to devices that request them.

These four components are active at all times—regardless of whether or not a game is in progress. In
other words, if MPF is running, it’s tracking balls.

Note that tracking the number of balls on a playfield is somewhat complex. See the How MPF tracks
the number of balls on a playfield guide for important details about how this works in MPF.

End of Ball Bonus

MPF contains a built-in end of ball bonus mode which you can use to calculate and display a player’s
bonus score when they drain a ball.

The built-in bonus mode can manage bonus scoring, multipliers, awarding points based on any player
variables, and other “standard” things. You can also extend and enhance it if you have specific
requirements that aren’t covered by the built-in mode.

Related How To guides
How to configure End of Ball Bonus
How to design a game in MPF using Modes

Overview of Bonus Mode

The built-in bonus mode will automatically handle the following steps when it is enabled:

∙ Pause the game when the ball ends in order to show the bonus awards

∙ Calculate the score for each bonus entry in the bonus_entries: list

∙ Post an event for each bonus entry with a delay between each event

∙ Skip events for bonus entries with a zero score (by default, can be overridden)

∙ Post an event for the subtotal of all bonuses awarded

∙ Post an event for a total bonus multiplier (if present)

∙ Post an event for the total of all bonuses awarded

Ball Tracking 647

Mission Pinball Framework Documentation, Version

∙ Add the total bonus award to the player’s score

∙ Start the next ball after all bonuses have been awarded

See the How to Configure End of Ball Bonus guide for instructions on enabling bonus mode.

Calculating Points for Bonus Awards

Each award entry will calculate a bonus score based on the score value of the entry. If provided, the
player_score_entry value will be multiplied by the score. This makes it very easy to award, for
example, 200 points for every time the player captured a castle (tracked by the player variable
“castles_captured”).

##! mode: bonus

#config_version=5

mode_settings:

bonus_entries:

- event: bonus_castles

score: 200

player_score_entry: castles_captured

For advanced score calculation, the score value can utilize all of MPF’s dynamic and placeholder
variables.

##! mode: bonus

#config_version=5

mode_settings:

bonus_entries:

- event: bonus_minerals

score: (current_player.platinum + current_player.iridium) / 100

- event: bonus_dropbanks

score: device.counters.dropbank_completions.value * 20

The calculated score is included in the posted event for displaying on a slide, and the score is
automatically added to the current player’s score value.

Showing Slides for Bonus Awards

Each award in the bonus_entries: setting requires an event value, which is the name of the event that
MPF will post when that award is calculated. You can use these events to show slides, play sounds,
and anything else. The events will post sequentially at the interval specified by the display_delay_ms
setting.

After all awards in the entries list have been posted, a final bonus_total event will post with the total
amount awarded as bonus. This event can be used to show a final slide.

#config_version=5

slide_player:

mode_bonus_started: bonus_start_slide

bonus_minerals: bonus_minerals_slide

bonus_dropbanks: bonus_dropbanks_slide

bonus_total: bonus_total_slide

End of Ball Bonus 648

Mission Pinball Framework Documentation, Version

Bonus Multipliers

If the player has a variable called bonus_multiplier with a value other than 1, MPF will add two more
events between the entries and the total. First it will post bonus_subtotal with an argument score,
which is the sum of all entry awards. Then it will post bonus_multiplier with an argument multiplier,
which is the value of the player’s bonus multiplier. The resulting bonus_total event value (and the
amount added to the player’s score) is the bonus subtotal multiplied by the bonus multiplier.

If the player does not have a bonus_multiplier value or if this value is 1, these events will not post and
the bonus total will be the subtotal.

Additional Configuration

The bonus mode can be configured with more options, including:

∙ Reset player variables and/or multipliers after bonuses are awarded

∙ Show bonus scores for entries that awarded zero points

∙ “Hurry up” the bonus mode based on a triggering event (e.g. flipper_cancel)

∙ After awarding all bonuses, wait for an event before ending the mode

All these options are detailed in the bonus (mode_settings:) documentation.

Related Events

∙ bonus_multiplier

∙ bonus_start

∙ bonus_subtotal

∙ Plus other events defined in your bonus mode’s bonus_entries settings

How to configure End of Ball Bonus

This guide walks you through configuring an end-of-ball Bonus mode in MPF.

1. Create your bonus mode folders

Even though the bonus mode is built-in, you’ll still need to add a bonus folder to your machine’s modes
folder. Then in there, add a config folder, and finally, create a file in the config folder called
bonus.yaml. (So this is just like any other mode so far.)

It should look something like this:

End of Ball Bonus 649

Mission Pinball Framework Documentation, Version

2. Add the bonus mode to your machine-wide modes list

Remember that when you create a new mode, you need to add it to the modes: section of your
machine-wide config. (Why doesn’t MPF just automatically detect modes based on what folders it
finds? Because you might want to have different sets of configs that use different modes, or you might
want to disable a mode you’re testing, etc.)

So just add - bonus to the list of modes in the modes: section of your machine-wide config, like this:

this is your machine-wide config.yaml

modes:

- base

- jukebox_mode

- skill_shot

- jukebox_hurryup

- managers_choice_base

- managers_choice_multiball

- managers_choice_timed_mode

- managers_choice_lit

- mystery_lit

- wizard_advance_lit

- mission_rotator

- light_mission_select

- play_poker

- money_bags

- world_tour

- music_awards

- jukebox_two_ball

- bonus # just add bonus to the list of existing modes

The bonus mode is automatically configured to start when the ball ends (as long as the machine is not
tilted), running at priority 500.

End of Ball Bonus 650

Mission Pinball Framework Documentation, Version

3. Think about what you want to score bonus on

Most modern pinball machines have bonus scores based on multiple things.

Use a variable_player: to count some bonuses:

##! mode: mode1

variable_player:

ramp_shot_hit:

bonus_ramps: 1

s_target1_active:

some_variable: 1

4. Add some settings to your bonus mode config

Now go back into your bonus mode folder open up bonus.yaml config file (which should be empty at
this point), and enter a basic config:

##! mode: bonus

#config_version=5

mode_settings:

display_delay_ms: 1s

hurry_up_delay_ms: 0

bonus_entries:

- event: bonus_ramps

score: 400

- event: bonus_math

score: 1200 * (current_player.some_variable + 2)

slide_player:

mode_bonus_started: bonus_start_slide

bonus_ramps: bonus_ramp_slide

bonus_math: bonus_math_slide

bonus_total: bonus_total_slide

slides:

bonus_start_slide:

widgets:

- type: text

text: Bonus

bonus_ramp_slide:

- type: text

text: "Ramps (player|level)"

- type: text

text: (score)

bonus_math_slide:

- type: text

text: "Some variable (player|some_variable)"

- type: text

text: (score)

bonus_multiplier_slide:

- type: text

text: "Multiplier"

- type: text

text: "(multiplier)X"

(continues on next page)

End of Ball Bonus 651

Mission Pinball Framework Documentation, Version

(continued from previous page)

bonus_total_slide:

- type: text

text: "Total Bonus"

- type: text

text: (score)

You can use placeholder variables and math in all your score entries.

Coins & Credits

Related Config File Sections
credits:

This How To guide explains how to setup your machine to take money and track credits. The MPF
package contains a the code for a mode called credits, so all you have to do to use add some configs
to your machine’s modes folder and sit back and get rich! The credits system has several features and
options, including:

∙ Configuration of different coin/price values per coin switch.

∙ Tracking money and/or tokens.

∙ Set price tiers (1 credit for 50 cents, 5 credits for 2 dollars, etc.)

∙ Specify max credits and credit expiration times

∙ Retain credits even when the machine is powered off

∙ Get access to a “credits string” machine variable that will show the number of credits (or
configurable free play text) for use on your display.

∙ Flexible events you can use to show display items based on credits being added, insert coin
messages, max credits reached, etc.

Video about credits:

https://youtu.be/jAQpZy5xYGc

https://youtu.be/w7LuHi7gLMs

(A) Create your ‘credits’ mode folder

The credits mode works like any other mode in MPF. You’ll create a folder called credits in your
machine’s modes folder, and that folder will contain subfolders config files, images, etc. So to begin,
create a folder called <your_machine>/modes/credits. Then inside there, create another folder called
config. Then inside there, create a file called credits.yaml. (So that file should be at
<your_machine>/modes/credits/config/credits.yaml.)

Coins & Credits 652

https://youtu.be/jAQpZy5xYGc
https://youtu.be/w7LuHi7gLMs

Mission Pinball Framework Documentation, Version

(B) Configure options for the credits mode

Open up your machine config (<your_machine>/config/config.yaml). Next, add a section called
credits:, and then under there, indent a few spaces (it doesn’t matter how many, 2 or 4 or whatever
you prefer) and add a section called categories:. Your file should now look like this:

in your machine wide config

switches:

s_coin_left:

number:

s_service_coin:

number:

credits:

max_credits: 12

free_play: false

service_credits_switch: s_service_coin

switches:

- switch: s_coin_left

type: money

value: .25

pricing_tiers:

- price: .50

credits: 1

- price: 2

credits: 5

fractional_credit_expiration_time: 15m

credit_expiration_time: 2h

persist_credits_while_off_time: 1h

free_play_string: FREE PLAY

credits_string: CREDITS

Full details of what each of these settings does is outlined in the credits: of the configuration file
reference, so check that out for details on anything not covered here. There are a few sections worth
pointing out here though:

switches:

The switches section is how you map out the monetary values of credit switches in your machine.
Notice that the sub-entries under switches are actually a list with the settings for switch, type, and
value repeated multiple times. The switch: entry is the name of the switch (from your machine-wide
switches: section) for the credit switch. Pretty simple. The value: entry represents the numeric value
of how much is added whenever this switch is hit. Notice that there are no currency symbols here or
anything. A value of .25 could be 0.25 dollars or 0.25 Euros or 0.25 Francs—it really doesn’t matter.
The key is that it’s 0.25 of whatever monetary system you have. The type: entry specifies what type of
currency is being deposited when that switch is hit. This doesn’t affect the actual behavior of MPF,
rather it’s just used in as the column name and for totaling the earnings reports (so you can track
“money” separate from “tokens”). You can enter whatever you want here: money, dollars, dinars, etc.
You can mix & match these in the same machine if you have a machine that accepts tokens and
quarters, for example. Note that the sample credits configuration file has three sets of entries for the
credit switches. You just need one for each credit switch. It can be one or two or five - it doesn’t
matter.

Coins & Credits 653

Mission Pinball Framework Documentation, Version

pricing_tiers:

The pricing_tiers: section is where you actually set your pricing by mapping how many of your
monetary units you want to equate to a certain number of credits. The sample config is fairly common,
with 0.50 currency resulting in 1 credit, with a price break at 2 that gives the player 5 credits instead
of 4. (So basically they get one free credit if they put in enough money for 4 credits.) The most
important thing to know here is that MPF always requires that 1 credit is used to start a game, and 1
credit is required to add an additional player to a game. So if you want to change the price of your
game, you don’t change the number of credits per game, rather, you change the number of credits a
certain amount of money is worth. The pricing tier discount processing is reset when Ball 2 starts. So
if it costs $0.50 for one credit or $2 for 5 credits, if the player puts $0.50 in the machine and plays a
game, if they wait until that game is over and deposit another $1.50, they’ll only get 3 more credits.
You can have as many pricing_tiers as you want. The first one dictates how much a regular game
costs and is required. If you don’t want any price breaks, then just add the first one.

service_credits_switch:

This is the name of a switch that’s used to add so-called “service credits” to the machine. This switch
has a 1-to-1 ratio, meaning that one credit is added to the machine each time this switch is pressed.
Notice that this line is commented out (with a # sign) by default, so if you want to use it, change the
name of the switch to the name of the switch in your actual machine and remove the # character at
the beginning of the line. Service credits are tracked separated in your earnings data file. If you don’t
have a service credits switch, then just don’t add that setting.

(C) Add the credits mode to your list of modes

Now that you have some basic credits settings configured, you can add the credits mode to the list of
modes that are used in your machine. To do this, add - credits to the modes: section in your
machine-wide config, like this:

modes:

- base

- bonus

- credits

##! mode: base

##! mode: bonus

The order doesn’t matter here since the priority each mode runs at is configured in its own mode
configuration file. All you’re doing now is configuring the credits mode as a mode that your machine
will use. You might be wondering why your new credits.yaml mode configuration file doesn’t have a
mode: section? That’s because the credits mode is built-in to MPF (in the mpf/modes/credits) folder,
so when you add a credits folder to your own machine’s modes folder, MPF merges together the
settings from the MPF modes folder and your modes folder. (It loads the MPF mode config first with
baseline settings, and then it merges in your machine’s mode config which can override them.) If you
look at the built-in credits mode’s config (at mpf/modes/credits/config/credits.yaml), you’ll see it
has the following mode: section:

##! mode: credits

mode:

code: mpf.modes.credits.code.credits.Credits

priority: 1000010

(continues on next page)

Coins & Credits 654

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_events: reset_complete

game_mode: false

stop_on_ball_end: false

First is that the priority of this mode is really high, 11000 by default. That’s because we want this
mode to run “on top” of any other mode so any slides it puts on the display (like the message for new
coins being inserts or the INSERT COINS message if the start button is pressed without enough credits)
are displayed on top of the slides from any other mode that might be running. Also note that the
credits mode starts when the machine_reset_phase_3 event is posted (which is done as part of the MPF
startup process), and that there are no stop events. Basically we want the credits mode to start and
never stop. Also note that stop_on_ball_end: is set to false, again because we don’t want this mode to
ever stop. (Without that setting, MPF would stop the mode when the ball ends.)

(D) Create slides to show the credits when the player deposits money

Open up the credits mode’s config file that you just copied into your machine folder. It should be at
<your_machine>/modes/credits/config/credits.yaml. Since this file is totally blank, add the required
#config_version=5 to the top line. There are several credit-related things you need to show the player
on your display. Here are some settings you can use as a starting point:

switches:

s_coin_left:

number:

s_service_coin:

number:

credits:

max_credits: 12

free_play: false

service_credits_switch: s_service_coin

switches:

- switch: s_coin_left

type: money

value: .25

pricing_tiers:

- price: .50

credits: 1

- price: 2

credits: 5

fractional_credit_expiration_time: 15m

credit_expiration_time: 2h

persist_credits_while_off_time: 1h

free_play_string: FREE PLAY

credits_string: CREDITS

##! mode: credits

in modes/credits/config/credits.yaml

add some credits slides

slide_player:

credits_added:

credit_added_slide:

expire: 2s

not_enough_credits:

(continues on next page)

Coins & Credits 655

Mission Pinball Framework Documentation, Version

(continued from previous page)

not_enough_credits_slide:

expire: 2s

enabling_free_play:

enabling_free_play_slide:

expire: 2s

enabling_credit_play:

enabling_credit_play_slide:

expire: 2s

max_credits_reached:

max_credits_reached_slide:

expire: 2s

player_added:

player_added_slide:

expire: 1s

slides:

credit_added_slide:

- type: text

text: (machine|credits_string)

not_enough_credits_slide:

- type: text

text: (machine|credits_string)

- type: text

text: INSERT COINS

enabling_free_play_slide:

- type: text

text: ENABLING FREE PLAY

enabling_credit_play_slide:

- type: text

text: ENABLING CREDIT PLAY

- type: text

text: (machine|credits_string)

max_credits_reached_slide:

- type: text

text: MAX CREDITS REACHED

player_added_slide:

- type: text

text: PLAYER ADDED

font_size: 12

color: white

sound_player:

credits_added:

credit_added_sound:

action: play

loops: 0

not_enough_credits:

need_more_money:

action: play

loops: 0

player_added:

player_added_sound:

action: play

loops: 0

There are several events that the credit module will post which you can use to trigger slides:

Coins & Credits 656

Mission Pinball Framework Documentation, Version

∙ max_credits_reached – Posted once when the max number of credits is reached.

∙ credits_added – Posted any time a credit or partial credit is added. Use it with machine variables
(below) to show the values.

∙ not_enough_credits – Posted when the player pushes start but there is not at least one credit to
add a player. This could happen in attract mode or during the first ball of a game when it’s still
possible to add players.

∙ enabling_free_play – Posted when the machine is switched to free play mode. (In case you want
to have a switch or something which changes it. Details below.)

∙ enabling_credit_play – Posted when the machine is switched to credit (pay) mode.

(E) Adding credits information to game slides

Many of the display slides in a pinball machine display information about the number of credits on the
machine. For example, the default score display slide will usually contain a message about how many
credits are on the machine. This can be a challenge since the exact text you want to display will
change based on whether or not the machine is on free play, and whether there are any fractions of
credits on the machine or only whole credits. To handle this, MPF includes a machine variable called
credits_string that is automatically updated to show the value of credits on the machine. If the
machine is set to free play, or if you don’t have the credits mode enabled, the credit_string value is
FREE PLAY. Otherwise it’s the word CREDIT followed by the number of credits (in fraction, not decimal,
as is tradition with pinball machines). Note that you can override the text here with the
free_play_string and credits_string configuration options. Remember that you can include machine
variables in a text display element (in either a slide_player: or a show YAML file) like this:

- type: text

text: "(machine|credits_string)"

And of course you can customize the font, position, and alignment of this display element like any
display element. There are several other machine variables created too in case you want to get fancy
with how they’re displayed in your particular machine. (We’ll use an example of 2 1/4 credits here):

∙ credits_string – This is the fully generated string which is ready to use in your slides, including
the word CREDITS (or FREE PLAY) from your settings above, as well as the whole number of credits
and any fraction. In the example this would be CREDITS 2 1/4.

∙ credits_value – This is just the numeric value of the credits, including the fraction (if there are
any partial credits). For example, 2 1/4.

∙ credits_whole_num – This is just the whole number of credits. Example: 2.

∙ credits_numerator – This is just the numerator of the fraction of partial credits. Example: 1.

∙ credits_denominator – This is just the denominator of the fraction of partial credits. Example: 4.

The denominator of the fraction in the credit_string is automatically calculated based on the smallest
value coin switch and the price of your game. So 0.25 switches with a game price of 0.50 will use “2”
as the denominator (for 1/2 credits). 0.25 switches with 0.75 game will use 3, etc. Remember that text
elements with machine variables in slides automatically update themselves when the underlying
variable changes. So you can use these in your attract mode DMD show, your score display, etc. See
the slide_player: from the complete example below for details. You can also change a machine
between credit mode and free play mode by posting events. (This is not common, but useful if you

Coins & Credits 657

Mission Pinball Framework Documentation, Version

want to have a switch or something that changes the mode. The “real” way to set this will come later
when we build the service mode.) These control events are:

∙ enable_free_play – Puts the machine into free play mode

∙ enable_credit_play – Puts the machine into credit play mode

∙ toggle_credit_play – Toggles the machine between modes.

(F) Viewing Earnings

A tally of the earnings for your machine is available at <your_machine_folder>/data/earnings.yaml.
Here’s an example:

money:

count: 50

total_value: 14.0

service_credit:

count: 4

total_value: 4

token:

count: 1

total_value: 1.0

Notice that there are sections in this file for each “type” of switch you configured. The sample
configuration from the template file included type values of money and token which is why you see
them here. If you changed those to something like dollars then you would see a dollars category here.
The count is the total number of switch hits that contributed towards that count, and the total_value
is the total numeric value based on the value of each switch. If you configured a
service_credits_switch then you’ll also see a count of service credits. (The service credits count and
total_value will always be the same since a service credit switch is always worth one credit.)

(G) Allow operator settings of pricing tiers in service modes

In your final machine you do not want to edit the yaml to change pricing tiers. Luckily, there is the
built-in service mode which allows you to add more settings. Let us add two settings and use them in
the credits config:

in your machine wide config

switches:

s_coin_left:

number:

s_service_coin:

number:

settings:

credits_price_one_credit:

label: Price for one credit

values:

.25: "25ct"

.5: "50ct"

.75: "75ct"

1: "1 dollar"

2: "2 dollar"

(continues on next page)

Coins & Credits 658

Mission Pinball Framework Documentation, Version

(continued from previous page)

3: "3 dollar"

4: "4 dollar"

5: "5 dollar"

default: .5

key_type: float

sort: 500

credits_price_tier2:

label: Price for price tier 2

values:

.25: "25ct"

.5: "50ct"

.75: "75ct"

1: "1 dollar"

2: "2 dollar"

3: "3 dollar"

4: "4 dollar"

5: "5 dollar"

default: 2

key_type: float

sort: 510

credits_credits_tier2:

label: Number of credits for tier 2

values:

2: "2"

3: "3"

4: "4"

5: "5"

6: "6"

7: "7"

8: "8"

9: "9"

10: "10"

default: 5

key_type: int

sort: 520

credits:

max_credits: 12

free_play: false

service_credits_switch: s_service_coin

switches:

- switch: s_coin_left

type: money

value: .25

pricing_tiers:

- price: settings.credits_price_one_credit

credits: 1

- price: settings.credits_price_tier2

credits: settings.credits_credits_tier2

fractional_credit_expiration_time: 15m

credit_expiration_time: 2h

persist_credits_while_off_time: 1h

free_play_string: FREE PLAY

credits_string: CREDITS

Coins & Credits 659

Mission Pinball Framework Documentation, Version

(H) Check out this complete credits config file

Here’s the complete credits config file from the Demo Man sample game. (
demo_man/modes/credits/config/credits.yaml):

This is an example:

in your machine wide config

switches:

s_coin_left:

number:

s_service_coin:

number:

settings:

credits_price_one_credit:

label: Price for one credit

values:

.25: "25ct"

.5: "50ct"

.75: "75ct"

1: "1 dollar"

2: "2 dollar"

3: "3 dollar"

4: "4 dollar"

5: "5 dollar"

default: .5

key_type: float

sort: 500

credits_price_tier2:

label: Price for price tier 2

values:

.25: "25ct"

.5: "50ct"

.75: "75ct"

1: "1 dollar"

2: "2 dollar"

3: "3 dollar"

4: "4 dollar"

5: "5 dollar"

default: 2

key_type: float

sort: 510

credits_credits_tier2:

label: Number of credits for tier 2

values:

2: "2"

3: "3"

4: "4"

5: "5"

6: "6"

7: "7"

8: "8"

9: "9"

10: "10"

default: 5

(continues on next page)

Coins & Credits 660

Mission Pinball Framework Documentation, Version

(continued from previous page)

key_type: int

sort: 520

credits:

max_credits: 12

free_play: false

service_credits_switch: s_service_coin

switches:

- switch: s_coin_left

type: money

value: .25

pricing_tiers:

- price: settings.credits_price_one_credit

credits: 1

- price: settings.credits_price_tier2

credits: settings.credits_credits_tier2

fractional_credit_expiration_time: 15m

credit_expiration_time: 2h

persist_credits_while_off_time: 1h

free_play_string: FREE PLAY

credits_string: CREDITS

##! mode: attract

in modes/attract/config/attract.yaml

add credits string to your attract show

show_player:

mode_attract_started: attract_display_loop

shows:

attract_display_loop:

- duration: 2s

slides:

press_start:

target: dmd

widgets:

- type: Text

text: PRESS START

transition:

type: move_in

duration: 1s

direction: top

- duration: 2s

slides:

credits_slide:

target: dmd

widgets:

- type: text

text: (machine|credits_string)

transition:

type: move_in

duration: 1s

direction: bottom

##! mode: credits

in modes/credits/config/credits.yaml

add some credits slides

slide_player:

credits_added:

(continues on next page)

Coins & Credits 661

Mission Pinball Framework Documentation, Version

(continued from previous page)

credit_added_slide:

expire: 2s

not_enough_credits:

not_enough_credits_slide:

expire: 2s

enabling_free_play:

enabling_free_play_slide:

expire: 2s

enabling_credit_play:

enabling_credit_play_slide:

expire: 2s

max_credits_reached:

max_credits_reached_slide:

expire: 2s

player_added:

player_added_slide:

expire: 1s

slides:

credit_added_slide:

- type: text

text: (machine|credits_string)

not_enough_credits_slide:

- type: text

text: (machine|credits_string)

- type: text

text: INSERT COINS

enabling_free_play_slide:

- type: text

text: ENABLING FREE PLAY

enabling_credit_play_slide:

- type: text

text: ENABLING CREDIT PLAY

- type: text

text: (machine|credits_string)

max_credits_reached_slide:

- type: text

text: MAX CREDITS REACHED

player_added_slide:

- type: text

text: PLAYER ADDED

font_size: 12

color: white

sound_player:

credits_added:

credit_added_sound:

action: play

loops: 0

not_enough_credits:

need_more_money:

action: play

loops: 0

player_added:

player_added_sound:

action: play

(continues on next page)

Coins & Credits 662

Mission Pinball Framework Documentation, Version

(continued from previous page)

loops: 0

A game will always cost 1 credit per player. In this example, 50ct will give you 1 credit and $2 will
give you 5 credits. When s_coin_left is hit 25ct are added (or 1/2 credit).

This mode will also play sounds and show slides when adding credits or players since both can happen
before or during a game.

Related How To guides
How to design a game in MPF using Modes

Machine Variables
credit_units
credits_numerator
credits_string
credits_value
credits_whole_num

Related Events
credits_added
enabling_credit_play
enabling_free_play
max_credits_reached
not_enough_credits
player_added

Combo Switches (“flipper cancel”, etc.)

Related Config File Sections
combo_switches:

∙ Built-in flipper cancel combo

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

MPF contains support for “combo switches” which are special combinations of switches that post
events when they’re hit together.

The most basic example of this is the “flipper cancel” combination, where a player can cancel a show
or bonus by hitting both flippers at the same time. In fact MPF contains built-in support for the flipper
cancel combo. If you add the tag left_flipper to your left flipper switch, and right_flipper to your
right flipper switch, then whenever the player hits both flippers at the same time, an MPF event called
flipper_cancel will be posted.

Combo Switches (“flipper cancel”, etc.) 663

Mission Pinball Framework Documentation, Version

Combo switches are also used for things like different kinds of skill shots. For example, in Attack From
Mars, if the player hits the launch button, the ball is launched into the pop bumper area, but if the
player holds down the left flipper button while pressing the launch button, the ball gate (Bally part
A-17796) in the upper playfield is raised and the ball is allowed to pass through and is delivered to the
flippers for an attempt at a super skill shot. The left flipper + launch button combination is something
you can enable with MPF’s combo switches.

MPF’s combo switches also generate events once both switches are hit together, then one switch is
tapped while the other is held in. This can be used to scroll through certain information screens with
one button while the combo is active.

You can set various timing options for combo switches, including how close together the two switches
have to be hit to count as a combo, how long they have to be held, and how long they have to be
released.

Built-in flipper cancel combo

MPF’s mpfconfig.yaml (the built-in machine config that’s merged in with all machine configs) includes
the following section:

combo_switches:

both_flippers:

tag_1: left_flipper

tag_2: right_flipper

events_when_both: flipper_cancel

This means if you tag add tags: left_flipper to your left flipper button and tags: right_flipper to
your right flipper button, you’ll get an event flipper_cancel posted anytime the player has both flipper
buttons pushed in which you can use to cancel shows or whatever else you want to do. If you want to
change or override this (perhaps you want to set a max_offset_time: to make sure this event is only
posted if the player hits the flipper buttons within 500ms, then you can copy and add this section to
your own machine config file and it will overwrite this default config.

Here is an example of using flipper_cancel to cancel a show:

switches:

s_flipper_left:

tags: left_flipper

number:

s_flipper_right:

tags: right_flipper

number:

shows:

mode_intro:

- duration: 5

slides:

mode_intro_slide:

widgets:

- type: text

text: Hit 50 switches to light jackpot

color: white

font_size: 100

show_player:

(continues on next page)

Combo Switches (“flipper cancel”, etc.) 664

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_mode_intro_show:

mode_intro:

loops: 0

events_when_stopped: mode_intro_show_ended

flipper_cancel:

mode_intro:

action: stop

The start_mode_intro_show will play for 5 seconds unless both flipper buttons are pressed which will
cancel the show.

Monitorable Properties

For dynamic values and conditional events, the prefix for combo switches is
device.combo_switches.<name>.

state String which reflects what state this combo switch is in. Options wil be one of the following:
inactive, both or one.

Related How To guides

∙ Canceling ball end shows using flipper_cancel

Related Events

∙ (name)_one

∙ (name)_both

∙ (name)_inactive

∙ (name)_switches_1

∙ (name)_switches_2

Extra Balls

Related Config File Sections
extra_balls:
extra_ball_groups:

MPF has support for extra balls. Extra balls in MPF are “named”, and they’re tracked so that (by
default) each extra ball can only be awarded once. You can configure as many different extra balls as
you want, each with different settings that tie into the events that award them. Every extra ball device
can award up to x extra balls (defaults to 1). Additionally, you can define extra ball groups which can
further limit the maximum number of extra balls.

Extra Balls 665

Mission Pinball Framework Documentation, Version

Score an Extra Ball Based on Score

Some games (especially EMs) award extra balls based on the score. This is an example:

##! mode: base

in your base mode

extra_balls:

score_one:

enabled: true

award_events: player_score{value>=140000}

score_two:

enabled: true

award_events: player_score{value>=210000}

score_three:

enabled: true

award_events: player_score{value>=300000}

Related How To guides

Todo: Help us to write it

Related Events

∙ extra_ball_award_disabled

∙ extra_ball_(name)_award_disabled

∙ extra_ball_(name)_lit

∙ extra_ball_(name)_awarded

∙ extra_ball_awarded

∙ extra_ball_group_(name)_awarded

∙ extra_ball_group_(name)_lit

∙ extra_ball_group_(name)_unlit

∙ extra_ball_group_(name)_award_disabled

∙ extra_ball_group_(name)_lit_awarded

High Scores

Related Config File Sections
high_score:

MPF includes support for high scores which is where players can enter their names (or initials) when
they’ve achieved a high score. Features include:

High Scores 666

Mission Pinball Framework Documentation, Version

∙ Set any player variable as a high score option. So in addition to score you could set high score
entries for loops, ramps, aliens destroyed, etc.

∙ Set how many of each high score type are tracked (Top 5 for high scores, Top 3 for loops, Top 1
for aliens, etc.)

∙ Set what each “award name” is called. (The highest score is “GRAND CHAMPION,” the second
highest score is “HIGH SCORE 1”, the highest loop score is “MAJOR LOOPER”, etc.)

∙ How many characters a player can enter for their name.

∙ A list of valid characters the player can choose from

∙ The layout of the display for entering their names and show their rewards.

∙ Events for high score awards and entry, so you can configure high score entry screens.

Don’t have a display to enter initials? See High Scores in EM Machines for how to use the high score
mode without entering initials.

This is an example (for machines with display):

##! mode: my_mode

##! mode: high_score

modes/high_score/config/high_score.yaml

mode:

priority: 500

start_events: game_ending, start_high_score

use_wait_queue: true

high_score:

_overwrite: true

enter_initials_timeout: 60

award_slide_display_time: 4s

define your high score categories and the awards

categories: !!omap

- score:

- GRAND CHAMPION

- HIGH SCORE 1

- HIGH SCORE 2

- HIGH SCORE 3

- HIGH SCORE 4

- HIGH SCORE 5

- HIGH SCORE 6

- HIGH SCORE 7

- HIGH SCORE 8

- loops:

- LOOP CHAMP

set the defaults

defaults:

score:

- MPF: 1000000

- BRI: 900000

- JAN: 800000

- QUI: 700000

- MAR: 600000

- JOH: 500000

- ELI: 400000

- MIK: 300000

(continues on next page)

High Scores 667

Mission Pinball Framework Documentation, Version

(continued from previous page)

- ANT: 200000

loops:

- JAN: 42

optional: change the slides (you can omit all the following)

slide_player:

_overwrite: true

high_score_enter_initials: high_score_enter_initials

high_score_award_display: high_score_award_display

slides:

_overwrite: true

high_score_enter_initials:

- type: text

style: big

font_size: 18

text: PLAYER (player_num)

color: ffff00

x: 105

y: 90

- type: text

style: big

font_size: 18

text: (award)

color: f0f0f0

x: 105

y: 70

- type: text_input

initial_char: A

dynamic_x: false

key: high_score

style: big

font_size: 18

max_chars: 3

x: 105

y: 20

shift_left_event: sw_lower_left_flipper

shift_right_event: sw_lower_right_flipper

select_event: sw_start

color: ff0000

- type: text

style: big

text: '< >'

font_size: 18

x: 105

y: 20

color: ff0000

- type: text

text: ''

key: high_score

font_size: 18

style: big

x: 105

y: 50

color: ff00ff

animations:

(continues on next page)

High Scores 668

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_slide:

- property: opacity

value: 1

duration: 0.3s

easing: in_out_quint

- property: opacity

value: 0

duration: 0.3s

repeat: true

easing: in_out_quint

high_score_award_display:

- type: text

text: (player_name)

font_size: 18

style: big

anchor_y: middle

anchor_x: middle

x: middle

y: middle

color: 00ff00

animations:

show_slide:

- property: opacity

value: 1

duration: 0.05s

- property: opacity

value: 0

duration: 0.05s

repeat: true

- type: text

text: (award)

font_size: 18

style: big

x: 105

y: 110

color: 0000ff

- type: text

text: (value)

style: big

x: 105

y: 30

color: 4040FF

font_size: 20

number_grouping: true

min_digits: 2

High score mode will also create a few machine variables for you:

∙ (high_score_category)(position)_label - score1_label = GRAND CHAMPION

∙ (high_score_category)(position)_name - score1_name = MPF

∙ (high_score_category)(position)_value - score1_value = 1000000

In this case this will be score1_value, score1_name and score1_label (till score9_value, score9_name
and score9_label). Additionally, there will be loop1_label, loop1_value and loop1_name. You can use

High Scores 669

Mission Pinball Framework Documentation, Version

those in your attract slides to show previous high scores. This is an example of an attract mode which
shows high scores:

in your machine wide config file

widget_styles:

attract_mode_high_score_display_label:

font_size: 30

anchor_x: right

anchor_y: top

x: center-10

bold: true

attract_mode_high_score_display_name:

font_size: 30

anchor_x: right

anchor_y: top

x: center+70

attract_mode_high_score_display_score:

font_size: 30

anchor_x: left

anchor_y: top

x: center+90

number_grouping: true

min_digits: 1

##! show: attract

in your attract mode show file

- duration: 20s

slides:

show_high_scores:

widgets:

- type: Text

text: HIGH SCORES

font_size: 60

bold: true

anchor_x: center

anchor_y: center

x: center

y: top-100

- type: Text

text: (machine|score1_label)

style: attract_mode_high_score_display_label

y: top-200

- type: Text

text: (machine|score1_name)

style: attract_mode_high_score_display_name

y: top-200

- type: Text

text: (machine|score1_value)

style: attract_mode_high_score_display_score

y: top-200

- type: Text

text: (machine|score2_label)

style: attract_mode_high_score_display_label

y: top-240

- type: Text

text: (machine|score2_name)

(continues on next page)

High Scores 670

Mission Pinball Framework Documentation, Version

(continued from previous page)

style: attract_mode_high_score_display_name

y: top-240

- type: Text

text: (machine|score2_value)

style: attract_mode_high_score_display_score

y: top-240

- type: Text

text: (machine|score3_label)

style: attract_mode_high_score_display_label

y: top-280

- type: Text

text: (machine|score3_name)

style: attract_mode_high_score_display_name

y: top-280

- type: Text

text: (machine|score3_value)

style: attract_mode_high_score_display_score

y: top-280

- type: Text

text: LOOP CHAMPION

font_size: 60

bold: true

anchor_x: center

anchor_y: center

x: center

y: top-500

- type: Text

text: (machine|loops1_label)

style: attract_mode_high_score_display_label

y: top-600

- type: Text

text: (machine|loops1_name)

style: attract_mode_high_score_display_name

y: top-600

- type: Text

text: (machine|loops1_value)

style: attract_mode_high_score_display_score

y: top-600

Related How To Guides
Scoring
How to design a game in MPF using Modes
High Scores in EM Machines

Related Events
mode_high_score_started
mode_high_score_stopped

High Scores 671

Mission Pinball Framework Documentation, Version

High Scores in EMMachines

Related Config File Sections
high_score:
player_vars:

Electro Mechanical (EM) pinball machines usually do not have a display which allows a player to enter
initials. To use the existing high score mode we can preset player initials using player_vars:.

player_vars:

initials:

value_type: str

initial_value: AAA

After setting this in your machine config the high score mode will no longer ask for initials. The exact
string (here AAA) does not matter since you usually will not show it anyway. If you have another way to
enter initials you can also use that and set the initials to the initials player variable.

Logic Blocks

MPF config files include the concept of “logic blocks” which let you perform logic when certain events
occur. Logic blocks can be thought of as the “glue” that ties together all the different shows, shots,
achievements, and other parts of your game logic.

There are four types of logic blocks in MPF:

counters Count the number of times an event happens, and when a certain number is hit, a
“complete” event is posted.

accruals Watch for several different events to occur, and once they all do (no matter what order they
happen in), a “complete” event is posted.

sequences Watch for several different events that need to occur in a specific order, and once they
do, a “complete” event is posted.

state_machines A generic state machine with arbitrary state transitions and state.

Logic blocks can be configured to store their state in player variables, meaning that each logic block
will remember where it was from ball-to-ball.

Logic blocks can be added to modes, and they can have events to enable, disable, and reset them.

To help you understand how logic blocks might be used, here are some real world examples from
Attack from Mars (if we were building that game in MPF):

∙ A counter logic block can count the number of times a pop bumper is hit, and then when it hits a
certain number, it posts an event to start a “Super Jets” mode.

∙ A counter can be used to track the three hits to the force field that are needed to lower it.

∙ A counter can be used (along with a timer) to track combos

∙ An accrual can be used in the Martian Attack mode to track all 4 of the martians being hit

You should also read about integration of show and logic blocks.

Logic Blocks 672

Mission Pinball Framework Documentation, Version

Counter Logic Blocks

Related Config File Sections
counters:

Related How To Guides
Integrating Logic_Blocks and Shows
Scoring Based on Logic Blocks
Integrating Logic_Blocks and Lights
Integrating Logic_Blocks and Slides
Persisting the State of a Logic Block in a Player Variable

“Counters” are logic blocks that track the number of times a certain event happens towards the
progress of a completion goal.

Examples include:

∙ Hit a target (or shot) X number of times to advance.

∙ Hit pop bumpers 75 times to start a Super Jets mode.

∙ Counting the number of combos made

∙ Keeping track of a bonus multiplier (maybe you use the shot group lane completion event to
count progress towards the bonus multiplier, but you configure the max count to be 6, and then
if it’s hit again, you award an extra ball).

You can use optional parameters to specify whether multiple occurrences in a very short time window
should be grouped together and counted as one hit, the counting interval, and whether this counter
counts up or down.

Here’s an example of a counter you could use to track progress towards super jets:

##! mode: my_mode

counters:

super_jets:

count_events: sw_pop

events_when_hit: pop_hit

starting_count: 75

count_complete_value: 0

direction: down

events_when_complete: super_jets_start

And here’s the logic block we use for the Addams Family mansion awards to make sure the mansions
is initialized only once per game:

##! mode: my_mode

counters:

initialize_mansion:

count_events: mode_chair_lit_started

events_when_complete: initialize_mansion

count_complete_value: 1

persist_state: true

Logic Blocks 673

Mission Pinball Framework Documentation, Version

Monitorable Properties

For dynamic values and conditional events, the prefix for ball holds is device.counters.<name>.

value The count of this counter.

enabled Boolean (true/false) which shows whether this counter is enabled.

completed True if the block is completed. Otherwise False.

This is an example:

##! mode: my_mode

counters:

test_counter:

count_events: count_up

reset_on_complete: false

count_complete_value: 3

event_player:

test_event{device.counters.test_counter.value > 1}: count_above_one

test_event{device.counters.test_counter.completed}: count_completed

Related Events

∙ logicblock_(name)_complete

∙ logicblock_(name)_hit

∙ logicblock_(name)_updated

Common Issues

We try to answer some common questions regarding logic blocks here. If you question is not answered
please ask in the forum.

My block only works once. Why?

This is the default configuration of all logic blocks. To change it you first need to set
reset_on_complete to True. As a result you blocks will reset when they reach the final step. However,
that will not be enough in most cases because disable_on_complete is True by default. Unless you have
some enable logic to re-enable the block later, you probably want to set disable_on_complete to False.

When should I used logic blocks and when should I use shots/show_groups?

There is no definitive answer to this question. Generally, it depends on your usecase. Shots and
shot_groups serve a very specific usecase. Basically, they implement a sequences of switch hits which
trigger lights along the way. If you want to stay within that specific usecase then go with shots
because it will be more convenient. If you plan to extend your mode to use more advanced features
then go with logic blocks. For instance if you got conditions in your logic (i.e. on how many balls are
locked). Another clear indicator for logic blocks would be if your logic is triggered by other elements
such as locks (and not just switches).

Logic Blocks 674

Mission Pinball Framework Documentation, Version

Accrual Logic Blocks

Related Config File Sections
accruals:

Related How To Guides
Integrating Logic_Blocks and Shows
Scoring Based on Logic Blocks
Integrating Logic_Blocks and Lights
Integrating Logic_Blocks and Slides
Persisting the State of a Logic Block in a Player Variable

“Accruals” are a type of Logic Block where you can trigger a new event based on a series of one or
more other events.

Accruals are almost identical to Sequence Logic Blocks, the only difference being that the steps in an
Accrual Logic Block can be completed in any order, and the steps in a Sequence Logic Block must be
completed in the specific order they’re listed.

An example might be if you have 3 different things which need to happen in your machine, and when
they’re all complete, some other event is posted which kicks off some kind of award mode.

You would use an accrual if these 3 events can happen in any order. If they need to happen in a
specific 1-2-3 sequence, then you would use a sequence logic block instead. (And if you just need the
same event to happen three times, then you would use a counter logic block instead.

For example, let’s say you had a mode where you wanted three shots to be hit, in any order, and when
they were all hit, you lit another shot. You’d use an accrual logic block like this:

##! mode: my_mode

accruals:

name_of_my_logic_block:

events:

- shot1_hit

- shot2_hit

- shot3_hit

events_when_complete: enable_winning_shot

There are much more settings (as you’ll see below), but the basic logic block above (which is called
“name_of_my_logic_block”) will watch for the events shot1_hit, shot2_hit, and shot3_hit to be posted.
Once all three of them have been posted once, this logic block will post an event called
enable_winning_shot which you can use to play a show, light some other shot, play a sound, award
points, etc.

Again, since this is an accrual logic block, those three events can be happen in any order. If one of
them is posted twice, that’s fine. It doesn’t count as one of the other events nor does it “undo” the fact
that it was hit.

Monitorable Properties

For dynamic values and conditional events, the prefix for accruals is device.accruals.<name>.

Logic Blocks 675

Mission Pinball Framework Documentation, Version

value The state of this accrual as list. There will be one entry for every element in the accrual. For
instance, if your accrual has three elements if will be a list of len three with index 0 for the status
of your first element, 1 for the seconds and 2 for the third element. Elements will be 0 at the
beginning and turn to 1 when completed.

enabled Boolean (true/false) which shows whether this accrual is enabled.

completed True if the block is completed. Otherwise False.

This is an example:

##! mode: my_mode

accruals:

test_accrual:

events:

- shot1_hit

- shot2_hit

- shot3_hit

reset_on_complete: false # this is needed for the last event player

event_player:

test_event{device.accruals.test_accrual.value[0]}: shot1_was_hit

test_event{device.accruals.test_accrual.value[1]}: shot2_was_hit

test_event{device.accruals.test_accrual.value[2]}: shot3_was_hit

test_event{device.accruals.test_accrual.completed}: accrual_completed

Note: For this last conditional logic to be able to evaluate as true, the accrual setting

reset_on_complete must be set to No/False. Otherwise the accrual will reset instantly and this will␣

→˓never be true.

Related Events

∙ logicblock_(name)_complete

∙ logicblock_(name)_hit

∙ logicblock_(name)_updated

Common Issues

We try to answer some common questions regarding logic blocks here. If you question is not answered
please ask in the forum.

My block only works once. Why?

This is the default configuration of all logic blocks. To change it you first need to set
reset_on_complete to True. As a result you blocks will reset when they reach the final step. However,
that will not be enough in most cases because disable_on_complete is True by default. Unless you have
some enable logic to re-enable the block later, you probably want to set disable_on_complete to False.

When should I used logic blocks and when should I use shots/show_groups?

There is no definitive answer to this question. Generally, it depends on your usecase. Shots and
shot_groups serve a very specific usecase. Basically, they implement a sequences of switch hits which

Logic Blocks 676

Mission Pinball Framework Documentation, Version

trigger lights along the way. If you want to stay within that specific usecase then go with shots
because it will be more convenient. If you plan to extend your mode to use more advanced features
then go with logic blocks. For instance if you got conditions in your logic (i.e. on how many balls are
locked). Another clear indicator for logic blocks would be if your logic is triggered by other elements
such as locks (and not just switches).

Sequence Logic Blocks

Related Config File Sections
sequences:

Related How To Guides
Integrating Logic_Blocks and Shows
Scoring Based on Logic Blocks
Integrating Logic_Blocks and Lights
Integrating Logic_Blocks and Slides
Persisting the State of a Logic Block in a Player Variable

“Sequences” are a type of Logic Block where you can trigger a new event based on a series of one or
more other events that are first posted in a specific order.

Sequences are almost identical to Accrual Logic Blocks, the only difference being that the steps in an
Accrual Logic Block can be completed in any order, and the steps in a Sequence Logic Block must be
completed in the specific order they’re listed.

An example might be if you have to hit four shots in a specific order to complete a mode, like this
example from the World Tour mode of Brooks ‘n Dunn:

##! mode: my_mode

sequences:

finish_world_tour:

events:

- shot_north_america_hit

- shot_south_america_hit

- shot_europe_hit

- shot_australia_hit

events_when_complete: wt_done

The example above has a single sequence logic block called “finish_world_tour”. When it’s enabled, it
starts watching for the event shot_north_america_hit to be posted. Once it’s posted, then it starts
watching for the event shot_south_america_hit to be posted. At this point, if the europe or australia
event is posted, it doesn’t matter because this is a “sequence” logic block and the events have to
happen in order. So this logic block will just sit there waiting for the current event only to be posted,
and then once it is, it moves on, and any posted before or after are just ignored.

Once all four events have been posted in order, the event wt_done is posted which you can use to stop
the mode or add a score or play a show or whatever you want.

Monitorable Properties

For dynamic values and conditional events, the prefix for sequences is device.sequences.<name>.

Logic Blocks 677

Mission Pinball Framework Documentation, Version

value The state of this sequence as list. There will be one entry for every element in the sequence.
For instance, if your sequence has three elements if will be a list of len three with index 0 for the
status of your first element, 1 for the seconds and 2 for the third element. Elements will be 0 at
the beginning and turn to 1 when completed.

enabled Boolean (true/false) which shows whether this sequence is enabled.

completed True if the block is completed. Otherwise False.

This is an example:

##! mode: my_mode

sequences:

test_sequence:

events:

- shot1_hit

- shot2_hit

- shot3_hit

reset_on_complete: false

event_player:

test_event{device.sequences.test_sequence.value == 1}: shot1_was_hit

test_event{device.sequences.test_sequence.value == 2}: shot2_was_hit

test_event{device.sequences.test_sequence.value == 3}: shot3_was_hit

test_event{device.sequences.test_sequence.completed}: sequence_completed

Related Events

∙ logicblock_(name)_complete

∙ logicblock_(name)_hit

∙ logicblock_(name)_updated

Common Issues

We try to answer some common questions regarding logic blocks here. If you question is not answered
please ask in the forum.

My block only works once. Why?

This is the default configuration of all logic blocks. To change it you first need to set
reset_on_complete to True. As a result you blocks will reset when they reach the final step. However,
that will not be enough in most cases because disable_on_complete is True by default. Unless you have
some enable logic to re-enable the block later, you probably want to set disable_on_complete to False.

When should I used logic blocks and when should I use shots/show_groups?

There is no definitive answer to this question. Generally, it depends on your usecase. Shots and
shot_groups serve a very specific usecase. Basically, they implement a sequences of switch hits which
trigger lights along the way. If you want to stay within that specific usecase then go with shots
because it will be more convenient. If you plan to extend your mode to use more advanced features
then go with logic blocks. For instance if you got conditions in your logic (i.e. on how many balls are

Logic Blocks 678

Mission Pinball Framework Documentation, Version

locked). Another clear indicator for logic blocks would be if your logic is triggered by other elements
such as locks (and not just switches).

State Machine Logic Block

Related Config File Sections
state_machines:
state_machine_states:
state_machine_transitions:

Related How To Guides
Integrating Logic_Blocks and Shows

“State machines” are a type of Logic Block where you can trigger state transitions based on the
current state and an event.

Technically, this is a finite state machine as known from CS class.

Video about state machines:

https://youtu.be/qakxTF1H57E

This is an example:

##! mode: my_mode

state_machines:

my_state:

states:

start:

label: Start state

step1:

label:

show_when_active:

show: on

show_tokens: None

events_when_started: step1_start

events_when_stopped: step1_stop

step2:

label:

transitions:

- source: start

target: step1

events: state_machine_proceed

- source: step1

target: step2

events: state_machine_proceed2

events_when_transitioning: going_to_step2

- source: step2

target: start

events: state_machine_proceed3

- source: step1, step2

target: start

events: state_machine_reset

Logic Blocks 679

https://en.wikipedia.org/wiki/Finite-state_machine
https://youtu.be/qakxTF1H57E

Mission Pinball Framework Documentation, Version

Storing the State in a Player Variable

If you want to store the state of your state machine in a player variable your can use a variable_player.
You can then use it on slides or in places where conditions do not work (yet).

##! mode: my_mode

state_machines:

my_state:

states:

start:

label: Start state

step1:

label:

show_when_active:

show: on

show_tokens: None

events_when_started: step1_start

events_when_stopped: step1_stop

step2:

label:

transitions:

- source: start

target: step1

events: state_machine_proceed

- source: step1

target: step2

events: state_machine_proceed2

events_when_transitioning: going_to_step2

- source: step2

target: start

events: state_machine_proceed3

- source: step1, step2

target: start

events: state_machine_reset

variable_player:

"{device.state_machines.my_state.state}":

my_player_var:

action: set

string: "{value}"

Monitorable Properties

For dynamic values and conditional events, the prefix for state machines is
device.state_machines.<name>.

state The state of this state machine as string. This will be one of your entries in your states section.

Integrating Logic_Blocks and Shows

Logic Blocks 680

Mission Pinball Framework Documentation, Version

Logic_Block-Triggered Events

Logic_blocks can be flexibly integrated with shows using the (name)_updated event. It is posted on
every state change (i.e. when a counter is incremented) and when logic_blocks are restored (on mode
restart). This means that the event may be posted more than once and all handlers should be
idempotent (i.e. that you can execute them more than once without changing state after the first
time). This event works well to control shows, lights, slides, and to restore them on the next ball.
However it should not be used for scoring (to handle an event when the counter changes, consider the
(name)_hit event instead).

##! mode: my_mode

counters:

my_counter:

count_events: my_count_event

starting_count: 0

count_complete_value: 3

show_player:

logicblock_my_counter_updated{value == 0}:

my_show_initial:

key: my_counter_show # this is to remove the previous show from the same player

logicblock_my_counter_updated{value == 1}:

my_show_first_hit:

key: my_counter_show # this is to remove the previous show from the same player

logicblock_my_counter_updated{value >= 2}:

my_show_final:

key: my_counter_show # this is to remove the previous show from the same player

Every time my_counter is updated (or restored) it will post logicblock_my_counter_updated. Depending
on the value of my_counter either my_show_initial (value is 0), my_show_first_hit (value is 1) or
my_show_final (value is 2 or 3) are shown. All show_players have the same key so they will stop any
other show playing with the same key.

Another way to achieve the same thing is this:

You can even achieve this a bit simpler than in the example. Like this:

##! mode: my_mode

counters:

my_counter:

count_events: my_count_event

starting_count: 0

count_complete_value: 3

show_player:

logicblock_my_counter_updated{enabled}:

my_show:

key: my_counter_show

start_step: value + 1

show_tokens:

led1: l_led1

led2: l_led2

led3: l_led3

color: magenta

logicblock_my_counter_updated{not enabled}:

my_counter_show: stop

This will start the show my_show at the value of the counter my_counter. For instance when the counter

Logic Blocks 681

Mission Pinball Framework Documentation, Version

is 0 it will start step 1, counter 1 will run step 2 and so on. Once the counter is disabled the show it
stopped (but other behaviours are possible).

my_show could look like this:

##! show: my_show

#show_version=5

- duration: -1

lights:

(led1): off

(led2): off

(led3): off

- duration: -1

lights:

(led1): (color)

(led2): off

(led3): off

- duration: -1

lights:

(led1): (color)

(led2): (color)

(led3): off

- duration: -1

lights:

(led1): (color)

(led2): (color)

(led3): (color)

Actions which should only happen once

If you want something to happen only once when the logic_block advances (and not on mode restart)
you should use the _hit event. E.g. for a callout use this:

##! mode: my_mode

counters:

my_counter:

count_events: my_count_event

starting_count: 0

count_complete_value: 10

sound_player:

logicblock_my_counter_hit{remaining == 5}:

sound_just_5_remaining:

action: play

logicblock_my_counter_hit{remaining == 2}:

sound_just_2_remaining:

action: play

logicblock_my_counter_hit{remaining == 1}:

sound_just_1_remaining:

action: play

Other Triggered Events

You can also have a show depend on the state of a logic block while being triggered by another event,
using Conditional Events.

Logic Blocks 682

Mission Pinball Framework Documentation, Version

You can access the value directly from the device variable using devices.counters.my_counter.value:

##! mode: my_mode

show_player:

some_other_event{devices.counters.my_counter.value==0}: my_show_initial

some_other_event{devices.counters.my_counter.value==1}: my_show_once_hit

some_other_event{devices.counters.my_counter.value==2}: my_show_twice_hit

Related Events
logicblock_(name)_updated
logicblock_(name)_hit

Scoring Based on Logic Blocks

Sometimes you want to score points based on the state of a logic block.

Accruals

This is a simple example with an accrual. Every event can increase the multiplier exactly once.
Multiplier starts at 1 and goes up to 4.

##! mode: test

mode:

start_events: ball_started

accruals:

my_accrual:

events:

- event1_to_increase_multiplier

- event2_to_increase_multiplier

- event3_to_increase_multiplier

events_when_complete: go_bumper

reset_on_complete: false

variable_player:

some_score_event:

score: 10000 * (device.accruals.my_accrual.value[0] + device.accruals.my_accrual.value[1] + device.

→˓accruals.my_accrual.value[2] + 1)

Counters

Similarly, you can use a counter to increase a multiplier. Every event listed can increase the multiplier
multiple times.

##! mode: test

mode:

start_events: ball_started

counters:

my_counter:

count_events:

- event1_to_increase_multiplier

- event2_to_increase_multiplier

(continues on next page)

Logic Blocks 683

Mission Pinball Framework Documentation, Version

(continued from previous page)

- event3_to_increase_multiplier

events_when_complete: go_bumper

reset_on_complete: false

variable_player:

some_score_event:

score: 10000 * (device.counters.my_counter.value + 1)

Sequences

This also works with sequences.

##! mode: test

mode:

start_events: ball_started

sequences:

my_sequence:

events:

- event1_to_increase_multiplier

- event2_to_increase_multiplier

- event3_to_increase_multiplier

events_when_complete: go_bumper

reset_on_complete: false

variable_player:

some_score_event:

score: 10000 * (device.sequences.my_sequence.value + 1)

Related How To Guides
Scoring

Integrating Logic_Blocks and Lights

Related Config File Sections
counters:
lights:
light_player:

You might want to enable lights based on the state of a counter. This is an example for integrating
lights via light_player using subscriptions on the value of the counter:

lights:

l_chest_matrix_green_2:

number:

l_chest_matrix_green_3:

number:

l_chest_matrix_green_4:

number:

l_chest_matrix_green_5:

number:

(continues on next page)

Logic Blocks 684

Mission Pinball Framework Documentation, Version

(continued from previous page)

counters:

my_counter:

starting_count: 0

count_complete_value: 5

count_events: count_up

light_player:

"{device.counters.my_counter.value > 0}":

l_chest_matrix_green_5: green

"{device.counters.my_counter.value > 1}":

l_chest_matrix_green_4: green

"{device.counters.my_counter.value > 2}":

l_chest_matrix_green_3: green

"{device.counters.my_counter.value > 3}":

l_chest_matrix_green_2: green

Integrating Logic_Blocks and Slides

Related Config File Sections
counters:
slide_player:
variable_player:

You might want to show the count of your counter on a slide. Unfortunately, MC currently cannot
subscribe on the value of your counter. However, you can use variable_player to set the value of your
counter to a player variable and then use that variable in your slide.

This is an example:

#config_version=5

##! mode: my_mode

counters:

my_counter:

starting_count: 0

count_complete_value: 5

count_events: count_up

variable_player:

counter_my_counter_hit:

my_counter:

action: set

int: (count)

slide_player:

show_slide:

widgets:

- type: text

(continues on next page)

Logic Blocks 685

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: "Count (player|my_counter)"

Persisting the State of a Logic Block in a Player Variable

Related Config File Sections
counters:
variable_player:

Prior to MPF 0.50 the state of logic blocks has been persisted to player variables. This only longer
holds true for player specific blocks (e.g. if you set persist_state to True). In that case the variable
will be called (logic_block)_state. For example, a logic block called “logic_block_1” would store its
state in a player variable called logic_block_1_state. When you do not want to persist the value you
can reference it using device.counters.logic_block_1.value (also if you set it).

You can easily use this numerical value in a text widget to show the number of combos complete, or
the number of pop bumper hits required for super jets, etc. This player variable “state” is different
than the state of the logic block itself, which is an object with enabled, completed, and value
attributes. Note the difference in accessing the logic block state as a dynamic value vs. placeholder
text:

##! mode: my_mode

counters:

logic_block_1:

count_events: count_up_event

variable_player:

counter_logic_block_1_hit: # this is triggered when the counter changes

my_widget_placeholder: 100 * device.counters.logic_block_1.value

The logic block stores the count as the 'value' attribute

widgets:

counter_widget:

- type: text

text: (my_widget_placeholder) Hits!

This placeholder is set by variable_player when the counter changes

In this example we persist the value of the counter in the player variable counter_hit to use it in a
slide.

Note: The player variable is only saved if the logic block is configured with persist_state: True. If
persist_state is False, the logic block value will _not_ be saved under any variable name (not even
the default).

Match Mode

To use the built-in MPF match mode add this config:

Match Mode 686

Mission Pinball Framework Documentation, Version

##! mode: match

in modes/match/config/match.yaml

queue_relay_player:

match_no_match:

post: no_match

wait_for: slide_no_match_slide_removed

pass_args: true

match_has_match:

post: has_match

wait_for: slide_match_slide_removed

pass_args: true

mode_settings:

non_match_number_step: 10

slide_player:

no_match:

no_match_slide:

expire: 3s

has_match:

match_slide:

expire: 3s

sound_player:

match_no_match:

no_match_sound:

action: play

match_has_match:

match_sound:

action: play

slides:

match_slide:

- type: text

text: MATCH

- type: text

text: "Player 1: (match_number0)"

- type: text

text: "Player 2: (match_number1)"

- type: text

text: "Player 3: (match_number2)"

- type: text

text: "Player 4: (match_number3)"

- type: text

text: "Match number: (winner_number)"

no_match_slide:

- type: text

text: NO MATCH

font_size: 12

anchor_y: bottom

- type: text

text: "Player 1: (match_number0)"

- type: text

text: "Player 2: (match_number1)"

- type: text

text: "Player 3: (match_number2)"

- type: text

text: "Player 4: (match_number3)"

- type: text
(continues on next page)

Match Mode 687

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: "Match number: (winner_number)"

You can extend the slides. See the two events below for available paramters.

Related Events
match_has_match
match_no_match

Related How To guides
How to design a game in MPF using Modes

Modes

Game modes are a big part of pinball programming and a big part of MPF, so it’s worth taking an
in-depth look at what they are and how they work.

Related Config File Sections
mode:
modes:

As a pinball player, you’re probably familiar with the concept of “modes.” Most modern machines have
lots of different modes, and typically you complete various modes throughout a game on your way to
the wizard mode. Many machines have lights on the playfield that show what modes have been
completed so far. The player might need to do something to light a “start mode” shot, and then when
that shot is made, the mode starts. Then the mode runs for awhile, and while it’s running there’s
typically some kind of sub-goal. (Hit as many standups as you can, shoot both ramps, get as many pop
bumper hits as possible, etc.) Some modes run for a predetermined amount of time (e.g. 30 seconds
or until the ball drains), some modes are multiball and stop when there’s only one ball left, some
modes run until the ball ends, some modes run until you complete the mode’s objectives, and some
modes just sort of run forever.

MPF takes a slightly different approach to modes. In MPF, modes are used for almost everything—a
lot more than just “in game” modes. For example, the attract mode is a “mode” in MPF, as is the bonus
processing, the high score name entry, and lots of other things that you wouldn’t think of as a
traditional game mode. In fact even the “game” itself is a mode in MPF! MPF includes many built-in
modes (that you can use outright or customize), and you can create your own modes as needed.

We documented the general approach to design a game in the Game Design section.

How modes work in MPF

To add a mode to your MPF machine configuration, you create a folder called modes in your machine’s
folder. Then inside there, you create subfolders for each mode in your machine, like this.

In your game, you might have dozens (or even hundreds) of mode folders. Each of your modes folders
is almost like a mini-MPF configuration that’s only active during that mode. You can have subfolders
in each mode folder for game assets, config files, and code that only apply to that mode, like this:

Modes 688

Mission Pinball Framework Documentation, Version

Each of a mode’s subfolders follows the same structure as your machine folder in general. The config
folder holds YAML configuration files, the shows folder holds show files, the sounds folder contains
audio files, the animations folder contains animations, etc. (Note that not every type of folder will be
in every mode. If a mode doesn’t have a specific type of content, then you don’t need to include the
folder for it.) The idea is that each subfolder holds everything that mode needs, and everything in a
mode’s folder only applies to that specific mode. For example, in a mode’s config file, you can add
several types of configuration entries (as detailed in the configuration file reference), that only apply
when that mode is active, including:

∙ shows

∙ slides

∙ multiballs

∙ ball locks

∙ sounds

∙ shows

∙ scoring

∙ etc.

Again, anything that’s specified in a mode’s configuration file is only active while that mode is active.
So if you have a mode called “multiball” with the following entry in that mode’s config file:

##! mode: my_mode

variable_player:

right_ramp_hit:

score: 50000

In that case the right_ramp_hit shot event will only award the points when that multiball mode is
running. When it stops, that variable_player/scoring configuration is removed. (You can also configure
certain events to be “blocked” from propagating down to lower-priority modes. More on that in a bit.)

Machine-wide versus mode-specific folders and configurations

You might have noticed that many of the settings you add to mode- specific configuration files are also
valid settings for the machine- wide configuration files which can exist in
your_machine_folder/config/config.yaml file. So what’s the difference between the two? If you
configure a setting in a machine- wide configuration file, then that setting will be available at all times
in your machine. If you configure a setting in a mode-specific configuration file, then that setting will
only apply when that mode is active. The same is true for asset files (in your images, animations,
movies, sounds, or shows folder). For example, if you put a sound file in your_machine_folder/sounds
folder, then that sound will be available to any mode in your machine. If you put it in the sounds folder
under a specific mode, then that sound file will only be available to that mode. You can even configure
assets to automatically load when a mode starts and unload when a mode ends—a feature that is
necessary on memory-limited hardware platforms like the BeagleBone Black. The reason MPF’s mode
system was built this way is so that each mode is self-contained. This is especially useful in situations
where more than one person is working on a particular game. You can think of each mode’s folder as a
mini self-contained MPF environment, as each mode will have its own files and configuration. This
also makes it easier to keep track of which modes use which files.

Modes 689

Mission Pinball Framework Documentation, Version

When to use modes

As you read this, it’s natural to think of MPF’s modes like game modes, and certainly that’s a big part
of how they’re used. But there is no limit to the number of modes that can be active at any one time
(and it doesn’t negatively affect performance to have dozens of modes running at once), so when you
start programming your game you’ll probably end up breaking your game logic into lots of little
modes.

For example, skill shot should be implemented as a mode. You could create a mode called skill_shot
that loads when a new player is up, and while it’s active it can light certain shots and award points
and play light shows and animations associated with the skill shot. You can also setup a timer that
automatically starts running when the ball is plunged, and then when the timer ends, you can
configure it to unload the skill shot mode. (You would also configure the skill shot mode to stop and
unload as soon as the skill shot is made.) You might also have modes which track combos, progress
towards ball locks, or really anything else you want.

The key with modes in MPF is to understand that they’re more than game modes. You’ll create lots
and lots of them for all sorts of things. (Basically anything you want which temporarily changes
switches, rules, scoring, or any type of device behavior will be a mode in MPF.)

Adding your modes to your machine configuration

If you want to add a mode to your game, you need to add a modes: section to your machine
configuration file and then create an entry for each mode (by listing the folder), like this: (It’s
important to have the dash in front of each line.)

modes:

- skillshot

- base

- both_ramps_made

- gun_fight

- multiball

- skillshot

- watch_tower

The reason for this is that you might have some modes in your modes folder that you’re working on
that aren’t complete yet, or you might want to build different sets of configuration files that use
different modes. So you have to list all the modes that you want to use in your machine config file for
MPF to read in those modes.

Working with mode-specific config files

We already mentioned that each mode in MPF is really like a full “mini” instance of MPF with settings
and assets that only apply to that specific mode. So just like the root MPF config, you create a config
subfolder in each mode’s folder, and then you put a YAML configuration file in that mode’s config
folder that holds all the config settings for that mode. Recall that the default config file name for your
machine-wide configuration is a file called config.yaml. When you setup a mode’s specific config file,
you do so by naming the file <mode_name>.yaml. (So this file would be
<your_machine_file>/modes/<mode_name>/config/<mode_name>.yaml file.)

For example, the configuration file for a skill shot mode might be
<your_machine_file>/modes/skillshot/config/skillshot.yaml. The reason each mode’s config file is

Modes 690

Mission Pinball Framework Documentation, Version

based on the mode name rather than just being called config.yaml is simply for the convenience of the
programmer. Our experience is that when we’re working on a game, we typically have lots of tabs
open in our file editor, and it’s really confusing if all the tabs are named config.yaml ! So we made it so
each mode’s config file is based on the mode name instead. In each mode’s config file, you can add an
entry called mode: which holds settings for the mode itself. Typically this is just a list of MPF events
that will cause the mode to start and stop, as well as the priority the mode runs at, the name of the
mode, and whether the mode has any custom Python code that goes with it. (Full details of this are in
the mode: section of the configuration file reference.)

Organizing modes in subfolders

Modes can also be organized in subfolders. So your modes folder structure could look like:

modes

high_score

band_gb

gb_base

gb_rockfest

band

sq

first_avenue

release

Each mode must include the config subfolder with the configuration file. Any folder that includes the
config subfolder will not be scanned for further modes.

Starting and stopping modes

Modes stop and start based on standard MPF events. For example, if you want a mode to run
whenever a ball is in play, you’d add ball_starting to the mode’s start events list, and you wouldn’t
specify a stop event. If you want a mode to automatically stop when a timer expires, you’d add the
name of the event that’s posted when the timer ends to the mode’s stop events list.

Mode priorities

When you set up the configuration for a mode (via the mode: section of that mode’s
config/<mode_name>.yaml file, you can optionally specify a priority for that mode. Specifying a priority
for a mode is useful when you have more than one mode running and you want to control how all the
running modes interact with each other.

For example, you can configure scoring events so they “block” lower level modes which have score
configured for the same event. So you might have a base game mode which scores 10k points for a
ramp shot, but then in one particular mode you might want to make the ramps worth 100k points. To
do this you would add the scoring setting for 100k to your special mode, and then you’d run that mode
at a higher priority than your base game mode and configure the scoring for that event to block the
scoring from the lower mode. (Otherwise you’d get both scoring events and a ramp shot would grant
110k points.) Whether you configure a scoring event to block or not is optional, and you can specify it
on an individual basis per scoring event. (And in many case you very well might want to score both
events from both modes.)

Modes 691

Mission Pinball Framework Documentation, Version

The mode priorities also affect the priorities of things like all display widgets and slides. For example,
your base mode might play an animation and a light show when a ramp shot is made in the base game
mode, but when your special higher mode is running you might want to play a different slide and a
different light show. So by specifying the special mode to run at a higher priority, it will get priority
access to the display and lights. (Again you can configure this on a setting-by-setting basis, because
there are plenty of times where you might actually want the lower-priority shows to play even when a
higher priority mode is running.)

Note: In MPF prior to v0.20, there was the concept of “machine” modes and “game” modes. Starting
with MPF v0.20, those have been combined, and they’re just called modes. MPF comes with its own
built-in modes that will be mixed together with your own machine-specific modes. For example, MPF
includes modes for attract (priority 10) and game (priority 20) which are responsible for the
fundamentals of running the attract and game modes.

Using modes as game logic

Using “modes” to implement game logic

One thing I found is that I tend to use modes as a sort of “super” logic block. For example, the Brooks
& Dunn rules have a “manager’s choice” shot that leads to a ball device. When the shot is lit, one of
three things happens depending on what else is going on (one for base game mode, another for when
multiball is active, and a third which is a timed mode). The shot may be lit or unlit in any of those
three scenarios, and the action I’m talking about should only happen when it’s lit, otherwise it just
scores some points and kicks out the ball.

I realized pretty quickly that the easiest way to handle this is to create a mode called
“managers_choice_lit” which is used to light the shot regardless of what else is happening. When that
mode starts, it enables the shot, turns on the light, shows a slide that says the shot is lit, etc. I created
a start event “light_managers_choice” which is easy to post from wherever else I need in the game to
light the shot.

Then in order to handle the various chains of events that happen when that shot is actually made, I
created three more modes:

∙ managers_choice_base (priority 301)

∙ managers_choice_timed (priority 302)

∙ managers_choice_multiball (priority 303)

Each of these modes looks for the “managers_choice_lit” hit (shot) event and then will do their award
thing. What’s cool is they also each block the shot from the lower down modes. This means that these
shots can be stacked and running in any various combination.

So the managers_choice_base mode is running at all times (with a start event of ball_starting). That’s
safe to run because it doesn’t do its award action unless the managers choice lit hit event happens,
and that shot is enabled in the managers_choice_hit mode. In other words, managers_choice_base
mode can be running at all times, but it will only award the shot if the managers_choice_lit mode is
running.

Then if managers_choice_timed or managers_choice_multiball is running, they also do their award
thing based on the managers_choice lit hit shot event, so they also can run any time but will not award
the shot unless the managers_choice_lit mode is running.

Modes 692

Mission Pinball Framework Documentation, Version

And since those two higher modes block the shot from lower modes, this means that I don’t need
complicated if/then logic to figure out which of the three award options should be awarded when the
shot is lit and hit.

And since the managers_choice_hit mode acts as an on/off switch for whether the shot will be
awarded, this means that I can safely start the managers_choice_timed mode any time any other timed
mode is running, and I can start the managers_choice_multiball mode anytime multiball play is going
on, and they’ll each only do their award if the base managers_choice_lit is running and the shot is
made.

We documented the general approach to design a game in the Game Design section.

Related How To Guides
Creating your first game mode
Game Design

Related Events
mode_(name)_will_start
mode_(name)_starting
mode_(name)_started
mode_(name)_will_stop
mode_(name)_stopping
mode_(name)_stopped
clear

Built-in Modes

MPF includes several “built-in” modes which are ready to use in your game. Some of them are used
automatically, and some require that you add some config sections and options to your machine. Click
on each for details:

Creating your own modes

Our step-by-step tutorial walks you through creating your own game modes. We just include this page
on creating your own modes so you don’t read the list of built-in modes and think that’s all MPF can
do. :)

Also if you haven’t read the overview of how modes work in MPF , do that now. We documented the
general approach to design a game in the Game Design section.

Attract (mode)

MPF includes a built-in attract mode which is what runs the machine when a game is not in progress.
It starts when either the game_ended or reset_complete event is posted, and it stops when the
game_start mode is posted. The attract mode runs at priority 10.

The code and configuration for the built-in attract mode is in the mpf/modes/attract folder. It’s
automatically added to the list of modes in the modes: section of your machine-wide config based on
settings in the mpfconfig.yaml baseline configuration file.

The attract mode is responsible for many things, including:

Modes 693

Mission Pinball Framework Documentation, Version

∙ Watching for the start button to be pressed & released to kick off the request_to_start_game
event

∙ Recording how long the start button was held in for in order to take different actions based on
different times. (For example, maybe pressing the start button normally starts a regular game,
and doing a long-press lets the player login with a custom player profile.)

∙ Recording what other buttons were active when the start button is pressed. (Maybe holding the
right flipper button and pushing start enables tournament mode.)

You can completely customize and extend the attract mode. In most cases that’s as simple as adding a
config file for the attract mode to your game folder and then configuring light and display shows to
play. See the tutorial for details on how to do this.

Related How To Guides
high score in attract

Game (mode)

MPF includes a built-in mode called game which is responsible for actually running a game in MPF. It
starts when a game is started from the attract mode, and it stays running all the way through the
entire game, finally stopping again when the game ends and the attract mode starts again.

The code and configuration for the built-in game mode lives in the mpf/modes/game folder. It’s
automatically added to the list of modes in the modes: section of your machine-wide config based on
settings in the mpfconfig.yaml baseline configuration file. The game mode runs at priority 20. It starts
when the game_start event is posted, and it stops when the game_ended event is posted.

The game mode is responsible for many things, including:

∙ Tracking the number of balls in play. (Remember the number of balls in play is not necessarily
the same as the number of live balls on the playfield that the ball controller tracks.)

∙ Watching for start button pushes to add additional players to the game.

∙ Restarting the game on a “long press” of the start button.

∙ Posting the game_started, ball_starting, ball_ending, ball_ended, game_ending, and game_ended
events.

∙ Posting the events relating to multiplayer games.

∙ Handling ball drains and ending the current player’s turn

∙ Rotating the players and starting the next player’s turn

∙ Processing extra balls and handling shoot again

It’s almost never necessary to override or change the behavior of the game mode. Typically anything
you want to do to affect the game is done in additional modes you create. (And all the configuration
for scoring, game modes, shots, etc. is done in a “base” game mode that runs per player as their turn
starts.) See the tutorial for details.

We documented the general approach to design a game in the Game Design section.

Modes 694

Mission Pinball Framework Documentation, Version

Credits (mode)

MPF includes a complete credits mode that can be used to enable tracking credits and taking money.
See the How To: Add Coins & Credits guide for details of how to set it up.

The credits mode is highly-configurable, including pricing per game, currencies, price tiering ($0.50
for 1 credit, $2.00 for 5, etc.), credit expiration, etc.

See Coins & Credits for details.

High score (mode)

MPF includes a built-in high score mode that can be used to track high scores, including letting
players enter their names (or initials) and tracking different high score awards. (See the How To:
High Scores guide for details).

You can use the config files to completely customize how the high scores work, including the number
of scores to track, what you call each award (“GRAND CHAMPION”, “HIGH SCORE 1”, etc.) and what
(and how many) awards you track (score, loops, aliens blasted, etc.).

The high score mode stores its high scores in <your_machine_folder>/data/high_scores.yaml file. It
automatically reads them in when MPF boots to create machine variables that can be accessed from
your game, and it automatically updates the high scores on disk when they change after a game ends.

See High Scores for details.

Tilt (mode)

The MPF package includes built-in tilt mode that can be used to track manage tilt warnings, tilts, and
slam tilts.

The tilt mode runs at priority 10,000 and automatically starts when MPF boots up. It never stops, even
running while the attract mode is running. (This is because you want it to watch for slam tilts that
reset the credits even when there’s not a game in progress.)

The tilt mode can use traditional mechanical tilts (plumb bobs, weighed switches, and rolling balls), or
it can use accelerometers to determine G-forces and angle of the machine which can trigger tilts.

See Tilt for details.

Multiballs

Related Config File Sections
multiballs:
multiball_locks:

∙ Common Issues

∙ Monitorable Properties

∙ Related How To guides

Multiballs 695

Mission Pinball Framework Documentation, Version

∙ Related Events

MPF includes a multiball feature which can be used to automatically start and stop multiballs.

Each multiball in MPF has a separate name. There are several different types of multiballs (run until a
single ball is left, timed multiballs, etc.) Multiballs can also be configured with multiball saves so that
(for example) any balls lost in the first 15 seconds of a multiball are automatically re-launched back
into play.

MPF also supports stacking of multiple multiballs at the same time.

Balls can be locked for multiball with the related Multiball Locks config section.

Video about ball locks and multiballs:

https://youtu.be/2mFkgIlksC4

Common Issues

Why does MPF wait about 10s when adding balls to the playfield from the trough during a multiball?

When MPF adds a ball to the playfield the launcher waits until the ball is confirmed to be
on the playfield. For the first ball this happens when a playfield switch is hit after the eject.
However, this will not work with more than one ball on the playfield (e.g. during a
multiball). In this case, the launcher will wait until its eject timeout passed (eject timeouts
in ball_devices) which defaults to 10s. Therefore, you need to tune eject_timeouts of your
launcher to fix this issue.

Monitorable Properties

For dynamic values and conditional events, the prefix for multiballs is device.multiballs.<name>.

balls_added_live Numeric value of how many balls this multiball added into play.

balls_live_target Numeric value of how many balls this multiball is attempting to keep in play.

enabled Boolean (true/false) as to whether this multiball is enabled.

shoot_again Boolean (true/false) as to whether this multiball is in “shoot again” mode which means
it’s attempting to keep live.

Related How To guides

∙ How to create a multiball with a traditional ball lock

∙ How to create a multiball with a virtual ball lock

∙ How to create an “add-a-ball” style multiball

∙ How to create a multiball with a virtual ball lock

∙ How to create a multiball which uses multiple lock devices

Multiballs 696

https://youtu.be/2mFkgIlksC4

Mission Pinball Framework Documentation, Version

Related Events

∙ multiball_(name)_started

∙ ball_save_(name)_timer_start

∙ multiball_(name)_hurry_up

∙ multiball_(name)_grace_period

∙ multiball_(name)_shoot_again

∙ multiball_(name)_lost_ball

∙ multiball_(name)_shoot_again_ended

∙ ball_save_(name)_add_a_ball_timer_start

∙ multiball_(name)_ended

Multiball Locks

Related Config File Sections
multiballs:
multiball_locks:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

Multiball locks work in concert with multiball logic to “lock” balls for multiball. To use a multiball
lock, you configure it for the ball device (or devices) that will be used to lock balls, and then when a
ball enters one of those devices, the lock count is increased by one.

Video about ball locks and multiballs:

https://youtu.be/2mFkgIlksC4

Multiball locks can be configured in one of four modes of operation:

virtual_only When a new ball is locked, the lock count is increased. Period. It does not matter how
many physical balls are locked. Separate counts are maintained per player. This is usually the
best option for locks in modern machines.

physical_only As the name implies, the number of balls locked is always the same as the physical
number of balls in the lock. A new ball locked will increase the lock count for that player and
lock the ball. However if another player “steals” one of the locked balls, then when the previous
player starts their turn, the lock count is updated based on the physical balls locked. This is
mostly for EM and early solid state machines where balls would be locked in different places on
the playfield but the next player could steal them if the player who locked them didn’t get
multiball started.

min_virtual_physical Similar to physical only except a player locking a ball will always increase the
lock count even if that same ball is ejected again.

Multiballs 697

https://youtu.be/2mFkgIlksC4

Mission Pinball Framework Documentation, Version

no_virtual MPF forgets everything when the player changes.

Ball locks are stored on a per-player basic and are NOT based on the number of balls that are
physically contained in any ball devices.

When a ball is locked, a new ball will be added into play (from whichever ball device set in
default_source_device of the playfield) unless the device that just received the locked ball is full, in
which case the ball will be released from the device that the ball just entered instead.

Multiball locks can be enabled and disabled with events, so if you want to set up a scenario where a
player must “re-light” the lock after each ball is locked, then you can use the event which is posted
when a ball is locked as a disable event for this ball lock, and then use the event from some other shot
or switch or logic block as an enable event to re-light the lock.

You can configure multiball locks for the total number of balls they should lock which will in turn post
a “lock full” event which you can use to start a multiball. That multiball will release all the balls it can
from the lock devices this multiball lock uses, and if it still needs more balls (maybe because you’re
using a virtual lock or because a previous player emptied them out), then it will make up the
difference be adding new balls from the ball device set in default_source_device of your playfield .

Monitorable Properties

For dynamic values and conditional events, the prefix for multiball locks is
device.multiball_locks.<name>.

enabled Boolean (true/false) as to whether this multiball lock is enabled.

locked_balls The number of balls that are locked. Note that how this number is calculated varies
depending on how the ball counting strategy is configured for this multiball lock.

Related How To guides

∙ How to create a multiball with a traditional ball lock

∙ How to create a multiball with a virtual ball lock

∙ How to create an “add-a-ball” style multiball

∙ How to create a multiball with a virtual ball lock

∙ How to create a multiball which uses multiple lock devices

Related Events

∙ multiball_lock_(name)_locked_ball

∙ multiball_lock_(name)_full

How to create a multiball with a traditional ball lock

Related Config File Sections
multiballs:
multiball_locks:

Multiballs 698

Mission Pinball Framework Documentation, Version

∙ Background: How MPF tracks and replaces balls

∙ Setting up a simple multiball

∙ Using a multiball_lock to start a multiball

∙ Ball-in-play count with physically-locked balls

∙ Overwriting ball replacement for physically-locked balls

Most pinball machines use a “virtual” ball lock to track multiball progress and MPF is designed to
handle these by default. Machines that physically lock multiple balls require a few extra configuration
settings to properly count locked balls and release them for a multiball.

Background: HowMPF tracks and replaces balls

When a ball enters a ball device that is not the trough, the ball device checks for any locks that want
to “claim” the ball. If the ball is claimed by anything, such as an enabled multiball_lock, the ball
device will hold the ball and request a new ball be added from the trough to the playfield. If nothing
claims the ball, the ball device will eject it back onto the playfield.

During this process, the number of “balls in play” never changes. When a ball is claimed by a lock,
MPF simply swaps the location of the inactive ball from the trough to the ball device. From the game’s
perspective the playfield always has one ball in play.

Setting up a simple multiball

An MPF multiball only has one configuration requirement: the number of balls in the multiball (by
default the total number of balls, but could also be the number of balls added to those already in play).
Consider the following example:

##! mode: multiball_mode

multiballs:

my_multiball:

ball_count: 3

ball_count_type: total # Default

shoot_again: 10s # Default

With no enable/disable and start/stop events configured, this multiball will begin as soon as its parent
mode starts, and it will increase the number of balls on the playfield to a total of 3.

Using a multiball_lock to start a multiball

A typical multiball requires the player to “lock” balls up to the total ball count, which triggers the start
of a multiball. You can setup a multiball_lock to track progress and use its multiball_lock_(name)_full
event to start a multiball.

##! mode: multiball_mode

multiball_locks:

madnesslock:

(continues on next page)

Multiballs 699

Mission Pinball Framework Documentation, Version

(continued from previous page)

debug: true

balls_to_lock: 2

lock_devices: lockdevice

reset_count_for_current_player_events: multiball_lock_madnesslock_full

multiballs:

madnessmball:

ball_count: 3

ball_locks: lockdevice

start_events: multiball_lock_madnesslock_full

In the above configuration, the multiball_lock will track the balls entering lockdevice and claim up to
three. When the third ball is claimed the lock will post its “full” event, which will start the multiball.

Ball-in-play count with physically-locked balls

As noted above, MPF will automatically replace any locked ball with a new ball from the trough, which
is necessary for “virtually” locked balls but causes undesirable behavior for physically locked balls. In
order to maintain the “balls in play” count, the new ball will be ejected to the playfield immediately—
before the multiball can process the full event and start itself.

The multiball therefore assumes (correctly) that the last locked ball has already been replaced and
thus deducts that “in play” ball from its count of balls to add. In the above example, the multiball
would release 2 balls from lockdevice which, in addition to the active ball in play, would result in a
3-ball multiball.

Unfortunately, this also leaves one ball locked in lockdevice after the multiball starts, which is not the
desired outcome.

Overwriting ball replacement for physically-locked balls

You can overwrite the multiball_lock behavior to prevent the automatic replacement of a locked ball
with the balls_to_replace setting. The default value of -1 instructs the lock to replace every locked
ball, but a value of 2 will replace only the first two locked balls.

In tandem, you can overwrite the multiball behavior to not assume that the “in play” ball has been
replaced by the lock. The replace_balls_in_play setting set to True will instruct the multiball to eject
the active ball and the additional balls.

##! mode: multiball_mode

multiball_locks:

madnesslock:

balls_to_lock: 3

balls_to_replace: 2

lock_devices: lockdevice

multiballs:

madnessmball:

ball_count: 3

ball_locks: lockdevice

start_events: multiball_lock_madnesslock_full

replace_balls_in_play: true

Multiballs 700

Mission Pinball Framework Documentation, Version

With the above configuration, the final locked ball will start the multiball and the multiball will eject
three balls from lockdevice.

Note: Be careful with with balls_to_replace and replace_balls_in_play. They will only work in exactly
this combination. Used in isolation they will likely lead to incorrect ball counts.

Video about ball locks and multiballs:

https://youtu.be/2mFkgIlksC4

How to create a multiball with a virtual ball lock

If your machine does not have a physical ball lock you can use a counter to count how many times a
ball has been “locked”. This could be a ball device (as in the example) or any normal shot.

This is an example:

switches:

s_middle_ramp:

number:

coils:

c_plunger:

number:

ball_devices:

bd_middle_ramp_ball_lock:

eject_coil: c_plunger

ball_switches: s_middle_ramp

##! mode: mb_mode

multiballs:

3balls_multiball:

ball_count: 3

ball_count_type: total

shoot_again: 30s

start_events: logicblock_mb_counter_complete

counters:

mb_counter:

count_events: balldevice_bd_middle_ramp_ball_lock_ball_entered

count_complete_value: 3

Video about ball locks and multiballs:

https://youtu.be/2mFkgIlksC4

How to create an “add-a-ball” style multiball

Help us to write it

Multiballs 701

https://youtu.be/2mFkgIlksC4
https://youtu.be/2mFkgIlksC4

Mission Pinball Framework Documentation, Version

How to create a multiball which uses multiple lock devices

Related Config File Sections
multiballs:
ball_devices:
multiball_locks:

Some machines have multiple locks and a multiball may use multiple source devices to eject balls.
However, you have to unterstand that multiball_locks: and multiballs: are independent. A multiball
can use one or multiple ball device as source devices to eject balls. Locks will keep balls inside ball
devices and request new balls to the playfield. To use multiple locks in one multiball you need to
combine those: Define locks to lock balls in your lock ball devices. Additionally, define a multiball
device with your lock ball devices as source. Then, use the multiball_lock_(name)_full events to
enable/start your multiball mode. When the multiball starts reset counters of your locks.

In the following example, you have to lock balls sequentially in your three locks. Every lock will enable
the next lock using the multiball_lock_(name)_full event. The last lock will start the multiball mode. If
you hit s_target1 the multiball will start which will reset and disable all locks using the
multiball_(name)_started event. After all the balls from the multiball drained all lock modes and the
multiball mode will stop using the multiball_(name)_ended event.

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

switches:

s_lock1:

number:

s_lock2:

number:

s_lock3:

number:

s_target1:

number:

ball_devices:

bd_lock1:

eject_coil: eject_coil1

ball_switches: s_lock1

eject_timeouts: 2s

bd_lock2:

eject_coil: eject_coil2

ball_switches: s_lock2

eject_timeouts: 2s

bd_lock3:

eject_coil: eject_coil3

ball_switches: s_lock3

eject_timeouts: 2s

mode lock1

##! mode: lock1

mode:

(continues on next page)

Multiballs 702

Mission Pinball Framework Documentation, Version

(continued from previous page)

restart_on_next_ball: true

stop_events: multiball_my_multiball_started

multiball_locks:

lock1:

lock_devices: bd_lock1

balls_to_lock: 1

disable_events: mode_multiball_started

reset_count_for_current_player_events: multiball_my_multiball_started

mode lock2

##! mode: lock2

mode:

restart_on_next_ball: true

start_events: multiball_lock_lock1_full

stop_events: multiball_my_multiball_started

multiball_locks:

lock2:

lock_devices: bd_lock2

balls_to_lock: 1

disable_events: mode_multiball_started

reset_count_for_current_player_events: multiball_my_multiball_started

mode lock3

##! mode: lock3

mode:

restart_on_next_ball: true

start_events: multiball_lock_lock2_full

stop_events: multiball_my_multiball_started

multiball_locks:

lock3:

lock_devices: bd_lock3

balls_to_lock: 1

disable_events: mode_multiball_started

reset_count_for_current_player_events: multiball_my_multiball_started

mode multiball

##! mode: multiball

mode:

start_events: multiball_lock_lock3_full

stop_events: multiball_my_multiball_ended

multiballs:

my_multiball:

ball_count: 4

ball_count_type: total

shoot_again: 2s

start_events: s_target1_active

ball_locks: bd_lock1, bd_lock2, bd_lock3

Video about ball locks and multiballs:

https://youtu.be/2mFkgIlksC4

Multiballs 703

https://youtu.be/2mFkgIlksC4

Mission Pinball Framework Documentation, Version

Player Variables

Related Config File Sections
player_vars:

MPF contains lots of features which make working with players easy including variables. If you are
not a programmer, variables are just locations inside the computer’s memory to store bits of
information like numbers and text (aka strings). Programmers create variables to store and retrieve
these bit of information for use in their programs. For example, You may want to create a player
variable to store the number of times a bumper has been hit to award a bumper bonus.

Each player has “player variables” which are key/value pairs that are stored separately for each
player.

Some simple examples of player variables include things like:

∙ number: The player’s number (1, 2, etc.)

∙ score: The player’s current score

There are two types of player variables that you can use; the default player variables provided by MPF
and custom variables that you can create, update and reference.

Default Player Variables

There’s a Player Variables Reference which lists the default player variables that MPF creates and
uses.

MPF also uses player variables to keep track of all the built-in game logic elements that are tracked on
a per-player basis, including achievement status, logic block states, extra balls, bonus, etc.

Custom Player Variables

You can also create your own custom player variables which can be called anything you want and can
store anything you want. You can use them to track player’s progress through the game, how many
loops they’ve made, how many pop bumper hits they have, etc. See the player_vars: documentation
for details and examples.

Data types

If you are a programmer, you likely know what datatypes are. If you are not a programmer but want to
create your own player variables, you’ll need to know a little bit about datatypes. To make this really
simple, you may want to store the name of the current mode so that you can display the mode name on
the display. Since the name of the mode is a piece of text, you’ll need to create a player variable of
type “str” to denote a string of characters. Here are the data types available in MPF.

Datatype Description
str a string of textual characters
int an integer, a basic number with no decimal point
float floating point, a more precise number with decimal point

Player Variables 704

Mission Pinball Framework Documentation, Version

Examples:

player_vars:

current_mode:

initial_value: Trees Attack

value_type: str

bumper_hits:

initial_value: 0

value_type: int

super_bonus_multipler:

initial_value: 1.25

value_type: float

Player varaibles are essentially global in MPF, meaning that you can define them in config files and
they are available to use in any location in your files. This makes them easy to use but also easy to
introduce bugs or unintended consequences so be aware of every place that you use them if you are
getting unanticipated results. A best practice would be to define all of your player variables in a
common location such as the machine configuration file.

Setting Variables

MPF configuration files do not work with variables as easily as “real” programming languages. The
primary method of changing a variable is by configuring the change you would like to make. In the
current version of MPF, this is primarily done in the variable_player: section of your mode.

##! mode: my_mode

variable_player:

add 1 to bumper_hits

bumper_1_active:

bumper_hits: 1

The example below shows a player variable of type string being updated. A mode carousel (mode
selection by the player) was used by the player to select a mode ladder (a set of modes played in a
sequence similar to scenes in GhostBusters). The apostrophes are not required but allowed.

##! mode: my_mode

variable_player:

carousel_left_scoop_scene_selected:

current_ladder:

action: set

string: 'Scene 1'

The example below shows a player variable being updated after a conditional event. In this case, the
base mode has received an event indicated that a mode has been complete. The conditional event
checks to see which mode ladder was in play and increments the custom player variable
ladder_scene_1 to indicate the progress towards completing the mode.

##! mode: my_mode

variable_player:

mode_is_complete{current_player.current_ladder=="Scene 1"}:

ladder_scene_1: 1

Player Variables 705

Mission Pinball Framework Documentation, Version

Displaying Custom Variables

Displaying your custom player variables on a slide can be confusing in the current version of MPF. The
example below shows a text widget that is displaying 3 variables on the main scoring screen of the
base mode. The first two variables are of type “str” and the last variable is of type “int”.

player_vars:

current_ladder:

initial_value: "Initial Ladder"

value_type: str

current_mode:

initial_value: "No Mode"

value_type: str

ladder_scene_1:

initial_value: 1

value_type: int

##! mode: base

slide_player:

mode_base_started:

widgets:

- type: text

text: (current_ladder) > (current_mode) > (ladder_scene_1)

Related How To Guides
Help us to write it

Related Events
player_add_request
player_added
player_turn_will_start
player_turn_starting
player_turn_started
ball_save_(name)_saving_ball
player_turn_will_end
player_turn_ending
player_turn_ended
multi_player_ball_started
single_player_ball_started

Replays

Help us to write it

Replays 706

Mission Pinball Framework Documentation, Version

Timed Switches

Related Config File Sections
timed_switches:

∙ Monitorable Properties

∙ Related How To guides

∙ Related Events

MPF includes functionality to manage “timed_switches” which are scenarios when a single switch is
continuously active (or inactive, depending on the settings) for a set period of time.

A classic example of this is the flipper “cradling” where a player holds a flipper button in for a few
seconds. In almost all modern machines, this is used to trigger a “player info” screen that shows the
player’s score, how much bonus they have built up, high scores, etc.

Flipper cradling is also used to reset (and pause) the ball search timer, since a player could be holding
a ball and drinking a beer, meaning no switch hits will happen, but the ball search should not start.

In fact MPF’s default config file (which is automatically used in all games) includes a timed_switches:
section for flipper cradling and automatically creates flipper_cradle and flipper_cradle_release events
(as long as you tag your flipper switches with left_flipper and right_flipper).

Note that timed switches are similar to, but not the same as combo switches.

Monitorable Properties

For dynamic values and conditional events, the prefix for timed switches is
device.timed_switches.<name>.

active_switches List of switches that are currently active past the time that this timed_switches:
section is set for.

Related How To guides

Todo: Help us to write it

Related Events

∙ (name)_active

∙ (name)_released

Timed Switches 707

Mission Pinball Framework Documentation, Version

Timers

Related Config File Sections
timers:

MPF config files include the concept of “timers” which you can use to count towards a specific event
based on time. Timers can be configured to count up or down, at whatever interval you want, at any
speed you want. You can use events to start, stop, pause, reset, or change their speed.

Timers post events with each “tick” which you can use to update the display, play sounds, etc. They
also post events when they complete which you can use to stop a mode, play a show, etc.

Example uses of timers might include:

∙ Hurry up count down to make a shot (with variable score based on how much time is left).

∙ Timer to end a timed mode.

∙ A timer which ticks periodically to rotate a lit shot left or right.

∙ Etc.

The example config files section of the documentation contains examples of timers in modes.

Displaying the value of a timer on a slide

If you want to use your timer in a slide you have to set the value to a player variable first:

##! mode: your_mode

in your mode

timers:

your_timer:

start_value: 0

end_value: 20

control_events:

- action: start

event: mode_your_mode_started

variable_player:

timer_your_timer_tick:

your_timer_variable_times_100:

int: device.timers.your_timer.ticks * 100

action: set

slides:

show_timer:

widgets:

- type: Text

text: (player|your_timer_variable_times_100)

slide_player:

mode_your_mode_started: show_timer

In this example we update the player variable timer_your_timer_tick every time the timer changes
based on the tick event. The value is multiplied by 100 (but you can also omit this or do anything
Variable player supports). Afterwards, you can use the variable in your slide.

Timers 708

Mission Pinball Framework Documentation, Version

Related Events

∙ timer_(name)_started

∙ timer_(name)_stopped

∙ timer_(name)_paused

∙ timer_(name)_complete

∙ timer_(name)_time_added

∙ timer_(name)_time_subtracted

∙ timer_(name)_tick

Service Mode

Related Config File Sections
settings:

MPF has a build in service mode which can be extended using settings (or in code). Usually you map
your service switches and door switches to control service mode. Additionally, you might want to add
keys of your keyboard during development.

This is an example:

include service mode in your modes list

modes:

- service

add tags to your switches

switches:

s_door_open:

number: 1

tags: service_door_open, power_off

s_service_enter:

number: 17

tags: service_enter

s_service_esc:

number: 18

tags: service_esc

s_service_up:

number: 19

tags: service_up

s_service_down:

number: 20

tags: service_down

add a setting (not used here)

settings:

replay_score:

label: Replay Score

values:

500000: "500000 (default)"

1000000: "1000000"

(continues on next page)

Service Mode 709

Mission Pinball Framework Documentation, Version

(continued from previous page)

1500000: "1500000"

default: 500000

key_type: int

sort: 100

add keyboard switches

keyboard:

right:

switch: s_service_enter

left:

switch: s_service_esc

up:

switch: s_service_up

down:

switch: s_service_down

you need to define a "sfx" sound track because the service mode brings some sounds (see the sound␣

→˓documentation for details)

sound_system:

tracks:

music:

type: standard

simultaneous_sounds: 1

volume: 0.5

voice:

type: standard

simultaneous_sounds: 1

volume: 0.7

sfx:

type: standard

simultaneous_sounds: 8

volume: 0.4

additionally you need to define some slide styles which are used in the mode

widget_styles:

medium:

font_name: pixelmix

font_size: 8 # for LCDs you need to increase this to 30-40. also change the font above

adjust_top: 1

adjust_bottom: 1

small:

font_name: smallest_pixel-7

font_size: 9 # for LCDs you need to increase this to 30-40. also change the font above

adjust_top: 2

adjust_bottom: 3

Related How To guides
How to design a game in MPF using Modes

Service Mode 710

Mission Pinball Framework Documentation, Version

Shots

Related Config File Sections
shots:
shot_profiles:
shot_groups:

In MPF, a “shot” is a switch (or combination) of switches that the player shoots for. Examples include:

∙ A standup target, drop target, or rollover lane

∙ A ramp, loop, or orbit

∙ A toy, subway, or VUK

Most shots have lights or LEDs associated with them which are on, off, flashing, and/or certain colors
to reflect what “state” the shot is in.

Broadly speaking, a shot is anything the player shoots at during a game. It could be a standup target,
a lane, a ramp, a loop, a drop target, a pop bumper, a toy, etc.

In MPF, you define switches (or a sequence of switches) as a “shot”. Then whenever that shot is made,
MPF posts events which you can use to trigger scores, achievements, shows, etc.

Some shots are made up of a single switch (like a standup target). But you can also configure shots
that are only considered to be hit based on series of switches that must be hit in the right order within
a certain time frame. For example, you might have an orbit shot with three switches: orbit_left,
orbit_top, and orbit_right. You could configure one shot called left_orbit that’s triggered when the
switches orbit_left, orbit_center, and orbit_right are hit (in that order) within 3 seconds, and you could
configure a second shot called right_orbit that’s triggered when the switches orbit_right, orbit_center,
and orbit_left are hit within 3 seconds. (So, same switches, but two different shots depending on the
order they’re hit.)

The beauty of using shots is that you just define all the switches and timing once, and then every time
you want to use that shot in your game, you just need to work with the “right_orbit” shot and not have
to worry about all the details of the switches and timing.

You can also configure different “states” for shots, e.g. “What state is that shot in?” That can be things
like lit, unlit, complete, flashing, etc. You can also configure shows for each state (the unlit state
means the light is off, flashing means that the light is flashing, etc.), and you can configure different
scoring based on whether state the shot is in (1,000 points if unlit, 5,000 if lit, etc.). All of this is
completely configurable.

You can also group multiple shots into “shot groups” and then do certain things when all the shots in
the group are in the same state. For example, you could have three standup targets configured as
three separate shots that all start in the “unlit” state, but then once all three shots are advanced to the
“complete” state, you could add 100,000 points and start another mode.

Shots are also are integrated into MPF’s modes system, so you can configure a shot to do different
things in different modes.

For example, a ramp shot might do nothing more than score 1,000 points in your base mode, but when
the multiball mode is running, that same shot would score a jackpot. You can also configure whether
notification of a shot being hit is passed down from one mode to the lower priority modes below it. (In
the jackpot example we just mentioned, you probably just want to score the million points for the

Shots 711

Mission Pinball Framework Documentation, Version

jackpot if that shot is made while the multiball mode is running and not score the 1,000 points for that
shot from the base mode even though the base mode is still running under the multiball mode.

Example

This is an example of a shot in a mode:

##! mode: inlanes

shots:

my_shot:

switch: lane_l

show_tokens:

light: lane_l

The shot will use the default profile which has the states unlit and lit. It will start unlit and go to
lit after the first hit. The first hit will post shot_my_shot_unlit_hit and the second hit will post
shot_my_shot_lit_hit . Those events are commonly used to trigger logic based on the shot.

Monitorable Properties

For dynamic values and conditional events, the prefix for multiballs is device.shots.<name>.

state Index of the current state. Will start at 0 and increments when the shot advances.

state_name String representation of the state of the shot. Might be ‘lit’, ‘unlit’ or whatever is inside
your shot_profile.

This is an example:

##! mode: inlanes

shots:

my_shot:

switch: lane_l

show_tokens:

light: lane_l

event_player:

s_target_active{device.shots.my_shot.state_name=='lit'}: start_multiball

In the example the event start_multiball will be posted when the switch s_target is hit and the shot
is in state lit.

Related Events

∙ (name)_hit

∙ (name)_(profile)_hit

∙ (name)_(profile)_(state)_hit

∙ (name)_(state)_hit

Shots 712

Mission Pinball Framework Documentation, Version

Grouping Shots for lane change, rotation, etc.

Related Config File Sections
shots:
shot_profiles:
shot_groups:

Example config for lane changing lights.

##! mode: inlanes

shots:

shot_l_outlane:

switch: lane_l

show_tokens:

light: lane_l

shot_l_inlane:

switch: lane_a

show_tokens:

light: lane_a

shot_r_inlane:

switch: lane_n

show_tokens:

light: lane_n

shot_r_outlane:

switch: lane_e

show_tokens:

light: lane_e

shot_groups:

outlanes:

shots: shot_l_outlane, shot_l_inlane, shot_r_inlane, shot_r_outlane

rotate_left_events: s_flipper_left_active

rotate_right_events: s_flipper_right_active

reset_events: outlanes_profile_hit_lit_complete

enable_events: ball_started

disable_events: ball_ending

Monitorable Properties

For dynamic values and conditional events, the prefix for shot groups is device.shot_groups.<name>.

common_state The name of the common state of all shots in the group. Will be None if there is no
common state. State names depend on the profile of your shots (by default lit and unlit).

Shot Group Overview:

Shot Group:

We’re creating a shot group called “outlanes”, which contains 4 shots that we defined in our Shots:
section of a mode.

Shots 713

Mission Pinball Framework Documentation, Version

Rotate events:

These will cycle the lights thru your shots, based on which flipper button is pressed in this case.

Reset_Events:

Describes an event that will cause this shot group to reset back to its original state.

Enable/Disable Events:

Describe events that will cause this shot group to be enabled/disabled, in this case we are using
Ball_Started and Ball_Ending.

Related Events

∙ (name)_complete

∙ (name)_(state)_complete

∙ (name)_hit

∙ (name)_(state)_hit

Shot Profiles

Related Config File Sections
shots:
shot_profiles:
shot_groups:

Shot profiles define how shots will behave when hit. This is an example:

##! mode: mode1

shot_profiles:

my_default_profile:

states:

- name: unlit

show: "off"

- name: lit

show: "on"

Normally, a shot will advance its profile (unless advance_on_hit is set to False) and will stay at its last
step (unless loop is set to True). There can be a show with option for every state.

Sequence Shots

Related Config File Sections
sequence_shots:

Shots 714

Mission Pinball Framework Documentation, Version

A sequence of switches which need to be hit in order with a timeout.

This is an example:

switches:

s_ramp_entry:

number: 1

s_ramp_success:

number: 2

sequence_shots:

ramp:

switch_sequence: s_ramp_entry, s_ramp_success

sequence_timeout: 3s

When both switches are hit in sequence ramp_hit ((name)_hit) will be posted. You can use that event
to trigger further logic/shows/etc.

Using Sequence Shots in Shot Groups

Sequence shots got shots in their name but they cannot be used in shot_groups. If you want to use
them in a shot groups create a shot which is triggerd on the (name)_hit event.

This is an example:

switches:

s_ramp_entry:

number: 1

s_ramp_success:

number: 2

sequence_shots:

ramp:

switch_sequence: s_ramp_entry, s_ramp_success

sequence_timeout: 3s

##! mode: test_mode

In your mode

shots:

shot_ramp:

hit_events: ramp_hit

shot_groups:

your_group:

shots: shot_ramp

Related How To guides

∙ Loops / Orbits / Ramps

Related Events

∙ (name)_hit

Shots 715

Mission Pinball Framework Documentation, Version

How to integrate shots with shows, lights, sounds, widgets, slides and more

Pinball games need to communicate with the player. Regarding shots this includes two typical things:

1. Indicate the current state of the shot. This is usually implemented by toggling a light or show an
image on screen. Normally, the state indication stays permanently until the state changes. It
might also permanently play of shot (i.e. to flash an arrow). Additionally, it has to be restored
after a player change and sometimes on more restart.

2. On state change (or hit of a shot) the machine needs to communicate success to the player.
Usually, this is implemented using a some light show, sound and some animation on screen.
Additionally, this often involves scoring and might load start another mode.

To implement (1) we recommend to use shot_profiles and create a show per state. This gives you
maximum flexibility. Additionally, it will automatically restore the previous state on player change or
mode restart (lights/screen will never be out of sync with your state).

To implement (2) we recommend to use Show player on the (name)_hit event. This allows very flexible
animations/scoring/video/sounds and will also automate all cleanup for you.

Config Example

Let us look at a very typical example (from Rollover Switches) for a typical inlane/outlane setup with
rotation using flipper buttons. Additionally, we want to show the state of the lanes on screen. When
shots are hit we want to play a sound, play a show on screen and flash the light of the shot.

First, we will define some switches and lights for inlanes and outlanes. In a mode we define all the
shots and tie them to a light. Furthermore, we define an widget name to display for each shot. To
color the light and display the widget we define a show and integrate it to our shots using a
shot_profile. Eventually, we add a show_player to play animations and sounds when a shot is hit.

this is in your machine-wide config

first we define some switches + lights

switches:

s_outlane_left:

number: 0

s_inlane_left:

number: 1

s_inlane_right:

number: 6

s_outlane_right:

number: 7

lights:

l_outlane_left:

number: 0

l_inlane_left:

number: 1

l_inlane_right:

number: 6

l_outlane_right:

number: 7

gi_left_sling:

number: 8

gi_right_sling:

number: 9
(continues on next page)

Shots 716

Mission Pinball Framework Documentation, Version

(continued from previous page)

##! mode: my_mode

put this into a mode

shots each pass their led and widget to the show define in their shot_profile

shots:

shot_outlane_left:

switches: s_outlane_left

profile: lane_profile

show_tokens:

leds: l_outlane_left

widget: outlane_left

shot_inlane_left:

switches: s_inlane_left

profile: lane_profile

show_tokens:

leds: l_inlane_left

widget: inlane_left

shot_inlane_right:

switches: s_inlane_right

profile: lane_profile

show_tokens:

leds: l_inlane_right

widget: inlane_right

shot_outlane_right:

switches: s_outlane_right

profile: lane_profile

show_tokens:

leds: l_outlane_right

widget: outlane_right

integrate shots with their show

shot_profiles:

lane_profile:

states:

- name: unlit

show: "off" # a default show to turn of the led. change if you want to do something␣

→˓on unlit shots

- name: lit

show: "shot_lit" # our show to indicate an lit shot

you can add more states here

to rotate shots and reset them when they are all lit

shot_groups:

sg_lanes:

shots: shot_outlane_left, shot_inlane_left, shot_inlane_right, shot_outlane_right

rotate_left_events: s_flipper_left_active

rotate_right_events: s_flipper_right_active

reset_events:

sg_lanes_lit_complete: 1s

define a few widgets which show on screen. you can also use images or videos here

widgets:

outlane_right:

- type: text

text: Outlane right lit

outlane_left:

- type: text

text: Outlane left lit

(continues on next page)

Shots 717

Mission Pinball Framework Documentation, Version

(continued from previous page)

inlane_right:

- type: text

text: Inlane right lit

inlane_left:

- type: text

text: Inlane left lit

shows:

shot_lit: # define our show to indicate the state

- duration: -1 # this show step will run permanently

widgets: # show the corresponding widget

(widget):

action: add

lights: # turn the light purple

(leds): purple

shot_hit: # define our show to communicate success to the player

- duration: 1s # this show step lasts 1s

add sounds here or videos

add scoring here

shows: # run another (built-in) show to flash the light

flash_color:

show_tokens:

color: red

leds: (leds)

speed: 4

group_complete: # define our show to communicate success on completing all shots

- duration: 1s

add scoring, sounds and video

shows:

flash_color:

priority: 10 # higher priority as the shots

show_tokens:

color: green

leds: l_outlane_left, l_inlane_left, l_inlane_right, l_outlane_right, gi_left_sling, gi_

→˓right_sling

speed: 4

on success flash the sling shot gi on the side of the lane hit and play a sound/video

show_player:

play a show once a each shot is lit

shot_outlane_left_hit{state=="unlit"}:

shot_hit:

key: left

show_tokens:

leds: gi_left_sling

loops: 0

shot_inlane_left_hit{state=="unlit"}:

shot_hit:

key: left

show_tokens:

leds: gi_left_sling

loops: 0

shot_outlane_right_hit{state=="unlit"}:

shot_hit:

key: right

show_tokens:

(continues on next page)

Shots 718

Mission Pinball Framework Documentation, Version

(continued from previous page)

leds: gi_right_sling

loops: 0

shot_inlane_right_hit{state=="unlit"}:

shot_hit:

key: right

show_tokens:

leds: gi_right_sling

loops: 0

play a show when the group completes

sg_lanes_complete{state=="lit"}:

group_complete:

loops: 0

Related How To Guides
Tutorial step 18: Add your first shot
Shots on inlane/outlanes
Shots in game modes
Implement a Mode for Top Lanes with Multiplier and Scoring
Shots in other modes

Skill Shot

Related Config File Sections
mode:
shots:
shot_groups:
timers:
state_machines:

Types of skill shots:

∙ Time based

∙ Hit some target before another target

∙ Super skill shot

∙ How to create a lane-change skill shot

A simple skill shot mode:

##! mode: skill_shot

mode:

start_events: ball_started

stop_events:

- skill_success

- skill_failed

priority: 500

shots:

skill_l:

(continues on next page)

Skill Shot 719

Mission Pinball Framework Documentation, Version

(continued from previous page)

switch: s_lane_l

profile: skill_shot_profile

advance_events: mode_skill_shot_started # replace "skill_shot" with your mode name

show_tokens:

light: l_lane_l

skill_m:

switch: s_lane_m

profile: skill_shot_profile

show_tokens:

light: l_lane_m

skill_r:

switch: s_lane_r

profile: skill_shot_profile

show_tokens:

light: l_lane_r

shot_groups:

skill_shot:

shots: skill_l, skill_m, skill_r

rotate_left_events: s_left_flipper_active

rotate_right_events: s_right_flipper_active

shot_profiles:

skill_shot_profile:

states:

- name: unlit

show: off

- name: flashing

show: flash_color

show_tokens:

color: red

speed: 4

- name: lit

show: on

loop: true

variable_player:

skill_success:

score: 42

timers:

skill_shot_timeout:

start_value: 0

end_value: 5 # set the timeout of your skill shot here

direction: up

tick_interval: 1s

start_running: false

control_events:

- action: start

event: balldevice_plunger_lane_ball_eject_success # replace "plunger_lane" with the name of␣

→˓your plunger device

state_machines:

skill_shot_success:

debug: true

states:

start:

label: Skill shot ready

success:

(continues on next page)

Skill Shot 720

Mission Pinball Framework Documentation, Version

(continued from previous page)

label: Skill successful

events_when_started: skill_success

failed:

label: Skill failed

events_when_started: skill_failed

transitions:

- source: start

target: success

events: skill_shot_flashing_hit

- source: start

target: failed

events: skill_shot_unlit_hit, timer_skill_shot_timeout_complete

This works the following way: The three shots skill_l, skill_m and skill_r represent the three lanes.
skill_l starts lit. The group skill_shot can be rotated using the flippers. When a lit shot it hit the
group posts skill_shot_lit_hit and skill_shot_unlit_hit when a unlit shot is hit. To prevent races
between the two events we use a state_machine called skill_shot_success which has three states:

When the mode started it starts at start. Then when either skill_shot_lit_hit or
skill_shot_unlit_hit are posted in transitions to success or failed. Those states will post either
skill_success or skill_failed. Additionally, there is a timer skill_shot_timeout which will fail the
skill shot 5s after the ball left the plunger.

Usually, you want to create a modes which starts on skill_success and another mode which starts on
skill_failed to play some shows.

Related How To guides
How to design a game in MPF using Modes

Skill Shot 721

Mission Pinball Framework Documentation, Version

Video Modes

Help us to write it

Scoring

Related Config File Sections
variable_player:

The variable_player is commonly used to score points for the current player when a certain event is
posted. This event could be a switch hit (i.e. for s_your_switch use the event s_your_switch_active).

##! mode: mode1

variable_player:

s_your_switch_active:

score: 100

Furthermore, you can add or set any other player or machine variable. You can also use dynamic
values here.

It is very common to use multipliers in your game for scoring. The simplest way to implement
multipliers is to use a player variable to keep the multiplier and multiply it to your scoring entries in
variable_player. This is an example for simple scoring with multiplier:

set initial value for your multiplier player variable (to have it start

at 1 instead of 0)

player_vars:

multiplier:

value_type: int

initial_value: 1

##! mode: my_mode

in your mode:

variable_player:

increment_multiplier:

multiplier: 1

score_something:

score: 100 * current_player.multiplier

The multiplier will be tracked per player and carry over to the next ball. At start we set it to 1 using a
:doc:player_vars </config/player_vars> entry in config for every player.

You can also reset the multiplier on every ball if you want:

##! mode: my_mode

in your mode:

variable_player:

set initial state on mode start of mode "my_mode"

mode_my_mode_started:

multiplier:

int: 1

action: set

increment_multiplier:

(continues on next page)

Video Modes 722

Mission Pinball Framework Documentation, Version

(continued from previous page)

multiplier: 1

score_something:

score: 100 * current_player.multiplier

Sometimes you want to increase your multipliers after multiple events were posted. For instance, you
might want to increase the multiplier after the player completed two shot_groups:

set initial value for your multiplier player variable (to have it start

at 1 instead of 0)

player_vars:

multiplier:

value_type: int

initial_value: 1

##! mode: my_mode

in your mode:

accruals:

bonus_multiplier:

events:

- robo_lanes_shots_lit_complete

- tech_lanes_shots_lit_complete

events_when_complete: increment_multiplier, light_bonus_2x_led

start_enabled: true

variable_player:

increment_multiplier:

multiplier: 1

score_something:

score: 100 * current_player.multiplier

You can also combine two (or more) multipliers (see dynamic values for details about other possible
placeholders and math operators):

set initial value for your multiplier player variables (to have it start

at 1 instead of 0)

player_vars:

multiplier:

value_type: int

initial_value: 1

mode_multiplier:

value_type: int

initial_value: 1

##! mode: my_mode

in your mode:

variable_player:

increment_multiplier:

multiplier: 1

increment_mode_multiplier:

mode_multiplier: 1

score_something:

score: 100 * current_player.multiplier * current_player.mode_multiplier

You may also just add multipliers instead of multiply them. For instance you could use: score: 100 *
(1 + current_player.multiplier + current_player.mode_multiplier) and set initial_value: 0 in
player_vars: to have them start at 0.

Another option is to use a counter as multiplier using score: 100 *

Scoring 723

Mission Pinball Framework Documentation, Version

(device.counters.multiplier_counter.value + 1). See dynamic values for details about possible
placeholder.

Sometimes just using math is getting too complicated. For instance, you want to have some special
scoring under certain conditions. In this case, it is sometimes better to use conditional events instead
of complicated math formulas in a variable_player.

In this example, we enable special scoring if the super_multiball mode is active and the player made
more than two loops (just for the sake of the example - you could also move the scoring into
super_multiball and remove the first condition):

set initial value for your multiplier player variables (to have it start

at 1 instead of 0)

player_vars:

multiplier:

value_type: int

initial_value: 1

loops_made:

value_type: int

initial_value: 0

##! mode: super_extraball

##! mode: my_mode

in your mode:

variable_player:

made_loop:

loops_made: 1

score_something:

score: 100 * current_player.multiplier

score_something{mode.super_extraball.active and current_player.loops_made > 2}:

score: 1000000

Related How To Guides
High Scores
Scoring Based on Logic Blocks
Implement a Mode for Top Lanes with Multiplier and Scoring
How to implement solid state game style score queues in MPF

How to implement solid state game style score queues in MPF

Related Config File Sections
score_queues:
score_queue_player:

When scoring in solid state games the game will typically play chimes while adding the player score
and wait after each digit. You can use score_queues: and score_queue_player: to implement this in
MPF.

coils:

c_chime_1000:

number:

c_chime_100:

(continues on next page)

Scoring 724

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

c_chime_10:

number:

score_queues:

score:

chimes: c_chime_1000, c_chime_100, c_chime_10, None

##! mode: my_mode

in your mode

score_queue_player:

score_2k:

score: 2000

score_200:

score: 200

Tilt

Tilt is a built-in mode. To enable it, just add the tilt mode to your machine config list of modes.
Additionally, add the tilt_warning tag to your tilt bob switch and the slam_tilt to your slam tilt
switch. Tilt runs at all times, since the machine has to look for slam tilts while games are not running.

The tilt mode contains three logic paths:

∙ Slam tilt (slam_tilt)

∙ Instant tilt (tilt)

∙ Tilt warnings (tilt_warning)

You can provide a switch tag or list events for each of them. Let us go over all of them quickly:

The slam tilt is usually triggered by the slam tilt switch at the coin door. It clears all credits and ends
the current game.

The normal tilt is usually triggered by a tilt bob switch . It will give warnings_to_tilt warnings until it
ends the current ball. The remaining warnings are reset by the reset_warnings_events events. By
default they are reset on ball end but you can also change it to game end. The warnings count is
stored in the player variable configured in tilt_warnings_player_var (which defaults to
tilt_warnings) and you can mess with them using Variable player if you like.

Instant tilt is rarely used in normal machines but it might be useful for custom tilt logic or special
modes.

Minimal config

The minimal example is to just load the default tilt mode:

modes:

- tilt

Tilt 725

Mission Pinball Framework Documentation, Version

Change defaults

If you want to customize the mode you can also create a tilt mode inside your mode folder (config
would be in modes/tilt/config/tilt.yaml):

in your machine config

modes:

- tilt

##! mode: tilt

in your tilt mode

tilt: # the following are the defaults only copy those if you want to change them

multiple_hit_window: 300ms

settle_time: 5s

warnings_to_tilt: 3

Add operator settings to service mode

in your machine config

modes:

- tilt

settings:

warnings_to_tilt:

label: Number of tilt warnings

values:

0: "no warnings"

1: "1"

2: "2"

3: "3"

5: "5"

10: "10"

default: 3

key_type: int

sort: 600

settle_time:

label: Time to wait on tilt to settle bob

values:

3000: "3s"

5000: "5s"

10000: "10s"

default: 5000

key_type: int

sort: 610

multiple_hit_window:

label: Tilt sensitivity

values:

150: "sensitive"

300: "normal"

500: "insensitive"

1000: "very insensitive"

default: 300

key_type: int

sort: 620

##! mode: tilt

(continues on next page)

Tilt 726

Mission Pinball Framework Documentation, Version

(continued from previous page)

in your tilt mode

tilt:

multiple_hit_window: settings.multiple_hit_window

settle_time: settings.settle_time

warnings_to_tilt: settings.warnings_to_tilt

The tilt modes contains default slides but you can change them.

Monitorable Properties

For dynamic values and conditional events, the prefix for ball devices is mode.tilt.<name>.

tilt_settle_ms_remaining Milliseconds until the tilt bob is considered settled.

tilt_warnings_remaining Remaining warnings until the game is tilted.

Related How To guides
How to design a game in MPF using Modes
Overwriting Tilt Slides

Overwriting Tilt Slides

The tilt mode comes with very basic slides. You can overwrite them using the following config:

##! mode: tilt

in your modes/config/tilt.yaml

slides:

_overwrite: true # this is important to overwrite the existing slides

tilt_warning_1:

widgets:

- type: text

text: "STOP IT"

expire: 1s

tilt_warning_2:

widgets:

- type: text

text: WARNING

y: top-2

anchor_y: top

- type: text

text: "SERIOUSLY STOP IT"

y: top-18

anchor_y: top

expire: 1s

expire: 2s

tilt:

- type: text

text: TILT

By setting the _overwrite: true you will overwrite the complete slides: section of the built-in tilt
mode. The slides above are the default slides.

Tilt 727

Mission Pinball Framework Documentation, Version

Note: You can add a slide for the slam_tilt event. However, by default the tilt slide is also shown at
the same time so you have to make sure that your slide has a higher priority than that slide.

Tilt 728

CHAPTER9

How to design a game in MPF using Modes

This section assumes that you already configured all your hardware devices (especially all your ball
device). If you did not configure your hardware please do that first. You can go through the tutorial or
have a look a the mechs section.

Video about how to structure your modes:

https://youtu.be/JLgeGBc03bM

Video about state machines (often used to implement logic in your mode):

https://youtu.be/qakxTF1H57E

Video about events in MPF:

https://youtu.be/G3UbVP8gFU0

This section is about laying out your modes and actually designing your game logic. It is structured
into the following subsections:

Mode Selection and Game Startup

Questions answered in this section:

∙ How to select modes/players during start?

∙ How to implement a (timed) skill shot?

∙ How does a player qualify for a mode?

∙ How to start the mode?

∙ Can multiple modes run at once?

729

https://youtu.be/JLgeGBc03bM
https://youtu.be/qakxTF1H57E
https://youtu.be/G3UbVP8gFU0

Mission Pinball Framework Documentation, Version

Mode Selection

In most machines there are multiple modes which can start but you need to shoot and/or select them
first. This usually serves multiple purposes: First, it gives the player options and allows different play
styles. Second, it prevents all modes from starting at once. We will create a selection/qualification
mode which then starts a game mode (or sometimes two). This selection mode usually runs all the
time and provides the following functionality:

∙ Track whether a mode can be qualified/selected or not. Usually you cannot qualify for a mode
while a game mode is running.

∙ When modes can be qualified:

∙ Indicate the progress on qualification of modes

∙ or: Indicate the current selection which would be started

∙ Start a mode and wait until it is done (no more selection/qualification possible in the meantime)

∙ Indicate which modes are already completed (often also active during game modes)

If you got multiple modes which can be selected AND started independently you probably need two
selection modes which run independently.

We assume that you already defined your switches of your shots. Additionally, we assume that you
defined sequence_shots in case your shots require multiple shots to be hit in order. You should be
famililar with the events posted by a successful hit of your playfield shots (those do not have to be
defined as shots in your config). Usually you will use either my_switch_active for a single switch called
my_switch (e.g. a standup target) or my_sequence_shot_hit for a sequence_shots called
my_sequence_shot.

There are generally two types of mode selection:

∙ Selection by making a shot. This ususally happens during the game.

∙ Selection using flipper/action/start buttons after hitting a scoop or on ball start. In those cases
you have to delay the eject of the ball (see below for an example how to do that).

Please let us know if you got a snippet which might be useful for other users and is missing here. We
would be very happy to include it .

Common types of selection modes:

Skill shot at ball start

Skill shots typically run on ball start only. See Skill Shot .

Select by hitting shot X times

A very common style to qualify and select modes is to light a few shots and once a player has made
them a few times start the mode which belongs to the shot. This selection style is used in machines
such as Stern Batman DK (2008) or Stern Starwars (2017).

This is an example:

Mode Selection and Game Startup 730

Mission Pinball Framework Documentation, Version

##! mode: left_ramp

mode: left_ramp

mode:

start_events: start_mode_left_ramp

stop_events: stop_mode_left_ramp

event_player:

left_ramp_complete: stop_mode_left_ramp, enable_qualify

##! mode: right_ramp

mode: right_ramp

mode:

start_events: start_mode_right_ramp

stop_events: stop_mode_right_ramp

event_player:

right_ramp_complete: stop_mode_right_ramp, enable_qualify

##! mode: qualify

mode: qualify

mode:

start_events: ball_started

counters:

left_ramp_qualify_counter:

starting_count: 0

count_complete_value: 3

events_when_complete: disable_qualify, start_mode_left_ramp

enable_events: enable_qualify

disable_events: disable_qualify

start_enabled: true

persist_state: true

reset_on_complete: false

restart_events: reset_qualify_modes

count_events: left_ramp_hit

right_ramp_qualify_counter:

starting_count: 0

count_complete_value: 3

events_when_complete: disable_qualify, start_mode_right_ramp

enable_events: enable_qualify

disable_events: disable_qualify

start_enabled: true

persist_state: true

reset_on_complete: false

restart_events: reset_qualify_modes

count_events: right_ramp_hit

This very basic example should be sufficient for a lot of machines. Another option here is to add
achievments and have those enable/disable the counters. The advantage of that is that you can use
achievement_groups: to track completion of combinations modes (e.g. completions of rows in Stern
Starwars). You can also do that with condition events or accruals:.

You probably want to integrate shows with the logic blocks next.

Select mode and start by shot

There are multiple options to implement a selection carousel.

Mode Selection and Game Startup 731

Mission Pinball Framework Documentation, Version

Using a carousel

One way to achieve mode selection you use a carousel mode which looks like this:

##! mode: carousel

#config_version=5

mode:

start_events: start_selection_mode

stop_events: carousel_item_selected

code: mpf.modes.carousel.code.carousel.Carousel

mode_settings:

selectable_items: character1, character2, character3

select_item_events: s_start_active

next_item_events: s_left_flipper_active

previous_item_events: s_right_flipper_active

TODO: add some slides. If you have a nice example please send it to us (or create a PR).

variable_player:

carousel_character1_selected:

selected_character:

string: "character1"

carousel_character2_selected:

selected_character:

string: "character2"

carousel_character3_selected:

selected_character:

string: "character3"

A carousel will not currently track which modes are already completed. Also this in this example the
carousel will stop after a selection was made. Therefore, we advise to create a second mode to track
the progress of your modes.

This might be useful for cases where you want to select characters or general awards which then
might influence how fast your modes start. For instance this might be combined with the example
above by influencing the starting_count: or count_complete_value using conditional events:

##! mode: qualify

counters:

left_ramp_qualify_counter:

starting_count: 2 if current_player.selected_character == "character1" else 0

count_complete_value: 3

count_events: left_ramp_hit

Using Achivement Groups

You can define multiple groups of achievements and rotate them:

##! mode: left_ramp

mode: left_ramp

mode:

start_events: start_mode_left_ramp

stop_events: stop_mode_left_ramp

event_player:

left_ramp_complete: stop_mode_left_ramp, enable_qualify

(continues on next page)

Mode Selection and Game Startup 732

Mission Pinball Framework Documentation, Version

(continued from previous page)

##! mode: right_ramp

mode: right_ramp

mode:

start_events: start_mode_right_ramp

stop_events: stop_mode_right_ramp

event_player:

right_ramp_complete: stop_mode_right_ramp, enable_qualify

##! mode: qualify

mode: qualify

mode:

start_events: ball_started

achievements:

left_ramp:

show_tokens:

leds: l_left_ramp

show_when_enabled: off

show_when_selected: flash

show_when_completed: on

complete_events: stop_mode_left_ramp

events_when_started: start_mode_left_ramp

right_ramp:

show_tokens:

leds: l_right_ramp

show_when_enabled: off

show_when_selected: flash

show_when_completed: off

complete_events: stop_mode_right_ramp

events_when_started: start_mode_right_ramp

achievement_groups:

all_achievements:

achievements: left_ramp, right_ramp

auto_select: true

start_selected_events: hit_scoop

rotate_right_events: s_action_button_active

enable_events: enable_qualify, ball_started

debug: true

This is a very flexible way to achieve this.

Select a mode at the start of ball 1

Use this to delay the start of a player’s first ball until they select a mode:

##! mode: start_selecton_on_ball_one

#config_version=5

mode:

start_events: ball_ended

stop_events: ball_started

priority: 100

game_mode: false # this is needed to interfere with game start

queue_relay_player:

player_turn_starting{player.ball==0}:

post: show_mode_selection # use this event to enable selection

(continues on next page)

Mode Selection and Game Startup 733

Mission Pinball Framework Documentation, Version

(continued from previous page)

wait_for: selection_mode_ended # make sure you post this event is posted when a selection was made

You can replace player_turn_starting{player.ball==0} with just player_turn_starting to have the
selection on every ball (but not on extra balls). If you also want to trigger it on extra balls use
ball_starting.

Using the start button to select modes

Normally, pressing the start button will cause MPF to add another player. To suppress this during
mode selection you can do the following:

Add the following to the game section of your machine's config.yaml

This will disable the start button for adding players

game:

add_player_switch_tag: add_player

##! mode: attract

Add this to your attract.yaml

event_player:

s_start_active: sw_add_player

##! mode: game_running

Have something in your base mode to trigger another mode (e.g. the carousel above)

and in that mode have the following (to reenable the start button):

event_player:

s_start_active: sw_add_player

Game Mode

Questions answered in this section:

∙ How to track progress inside a mode?

∙ How does it end?

∙ Will it always succeed?

∙ Can it timeout?

∙ Can it restart if it failed?

∙ Where will it continue on restart?

∙ How to implement roll over lanes in a mode?

∙ How to implement a mystery award mode?

∙ How to implement a stand-up target bank mode?

Game Modes

Here is a selection of game modes:

∙ Weak flipper

∙ Lighting Multiple Timed Shots

Game Mode 734

Mission Pinball Framework Documentation, Version

∙ Simple Lane Mode

∙ Top Lanes with Multiplier

∙ End the current game by long-pressing start

∙ Delay Ball Start/Stop to Show Slides/Sounds

∙ Provide a Random Mystery Award .

∙ Skill Shot Mode at Ball Start

∙ Carousel Mode

∙ Drain all balls on the playfield and serve one back without ending the current ball

If you created a unique game mode in your machine which is missing here please consider
contributing a tutorial or example.

Lighting Multiple Timed Shots at the Same Time

Related Config File Sections
timed_switches:
timers:
event_player:

In this mode you can active shots for 3s by hitting a target. We assume that those shots post
timerx_start. The mode succeeds when all three shots are active at the same time. Every shot starts a
timer and checks if the other two are running.

This is a basic example:

##! mode: my_mode

mode:

start_events: start_my_mode

stop_events: my_mode_succeeded

timers:

t1:

start_value: 3

end_value: 0

direction: down

control_events:

- action: restart

event: timer1_start

t2:

start_value: 3

end_value: 0

direction: down

control_events:

- action: restart

event: timer2_start

t3:

start_value: 3

end_value: 0

direction: down

control_events:

(continues on next page)

Game Mode 735

Mission Pinball Framework Documentation, Version

(continued from previous page)

- action: restart

event: timer3_start

event_player:

timer_t1_started{device.timers.t2.running and device.timers.t3.running}: my_mode_succeeded

timer_t2_started{device.timers.t1.running and device.timers.t3.running}: my_mode_succeeded

timer_t3_started{device.timers.t1.running and device.timers.t2.running}: my_mode_succeeded

Implement a Mode for Top Lanes with Multiplier and Scoring

Related Config File Sections
mode:
shots:
shot_groups:
variable_player:
show_player:

This example shows how to make a classic rule used in many games. By making the three top lanes
light (J, A, and M), the playfield multiplier is increased from 1X to 2X, 3X, 4X, 5X, and then to 10X. The
Right and Left Flipper buttons are used to control a lane change, and ending the ball resets the mode.
This example is based on Bally’s Heavy Metal Meltdown. The example below creates a new mode
called JAM_rollover, and uses a machine-wide player variable named pf_multiplier. This variable is
what can be used in other parts of the game logic to multiply values based on the current multiplier
value, for example, when calculating end of ball bonuses. The counter value lb_JAM_complete_count is
used as the count value in the JAM_lanes_done{count==2} within the variable_player conditional
event statements.

in your machine config

##! mode: JAM_rollover

in modes/JAM_rollover

mode:

start_events: ball_started

priority: 110

counters:

lb_JAM_complete_count:

count_events: JAM_lanes_lit_complete

events_when_hit: JAM_lanes_done

starting_count: 1

direction: up

persist_state: false

shots:

top_lane_J:

switch: s_top_lane_J

show_tokens:

light: l_jam_J

top_lane_A:

switch: s_top_lane_A

show_tokens:

light: l_jam_A

top_lane_M:

switch: s_top_lane_M

(continues on next page)

Game Mode 736

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_tokens:

light: l_jam_M

shot_groups:

JAM_lanes:

shots: top_lane_J, top_lane_A, top_lane_M

rotate_left_events: s_left_flipper_active

rotate_right_events: s_right_flipper_active

reset_events:

JAM_lanes_lit_complete: 1s

variable_player:

mode_JAM_rollover_started:

pf_multiplier:

int: 1

action: set

JAM_lanes_done{count==2}:

pf_multiplier:

int: 2

action: set

JAM_lanes_done{count==3}:

pf_multiplier:

int: 3

action: set

JAM_lanes_done{count==4}:

pf_multiplier:

int: 4

action: set

JAM_lanes_done{count==5}:

pf_multiplier:

int: 5

action: set

JAM_lanes_done{count==6}:

pf_multiplier:

int: 10

action: set

JAM_lanes_complete:

score: 1000 * current_player.pf_multiplier

show_player:

JAM_lanes_lit_complete:

flash:

loops: 4

speed: 4

show_tokens:

lights: JAM_lanes

JAM_lanes_done{count==2}:

Playfield_2x_on:

show_tokens:

lights: Playfield_2X

JAM_lanes_done{count==3}:

Playfield_3x_on:

show_tokens:

lights: Playfield_2X, Playfield_3X

JAM_lanes_done{count==4}:

Playfield_4x_on:

show_tokens:

(continues on next page)

Game Mode 737

Mission Pinball Framework Documentation, Version

(continued from previous page)

lights: Playfield_2X, Playfield_3X, Playfield_4X

JAM_lanes_done{count==5}:

Playfield_5x_on:

show_tokens:

lights: Playfield_2X, Playfield_3X, Playfield_4X, Playfield_5X

JAM_lanes_done{count>=6}:

Playfield_10x_on:

show_tokens:

lights: Playfield_2X, Playfield_3X, Playfield_4X, Playfield_5X, Playfield_10X

Ending the Current Game by Long-pressing Start

Related Config File Sections
timed_switches:

The following snippet will end a running game by long-pressing the start button:

timed_switches:

game_cancel:

switch_tags: start

time: 5s

events_when_active: end_game

Please note that this will also work on ball one and will not inhibit bonus nor high_score mode. Let us
know in the forum if you need this.

Mystery Awards

Related Config File Sections
ball_holds:
event_player:
random_event_player:
slide_player:
slides:

Mystery awards provide a random award from a list of options while holding the ball.

Holding the Ball

Any ball_device can be used to hold a ball while the mystery award display runs with ball_holds.

Here is an example of how to use a scoop to hold a ball during a mystery award animation:

##! mode: mystery_mode

event_player:

upper_lanes_complete: enable_mystery

(continues on next page)

Game Mode 738

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_holds:

mystery_scoop:

balls_to_hold: 1

hold_devices: bd_low_scoop

enable_events: enable_mystery

disable_events: end_mystery, multiball_active

release_one_events: end_mystery

In the above example, the scoop will only hold the ball when it is enabled with the enable_mystery
event. For example, the player needs to complete upper lanes to light mystery. Only when those
conditions are met will the scoop hold the ball.

Under disable_events, you can see that the example also prevents the mystery award during multiball.
These events allow you to control when you don’t want the device to hold on to the ball.

At the end of the mystery award, the ball_hold is disabled and releases a ball.

Providing Random Awards

Once mystery has been lit and the ball enters the device, you can use random_event_player to control
which awards are chosen.

In the below example, there are four possible awards and the game will make sure each one is
provided to avoid doubling-up.

##! mode: mystery_mode

random_event_player:

ball_hold_mystery_scoop_held_ball:

events:

mystery_award_1_event: 30 #numbers show probability of event

mystery_award_2_event: 20

mystery_award_3_event: 20

mystery_award_4_event: 30

force_all: true

A random award will only be selected after a ball has been held in the scoop.

Displaying Awards

You can use anything to display an award such as a slide or video. In the below example, a video is
used for each award and the scoop will eject the ball after the video has completed.

##! mode: mystery_mode

event_player:

slide_award_1_slide_removed: end_mystery

slide_award_2_slide_removed: end_mystery

slide_award_3_slide_removed: end_mystery

slide_award_4_slide_removed: end_mystery

slide_player:

mystery_award_1_event:

award_1_slide:

(continues on next page)

Game Mode 739

Mission Pinball Framework Documentation, Version

(continued from previous page)

expire: 5s

mystery_award_2_event:

award_2_slide:

expire: 5s

mystery_award_3_event:

award_3_slide:

expire: 5s

mystery_award_4_event:

award_4_slide:

expire: 5s

slides:

award_1_slide:

- type: video

video: award_1

award_2_slide:

- type: video

video: award_2

award_3_slide:

- type: video

video: award_3

award_4_slide:

- type: video

video: award_4

Full Mystery Award Example

Here is the full example you can use in a mode as a template to start working on your own mystery
award.

##! mode: mystery_mode

event_player:

upper_lanes_complete: enable_mystery

slide_award_1_slide_removed: end_mystery

slide_award_2_slide_removed: end_mystery

slide_award_3_slide_removed: end_mystery

slide_award_4_slide_removed: end_mystery

ball_holds:

mystery_scoop:

balls_to_hold: 1

hold_devices: bd_low_scoop

enable_events: enable_mystery

disable_events: end_mystery, multiball_active

release_one_events: end_mystery

random_event_player:

ball_hold_mystery_scoop_held_ball:

events:

mystery_award_1_event: 30 #numbers show probability of event

mystery_award_2_event: 20

mystery_award_3_event: 20

(continues on next page)

Game Mode 740

Mission Pinball Framework Documentation, Version

(continued from previous page)

mystery_award_4_event: 30

force_all: true

slide_player:

mystery_award_1_event:

award_1_slide:

expire: 5s

mystery_award_2_event:

award_2_slide:

expire: 5s

mystery_award_3_event:

award_3_slide:

expire: 5s

mystery_award_4_event:

award_4_slide:

expire: 5s

slides:

award_1_slide:

- type: video

video: award_1

award_2_slide:

- type: video

video: award_2

award_3_slide:

- type: video

video: award_3

award_4_slide:

- type: video

video: award_4

More examples

See How to design a game in MPF using Modes and Other Game Modes in particular for more
examples.

Lane Mode

Related Config File Sections
mode:
shots:
shot_groups:
variable_player:
show_player:

In this How To guide, we’re going to look at how you can set up a series of lanes with lights (or
standup targets) which you can rotate with the flipper buttons. We’ll also look at how you can play a
light show when they’re complete and assign scoring. “Lane change” is a fairly popular thing in
pinball machines, typically with a set of lanes at the top of the machine. They start all off, and then as
you roll over them they light up. You can use the flippers to cycle through which lanes are lit, and

Game Mode 741

Mission Pinball Framework Documentation, Version

when they’re all lit, you get a score (or increase the bonus multiplier, etc.) For this how to guide we’ll
use a Williams Indiana Jones machine. Here’s a video that shows the final result of building everything
we outline in this guide.

See it in action:

https://youtu.be/4Ip60PVe-oQ

Let’s begin!

(A) Configure your devices

We’ll assume that you already have your switches and lights defined in the switches: and lights:
section of your machine-wide config. (If you have RGB LEDs, you can follow this tutorial also—just
substitute leds: for lights:.)

Next you need to define your shots, which is where you pair your switches and lights so you know that
Switch A is associated with Light B, and so on.

Do this in your base mode configuration (in /modes/base/config/base.yaml), following the
documentation for the shots: section in the configuration file reference. In Indiana Jones, we’ve given
the lights and switches the same names (which is ok since they’re different types of devices), so our
shots: section looks like this:

##! mode: base

shots:

indy_i:

switch: indy_i

show_tokens:

light: indy_i

indy_n:

switch: indy_n

show_tokens:

light: indy_n

indy_d:

switch: indy_d

show_tokens:

light: indy_d

indy_y:

switch: indy_y

show_tokens:

light: indy_y

Next, configure a shot group, which is where you can group individual shots together so you can
interact with as a single group, like this:

##! mode: base

shot_groups:

indy_lanes:

shots: indy_i, indy_n, indy_d, indy_y

Note that the order of your shots is important since that’s how MPF knows the order of them in order
to do shot rotation (more on that later.) At this point if you run MPF and start a game, if you hit one of
your shots then you should see the light turn on. (How does MPF know this? Because you haven’t
specified a shot profile for these shots, so MPF uses the default shot profile which has them in an

Game Mode 742

https://youtu.be/4Ip60PVe-oQ

Mission Pinball Framework Documentation, Version

unlit state at first and then lights them once they’re hit.) Notice that if you hit the flippers they don’t
rotate, and once you light all the shots they just stay on. We’ll change both those behaviors next! Also
notice that the states of the shots are stored per-player. If you play and drain a ball, when you start
the next ball, the shots will be in the same state before they drained. Also note that if you start a
multi-player game, the shots will reset when the second player starts since that player hasn’t hit any
yet, and when the first player goes to Ball 2, MPF will reset the shots back to what the first player had.

(B) Configure shot rotation

Next, let’s configure the shots so that their lit/unlit states rotate (or shift) to the left or right when the
player hits the flipper. This step is optional of course. In some situations you might not want your
shots to rotate (like the ADVENTURE standups in Indiana Jones where the player has to hit all the
shots to light the Path of Adventure). To do this, we have to configure the shot group for rotation
events. We configure two different events—one to rotate left and one to rotate right. You can actually
configure rotation events in either your machine-wide config or in a mode-specific config. If you do it
machine-wide, then the rotation events will always be active. If you configure it in a mode config, then
they’re only active as long as that mode’s active. In this tutorial we’re going to configure them in the
base mode as well but you could put that group in any other mode and load/unload it as you need it.

##! mode: base

shot_groups:

indy_lanes:

shots: indy_i, indy_n, indy_d, indy_y

rotate_left_events: left_flipper_active

rotate_right_events: right_flipper_active

You can specify whatever event name(s) you want for your rotation events. By default, MPF will post
(switch_name)_active when every switch in the game activates. So in our case, our flipper buttons
from the machine-wide switches: section are named left_flipper and right_flipper. If you named
your switch s_lower_left_flipper_button, then your event name would be
s_lower_left_flipper_button_active. Some older pinball machines only rotate lane shots to the right,
regardless of which flipper button is pressed. In that case you’d only have an entry for
rotate_right_events, but you’d add both the left and right flipper events, like this:

##! mode: base

shot_groups:

indy_lanes:

shots: indy_i, indy_n, indy_d, indy_y

rotate_right_events: left_flipper_active, right_flipper_active

Of course you can use whatever event(s) you want to rotate the shots. Many System 11 machines had
lit shots in the inlanes and outlanes that rotate based on slingshot hits, so in that case you’d set them
up and then use left_slingshot_active and right_slingshot_active as your events (changed based
on your actual switch names, of course). Now if you run MPF and start a game, you should be able to
light a shot by hitting it and then see it rotate when you hit the flippers. (Note that you have to
actually start a game. shots are not active when a game is not in progress.)

(C) Configure your shots to reset when they’re complete

If you played with this, you most likely noticed that the shots didn’t actually reset once they were all
complete. So that’s what we’ll do in this step. The way we’ll do that is to add an entry for

Game Mode 743

Mission Pinball Framework Documentation, Version

reset_events: which specifies what events will cause the shots to reset. To do that, go back into your
base.yaml file and add another setting to your indy_lanes shot group for reset_events:, like this:

##! mode: base

shot_groups:

indy_lanes:

shots: indy_i, indy_n, indy_d, indy_y

rotate_left_events: left_flipper_active

rotate_right_events: right_flipper_active

reset_events:

indy_lanes_lit_complete: 1s

There are a few things going on here. First, notice that the name of our event is
indy_lanes_default_lit_complete. That seems like a mouthful, but it’s logical if you break it down!
MPF automatically posts events from shot groups based on what’s happening in that group. What
happens is that every time a shot changes state, the shot group it belongs to checks the state of all the
shots in the group. If they are all the same, then it posts a “complete” event which we can use to
assign scores, trigger effects, and reset the group. The format of that event is
(name)_(state)_complete. In our case, our shot group name is indy_lanes, and the state of the shots
that we’re interested in is called lit. Also notice that instead of adding indy_lanes_lit_complete to the
same line as reset_events, we put it on its own line along with a time entry of 1s. This format is
available for every device configuration setting where we specify events, and it means that when that
event is posted, it will wait for the specified time to pass before actually performing its action. The
reason we did this is because without it, the shots will reset themselves instantly when they complete,
which might be confusing to the player since it will look like they have 3 of the 4 shots complete, they
hit the 4th one, and then they all go out. The player will think, “Wait, what just happened? Did I get
it?” So by adding this delay, we wait 1 second after completing all the shots before they’re reset. At
this point you should be able to launch MPF, start a game, hit a shot, rotate it with the flippers, and
when you complete all the shots, they should wait a second and then reset. Cool!

(D) Add some scoring

Next lets add some scoring to your shots. We’re going to make it so the player gets 5,000 points if
they hit and unlit shot (which will then light), 100 points if they hit a shot that’s already lit (since they
failed to rotate or nudge the ball into an unlit lane), and 10,000 points when they complete all the
shots in the group. To do that, add a scoring section to your base.yaml mode configuration. (Or you
can add it to your machine-wide config if you want to keep all your scoring entries in one place.) It
should look like this:

##! mode: base

variable_player:

indy_lanes_unlit_hit:

score: 5000

indy_lanes_lit_hit:

score: 100

indy_lanes_lit_complete:

score: 10000

Again, these event names might seem crazy, but they’re all very logical if you break them down. The
shot group will post events any time one of its member shots is hit. This is similar to the complete
event from the previous step, except the hit event ends in _hit and is posted with every hit to any shot
versus the _complete event which is only posted when all the shots in the group have made it to the

Game Mode 744

Mission Pinball Framework Documentation, Version

same state. Remember that since we haven’t assigned any shot profiles (nor will we), we’re using the
default shot profile which has two steps: unlit and lit, with the unlit step running a light script that
turns off the associated light or LED and the lit step running a light script that turns on the light. One
anomaly with the scoring is that when you hit the last shot to complete the group, you’ll actually get
15,000 points instead of 10,000. That’s because when you hit that final unlit shot, you get 5,000 points
for hitting an unlit shot plus the 10,000 points for completing the group. If you really only want 10,000
points total on the last hit, then you could just change the complete event to 5,000 points, or setup a
logic block to track the count and trigger the scoring.

(E) Add a light show to play a cool effect on completion

As it is now, when you complete the lanes, you get the points which is cool, but after 1 second the
lights just sort of unceremoniously reset. Boring! So let’s create a light show that flashes the lane
lights when you complete the lanes. To do this, let’s first create a light show (details in Steps A and B
here) called indy_lanes_complete.yaml :

##! show: indy_lanes_complete

- duration: 1

lights:

indy_i: ff

indy_n: 00

indy_d: ff

indy_y: 00

- duration: 1

lights:

indy_i: 00

indy_n: ff

indy_d: 00

indy_y: ff

Obviously you can make this show do whatever you want; I opted for a simple one that sort of
alternates the lights. Then to run the light show, go back to your base.yaml mode config and add a
light_player: entry which plays this show when the lanes are complete, like this:

##! show: indy_lanes_complete

##! mode: base

show_player:

indy_lanes_default_lit_complete:

indy_lanes_complete:

speed: 20

loops: 10

priority: 1

If you’ve worked with shows before, these settings should be pretty straightforward. Running this
show at 20x the speed means that it runs really fast. We set loops: 10 so it loops 10 times and then
stops. The only slightly confusing thing might be the priority: 1 setting. Any time priority settings
are added to mode config files, the setting is added to the priority of the mode. For example, if you
configure your base mode to run at priority 100, that means that everything it does has a priority of
100—slide shows, lights, sounds, etc. Adding priority: 1 to this light_player entry just means that
this light show will run with a priority of 101 instead of 100, ensuring that it shows up “on top” of
anything else this mode is doing with those lights.

Game Mode 745

Mission Pinball Framework Documentation, Version

(F) Revisit your reset delay

At this point you should be all set and your machine’s shots should work like the shots in the video at
the beginning of this guide. The only loose end to tie up is reset_events entry of
indy_lanes_lit_complete: 1s. As it is now, when the lanes complete (and while the light show is
playing), your lanes will still be in their “lit complete” state, meaning if the ball hits a lane within that
first second, the player won’t get credit for it towards the second round of lighting the lanes. You
might want to remove the 1s and just change that entry to reset_events: indy_lanes_lit_complete. If
you do that and the player’s ball hits a lane while the show is playing, then they will get the score and
credit towards the next round of lighting the lanes (even though they won’t see the lane light until
after the show stops since the show is running at a higher priority). Whether you do this is a matter of
personal taste. You could also set a stop event for the light show and cancel it right away if the lane is
hit again, or you could not have a priority entry in the light_player entry so lighting the lane shows
up while the show plays around it. Really there are lots of options you can play with.

This is a full example:

switches and lights in your machine config

switches:

indy_i:

number: 1

indy_n:

number: 2

indy_d:

number: 3

indy_y:

number: 4

lights:

indy_i:

number: 1

indy_n:

number: 2

indy_d:

number: 3

indy_y:

number: 4

##! show: indy_lanes_complete

the show on complete

- duration: 1

lights:

indy_i: ff

indy_n: 00

indy_d: ff

indy_y: 00

- duration: 1

lights:

indy_i: 00

indy_n: ff

indy_d: 00

indy_y: ff

##! mode: base

your base mode

mode:

start_events: ball_started

(continues on next page)

Game Mode 746

Mission Pinball Framework Documentation, Version

(continued from previous page)

shots:

indy_i:

switch: indy_i

show_tokens:

light: indy_i

indy_n:

switch: indy_n

show_tokens:

light: indy_n

indy_d:

switch: indy_d

show_tokens:

light: indy_d

indy_y:

switch: indy_y

show_tokens:

light: indy_y

shot_groups:

indy_lanes:

shots: indy_i, indy_n, indy_d, indy_y

rotate_left_events: left_flipper_active

rotate_right_events: right_flipper_active

reset_events: indy_lanes_lit_complete

variable_player:

indy_lanes_unlit_hit:

score: 5000

indy_lanes_lit_hit:

score: 100

indy_lanes_lit_complete:

score: 10000

show_player:

indy_lanes_default_lit_complete:

indy_lanes_complete:

speed: 20

loops: 10

priority: 1

Carousel

Related Config File Sections
mode:
mode_settings:
event_player:
slide_player:
slides:

Changed in version 0.33.

Game Mode 747

Mission Pinball Framework Documentation, Version

∙ Doctor Who Carousel

A carousel allows you to create process for the player to select from a list of items such as selecting a
mode to play. The carousel is implemented as a mode. The player can move through a list of items that
you provide on the display or cycle through playfield inserts.

This is just one way to select modes. More ways to implement mode selection are described in the
mode selection section of the game design documentation.

A common use of the carousel is to create a mode selection process. For example, the player can scroll
through a list of modes on the display. Each mode could be presented to the user as a slide. The player
can move from slide to slide using the flippers. Once the player decides which mode to play, he can
select the mode by hitting the start button or both flippers at once. This is just one example of how
you could implement a carousel as a mode selection process.

There is a reference to a code file in here so be careful to include that reference. You don’t need to
download any code as it is already in you MPF installation. Here is the process of configuring a
carousel:

∙ Create a mode folder and config file <machine>/modes/carousel/config/carousel.yaml

∙ Add the code to mode: section:

code: mpf.modes.carousel.code.carousel.Carousel

∙ Create your selectable items. These could be your mode names but you can name them anything
for now.

selectable_items: terra, pyro, space, liquid

∙ Select the event(s) that choose the item. For example, the start button. You could think of this an
the “enter key”

select_item_events: s_start_inactive

∙ Select the event that moves to the next item in the list of items

next_item_events: s_right_flipper_inactive

∙ Select the event that moves back to the previous item in the list of items

previous_item_events: s_left_flipper_inactive

Note: It is recommended to use the flipper_inactive events to rotate, rather than flipper_active. This
allows the use of flipper_cancel to select items without accidentally rotating before the selection
occurs.

Depending on your situation, especially if you use flipper_cancel as the select event, you may notice
that after cancelling the subsequent flipper_inactive events still play sounds or change slides after
selection has been made. The Carousel’s block_events can be used to prevent carousel event handling
until one of the release_events is posted. If you don’t need to do anything after selection, just
specifying block_events without any release_events will help.

Game Mode 748

Mission Pinball Framework Documentation, Version

block_events: flipper_cancel

release_events: both_flippers_inactive

There are two events of importance here:

∙ carousel_<item>_highlighted

∙ carousel_<item>_selected

You can use the carousel_<item>_highlighted event to display a slide showing the name of the mode
to the player.

You can then use the carousel_<item>_selected event to start the mode that was selected by the
player.

##! mode: my_carousel

in mode my_carousel

#config_version=5

mode:

start_events: ball_starting

stop_events: my_carousel_item_selected

code: mpf.modes.carousel.code.carousel.Carousel

use_wait_queue: true

mode_settings:

selectable_items: terra, pyro, space, liquid

select_item_events: s_start_inactive

next_item_events: s_right_flipper_inactive

previous_item_events: s_left_flipper_inactive

slide_player:

my_carousel_terra_highlighted: select_terra

my_carousel_liquid_highlighted: select_liquid

my_carousel_space_highlighted: select_space

my_carousel_pyro_highlighted: select_pyro

slides:

select_liquid:

widgets:

- type: text

text: LIQUID METAL

font_size: 100

color: yellow

transition:

type: move_in

direction: right

select_terra:

widgets:

- type: text

text: TERAFORM

font_size: 100

color: yellow

transition:

type: move_in

direction: right

select_space:

widgets:

- type: text

text: SPACE OUT

(continues on next page)

Game Mode 749

Mission Pinball Framework Documentation, Version

(continued from previous page)

font_size: 100

color: yellow

transition:

type: move_in

direction: right

select_pyro:

widgets:

- type: text

text: PYRO

font_size: 100

color: yellow

transition:

type: move_in

direction: right

Doctor Who Carousel

The following example is based around Bally’s Doctor Who. When the player starts a game, the player
is shown via a carousel the option to pick eight modes, each representing a certain Doctor. The flipper
buttons control the carousel right and left. When the Launch Button is pressed, the game starts the
mode selected by the player and launches the ball.

#config_version=5

##! mode: carousel

put this in your modes/carousel/config/carousel.yaml

mode:

start_events: ball_starting

stop_events: carousel_item_selected

code: mpf.modes.carousel.code.carousel.Carousel

priority: 125

use_wait_queue: true

mode_settings:

selectable_items: Doctor1, Doctor2, Doctor3, Doctor4, Doctor5, Doctor6, Doctor7, Doctor8

select_item_events: sw_launch_active

next_item_events: sw_right_flipper_inactive

previous_item_events: sw_left_flipper_inactive

slide_player:

carousel_Doctor1_highlighted: select_Doctor1

carousel_Doctor2_highlighted: select_Doctor2

carousel_Doctor3_highlighted: select_Doctor3

carousel_Doctor4_highlighted: select_Doctor4

carousel_Doctor5_highlighted: select_Doctor5

carousel_Doctor6_highlighted: select_Doctor6

carousel_Doctor7_highlighted: select_Doctor7

carousel_Doctor8_highlighted: select_Doctor8

slides:

select_Doctor1:

widgets:

- type: text

text: Doctor 1

font_size: 10

color: yellow

(continues on next page)

Game Mode 750

Mission Pinball Framework Documentation, Version

(continued from previous page)

transitions:

type: move_in

direction: right

select_Doctor2:

widgets:

- type: text

text: Doctor 2

font_size: 10

color: yellow

transitions:

type: move_in

direction: right

select_Doctor3:

widgets:

- type: text

text: Doctor 3

font_size: 10

color: yellow

transitions:

type: move_in

direction: right

select_Doctor4:

widgets:

- type: text

text: Doctor 4

font_size: 10

color: yellow

transitions:

type: move_in

direction: right

select_Doctor5:

widgets:

- type: text

text: Doctor 5

font_size: 10

color: yellow

transitions:

type: move_in

direction: right

select_Doctor6:

widgets:

- type: text

text: Doctor 6

font_size: 10

color: yellow

transitions:

type: move_in

direction: right

select_Doctor7:

widgets:

- type: text

text: Doctor 7

font_size: 10

color: yellow

(continues on next page)

Game Mode 751

Mission Pinball Framework Documentation, Version

(continued from previous page)

transitions:

type: move_in

direction: right

select_Doctor8:

widgets:

- type: text

text: Doctor 8

font_size: 10

color: yellow

transitions:

type: move_in

direction: right

event_player:

select_Doctor1: mode_Doctor_1_start

select_Doctor2: mode_Doctor_2_start

select_Doctor3: mode_Doctor_3_start

select_Doctor4: mode_Doctor_4_start

select_Doctor5: mode_Doctor_5_start

select_Doctor6: mode_Doctor_6_start

select_Doctor7: mode_Doctor_7_start

select_Doctor8: mode_Doctor_8_start

Then, each mode that the carousel can start is set up with the following.

#config_version=5

##! mode: Doctor_1

##Example: Doctor_1.yaml

mode:

start_events: carousel_Doctor1_selected

stop_events: ball_ended

priority: 130

##Then the rest of the mode's code.

Related How To guides
How to design a game in MPF using Modes

How to Drain All Balls on the Playfield and Serve One Back Without Ending the Current Ball

Related Config File Sections
mode:
ball_saves:
autofire_coils:
event_player:
show_player:
shows:
queue_event_player:
queue_relay_player:

You might want to a have a mode that does not end the current ball when a timer expires, a jackpot is
collected, or some other event happens.

Game Mode 752

Mission Pinball Framework Documentation, Version

When this happens you might want the flippers and possibly other coils to disable (slings, pops, etc) in
order to collect the ball/balls.

The first thing you need to do it make sure your flippers, sling, pops, etc have an enable and disable
event in their devices config file.

This is an example for left sling:

autofire_coils:

left_slingshot:

switch: s_left_slingshot

coil: c_left_slingshot

disable_events: ball_ending, service_mode_entered, disable_sling

enable_events: ball_started, enable_sling

In the mode that you want to end but not end the ball add a “fake ball save”.

In this example this mode had a multiball and the fake ball save is enabled when a multiball ends. In
your mode it can be enabled whenever you want it to, mode start or when a shot is hit, etc.

##! mode: your_mode

ball_saves:

fake_MODE_NAME_ball_save:

enable_events:

- multiball_<multiball_name>_ended

auto_launch: false

balls_to_save: 1

debug: true

When the mode ends either when timer expires or another event happens you should have 2 other
modes, another ball save mode and an end_mode mode.

In the ball save mode you will have another ball_save and maybe a show_player that flashes the shoot
again light.

We will call this mode ball_save_end_mode.

##! mode: your_mode

mode:

start_events:

- mode_end_MODE_NAME_started

stop_events:

- mode_end_MODE_NAME_stopped

priority: 9100

ball_saves:

end_mode_ball_save:

enable_events: mode_ball_save_end_mode_started

auto_launch: false

balls_to_save: 1

debug: true

show_player:

ball_save_end_mode_ball_save_enabled:

fast_flash_show:

key: end_modes_ball_save_flash

speed: 3

(continues on next page)

Game Mode 753

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_tokens:

leds: l_shoot_again

color: red

action: play

priority: 9999

mode_ball_save_end_mode_stopping:

end_modes_ball_save_flash:

action: stop

This ball save mode is started when end_mode is started. The end_mode is started by whatever you
want the mode you don’t want ball to drain end. For example a timer expired or some other event
happened.

This is the end_mode. It will disable the flippers and drain the balls. You can display a message on
screen or play a video, etc. explaining what just happened. The queue_relay_player will hold the ball
until the show is over. When this mode is ending you should enable the coils you disabled.

##! mode: your_mode

mode:

start_events:

- start_end_MODE_NAME_mode

stop_events:

- player_continue_show_ended

priority: 8150

event_player:

mode_end_MODE_NAME_started:

- flipper_off

- disable_Upper_Left_pop_bumper

- disable_Upper_Right_pop_bumper

- disable_Lower_Left_pop_bumper

- disable_Lower_Right_pop_bumper

- disable_sling

player_continue_show_ended:

- flipper_on

- enable_Upper_Left_pop_bumper

- enable_Upper_Right_pop_bumper

- enable_Lower_Left_pop_bumper

- enable_Lower_Right_pop_bumper

- enable_sling

- start_ANOTHER_MODE

queue_event_player:

mode_end_MODE_NAME_started:

queue_event: my_queue_end_MODE_NAME

events_when_finished: end_end_MODE_NAME

queue_relay_player:

my_queue_end_MODE_NAME:

post: start_end_MODE_NAME_intro

wait_for: end_show_ended

balldevice_bd_trough_ball_eject_attempt:

post: wait_for_instruction

wait_for: player_continue_show_ended

(continues on next page)

Game Mode 754

Mission Pinball Framework Documentation, Version

(continued from previous page)

shows:

end_MODE_NAME_ball_over:

- duration: 11

slides:

end_MODE_NAME_ball_over_slide:

widgets:

- type: text

text: "BALL LOST"

color: white

font_size: 80

y: center + 300

- type: video

video: end_mode_video

- type: text

text: "DON'T MOVE"

font_size: 80

color: red

x: center

y: center - 300

animations:

show_slide:

- property: opacity

value: 1

duration: .5s

- property: opacity

value: 0

duration: .5s

repeat: true

player_continue_show:

- duration: 3

slides:

end_mode_player_continue_slide:

widgets:

- type: text

text: PLAYER (number)

color: blue

font_size: 120

y: center + 90

- type: text

text: Keep Shooting

color: red

y: center - 10

font_size: 90

show_player:

start_end_MODE_NAME_intro:

end_MODE_NAME_ball_over:

loops: 0

events_when_stopped: end_show_ended

end_show_ended:

player_continue_show:

loops: 0

(continues on next page)

Game Mode 755

Mission Pinball Framework Documentation, Version

(continued from previous page)

events_when_stopped: player_continue_show_ended

This is just an example of how I did it in my game. Every game is different.

If you have any questions about how to do this in your game please post to MPF Users Google Group.

Wizard Modes

Questions answered in this section:

∙ How to track achievements towards one or multiple wizard modes?

∙ How to start a wizard mode?

∙ What to do after wizard mode?

Wizard Modes

Unlockable game modes that take over the playfield are typically referred to as “wizard” modes and
are often considered milestones for a player’s progress. Here we will outline some common
approaches to tracking, starting, and completing wizard modes in MPF.

Achievements to Qualify Wizard Modes

The simplest way to track a player qualifying, attempting, and completing wizard modes is through
achievements, a special type of player variable that progress through a series of pre-defined states.

One common approach for wizard modes is to have a counter that tracks shots to qualify the mode. In
this example, hitting three shots will enable and immediately start the wizard mode:

##! mode: wizard_qualify

mode: wizard_qualify

mode:

start_events: mode_base_started

achievements:

winterhascome:

enable_events: logicblock_winteriscoming_count_complete

start_events: achievement_winterhascome_state_enabled

counters:

winteriscoming_count:

starting_count: 0

count_complete_value: 3

count_events: winteriscoming_shot_hit

##! mode: winterhascome

mode: winterhascome

mode:

start_events: achievement_winterhascome_state_started

The different achievement states allow you to fine-tune when and how modes can be qualified.
Achievements can be enabled/disabled, selected, started/stopped, and completed, and have some
rules to help control the flow:

Wizard Modes 756

https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

∙ disabled achievements must be enabled before any other state changes will work

∙ enabled achievements can be disabled, selected, or started

∙ selected achievements can be disabled, started, or completed

∙ started achievements can be stopped or completed

∙ completed achievements cannot change state anymore

By combining these state flows with your qualifying shots, mode selections, and end-of-ball events,
there is a lot of flexibility for using achievements to track wizard modes. For example, a one-time-only
wizard mode could distinguish between an enabled achievement (i.e. it hasn’t been played) and a
stopped achievement (i.e. it has been played), while a wizard mode awarding a bonus for
accomplishing some goal could distinguish between a stopped achievement and a completed
achievement.

Of course, there’s no requirement that achievements be used to start and stop wizard modes.
Achievements are a convenience for tracking progress, your own game design may have other
approaches.

Starting and Stopping Wizard Modes

Most wizard modes will be started and stopped like any other game mode, using the mode
start_events and stop_events. There will usually be a close relationship between the start/stop events
and the achievement state events, as in these typical examples:

Use a counter to enable an achievement

achievements:

captainschair:

enable_events: completed_missions_count_hit{value==6}

Enable an achievement to start a mode [direct event]

mode:

start_events: achievement_captainschair_state_enabled

Enable an achievement to start a mode [indirect event]

event_player:

achievement_captainschair_state_enabled: start_mode_captainschair

Start an achievement when its wizard mode starts

achievements:

captainschair:

start_events: mode_captainschair_started

Complete an objective to complete an achievement [direct event]

achievements:

captainschair:

complete_events: logicblock_captainshots_counter_complete

Complete an objective to complete an achievement [indirect event]

achievements:

captainschair:

complete_events: captainschair_complete

event_player:

logicblock_captainshots_counter_complete: captainschair_complete

(continues on next page)

Wizard Modes 757

Mission Pinball Framework Documentation, Version

(continued from previous page)

Stop an achievement when a mode stops

achievements:

captainschair:

stop_events: mode_captainschair_will_stop

For wizard modes that stop other game modes, disable qualifier shots or ball locks, and/or have other
“takeover” behaviors, consider using Mode Layering to handle the transitions in and out of wizard
modes.

After a Wizard Mode

Most wizard modes are only played once and have a “completion” goal for the player to accomplish.
Mid-game wizard modes (also called “mini-wizard” modes) will usually end if the goal is completed,
while end-of-game wizard modes play until the ball drains. Similarly, end-of-game wizard modes
typically restart immediately on the players next ball while mid-game wizard modes usually do not.
Multiball wizard modes usually remain active until only one ball is left in play.

Achievement states are an excellent way to track how a wizard mode ended and whether it impacts
future game behavior. If you’re using the achievement_(name)_started event to start your wizard
mode the restart_after_stop_possible: setting determines whether a “stopped” achievement can be
started and the restart_on_next_ball_when_started: setting will post the
achievement_(name)_started event when its parent mode starts. If the wizard mode has a
“completion” goal, the achievement’s “completed” state can be used to track whether a player
accomplished it.

Ball End Modes

Questions answered in this section:

∙ How to start a mode after the ball for a player drained?

∙ How to implement a bonus mode?

Ball End Modes

Certain modes typically run on game end. MPF has a lot of built-in modes for this purpose. You can
omit any of them or replace them with your own mode.

Ball end modes delay the ball ending process. If you want your own mode to delay the ball ending
process you can start the with the following config:

##! mode: custom_bonus

#config_version=5

mode:

start_events: ball_ending # start on ball ending process

use_wait_queue: true # delay ball ending

priority: 500 # determines the order of ball end modes

stop_events: stop_my_mode # post this event to stop the mode and continue the ball ending process

Ball End Modes 758

Mission Pinball Framework Documentation, Version

Ball ending will be delayed until your mode stops so make sure that your mode ends eventually or the
game will be stuck. In the example above your config need to post stop_my_mode or, if you are writing
code, stop your mode in code.

Showing slides on mode end

See Ball Start and End Behaviour.

Bonus Mode

Score multipliers and evaluate them into a bonus at the end of the ball. See End of Ball Bonus for
details.

Game End Modes

Questions answered in this section:

∙ How to start a mode after the last player drain his ball?

∙ How to implement a highscore mode?

∙ How to implement a match mode?

Game End Modes

After the last ball of the last player ended (and all modes which blocked ball ending ended) the game
ending sequence will run. A few modes typically exist which delay game ending and are built-in to
MPF.

If you want to implement your own game end mode use this template:

##! mode: custom_high_score

#config_version=5

mode:

start_events: game_ending # start on game ending process

use_wait_queue: true # delay ball ending

game_mode: false # the game is no longer running at this point

priority: 500 # determines the order of game end modes

stop_events: stop_my_mode # post this event to stop the mode and continue the game ending process

This example will block the game ending process until you post stop_my_mode in your config or stop the
mode from code.

Start Mode After Last Ball of Every Player

Alternatively, you can use Queue Relay player to achieve the same as above. In this example we start
a mode after the last ball of every player (but you can also use game_ending as above). Put this into
your base mode to start your custom mode on the end of ball three (or remove the condition to start if
after every ball):

Game End Modes 759

Mission Pinball Framework Documentation, Version

##! mode: base

queue_relay_player:

ball_ending{current_player.ball==3}:

post: start_your_mode

wait_for: mode_your_mode_stopped

Ending the Game by Long-Pressing Start

See Ending the Current Game by Long-pressing Start .

Highscore Mode

Allow players to enter their initials on high score. See High Scores for details.

Match Mode

Evaluates a match with the end of the player score. Typically awards a credit on match, See Match
Mode for details.

Other modes

Questions answered in this section:

∙ Which modes run outside of a game?

∙ How to control attract?

∙ How do credits work?

∙ How does tilt work?

∙ What is the service mode?

Other Game Modes

There are a few very typical modes in almost all machines. Those either run at start or all the time.

All the time/Before ball start

Those modes run all the time or before ball start.

Credits Mode

Count coins and denies game start on insufficient credits. See Coins & Credits for details.

Attract Mode

Attract mode stop on game start. See Attract (mode) .

Other modes 760

Mission Pinball Framework Documentation, Version

Tilt Mode

Tilt usually run the whole time. It will end the game on tilt and might remove credits on slam tilt
outside of a game. See Tilt for details.

Service Mode

See Service Mode for details.

Ball End Modes

See Ball End Modes.

Game End Modes

See Game End Modes.

Layering Modes Example

Examples given in this section:

∙ How to define mode categories and helper modes

∙ How to move in and out of game and wizard modes

∙ How to track and persist progress outside of modes

Layering Modes Example

One of the major difficulties in designing a new game is managing the interrelationship between
different game modes. When considering how to structure your game, it can be helpful to categorize
your modes based on how much they “take over” the playfield. When your modes are categorized, you
can create helper modes to manage the starting and stopping of game modes.

For the purposes of demonstration and to help you start thinking about how you might layer your own
game, let’s look at a breakdown of one approach to mode layering.

Gameplay Modes

While every pinball game has unique characteristics, many games can be analysed based on three
categories of game modes:

∙ Field Modes are nonintrusive modes that run when no wizard or mission modes are active and
are typically used for accruals, multipliers, and shots to qualify for other modes. All field modes
are run together.

∙ Mission Modes are “partial takeover” modes that ask for the player’s attention but allow other
gameplay mechanics to continue. Typically, a mission mode will disable qualification/starting of
other mission modes but won’t impact multiball locks, pop bumper awards, and other
progressions. Examples include:

Layering Modes Example 761

Mission Pinball Framework Documentation, Version

∙ Attack Wave, Shoot the Martians (Revenge from Mars)

∙ Trolls (Medieval Madness)

∙ Catch the Robbers (Dirty Harry)

∙ House Challenges (Game of Thrones)

∙ Wizard Modes are “complete takeover” modes that stop nearly all gameplay mechanics and
force the player to focus on that mode exclusively. Examples include:

∙ Multiball modes and video modes (all games)

∙ Rooftop Chase (Whodunit)

∙ Khan Battlefield (the Shadow)

∙ G-R-E-Y Attack (Congo)

∙ Hand of the King, Iron Throne, Winter Has Come (Game of Thrones)

Note: a partial takeover mode is commonly referred to as a “game mode”, but here we will call it a
“mission mode” because “game” is a very specific mode in MPF and game.yaml is a file that we
don’t want to interfere with.

Helper Modes

To facilitate the transition between Field, Mission, and Wizard modes, three helper modes can run
underneath the current gameplay:

∙ Field Mode (field.yaml) consolidates all of the field modes so that starting/stopping them can be
managed by a single event handler. For clarity, it helps to consider the helper mode and all the
individual field modes to be one single mode (and we will structure the code in this way).

∙ Global Mode (global.yaml) manages transitioning between field mode and mission modes and
tracks any accruals/qualifiers that can be advanced while a mission mode is running, for
example:

∙ Pop bumper countdowns/awards

∙ Multiball lighting & locking

∙ Mission mode qualifying and selection

∙ Base Mode (base.yaml) is the default MPF background mode and manages transitioning
between global mode and wizard modes. Base mode is also responsible for any always-persistent
tracking, for example:

∙ Achievements & specials

∙ Ball saves

∙ Combo multipliers

Mode Relationship Diagram

In this typical layering configuration, the base mode starts when a player’s turn starts and ends when
that player’s turn ends. By default, the global mode starts when the base mode starts and the field
mode starts when the global mode starts. As a result, the typical player turn starts with field mode
(a.k.a. on an open playfield).

Layering Modes Example 762

Mission Pinball Framework Documentation, Version

Field and Mission modes are mutually exclusive: the field mode stops when a mission mode starts,
and starts again when the mission mode stops. The global mode runs throughout and manages this
transition.

Global and Wizard modes are mutually exclusive: when a wizard mode starts the global mode stops
(and with it, the field or any mission modes also stop), and global starts again when the wizard mode
ends. Base mode runs throughout and manages this transition.

Starting and Stopping Layers

For a successful layering, each helper mode depends on some particular coding.

Field modes always run together, so the simplest way to manage them is to separate the various field
mode behaviors into different yaml files and import all of them into the field helper mode. This keeps
each file small while giving just a single mode to start and stop.

##! mode: field

modes/field/config/field.yaml

mode:

start_events: start_mode_field

stop_events: stop_mode_field

(continues on next page)

Layering Modes Example 763

Mission Pinball Framework Documentation, Version

(continued from previous page)

config:

add your mode parts here. For instance:

- field_mission_qualifier_shots.yaml

- field_miniwizard_qualifier_shots.yaml

- field_chase_advancement.yaml

- field_dropbank_special.yaml

Mission modes replace field mode, usually on their own but you may want to allow two or more
missions to run concurrently. Giving every mission mode a few common event handlers allows the
global mode to easily manage the transitions into and out of mission modes.

##! mode: trolls

modes/trolls/config/trolls.yaml

mode:

start_events: start_mode_trolls

stop_events: stop_mode_trolls, stop_missions

events_when_started: mode_type_mission_started

events_when_stopped: mode_type_mission_stopped

Global mode can import global-specific config files to consolidate all persistent behavior (just like
field mode), and uses special events to handle transitioning between field mode and mission modes.
Global will automatically attempt to restart field when a mission mode stops, so we add a special
handler: stop global mode when the ball ends, and only restart field mode if global isn’t stopping.

##! mode: global

modes/global/config/global.yaml

mode:

start_events: start_mode_global

stop_events: stop_mode_global, ball_will_end

config:

add your configs here. For instance:

- global_multiball_madness_light_and_lock.yaml

- global_pop_bumpers.yaml

- global_wizard_qualifier.yaml

event_player:

mode_global_started:

- start_mode_field

mode_global_will_stop:

- stop_mode_field

- stop_missions

mode_type_mission_started:

- stop_mode_field

mode_type_mission_stopped{not mode["global"].stopping}:

- start_mode_field

Wizard modes replace global, and use a special set of event handlers just like the mission modes.

##! mode: madness

modes/madness/config/madness.yaml

(continues on next page)

Layering Modes Example 764

Mission Pinball Framework Documentation, Version

(continued from previous page)

mode:

start_events: start_mode_madness

stop_events: stop_mode_madness, stop_wizards

events_when_started: mode_type_wizard_started

events_when_stopped: mode_type_wizard_stopped

Base mode runs for the player’s entire turn and includes special handlers to manage the transition
between global mode and wizard modes. Just like with global restarting field, base mode restarts
global mode when a wizard mode stops (unless base mode itself is stopping).

##! mode: base

modes/base/config/base.yaml

event_player:

mode_base_started:

- start_mode_global

mode_base_will_stop:

- stop_mode_global

mode_type_wizard_started:

- stop_mode_global

mode_type_wizard_stopped{not mode["base"].stopping}:

- start_mode_global

Layering Modes Example 765

CHAPTER10

Displays, DMDs, & Graphics

Every electronic pinball machine has some type of display, whether it’s 1980s-style 7-segment numeric
displays, an early ’90s-style alphanumeric display, a mono dot matrix display (DMD), a full color “RGB”
DMD, or a modern LCD (which itself can either be a small LCD, like a “color DMD”, or a huge one like
what Jersey Jack has in the backbox of The Wizard of Oz and The Hobbit).

The MPF media controller is designed so that it can support all types of these displays, including
multiple different types of displays at the same time. It supports text, drawing shapes, images, and
videos. You can position any combination of these on the display at any time, and you can set layering
and transparencies. You can use standard TrueType fonts. You can also apply animations, motions,
and transitions to your displays and their widgets. And, like just everything else in MPF, you can do
most of your display configuration via the config files.

Note: Everything in this “Displays & Graphics” section is about the default MPF Media Controller.
See the media controller section for details and alternative implementations.

Here are a few photos of the MPF Media Controller’s display system in action. These were all created
with configuration files and without manual programming.

Here’s a traditional single-color / mono DMD :

766

Mission Pinball Framework Documentation, Version

Here’s an on-screen window (or what many people called an “LCD” display. In this case, it’s showing
on single color DMD virtually with no “dot” filter applied, along with other on-screen content:

Here’s a “color” DMD on an LCD monitor. It’s showing a 128x32 window of color content, with a “dot
look” filter to make it look like dots.

767

Mission Pinball Framework Documentation, Version

Here’s a full-size window with the dot filter applied:

768

Mission Pinball Framework Documentation, Version

Here’s a full-color RGB DMD LED matrix. (So it’s like a color DMD, but a matrix of 2.5mm RGB LEDs
rather than an LCD):

Before we go into the details of all the various display components, let’s start with an overview of how
the MPF display architecture works. (If you don’t care about the details and just want to start using
your display, you can jump directly into our step-by-step tutorial which covers how to get your display
running.)

Additionally, MPF also supports segment displays and alpha numeric displays. Both physically and

769

Mission Pinball Framework Documentation, Version

virtually. Another type of displays are score reels which can also be controlled.

Related Events

∙ display_(name)_initialized

∙ display_(name)_ready

Display Concepts & Architecture

The MPF Media Controller uses the same core architecture to power all kinds of displays, regardless
of whether it’s a DMD (physical or virtual, monochrome or color), an LCD (on screen window
displays), or a combination of both.

The MPF Media Controller’s display system is based on Kivy (a multimedia programming library) and
uses technologies like SDL2 and Gstreamer under the hood.

Here’s an architecture diagram which details how the MPF Media Controller’s display system works.
It’s kind of complex to look at, but we’ll to step through it piece-by-piece. The good news is that you
don’t have to understand all of it to use MPF. (You can follow our step-by-step tutorial to get your
display up and running just with a few config file entries.) But as you start to create more advanced
display effects, it will be helpful to understand how everything fits together.

Related Events 770

Mission Pinball Framework Documentation, Version

The major components of the MPF Media Controller’s display system are:

Window

Every MPF-MC application has one (and only one) window. It is the fundamental graphical element
that maps directly to a graphical window on the host operating system. If you do not provide a
“window:” section in your config, a default window will be created for you (800 x 600 pixels). The size
settings (width, height) control the dimensions (in pixels) of the host operating system window that
will be created. Various settings in the window: section control the appearance and behavior of the
main on-screen window which is created by MPF-MC. These settings include things such as whether
or not the window has a border, is full screen, or whether special image processing is applied to the
window using effects. These effects perform image processing to the source image of the window and
can be used to get an old-school “DMD look” or “color DMD” look to your window as well as other
special effects. Windows can be used in any monitor configuration (portait or landscape) and will
attempt to center themselves left/right and top/bottom. Windows always use the left lower corner as
the 0,0 location.

Displays

Before anything can actually be shown on the window, it must first be drawn in a display. Displays are
an internal representation of a blank canvas that holds graphical content. It is important to not
confuse these displays with physical hardware displays (like an LCD monitor or a DMD). These
displays can be shown on such physical devices, but there is not necessarily a one-to-one mapping
between them. One of the most import features of displays are they are targets for showing slides
(you can think of them as slide managers). The MPF-MC can have multiple display canvases at the
same time, and you can map different ones to different physical displays. You can even create
sub-displays where one display has a small region which is another display (kind of like
picture-in-picture). The most important setting for a display is its size (with, height) in pixels. If you do
not specify any displays in your “displays:” section of your config files, a default display (800 x 600
pixels) will be automatically created for you. It is important to remember that displays always use the
left lower corner as the 0,0 location.

Slides

Every display has a list of “slides”, (which are the same height and width of the display). One slide is
“active” at a time, meaning it’s the slide that’s showing. Think of these like slides in a slide projector.
You’ll probably end up with hundreds of slides, but only one is showing at a time. You can use
transition effects to switch from one slide to another (these are things like sliding in, pushing, fading,
flipping, etc.).

Widgets

Widgets are the “things” you actually put on slides. There are lots of different types of widgets,
including text, images, videos, shapes, etc. Different widgets have different properties, like their x,y
position on the slide, their size, color, etc. You can position widgets on slides with pixel-level accuracy,
or you can use relative positions like “10% down from the top edge”, or “centered”, or “25% to the left
of center”, etc. Using relative positions means that your display will be resolution independent.

You can also animate the properties of a widget. For example, a widget could start out at the bottom
of the display and then move to the center, or you can animate the size, color, scale, rotation, or the

Related Events 771

Mission Pinball Framework Documentation, Version

opacity, or pretty much anything other widget property you desire. You can chain together multiple
animations to run back-to-back, or you can configure multiple animations to happen at the same time.
You can even configure the “curve” of the formula that’s used to animate widgets, so you can have
them smoothly accelerate and decelerate, or slow down as they’re animating, or pop into place, etc.

Display Widget

One widget type of special importance (and deserving of its own introductory paragraph) is the
display widget. The display widget is used to show the contents of a display on the screen (remember
from above a display is just an in-memory drawing canvas, the display widget allows its contents to be
shown). The main window automatically creates a display widget that has the same dimensions of the
window. Now if you only require a simple graphical layout where one slide is shown at a time and fills
the entire window, then you need not concern yourself any further with the display widget. However if
you require a more advanced layout, the display widget will enable you to accomplish that. Display
widgets can also be configured to apply special image processing to the contents of the display. These
effects can be used to get an old-school “DMD look” or “color DMD” look to your window as well as
other special effects.

All these concepts come from PowerPoint. :)

The original creators of MPF have day jobs that require them to spend a lot of time with PowerPoint!
If you’ve ever used PowerPoint, you should notice that we used PowerPoint (or Keynote or whatever
presentation software you like) as the conceptual model for MPF’s display system. In PowerPoint, your
content is a series of “slides.” Each slide contains one or more “elements (widgets)”. Those elements
can be text, images, videos, drawing shapes, etc. Each element has a “size” (length & width), a
“position” on the slide (x,y coordinates), a “layer” which controls how it overlaps with other elements,
alpha transparencies, and animation effects (blink, sparkle, move, etc).

And even though your entire PowerPoint presentation is made of of lots of slides, only one slide is
active on your “display” at a time. Then when you change to another slide, you can have nice
animated “transitions” from one slide to the next.

So if the MPF display system seems kind of complex, just think of it like a giant PowerPoint
presentation and it should all hopefully make sense. Now let’s start digging into some of the details of
each of the parts of the display system.

You can read more about the internals of the media controller.

Working with Displays

The first step to setting up a display in MPF is to use the displays: section of your machine-wide
config to create a list of displays.

Note that the Tutorial includes a walk-through of setting up your first display. So if you just want to
get it up and running quickly, check out the tutorial instead and then come back here for the
nitty-gritty details later.

Here’s a very simple example that creates a display called “window” with a height and width of
800x600:

Related Events 772

Mission Pinball Framework Documentation, Version

displays:

window:

width: 800

height: 600

You can name your display whatever you want. For example, here’s a display called “potato” which is
100x100:

displays:

potato:

width: 100

height: 100

You can add multiple displays to your config. Here’s an example with a display called “lcd” which is
1366x768, and a second display called “playfield” which is 640x480:

displays:

lcd:

width: 1366

height: 768

default: true

playfield:

width: 640

height: 480

The “lcd” display above also has a setting default: true. As you can imagine, when you have more
than one display, then when you are setting up content to be shown on the display, you have to specify
which display you want it to show up on. Picking one display to be your default is the display that’s
used for content where you don’t explicitly set which display you’re using.

Note: Full details and options for these displays are available in the displays: section of the config
file reference.

These “displays” are logical, not physical!

One concept that’s somewhat confusing for new users is that the displays you set up here are not yet
tied to physical displays in your pinball machine. You can think of these as “logical” displays which
you can use in your config files and game code. But when it comes to using a physical display, you
have to “link” the physical display hardware to one of these logical displays.

One final note about the displays you specify in your displays: section: The size (height and width) of
your displays here are independent from the actual physical displays (windows and DMDs). For
example, the size of the on-screen window is specified in the window: section of the machine config
(which is 800x600 by default). So if you change the size of your display here (perhaps to 320x240),
then the on-screen window will still be 800x600, and the content of the display canvas will be 320x240
(but scaled up to the 800x600 window). This means that MPF is “resolution independent”, in that you
can build your game for a certain display size and then scale it up or down to fit on whatever physical
display is there later.

Let’s walk through some examples of how you can actually configure various displays. You don’t have
to read through all of these—just pick whichever display type you want to use in your machine.

Related Events 773

Mission Pinball Framework Documentation, Version

Using an LCD for a display

This guide will show you how to use an on-screen LCD window for your main display. This would be
like what Jersey Jack does in Wizard of Oz or The Hobbit.

Here’s what the final version of the relevant sections of your machine config file will look like. We’ll
step through everything one-by-one.

displays:

window:

height: 600

width: 800

window:

height: 600

width: 800

title: Mission Pinball Framework

resizable: true

fullscreen: false

borderless: false

exit_on_escape: true

source_display: window

1. Add your display

The first part of the config file is where you create your display called “window” and set its size:

displays:

window:

width: 800

height: 600

This is just like we covered in the Working with Displays section.

2. Add your window configuration

Next you need to add a section to your machine config file which has the settings for the actual
on-screen popup window. This is configured in the window: section.

Most of the settings here are pretty self-explanatory. The most important thing is the source_display:
window section which is where you specify which display (from the displays: section of your config)
will provide the actual source content for your on-screen window.

(That said, if you only have one display, or if you have a display called “window”, then the on-screen
window will automatically use that display for its source, but we’re just including it here for
completeness.)

The other important thing to point out is that you have to specify the size of your display and your
window separately. In the example above, we have an 800x600 window showing the content from an
800x600 display. But we could, for example, set the display to 400x300 while keeping the window at
800x600. In that case, the display content would be “scaled up” to fit the window, meaning that each
source pixel would be 2x2. This would be how you’d do a low-res old-school look on a modern high-def
window.

Related Events 774

Mission Pinball Framework Documentation, Version

You can play with the other settings to see how they affect things. The full list of window options is in
the window: section of the config file reference. (Just be sure that you add them to the window: section
of your config, not the “window” entry in the displays: section.) Check that out to see what else you
can do.

Note: At this time, the MPF Media Controller only supports a single LCD window at a time. If you
want more than one LCD window, MPF 0.31 will let you run multiple instances of the MPF-MC at the
same time—one for each window.

Now you have a working config, so you can read through the rest of the display documentation to see
how you can add slides and widgets to your display.

Also, if you want to make the content on your window look like dots, or if you want to show a “virtual”
DMD in your window, check out the other guides in this section.

See Using multiple screens for informations about using two or more LCDs.

Using a traditional (single color) physical DMD

This guide will show you how to use a traditional, physical DMD with MPF, like this:

This is supported for all Monochome DMD platforms.

It will also show you how to create an on-screen popup window which will show the contents of the
DMD, like this (with a blank DMD):

Related Events 775

Mission Pinball Framework Documentation, Version

If you want to use a physical DMD without the on-screen equivalent, we’ll show you how to do that at
the end.

If you want to only have an on-screen DMD without the physical one, like if you want to replace the
DMD with an LCD screen but still have it look like a DMD, then read this guide instead.

The final version of the relevant sections of your machine config for a physical DMD with an on screen
window too will look like this:

1. Understand how physical, mono DMDs work

This guide explains how to config physical single-color (mono) DMDs. These are DMDs that are
connected to your FAST Pinball or P-ROC controller via the 14-pin ribbon cable, like this:

Related Events 776

Mission Pinball Framework Documentation, Version

It makes no difference whether you’re using an LED or an original plasma gas DMD. (Also it doesn’t
matter what color it is.)

2. Add your displays to your MPF config

The first part of the config file above is where you create your logical displays like we covered in the
Working with Displays section.

displays:

window:

width: 600

height: 200

dmd:

width: 128

height: 32

default: true

We’re creating two displays here. The first is called “window” and has a size of 600x200. This will be
the display that shows up on the computer screen.

The second display, which we’re calling “dmd”, will be the display that provides the content for the
physical DMD. This display is 128x32, which is the pixel size of the DMD.

Notice that we set default: true for the dmd display. This is because as we’re creating display

Related Events 777

Mission Pinball Framework Documentation, Version

content in our game, we want it (by default) to show up in the DMD (since that will be the primary
display in our game).

Note that you don’t set colors or anything here—this is just setting up the logical displays which we’ll
use next.

3. Add your window configuration

Next, we have a window: section which holds the settings for the actual on screen window itself. In
this case we’re just configuring it to be 800x600, with a window title of “Mission Pinball Framework”.

window:

width: 600

height: 200

title: Mission Pinball Framework

Check out Step 2. of the LCD guide for more details on this window section, and be sure to check out
all the window options in the window: section of the config file reference.

Notice that in this case, we did not add the source_display: window setting to this section. That’s
because we have a logical display called “window”, and when you have that, the on-screen window
will automatically use that display as its source.

4. Configure a window slide to show the on screen DMD

Now we have a working on-screen window and a working physical RGB DMD. But if you run mpf both
now, your on screen window will be blank because we haven’t built any slides to show up.

So in this step, we’re going to build a slide for the on-screen window that will be shown when MPF
starts. We’ll add some widgets to that slide to make it look like the screen shot at the beginning of this
guide.

First, create a slides: section in your machine config (if you don’t have one already), and then create
an entry for the slide that we want to show. In this case, we’ve decided to name that slide
“window_slide_1”. (Of course you can call this slide whatever you want.)

slides:

window_slide_1:

Next we have to add some widgets to that slide. (Refer to the documentation on widgets if you’re not
familiar with widgets yet.)

The first widget will be a display widget with a dmd effect which is a widget which renders a logical
display onto a slide in a way that makes it look like a DMD:

slides:

window_slide_1:

- type: display

effects:

- type: dmd

dot_color: ff5500

width: 512

height: 128

Related Events 778

Mission Pinball Framework Documentation, Version

Again, there are lots of options here. Note that we’re adding a height: and width: of 512x128. This is
the on-screen pixel size of the DMD as it will be drawn in the window. In this case we chose an even
multiple of the source display for the DMD (which is 128x32), meaning that each pixel of the original
DMD will be rendered on screen as 4 pixels by 4 pixels. This is big enough to get the circular “dot
look” filter to look good, and being an even multiple means that we won’t have any weird moire
patterns.

For the on screen DMD, we are able to select the pixel color, because this is how the DMD will be
drawn on the computer screen, and MPF has no idea what color the actual DMD is. So you can pick
any color you want here. We chose ff5500 which is a classic DMD orange color.

There are other options listed in the dmd effect documentation to control settings like how big the
circles are versus the space in between them, the ability to not have the “dot” filter, and the ability to
set the “glow” radius of each dot, color tint, limiting the color palette, etc.

Note that in this case, we did not have to add the source_display: option because we have a display
called “dmd” which will automatically be used as the source for the color DMD widget.

Next, we also added two more widgets to this slide—a text widget with the title of the machine, and a
gray rectangle that’s slightly larger than the DMD to give it a nice border.

slides:

window_slide_1:

- type: display

effects:

- type: dmd

dot_color: ff5500

width: 512

height: 128

- type: text

text: MISSION PINBALL FRAMEWORK

anchor_y: top

y: top-3

font_size: 30

- type: rectangle

width: 514

height: 130

5. Configure the slide to show when MPF starts

Now we have a nice slide with the virtual DMD on it, but if you run MPF, you still won’t see it because
we didn’t tell MPF to show that slide in the window. So that’s what we’re doing here:

slide_player:

init_done:

window_slide_1:

target: window

If you don’t have a slide_player: entry in your machine-wide config, go ahead and add it now. Then
create an entry for the init_done event. This is the event that the media controller posts when it’s
ready to be used, so it’s a good event for our use case.

Then under that event, create an entry to show the slide you just created in the previous step. Notice
that we also have to add the target: window entry to tell the slide player that we want this slide to
show on the “window” target. We need to do this because the default display (from Step 2) is the

Related Events 779

Mission Pinball Framework Documentation, Version

DMD, so if we don’t specify a target, this slide will show on the default, which would be the DMD,
instead of being shown on the window. (In this case, we would show a slide on the DMD which
contains a DMD widget whose source is the DMD, and we’d probably open up some kind of wormhole
and destroy the universe. So don’t do that.)

And this point, you’re all set! Of course there’s no content on the DMD yet because we haven’t set up
any slide_player entries to add content to it, but that’s something you can do by following the tutorial
or looking at the guides for the slides and widgets here.

6. What if you don’t want the on-screen window?

There might be some scenarios where you just want the physical DMD with no on-screen DMD. (For
example, maybe you’re using a low-power single board computer and you don’t have enough
horsepower to run a graphical environment.)

This is fine. To do it, just remove the window-related components from the config.

In this case, you wouldn’t need the default: true entry for the dmd in the displays: section because
you only have one display, so it will automatically be the default.

7. Configure the physical DMD

At this point you have two displays configured, and you have default content showing up in both of
them. The final step is to add the configuration for your physical DMD so that MPF can talk to your
hardware.

The exact steps to do that vary depending on which DMD hardware platform you’ve chosen, so click
on the one you have from the list below and follow the final instructions there to get everything set up.

∙ FAST Pinball Core & WPC controllers

∙ P-ROC

Using an RGB full-color LED DMD

Related Config File Sections
displays:

MPF supports RGB full-color LED DMDs. There are several hardware options you can use for this:
DMD Platforms in MPF .

This guide shows you how to configure MPF to use one of these displays.

By the way, these RGB LED DMDs have been called “real” Color DMDs in the forums since the
displays are arrays of RGB LEDs rather than an LCD monitor running a display that is made to look
like a DMD. Many people like these better than LCD-based displays because they’re brighter and
more vibrant, and the blacks are actually black since the LEDs are off versus LCD displays which have
blacks are are actually dark gray.

Related Events 780

Mission Pinball Framework Documentation, Version

We will also show you how to create an on-screen popup window which will show the contents of the
DMD, like this (with a blank DMD):

If you want to use a physical RGB DMD without the on-screen equivalent, we’ll show you how to do
that at the end of this guide.

If you want to only have an on-screen DMD without the physical one, like if you want to replace the
DMD with an LCD screen but still have it look like a color DMD, then read this guide instead.

The final version of the relevant sections of your machine config for a physical RGB DMD with an on
screen window too will look like this:

1. Add your displays to your MPF config

Next, add the DMD display to your list of displays in your machine-wide config file:

displays:

window:

width: 600

height: 200

dmd:

width: 128

height: 32

default: true

Related Events 781

Mission Pinball Framework Documentation, Version

The example above contains two displays. The first is named “window” and has a size of 600x200.
This will be the display that shows up on the computer screen. (Again, if you just want the DMD
without an on-screen window, we’ll show you how to do that later, but for now it’s probably easiest to
create a screen window so you can see what’s happening with the display if you’re working on your
game without a physical machine attached.)

The second display, which we’re calling “dmd”, will be the display that provides the content for the
physical RGB DMD. This display is 128x32, which is the pixel size of the DMD. If you have a different
size DMD, enter the size (in pixels) here.

Notice that we set default: true for the DMD display. This is because as we’re creating display
content in our game, we want it (by default) to show up in the DMD (since that will be the primary
display in our game).

2. Add your window configuration

The window: section of the machine-wide config holds the settings for the on-screen display window. If
you don’t have this section, add it now.

You can make the width and height anything you want. In this case we’re just configuring it to be
600x200 with a window title of “Mission Pinball Framework”.

window:

width: 600

height: 200

title: Mission Pinball Framework

Check out Step 2. of the LCD guide for more details on this window section, and be sure to check out
all the window options in the window: section of the config file reference.

Notice that in this case, we did not add the source_display: window setting to this section. That’s
because we have a logical display called “window”, and when you have that, the on-screen window
will automatically use that display as its source.

3. Configure a window slide to show the on screen DMD

Now we have a working on-screen window and a working physical RGB DMD. But if you run mpf both
now, your on screen window will be blank because we haven’t built any slides to show up.

So in this step, we’re going to build a slide for the on-screen window that will be shown when MPF
starts. We’ll add some widgets to that slide to make it look like the screen shot at the beginning of this
guide.

First, create a slides: section in your machine config (if you don’t have one already), and then create
an entry for the slide that we want to show. In this case, we’ve decided to name that slide
“window_slide_1”. (Of course you can call this slide whatever you want.)

slides:

window_slide_1:

Next we have to add some widgets to that slide. (Refer to the documentation on widgets if you’re not
familiar with widgets yet.)

The first widget will be a display widget with a color_dmd effect which is a widget which renders a
logical display onto a slide in a way that makes it look like a DMD:

Related Events 782

Mission Pinball Framework Documentation, Version

slides:

window_slide_1:

- type: display

effects:

- type: color_dmd

width: 512

height: 128

Again, there are lots of options here. Note that we’re adding a height: and width: of 512x128. This is
the on-screen pixel size of the DMD as it will be drawn in the window. In this case we chose an even
multiple of the source display for the DMD (which is 128x32), meaning that each pixel of the original
DMD will be rendered on screen as 4 pixels by 4 pixels. This is big enough to get the circular “dot
look” filter to look good, and being an even multiple means that we won’t have any weird moire
patterns.

There are other options listed in the color_dmd effect documentation to control settings like how big
the circles are versus the space in between them, the ability to not have the “dot” filter, and the ability
to set the “glow” radius of each dot, color tint, limiting the color palette, etc.

Note that in this case, we did not have to add the source_display: option because we have a display
called “dmd” which will automatically be used as the source for the color DMD widget.

Next, we also added two more widgets to this slide—a text widget with the title of the machine, and a
gray rectangle that’s slightly larger than the DMD to give it a nice border.

slides:

window_slide_1:

- type: display

effects:

- type: color_dmd

width: 512

height: 128

- type: text

text: MISSION PINBALL FRAMEWORK

anchor_y: top

y: top-3

font_size: 30

color: white

- type: rectangle

width: 514

height: 130

color: 444444

4. Configure the slide to show when MPF starts

Now we have a nice slide with the virtual DMD on it, but if you run MPF, you still won’t see it because
we didn’t tell MPF to show that slide in the window. So that’s what we’re doing here:

slide_player:

init_done:

window_slide_1:

target: window

Related Events 783

Mission Pinball Framework Documentation, Version

If you don’t have a slide_player: entry in your machine-wide config, go ahead and add it now. Then
create an entry for the init_done event. This is the event that the media controller posts when it’s
ready to be used, so it’s a good event for our use case.

Then under that event, create an entry to show the slide you just created in the previous step. Notice
that we also have to add the target: window entry to tell the slide player that we want this slide to
show on the “window” target. We need to do this because the default display (from Step 2) is the
DMD, so if we don’t specify a target, this slide will show on the default, which would be the DMD,
instead of being shown on the window. (In this case, we would show a slide on the DMD which
contains a DMD widget whose source is the DMD, and we’d probably open up some kind of wormhole
and destroy the universe. So don’t do that.)

And this point, you’re all set! Of course there’s no content on the DMD yet because we haven’t set up
any slide_player entries to add content to it, but that’s something you can do by following the tutorial
or looking at the guides for the slides and widgets here.

5. What if you don’t want the on-screen window?

There might be some scenarios where you just want the physical DMD with no on-screen DMD. (For
example, maybe you’re using a low-power single board computer and you don’t have enough
horsepower to run a graphical environment.)

This is fine. To do it, just remove the window-related components from the config.

In this case, you wouldn’t need the default: true entry for the dmd in the displays: section because
you only have one display, so it will automatically be the default.

6. Configure your RGB DMD Hardware

At this point you have two displays configured, and you have default content showing up in both of
them. The final step is to add the configuration for your physical RGB DMD so that MPF can talk to
your hardware.

The exact steps to do that vary depending on which DMD hardware platform you’ve chosen, so click
on the one you have from the list below and follow the final instructions there to get everything set up.

∙ SmartMatrix

∙ RGB.DMD

∙ FAST Pinball RGB DMD

∙ Raspberry Pi DMD

∙ PIN2DMD RGB DMD

How to give your on-screen window the DMD “dot look”

This guide will show you how to configure a full screen “dot look” display, like this:

Related Events 784

Mission Pinball Framework Documentation, Version

The final sections of the machine config to make this happen are here:

displays:

window:

width: 800

height: 600

dmd:

width: 120

height: 90

default: true

slides:

window_slide:

- type: display

effects:

- type: color_dmd

dot_size: .5

width: 800

height: 600

dmd_slide:

- type: text

text: DOTS!

- type: rectangle

width: 120

(continues on next page)

Related Events 785

Mission Pinball Framework Documentation, Version

(continued from previous page)

height: 30

color: orange

y: 0

anchor_y: bottom

- type: rectangle

width: 120

height: 30

color: red

y: top

anchor_y: top

slide_player:

init_done:

window_slide:

target: window

dmd_slide:

target: dmd

Let’s step through this step-by-step.

1. Create your displays

To understand how this works, you have to understand the concepts of MPF displays and widgets.

What’s actually happening under the hood is that you set up two MPF displays. The first is the
“window”, which is the display that represents your on-screen window. This should be set to the size
of the screen window at the native resolution of the monitor or LCD where it’s being shown.

displays:

window:

width: 800

height: 600

dmd:

width: 120

height: 90

default: true

In the example above, this is 800x600, but on your actual machine, it will probably be something like
1024x768, 1280x1024, 1600x1200, etc.

The second MPF display represents the virtual DMD itself, and you set that to the number of pixels (or
dots) you want to be drawn in your window. In the example above, this is set to 120x90, meaning the
virtual DMD is 120 dots wide and 90 dots tall. You can make this anything you want.

The key to remember is that the parent window will be using its pixels to draw the individual dots that
make up the virtual DMD. So a smaller DMD resolution means the window has more pixels to use
per-dot, resulting in a better overall image.

For example, if we zoom in on the 120x90 virtual DMD being shown on an 800x600 window, we’ll see
that it looks like this:

Related Events 786

Mission Pinball Framework Documentation, Version

This works because there is about a 6x6 grid of pixels in the window for each virtual pixel in the DMD.

But if you increased the virtual DMD to 400x300 (instead of 120x90), that would mean you only had a
2x2 window area to render each pixel, and it wouldn’t really work because you can’t draw a circle
with space around it in a 2x2 pixel.

Also note that we added default: yes to the dmd display, since as we get deeper into the machine
config, we want all the content (the slide_player, etc.) to show up in the DMD display.

2. Create your window slide

Once you have your displays configured, the next step is to create the slide that will be shown in the
window. In this case, the slide will only have a single widget, and that widget will be the Color DMD
widget which will be used render the virtual DMD into the window.

slides:

window_slide:

- type: display

effects:

- type: color_dmd

dot_size: .5

width: 800

height: 600

We decided to name this slide “window_slide”, though you can name it whatever you want.

Note that in this case, we set the width and height of the color_dmd widget so that it’s the same size
as the window itself. This is what causes it to be scaled to the full size of the window.

We do not set the number of dots in the DMD here, as that’s automatically pulled in from the dmd
display setting.

Related Events 787

Mission Pinball Framework Documentation, Version

We also do not need to set a source display for the color_dmd widget since it will automatically use a
display called “dmd”.

3. Create your DMD slide

Next, we need a slide to show in the DMD itself. This is just something we’re setting up here as an
example “first slide”. In your actual game, this slide will be ever changing and will reflect what’s
happening in your machine.

We’re calling our first slide “dmd_slide”:

slides:

dmd_slide:

- type: text

text: DOTS!

- type: rectangle

width: 120

height: 30

color: orange

y: 0

anchor_y: bottom

- type: rectangle

width: 120

height: 30

color: red

y: top

anchor_y: top

There’s nothing special about this slide. We just added a text widget and two colored rectangles.

4. Configure your slides to show up

Finally, we need to create a slide_player entry which will cause the two slides we just created to be
shown. In this example, we’re using the init_done event since that’s the event that’s posted by the
media controller once it’s been initialized and ready to go.

slide_player:

init_done:

window_slide:

target: window

dmd_slide:

target: dmd

Since the DMD display is configured to be the default, when you use the slide_player in the rest of
your game, you won’t have to specify target: dmd. We just included it here to make it clear that we
were targeting the window slide to the window display and the dmd slide to the dmd display.

5. Other options & positioning your DMD

Finally, remember to check the documentation for the display widget and the color_dmd effect for a
full list of the options you can use to fine-tune how the DMD looks in the window. For example, you
can configure the pixel size, the glow radius, the color of the space between the pixels, gain, tint, etc.

Related Events 788

Mission Pinball Framework Documentation, Version

Also, you don’t have to make the virtual DMD be the full size of the display. For example, if you set
your dmd display to be 128x32 and then set the color_dmd widget to be 640x160, you’ll get a display
like this:

You can also use the widget sizing and positioning to create a DMD widget that is pre-positioned at a
certain spot on the display. This is useful if you have a standard size LCD monitor in your backbox but
only part of it is visible to the player. In that case you could make a color_dmd widget that was the size
of the viewable area and use the widget positioning settings to align it to the area of the display that
was visible.

You can also use the various window: options (such as full screen) to properly align the content of the
display with the visible area.

Finally, even though this example was using the color_dmd widget, you could replace it with the
display widget with a dmd effect for a single color look instead of full color.

Alpha-Numeric / Segment Displays

Related Config File Sections
segment_displays:
segment_display_player:

Related Events 789

Mission Pinball Framework Documentation, Version

MPF supports segment displays and alpha numeric displays. There are several hardware options
available: Segment Display Platforms in MPF .

1. Configure your segment displays in MPF config

You can use the following tested config snippet as a starting point to implement segment displays
(make sure to use the correct numbers for your hardware).

Listing 1: your_machine_folder/config/display.yaml

#config_version=5

segment_displays:

display1:

number: 1

display2:

number: 2

display3:

number: 3

display4:

number: 4

display5:

number: 5

segment_display_player:

empty all displays on game start and setup display5

game_start:

display1:

text: ""

display2:

text: ""

display3:

text: ""

display4:

text: ""

display5:

text: "{current_player.ball:d}"

clear only display5 after game

game_ended{machine.player1_score > 0}:

display1:

text: "{machine.player1_score:d}"

game_ended{machine.player2_score > 0}:

display2:

text: "{machine.player2_score:d}"

game_ended{machine.player3_score > 0}:

display3:

text: "{machine.player3_score:d}"

game_ended{machine.player4_score > 0}:

display4:

text: "{machine.player4_score:d}"

game_ended:

display5:

text: ""

(continues on next page)

Related Events 790

Mission Pinball Framework Documentation, Version

(continued from previous page)

flash display on player turn

player_turn_started.1{number==1}:

display1:

action: flash

player_turn_ended.2{number==1}:

display1:

action: no_flash

player_turn_started.3{number==2}:

display2:

action: flash

player_turn_ended.4{number==2}:

display2:

action: no_flash

player_turn_started.5{number==3}:

display3:

action: flash

player_turn_ended.6{number==3}:

display3:

action: no_flash

player_turn_started.7{number==4}:

display4:

action: flash

player_turn_ended.8{number==4}:

display4:

action: no_flash

show score when adding players

player_added.1{num==1}:

display1:

text: "{players[0].score:d}"

player_added.2{num==2}:

display2:

text: "{players[1].score:d}"

player_added.3{num==3}:

display3:

text: "{players[2].score:d}"

player_added.4{num==4}:

display4:

text: "{players[3].score:d}"

2. Implement virtual segment displays

If you don’t have or want phyiscal segment displays you can also emulate them using the following
slides:

slides:

segment_displays:

widgets:

- type: text

text: (player1|score)

number_grouping: true

(continues on next page)

Related Events 791

Mission Pinball Framework Documentation, Version

(continued from previous page)

min_digits: 2

font_name: ten_segment

color: blue

x: 620

y: 724

font_size: 240

anchor_x: right

anchor_y: bottom

z: 2

show slide on game start

slide_player:

game_started: segment_displays

Using multiple screens

This section covers using multiple displays and screens.

Distinction between displays, windows and screens

The MPF media controller knows windows and displays. A window is the window where MPF-MC pops
up on your desktop using kivy. Internally, MPF can have multiple displays which are internal
viewports and can be targeted by slides. A display can either be displayed on a window or on one or
more DMDs. Additionally, a display can also show one or more other displays using display widgets.
MPF does not know about screens which are phyiscal monitors connected to your machine. However,
the kivy window can span multiple screens.

Using multiple screens on your PC

Some machines use more than one screen. Unfortunately, kivy (the graphics framework we use) does
only support one screen and cannot easily be started two times. This is mostly caused by OpenGL
which is rarely used to render multiple windows. The simplest solution to this problem is to extend the
MC window to span both (or more) screens. This can be achieved using the following config:

kivy_config:

kivy:

desktop: 1

exit_on_escape: true

pause_on_minimize: 0

log_dir:

window_icon:

graphics:

borderless: true

window_state: visible # visible, hidden, maximized, minimized

fbo: hardware # hardware, software, force-hardware

fullscreen: false

left: 0

top: 0

width: 3840 # width of display1 + display2

height: 1080 # common height (or the maximum of both)

(continues on next page)

Related Events 792

Mission Pinball Framework Documentation, Version

(continued from previous page)

maxfps: 30

multisamples: 2

position: custom # auto, custom

show_cursor: true

resizable: false

rotation: 0

displays:

display1:

width: 1920

height: 1080

display2:

width: 1920

height: 1080

combined_display:

width: 3840

height: 1080

slides:

base_slide:

- type: display

source_display: display1

width: 1920

height: 1080

x: left

anchor_x: left

- type: display

source_display: display2

width: 1920

height: 1080

x: right

anchor_x: right

slide_player:

mc_ready:

base_slide:

target: combined_display

Use width and height to set the size of the window. left and top are used to position the window.

We created one window which spans both screens. Then we define a display combined_display which
will be displayed on startup by the slide base_slide spanning both screens. base_slide contains two
widgets which show the displays display1 and display2. You can now target any slides to those two
displays. See Display Widget for details.

Using multiple displays

You can easily use two DMDs and one LCD (or two LCDs with the solution above). To implement that
you need to define multiple displays. One diplay per DMD and one for your LCD. If you want to show
your DMDs on the LCD (i.e. during development) you can also define a fourth display and create a
slide which contains three display widgets to show the other three displays.

Related Events 793

Mission Pinball Framework Documentation, Version

A note on performance with “displays” and “dmds”

If you have a physical DMD defined (in the dmds: or rgb_dmds: of your machine config) and are
emulating the DMD’s slides and widgets in your window, be aware that the MPF media controller will
process the graphics data for the physical DMD even when MPF is running in “virtual” mode.

Although that graphics data will not be sent to a physical DMD, processing it provides a more realistic
MPF experience because of the considerable CPU power required to convert on-screen graphics to
DMD data.

If you are planning to use a physical DMD at some point on your project, it’s recommended to
configure one before you start designing your slides and widgets. Especially if you will be running
virtually for the bulk of your early game design: you don’t want to spend time designing intricate slides
and high-resolution graphics only to find your CPU crumble when you finally attach a physical DMD.

Slides

Now that you know what a display is, the next concept you need to understand is “slides”. Slides in
MPF are just like slides in a PowerPoint presentation or slides in an old-fashioned slide projector.

You create multiple slides (each with its own content), and then you tell MPF when to activate certain
slides. Every slide has a priority, so if multiple slides are active at the same time, the one with the
highest priority will be shown. You can also set “transitions” which control what visual effect is used
to transition from the current slide to the new slide. (Transitions are things like cross-fade, move in,
push out, etc.)

Related Events 794

Mission Pinball Framework Documentation, Version

Slide Priorities

Every slide in MPF has a priority, which is simply a numeric value. Bigger numbers equal higher
priority.

Since only one slide is shown at a time, whenever there is more than one active slide, whichever slide
has the highest priority will be the one that’s shown.

For example, you might have a general score slide at priority 100 which shows the current player’s
score, the ball, the credits, and maybe the scores of the other players.

If the player shakes the machine too hard and a tilt warning slide is shown, then that tilt warning slide
might be activated at a priority of 10,000, meaning that it would be shown instead of the general score
slide.

Then after a few seconds, the tilt warning slide might be removed, and MPF will then show the
next-highest active slide which would most likely be the general scoring slide that was showing before.

The slide priority system is integrated into MPF’s mode system, meaning that slides created by modes
automatically inherit the priority of the mode that’s showing them. Put another way, a slide from a
higher priority mode would show in place of a slide from a lower priority mode (though every mode
doesn’t need to have slides). You can also tweak the priorities of slides (higher or lower) to make sure
the slide you want to show is the one that’s showing at any given time. We’ll dig into that later in the
documentation.

Slides with Multiple Displays

When MPF is used with multiple displays, each display maintains its own stack of active slides. The
priorities of the slides in the stack and the priority of the current slide on one display has nothing to
do with the active and current slides of another display.

Related Events 795

Mission Pinball Framework Documentation, Version

How to create slides

Since slides are so critical in MPF’s display system, let’s look at how you actually create slides. You
can test slides and widgets interactively using Interactive MC (iMC) .

There are several ways you can define and create slides:

∙ In a slides: section of a config file.

∙ Dynamically in the slide_player: section of your config.

∙ Dynamically in a show config or show file.

Let’s look at each of these options.

Defining slides in the slides: section of a config file

The main way to do it is in the “slides” section of a config file, like this:

slides:

some_slide:

- type: text

(continues on next page)

Related Events 796

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: THIS IS MY SLIDE

some_other_slide:

- type: text

text: THIS IS ANOTHER SLIDE

- type: text

text: WITH MORE WORDS

y: bottom

anchor_y: bottom

tilt_warning_1:

- type: text

text: WARNING

tilt_warning_2:

- type: text

text: WARNING WARNING

In the example above, we have four main sub-entries in the slides section:

∙ some_slide

∙ some_other_slide

∙ tilt_warning_1

∙ tilt_warning_2

Each of the above listed subsections represents a different slide, and the names of those sections are
used as the names of those slides. In other words, this config has a slide called “some_slide”, another
slide called “some_other_slide”, etc.

You can list slides in a slides: section of either your machine-wide or a mode config. The most
important thing to know about slide names is that they are GLOBAL throughout MPF. That means that
MPF has a single master list of all the slide names used in the entire game. (So don’t use the same
slide name twice or it will get confused.)

The configuration entries under each slide name are the widgets that will be added to that slide.
(Each slide can have one or more widgets. You can read about all the different types of widgets, as
well as the options for widget positioning and sizing, in the widgets section of the documentation.

You’ll probably end up creating hundreds of slides in your machine by the time you’re done with it.

Note: The slides defined in the slides: section are just the configurations that are used to create the
slides when they’re needed. In other words, no memory is used to “hold” the slides, so you can create
lots and lots of them without worrying about running out of memory.

At this point, you’re just creating the slides. Deciding when to show which slide will come later.

Since MPF maintains a single global list of slides, it doesn’t technically matter whether you define
your slides in the slides: section of your machine-wide config or your mode config. Obviously though if
you define the slides a mode will use in that mode’s config file, then that will help you keep everything
more organized.

Related Events 797

Mission Pinball Framework Documentation, Version

Dynamically defining slides in a slide_player: section of a config file

The slide_player: section of a machine-wide or mode config is where you tell MPF to show (or “play”)
a specific slide when some event occurs. Full documentation for the slide_player is in the How to
Show a Slide on a Display section of the documentation.

You can define slides in the slide_player like this:

slide_player:

some_event:

my_slide_1:

- type: text

text: THIS IS MY SLIDE

In the above example, when the event some_event is posted, the slide player will respond and show
the slide called my_slide_1 which will include that single text widget.

It doesn’t really matter whether you pre-define a slide in the slides: section of a config versions
dynamically defining it in the slide_player: section. Really it comes down to personal preference.
Some people like to have all their slides in one location (all in the slides: section), whereas others
prefer to have the configuration for the slides closer to where they will be used (by defining them in
the slide_player: section). Most people end up mixing-and-matching, with some quick-and-dirty
one-time use slides in the slide_player with other slides you might reuse in the slides: section.

Dynamically defining slides in a show config

As you’ll learn in other parts of this documentation, anything that’s in one of the “_player” sections of
the config (like the “slide_player” above), can also be defined in a show configuration (from a show file
or a show configuration section of a config file).

So here’s an example of a slide created within a show for use within a specific step in that show:

##! show: my_show

show_version=5

- time: 0

slides:

my_show_slide_1:

- type: text

text: MISSION PINBALL

color: red

- type: rectangle

width: 128

height: 32

Again, see the show documentation for details. Here we’re just showing that it’s also possible to
define a slide in a show config.

How to Show a Slide on a Display

Once you have your slides created , you need to decide which slides you show when. (Just remember
you can test slides and widgets interactively using Interactive MC (iMC) .)

Related Events 798

Mission Pinball Framework Documentation, Version

Using the slide_player

The most common option is to use the slide_player: section of a config file. This can be in either your
machine-wide or in mode-specific config files. (Like all mode settings, slides in a mode-based config
file will only play when that mode is active.)

The slide player is based on MPF’s events system, meaning that you basically say, “play THIS slide
when THAT event happens”.

For example, if you want to play a slide named “good_job” when the event “left_lane_hit” is posted,
you would set your config like this:

slide_player:

left_lane_hit: good_job

You can have as many event/slide combinations as you want, like this:

slide_player:

left_lane_hit: good_job

right_lane_hit: good_job

left_ramp_hit: ramp_champ

The above examples are what we call the “express” config option since each event specifies a slide
name, but no other options. (It just uses the default options for showing each slide. But instead of
putting the slide name after the event name, you can also create a sub-entry with the slide name, then
another sub-entry with additional options, like this:

slide_player:

right_ramp_hit:

ramp_hit_slide:

expire: 2s

target: dmd

You can mix-and-match all of these in a single config, like this:

slide_player:

left_lane_hit: good_job

right_lane_hit: good_job

left_ramp_hit: ramp_champ

right_ramp_hit:

ramp_hit_slide:

expire: 2s

target: dmd

In the example above, when the event “left_ramp_hit” happens, the slide “ramp_champ” is shown.
When the event “right_ramp_hit” happens, the slide “ramp_hit_slide” is shown, but with the additional
options of setting the slide to expire (to be removed) after 2 seconds, and for that slide to show on the
“dmd” display target instead of the default display.

There are many options for the slide_player in addition to the “expire” and “target” options shown
above. Refer to the slide_player: section of the config file reference for full details.

Related Events 799

Mission Pinball Framework Documentation, Version

Adding slides to a show

The slide_player is one of MPF’s many Config Players (so called because they use a “config” section to
“play” things). Config players can be used in a config file (as shown above) and also in a show step. To
use the slide player in a show, you add a slides: section to a show step.

For example, if you want a slide called “happy_face” to play in a step in a show, you can do it like this
(this is a snippet of a single step in a show):

##! show: my_show

- duration: 3s

slides: happy_face

Again, you can use the sub-entry format to specify additional options:

##! show: my_show

- duration: 3s

slides:

happy_face:

target: playfield_screen

Creating new slides in the slide_player

Both of the options we’ve show so far (using the slide_player: section of a config file and using the
slides: section of a show) have used existing named slides that you would have already defined in the
slides: section of a config. You also have the option to define new slides directly in each of these
sections. See the How to create slides section of the documentation for instructions on how to do that.

Slide Transitions

When MPF switches the current slide on a display with another slide, you can set a transition effect
that controls what this slide transition looks like. You can use these transitions with the slide_player
and within shows. You can set transitions as a property of the new slide that comes in, or as a property
of the outgoing transition when the current slide is removed. You can also control the duration (speed)
of the transition.

Here’s a list of all the types of transitions that MPF supports. Note that if you’re reading the PDF or
Epub version of this documentation, if you visit the documentation website (docs.missionpinball.org)
then this page contains animated GIFs which show each of these transitions in action.

none

Setting a transition type of none means that no transition will be used, and the incoming slide instantly
replaces the current slide.

push

Related Events 800

Mission Pinball Framework Documentation, Version

The push transition means that the incoming slide “pushes” the outgoing slide out of the way. (e.g. the
outgoing slide moves out while the incoming slide moves in)

Options for the push transition:

∙ duration: MPF time string Default is 1 second.

∙ easing: See the easing instructions for details.

∙ direction: left, right, up or down.

move_in

The move in transition means that the incoming slide moves in on top of the outgoing slide. The
outgoing slide is not animated.

Options for the move_in transition:

∙ duration: MPF time string Default is 1 second.

∙ easing: See the easing instructions for details.

∙ direction: left, right, top or bottom.

move_out

Not working yet.

wipe

The wipe transition means that the display is wiped from the outgoing slide to the incoming one.
Neither slide is animated.

Options for the wipe transition:

∙ duration: MPF time string Default is 1 second.

swap

The swap transition similates an app screen swap like on a mobile device. The outgoing slide moves
out of the way and the incoming slide comes in on top of it.

Options for the swap transition:

∙ duration: MPF time string Default is 1 second.

Related Events 801

Mission Pinball Framework Documentation, Version

fade

The fade transition is a classic crossfade from the outgoing slide to the incoming one.

Options for the fade transition:

∙ duration: MPF time string Default is 1 second.

fade_back

The fade_back transition causes the outgoing slide to shrink and fade away, revealing the incoming
slide.

Options for the fade_back transition:

∙ duration: MPF time string Default is 1 second.

rise_in

The rise in transition causes the incoming slide to fade in and rise up from the center of the display.
It’s essentially the opposite of the fade_back transition.

Options for the rise_in transition:

∙ duration: MPF time string Default is 1 second.

Configuring Transitions

Transitions are specified as an additional property of a slide_player: config or the slides: section of
a show config. For example:

slide_player:

left_ramp_hit:

slide1:

transition:

type: push

duration: 2s

direction: right

Hopefully the above example is obvious by now. When the event “left_ramp_hit” happens, MPF will
show the slide called “slide1:, using the push transition, with a transition time of 2 seconds, pushing
the new slide in from the right.

Transitions can be combined with other slide settings, like this:

slide_player:

left_ramp_hit:

slide1:

(continues on next page)

Related Events 802

Mission Pinball Framework Documentation, Version

(continued from previous page)

transition:

type: push

duration: 2s

direction: right

You can also configure transition_out: settings which are transitions that will be applied to a slide
when it is removed, like this:

slide_player:

left_ramp_hit:

slide1:

transition:

type: push

duration: 2s

direction: right

transition_out:

type: fade_back

Note: If the current slide has a transition_out: setting, and the new slide has a transition: setting,
then the new slide’s transition setting will take precedence.

How to configure a multiplayer display

This is an example walkthrough of creating a “score” slide that dynamically adjusts as additional
players are added to the game, and displays custom player variables in addition to ball number and
score.

1. Game Modes vs Player Modes

Unlike most events in MPF, adding players can occur both during a player’s turn and prior to it, so it’s
a good idea to run your base slide as part of the “game” mode rather than inside a player-specific
mode. This is easy to do by creating a mode folder and config file for the game mode, which MPF will
automatically append to the default game configuration. You do not need to add any mode start/stop
events to game.yaml, as those are all taken care of internally.

2. Create a base “single_player” slide in game.yaml

Related Events 803

Mission Pinball Framework Documentation, Version

We’ll start by creating the default single-player slide and showing it when the game starts, which will
always be single-player because a second player can’t be added until after the game starts.

We’ll create each element of this slide as a separate widget, so we can remove different pieces
one-by-one as the number of players increases. In this example, we have a large score for the current
player, show the player’s custom-variable “level” in the lower-left, and their current ball number in the
lower-right

slides:

base_slide: []

slide_player:

single_player_ball_started: base_slide

widgets:

base_score_widget:

- type: text

text: (score)

base_level_widget:

- type: text

text: LVL (player|level)

base_ball_widget:

- type: text

text: BALL (ball)

widget_player:

First event, before additional players have a chance to enter

game_started:

base_score_widget:

slide: base_slide

base_level_widget:

slide: base_slide

base_ball_widget:

slide: base_slide

This is all we need to have a nice single-player slide that shows the score, the ball, and a custom
game-specific player variable.

3. Add a Second Player

With the addition of a second player we’ll shrink the main score down a little, and show a small
player_1 indicator in the upper-left and a player_2 indicator in the upper-right. Because the current
player’s score is already shown in the middle, in this example we’ll show another player variable (in
this case, the player’s name) where their score normally is.

The _multi_player_ball_started_ event happens when a player’s turn starts and there are multiple
players in the game, so this will show our multiplayer slide at the beginning of every ball.

Related Events 804

Mission Pinball Framework Documentation, Version

The _multiplayer_game_ event happens as soon as a second player is added, so we use it to swap the
slides if player_2 joins after player_1 has already started their turn.

Because the “game” mode exists between player turns, its slides can interfere with other slide
behavior (e.g. bonus slides and start/end of turn slides). We’ll keep it clean and manually clear the
score slide at the end of each ball.

slides:

base_slide:

- type: text

text: "Single Player Game"

multiplayer_slide:

- type: text

text: "Multiplayer Player Game"

slide_player:

single_player_ball_started: base_slide

multi_player_ball_started: multiplayer_slide

If a second player joins during player1's turn, swap base_slide for multiplayer_slide

multiplayer_game:

base_slide:

action: remove

multiplayer_slide:

action: play

ball_will_end:

base_slide:

action: remove

multiplayer_slide:

action: remove

With only two players, we can keep the “level” and “ball” widgets in the bottom left and right corners.
We want to add the player_1 and player_2 widgets in the upper corners, and swap out the big
“base_score_widget” for the slightly smaller “mp_score_widget” one:

widget_player:

{ ... game_started: ... }

Player 2 has entered the game

player_added{num==2}:

mp_score_widget:

slide: multiplayer_slide

base_level_widget:

slide: multiplayer_slide

base_ball_widget:

slide: multiplayer_slide

Start with player1 name and player2 score

mp_name_widget_player_1:

slide: multiplayer_slide

mp_score_widget_player_2:

slide: multiplayer_slide

widgets:

{ ... base_widgets ... }

mp_score_widget:

- type: text

(continues on next page)

Related Events 805

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: (score)

style: score_style_multiplayer

Player 1 score, for when they're not playing

mp_score_widget_player_1:

- type: text

text: (player1|score)

style: mp_player_1

Player 2 score, for when they're not playing

mp_score_widget_player_2:

- type: text

text: (player2|score)

style: mp_player_2

Player 1 custom variable, for when they are playing

mp_name_widget_player_1:

- type: text

text: (machine|last_career_player_1)

style: mp_player_1

Player 2 custom variable, for when they are playing

mp_name_widget_player_2:

- type: text

text: (machine|last_career_player_2)

style: mp_player_2

4. Adding a third and fourth player

Since the multiplayer slide is already being shown, adding player_3 and player_4 is as easy as
swapping out the “level” and “ball” widgets for player scores.

widget_player:

{ ... single and player_2 widget_player ... }

Player 3 has entered the game

player_added{num==3}:

mp_score_widget_player_3:

slide: multiplayer_slide

Remove the "Level" widget and place the player3 score

base_level_widget:

action: remove

slide: multiplayer_slide

(continues on next page)

Related Events 806

Mission Pinball Framework Documentation, Version

(continued from previous page)

Player 4 has entered the game

player_added{num==4}:

mp_score_widget_player_4:

slide: multiplayer_slide

Remove the "Ball" widget and place the player4 score

base_ball_widget:

action: remove

slide: multiplayer_slide

widgets:

{ ... single and player_2 widgets .. }

mp_score_widget_player_3:

- type: text

text: (player3|score)

style: mp_player_3

mp_score_widget_player_4:

- type: text

text: (player4|score)

style: mp_player_4

mp_name_widget_player_3:

- type: text

text: (machine|last_career_player_3)

style: mp_player_3

mp_name_widget_player_4:

- type: text

text: (machine|last_career_player_4)

style: mp_player_4

5. Turn-by-turn display changes

It’s nice showing a custom player variable for the current player during their turn, but we want to
swap out that widget for their score after their turn ends.

Because we don’t know how many players there will be, it’s not safe to use the next player’s turn to
reset the previous player’s widget. Instead, we set each player’s custom variable widget at the start of
their turn and reset their score widget at the end of their turn.

widget_player:

{ ... base and multi-player widgets ...}

Player Turns: Swap scores -> names when turn starts, revert when turn ends

player_turn_started{number==1}:

mp_score_widget_player_1:

action: remove

mp_name_widget_player_1:

slide: multiplayer_slide

player_turn_ended{number==1}:

mp_score_widget_player_1:

slide: multiplayer_slide

mp_name_widget_player_1:

(continues on next page)

Related Events 807

Mission Pinball Framework Documentation, Version

(continued from previous page)

action: remove

player_turn_started{number==2}:

mp_score_widget_player_2:

action: remove

mp_name_widget_player_2:

slide: multiplayer_slide

player_turn_ended{number==2}:

mp_score_widget_player_2:

slide: multiplayer_slide

mp_name_widget_player_2:

action: remove

player_turn_started{number==3}:

mp_score_widget_player_3:

action: remove

mp_name_widget_player_3:

slide: multiplayer_slide

player_turn_ended{number==3}:

mp_score_widget_player_3:

slide: multiplayer_slide

mp_name_widget_player_3:

action: remove

player_turn_started{number==4}:

mp_score_widget_player_4:

action: remove

mp_name_widget_player_4:

slide: multiplayer_slide

player_turn_ended{number==4}:

mp_score_widget_player_4:

slide: multiplayer_slide

mp_name_widget_player_4:

action: remove

How to do “Picture in Picture” display

MPF uses a window to define the area on a screen that can be used to display graphics. This window
and be further subdivided into displays that define areas of the window onto which slides and their
widgets can be projected.

Here is an example of setting up a window and four displays in a config file.

window:

width: 1080

height: 1300

title: CupheadWindow

resizable: true

fullscreen: false

borderless: true

exit_on_escape: true

top: 0

left: 0

displays:

(continues on next page)

Related Events 808

Mission Pinball Framework Documentation, Version

(continued from previous page)

insert:

width: 100

height: 100

upper:

width: 1040

height: 280

middle:

width: 1040

height: 580

lower:

width: 1040

height: 320

A layout slide can then be made that sets the locations of each of these displays on a window. The x
and y locations are relative to the lower left corner of the window. The order in which you define each
widget determines which widget has priority over the other widgets. In this example the
“insert”display is defined before the “lower” display so the “insert” display will be drawn on top of the
“lower” display. This gives you a “picture-in-picutre” where the “insert” will appear to be projected on
top of the “lower” display.

slides:

layout:

background_color: blue

widgets:

- type: display

width: 69

height: 65

x: 60

y: 200

anchor_x: left

anchor_y: top

source_display: insert

- type: display

width: 1040

height: 280

x: 20

y: 1270

anchor_x: left

anchor_y: top

source_display: upper

- type: display

width: 1040

height: 580

x: 20

y: 940

anchor_x: left

anchor_y: top

source_display: middle

- type: display

width: 1040

height: 320

x: 20

y: 340

(continues on next page)

Related Events 809

Mission Pinball Framework Documentation, Version

(continued from previous page)

anchor_x: left

anchor_y: top

source_display: lower

How to configure a “split screen” display

This is an example walk through of how to create a screen that is split into several smaller screens
that can be independently controlled. Let’s create a layout similar to Wizard Of Oz with four
quadrants and a score display area at the bottom.

1. Create the displays

Let’s start by defining the displays we will need for the layout. Remember that displays are an internal
representation of a blank canvas that holds graphical content. They are logical and are targets for
showing slides. We will need to define and configure five displays for this layout: one that covers the
entire window area, and four smaller ones that will each be used for one of the four smaller quadrant
displays.

#config_version=5

window:

width: 1280

height: 720

resizable: false

fullscreen: false

borderless: true

exit_on_escape: true

displays:

window:

width: 1280

height: 720

upper_left:

width: 580

height: 260

upper_right:

width: 580

height: 260

lower_left:

width: 580

height: 260

lower_right:

width: 580

height: 260

2. Create the layout slide

The next step is to decide on the details of the layout. The following diagram shows the layout we will
be creating, along with the lower left and upper right coordinates of each display widget based on a
1280 x 720 pixel main window.

Related Events 810

Mission Pinball Framework Documentation, Version

To accomplish this in MPF, we will need to create a slide that will be shown in the main window
display that will contain display widgets for each of the four smaller displays. The source_display:
attribute of each display widget will be set to the corresponding display name that we want to display
in each quadrant.

Note: While the display widgets will automatically scale the display contents to fit in the widget
boundaries, it is recommended you use the same size display widget as the source display for the best
visual results.

slides:

layout_4_mini:

background_color: red

widgets:

- type: display

width: 580

height: 260

x: 40

y: 420

anchor_x: left

anchor_y: bottom

source_display: upper_left

- type: display

width: 580

height: 260

x: 660

y: 420

anchor_x: left

anchor_y: bottom

source_display: upper_right

(continues on next page)

Related Events 811

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: display

width: 580

height: 260

x: 40

y: 120

anchor_x: left

anchor_y: bottom

source_display: lower_left

- type: display

width: 580

height: 260

x: 660

y: 120

anchor_x: left

anchor_y: bottom

source_display: lower_right

- type: text

text: Split Screen Layout Example

y: 60

slide_player:

mc_ready:

layout_4_mini:

target: window

The above config will display the layout_4_mini slide we just created as soon as the media controller is
ready. Here is the result of the above config:

Related Events 812

Mission Pinball Framework Documentation, Version

3. Create additional slides and show them on one of the smaller displays

Now that we have the desired layout, we can create additional content to show in any one of the
smaller displays. It is just as simple as creating slides and setting their target value to the name of the
desired display when showing them. Here is our example from the previous steps that has now been
extended to show a simple slide in each of the four quadrants:

#config_version=5

window:

width: 1280

height: 720

resizable: false

fullscreen: false

borderless: true

exit_on_escape: true

displays:

window:

width: 1280

height: 720

upper_left:

width: 580

height: 260

upper_right:

width: 580

height: 260

lower_left:

width: 580

height: 260

lower_right:

width: 580

height: 260

slides:

layout_4_mini:

background_color: red

widgets:

- type: display

width: 580

height: 260

x: 40

y: 420

anchor_x: left

anchor_y: bottom

source_display: upper_left

- type: display

width: 580

height: 260

x: 660

y: 420

anchor_x: left

anchor_y: bottom

source_display: upper_right

- type: display

width: 580

height: 260

x: 40
(continues on next page)

Related Events 813

Mission Pinball Framework Documentation, Version

(continued from previous page)

y: 120

anchor_x: left

anchor_y: bottom

source_display: lower_left

- type: display

width: 580

height: 260

x: 660

y: 120

anchor_x: left

anchor_y: bottom

source_display: lower_right

- type: text

text: Split Screen Layout Example

y: 60

slide_1:

background_color: green

widgets:

- type: text

text: upper left

slide_2:

background_color: yellow

widgets:

- type: text

text: upper right

- type: ellipse

color: navy

height: 150

width: 350

slide_3:

widgets:

- type: text

text: lower left

- type: bezier

points: 0, 0, 100, 250, 250, 50, 400, 250

color: lime

thickness: 5

slide_4:

background_color: magenta

widgets:

- type: text

text: lower right

font_size: 40

slide_player:

mc_ready:

layout_4_mini:

target: window

slide_1:

target: upper_left

slide_2:

target: upper_right

slide_3:

target: lower_left

slide_4:

(continues on next page)

Related Events 814

Mission Pinball Framework Documentation, Version

(continued from previous page)

target: lower_right

The above config results in the following output:

4. Conclusion

You should now have a good working example on how to create a split screen layout and how easy it is
to target your slides to a specific display. You could easily extend this example to display the current
scores in the bottom section of the layout or put nice frames or other graphics around the displays.
Remember, if you target the window display with a different slide your layout_4_mini slide will be
replaced and your nice 4 quadrant layout will no longer be visible. This allows you to have an infinite
number of possible layout slides and change them according to the context of your game.

Display Targets

Help us to write it

Slides Events

These events can be useful within players. For example, if you want to play 3 slides as a mode begins
then the mode_(name)_started event can trigger the slide_1 - but what triggers slide_2 and slide_3?

The slide_player: can be used to sequence the playing of additional slides using the
slide_slide_1_removed event to trigger the next slide to be played.

Related Events 815

Mission Pinball Framework Documentation, Version

Related Events

∙ slide_(name)_created

∙ slide_(name)_removed

∙ slide_(name)_active

Widgets

If a slide is a blank canvas, then “widgets” are the things you put on that blank canvas, like text,
images, shapes, videos, etc. Here’s an example of a slide (on the window display) showing how it’s
made up of different types of widgets.

Widgets have properties like size and position, and some widgets include additional properties
depending on what type of widget they are. (Text widget have font properties, video widgets have
properties controlling video playback, etc.)

You can control the stacking order of widgets on a slide (also called the “layer” or “z-order”), to
specify which widget should be on top of another if they’re overlapping.

You can specify all the widgets that are on a slide when you define that slide, and/or you can add
widgets later to existing slides or remove certain widgets from slides while keeping others there.

You can even create a library of reusable “named” widgets which you can use again and again on
many slides.

You can specify widget “styles” which are default properties that are inherited by all widgets based on
that style. (So, for example, you could specify a set of styles for text widgets called “title”, “default”
and “small” that control the font name, font size, color, and spacing for widgets using that style.

Individual widget properties can also be animated, meaning you can change the size, position, opacity,
etc. of a widget over time. You can animate multiple properties of a widget at the same time or in a

Related Events 816

Mission Pinball Framework Documentation, Version

sequence (or both), and you can specify which MPF events trigger animation sequences to start and
stop.

In this section of the documentation, we’ll look at all the different types of widgets (and their
properties and settings), then look at how you position and animate them, how to use widget styles,
and how you can create the reusable widgets.

You can test slides and widgets interactively using Interactive MC (iMC) .

Types of Widgets

Most popular

∙ Text

∙ Image

∙ Video

But also these:

∙ Bezier Curve

∙ Display

∙ Ellipse

∙ Line

∙ Points

∙ Quad

∙ Rectangle

∙ Segment Display Emulator

∙ Text Input

∙ Triangle

∙ Common Settings (all widgets)

Text Widget

The text widget is used to show text on a slide.

Related Events 817

Mission Pinball Framework Documentation, Version

In addition to being able to specify static text, text widgets also include powerful functionality:

∙ You can configure dynamic text that is automatically updated (in real time) based on the value of
a player variable or a machine variable.

∙ You can configure a placeholder “text string” that uses a lookup value to get its actual text. This
is useful for things like multi-language support, or to be able to have different text strings based
on a configuration file (family-friendly versus R-rated text, etc.)

∙ You can configure fonts and font styles to be automatically applied to text, and you can override
them on a widget-by-widget basis.

You can also use bitmap fonts to customize fonts for your machine.

Settings

Here are a list of the settings you can use for text widgets:

type: text

text:

font_size:

font_name:

bold:

italic:

casing:

number_grouping:

min_digits:

halign:

valign:

Related Events 818

Mission Pinball Framework Documentation, Version

Note: Text widgets also have “common” widget settings for position, opacity, animations, color, style,
etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following text widget settings may be animated : x:, y:, font_size:, color:, opacity:, rotation:,
and scale:.

type: text

Tells MPF that this is a text widget. This setting is required when using text widgets.

text:

This value is required. If you don’t want text, use “”

Your text can contain placeholders as described in dynamic text .

Newline characters (\n) are supported in text values to create multiple lines with line breaks, however
you must surround the text with quotes or the backslash will be treated as a printing character and
will appear in the output. For example:

text: "Multiple\nlines"

will create multiple text lines with a line break, while the following will not:

text: Multiple\nlines

font_name:

The name of the font you want to use. This is the name only, without the file extension. For example:

Correct:

font_name: arial

Wrong:

font_name: arial.ttf

There’s a lot that goes into fonts, so we have a whole section on fonts which you should read.

Usually fonts are controlled via widget styles. Also, if you’re using a DMD or color DMD (or other
pixel-style display), we have some built in DMD fonts that you can use which are pre-configured for
DMDs.

Related Events 819

Mission Pinball Framework Documentation, Version

bitmap_font:

A true/false value indicating whether the font_name: setting contains the name of a bitmap_font asset.
When set to True, font_name: must refer to an existing bitmap_font asset name and font_size: will be
ignored. When set to False, font_name: should refer to a font name.

font_size:

The size of the font (in points). Default is 15.

See the full documentation on fonts for details.

bold:

Boolean (True/False or Yes/No) which controls whether this font is bold. Note that this setting
attempts to over-draw the font a few times to make it look bold, so the results are often not that great.
You’re better off finding an actual bold version of your font and using that font instead.

The default setting is False.

italic:

Boolean (True/False or Yes/No) which controls whether this font is italicized. Note that this setting
simply skews the font when it’s drawn, so the results are often not that great. You’re better off finding
an actual italicized version of your font and using it instead.

The default setting is False.

casing:

A string value that changes the casing of the text on the widget. Available values are:

∙ “lower”: all characters will be lower case

∙ “upper”: ALL CHARACTERS WILL BE UPPER CASE

∙ “title”: All First Characters Are Capitalized

∙ “capitalize”: Only the first character is capitalized

The default setting is None and the characters are displayed as-is.

number_grouping:

Boolean (True/False or Yes/No) which controls whether you want the separator between digits. In
other words, it converts 1234567 into 1,234,567.)

Note that this setting will search through the text string for digits and then insert the commas. In
other words, if your text is “YOU SCORED 12345 POINTS”, then it will convert it into “YOU SCORED
12,345 POINTS” even though the text is a mix-and-match of letters and numbers.

The default setting is False. (Note that prior to MPF 0.30, the default setting was True.)

Related Events 820

Mission Pinball Framework Documentation, Version

Note: Currently this setting only inserts a comma. We need to add a setting to allow other characters
(like a period which is common in Europe). If this is you, post a message to the forum and we’ll bump
up the priority on our to-do list.

min_digits:

Configures the minimum number of digits for the text to be displayed. This setting adds zeros to the
left for digits that are shorter than the setting.

This is typically used in score displays, since pinball machines usually show a score as 00 instead of 0
when the player starts the game and has no points.

So for most machines, you’d add min_digits: 2 to your text widgets which show the player’s score.

The default setting is 0.

halign:

Specifies the horizontal alignment of the text within the bounding box. Note that this setting is not
used to align a widget on the screen. (See the How to position widgets on slides documentation for
details on that.)

This setting is almost never used in MPF because the bounding box of a text widget is automatically
created and sized based on the actual text and font chosen.

The default setting is center.

valign:

Specifies the vertical alignment of the text within the bounding box. Note that this setting is not used
to align a widget on the screen. (See the How to position widgets on slides documentation for details
on that.)

This setting is almost never used in MPF because the bounding box of a text widget is automatically
created and sized based on the actual text and font chosen.

The default setting is middle.

anchor_y: baseline

Text widgets have an additional baseline option in addition to the other baseline options detailed in
the common widget settings documentation.

Examples

The example config files section of the documentation contains examples of text widgets.

Related Events 821

Mission Pinball Framework Documentation, Version

Dynamically Updating Text

Related Config File Sections
text widgets
segment displays
segment display players

Your text can contain placeholders which will be replaced and updated when the text is shown. Use
(param) to replace the parameters of the event which triggers the text (usually you do not want to use
this). Player vars from the current player can be accessed using (player|var) (e.g. (player|score) or
(player|ball)). Furthermore, you can target a specific player using (playerX|var) where X is the
player number starting at 1 (e.g. (player1|score)). To display machine variables use (machine|var)
(e.g. (machine|credit_string)).

Text Substitution Strings

Image Widget

The image widget is used to display an image on a slide. It’s also used to display animated images,
which can either be animated GIFs or a folder or zip file of sequentially-numbered images (of any
type).

Image types that support alpha channels (like PNGs) are supported.

Settings

Note: Image widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following image widget settings may be animated : x:, y:, color:, rotation:, scale:, fps:,
current_frame:, and opacity:.

type: image

Single value, type: string.

Tells MPF that this is an image widget

image:

Single value, type: string name of a image.

The name of the image asset this widget will show. Details on image assets are here.

Related Events 822

Mission Pinball Framework Documentation, Version

fps:

Single value, type: integer. Default: 10.

For animated images, sets how fast it plays (frames per second).

loops:

Single value, type: integer. Default: -1.

The number of times an animated image will loop. Set to -1 for unlimited. Note this is now consistent
in 0.50 with other areas of MPF. In earlier versions of MPF this setting used 0 to specify unlimited
loops.

auto_play:

Single value, type: boolean (Yes/No or True/False). Default: True

If the image is an animated image, configures whether it plays automatically when it’s loaded.

This is good for looping images, but if you have an image you want to play at a specific point, you
probably want to set this to no and play it from specific events via the widget player.

start_frame:

Single value, type: integer. Default: 0.

Which start frame to use for animated images.

persist_frame:

Single value, type: boolean (true/false). Default: false

When true, the animated image widget will remember the frame the it was on when it was last used,
and restore that frame when the widget is next used.

By default, an animated image will reset itself each time it is added to a slide.

Video widget

The video widget is used to display a video on a slide. This can either be full-screen videos or smaller
videos that appear on a portion of the display.

Note that in MPF, videos are regular widgets, so they can go on top of other widgets, or other widgets
can go on top of them, they can be moved and animated, etc.

Settings

Related Events 823

Mission Pinball Framework Documentation, Version

type: video

video:

height:

width:

volume:

auto_play:

end_behavior:

control_events:

Note: Video widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following video widget settings may be animated : x: and y:.

type: video

Tells MPF that this is an image widget

video:

The name of the video asset this widget will show. Details on video assets are here.

height:

Allows you to specify the size (along with width: of the video on the screen). Set to 0 (or leave this
setting out) to play the video at whatever size the asset is configured for (or, if a size is not specified
there, at the native video size).

Note that the height: and width: settings cannot stretch or skew the video. So if you enter values that
result in an aspect ratio for the video widget that does not match the video itself, then the video will
be sized as large as it can within the bounds of the size of the widget.

width:

Lets you specify the width of the video. Set to 0 (or leave the setting out) to use the setting from the
video asset and/or the native video width.

See the height: setting above for details.

volume:

Volume for this video on a scale from 0 to 1. Default is 1.0. Note that you can the volume during
playback via the control_events: below.

Related Events 824

Mission Pinball Framework Documentation, Version

Note: Currently the video volume and playback is not integrated with the rest of MPF’s sound system
in terms of tracks, ducking, etc. This is on our roadmap.

auto_play:

Boolean (True/False or Yes/No) which controls whether this video should start playing automatically.
Default is True.

end_behavior:

Sets what happens when the video ends. Options include:

loop The video loops and starts playing again

pause The video stops and stays at the end (so it continues showing the final frame)

stop The video stops and the position is reset back to the beginning. This is the default.

control_events:

Control the playback of this video with MPF events. Options include:

play Starts playing the video from its current position.

pause Pauses the video at its current position.

stop Stops the video and resets the position back to the beginning.

seek Moves the video to a certain position based on a percentage. 0 is the beginning of the video, 1 is
the end, 0.5 is 50% through, etc. (This is similar to position:, except it’s based on percent
instead of position.

This setting does not change the play/stop state.

position Moves the video to a certain position based on the time, (in seconds). In other words value:
4.2 here would move the video to the 4.2 second mark. (This is similar to seek: except it’s based
on seconds instead of percent.)

volume Sets the volume of the video on a scale from 0 to 1.

This setting does not change the play/stop state.

To use control events, add a control_events: section to the video widget, then create a list (with
dashes) of event:, action: and (optionally) value: settings. Then when the event is posted, the action
will be applied to the video.

Consider the example below:

slides:

my_slide:

- type: video

video: my_video

control_events:

- event: play_my_vid

(continues on next page)

Related Events 825

Mission Pinball Framework Documentation, Version

(continued from previous page)

action: play

- event: wizard_caught

action: stop

- event: some_event

action: pause

- event: what_event

action: seek

value: .5

- event: move_it

action: position

value: 4.2

- event: mute_me

action: volume

value: 0

In the example above, when the event play_my_vid is posted, the video will start playing. When the
event wizard_caught is posted, the video will stop. some_event will pause the video, what_event will
reset the video to the 50% position, move_it will set the video to the 4.2 second position, and mute_me
will set the volume to zero.

Note that you can have as many different entries as you want here, even using different events for the
same actions, etc.

Bezier Curve Widget

The bezier widget is used to draw a curved line on a slide. (Note that if you want to draw a straight
line, you can use the Line Widget .)

Here’s an example:

TODO This example just shows a blank slide in MPF 0.50?

#config_version=5

slide_player:

mc_ready:

bezier_example:

- type: bezier

points: 10, 10, 150, 450, 300, 100, 790, 590

color: lime

thickness: 5

cap: square

- type: bezier

points: 0, 600, 400, 400, 400, 0

color: pink

close: true

joint: miter

thickness: 10

Which results in the following:

Related Events 826

Mission Pinball Framework Documentation, Version

Settings

type: bezier

points:

thickness:

cap:

joint:

cap_precision:

joint_precision:

close:

precision:

Note: Bezier widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following bezier widget settings may be animated : color:, thickness:, opacity:, points:,
rotation:, and scale:.

Related Events 827

Mission Pinball Framework Documentation, Version

type: bezier

Tells MPF that this is a bezier curve widget. This setting is required when using bezier curve widgets.

points:

A list of points which make up the bezier curve, expressed in x/y pairs (so the number of items here
has to be even).

The first pair is the starting point. The last pair is the ending point. Each pair in between is a point the
curve will pass through.

For example:

points: 10, 10, 200, 50, 300, 200

This would draw a bezier curve starting at (10,10) and ending at (300,200), with a center point at
(200, 50).

thickness:

The thickness of the line. You’ll probably have to play with different settings to get it right. The
default is 1.0, so 2.0 is twice as thick as the default, 0.5 is half as thick, etc.

cap:

Determine the cap of the line, defaults to ‘round’. Can be one of ‘square’ or ‘round’

joint:

Determine the join of the line, defaults to ‘round’. Can be one of ‘none’, ‘round’, ‘bevel’, ‘miter’.

cap_precision:

Integer, defaults to 10.

Number of segments for drawing the “round” joint, defaults to 10. The joint_precision must be at least
1.

joint_precision:

Integer, defaults to 10.

Number of segments for drawing the “round” joint, defaults to 10. The joint_precision must be at least
1.

Related Events 828

Mission Pinball Framework Documentation, Version

close:

Boolean (True/False), default is False.

If True, the line will be closed.

precision:

Integer, defaults to 180.

The number of individual segments that will be drawn between each pair of points.

Examples

The example config files section of the documentation contains examples of bezier widgets.

Display Widget

Display Widget Effects

Effects are used to apply a variety of fancy graphical effects to the contents of a display widget. The
most commonly used effects are dmd and color_dmd which create the look of hardware DMDs (in
version of MPF prior to 0.50, these were previously their own widget types). Multiple effects may be
combined in a chain, however, effects can be CPU/GPU intensive!

Required settings

The following sections are required for the effects setting of the display widget:

type:

Single value, type: one of the options listed below.

The type: setting controls which effect will be loaded to process the display widget output. Here is
the list of available effect types (the settings for each type are found below):

∙ anti_aliasing applies a very basic anti-aliasing

∙ color_channel_mix swaps color channels

∙ color_dmd creates an RGB DMD look

∙ colorize applies a color tint

∙ dmd creates a monochrome DMD look

∙ dot_filter creates a dot filter to look like individual round dots/pixels (similar to a DMD)

∙ flip_vertical vertically flips the contents

∙ gain applies a gain (brightness) adjustment

∙ gamma applies a gamma correction

Related Events 829

Mission Pinball Framework Documentation, Version

∙ glow applies a pulsing glow effect

∙ horizontal_blur Gaussian blurs horizontally

∙ invert_colors inverts the colors

∙ linear_gradient applies a linear gradient tint

∙ monochrome converts the image to monochrome/grayscale

∙ pixelate pixelates the image

∙ reduce reduces the number of bits per color channel (reducing the number of resulting colors)

∙ scanlines displays flickering scanlines (like an old CRT)

∙ vertical_blur Gaussian blurs vertically

Settings for anti-aliasing effect:

The anti-aliasing effect does not have any settings.

Settings for color_channel_mix effect:

order:

List, type: int. Default: [1, 2, 0]

The new sorted order of the rgb channels. The list must contain an arrangement of the list [0, 1, 2].

Settings for color_dmd effect:

dot_filter:

Single value, type: boolean (Yes/No or True/False). Default: True

Enables the “dot” look. Setting this to False means that the color DMD will not have dots.

dots_x:

Single value, type: int. Default: 128

The number of DMD dots in the x direction.

dots_y:

Single value, type: int. Default: 32

The number of DMD dots in the y direction.

Related Events 830

Mission Pinball Framework Documentation, Version

blur:

Single value, type: float. Default: 0.1

This is the radius of the “glow” of the pixels (when using dot_filter: True). This is expressed as a
decimal relative to the size of the pixels. The default is 0.1 which means there’s a 10% glow radius.

dot_size:

Single value, type: float. Default: 0.7

The size of the individual “dots”, expressed as a decimal relative to what their full size would be. A
value of 1.0 will mean that each pixel will fill 100% of the space (e.g. no space in between), and it
won’t really look like separate pixels.

background_color:

Single value, type: kivycolor. Default: 191919ff

The background color of the display (the color of the pixels when they’re “off”). Note: this is a color
with alpha channel value.

gain:

Single value, type: float. Default: 1.0

A numeric multiplier that will be applied to every color channel of every pixel in this color DMD
widget (brightness).

For example, if you set gain: 1.2, then a pixel on this color DMD’s source display that has a color of
(100, 100, 100) will be drawn with the color (120, 120, 120). (Each element multiplied by 1.2). Note
that values above 255 will be capped at 255.

The default is 1.0 which means that the original colors are unchanged. You can play with this to act as
a “poor man’s” brightness control, but values too far above or below 1.0 will probably look weird.

shades:

Single value, type: int. Default: 0

This is the number of shades each color channel will be reduced to. The default is 0 which disables it
and uses the full 256 shades per color channel, meaning the color DMD widget will use have 256
shades each of red, green, and blue. (In other words, the default is standard 24-bit color for a total of
16.7m colors.)

Note that this setting can produce weird results depending on your source content. If you want an old
school look, you might have better luck creating your videos and graphics with fewer colors and then
not setting the shades option here.

Also note if you want to use full color (no shade reduction), it’s better to set this to 0 and not 256 since
0 will disable this processing which will be less overhead.

Related Events 831

Mission Pinball Framework Documentation, Version

Settings for colorize effect:

tint_color:

Single value, type: kivycolor. Default: ff66ff00

The color to tint the pixels in the display.

Settings for dmd effect:

dot_filter:

Single value, type: boolean (Yes/No or True/False). Default: True

Enables the “dot” look. Setting this to False means that the DMD will not have dots.

dots_x:

Single value, type: int. Default: 128

The number of DMD dots in the x direction.

dots_y:

Single value, type: int. Default: 32

The number of DMD dots in the y direction.

blur:

Single value, type: float. Default: 0.1

This is the radius of the “glow” of the pixels (when using dot_filter: True). This is expressed as a
decimal relative to the size of the pixels. The default is 0.1 which means there’s a 10% glow radius.

dot_size:

Single value, type: float. Default: 0.7

The size of the individual “dots”, expressed as a decimal relative to what their full size would be. A
value of 1.0 will mean that each pixel will fill 100% of the space (e.g. no space in between), and it
won’t really look like separate pixels.

background_color:

Single value, type: kivycolor. Default: 191919ff

The background color of the display (the color of the pixels when they’re “off”). Note: this is a color
with alpha channel value.

Related Events 832

Mission Pinball Framework Documentation, Version

gain:

Single value, type: float. Default: 1.0

A numeric multiplier that will be applied to every color channel of every pixel in this color DMD
widget (brightness).

For example, if you set gain: 1.2, then a pixel on this color DMD’s source display that has a color of
(100, 100, 100) will be drawn with the color (120, 120, 120). (Each element multiplied by 1.2). Note
that values above 255 will be capped at 255.

The default is 1.0 which means that the original colors are unchanged. You can play with this to act as
a “poor man’s” brightness control, but values too far above or below 1.0 will probably look weird.

shades:

Single value, type: int. Default: 0

This is the number of shades each color channel will be reduced to. The default is 0 which disables it
and uses the full 256 shades per color channel, meaning the color DMD widget will use have 256
shades each of red, green, and blue. (In other words, the default is standard 24-bit color for a total of
16.7m colors.)

Note that this setting can produce weird results depending on your source content. If you want an old
school look, you might have better luck creating your videos and graphics with fewer colors and then
not setting the shades option here.

Also note if you want to use full color (no shade reduction), it’s better to set this to 0 and not 256 since
0 will disable this processing which will be less overhead.

luminosity:

List, type: float. Default [.299, .587, .114]

This defines the luminosity factor for each color channel. The value for each channel must be between
0.0 and 1.0.

dot_color:

Single value, type: kivycolor. Default: ff5500

The color of the dots in the DMD. Defaults to classic DMD orange.

Settings for dot_filter effect:

dots_x:

Single value, type: int. Default: 128

The number of dots in the x direction.

Related Events 833

Mission Pinball Framework Documentation, Version

dots_y:

Single value, type: int. Default: 32

The number of dots in the y direction.

blur:

Single value, type: float. Default: 0.1

This is the radius of the “glow” of the pixels. This is expressed as a decimal relative to the size of the
pixels. The default is 0.1 which means there’s a 10% glow radius.

dot_size:

Single value, type: float. Default: 0.7

The size of the individual “dots”, expressed as a decimal relative to what their full size would be. A
value of 1.0 will mean that each pixel will fill 100% of the space (e.g. no space in between), and it
won’t really look like separate pixels.

background_color:

Single value, type: kivycolor. Default: 191919ff

The background color of the display (the color of the pixels when they’re “off”). Note: this is a color
with alpha channel value.

Settings for flip_vertical effect:

The flip_vertical effect does not have any settings.

Settings for gain effect:

gain:

Single value, type: float. Default: 1.0

A numeric multiplier that will be applied to every color channel of every pixel in the display widget
(brightness).

For example, if you set gain: 1.2, then a pixel on this display that has a color of (100, 100, 100) will
be drawn with the color (120, 120, 120). (Each element multiplied by 1.2). Note that values above 255
will be capped at 255.

The default is 1.0 which means that the original colors are unchanged. You can play with this to act as
a “poor man’s” brightness control, but values too far above or below 1.0 will probably look weird.

Related Events 834

Mission Pinball Framework Documentation, Version

Settings for gamma effect:

gamma:

Single value, type: float. Default: 1.0

Sets the gamma factor of the effect.

Settings for glow effect:

blur_size:

Single value, type: float. Default: 0.5

The blur width in pixels

intensity:

Single value, type: float. Default: 0.5

The base intensity of the glow effect

glow_amplitude:

Single value, type: float. Default: 1.0

The amplitude of the pulsing glow. Set to 0 if you want to disable the pulse.

glow_speed:

Single value, type: float. Default: 1.0

The frequency of the glow effect in Hz.

Settings for horizontal_blur effect:

size:

Single value, type: float. Default: 4.0

The blur width in pixels.

Settings for invert_colors effect:

The invert_colors effect does not have any settings.

Related Events 835

Mission Pinball Framework Documentation, Version

Settings for linear_gradient effect:

color_stops:

Dictionary, type: float:kivycolor. Default: None

This defines the colors along the gradient. Each key is a floating point number in the range [0.0, 1.0]
(inclusive) representing the position along the gradient while the value is the RGBA color at that
position. Key values must be written in double quotes, for example: "0.1": ff00ff00

angle:

Single value, type: float. Default: 0.0

The angle of the gradient in degrees. A value of 0.0 produces a horizontal gradient with the first color
stop on the right while a value of 90.0 produces a vertical gradient with the first stop on the top and so
on.

Settings for monochrome effect:

luminosity:

List, type: float. Default [.299, .587, .114]

This defines the luminosity factor for each color channel. The value for each channel must be between
0.0 and 1.0.

Settings for pixelate effect:

pixel_size:

Single value, type: int. Default: 10

Sets the size of a new ‘pixel’ in the effect, in terms of number of ‘real’ pixels.

Settings for reduce effect:

shades:

Single value, type: int. Default: 16

This is the number of shades each color channel will be reduced to. Note that this setting can produce
weird results depending on your source content. If you want an old school look, you might have better
luck creating your videos and graphics with fewer colors and then not setting the shades option here.

Settings for scanlines effect:

The scanlines effect does not have any settings.

Related Events 836

Mission Pinball Framework Documentation, Version

Settings for vertical_blur effect:

size:

Single value, type: float. Default: 4.0

The blur width in pixels.

The display widget is used to show the contents of a display on a slide slide or another display (think
of this like a picture-in-picture kind of thing). To attempt to clear up any confusion, there are two
types of displays: a display which is basically an in-memory target for for slides and widgets, and a
display widget (this help topic) which enables the graphical display of the previously mentioned type
of display within its boundaries (it is the actual visual output of the logical display).

Here’s an example:

#config_version=5

displays:

window:

height: 600

width: 800

my_frame:

width: 400

height: 300

default: true

slides:

base_slide:

widgets:

- type: display

source_display: my_frame

width: 400

height: 300

x: 300

y: 200

- type: text

text: this is the base slide

x: 600

y: 400

frame_slide:

widgets:

- type: text

text: this is a slide in the frame

background_color: red

slide_player:

mc_ready.1:

base_slide:

target: window

mc_ready.2: frame_slide

And the result:

Related Events 837

Mission Pinball Framework Documentation, Version

Settings

type: display

source_display:

width:

height:

effects:

Note: Display widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following display widget settings may be animated : x: y:, and pos:.

Related Events 838

Mission Pinball Framework Documentation, Version

source_display:

The name of the logical display to show on the screen within the widget boundaries. This name is
available as a target: name is other areas of your configs when you want to target a slide the
specified display.

More information on display targets is here.

width:

The width of the frame in pixels.

height:

The height of the frame in pixels.

effects:

A list of effects to apply to the display contents. These effects perform image processing to the source
image and can be used to get an old school “DMD look” or “color DMD look” to your display as well as
other special effects. For more information on effects, please review the effects documentation.

An example of a display widget with a dmd effect:

#config_version=5

slides:

base_slide:

- type: display

source_display: dmd

width: 640

height: 160

effects:

- type: dmd

dot_color: ff5500

Ellipse Widget

The ellipse widget is used to draw a solid ellipse (including circles) on a slide.

It can also be used to draw “wedges” (pie slices) or ellipses with sections missing (like Pac Man).

Note that ellipses are always solid. If you want an elliptical outline, use the Bezier Curve Widget .

Here’s an example:

#config_version=5

slide_player:

mc_ready:

ellipse_example:

- type: ellipse

x: 200

(continues on next page)

Related Events 839

Mission Pinball Framework Documentation, Version

(continued from previous page)

y: 200

width: 200

height: 200

color: blue

angle_start: 0

angle_end: 90

- type: ellipse

x: 400

y: 300

width: 400

height: 200

color: yellow

segments: 8

- type: ellipse

x: 600

y: 500

width: 400

height: 300

color: red

angle_start: 200

angle_end: 300

- type: ellipse

x: 700

y: 200

width: 90

height: 300

color: lime

And the result:

Related Events 840

Mission Pinball Framework Documentation, Version

Settings

width:

height:

segments:

angle_start:

angle_end:

Note: Ellipse widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following ellipse widget settings may be animated : x:, y:, width:, position:, height:, size:,
color:, angle_start:, angle_end:, opacity:, rotation:, and scale:.

Related Events 841

Mission Pinball Framework Documentation, Version

type: ellipse

Tells MPF that this is an ellipse widget. This setting is required when using ellipse widgets.

width:

The width (in pixels) of this ellipse. This setting is required.

The width: and height: settings set the bounding box that the ellipse will be drawn in. If you want a
circle, set the width and height to be the same.

height:

The height (in pixels) of this ellipse. This setting is required.

segments:

The number of segments that will make up the ellipse. More segments will create a smoother edge,
but depending on the size of your display and the size of the ellipse, you might not see much of a
difference.

The default is 180.

angle_start:

The angle, between 0-360, where the ellipse will start. The default is 0.

angle_end:

The angle, between 0-360, where the ellipse will start. The default is 360.

Note that a start angle of 0 and an end angle of 360 will create a complete solid ellipse.

Line Widget

The line widget is used to draw a straight line on a slide. (Note that if you want to draw a curved line,
you can use the Bezier Curve Widget .)

Here’s an example:

#config_version=5

slide_player:

mc_ready:

line_example:

- type: line

points: 0, 300, 800, 300

- type: line

points: 0, 100, 800, 100

(continues on next page)

Related Events 842

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: line

points: 400, 95, 400, 0

color: red

thickness: 5

cap: square

- type: line

points: 100, 500, 150, 550, 200, 450

color: lime

thickness: 2

- type: line

points: 500, 150, 600, 350, 650, 200

color: blue

close: true

thickness: 3

And the results:

Related Events 843

Mission Pinball Framework Documentation, Version

Settings

type: line

points:

thickness:

cap:

joint:

cap_precision:

joint_precision:

close:

Note: Line widgets also have “common” widget settings for position, opacity, animations, color, style,
etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following line widget settings may be animated : color:, thickness:, opacity:, points:, rotation:,
and scale:.

type: line

Tells MPF that this is a line widget. This setting is required when using line curve widgets.

points:

A list of point pairs which make up the line, expressed in x/y pairs (so the number of items here has to
be even).

For example:

points: 10, 10, 200, 50, 300, 200

This would draw a line starting at (10,10) and going to (200, 50), and then from there, going to
(300,200). If you just want a single straight line, then you would enter 4 values here: the x/y of the
start and the x/y of the end.

thickness:

The thickness of the line. You’ll probably have to play with different settings to get it right. The
default is 1.0, so 2.0 is twice as thick as the default, 0.5 is half as thick, etc.

cap:

Determine the cap of the line, defaults to ‘round’. Can be one of ‘none’, ‘square’ or ‘round’.

Related Events 844

Mission Pinball Framework Documentation, Version

joint:

Determine the join of the line, defaults to ‘round’. Can be one of ‘none’, ‘round’, ‘bevel’, ‘miter’.

cap_precision:

Integer, defaults to 10.

Number of segments for drawing the “round” joint, defaults to 10. The joint_precision must be at least
1.

joint_precision:

Integer, defaults to 10.

Number of segments for drawing the “round” joint, defaults to 10. The joint_precision must be at least
1.

close:

Boolean (True/False), default is False.

If True, the line will be closed.

Examples

The example config files section of the documentation contains examples of line widgets.

Points Widget

The points widget is used to draw points (individual square points) on a slide.

Here’s an example:

#config_version=5

slide_player:

mc_ready:

points_example:

- type: points

points: 50, 50, 75, 50, 100, 50

pointsize: 2

color: lime

- type: points

points: 400, 300

pointsize: 3

color: pink

Which results in the following:

Related Events 845

Mission Pinball Framework Documentation, Version

Settings

type: points

points:

pointsize:

Note: Points widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following points widget settings may be animated : color:, points:, pointsize:, opacity:,
rotation:, and scale:.

type: points

Related Events 846

Mission Pinball Framework Documentation, Version

points:

A list of the x,y coordinates of pairs of points.

pointsize:

Floating-point number, default is 1.0.

The distance from the center of the point to the edge, so a value of 1.0 makes a point that’s two pixels
wide. (This is kind of like the radius, though points are square so it’s not technically the radius.
Probably there’s some fancy math name for it.)

QuadWidget

The quad widget is used to draw solid polygons on a slide.

Here’s an example:

#config_version=5

slide_player:

mc_ready:

bezier_example:

- type: quad

points: 210, 110, 210, 150, 500, 200, 590, 190

color: pink

- type: quad

points: 50, 550, 400, 400, 400, 100, 200, 200

color: lime

Which results in the following:

Related Events 847

Mission Pinball Framework Documentation, Version

Settings

type: quad

points:

Note: Quad widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following quad widget settings may be animated : color:, points:, opacity:, rotation:, and
scale:.

type: quad

Tells MPF this is a quad widget.

Related Events 848

Mission Pinball Framework Documentation, Version

points:

A list of 8 values representing x,y coordinate pairs for the four corners of the quad.

A list of the x,y coordinates of the corners. Note that to have a normal four-cornered shape, the
corners need to be in order. You can start with any one and go clockwise or counter-clockwise, but if
you enter the corners in a mixed order like 1, 3, 2, 4 then it’s possible your quad will fold over itself
and look weird.

Rectangle Widget

The rectangle widget is used to draw a rectangle (or rounded rectangle) on a slide. Remember that a
square is just a rectangle whose height and width are the same.

Here’s an example:

#config_version=5

slide_player:

mc_ready:

rectangle_example:

- type: rectangle

x: 200

y: 200

width: 200

height: 200

color: pink

- type: rectangle

x: 400

y: 300

width: 400

height: 200

corner_radius: 50

corner_segments: 3

color: yellow

- type: rectangle

x: 600

y: 500

width: 400

height: 300

corner_radius: 75

color: red

Which results in the following:

Related Events 849

Mission Pinball Framework Documentation, Version

Settings

type: rectangle

width:

height:

corner_radius:

corner_segments:

Note: Rectangle widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following rectangle widget settings may be animated : x:, y:, width:, height:, color:,
corner_radius:, opacity:, rotation:, and scale:.

Related Events 850

Mission Pinball Framework Documentation, Version

width:

The width of the rectangle, in pixels.

height:

The height of the rectangle, in pixels.

corner_radius:

Number value of the radius of the corners (in pixels). Default is 0 which means sharp square corners.

corner_segments:

For rectangles with rounded corners (where corner_radius: is greater than 1), how many individual
segments should make up the corner. The more segments, the smoother the corner is.

Default is 10.

Segment Display Emulator widget

The segment display emulator widget is used to emulate hardware segment displays on a slide.

Here’s an example:

#config_version=5

slide_player:

mc_ready:

display_slide:

- type: segment_display_emulator

name: display1

character_count: 7

character_slant_angle: 0

character_spacing: 20

segment_width: 0.11

segment_interval: 0.04

segment_off_color: 4b4c4a30

segment_on_color: fe961bff

side_bevel_enabled: true

dot_enabled: true

comma_enabled: true

text: "HELLO"

width: 600

height: 150

y: 100

The example above results in the following:

Related Events 851

Mission Pinball Framework Documentation, Version

Settings

type: segment_display_emulator

name:

text:

flash_mode:

flash_frequency:

flash_mask:

display_type:

character_count:

character_spacing:

character_slant_angle:

padding:

background_color:

segment_off_color:

segment_on_color:

segment_width:

segment_interval:

bevel_width:

side_bevel_enabled:

dot_enabled:

comma_enabled:

character_map:

width:

height:

rotation:

scale:

Note: Segment Display Emulator widgets also have “common” widget settings for position, opacity,
animations, color, style, etc. Those are not listed here, but are instead covered in common widget
settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following segment display emulator widget settings may be animated : x:, y:, width:, height:,
segment_on_color:, opacity:, rotation:, and scale:.

Related Events 852

Mission Pinball Framework Documentation, Version

type: segment_display_emulator

Tells MPF that this is a segment display emulator widget.

name:

The segment display name. This value is used to uniquely identify the segment display emulator
widget when updating it using the Segment Display player in MPF. The value here must match the
name assigned in the segment_displays: device section of your config. This value is only required if
you wish to control the segment display emulator widget with the Segment Display player.

width:

The width of the segment display emulator widget (in pixels). This value is required.

height:

The height of the segment display emulator widget (in pixels). This value is required.

text:

The text characters to display in the widget. This value is required. If you don’t want an initial text
value, use “”.

flash_mode:

The current display flash mode. Options include:

off The segment display does not flash (flashing is off). This is the default.

all All characters in the display will flash.

match Only the last two characters in the display will flash.

mask The flash_mask parameter determines which characters in the display will flash.

flash_frequency:

The number of times per second the display should flash. The default is 1.0.

flash_mask:

Contains the flash mask string to use when flashing in mask mode. Each character of the flash mask
string represents a character in the display. Character positions with an F character will be flashed
while any other character will not flash. The default is None (no characters will flash). As an example,
FFFFFFFF________ will flash the first 8 character positions of a 16 character display which the last 8
characters will not flash. Note the _ character could be replaced with any other character (other than
F). You can use whatever character you wish for the non-flashing character positions.

Related Events 853

Mission Pinball Framework Documentation, Version

display_type:

The type of display (7 segment, 14 segment). Options include:

7seg The segment display emulates a 7-segment display.

14seg The segment display emulates a 14-segment display. This is the default value.

character_count:

The number of character positions in the widget. The size of each character is determined by the
widget size and the width is divided by the character count to get the character width.

character_spacing:

The space between each character/element (in pixels). The default value is 10.

character_slant_angle:

The angle at which the characters are slanted (degrees from vertical). The default value is 0.

padding:

The padding (empty space) around the display (in pixels). The default value is 20.

background_color:

The background color of the display widget, in rgba format. The default value is 000000ff (black).

segment_off_color:

The color of a segment that is off, in rgba format. The default value is 4b4c4aff (gray).

segment_on_color:

The color of a segment that is on (active) for each character in the display in rgba format. If a single
color is supplied, all characters in the display will be set to that color. This parameter can be animated
and also controlled using the Segment Display player.See Specifying Colors in Config Files for more
information on specifying colors in config files.

segment_width:

Width of each segment (as a decimal percentage of character width). The default value is 0.16 (16%).

Related Events 854

Mission Pinball Framework Documentation, Version

segment_interval:

Spacing between segments (as a decimal percentage of character width). The default value is 0.05
(5%).

bevel_width:

Size of segment bevels (as a decimal percentage of character width). The default value is 0.06 (6%).

side_bevel_enabled:

Determines if the sides of each character should be beveled (true or false). The default value is true.

dot_enabled:

Determines if an integrated dot/period should be displayed in each character (true or false). The
default value is false. When this is enabled, dot/period characters in the current text parameter value
will be combined with the character immediately prior to the dot/period character and the dot
segment will be on for that character (the dot will not use it’s own character position in the display).

comma_enabled:

Determines if an integrated comma should be displayed in each character (true or false). The default
value is false. When this is enabled, comma characters in the current text parameter value will be
combined with the character immediately prior to the comma character and the comma segment will
be on for that character (the comma will not use it’s own character position in the display).

character_map:

The character_map parameter allows custom character segment mappings (which segments are on/off
for each text character sent to the display). This advanced feature is useful for creating your own
special characters or simply overriding the default mappings for any individual character. For more
information on segment display character mappings, see David Madison’s Segmented LED Display -
ASCII Library page <https://github.com/dmadison/LED-Segment-ASCII>. This parameter is a
dictionary with integer keys and values (key is the ascii character ordinal number, value is the
segment bit mapping as an integer).

How to setup and use the virtual segment display emulator

This guide explains the basic steps to setup the virtual segment display emulator for your machine.
Support for the visual component of the virtual segment display emulator is part of the MPF media
controller and only available if you’re using MPF-MC for your media controller.

Related Events 855

Mission Pinball Framework Documentation, Version

1. Add your main display to your MPF config

Add the segment display to your list of displays in your machine-wide config file:

displays:

window:

width: 600

height: 200

The example above contains a single display named “window” and has a size of 600x200. This will be
the display that shows up on the computer screen.

2. Add your window configuration

The window: section of the machine-wide config holds the settings for the on-screen display window. If
you don’t have this section, add it now.

You can make the width and height anything you want. In this case we’re just configuring it to be
600x200 with a window title of “Mission Pinball Framework”.

window:

width: 600

height: 200

title: Mission Pinball Framework

3. Configure a window slide to show the on screen segment display

Now we have a working on-screen window, but if you run mpf both now, your on screen window will be
blank because we haven’t built any slides to show up.

So in this step, we’re going to build a slide for the on-screen window that will be shown when MPF
starts. We’ll add some widgets to that slide to make it look like a segment display.

First, create a slides: section in your machine config (if you don’t have one already), and then create
an entry for the slide that we want to show. In this case, we’ve decided to name that slide
“window_slide_1”. (Of course you can call this slide whatever you want.)

slides:

window_slide_1:

Next we have to add some widgets to that slide. (Refer to the documentation on widgets if you’re not
familiar with widgets yet.)

The first widget will be a segment display emulator widget with a glow effect which is a widget which
renders a emulation of a segment display:

slides:

window_slide_1:

widgets:

- type: segment_display_emulator

name: display1

character_count: 7

character_slant_angle: 0

(continues on next page)

Related Events 856

Mission Pinball Framework Documentation, Version

(continued from previous page)

character_spacing: 20

segment_width: 0.11

segment_interval: 0.04

segment_off_color: 4b4c4a30

segment_on_color: fe961bff

side_bevel_enabled: true

dot_enabled: true

comma_enabled: true

text: HELLO

width: 600

height: 150

y: 100

As you can see there are a lot of configuration options to modify the rendering of the segment display
segments/characters. This leads to a lot of very different looks for the resulting characters. One
important item to note is the name parameter of the segment display emulator must match the name
of the hardware segment display in MPF that we wish to connect to.

4. Configure the slide to show when MPF starts

Now we have a nice slide with the virtual segment display on it, but if you run MPF, you still won’t see
it because we didn’t tell MPF to show that slide in the window. So that’s what we’re doing here:

slide_player:

init_done:

window_slide_1:

target: window

If you don’t have a slide_player: entry in your machine-wide config, go ahead and add it now. Then
create an entry for the init_done event. This is the event that the media controller posts when it’s
ready to be used, so it’s a good event for our use case.

Then under that event, create an entry to show the slide you just created in the previous step.

5. Configure your virtual segment display “hardware”

At this point you have a simple display configured, and you have default content showing up (the text
“HELLO”). The final step is to add the configuration for your virtual segment display “hardware” so
that MPF can control your segment display emulator as if it were a hardware display.

MPF contains a virtual hardware platform to allow it to run without physical hardware connected
(Using MPF without physical hardware). This virtual platform contains code to allow it to
communicate with segment display emulator widgets as if it were a real hardware display (in fact, you
can develop your game using the virtual segment display and easily migrate it to actual hardware
later with few configuration changes).

The first step is to create a segment_displays: entry in your machine wide config and add an entry for
each segment display emulator widget (in this example we created a single widget so we will only
need one entry).

Related Events 857

Mission Pinball Framework Documentation, Version

segment_displays:

display1:

number: 1

A couple of things to note in the above configuration. display1 is the name we are assigning to the
segment display. This parameter value must match the one we assigned to the‘‘name‘‘ parameter of
the segment_display_emulator widget when it was created on the slide previously (we used a value of
display1). Be sure these values match or the communications between MPF and MPF-MC will not
update the segment display widget properly.

Repeat this process for each segment display emulator widget you configure.

Now we need to let MPF know to send changes to the segment displays to the virtual segment display
emulator in MPF-MC. This is accomplished using the virtual_segment_display_connector: plugin.

virtual_segment_display_connector:

segment_displays: display1

The segment_displays parameter contains a list of all the segment display names you want to use in
the connector to communicate with the segment display emulator widgets in MPF-MC.

6. Update your virtual segment display using the segment_display_player

Now that the virtual segment display is configured in the hardware section, it is time to configure the
mechanism to update the text in the display. To do this, we use the Segment Display player (see also
segment_display_player:).

segment_display_player:

update_segment_display_hello:

display1:

text: "HELLO"

update_segment_display_red:

display1:

action: set_color

color: "FF0000"

update_segment_display_score:

display1:

text: "{players[0].score:d}"

The segment display player establishes segment display updates that are triggered by events. In the
above example, the update_segment_display_hello event sets the segment display text for display1 to
HELLO. The update_segment_display_red event sets the segment display color to red for display1.
Finally, the update_segment_display_score event sets the text to the score for player 1 (this will update
automatically as the score changes using Text Templates).

Your virtual segment display should now be fully functional and ready for you to customize further for
your specific project.

Text Input Widget

The text input widget is a special widget which lets the player use the flipper buttons to cycle through
letters and numbers and to select them. This is used in the high score name entry and the service
mode.

Related Events 858

Mission Pinball Framework Documentation, Version

Currently the text input widget flashes a cursor over the selected letter, and the player hitting the
flipper buttons changes the letter in place. In the future, we’ll add an option to show all the letters on
the screen in a long list as well.

Settings

Here are the list of settings you can use for text_input widgets:

type: text_input

key:

char_list:

max_chars:

initial_char:

keep_selected_char:

dynamic_x:

dynamic_x_pad:

shift_left_event:

shift_right_event:

select_event:

abort_event:

force_complete_event:

font_size:

font_name:

bold:

italic:

halign:

valign:

Note: Text widgets also have “common” widget settings for position, opacity, animations, color, style,
etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

type: text_input

Tells MPF that this is a text_input widget. This setting is required when using text_input widgets.

key:

single

char_list:

String value, default is ABCDEFGHIJKLMNOPQRSTUVWXYZ_- \.

A list of all the characters that are available to be chosen by the player as they’re entering their name
or initials. The order they are here is the order they show up as the uses scrolls left or right. If you

Related Events 859

Mission Pinball Framework Documentation, Version

want to add, remove, or change any of the defaults, just add a new char_list: setting to this
text_input widget and completely replace the default list with your own list.

Note that “back” and “end” characters will automatically be added to the end of this list.

max_chars:

Integer value, default is 3.

How many characters can be entered into this text input field.

initial_char:

Single character value. Default is A.

The character from your char_list: that you want to be the initial character selected before the
player starts entering their name.

keep_selected_char:

Boolean (True/False or Yes/No), default is True.

When a player hits the start button to select a character and then the cursor moves to the next
position, should the selected character stay with the character they just selected, or should it go back
to the initial_char:?

dynamic_x:

Boolean (True/False or Yes/No), default is True.

If True, then the x position of this text widget will be updated as characters are selected and entered.
If False, then the widget’s x position will not change, and additional characters will be added to the
right edge.

In other words, if you plan to center this widget, set this to True. If you plan on left justifying it, set it
to False.

dynamic_x_pad:

Integer value. Default is 0.

If you’re using the dynamic_x: setting above, this is the number of additional pixels that will be added
to the total width of the widget to calculate the dynamic x position.

block_events:

A list of events that, when posted, will prevent the text input from shifting or selecting input values.
Useful for when a flipper cancel is used to select and the subsequent flipper inactive events shouldn’t
change the input.

Used in conjucting with release_events setting below.

Related Events 860

Mission Pinball Framework Documentation, Version

release_events:

A list of events that, when posted, will unblock the text input from shifting or selecting input values.

Used in conjuction with block_events setting above.

shift_left_event:

The event that, when posted, will shift the selected character from the char_list to the left. Default is
sw_left_flipper.

shift_right_event:

The event that, when posted, will shift the selected character from the char_list to the right. Default is
sw_right_flipper.

select_event:

The event that, when posted, will select (or “enter”) the currently highlighted character and move the
cursor to the next position. Default is sw_start (which is the event that’s posted when a switch tagged
with start is hit).

abort_event:

The event that, when posted, will abort (or cancel) the character entry process. Default is sw_esc
(which is the event that’s posted when a switch tagged with esc is hit).

force_complete_event:

The event that, when posted, will mark the text entry process as complete, even if the player hasn’t
entered all their characters yet. Default is None.

font_size:

Same as the font_size: setting for the Text Widget . See that documentation for usage.

font_name:

Same as the font_name: setting for the Text Widget . See that documentation for usage.

bold:

Same as the bold: setting for the Text Widget . See that documentation for usage.

Related Events 861

Mission Pinball Framework Documentation, Version

italic:

Same as the italic: setting for the Text Widget . See that documentation for usage.

halign:

Same as the halign: setting for the Text Widget . See that documentation for usage.

valign:

Same as the valign: setting for the Text Widget . See that documentation for usage.

anchor_y: baseline

Text input widgets have an additional baseline option in addition to the other baseline options
detailed in the common widget settings documentation.

Triangle widget

The triangle widget is used to draw triangles on a slide.

Here’s an example:

#config_version=5

slide_player:

mc_ready:

triangle_example:

- type: triangle

color: blue

points: 0, 0, 100, 0, 100, 100

- type: triangle

points: 400, 400, 300, 200, 600, 500

color: red

- type: triangle

points: 200, 500, 100, 400, 300, 400

The example above results in the following:

Related Events 862

Mission Pinball Framework Documentation, Version

Settings

type: triangle

points:

Note: Triangle widgets also have “common” widget settings for position, opacity, animations, color,
style, etc. Those are not listed here, but are instead covered in common widget settings page.

Also remember that all widget settings can be controlled via widget styles, rather than you having to
set every setting on every widget.

The following triangle widget settings may be animated : color:, points:, opacity:, rotation:, and
scale:.

type: triangle

Tells MPF that this is a triangle widget.

Related Events 863

Mission Pinball Framework Documentation, Version

points:

A list of six numbers which are the the x,y coordinates for each of the three corners. For example,
points: 400, 300, 200, 300, 400, 200 would be a triangle with one corner at (400, 300), another
corner at (200, 300), and the final corner at (400, 200).

Camera Widget

The camera widget is used to show live video from an attached camera a slide.

Here’s an example:

#config_version=5

mpf-mc:

widgets:

camera: mpfmc.widgets.camera

slide_player:

mc_ready:

camera_example:

- type: camera

width: 800

height: 600

Settings

type: camera

width:

height:

camera_index:

TODO

Common Settings that Apply to All Widget Types

The following settings are “common” settings that apply to all types of widgets:

type:

x:

y:

anchor_x:

anchor_y:

opacity:

z:

rotation:

animations:

reset_animations_events:

color:

style:

adjust_top:

adjust_bottom:

(continues on next page)

Related Events 864

Mission Pinball Framework Documentation, Version

(continued from previous page)

adjust_left:

adjust_right:

expire:

key:

events_when_added:

events_when_removed:

type:

Specifies the type of widget, such as type: text or type: image. This setting is required (since MPF
needs to know what kind of widget it is).

x:

The horizontal position of the widget on the slide. This setting can be entered in several ways:

∙ Absolute position: a number like 0, 200, or -50

∙ Relative position entered as a percent: 20% or -12%

∙ A positional keyword: left, center, or right

∙ A combination of positional keyword and a value: left+10%, right-5

The default value is center.

See the widget positioning documentation for full details on how to position a widget on a slide.

y:

The vertical position of the widget on a slide. This setting can be entered in several ways:

∙ Absolute position: 0, 200

∙ Relative position entered as a percent: 20%

∙ A positional keyword: top, middle, or bottom

∙ A combination of positional keyword and a value: bottom+10%, top-5

The default value is middle.

See the widget positioning documentation for full details on how to position a widget on a slide.

anchor_x:

The horizontal “anchor” point of the widget which specifies what point on the widget is used for the
horizontal positioning. Valid options are left, center (or middle), and right.

The default value is center.

See the widget positioning documentation for full details on how to position a widget on a slide.

Related Events 865

Mission Pinball Framework Documentation, Version

anchor_y:

The vertical “anchor” point of the widget which specifies what point on the widget is used for the
vertical positioning. Valid options are top, middle (or center), and bottom.

The default value is middle.

See the widget positioning documentation for full details on how to position a widget on a slide.

opacity:

A value from 0 to 1 which controls the opacity (or transparency) of the widget. You can use decimal
values between 0 and 1 for partial transparency.

∙ Completely transparent (e.g. invisible): 0

∙ Completely opaque (e.g. normal): 1

∙ 50% transparent: 0.5

The default value is 1.

Note that some widget types allow you to set values greater than 1, which will have the effect of
making the “glow” of the widget brighter. This isn’t a great effect, but it could be useful in some cases.

Caution: Note that opacity values are 0 to 1, not 0 to 100. If you set opacity: 100 then that’s
really like 10,000% opacity and your widget will probably look really weird.

z:

Specifies the “layer” or “z-order” of the widget. Higher z values mean that if parts of two widgets
overlap on the slide, the one with the higher value will be drawn on top of the one with the lower
value. (e.g. z: 100 will be drawn on top of z: 99.)

The default drawing order of widgets is controlled by the order the widgets are listed in the slide,
widget group, or widget_player config entry. So usually you don’t need to manually set the z value,
instead just put them in the order you want in your config.

However, being able to manually set the z value is nice if you want to add a widget to an existing slide
and have it appear above and below certain widgets.

The default z value is 0.

If you do want to add a widget with a particular z order to an existing slide, you’ll probably have to set
those existing widgets to a z value other than 0.

rotation:

Specifies the rotation of the widget. Values are entered in degrees. For example, 90 = one quarter
rotation counter clockwise. May be used to rotate images and GIFs.

Related Events 866

Mission Pinball Framework Documentation, Version

animations:

Contains a list of events and the animated widget properties and steps for each of those events. See
the widget animation documentation for details.

reset_animations_events:

A list of events which are used to reset the widget to its original settings and stop all running
animations. See the widget animation documentation for details.

Note that this seems like a grammatical error, since it’s “animations events”, but it’s correct in this
case because this setting is for a list of events that resets the widget animations (since animations
themselves are a list of separate animations).

color:

Sets the color (and opacity) of the widget. This is pretty straightforward for most widget types (like
text and the various shape widgets). If you set this for an image or video widget, it will have the effect
of “tinting” the widget with the color you specified.

You can enter this as a hex color string or a color name. See the color instructions for details.

If you’re entering hex strings, you can enter either 6 or 8 characters. The first six characters are RGB
values (00-ff each), and the final is the opacity (00-ff). If you don’t enter an opacity, ff (fully opaque)
is used.

The default value is ffffffff which is white at 100% opacity.

style:

The name of the style (or styles) you want to apply to this widget. Note that styles must be previously
defined somewhere in your config in order to use them. Also you can override any setting from the
style by also manually including it in the widget config. See the style documentation for details.

New in MPF 0.51: Multiple style names can be provided for this setting, and the corresponding styles
will be applied to the widget sequentially. As a result, individual style names cannot have spaces in
them.

The default value is None which means no style is used.

adjust_top:

Redefines the top point of the widget when used in positioning to compensate for widgets that have
visual top points that don’t align with their technical top points.

The default value is None.

See the widget positioning documentation for full details on how widget positioning offset
adjustments work.

Related Events 867

Mission Pinball Framework Documentation, Version

adjust_bottom:

Redefines the bottom point of the widget when used in positioning to compensate for widgets that
have visual bottom points that don’t align with their technical bottom points.

The default value is None.

See the widget positioning documentation for full details on how widget positioning offset
adjustments work.

adjust_left:

Redefines the left point of the widget when used in positioning to compensate for widgets that have
visual left points that don’t align with their technical left points.

The default value is None.

See the widget positioning documentation for full details on how widget positioning offset
adjustments work.

adjust_right:

Redefines the right point of the widget when used in positioning to compensate for widgets that have
visual right points that don’t align with their technical right points.

The default value is None.

See the widget positioning documentation for full details on how widget positioning offset
adjustments work.

expire:

Sets a time (such as expire: 2s) for this widget to be removed from the slide once it’s added to it.
This is useful with the widget_player when you want to add a widget to an existing slide and then
remove it again.

The default value is None.

key:

Specifies a “key” name which is assigned to the widget which you can later use to target this widget if
you want to do something to do (change a property, remove it, etc.) You don’t need to specify keys for
every widget—only for the ones that you want to target later.

See the documentation on widget keys for details.

events_when_added:

List of one (or more) values, each is a type: string. Default: None

A list of one or more names of events that MPF will post when this widget is added to a slide. Enter
the list in the MPF config list format. These events are posted exactly as they’re entered.

Related Events 868

Mission Pinball Framework Documentation, Version

events_when_removed:

List of one (or more) values, each is a type: string. Default: None

A list of one or more names of events that MPF will post when this widget is removed from a slide (or
when the slide it is on is removed). Enter the list in the MPF config list format. These events are
posted exactly as they’re entered.

Adding widgets to a slide

Now that you know what widgets are, it’s time to look at how you can actually use them.

Option 1. Define widgets when you define a slide

The easiest way to create and use widgets is to include them in the slide configuration when the slide
itself is created.

You can do this when you define a slide in the slides: section of your config, or when you show a slide
in the slide_player: section of your config. See the How to create slides guide for details.

Option 2. Use the “widget player”

If you want to add a widget (or a groups of widgets) to an existing slide, you can use the
widget_player:. You can define your widgets there, or you can use widgets that you’ve pre-defined .

How to position widgets on slides

Probably the most important thing to know about putting widgets on slides is how to position them.

1. Understanding MPF display coordinates

At the most basic level, every display slide has a resolution (always conveyed in the order width, then
height), and widgets have a position on slide (horizontal, then vertical).

∙ The dimensions of the slide are always described width (x), then height (y). (So a 128x32 display
is 128 pixels wide and 32 pixels tall.)

∙ The “zero” position is the lower-left corner. (Just like an x-y cartesian coordinate graph from
school.)

∙ Since the (0, 0) position is the actual location of the lower-left corner pixel, the upper-right
pixel is actually one less than the width and height of your slide. (e.g. a display that’s 128 pixels
wide has x positions 0 through 127.

∙ A widget’s position is always described horizontal (x), then vertical (y). So a widget at position
(10, 20) is 10 pixels in from the left edge and 20 pixels up from the bottom.

Here’s a simple example that illustrates this:

Related Events 869

Mission Pinball Framework Documentation, Version

By the way, in MPF, the actual “pixel size” of the display as MPF sees it is separate from actual pixels
of the physical display. So you could have a display in MPF that’s 400x300 pixels, but you show that
full size on an LCD that’s 1920x1200 pixels. MPF will automatically scale the logical display to fit in
the size of the window you configure on the physical display. This is known as “resolution
independence”, and is nice if you ever have to replace your LCD in the future and the new one you buy
doesn’t have the same resolution as your old one.

2. Understanding widget “anchors”

In the diagram from the first step, the “position” of each widget is set based on its lower-left corner. In
real life, if you had to position every widget based on its lower-left corner all the time, you’d go crazy!
For example, to “center” a widget, you’d have to calculate what the x and y offsets were and then do
some math, and then if you animated the widget’s size you’d have to recalculate it. . . it would be a
mess!

Fortunately MPF does all this math for you.

When you configure a widget in MPF, you can config its “anchor” point (both anchor_x for the
horizontal anchor and anchor_y for the vertical anchor.)

A widget’s anchor setting tells MPF what point on the widget is used to position it on the slide. Here
are some examples which show how various anchor settings are applied to different widgets. The red
bulls-eye target represents the point that’s used by MPF to position that widget with each type of
anchor settings.

Related Events 870

Mission Pinball Framework Documentation, Version

3. Combing anchors and widget positioning

Now that you know how the coordinates and anchors work, let’s look at some examples that combine
these two concepts:

In the diagram above, you can see how the bulls-eye anchor target is the actual point of the widget
that is positioned with each widget’s x: and y: settings.

Related Events 871

Mission Pinball Framework Documentation, Version

You’ll also notice that widgets can be fully or partially be positioned outside the boundaries of a slide.
(This is useful if you want to animate a widget “entering” the slide from off screen–you’d position the
widget so it’s outside the bounds of the visible window and then animate it moving on.) Also note that
positioning can be negative. Negative x values are off the left edge of the slide, and negative y values
are off the bottom.

As you look at this example, you can probably start to see that different anchors make sense for
different types of positioning. For example, if you have several widgets that you’d like to left-align,
then it makes sense to set their anchors to anchor_x: left and positioning them based on their left
edge.

By default, MPF uses the center of the widget for the anchor. This is what you get if you do not include
an anchor_x: or anchor_y: setting. (Also the terms middle and center are interchangeable in all
widget anchor and positioning settings.)

4. Relative positioning

Even though anchors are powerful, it can still be kind of confusing to position widgets based solely on
x: and y: pixel values. After all, you constantly have to think about how big your display is and do lots
of math to get your values set.

Fortunately MPF can use relative positions for a widget’s x: and y: values, as show here:

There are a lot of different options in this diagram, so let’s go through them one-by-one.

First, for x: values, you can use:

∙ x: left - Positions the anchor of the widget at the left edge of the slide

∙ x: center - Positions the anchor of the widget in the horizontal center

∙ x: right - Positions the anchor on the right edge

Related Events 872

Mission Pinball Framework Documentation, Version

You can also use percentage values. The percentages are automatically calculated based on the width
of the slide. So if you set x:50% and your slide is 800 pixels wide, the x value will be 400. (x: 50% is the
same as x: center.)

For y: values, you can use:

∙ y: top - Positions the anchor of the widget at the top of the slide.

∙ y: middle - Positions the anchor of the widget in the vertical middle.

∙ y: bottom - Positions the anchor on the bottom edge.

Again, you can also use percentages.

What’s really cool is you can also combine relative words with pixels and percentages. Some
examples:

∙ x: center+10 - Positions the x anchor of the widget 10 pixels to the right of the center position.

∙ x: center-10 - Positions the anchor 10 pixels to the left of the center.

∙ y: top-10% - Positions the y anchor 10% below the top edge of the slide.

5. Try to use relative & percent positioning for everything

If you can manage to use relative (top/bottom/left/middle/etc.) and percentage values for everything,
then your display system will be completely resolution independent!

Remember we said that the logical size of a display in MPF can be scaled up to any size physical
display. So if you build your configs for a 1024x768 display, and then a few years down the line, you
install a 1600x1200 monitor, you can make one simple config change to tell MPF to scale your
1024x768 up to the 1600x1200 display. That’s fine, but you won’t have a display that’s as crisp as it
can be because the graphics card will be scaling everything.

However, if you config all your widget positioning using only relative positions and percentages, then if
you get a new display in the future, you can change the native logical resolution of your display in MPF
and then make full use of the full resolution. It would be like everything instantly becoming high res!

6. Widget positioning offset adjustments

Another features of widget positioning in MPF is something known as an “offset adjustment”. So far
we saw how anchors can be positioned in the middle or an edge of the widget. The offset adjusts let
you fine-tune the position of the anchor so it can be anywhere–including off the widget altogether!

Why would you want to do that? The main reason is that sometimes the technical edge of your widget
is not exactly in the position that makes the most logical sense. A good example of this is text widgets.
Many fonts have bounding boxes that are a few pixels bigger than the actual rendered text. For
example, the text bounding box will allow for lower case letters that hang down below the baseline,
but most pinball machines only use uppercase letters. This makes it hard to align the baseline of your
font because there is random space under it:

Consider the following example where you want to align the bottom of the text with the bottom of the
circle. The black areas represent the visible pixels, and the gray area is the actual widget bounding
box. Even though this font is small (only 5 pixels tall, uses for small text on a DMD), it still has two
blank rows of pixels below every letter. This means that if you set the anchor_y: bottom on both your
text and the circle, they will not actually be aligned:

Related Events 873

Mission Pinball Framework Documentation, Version

What’s even worst is that this font only has 1 extra row on top, so if you want to center-align it with
another widget you won’t get the actual center of the visible text.

Fortunately MPF has a way to deal with this in the form of anchor adjustments. There are four
adjustment values you can configure for a widget:

∙ adjust_top

∙ adjust_right

∙ adjust_left

∙ adjust_bottom

All of these settings are optional. (They all default to 0.)

You might think it’s weird that there are top, right, left, and bottom adjustments. Why not just have
simple x and y adjustments? The reason is because having four is easiest when you’re actually laying
out your slides. For example, you might have a widget (like our text widget) with different amount of
extra space on the top versus the bottom. So letting you specify an offset for the top and a separate
offset for the bottom means that you can anchor and position that widget by either the top or the
bottom and you don’t have to mess with the adjusts each time. (It also means that center anchors will
actually be in the visual center of the widget.) In other words, you set your adjustments once and
never have to worry about them again.

For all the adjustments, positive values move the edge of the widget more towards the center (cutting
off extra pixels), and negative values move it more away from the center (adding padding)

Going back to the example from before, if we add adjust_bottom: 2, that will move the adjustment
point 2 pixels towards the middle, meaning our bottom alignment now actually aligns:

Negative values have the effect of adding padding to widgets, which can also be nice as you’re
aligning and distributing things.

The only other thing to know about adjustments is that they only affect the positioning of the widget.
Adjustments are not cropping, and they will not “cut off” or “trim” the widget.

Related Events 874

Mission Pinball Framework Documentation, Version

7. Widget position rounding

Sometimes a center-anchored or percentage-based widget will end up at a position with a fractional
pixel. High-resolution displays have no trouble smoothing out partial pixels, but low-resolution
displays (like DMDs) may render the widget blurry.

You can prevent MPF-MC from positioning widgets on pixel fractions with the round_anchor_x: and
round_anchor_y: setting, either locally on a widget or globally on the display. When present, this
setting will force MPF-MC to round fractional anchor positions in the specified direction.

∙ round_anchor_x: left - Round the horizonal pixel position down

∙ round_anchor_x: right - Round the horizonal pixel position up

∙ round_anchor_x: center - Do not round the pixel position (default)

∙ round_anchor_y: bottom - Round the vertical pixel position down

∙ round_anchor_y: top - Round the vertical pixel position up

∙ round_anchor_y: center - Do not round the pixel position (default)

This setting is valid on widgets and displays. If you have a display and a widget both configured for
rounding, the widget’s setting will take priority.

8. Widget positioning can be done in styles

One of the powerful features of widgets in MPF is that you can configure widget styles, which are like
buckets of settings that are applied and merged into widget settings. You can put any widget settings

Related Events 875

Mission Pinball Framework Documentation, Version

you want in a style (and then specify the style to be applied to a widget in the style: setting in a
widget config, a slide config, a show, or a widget player).

Styles can be used in several different ways. For example, you can configure a style for text widgets
which has the font name, font size, and adjustments so you can simply add style: big to a widget and
everything will be there.

You can also put x: and y: settings in styles and use them to position and size the widgets on different
parts of your display. For example, you might have an area of the screen that always shows some kind
of status message, and even though that might be used throughout your game, you might always want
the same font, alignment, size, and positioning no matter what’s there. So you can define a style called
info_zone and then any text widget that uses that style will always show up in the right place. (You
can also use styles for z-order and animations, so you can use a style to define popups and other
things that you’ll use over and over.)

See the How To guide on widget styles for details.

9. Putting it all together

So now you’ve seen all the options for positioning and placement of widgets. But how do you actually
use them? Simple. Everything discussed here are just regular widget settings. So you can use them in
slides:

slides:

slide1:

widgets:

- type: text

text: MY WIDGET

x: left+10%

y: top-10%

adjust_bottom: 2

You can use them in named widgets:

widgets:

my_cool_widget:

- type: text

text: MY WIDGET

x: left+10%

y: top-10%

adjust_bottom: 2

You can use them in the widget player:

widgets:

my_widget:

- type: text

text: "MY WIDGET"

widget_player:

some_event:

my_widget:

widget_settings:

x: left+10%

y: top-10%

adjust_bottom: 2

Related Events 876

Mission Pinball Framework Documentation, Version

And you can use them in shows:

in your machine config

widgets:

my_widget:

- type: text

text: "MY WIDGET"

##! show: test_show

in your show

- duration: 1

widgets:

my_widget:

widget_settings:

x: right-15.4%

y: top

How to animate display widgets

One of the features of MPF is that you can animate display widgets. Animating a widget means that
you can change a widget’s properties over time. You can pretty much change any numeric property,
including size, position, opacity, etc.

When animating widgets, you specify multiple properties to change at the same time, or a sequence of
changes one after the other (or both). You can also specify the duration of each step, the “easing”
formula that affects the curve (acceleration/deceleration) of the change, and whether the animation is
a one-time thing or a repeating loop.

You can also configure animations to start playing as soon as the widget is created, or tie steps (or
series of steps) to MPF events, meaning a widget might be static, then the event “move_widget” is
posted and it moves, then the event “remove_widget” is posted and it’s animated away.

This How To guide will show you how to do all of that.

1. Understanding animations in MPF

MPF animations are properties of widgets. For example, here’s a basic widget with no animations:

slides:

slide_1:

widgets:

- type: text

text: MY TEXT

color: red

To add animations to a widget, you simply add an animations: setting to that widget, and then under
there you add specific animation steps and settings. For example:

slides:

slide_1:

widgets:

- type: text

text: MY TEXT

color: red

(continues on next page)

Related Events 877

Mission Pinball Framework Documentation, Version

(continued from previous page)

animations:

show_slide: # animation trigger event

- property: opacity # name of the widget property we're animating

value: 1 # target value of that property for this step

duration: .5s # duration for this step (how long it takes to get there)

- property: opacity # second step in the animation (starts with a hyphen)

value: 0

duration: .5s

repeat: true # added to the final step, tells this animation to repeat (loop)

In the example above, an animations: setting has been added to the widget. Then under there, you
add the name of the event you want to use to trigger this animation to start. In this case, we use a
special event called show_slide: which means these animations are triggered when the slide is shown
on a display.

Next, notice that under the event, there are two steps (each beginning with a hyphen and a space).

There are several settings you can specify in each step. (See the config file reference for animations
for details)

In this example, there are three settings for the first step:

- property: opacity

value: 1

duration: .5s

The property setting is the name of the widget’s property that you want to animate. This can be
almost any numerical property of the widget, including x:, y:, opacity, etc. (Different widget types
have different types of animatable properties. For example, on text widgets you can animate the
font_size:, on various shape widgets you can animate the height:, width: and rotation:, etc.)

2. Relative animation values

Sometimes it is desirable to animate a value a relative amount from a widget’s current value rather
than specifying an absolute target value. This can be done using relative: True. With the relative:
parameter set to True, the new target value will set by adding the value: parameter to the widget’s
current property: value when the animation starts. When relative: is set to False, the animation
target uses the actual value: property value as its destination.

The following example animates a widget 50 pixels in the x direction over one second from its current location,
then -50 pixels in the y direction over another second followed by a 45 degree rotation over 500
ms:

- property: x

value: 50

relative: True

duration: 1s

- property: y

value: -50

relative: True

duration: 1s

- property: rotation

value: 45

(continues on next page)

Related Events 878

Mission Pinball Framework Documentation, Version

(continued from previous page)

relative: True

duration: 500ms

3. Animation trigger events

The animation trigger event (which is the show_slide: entry in the example from the previous step is
the name of the MPF event you want to use to start the animation.

These are regular MPF events and can be anything—a shot being made, a switch hit, etc. (See the
event reference for a full list of events.)

In most cases, however, you’ll probably want to trigger an animation to start playing when the slide is
created, so in addition to being able to use any MPF event, there are also a few special events
(sometimes called “magic events”) that have special meaning here:

add_to_slide:

This event is triggered when a widget is added to a slide. This is useful when you’re using the
widget_player to add to new widget to an existing slide, and you want an animation to be applied to
that widget as soon as it’s added.

remove_from_slide:

This event is triggered when a widget is is removed from a slide.

pre_show_slide:

This event is triggered when the slide this widget is part of is about to be shown. This doesn’t
necessarily get called when the slide is created or when the slide_player: event happens, because if
the slide is not the highest priority slide, then the slide will be created but not shown. So this event
happens right before the slide is shown.

If there’s an entrance transition, this method is called BEFORE the transition starts. In other words, it
means the animation will be playing as the slide transition is happening.

show_slide:

This event is triggered when the slide this widget is part of has been shown and is the current slide on
the display. This doesn’t necessarily get called when the slide is created or when the slide_player:
event happens, because if the slide is not the highest priority slide, then the slide will be created but
not shown. So this event happens right before the slide is shown.

If there’s an entrance transition, this method is called AFTER the transition starts. In other words, it
means the animation will NOT be playing as the slide transition is happening.

Related Events 879

Mission Pinball Framework Documentation, Version

pre_slide_leave:

This event is triggered by the current slide that’s being shown on a display is about to be replaced by
another slide.

If there’s an exit transition, this method is called BEFORE the transition starts. In other words, it
means the animation will be playing as the slide transition is happening.

slide_leave:

This event is triggered by the current slide that’s being shown on a display is has been replaced by
another slide.

If there’s an exit transition, this method is called AFTER the transition starts. In other words, it means
the animation will be NOT playing as the slide transition is happening.

You might wonder what this is for, since what’s the point of an animation if the slide is not showing?
This is useful if you want to pause or reset an animation when the slide is not active. Then you can
resume or restart the animation with the “pre_show_slide” or “show_slide” event when the slide is
shown again.

slide_play:

This event is triggered when the slide this widget is part of is played as part of a slide_player: “play”
command, either via a standalone slide player config or as a show step).

Other slide-related MPF events

In addition to the seven special-purpose animation trigger events listed above, there are three
standard MPF events which are posted when slides are created, when they become active, and when
they’re removed. See the events reference for details on when these three events are posted.

∙ slide_(slide_name)_created

∙ slide_(slide_name)_active

∙ slide_(slide_name)_removed

4. Animating multiple properties at once

The example animation above includes two steps (one to set the opacity to 1 and the next to set it to
0). By default steps are sequential, meaning that one step completes before the next one starts.
However you can add a timing: with_previous to an animation step which will make it so that step
runs at the same time as the step before it. This means you can animate multiple properties at once.

For example, to make the text grow and shrink while also fading on and off:

slides:

slide_1:

widgets:

- type: text

(continues on next page)

Related Events 880

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: MY TEXT

color: red

font_size: 50

animations:

show_slide:

- property: opacity

value: 1

duration: .5s

- property: font_size

value: 100

timing: with_previous # makes this step run at the same time as the previous one

duration: .5s # specify a duration for each step, even when with_previous

- property: opacity

value: 0

duration: .5s

repeat: true

- property: font_size

value: 50

duration: .5s

Notice that the animation in the example above has 4 steps, but steps #2 and #4 have the setting
timing: with_previous. You can chain together as many with_previous steps as you want. (The
default setting for one step to run after the previous one is timing: after_previous, but since that’s
the default you don’t need to explicitly add it.

Also note that all 4 steps above specify duration: .5s. However you can make each step a different
amount of time. In fact you can even make multiple with_previous steps different durations (though
the animation won’t move on to the next after_previous step until all the simultaneous steps are
complete).

By the way, the example above is a widget that’s part of a slide, but remember you can add animations
to widgets anywhere a widget is defined (in the slide properties, in a show step, as part of a named
widget , as part of a widget_settings: override section in the widget_player:, etc.)

It is also possible to animate multiple properties in a single animation step by using a list in both the
property: and value: parameters (there must be the same number of items in both lists). The
following example moves a widget diagonally to the coordinate (10, 20) while rotating it 180 degrees
over 5 seconds:

- property: x, y, rotation

value: 10, 20, 180

duration: 5s

5. Multi-step animations with different trigger events

So far all of the animation examples have been triggered on the show_slide event (which means they
start animating as soon as the slide is shown).

You can create multiple event entries in the animation that cause different animations to take place
when different events occur. You can mix and match these as much as you want, including mixing the
“special” animation trigger events with regular MPF events.

Related Events 881

Mission Pinball Framework Documentation, Version

slides:

slide1:

widgets:

- type: text

text: I'M GOING TO MOVE

x: 50

y: 50

animations:

move_up:

property: y # if there's just one animation step, we don't need the hyphen

value: 100

move_down:

property: y

value: 0

move_right:

property: x

value: 100

move_left:

property: x

value: 0

move_home:

- property: x

value: 50

- property: y

value: 50

timing: with_previous

In the above example, we have five different animation events configured. These are just regular MPF
events which you can use from logic blocks, shots, switch events, etc. When the event move_up is
posted, this widget will move to the top of the display (x: 100), when the move_left event is posted, it
will move to the left of the screen, etc.

If move_home is posted, there are two steps in the animation which both run together to move the
widget back to its initial position.

Again, you can use any combination of properties and any number of steps for each event.

You can also use a property from your event. For instance, you can move a widget based on a player
variable:

slides:

slide1:

widgets:

- type: text

text: I'M GOING TO MOVE

x: 50

y: 50

animations:

player_loops: # this is posted when the player variable "loops" changes

property: y

value: (value) # this is the value of loops

Related Events 882

Mission Pinball Framework Documentation, Version

6. Looping and repeating animations

So far, every animation sequence we’ve looked at will just run through once and then stop. However,
you can add repeat: true (or repeat: yes) to the last step of an animation, and that will cause that
animation to loop back to the beginning and keep repeating.

Of course you can mix-and-match repeating animations with one time animations. For example:

slides:

slide1:

widgets:

- type: text

text: BOO!

y: -50

font_size: 90

animations:

show_slide:

property: y

value: 50

duration: 500ms

pulse_boo:

- property: font_size

value: 100

duration: 250ms

- property: font_size

value: 90

duration: 250ms

repeat: true

bye_boo:

- property: y

value: 100

- property: x

value: 150

timing: with_previous

In the example above, when the slide is shown (or when the widget is added if this config was in your
widgets: section and you added it via a widget_player: entry), the widget will fly into the slide from
the bottom (since the initial y value is -50, it will start off the screen). Then when the pulse_boo event
is posted, the two-step animation which makes the font size bigger and smaller will starting playing
and repeat forever. Finally when bye_boo is posted, the widget will fly off the screen to the upper right.

There is something special to consider when working with 360 degree rotations. Setting the property
rotation to 360 results in a complete turn of a widget. However, attempting to repeat the 360 degree
rotation appears to do nothing. This is because of how Kivi handles 0 and 360 degrees. When the
rotation completes, the widget is at rotation 360 degrees. Repeating the step fails to cause the widget
to move because it is already at destination. To create continuously rotating widgets, a two step
process is required:

slides:

slide1:

widgets:

- type: text

text: I'M GOING TO ROTATE

x: 50

y: 50
(continues on next page)

Related Events 883

Mission Pinball Framework Documentation, Version

(continued from previous page)

animations:

show_slide:

- property: rotation

value: 0

relative: false

duration: 0

- property: rotation

value: 360

relative: false

duration: 2s

repeat: true

The first step creates a reset point setting the widget at 0 degrees. This assures that there is always a
destination to rotate to which is provided by the following step.

7. Inserting a “pause”

Sometimes you might want to add a timed “pause” to an animation, where one step animates, then it
pauses, then another step animates.

The easiest way to do that is just to add a step where the property value in the step is the same as
whatever value that property is currently at. This is easy to do using a relative property value of 0 as
shown in the following example. So you still have the step in the animation, it just isn’t doing anything
since the widget’s property is already at the desired target value. For example:

slides:

slide1:

widgets:

- type: image

image: flying_toaster

y: -50

animations:

show_slide:

- property: y

value: 50

duration: 1s

- property: y

value: 0

relative: true

duration: 2s

- property: y

value: 200

The the example above, the flying_toaster image will move in from the bottom of the screen (to y:50)
in 1 second, then pause for 2 seconds (since y: 50 again), then move out of the top of the screen in 1
second.

8. Easing

You can also set “easing” values for each animation step which controls the formula that’s used to
interpolate the current value to the target value over time. The default is linear which just does a

Related Events 884

Mission Pinball Framework Documentation, Version

constant motion (no acceleration/deceleration) over time. Refer to the Easing Instructions for details
on how this works and descriptions of all the options.

9. Creating reusable “named” animations

Much like named widgets, you can also create pre-defined animations that you can easily apply to any
widget. You do this by adding those animations to the animations: section of your config, like this:

animations:

fade_in:

property: opacity

value: 1

duration: 1s

fade_out:

property: opacity

value: 0

duration: 1s

Now you can use these animations, by name, in any widget or widget_player config where you would
ordinarily define your own animations.

For example, to configure a widget to fade in (assuming the widget was initially created with opacity:
0:

widgets:

hello_widget:

- type: text

text: HELLO

animations:

show_slide: fade_in

Again remember this can be done anywhere you configure an animation. So if you later wanted to fade
that text out when the event “timer_hurry_up_complete” is posted, you can do it like this:

widgets:

hello_widget:

- type: text

text: HELLO

animations:

show_slide: fade_in

timer_hurry_up_complete: fade_out

10. Chaining multiple named animations together

When working with named animations, you can chain together multiple named animations for a single
event by specifying them as a list, like this:

widgets:

hello_widget:

- type: text

text: HELLO

animations:

some_event: fade_in, fade_out, pulse

Related Events 885

Mission Pinball Framework Documentation, Version

Any animation with timing: with_previous in the first step will run with the previous one, meaning
you can create lots of little effects and sub-animations and then combine them in reusable ways
throughout your config.

You can even use the same animation over and over in a sequence to repeat something a certain
number of times. For example:

animations:

pulse:

- property: opacity

value: 0

duration: 100ms

- property: opacity

value: 1

duration: 100ms

timing: after_previous

widgets:

widget1:

- type: text

text: HELLO

animations:

flash_3x: pulse, pulse, pulse

In the example above, when the MPF event “flash_3x” is posted, it will cause widget1 to pulse three
times.

11. Animating a progress bar

MPF can also animate progress bars or similar things. In this example, we animate a progress bar
based on the player variable progress by hooking the width of the bar to the event player_progress
which is posted when the value changes:

slides:

green_slide:

widgets:

- type: rectangle

y: 50

z: 20

anchor_x: left

anchor_y: center

width: 0

height: 16

corner_radius: 3

corner_segments: 3

color: 00FF00

animations:

player_progress:

- property: width

value: (value)

Related Events 886

Mission Pinball Framework Documentation, Version

Easing Instructions

MPF has the ability to use “easing” functions to adjust the acceleration and deceleration of motions
associated with slide transitions and widget animations.

An easing function is a formula that calculates a progress value based on an input value.

Let’s look at a simple (but not realistic) example of animating a widget that moves 10 pixels in 10
seconds. With no easing function applied, it would have moved 1 pixel after 1 second, 2 pixels after 2
seconds, etc.

At first you might think this seems fine, but to the viewer it will not look natural because it will
instantly start moving at full speed, and then it will stop suddenly when it gets to the end. A more
natural approach would be to have it accelerate slowly at the beginning and then to decelerate as it
approaches the end.

All animation and transition functions in MPF change a value over a certain amount of time. (Move 50
pixels in 2 seconds, change the opacity from 100% to 50% in 500ms, etc.)

We can illustrate this with a graph, where time is the X axis, and the value is the Y axis, like this:

The image above shows the default formula with no easing applied. (This is technically the “linear”
easing function.) The value of the function is directly related to the time, and the speed of change is
the same at the beginning and end.

But what if we wanted our animation to start slow and accelerate, then slow down again towards the
end? For that, we could use a formula like this:

Notice that at the beginning (in the lower left corner), as you move right, the red line doesn’t change
too much. Then towards the middle, the red line changes more as the transition speeds up, and then

Related Events 887

Mission Pinball Framework Documentation, Version

at the end (towards the upper right), the line changes more slowly.

Here’s an animated GIF which shows five different easing functions applied to animate text moving
left and right.

Don’t worry about the function names. We’ll cover those in a bit.

Note: If you’re viewing the PDF version of these docs, you won’t see the GIFs since they’re animated.
You can view the docs online to see them.

Note that the move to the left and the move to the right are two separate animations, meaning the a
single movement left or right is showing the same easing function used in both directions.

If you’re curious about the MPF config used to create this animated GIF, we’ve posted it here.

You can also imagine how an easing formula would look if you wanted something to start slow, but
then speed up without slowing down again. (This might be useful if you want a widget to move off
screen since it will have a gentle start and then it will shoot off and get faster and faster.) That
function might look like this:

Conversely, if you have a widget coming in from off screen, you might want it to start out fast and then
slow down as it approaches its final location. For that you could use what’s essentially the opposite of
the previous formula, like this:

The important thing to remember with these easing formulas is that the red line does NOT represent
the path the moving objects take, rather, it represents how the progress of the change happens over
time.

Related Events 888

Mission Pinball Framework Documentation, Version

Where can you apply easing?

In MPF, these easing functions are used in two places:

∙ For widget animations, to affect how the progress of an animated property progresses over time.

∙ For some (not all) slide transitions, to affect the progress of the transition over time.

Remember when you’re animating a widget, you can animate ANY numerical property. So this can
include the x/y position on the display, but it can also include the size, scale, and/or the opacity
(transparency).

Here’s an animated GIF showing the same five easing functions applied to each text widget’s opacity
property (cycling them between 1 and 0):

Refer to the slide transition and widget animation documentation for details on how to actually apply
these easing functions. It’s pretty straightforward—essentially you just add easing: <function_name>
to the animation or transition property, like easing: in_out_circ.

Now lets look at the different types of easing functions MPF supports:

Easing “start” functions

The following functions apply an easing formula at the beginning of the time and then accelerate to
the end:

easing: in_back

easing: in_bounce

easing: in_circ

Related Events 889

Mission Pinball Framework Documentation, Version

easing: in_cubic

easing: in_elastic

easing: in_expo

easing: in_quad

Related Events 890

Mission Pinball Framework Documentation, Version

easing: in_quart

easing: in_quint

easing: in_sine

Easing “end” functions

The following functions apply an easing formula at the end of the time, meaning they start fast and
then slow down towards the end:

Related Events 891

Mission Pinball Framework Documentation, Version

easing: out_back

easing: out_bounce

easing: out_circ

easing: out_cubic

easing: out_elastic

Related Events 892

Mission Pinball Framework Documentation, Version

easing: out_expo

easing: out_quad

easing: out_quart

easing: out_quint

Related Events 893

Mission Pinball Framework Documentation, Version

easing: out_sine

Easing both “start” and “end” functions

The following functions apply the easing to both the beginning and the end of the time, meaning they
start slow, accelerate in the middle, and then slow down again at the end.

easing: in_out_back

easing: in_out_bounce

Related Events 894

Mission Pinball Framework Documentation, Version

easing: in_out_circ

easing: in_out_cubic

easing: in_out_elastic

easing: in_out_expo

easing: in_out_quad

Related Events 895

Mission Pinball Framework Documentation, Version

easing: in_out_quart

easing: in_out_quint

easing: in_out_sine

We’d like to give a shout out and thanks to the creators of the Kivy multimedia library (which is what
the MPC MC uses) for creating the graphs we used in our easing documentation.

Related Events 896

https://kivy.org/docs/api-kivy.animation.html

Mission Pinball Framework Documentation, Version

Widget Styles

See widget_styles:.

Widget Opacity & Transparency

All widgets in MPF can have “opacity” settings which control how transparent they are. 100% opacity
is the default, where nothing would show through that widget. 0% opacity means that the widget is
completely transparent and would not show up at all. 50% means it’s about half-way in between, etc.

Here’s an example. (This example is from the MC Demo which you can download and run to see it in
action.)

Specifying opacity by opacity: setting

Every widget type has an optional setting called opacity: which you can use to set the opacity of that
widget. This is a value from 0.0 to 1.0, with 0 meaning 0% opacity (completely transparent and not
visible at all), 1.0 meaning 100% opacity (the default), 0.25 meaning 25%, etc.

Note that you can animate the opacity setting to cause a widget to blink or flash. This is easier than
adding and removing the widget over and over, as with this method the widget stays put, it’s just

Related Events 897

Mission Pinball Framework Documentation, Version

alternating between visible and invisible. See the How to animate display widgets guide for details.

You can apply opacity settings to all widget types, including images and videos. (The opacity setting
will affect the opacity for every pixel in the image or video. If you just want an image with transparent
parts, then you would use a PNG or GIF with alpha settings instead.)

Specifying opacity by color

For widget types that accept color: settings (text and the various shape widgets), you can specify a
transparency level as part of the color by adding a fourth byte to the color hex value. (If your color
value is only six characters, MPF automatically adds ff (fully opaque) to the end.

For example, regular red with 100% opacity would be:

color: ff0000

Or it would also be (this is the same as the prior example):

color: ff0000ff

If you wanted red with 50% opacity, you could enter:

color: ff000080

There’s not really any difference between setting the opacity at the color: setting versus the opacity:
setting. The opacity setting is nice because it’s applicable to all widget types (including those without
color settings), and it’s animatable. But the color setting is nice because you can set the opacity and
color at the same time. It really doesn’t matter.

Working with Fonts

You can specify which font you want to use as a property of any of the widgets that contain text. You
can use system-wide fonts that are installed on the computer running MPF as well as fonts that are in
your machine’s /fonts folder.

You specify fonts by name only (not including the extension), and MPF will first look in your machine’s
fonts folder, and if it doesn’t find the font there, it will look in the MPF-MC’s built-in fonts folder, and
finally in your machine’s system fonts location.

Note: The MPC MC contains a few pixel-based for use on DMDs. See How to use DMD fonts for
details.

For consistency of appearance across computers, we highly recommend that you put the fonts you
want to use in your machine’s fonts folder.

Specifying which font a particular widget uses is done via that widget’s font_name: setting, so see
either the Text Widget or Text Input Widget reference for details.

Keep in mind that all widget properties, including fonts, can be configured as part of a widget style
and easily applied to new widgets with a single line.

Related Events 898

Mission Pinball Framework Documentation, Version

How to use DMD fonts

MPF includes three built-in fonts which are pre-configured as widget styles which look good on DMDs.
These fonts are included in the MPF-MC package. They can be used with any widget that uses fonts,
including the Text and Text Input widgets.

If you don’t use one of these fonts on your DMD and just show some text, here’s what the results look
like:

slides:

my_slide:

- type: text

text: MISSION

Sure, it works, but it doesn’t look good because the default font is a regular font that’s made for a
high-res display.

Instead you can use these three styles. (Of course you can use your own fonts too, but sometimes it’s
hard to find ones that look good on a low-res DMD.)

style: big

big is 10 pixels tall.

slides:

my_slide:

- type: text

style: big

text: MISSION

Related Events 899

Mission Pinball Framework Documentation, Version

style: med

medium is 7 pixels tall.

slides:

my_slide:

- type: text

style: medium

text: MISSION

style: small

small is 5 pixels tall.

Notice that this font has a color set and we’re using it with a Color DMD. All three of these fonts (like
any font) can be used on a mono or color DMD.

slides:

my_slide:

- type: text

style: small

text: MISSION

color: 00ffcc

MPF also supports Bitmap Fonts if you want to create your own fonts for your machine.

How to Set Fonts and Sizes Globally?

You usually want to use three to five different font + size combinations in your machine. However, you
often want to adjust them later on without touching all your slides and widgets. For that reason it
makes sense to define a widget_style for all your fonts and sizes:

Related Events 900

Mission Pinball Framework Documentation, Version

widget_styles:

text_small:

font_size: 15

color: red

text_default:

font_size: 21

color: blue

You can then use style: text_default in your text widgets. See widget_style for details.

Bitmap Fonts

You can create your own fonts for your machine using bitmap fonts. There are several programs or
online tools to create bitmap font descriptors.

1. Create an Image For Your Font

An example might look like this:

Related Events 901

Mission Pinball Framework Documentation, Version

2. Map Your Characters in a Descriptor File

This file might look like this:

info face=font size= bold= italic= charset= unicode= stretchH= smooth= aa= padding=0,0,0,0 spacing=0,0␣

→˓outline=0

common lineHeight=55 base=55 scaleW=40 scaleH=55 pages=1 packed=0

page id=0 file="bitmapFontBallySevenSegment4.png"

chars count=11

char id=48 x=0 y=0 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=49 x=0 y=55 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

(continues on next page)

Related Events 902

Mission Pinball Framework Documentation, Version

(continued from previous page)

char id=50 x=0 y=110 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=51 x=0 y=165 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=52 x=0 y=220 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=53 x=0 y=275 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=54 x=0 y=330 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=55 x=0 y=385 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=56 x=0 y=440 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=57 x=0 y=495 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

char id=32 x=0 y=550 width=40 height=55 xoffset=0 yoffset=0 xadvance=40 page=0 chnl=15

Related Events 903

Mission Pinball Framework Documentation, Version

3. Put PNG File and Descriptor Into the bitmap_fonts Folder

Some things to note:

∙ The file name of the image is defined in the .FNT file

∙ The ASCII code for each character is defined by a starting position (x, y for the upper left corner)
and a width and height value.

Related Events 904

Mission Pinball Framework Documentation, Version

4. Use the Font in Your Slide

You can use the font in your config:

slides:

slideBaseBackglass:

widgets:

- type: text

text: (player1|score)

font_name: bitmapFontBallySevenSegment4

bitmap_font: true

Alternatively, you can also use bitmap fonts in widget styles.

How to create reusable widgets

This guide explains how you can create reusable “named” widgets that you can use again and again on
multiple display slides. This saves you from having to copy-and-paste the same widget (or sets of
widgets) into multiple slide configurations, it makes it easy to update and fine-tune your widget config
since you only have to change it in one place, and it lets you add individual widgets to the display that
will show up regardless of what slide is currently showing.

1. Understanding widgets

Before we look at how to create reusable widgets, let’s look at how regular widgets work in MPF.

You probably know that you can have a slides: section of your config (either machine-wide or
mode-specific configs), and when you define a slide, you can specify what widgets are on that slide,
like this:

slides:

my_slide:

widgets:

- type: text

text: HELLO!

- type: text

x: 0

font_size: 5

text: YAY PINBALL

- type: image

image: background1

In the example above, the slide called my_slide has three widgets–two text widgets and a background
image. (Remember that the “z order” or “layer” of widgets is top-to-bottom, so the HELLO! widget is
on top, then YAY PINBALL is next, and they’re both on top of the background1 image.

These three widgets are permanently attached to the slide called my_slide. There’s no way to reuse
them on any other slides.

Related Events 905

Mission Pinball Framework Documentation, Version

2. Creating reusable widgets

But what if you had a widget you wanted to use on multiple slides? For example, maybe you have a
widget with some animations that comes on the display when a certain shot is made, and you want
that widget to appear on any slide (whichever slide happens to be showing at that time).

The way to do that is to create a “named” widget that’s reusable. You do that in the widgets: section
of your config. (This can be either a machine-wide or a mode config file.)

For example:

widgets:

laughing_jackal:

- type: image

image: jackal

Now you have a widget defined called laughing_jackal that you can add to any slide. (Note that this
example is simple, but any widget type with any widget settings can be defined here, including
positioning, colors, animations, etc.

The only “catch” is that the list of widget names is global across MPF. So even though you can define
widgets in both the machine-wide or the mode config files, named widgets are processed when MPF
starts up, so don’t use the same name twice since whichever one loads second will overwrite the first
one.

3. Using your named widget

Now that you have a widget defined, how do you add it to a slide? That’s done via the “widget” config
player, which means you can add a widget_player: section to a config file to trigger it based on an
event, or you can add it via the widgets: section of a show step. (All the examples in this guide will be
based on the widget_player: section of a config file, but you can use them all in show steps too. Just
use them in a widgets: section of a show step and do not include the event name.

There are several options you can use in the widget player, depending on how you and where you want
to show your widget (which display, which slide, etc.)

“Express” config

If you just want to add your widget to whichever slide is current on the default display, you can use the
“express” config, like this:

widget_player:

some_event: laughing_jackal

some_other_event: another_widget

With the config above, when the event some_event is posted, the widget called laughing_jackal will be
added to the current slide on the default display. Notice that you can add multiple entries here for
different widgets and different events.

This widget is added with whatever settings you defined for it in the widgets: section of your config.
It’s all pretty straightforward, though you might have to play with the z: setting (the layer) to get it to
show up. (For example, if your current slide has a full size background, you’d want to configure your
widget with a z: setting that’s a higher priority so it shows up on top of the background image.)

Related Events 906

Mission Pinball Framework Documentation, Version

Adding a widget to a specific slide (by slide)

If you want to build a slide and include a reusable widget, you can reference the widget’s name in
your slide config by declaring widget: instead of type:.

widgets:

jackpot_value_widget:

- type: text

text: (jackpot_total)

style: medium

slides:

hero_hurryup:

- type: text

text: "Hurry Up!"

- type: text

text: "Jackpot:"

- widget: jackpot_value_widget

slide_player:

show_hero_slide: hero_hurryup

Adding a widget to a specific slide (by event)

If you want to add your widget to a particular slide (versus whatever slide happens to be showing at
the moment), you can do so by specifying that slide name in the widget_player:. For example:

widget_player:

some_event: # event that will trigger this widget to show

laughing_jackal: # widget you want to show

slide: my_slide

In the example above, when the event some_event is posted, the widget laughing_jackal will be added
to the slide called my_slide. If my_slide is the current active slide on the display, you’ll see the widget
appear. If that slide is not being shown, the widget will still be added, and it will be there the next
time that slide is shown.

Remember you can add as many events and widgets as you want to the widget_player: section of your
config, and you can even mix-and-match formats, like this:

widget_player:

some_event:

laughing_jackal:

slide: my_slide

some_other_event: another_widget

Adding a widget to a specific display target

Rather than specifying a particular slide to add your widget to, you can target a display, and the
widget will be added “on top” of whatever slide is currently being shown:

Related Events 907

Mission Pinball Framework Documentation, Version

widget_player:

some_event:

laughing_jackal:

target: display1

Remember in MPF, display targets are the names of a display (dmd, window, etc.).

More details about this are in the Widget layers, z-order, & parent frames guide.

Overriding named widget settings

When you create your named widget, it contains a bunch of settings that are used to add it to a slide.
(That’s sort of the whole point.)

However sometimes it’s useful to be able to override or add additional settings at play time. You can
do this in the widget_settings: section of the widget_player: in a config file or the widgets: section of
a show step.

For example, if you use a widget for the tilt warning like in the previous example, you’d probably want
that widget to be removed after a few seconds, which you could do like this:

widget_player:

tilt_warning: # event

tilt_warning: # widget name

widget_settings: # additional settings to be added / updated

expire: 2s

(Technically speaking, if you were going to show a tilt warning widget, you’d probably also want to
play a sound and maybe flash all the lights on the playfield, so in your real game you’re probably
actually create a show to do this and then play it via the show_player: section of your config and
include the widget in the widgets: section of the show, but you get the idea.)

You can also set the expiration time of a widget when you define the widget in the widgets: section of
the config. See the config file reference for details.

You can add/update any setting for the widget (color, text, position, animations, widget_styles, z
(layer), etc.)

Removing widgets

You can also use the widget player to remove named widgets from a slide that had been previous
added. To do this, just add an action: remove setting to the widget player, like this:

widget_player:

show_jackal: laughing_jackal

hide_jackal:

laughing_jackal:

action: remove

The config above will add the laughing_jackal to the current slide on the default display when the
event show_jackal is posted, and then it will remove it when the event hide_jackal is posted.

Related Events 908

Mission Pinball Framework Documentation, Version

Creating named groups of widgets

All of the examples in this guide showed using a single widget as named widget. But you can actually
define multiple widgets in a named widget (essentially meaning that your named widget is really a
named group of widgets. For example:

widgets:

widget3:

- type: text

text: HI

color: ff0000

font_size: 100

- type: text

text: THERE

color: 00ff66

font_size: 100

- type: text

text: EVERYONE!

color: ff00ff

font_size: 100

You play, show, or hide this “widget” in the same way as every other example in this guide, except in
this case, playing widget3 will actually add all three widgets to the slide. (Again you can play with
z-order / layering, and remember that each widget (even in a multi-widget group) can have its own
z-order settings.

Putting it all together, these are the basics of using named widgets in MPF. The important takeaways
are:

∙ Widget names are global, so don’t use the same name twice.

∙ Everything here can be done in either the widget_player: section of a config file or the widgets:
section of a show step.

∙ All widget options are valid, including keys, animations, expiration, styles, positioning,
z-ordering, colors, transparencies, padding, etc.

∙ When “playing” a widget, you can target a display or a slide.

∙ Once a widget is “played” and added to a slide, it becomes just another widget on that slide. The
fact that it was put there by the widget player doesn’t matter.

Adding multiple named widgets in one event

You can also add multiple named widgets from a single event. This is nice if you want to add widgets
to multiple displays or slides at the same time. For example:

widget_player:

some_event:

widget1:

target: dmd

widget2:

target: lcd

Related Events 909

Mission Pinball Framework Documentation, Version

Note that if you do this, the structure of YAML requires that you have at least one setting under each
widget name, so you can just add a target: or action: add if you don’t want to change or set anything
else in the widget.

Dynamically choosing a widget based on variables

You can use a placeholder widget in a slide to dynamically choose any reusable widget for that slide,
depending on an event parameter or player variable.

To create a placeholder widget in the slide, use the widget: setting with the standard dynamic text
formatting.

For example, using the player variable “hero_class” to pick a text image (but could be an image widget
as well):

widgets:

hero_portrait_rogue:

- type: text

text: "Portrait Rogue"

hero_portrait_bard:

- type: text

text: "Portrait Bard"

hero_portrait_mage:

- type: text

text: "Portrait Mage"

slides:

hero_slide:

- type: text

text: (player|name)

- type: text

text: Level (player|level)

- widget: hero_portrait_(current_player.hero_class)

slide_player:

show_hero_slide: hero_slide

##! mode: base

variable_player:

set_var_rogue:

hero_class:

action: set

string: "rogue"

You can also use the parameters of an event to determine the widget to include. In the following
example from a game with different multiballs, the event mball_lock_lit might post with either “angel”
or “demon” as the mball_name parameter.

slide_player:

mball_lock_lit: mball_lock_slide

slides:

mball_lock_slide:

widgets:

- type: text

text: Lock is Lit

- widget: lock_lit_(mball_name)

(continues on next page)

Related Events 910

Mission Pinball Framework Documentation, Version

(continued from previous page)

widgets:

lock_lit_angel:

- type: text

text: Angels Anarchy

- type: image

image: bg_locklit_angels

lock_lit_demon:

- type: text

text: Demons Derby

- type: image

image: bg_locklit_demons

Expiring (auto removing) widgets

You can use the widget player to add widgets to slides which will be removed automatically after a
pre-determined about of time. This is done via a widget’s “expire” setting. There are several ways you
can expire a widget:

Option 1: In the widget or slide definition

widgets:

my_widget:

type: text

text: HELLO

expire: 2s

In the example above, whenever you add that widget to a slide (via the widget_player or the widgets:
section of a show), that widget will expire and disappear two seconds later.

Option 2: In the widget player

Instead of tying an expire time to a widget when you define the widget, you can specify the expiration
when the widget is shown via the widget player.

Here’s an example:

widgets:

my_widget:

type: text

text: HELLO # no expiration here

widget_player:

show_widget_event:

my_widget:

widget_settings:

expire: 2s

In the above example, the widget player dynamically adds the 2 second expiration time when the
widget is shown after some_event is posted.

Related Events 911

Mission Pinball Framework Documentation, Version

Option 3: Remove a widget on some event

Instead of automatically removing a widget after a pre-determined amount of time, remember you can
use the widget player to remove a widget by name, which means you can use one event to show the
widget and another event to remove it. For example:

widgets:

my_widget:

type: text

text: HELLO # no expiration here

widget_player:

show_widget_event: my_widget

remove_widget_event:

my_widget:

action: remove

In the example above, the event some_event will cause my_widget to be added to the current slide on
the default display, and the event some_other_event will cause it to be removed.

Widget Keys

Widget keys are used to uniquely identify instances of widgets which you can later use to update or
remove the widget.

Note that you can you can also identify widgets by name (which is almost always more
straightforward). You only need to use a key if you want to put multiple instances of the same widget
on the same slide, and then you need a way to identify a individual ones to update or remove them.

Adding the SameWidget Multiple Times

When adding the same widget to a slide or target simultaneously, keys are used to differentiate the
widgets from one another. An important aspect to note is that only one instance of a specific widget
can be modified with a given event for the widget_player. This means that if you want to add the same
widget multiple times, you need to have unique events to call each widget. This can be done in one of
two ways, which are shown below.

Using the Same Event With Different Priorities

This is an example using priorities of the events, which will affect the priority:

widget_player:

some_event.1:

widget_1:

key: widget_1_1

slide: slide_2

widget_settings:

<list of settings below go here>

some_event.2:

widget_1:

key: widget_1_2

slide: slide_2

(continues on next page)

Related Events 912

Mission Pinball Framework Documentation, Version

(continued from previous page)

widget_settings:

<list of settings below go here>

It will add widget_1 to slide_2 two different times. In order to make this meaningful, you would want
to add additional widget settings:, such as position, rotation, color, opacity, etc. This is important,
otherwise it will add the widget with the same settings twice, which would overlap each other.

Using the Same Event With Different Conditional Logic

An additional method would be to have unique events that call the same widget multiple times. This
could be done in one of two ways: completely unique events (example: event_1 and event_2) or by
using conditional logic on the same event (example: event_1{param1} and event_1{param2}.

This is an example using unique conditional formatting for the same event:

widget_player:

some_event{parameter_1 <10}:

widget_1:

key: widget_1_1

slide: slide_2

widget_settings:

<list of settings below go here>

some_event{parameter_1 < 50}:

widget_1:

key: widget_1_2

slide: slide_2

widget_settings:

<list of settings below go here>

It will add widget_1 to slide_2 if the conditional criteria is met. If the criteria is met for both of the
events, they will both be played at the same time. If they are both played at the same time, you would
likely want to add additional widget settings, such as position, rotation, color, opacity, etc. This is
important, otherwise it will add the widget with the same settings twice, which would overlap each
other.

Remove or Update a Specific Widget Instance

To remove or update a specific instance of a widget from the page, you need to refer to the key of that
widget. This is done by the following code, which has calls upon the generic widget and the key when
an event is posted.

widget_player:

some_event:

widget_1:

key: widget_1_1

action: remove #this could also be update

widget_settings:

<list of settings below go here>

The above block of code would listen for some_event to occur, and then remove the instance of
widget_1 with the key widget_1_1. You can also use the action: update and a set of widget_settings:
to update the widget with the new properties.

Related Events 913

Mission Pinball Framework Documentation, Version

Widget layers, z-order, & parent frames

When you have multiple widgets on a slide, you can control the layer (or z-order) of the widgets,
controlling which widgets are on top of others in cases where two or more widgets overlap.

When adding a widget to an existing slide, you also have the option to add it to the “parent frame”
(and not to the slide), meaning that if the slide changes, the widget will still be there.

Let’s look at how all this works.

Overlapping widgets, layers, & z-order

Any time you have two widgets that overlap, MPF must decide which widget will be drawn “on top” of
the other.

At the most basic level, any time you have more than one widget listed in a config (whether it’s in a
widget_player:, slide_player:, or a definition in a slides: or widgets: section), the widgets will be
drawn in the order they are in the config.

For example, here’s a slide that has widget3.1, then widget3.2, then widget3.3:

slides:

3_widgets:

- type: text

text: widget3.1

color: red

font_size: 80

y: 40%

- type: text

text: widget3.2

color: orange

font_size: 80

y: 50%

- type: text

text: widget3.3

color: violet

font_size: 80

y: 60%

The result is like this. Note that widget3.1 is on top of widget3.2, which is on top of widget3.3:

Related Events 914

Mission Pinball Framework Documentation, Version

In this example, all three widgets are 100% opaque, but if any of them had opacity of less than 100%,
then you would see the lower level widget through the higher one. See the Widget Opacity &
Transparency guide for details.

You can also use the z: setting to manually set the relative order of how you want the widgets to
overlap. Widgets with higher z: values will be drawn on top of those with lower values.

Here’s the same example as before, but with z: values added:

slides:

3_widgets:

- type: text

text: widget3.1

color: red

font_size: 80

y: 40%

z: 1

- type: text

text: widget3.2

color: orange

font_size: 80

y: 50%

z: 100

(continues on next page)

Related Events 915

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: text

text: widget3.3

color: violet

font_size: 80

y: 60%

z: 2

And the results:

Note that widget3.2 is on top since it’s z: is 100, then widget3.3 is next with z: 2, and finally
widget3.1 is on the bottom with z: 1

Notes about z-order:

∙ The default z: value is 0, so anytime you have a widget without a z: setting, it’s like you have z:
0.

∙ The order the widgets are listed in the config file is only used as a tie-breaker if multiple widgets
have the same z: settings. (This is why the first example worked, since all three widgets had z:
0.)

∙ You can mix-and-match order and z: settings.

∙ The actual numeric z: settings don’t matter. You can have 1, 2, 3 or 100, 200, 300, or 1, 20000,

Related Events 916

Mission Pinball Framework Documentation, Version

1000000 or whatever you want.

∙ Setting z: values for widgets on a slide is only really used if you want to later use the widget
player to add a widget to a slide in between certain existing widgets.

∙ In most slides, you will not mess with z: settings and instead use the order of the widgets in the
config file to set the order they are on the slide.

Adding widgets to parent frames

When you use the widget_player:, it will add the widget to the current slide on the default display.

If you want to target a specific slide, you can add a slide: setting to your widget player with the name
of the slide.

In both cases, the widget player will add the widget to a slide.

However, it’s also possible to add a widget to the “frame” which holds the slides, meaning that the
widget is shown “on top” of the slide rather than as part of the slide.

Why would you want to do that?

Sometimes it’s useful to have a widget which “stays put” even as the underlying slides change.

One example is for tilt warnings. When the player gets a tilt warning, you might want to show the text
“WARNING” for 2 seconds. However if you use the regular widget player to add this widget to the
current slide, then if that slide is replaced by another slide during those 2 seconds, your tilt warning
will disappear too.

Another example is the scores. Maybe you want those to show along the bottom on top of every slide?
Or maybe something like the news crawl on the bottom of the Dialed In display?

To do this, you can add the setting z: -1 under the widget_settings: section of your desired widget.
Here’s an example:

widget_player:

trigger_event:

my_widget:

widget_settings: z: -1

This will make the widget added to the frame, and not to a slide, meaning your widget will ride “on
top” of every slide (and even on top of any slide transitions that take place).

Widgets versus Slides: When to use each?

Help us to write it

Media Controllers

One of the most important things to understand about the architecture of MPF is that the core MPF
game engine is completely separate from the process that controls graphics and audio. We call the
thing that handles graphics and audio a “media controller.” The game engine and media controller

Related Events 917

Mission Pinball Framework Documentation, Version

talk to each other via something called “BCP” which is a protocol we created for this purpose which
stands for “Backbox Control Protocol”. (More details on BCP are available at the MPF developer site.)

Here’s a diagram that shows what each piece does:

Why are the MPF game engine and media controller two separate processes? Two reasons:

First, having two processes means that each one can run on a separate core in a multi-core host
computer. This makes efficient use of hardware since the trend is to have multiple cores. If the game
engine and media controller were combined, then your quad-core Raspberry Pi 3 would have all the
MPF stuff running on one core while the other three cores were wasted doing nothing.

Second, having two processes means you can replace MPF’s default media controller with something
else if you want different features. For example, there is a group of people building an open source
Unity 3D-based media controller which can be used for very advanced 3D display graphics.

The MPF Media Controller

The MPF media controller (which we call “MPF-MC”) is the default media controller option that 99%
of MPF users use. (If you haven’t read about what a media controller is and how it fits into MPF, do
that first).

Like MPF, the MPF-MC is also written in Python, using a Python-based multimedia framework called
Kivy. Kivy is a wrapper for the native graphics & sound libraries on your computer, and it leverages
the latest technologies including SDL2, Gstreamer, and OpenGL.

All of the tutorials and installation guides included in this documentation explain how to install and use
the MPF-MC, so there’s really nothing to know about it other than it’s probably the one you’re using.

The MPF Unity BCP Server

The MPF Unity BCP Server is a Unity 3D-based media controller for MPF. You can use it if you want to
program your machine’s graphics and sounds via Unity 3D. (If you haven’t read about what a media
controller is and how it fits into MPF, do that first).

MPF’s Unity BCP Server is also free & open source, and hosted in the unity-bcp-server repo in the
Mission Pinball GitHub account. See the readme in that repo for more details including instructions
on how to use it.

Related Events 918

http://developer.missionpinball.org
http://kivy.org
https://github.com/missionpinball/unity-bcp-server

Mission Pinball Framework Documentation, Version

How to run MPF and the MPF-MC on different computers

Since the BCP protocol uses a standard TCP socket connection, you can actually run MPF and the
MPF-MC on different computers. (We’re not sure what the use case for this is exactly, but it’s
definitely possible.)

To do it, just install MPF on one computer and MPF-MC on another.

Then on the machine running MPF, configure the host: setting as the name or IP address of the
machine running the MPF-MC, and on the MPF-MC computer, set the servers: section to listen on the
IP address you want to use. (See the bcp section of the config file reference for details.

Remember to set the firewall on the computer running MPF-MC to accept incoming connections on
the port that BCP is listening on.

Warning: The BCP protocol has no security, so it’s fine if both the computers are inside your
pinball machine or on your home network, but it’s not designed to be run across a public network.

Multiple Simultaneous Media Controller Connections

You can create multiple BCP connections for multiple media controllers. However, this is not useful on
its own. You also need to map slide/widget_players to the right MC. Let us know in the forum if you
need this.

Listing 2: your_machine_folder/config/multiple_connections_config.yaml

#config_version=5

bcp:

debug: True

connections:

local_display:

host: localhost

port: 5050

type: mpf.core.bcp.bcp_socket_client.BCPClientSocket

required: True

exit_on_close: True

another_display:

host: localhost

port: 9001

type: mpf.core.bcp.bcp_socket_client.BCPClientSocket

required: True

exit_on_close: True

Creating your own Media Controller

It’s possible to create your own media controller for your own specific needs. All you have to do is
listen for incoming BCP connections and then parse the commands and from there you can do pretty
much anything you want. Let us know in the forum if you want to do this.

Related Events 919

CHAPTER11

Sounds, Music & Audio

Note: Everything in this “Displays & Graphics” section is about default the MPF Media Controller

Since the release of MPF 0.30, audio and sound support has been provided by a custom audio library
built on SDL2, SDL_Mixer, and GStreamer libraries. This custom library allows the MPF development
team to create audio features optimized for pinball machines. The first release provides basic sound
loading and playback capabilities along with some great new features like ducking and sound pools.
(Sound support is part of the MPF media controller and only available if you’re using MPF-MC for your
media controller).

The basic concept with audio in MPF is that you collect all your audio files (16-bit .wav, .ogg, and .flac
files are currently supported) and put them in the /sounds folder in your machine folder (you can
organize them into sub-folders if you would like). Then in your config file you create entries for each
sound which map a friendly name to the actual file on disk. You can also set a bunch of defaults for
each sound, such as volume, start time, etc. Then when you want to play a sound in a game, you can
refer to it by the friendly name from your configuration file. You can also add entries into your
configuration file to set up sounds so they play based on certain MPF events. (For example, play the
sound “laser” every time the event from a pop bumper being hit is posted.) You can also add sounds to
your show files so they play in-sync with lighting and display effects.

You can think of the audio system in MPF as a sound mixing board that you control via configuration
settings and events. It is divided into tracks (similar to channels on a mixer), each of which has its own
properties such as name, volume and the number of sounds that may be played simultaneously. New
in MPF 0.50 are specialized track types optimized for specific audio tasks (such as music playback and
creation). You can create up to 8 tracks in your sound system, although typically most machines will
typically use 3 standard tracks (“voice”, “sfx”, and “music”). Sounds are played on specific tracks and
then the tracks are mixed together to form the final mix. The sounds themselves are objects that
include many properties that control how they will be played such as what track they play on, volume,
looping, priority, how long to wait in the playback queue before being discarded, ducking, etc.

Sounds can be grouped together into a logical grouping called a sound pool. Sounds pools allow you

920

Mission Pinball Framework Documentation, Version

to reference a group of sound variations as if it were a single sound. A sound pool name may be used
anywhere a sound asset name may appear. Pools can be used for random differences in a sound (such
as slight variations of a slingshot sound) or for an ordered sequence of sounds that will repeat.
Another common use for sound pools is to play a random callout from a defined list when triggered.

You configure your sound system (including tracks) in the sound_system: section of your machine
configuration file. You add settings for individual sound files in the sounds: section. You can configure
sounds to automatically play on standard tracks when selected MPF events are posted in the
sound_player: section. Sound pools are specified in the sound_pools: section. Sound loop tracks use
sound_loop_sets and the sound_loop_player to play and loop sounds. Playlist tracks use playlists and
the playlist_player for playing music. Tracks can be controlled when selected MPF events are posted
in the track_player: section.

MPF Sound & Audio Technical Overview

The MPF MC Audio Interface is a custom audio Python extension library with features designed to
support common pinball sound requirements. It is written on top of the SDL2, SDL_Mixer, and
GStreamer libraries that are installed with Kivy which is required to run the MPF MC software (no
additional installs necessary for the audio library).

MPF Sound & Audio Technical Overview 921

Mission Pinball Framework Documentation, Version

The SDL2 library (https://www.libsdl.org/) is responsible for all low-level communications with the
system audio hardware. The user selects the basic audio interface settings: sample rate, output
channels, and buffer size (defaults are provided). These settings are used to initialize the SDL2 library
which then negotiates with the system audio hardware to create a connection that is as close to the
desired settings as possible. The SDL2 library is responsible for creating the main audio thread and
calling the main audio callback function at a fast enough rate to provide audio buffers to the hardware
without any gaps in playback. It also provides the thread synchronization and protection utilized in
the audio library through its mutex-related functions. The audio library also uses the SDL2 audio
format conversion functions to convert between various low-level audio formats to communicate with
the system sound hardware.

SDL_Mixer (https://www.libsdl.org/projects/SDL_mixer/) is an add-on library for SDL2 that provides
basic audio mixing, sound loading and playback, and sound streaming capabilities. The MPF MC audio
interface does not use the mixing features of SDL_Mixer. Instead, it only utilizes the sound file loading
functions of the library.

GStreamer (https://gstreamer.freedesktop.org/) is an open source, cross-platform pipeline-based
multimedia framework that links together a wide variety of media-handling components (including

MPF Sound & Audio Technical Overview 922

https://www.libsdl.org/
https://www.libsdl.org/projects/SDL_mixer/
https://gstreamer.freedesktop.org/

Mission Pinball Framework Documentation, Version

simple audio playback, audio and video playback, recording, streaming and editing) to complete
complex workflows. The MPF MC audio interface uses GStreamer for all its sound file loading
functions and real-time audio streaming. All audio is fed into SDL2 for final output.

The audio interface is divided into tracks, which are analogous to channels on an audio mixer. There
are multiple types of audio tracks, each with its own specialized feature set. The output of each track
is mixed together and fed to the SDL_Mixer track via the custom music player function. The audio
mixing engine uses 16-bit integer calculations and brickwall limiting to ensure there are no numeric
overflows (and their resulting distortion). All of the sound generation and mixing functions are C
functions (written in Cython) that run in the SDL2 audio thread.

It is important to understand the threading models of both SDL2 and Python to avoid common
threading problems. Python supports multiple threads, however it uses a mechanism called the “global
interpreter lock” (GIL) to ensure that only one thread runs in the Python interpreter at once. This
simplifies many low-level details. SDL2 creates its own audio thread in which to receive and process
audio data and send it to the audio hardware. As this audio thread is not a Python thread, it does not
interact with the GIL and therefore is unable to access any Python objects within its context. This
means that only C types and data structures may be utilized in the SDL2 audio callback function; no
Python objects can be used. Because the MPF MC is a Python application, a Python extension library
is the only choice in which to use the GStreamer, SDL_Mixer and SDL2 libraries. Since the extension
library utilizes both Python and C objects, the GIL needs to be managed in the audio library along with
thread protection to avoid race conditions and deadlocks. These design constraints led to the choice of
using Cython (http://cython.org/) as the language to implement the MPF MC audio library. Cython is a
superset of the Python language that additionally supports calling C functions and using C types, an
ideal choice for wrapping external C libraries and using them in a Python application.

Sounds are MPF assets and are created by the MPF asset loader. The actual sound loading code is
contained in the audio library and is performed by SDL_Mixer and GStreamer. A Python container
object wraps the C object returned by the loading process. This wrapper allows the sound data to be
managed by a Python object. The audio library extracts the C object when necessary and passes it to
the audio thread where it can be used to generate audio.

The sound_player: enables MPF events to trigger sound actions, such as play, stop, and stop looping.
It is a config_player and runs as a plug-in in MPF and also creates event handlers in MPF MC. The
audio library also generates MPF events for various sound events (sound played, stopped, looping,
etc.) and sends them to MPF via BCP.

Ducking

Ducking is an audio effect that lowers the level of one audio signal based upon the level of another
audio signal (one sound “ducks” out of the way of another). It is used to allow particular sounds to be
heard more clearly when there is other audio playing at the same time. In the context of a pinball
machine, a common use of ducking is to lower the volume of the background music while an important
callout is played (such as “Extra Ball!”) and then return the volume when the callout is finished. When
done professionally, you should not really be able to notice that the music volume is being lowered,
but you’ll be able to hear the callout prominently.

By default ducking is not enabled for any sounds in MPF. Ducking settings can be optionally set for
each sound asset in the machine. To best illustrate ducking and its parameters, here is a diagram:

Ducking 923

http://cython.org/

Mission Pinball Framework Documentation, Version

The voice clip in the top track of the diagram illustrates a callout that we wish to add ducking settings
to. The bottom track is playing music. The following parameters control the ducking behavior of the
voice clip:

∙ target - The track name to apply the ducking to when the sound is played. In the example above
the music track is the target.

∙ delay - The duration to delay after the sound starts playing before ducking starts. This value may
be specified as a time string or a number of samples.

∙ attack - The duration of the period over which the ducking starts until it reaches its maximum
attenuation (attack stage). This value may be specified as a time string or a number of samples.

∙ attenuation - The attenuation (gain) to apply to the target track while ducking. This controls
how quiet to make the target track while the sound is playing.

∙ release_point - The point relative to the end of the sound at which to start the returning the
attenuation back to normal (release stage). This value may be specified as a time string or a
number of samples. A value of 0.5 seconds means to begin to release the ducking 0.5 seconds
prior to the end of the sound.

∙ release - The duration of the period over which the ducking goes from its maximum attenuation
until the ducking ends (release stage). This value may be specified as a time string or a number
of samples.

Ducking settings are specified for each desired sound in the sounds: section of the configuration files.
It often takes some trial and error to get the ducking parameters set just right for each sound.

Ducking 924

Mission Pinball Framework Documentation, Version

Tracks

The audio system in MPF is very similar to a sound mixing board that you control via configuration
settings and events. It is divided into tracks (similar to channels on a mixer), each of which has its
own properties such as name and volume. With the release of MPF 0.50, there are now multiple types
of audio tracks supported by the audio system, each with specialized features.

Track types

The following types of audio tracks are available in MPF:

∙ standard - Standard audio tracks are the most commonly used and have a variety of playback
features to support most pinball audio needs. Standard tracks have a setting to limit the number
of sounds that may be played simultaneously. If a standard track is busy playing its limit of
simultaneous sounds, pending sounds can be added to a queue where they wait to be played
until the track can play them. Several settings control a sound’s behavior when a track is busy.
Sounds are audio assets and can be played by standard tracks.

∙ sound_loop - New in MPF 0.50, sound_loop tracks are optimized for live looping music control
driven by events. This specialized track type can synchronize playback of multiple looping
sounds simultaneously in layers and supports gapless switching to a new set of loops. Sound
loops are designed to build music that dynamically changes based on events in your game.
Sound used in sound_loop tracks must be loaded in memory (streaming sounds are not
supported). Sound loop tracks use sound_loop_sets which are special groups of sounds to
control the playback and looping of audio files.

∙ playlist - New in MPF 0.50, playlist tracks provide a comprehensive set of music playing
capabilities that include named playlists (lists of sound assets), playback mode (sequential or
random/shuffled), crossfades between songs/playlists, and more. Playlist tracks use playlists
which contain a list of sounds (audio assets) video or audio files that can be played back
sequentially or in random order and can be set to repeat or stop after all sounds have been
played.

Note: All tracks can be a ducking target regardless of the type of track.

Example track configuration:

sound_system:

buffer: 2048

frequency: 44100

channels: 2

tracks:

music:

volume: 0.5

simultaneous_sounds: 1

events_when_stopped: music_track_stopped

events_when_played: music_track_played

events_when_paused: music_track_paused

sfx:

volume: 0.4

simultaneous_sounds: 8

(continues on next page)

Tracks 925

Mission Pinball Framework Documentation, Version

(continued from previous page)

preload: true

voice:

volume: 0.6

simultaneous_sounds: 1

preload: true

loops:

type: sound_loop

volume: 0.6

playlist:

type: playlist

volume: 0.6

crossfade_time: 2s

How to setup sound for your machine

This guide explains the basic steps to setup sound for your machine. Sound support is part of the MPF
media controller and only available if you’re using MPF-MC for your media controller. Please ensure
your system is properly setup to play sound (drivers are installed and configured) before proceeding
with this guide.

1. Configuring the sound_system

The first step in the process of setting up sound for your machine is to setup the sound_system: section
of your machine configuration file (see sound_system: for more detailed information). Generally you
can just use the default values for the settings in the section. However, you do need to define the
tracks the sound system will use. Tracks can be thought of as channels on an audio mixer with their
own volume and other settings. The example below shows a typical pinball machine sound setup with
three tracks: music, voice, and sfx. The simultaneous_sounds: setting controls how may sounds may
be played at the same time on each track. It is recommended that you only allow one music and one
voice clip to be played at a time and that many sound effects (sfx) can be played simultaneously so
that is what we have configured in the example below.

Example:

sound_system:

tracks:

music:

type: standard

simultaneous_sounds: 1

volume: 0.5

voice:

type: standard

simultaneous_sounds: 1

volume: 0.7

sfx:

type: standard

simultaneous_sounds: 8

volume: 0.4

How to setup sound for your machine 926

Mission Pinball Framework Documentation, Version

2. Configuring your sound asset folders

The next step is to configure your sound asset folders. First you will need to create a folder named
sounds directly under your machine folder. The recommended way to organize your sound files is to
create sub-folders for each track in the sounds folder (music, sfx, and voice). If you are going to be
using a lot of sounds you can create as many sub-folders beneath each track folder as you like. It can
help you stay organized and be able to locate your sounds.

File system directory structure example:

machine_folder

sounds

music

sfx

voice

Now that our sound asset folders have been created, it’s time to let MPF know where to look for sound
files when it starts and what basic settings to apply to each sound it finds. This is done by adding a
sounds: section to the assets: section in our machine configuration file. The example below illustrates
what this should look like in your machine configuration file. The default: setting contains the default
settings that should be applied to all sound assets. In this example below, load: should be assigned a
value of on_demand for all sound assets. Next we enter a setting for each sub-folder located in our
sounds directory and specify the settings we want applied to each sound asset found in those
sub-folders. In our case we have created sub-directories for each track and want the sounds contained
in them to play on their respective tracks (music, sfx, and voice) so we set the track: setting
accordingly.

assets: section in machine configuration file:

assets:

sounds:

default:

load: on_demand

music:

track: music

sfx:

track: sfx

voice:

track: voice

When your machine launches, the asset manager will now search for supported audio files in the
specified directories and assign the proper settings to each file it finds. We’re well on our way to
actually hearing some sound!

3. Put some sounds in your sound folders

You probably don’t need much assistance with this obvious step, but let’s go through the process
anyway just in case. As of version 0.33, MPF supports 16-bit .wav (Wave), .ogg (Ogg Vorbis), and .flac
(FLAC) audio files (we hope to add other formats in future releases such as .mp3). Locate some
supported audio files and place them in the appropriate track folders that you created in the previous
step (a good site to find free public domain sounds is www.freesound.org). Put all music files in the
music folder, voice callouts in the voice folder, and all other sound effects in the sfx folder. You are
welcome to create any sub-folders you desire and put sounds in them to help keep things organized.

How to setup sound for your machine 927

http://www.freesound.org/

Mission Pinball Framework Documentation, Version

4. Setting the default master volume level

The master volume (applied to all tracks in the sound system) can be adjusted from the service
switches or custom events. MPF stores the master volume level as a machine variable, so the selected
volume will persist each time the game boots up.

The master volume ranges from 0.0 (silent) to 1.0 (full), and defaults to 0.5 (50%). You can set your
own default volume by overriding the machine variable settings in your machine config file.

machine_vars:

master_volume:

initial_value: 0.25 # Set this to any value you want

value_type: float

persist: true # If false, the volume will reset to default

each time the machine boots up

5. Additional configuration for selected sounds

Now when you start your machine you will have some sounds available (assuming you placed some
supported sound files in your sounds folder during the last step) and they will all have some very basic
default settings. It is very likely that you won’t be happy with the default settings for all of your
sounds so let’s create some more tailored settings for a few of them.

Renaming some sounds

Your sounds now all have names based on their file names (without the extensions), and by default
that is how they must be referenced in your config files. Perhaps some of your file names are either a
bit cryptic or contain additional text that you’d like to shorten. One option is to simply rename any
files you’d like in the operating system. Another option is to setup some configuration options in your
config files to reference the sound file by a different name which is what we will do next.

I downloaded a triangle sound from www.freesound.org that has an undesirable filename:
22783__franciscopadilla__80-mute-triangle.wav. I would rather just refer to it in my config files as
triangle and not 22783__franciscopadilla__80-mute-triangle (which is what it will be by default). In
my sounds: section of my machine configuration file (see sounds: in the documentation for more
details) I can put the following text:

sounds:

triangle:

file: 22783__franciscopadilla__80-mute-triangle.wav

That simple configuration change will allow the sound as to be referred to as triangle wherever you
refer to that sound in other configuration locations. Note: be sure to include the complete file name,
including the extension when using the file: setting.

Setting the volume of a specific sound

A very common adjustment to make is to set the volume for each and every sound you load in your
machine. This allows you to balance out sounds from various sources rather than trying to adjust the
levels in each sound file using audio editing software. Building on the example above, let’s set the
volume of the triangle sound in our config file:

How to setup sound for your machine 928

http://www.freesound.org/

Mission Pinball Framework Documentation, Version

sounds:

triangle:

file: 22783__franciscopadilla__80-mute-triangle.wav

volume: 0.85

volume: controls the volume of the sound and works in conjunction with the track volume and the
master volume. Volume can either be entered as a number between 0.0 and 1.0 or as a decibel level
(see Instructions for entering gain values) for more information). You will probably have to spend
some time adjusting the volumes of many sounds in your machine to get everything to sound just the
way you want it.

Note: If you hear distortion in your sounds when they are played back in a mix, be sure to try lowering
the volume as you may be experiencing clipping.

Other sound settings

There are many other settings you may wish to change for some sounds in your machine.

∙ How do you cause your sound to loop 3 times every time it is played? Add loops: 3 to the config
section for your sound. How do you loop a sound indefinitely? Add loops: -1.

∙ How do you adjust the which sounds can preempt other sounds and how long a sound may wait
to be played before it is discarded? Use the priority: and max_queue_time: settings.

∙ How do you send events to MPF when a sound begins or finished playing? Use the
events_when_played: and events_when_stopped: settings.

∙ What about ducking? Just what is it anyway? Learn about ducking in the documentation.

The documentation for the sounds: configuration section contains further information about all these
settings.

Example sounds: configuration demonstrating most common settings:

sounds:

triangle:

file: 22783__franciscopadilla__80-mute-triangle.wav

volume: 0.85

max_queue_time: 0

laser:

volume: 0.5

loops: 3

max_queue_time: 0

extra_ball:

file: extra_ball_12753.wav

events_when_started: extra_ball_callout_started

events_when_stopped: extra_ball_callout_finished

volume: 0.8

priority: 50

max_queue_time: None

ducking:

target: music

delay: 0

attack: 0.3 sec

attenuation: 0.45

release_point: 2.0 sec
(continues on next page)

How to setup sound for your machine 929

Mission Pinball Framework Documentation, Version

(continued from previous page)

release: 1.0 sec

slingshot_01:

volume: 0.5

max_queue_time: 0

song_01:

volume: 1.0

priority: 100

about_to_finish_time: 2s

events_when_about_to_finish: song_01_about_to_finish

6. Hooking up an MPF event to play a sound

Now that your sounds have been setup and are available in your machine, the next step is to configure
them to be played. The sound player was designed to do just this (associate a sound action, such as
play or stop, with an MPF event). The sound player can be configured in either the machine
configuration file, a mode configuration file, or even in a show step (or in all of them). To keep things
simple here, let’s configure the sound player in the machine configuration file.

The scenario in this example is we want our song from the previous example (song_01) to play
infinitely when the attract mode starts and stop when the attract mode stops. Create the following
entries in the sound_player: section of the machine config file:

sound_player:

mode_attract_started:

song_01:

action: play

loops: -1

mode_attract_stopped:

song_01:

action: stop

That’s it. The song_01 sound will be played on the music track whenever attract mode is started and
will stop whenever attract mode is stopped. The mode_attract_started section refers to a standard
MPF event that is sent whenever a mode named attract is started and mode_attract_stopped is a
standard MPF event that is sent whenever a mode named attract is stopped. For more information,
see the sound_player: documentation.

Finished

Congratulations! You have completed your the basic sound system setup and should have some simple
audio playing in your machine.

References

∙ Sound & Audio

∙ Ducking

∙ Tips & tricks

∙ sound_system:

How to setup sound for your machine 930

Mission Pinball Framework Documentation, Version

∙ tracks

∙ sounds:

∙ sound_player:

∙ sound_loop_sets:

∙ sound_loop_player:

∙ playlists:

∙ playlist_player:

∙ Instructions for entering gain values

Sound & Audio Tips & Tricks

This page contains a collection of miscellaneous tips and tricks when working with the sound & audio
features in MPF.

Common Digital Audio Terms

Bit Depth The number of bits used to represent and store a single sample. Bit depth (also commonly
referred to as sample resolution) determines the number of possible levels that can be captured
during digitalization. 16-bit represents 65,536 (2 to the 16th power) possible values. The
MPF-MC audio library only supports 16-bit audio files.

Brickwall limiter A brickwall limiter is used to ensure an audio signal does not exceed a certain
threshold. Any input value exceeding the threshold is set to the threshold value. This is used in
the mixing engine to ensure 16-bit integers do not exceed their maximum value and wrap around
(which adds ugly sounding distortion). It is important to set sound and track volume levels
properly in order to avoid the clipping that brickwall limiting adds when mixing signals that are
too loud.

Ducking Ducking is an audio effect that lowers the level of one audio signal based upon the level of
another audio signal (one sound “ducks” out of the way of another).

FLAC Free Lossless Audio Codec (FLAC) is an audio file format which allows digital audio to be
losslessly compressed such that file size is reduced without any information being lost.

Normalization Normalization is the process of changing an audio recording’s overall volume by a
fixed amount to reach a target level.

Ogg Vorbis (OGG) A free and open-source audio coding format. Ogg Vorbis is a lossy compressed
audio file format.

Sample Rate The number of samples per second taken from a continuous signal to make a discrete
signal. A common example of sample rate is CD audio which is recorded at 44,100 Hz (44,100
samples per second).

WAV Waveform Audio File Format is a Microsoft and IBM audio file format standard for storing an
audio bitstream on computers. WAV is a lossless uncompressed audio file format.

Sound & Audio Tips & Tricks 931

Mission Pinball Framework Documentation, Version

Preparing your sound files for use in MPF

The custom audio library supports several audio file formats for sounds, however only 16-bit audio
files can be used (this is a SDL_Mixer limitation). If you have sounds that do not have a bit depth of
16-bits then you must use audio editing software to resample your files to 16-bits. Audacity is a
full-featured, free, open source, cross-platform audio software application for recording and editing. It
is fully capable of performing all the necessary steps to prepare your audio files for use in MPF.

Tip: Do all your audio editing in a lossless audio format (such as WAV) and preserve a master copy in
that format as well in case you may want to perform any future editing. Convert a copy of all your
sound files to your machine’s sample rate and bit depth (ex: 44,100 Hz 16-bit) for use in MPF. Use
WAV format for the fastest loading sound files and Ogg Vorbis for the smallest file sizes (if storage
space is at a premium).

Here is a typical workflow for preparing your sound files:

1. Make a backup copy of all your original sound files (in case you accidentally mess one up while
editing it you’ll have a backup).

2. Trim silence from the beginning and end of your sound files. Removing the silence from the file
will make the sound feel more responsive and will take up less memory.

3. Normalize your sound files using peak normalization to 0 dB. This will maximize the volume level
of your sound files without clipping.

4. Resample all your audio files to a bit depth of 16-bits and use the sample rate you will be using in
your machine (a typical sampling rate is CD quality 44,100 Hz). This will save processing power
when loading your samples are no resampling will need to take place.

5. Save the files in your desired file format (WAV is recommended for loading speed).

Your files are now ready to begin using in MPF. The read the other basic steps for setting up sounds,
see How to set up sound .

Review max_queue_time Settings for Long Sounds/Music

The max_queue_time settings for sounds can lead to some unexpected behavior, especially for longer
sounds (like music). This setting specifies the maximum time a sound can be queued before it’s
played. On a track that supports only a single sound at a time (like a typical music track), playing a
sound with a priority that is less than or equal to the currently playing sound will have to wait until the
current sound is finished (it will be added to the queue). That may be acceptable to you, but you may
also be surprised when you hear the sound a minute or two later.

It is suggested you review all your max_queue_time settings to make sure they make sense for the
sound and situation in which they will be played. The default setting of None means the sound will
eventually be played, no matter how long the wait in the queue is. A value of 0 specifies the sound will
be immediately discarded if the track is already busy playing its maximum number of sounds. A value
of 2 secs specifies the sound will wait in the queue for 2 seconds to be played before being discarded.
Sound effects for things like slingshots and pop bumpers probably don’t make much sense if they are
played more than 250 milliseconds after they are hit so setting max_queue_time to a value between 0
and 250 ms is recommended. On the other hand, an extra ball callout is probably fine to play a few
seconds after the ball is earned. Go through your sounds and consider how to set this setting for each
one.

Sound & Audio Tips & Tricks 932

http://www.audacityteam.org

Mission Pinball Framework Documentation, Version

For more information, see the sounds documentation.

Synchronizing Sound With an LED Show

The key to synchronizing an LED show with a music track is to determine at what times in the sound
file you want events (such as LED color changes) to occur. There are many ways to do this, but here
are a few suggestions:

∙ Use your favorite sound or editing software to open your music track and place markers in all
the locations where you want LED changes to occur. This may take some trial and error and
listening to portions of your music over and over again until you get it right. Once your markers
are in place, export them to a text file (if your software supports it), or write down the times of
each marker. Use the times as step times in your show and assign the LED settings you want in
each step. This is a bit of a tedious process, but should give you nice synchronization when the
show is played at the same time as the music track (you can even put the sound play action in
the first step of your show). I work on a PC and use Sony Sound Forge for sound editing, but
there are many good editors available on every platform that support inserting markers. Here is
a screenshot of the process in the editor I use:

This feature is also available in Audacity (free open-source cross-platform sound editing
software) and many video editing packages.

∙ As an alternative, you can determine the tempo of your song in beats per minute (BPM) and from
that number calculate the time for each beat. Once you have the time for each beat, you can use
it to calculate various show step times (assuming you want LED changes to occur on the beat).
There are some tools out there that will calculate the BPM of your song for you, but are not
always very accurate depending upon the content of your song.

For more information on creating shows for your LED, see the Shows documentation

Sound & Audio Tips & Tricks 933

http://www.audacityteam.org

Mission Pinball Framework Documentation, Version

Pausing Background Music While a Video is Playing

With the addition of the new track_player config player in 0.32, it is now possible to control audio
tracks using MPF events. One common use of this new functionality is to pause your music track while
you play a video and resume the music when the video is finished playing.

The basic concept is to add an event to the video that is triggered when the video is played and one
when the video is stopped. Those events are then added to the track_player section of your config file:

track_player:

my_video_is_playing:

music:

action: pause

fade: 1 sec

my_video_has_stopped:

music:

action: play

fade: 1 sec

That’s all there is to it. Now whenever the my_video_is_playing MPF event is posted, the music track
will be paused. It will be resumed when the my_video_has_stopped MPF event is posted.

When TwoDrop Targets AreHit Simultaneously HowDo I Keep Two Sounds FromPlaying

A common scenario with drop targets is to play a sound when each target is hit. Frequently a player
will hit two targets with a single shot dropping them both virtually at the same time. In this situation
playing a sound for each target is not always desired. Instead, it would be nice to only have a single
sound played when the targets are hit within a short time window.

One possible way to solve this in MPF is to use counters. Counters have a multiple_hit_window setting
that prevents accidental double hits within the configured time period. Instead of using the target hit
event to trigger the sound, the target hit event will trigger the counter which in turn will post a hit
event that can be used to trigger the sound. Here is an example:

coils:

reset_drop_targets:

number: 1

switches:

sw_drop_target_1:

number: 1

sw_drop_target_2:

number: 2

sw_drop_target_3:

number: 3

drop_targets:

target_1:

switch: sw_drop_target_1

reset_coil: reset_drop_targets

target_2:

switch: sw_drop_target_2

reset_coil: reset_drop_targets

target_3:

(continues on next page)

Sound & Audio Tips & Tricks 934

Mission Pinball Framework Documentation, Version

(continued from previous page)

switch: sw_drop_target_3

reset_coil: reset_drop_targets

counters:

drop_target_counter:

count_events: drop_target_target_1_hit, drop_target_target_2_hit, drop_target_target_2_hit

multiple_hit_window: 500ms

events_when_hit: drop_target_counter_hit

sounds:

drop_target_sound:

file: blip1.ogg

volume: 0.75

sound_player:

drop_target_counter_hit:

drop_target_sound:

action: play

Alternatively, you could also define a separate track which allows only one concurrent sound at a time.
See Tracks for details.

How to play a sound with variations

One of the ways to make your machine more professional is to use different variations of sounds in
your machine. This will add variety and make your audio less predictable and more “alive”. This guide
explains how to play a sound with multiple variations in your machine. Sound support is part of the
MPF media controller and only available if you’re using MPF-MC for your media controller. This guide
assumes you have already configured your sound system for your machine and are familiar with the
basic sound setup concepts. If not, please start with the Setting up sound for your machine guide first.

1. An brief introduction to sound pools

Sound pools allow you to group multiple sounds together and treat the pool as a single sound. Each
time a sound pool is played, it selects a sound from its group of sounds. The selection can be
configured to be random or in a particular sequence. For more complete information, please read the
sound_pools documentation.

Although sound pools can be used to play a random music track or random callout when an event
occurs, in this guide we will be using a sound pool to play variations of a sound when a slingshot is hit.

2. Add a sound and some variations

Before we can create our sound pool, we first need to configure the individual sounds that will make
up our pool. We’ve decided we want to have a small ding (like a triangle hit) play whenever the
slingshot is hit. Let’s start by adding our basic sound to our sound assets. The hardest part of this
process is to either generate or find the sound you want (we won’t go into that process here). Once
you have your sound file, put it in the appropriate sound asset folder. I found a simple triangle sound
on www.freesound.org that we’ll use here, 13147__looppool__triangle1.wav. Place the file in your

How to play a sound with variations 935

http://www.freesound.org/

Mission Pinball Framework Documentation, Version

sound effects track folder (<machine_folder>/sounds/sfx). Now we’ll add it to your machine
configuration file, but give it an easier name to remember (triangle_01) using the file: setting (or
you could simply rename the file to triangle_01.wav and omit the file: setting):

sounds:

triangle_01:

file: 13147__looppool__triangle1.wav

volume: 0.7

Now add a few variations of the sound. I used my favorite sound editor to slightly adjust the pitch and
frequency content of the triangle sound file, creating three variations. You can also just find some
other similar sounds on the internet. After you have your variations, place them in the same directory
as your first sound file. We are now ready to add them to the sounds: section in the machine
configuration file (I named the sound variations triangle_02, triangle_03, and triangle_04 :

sounds:

triangle_01:

file: 13147__looppool__triangle1.wav

volume: 0.7

triangle_02:

volume: 0.7

triangle_03:

volume: 0.7

triangle_04:

volume: 0.7

3. Configure the sound pool

We now have 4 variations of the same basic triangle sound. It’s time to put them all into a single sound
pool object so we can treat them as a single sound. To do so, we need to add a sound_pools: section to
our machine configuration file as follows:

sound_pools:

triangle:

type: random

sounds:

- triangle_01

- triangle_02

- triangle_03

- triangle_04

We now have a sound pool asset called triangle that acts just like a sound asset, except that each time
triangle is played, one of the 4 sound variations contained in the sound pool will randomly be selected
to be played. Want to add more variations or take one out? It’s just as simple as modifying the list of
sounds in the sound pool.

This is great, but let’s adjust the sound pool settings a bit to fine tune its behavior. We really want the
main sound (triangle_01) to be played more often than the other sounds. How can we make that
happen? It’s very easy to do. We can add weights to each sound in the pool that specify the probability
of each sound being selected. Let’s look at our sound_pools: section again:

sound_pools:

triangle:

(continues on next page)

How to play a sound with variations 936

Mission Pinball Framework Documentation, Version

(continued from previous page)

type: random

track: sfx

sounds:

- triangle_01|5

- triangle_02|2

- triangle_03|2

- triangle_04|1

Notice we’ve added a pipe character (|) to the end of each sound followed by a numeric value. These
values assign a relative weight to each sound that will be used in the random selection process.
triangle_01 has a relative weight of 5 out of a total weighting of 10 (simply add all the weight values),
therefore its probability of being selected is 50%. The |1 appended to triangle_04 is unnecessary
because a relative weight of 1 is the default value for all sounds in the pool that do not have explicit
weight values assigned.

Sometimes you may want to have sounds included based on conditional events. You can add a
condition to any sound and the sound pool will only include that sound if the condition evaluates to
true at playback time. If the selection is random, excluded events will not be weighted in the
distribution. If the selection is sequential, excluded events will simply be skipped.

sound_pools:

triangle:

type: random

track: sfx

sounds:

- triangle_01

- triangle_02{current_player.triangles_found>1}|2

- triangle_03{current_player.triangles_found>2}

- triangle_04{device.achievements.supertriangle.state=="complete"}|5

Sound conditions are formatted the same as all conditional events. Any sound in a pool can have a
weight, a condition, both, or neither.

For additional sound pool setting options, take a look at the sound_pools documentation.

4. Configuring the sound player

We have our sounds and sound pool configured. To trigger the sounds with MPF events, the sound
player can be used. The sound player was covered in the previous tutorial and will not be covered
again here. You can also read the sound_player documentation.

How to play a sound with variations 937

CHAPTER12

Shows

In MPF, shows are containers that hold steps of instructions for things that can be “played” in a
certain order with specific timings.

You can do almost anything in a step in a show, including setting the color of LEDs, playing sounds,
showing slides on the display, posting events, firing drivers, etc.

You’re going to use shows a lot.

Note: Prior to MPF 0.30, “light shows” and “display shows” were two independent things. In MPF
0.30+, shows are now universal. There’s only one type of show, and it can be used to do anything.

Shows are controlled and run by the MPF game engine, and if a show contains actions in a step for the
media controller, such as display or sound actions, then those actions are sent via BCP to the media
controller when that step is played.

Shows are configured via the YAML formatting just like config files. You can add the definitions for
simple shows into your config files directly, or you can create standalone shows files that you store in
your machine’s‘shows‘ folder.

It is totally viable to create simple shows by hand. However, there is a MPF Showcreator to create
complex light shows.

Read on for more info on how shows work:

Show configuration format

Shows are defined via nested key/value pairs in YAML files.

A show contains multiple steps, and each step contains a time (for when that step should run) and
instructions (for what actions should happen in that step).

938

Mission Pinball Framework Documentation, Version

Here is a very simple show with two steps. The first step sets the color of led1 to red, then one second
later, it turns led1 off again. Then after another second, the show is over. (Most likely you’d configure
a show like this to loop, meaning this should could be used to flash led1 on and off.)

##! show: my_show

- time: 0

lights:

led1: red

- time: +1

lights:

led1: off

- time: +1

There are lots of different actions you can configure in a show step (LEDs, lights, sounds, coils,
display slides, etc.), but for now we’ll just use this very simple show as an example.

Defining steps

Shows are configured via YAML-like format, just like config files.

In the example show above, note that each step in the show starts with a key/value pair that’s
separated with a dash, then a space. So you could say that the example show above has three steps:

Step 1:

##! show: my_show

- time: 0

lights:

led1: red

Step 2:

##! show: my_show

- time: +1

lights:

led1: off

Step 3:

##! show: my_show

- time: +1

Important: YAML formatting can be tricky. It’s important that you include a space between the dash
and the key name. -time: 0 will not work and give you an error (since there is no space between -
and time.). Also, make sure the individual setting names are all aligned vertically. (In the example
above, time: and lights:) are left-aligned.

Setting step time

The time: setting in each step represents the time when that step starts. The first step will always be
time: 0

Show configuration format 939

Mission Pinball Framework Documentation, Version

If you just enter a number for the time, that number represents seconds. However, you can enter the
time in standard MPF time format , which could be ms, secs, etc. The following are all valid time
entries:

∙ time: 1 (1 second)

∙ time: 1.0 (1 second)

∙ time: 1s (1 second)

∙ time: 1000ms (1 second)

If you do not enter a time: setting for a step, MPF automatically uses time: +1.

When shows are played, it’s possible to specify a speed setting which is a multiplier for how fast the
show is played. The default is 1.0 which would use the time values entered here, but keep in mind that
it’s possible to play a show back at any speed. You can even change the speed of a running show while
it’s in progress.

Tip: The precision of shows is limited to clock speed that MPF runs at. By default, MPF runs at
60fps, which means that each “tick” of MPF is about 16ms. So in that case, you can’t get resolution of
shows more precise than that.

Absolute time

The time value for each step indicates when this step will play measured in time since the start of the
show. This is useful if you’re synchronizing show steps with sound or video.

Relative time

Sometimes it’s more convenient to specify the timing of a step in a show relative to the step before it.
To do that, enter the time value with a + in front of it, like this:

##! show: my_show

- time: +1

Relative step times are nice because you can adjust the timing of one step and then all the other
relative steps after it are shifted back or forwards automatically.

You can mix-and-match incremental and absolute times in the same show, and you can also combine
the plus sign for relative times with seconds or millisecond values. For example:

##! show: my_show

- time: 0 # plays right away, at 0 seconds

...

- time: +1 # plays 1 sec after the previous, 1 sec after show start

...

- time: +1 # plays 1 sec after the previous, 2 secs after show start

...

- time: 4 # plays 4 secs after show start, 2 secs after the previous

...

- time: +1 # plays 1 sec after the previous, 5 secs after show start

#...

Show configuration format 940

Mission Pinball Framework Documentation, Version

Note that since shows use YAML formatting, you can use the hash sign (#) to add comments which
MPF ignores.

Setting step duration

Instead of specifying the “time” when a step starts, you can also specify the “duration” of how long a
step lasts (which is essentially specifying when a step ends). The difference is subtle, but each is
useful in different situations.

For example, the following to shows are identical:

##! show: my_show

- time: 0

lights:

led1: red

- time: +1

lights:

led1: off

- time: +1

##! show: my_show

- duration: 1

lights:

led1: red

- duration: 1

lights:

led1: off

You can also mix and match “time” and “duration” settings in the same show (and even in the same
step). The only thing you can’t do is have a “time” setting in a step that follows a step with “duration”
(since those two values would essentially mean the same thing and it would be confusing).

Setting the duration of the final step

Most people find it easiest to just use either “time” or “duration” consistently throughout a show. The
only practical difference you need to think about is how the final step works.

For example, with “time”-based steps, you’re specifying the time when a step starts. So when does a
step stop? When the next one starts. But what about your last step in the show? How long should it
run for? If you just use time-based steps, you’d still want to specify a “duration” for the final step, like
this:

##! show: my_show

- time: 0

lights:

led1: red

- time: +1

lights:

led1: green

- time: +1

duration: 1

lights:

led1: blue

Show configuration format 941

Mission Pinball Framework Documentation, Version

“Holding” the final step

You can set a duration: -1 for an “infinite” duration of a step. (Think of this like a hold or pause.) This
is most useful in shows that you want to run and then hold something in their final state. For example,
maybe you want a show that runs once (no loop) and flashes a light which then stays on. You could do
that like this:

##! show: my_show

- time: 0

lights:

led1: red

- time: +250ms

lights:

led1: off

- time: +250ms

lights:

led1: red

- time: +250ms

lights:

led1: off

- time: +250ms

lights:

led1: red

duration: -1

In this example, the LED would stay on (red) until that show was manually stopped or until the mode
was stopped (if the show_player: entry was in a mode config file).

What can you put in shows?

In the Show configuration format page, we showed how time values work in shows and included some
simple examples using lights. However in MPF, you can put almost anything in shows, including:

∙ Lights

∙ Coil & drivers

∙ Sounds

∙ Slides (for the display)

∙ Shows (one show can spawn other shows and/or act like a playlist)

∙ Events

∙ Random events (randomly post an event from a list of events)

∙ Flashers

∙ GI (general illumination)

∙ BCP commands & triggers

∙ Widgets (to be added or removed from slides)

The full gamut of options for each of these things is available to you in a show step.

What can you put in shows? 942

Mission Pinball Framework Documentation, Version

For example, you can configure lights to change color, set their fade, turn off, etc. You can show slides
on your display or DMD, or remove existing slides. You can post events that trigger other shows or
other things to happen. You can start and stop sounds and music. The list goes on and on. . .

Technically-speaking, the list above is actually a list of things that MPF calls config players.

Config players in MPF have nothing to with the actual human players of your machine, rather, they
are things that “play” configurations.

Config players are used in the *_player: section of your config files and as steps in shows. For
example, the light player is used to “play” a config to lights, and it’s available to you outside of shows
in the light_player: section of your config file as well as in the lights: section of a show.

That naming convention is the same for all the config players. You play sounds via the sound_player:
section of a config file or the sounds: section of a show. Slides are played via the slide_player:
section of a config file or the slides: section of a show, etc.

All of the individual config players are documented in the config players section of the documentation.
You can read details about each config player there, as well as specific instructions for how to include
that kind of player in a show.

Creating standalone show files

You can create a subfolder called shows in your machine config folder or within a mode config folder.
Then inside that folder, you can create separate files, where each file is its own show. The files need to
have a .yaml extension, and the name of the file before the extension is the name of the show as you’d
refer to it in your MPF configs.

A few notes for creating show files:

∙ MPF config files are case sensitive. It is best to stick to some kind of convention (such as
lowercase names with underscores).

∙ Show names are “machine-wide” within MPF. This means that if you have two different shows
with the same name in different locations, MPF will get confused.

∙ Valid characters for show names are z-x, 0-9, and the underscore. Python objects cannot contain
dashes in their names, meaning your show file names cannot include dashes.

Here is a sample show file. This file might be called something like flash_red.yaml and would be
located in your machine’s /shows folder:

##! show: my_show

#show_version=5

- time: 0

lights:

led1: red

- time: +1

lights:

led1: off

- time: +1

Notice it’s essentially the same show we used as an example in the section on show config formats.
However there’s one important change.

Since this is a standalone show file, we need to tell MPF what “version” of the show format this file is.
MPF versions 0.56 use show_version=5. If we ever change something in the show format, then we’ll

Creating standalone show files 943

Mission Pinball Framework Documentation, Version

increment the version. (Don’t worry though, we have and automated migration tool that converts
shows to the new formats. That’s actually part of the reason we include the show_version in the show
files)

The bottom line is that when you create a .yaml show file, the first line of the file must be
#show_version=5 so MPF knows it’s working with the proper type of file.

Beyond that, the show file follows the show format covered elsewhere in this documentation. You can
nest show files into subfolders under the /shows folder if you want to, and in can put /shows folders in
both your machine-wide and mode-specific folders. (The /shows folder should be in the root of your
machine config or the root of a mode folder. It does not go inside the /config folder.)

Creating shows in config files

In addition to being able to create standalone show files, MPF also lets you define your shows right
in-line in your config files.

You can do this in the shows: section of a config file. (This can be done in a mode-based config or in
your machine-wide config).

The actual format for a show in a config file is identical to the format of a standalone show file on disk.
Basically you add a shows: section to a config, create sub-sections based on show name, and then add
normal show items to the config. For example:

shows:

flash_red:

- time: 0

lights:

led1: red

- time: +1

lights:

led1: off

- time: +1

blue_green_cycle:

- time: 0

lights:

led2: blue

- time: +1

lights:

led2: green

- time: +1

The section above contains two shows: flash_red and blue_green_cycle.

Shows in files versus shows in configs

Now that you see it’s possible to create shows as standalone YAML files in your shows folder and also
in a shows: section of a config file, you’re probably wondering what the difference is and when you
should use one versus the other?

The answer is pretty simple: There is no difference.

When MPF boots up, it creates the shows objects from your show files and the show sections from
configs. But once those shows are created, they are identical. No difference whatsoever. So really you

Shows in files versus shows in configs 944

Mission Pinball Framework Documentation, Version

can uses whichever format you want (or mix and match them). We typically create bigger and more
complex shows as their own YAML files, and smaller, simpler shows in-line in the machine or mode
config. But again, it really doesn’t matter.

The only real difference is that if you load shows from YAML files, you can dynamically load and
unload shows throughout the lifespan of MPF. (For example, you might configure it so a mode loads
the shows it needs into memory when the mode starts, and then unloads them when the mode ends.)
If you have lots and lots of shows and not very much memory, this could help conserve memory since
shows are only loaded when they’re needed. That said, individual shows don’t take up too much
memory (certainly far less than sounds and images), so in most cases this is probably moot.

One “gotcha” to keep in mind is that MPF maintains a global list of shows, so you can’t have the same
show name twice (even if one is loaded from a show file and one is in a config file). If you do this, then
whichever show you load last will be overwrite the previous one, and you’ll be confused.

Referencing Slides/Widgets in Shows

You can add slides/widgets in shows. However, you cannot reference slides/widgets which were
defined in show files or show sections from outside of the show. This worked in the past but it caused
issues if this show hasn’t been loaded yet. Nevertheless, you can reference (named) slides/widgets
from slide/widget sections in any show.

Using “tokens” for run-time variable replacement in shows

One of the most powerful features of MPF shows is that you can build shows that contain
“placeholder” tokens which are dynamically replaced with actual values when a show starts.

This lets you build reusable shows that you can then use in lots of different situations with different
lights, slides, sounds, etc.

Shows without tokens

To understand how tokens work, let’s first look at a show that does not include any tokens, like this:

##! show: my_show

- time: 0

lights:

led_01: red

- time: 1

lights:

led_01: off

The example show above is simple. When it starts, it sets led_01 to red, then 1 second later, it turns it
off. You can run this show in a loop to flash led_01 between red and off.

If you called this show flash_red, you could play it via the show_player: section of your config, like this:

show_player:

some_event: flash_red

Referencing Slides/Widgets in Shows 945

Mission Pinball Framework Documentation, Version

The problem with this show is that it’s hard-coded. It only works for led_01, and it only cycles the
colors between red and off.

So what if you want to flash led_01 between yellow and off? Or what if you want to flash a different
LED? With a show like the example above, you’d have to write a new show for every LED with every
possible color combination you’d ever want. :(

Adding tokens to shows

This is where tokens come in. Consider a slightly modified version of the show above using a token
instead of a hard-coded LED name:

##! show: my_show

- time: 0

lights:

(led): red

- time: 1

lights:

(led): off

Notice the second show is identical to the first, except every reference to led_01 has been replaced
with (led).

When MPF plays a show, it looks for words in the show contained in parenthesis, and then it can use
those parenthesis to replace values on the fly.

So in the second show here, when you run the show, you could tell it “replace the “leds” token with
the value “led_02”, which would make a show like this:

##! show: my_show

- time: 0

lights:

led_02: red

- time: 1

lights:

led_02: off

The actual way that you start and send tokens to shows varies depending on what you’re doing in
MPF. (Typically they’re tied to shots or events.)

For example, here’s how you’d do it via the show_player:. (In this example, we also add loops: -1
which will cause the show to loop (repeat) indefinitely.

show_player:

some_event:

flash_red:

loops: -1

show_tokens:

led: led_02

MPF can run multiple instances of a show at the same time, so you could run the above show multiple
times (at the same time), passing different tokens to each one, meaning you could use the same show
to flash lots of lights at once:

Using “tokens” for run-time variable replacement in shows 946

Mission Pinball Framework Documentation, Version

show_player:

some_event:

flash_red:

loops: -1

show_tokens:

led: led_02

some_other_event:

flash_red:

loops: -1

show_tokens:

led: led_03

Putting multiple values into a single token

You can also use tags to insert multiple values into a single token. For example, consider the following
section from your machine config:

lights:

led_01:

number: 00

tags: tag1

led_02:

number: 01

tags: tag1

You can see that both led_01 and led_02 have the tag1 tag applied. So if you play the show above
(with the leds token), you can actually pass the tag name to the token instead:

show_player:

some_event:

flash_red:

loops: -1

show_tokens:

led: tag1

This would result in a show that was equivalent to:

##! show: my_show

- time: 0

lights:

led_01: red

led_02: red

- time: 1

lights:

led_01: off

led_02: off

Token names are arbitrary

The token show we’ve been working with so far includes a token called leds. That’s a good name for
the token since it explains what it’s for. However, MPF doesn’t care what the actual token name is. All
it’s doing is a find-and-replace when the show starts with whatever token names it was passed.

Using “tokens” for run-time variable replacement in shows 947

Mission Pinball Framework Documentation, Version

For example, this is a perfectly valid show:

##! show: my_show

- time: 0

lights:

(corndog): red

- time: 1

lights:

(corndog): off

In this case, you’d just pass a value for the corndog token when you play the show:

show_player:

some_event:

flash_red:

loops: -1

show_tokens:

corndog: led_02

Tokens can be values too

You can use tokens anywhere in a show. The actual find-and-replace is pretty simple, just looking for
words in parentheses and then substituting them with the tokens key/value pairs that were passed
when the show starts.

You can also pass multiple tokens. Consider the following show:

##! show: my_show

- time: 0

lights:

(led): (color1)

- time: 1

lights:

(led): (color2)

Notice there are three tokens in this show: led, color1, and color2. You might call this show
color_cycle, which you could then play like this:

show_player:

some_event:

color_cycle:

loops: -1

show_tokens:

led: led_02

color1: green

color2: blue

Tokens vs Tags

Almost all devices support tags. In config players such as light_player you can also reference multiple
lights by their tags.

Using “tokens” for run-time variable replacement in shows 948

Mission Pinball Framework Documentation, Version

The bottom line

As you can see, tokens are very powerful. Again, keep in mind there are many different ways to start
shows in MPF, and all of them have ways to pass tokens to shows.

Starting & stopping shows

Now that you know how to create shows, how do you start and stop them?

The easiest way is with the show_player: section of either a machine-wide or mode config files.

You can use the show player to start, stop, pause, resume, advance, step back, and update shows.
(That’s a lot!) You can also use it to set the playback speed, set up show synchronization, and set up
show repeats and looping.

Note that any shows which were started via a show_player: section in a mode config file will
automatically be stopped when that mode stops.

So check the show_player: documentation for details.

Synchronizing multiple shows

One thing you might notice in professional pinball machines is that all the lights flash in sync with
each other. But in MPF, if you have lots of separate shows, then you’ll notice they all sort of start
randomly when they start, and it looks bad because they’re not all perfectly aligned with each other.

MPF solves this by incorporating a “sync_ms” setting when playing shows. When you add this setting
to a show and then play it, MPF will not start the show until the next exact multiple of that number
from zero.

For example, if you have sync_ms: 500, then MPF will start a show at the exact second or half second.
(e.g. the seconds value of the current time will either be .0 or .5).

If you have sync_ms: 250, then shows will be delayed and start at the nearest quarter second, either
.0, .250, .5, or .750 past the second.

You only need to use the sync_ms setting for the specific shows you want to keep in sync. Typically
this would be used for light or LED shows, as new shows starting should align nicely to existing shows
that are already running.

The value of sync_ms you should use should be one complete “cycle” of the show. For example, if you
flash your lights or LEDs at a rate of 250ms on / 250ms off, then you should use sync_ms: 500 to
ensure every show starts at the nearest 500ms point, thus ensuring that all lights will be “on” or “off”
at the same time. (If you set sync_ms: 250 in this case, then your shows will be in sync but they might
be offset from each other.)

If your show is 200ms on / 200ms off, set sync_ms to 400. If your show is 400ms on / 250ms off, set
sync_ms to 650. Etc.

If you’re wondering whether sync_ms is bad because it delays a show start, and you don’t want a show
to be delayed, don’t worry about it. The main use for sync_ms is when you have lights or LEDs that are
flashing repeatedly, and in those cases, there’s so much other stuff happening when they start flashing
that no one is going to notice a delay of a fraction of a second when the show starts. (This is how is
has to work anyway since you want the lights to be in sync.)

Starting & stopping shows 949

Mission Pinball Framework Documentation, Version

Playing Shows in a Show

Sometimes it can be useful to play other shows inside your show. Luckily, a show can use any Config
Players and there is a Show player.

This is an example of an attract mode:

##! show: my_show

- duration: 3s

shows:

attract_show_collectlights:

loops: 1

speed: 10

show_tokens:

color: blue

- duration: 3s

shows:

attract_show_collectlights:

loops: 1

speed: 10

show_tokens:

color: red

It will first run a show in blue and then the same show in red. You would usually also add some sounds
and slides which can be also in other shows. The organisation of your shows is up to you. This allows
you to reuse shows with different parameters.

Video about shows:

https://youtu.be/Ou5xqCAthZY

You should have a look at Config Players to find more information about all the elements which are
possible in shows (i.e. lights, slides, widgets or sounds).

Videos about shows:

https://youtu.be/Ou5xqCAthZY

https://youtu.be/bjDWm_pO9_I

https://youtu.be/9hMsnGfUliM

Playing Shows in a Show 950

https://youtu.be/Ou5xqCAthZY
https://youtu.be/Ou5xqCAthZY
https://youtu.be/bjDWm_pO9_I
https://youtu.be/9hMsnGfUliM

CHAPTER13

Assets

Assets are files that your machine uses that are loaded from disks, such as show YAML files, images,
and sound files. MPF has lots of flexibility for how assets are loaded and unloaded. (For example, if
you’re running MPF on a machine that doesn’t have a lot of memory, you may not be able to load all
the assets at startup and may instead have to dynamically load and unload assets throughout the
game.)

MPF also has the ability to automatically “discover” various types of assets in your machine folder,
meaning you don’t have to manually type every single asset file name into your config files. You can
even set asset properties based on what folder and/or subfolder they’re in. (For example, audio files in
/sounds/fx are automatically played on the sound effects track, while sound files in /sounds/voice are
played on the voice track.

As of MPF 0.33, assets can be in nested subfolders too. For example:

\sounds

\sounds\fx

\sounds\fx\pops

\sounds\fx\slings

\sounds\voice\red

\sounds\voice\ted

\sounds\voice\bob

MPF also supports “asset pools” for sound and image assets which allow you to group multiple asset
files into a single asset name that you use in MPF. This lets you add “variation” to assets during game
play. For example, if you have a laser sound when a pop bumper is hit, you could actually have four
different laser sound files that are each slightly different which you pool into the “laser” asset which is
associated with the pop bumper, and then each time the pop bumper is hit you get one of the four
sounds played at random instead of the same sound over and over.

951

Mission Pinball Framework Documentation, Version

Creating “pools” of assets

Help us to write it

Bitmap Fonts (asset type)

See Bitmap Fonts and bitmap_fonts:.

Images (asset type)

See Image Widget .

Shows (asset type)

See Shows and shows:.

Sounds (asset type)

See Sounds, Music & Audio.

Videos (asset type)

See Video widget .

Creating “pools” of assets 952

CHAPTER14

Config Players

An important concept to using the YAML-based configuration files is something we call config players.

Config players in MPF have nothing to with the actual human players of your machine, rather, they
are things that “play” based on configurations.

Config players are used in both the machine-wide and mode-specific config files, and also in show
steps.

∙ In a config file, the config players are setup via the <config_player_name>_player: section of the
file.

∙ In show steps, config players are accessed via the <config_player_name>s: setting.

Some examples:

∙ You play sounds via a config file in the sound_player: section, and you play sounds from a show
step via the sounds: setting for that step.

∙ You show slides on a display via a config file in the slide_player: section, and you show slides
from a show step via the slides: setting for that step.

∙ You set the color of LEDs via a config file in the light_player: section, and you set colors from a
show step via the lights: setting for that step.

∙ You set player and machine variables based on events in the variable_player: section (this is
commonly used for scoring in your machine), and you set variables from a show step via the
variables: setting of that step.

∙ etc.

Video about events in MPF:

https://youtu.be/G3UbVP8gFU0

Video about shows:

https://youtu.be/Ou5xqCAthZY

953

https://youtu.be/G3UbVP8gFU0
https://youtu.be/Ou5xqCAthZY

Mission Pinball Framework Documentation, Version

Standalone Config Player

General syntax looks like this in a standalone player:

Normal syntax

example_player:

event_which_is_posted_elsewhere:

<depends on the player>

For example (show_player; short syntax):

show_player:

event_which_is_posted_elsewhere:

your_show: play

Another example (show_player; long syntax):

show_player:

event_which_is_posted_elsewhere:

your_show:

action: play

sync_ms: 1000

One line syntax

This is not supported in all players. This usually performs the default action on the element:

example_player:

event_which_is_posted_elsewhere: <depends on the player>

An example (show_player):

show_player:

event_which_is_posted_elsewhere: your_show

Subscription syntax

This is not supported for all variables and all players. It will perform the action (i.e. play a show or
enable a light) when the condition becomes true. Later it will remove/stop the action (i.e. stop the
show or disable the light) when the condition becomes false.

example_player:

"{machine.test_machine_var == 23}":

<depends on the player>

An example (light_player):

Standalone Config Player 954

Mission Pinball Framework Documentation, Version

light_player:

"{current_player.score > 1000000}":

score_1M: white

See Conditional Events for details about conditionals.

Config Player in a Show

All config players also work in shows. However, you need to skip the event which triggers the player
since the action is triggered by the show.

Normal syntax

This supports the same syntax as above (just without the event). Also note that instead of
example_player: it becomes examples:.

- duration: 2s

examples:

<depends on the player>

For example (show_player; short syntax):

##! show: test

- duration: 2s

shows:

your_show: play

Another example (show_player; long syntax):

##! show: test

- duration: 2s

shows:

your_show:

action: play

sync_ms: 1000

One line syntax

There is no one line syntax in shows.

There are several different config players in MPF and MPF-MC. Click on each below for specific
details of how to use them, with explanations of how to use them in config files and in shows.

Blinkenlight player

The blinkenlight player is a config player that’s used add or remove colors from a blinkenlight.

Note: What is a blinkenlight?

Config Player in a Show 955

Mission Pinball Framework Documentation, Version

A blinkenlight is a flashing light on your pinball machine. But it’s different than a normal flashing light
that you might have in a show, because with a blinkenlight, multiple modes (or shows) can add colors
to the light, and the blinkenlight will flash all the colors in a sequence.

Blinkenlights are useful if you have a game where multiple modes could be running and they all share
the same shot(s). Each mode could have a different color, and the light for the shot could flash
between all the colors, to show the player that shooting that shot will score all those modes at once.

For example, this is the kind of thing that happens in Stern’s Game of Thrones. If you start multiple
houses at the same time, and they share shot(s) the sigils in front of those shots will flash different
colors to show you that the same shot will score different modes. The left ramp might alternate
between white (Stark) and red (Lannister) to show you that both modes will score that shot.

This is an example of a blinkenlight player:

blinkenlight_player:

some_event:

my_blinkenlight: red

some_other_event:

my_blinkenlight:

action: add

key: blue_color

color: blue

In the example above, when the event called some_event is posted, the color red will be added to the
blinkenlight my_blinkenlight. When the event some_other_event is posted, the color blue will be added
to the same blinkenlight. This color has the key blue_color, which is useful if we want to remove the
color later.

Note that the some_event example has a shortened config than the some_other_event example. This
shortened version is called an express config. The blinkenlight’s express config is the same thing as
doing an “add” action with the color you specify. It’s just a shorter way to do the same thing. You can
read more about express configs here. Also, see the section below called Express Config for more
information on the express config.

To use a blinkenlight player, you first have to define a blinkenlight within your machine config (see the
blinkenlight page here). The blinkenlight’s config will set which actual light in your pinball machine is
controlled by the blinkenlight. When you add a color to the blinkenlight from a blinkenlight player, the
light will start to flash that color. As more colors are added, the light will cycle through all the colors.

Note: It makes the most sense to specify an RGB LED as the underlying light for a blinkenlight, since
the whole idea is for the light to flash different colors. There’s nothing that stops you from adding a
regular light, though. Instead of colors, you could specify different brightness levels to flash. Either
way, we refer to those as “colors” in this documentation.

A Blinkenlight’s cycle

The blinkenlight will cycle through all the colors that have been added to it. You have control over
how this cycle works. All of the options to control a blinkenlight’s cycle are controlled from the
blinkenlights section of your config file, and not the blinkenlight_player section.

Config Player in a Show 956

Mission Pinball Framework Documentation, Version

For example, you can specify how long each color is displayed by setting the color_duration property
of the blinkenlight. This will cause each color to be displayed for a specified length of time, and the
more colors you add, the longer the blinkenlight’s cycle will take. Alternatively, if you want the
blinkenlight’s cycle to last a certain amount of time regardless of how many colors are added to it, you
can set the cycle_duration instead.

When the blinkenlight only has one color, it will flash that single color in a sequence like this: on off on
off and so on. When more than one color is added, however, you might not want the light to turn off at
the end of each cycle. For example, if your blinkenlight has two colors, red and green, you might want
the cycle to be: red green off red green off, or you might simply want it to be red green red green. You
can control this behavior with the off_when_multiple setting of your blinkenlight. Setting this value to
True will turn the light off at the end of each cycle. The default value is False, which will not turn the
light off when multiple colors are present.

Blinkenlights will stay in sync with each other automatically, if you have multiple blinkenlights with
the same settings and the same number of colors. So, for example, if you have two blinkenlights with
the same cycle_duration, and each one has 3 colors added to it, then they will start their cycles at the
same time, and end their cycles at the same time. This way, the blinkenlights will stay in sync with
each other. This is useful if you have a blinkenlight on your left and right ramps, for example, and you
want them both to flash the same colors. You would want them to show the same colors at the same
time.

A cycle example

Let’s say you have a blinkenlight that is set up like this:

blinkenlights:

blinkenlight_1:

cycle_duration: 1s

off_when_multiple: false

light: l_left_ramp_arrow

In this case, blinkenlight_1 has a cycle_duration value of 1s. That is, each cycle lasts 1 second,
regardless of how many colors the blinkenlight has. Now, let’s say you use a blinkenlight_player to
add the color red to the blinkenlight. Now the blinkenlight’s cycle would look like this:

1 second 1 second 1 second 1 second
red off red off red off red off

If green color is added to the blinkenlight, the cycle would change to this:

1 second 1 second 1 second 1 second
red green red green red green red green

Now let’s say a third color (blue) is added:

1 second 1 second 1 second 1 second
r g b r g b r g b r g b

Note that each color now is only 1/3 of a second long, since there are three of them per cycle now.

Config Player in a Show 957

Mission Pinball Framework Documentation, Version

Now, blue is removed from the blinkenlight, while the blinkenlight is currently showing a blue color
during the second cycle:

1 second 1 second 1 second 1 second
r g b r g b g red green red green

Notice how blue is displayed when the color is removed, and the light immediately switches to green,
since green should be displayed at that point in time now that the blinkenlight only has 2 colors. So
the end result is green “flashes” very briefly before red is displayed again and the red/green cycle
starts.

Using Blinkenlights in shows

You can also use blinkenlight_player from within a show. This lets you add colors to a blinkenlight
during a show. It probably doesn’t make sense most of the time to do this, because colors you add to a
blinkenlight will only stick around while the show is active. Once the show ends, the colors you added
during that show will automatically be removed from the blinkenlight.

Note: This is true of colors added during modes as well. If a mode in your game adds colors to a
blinkenlight, those colors will be automatically removed from the blinkenlight when the mode ends. If
you restart the mode, those colors won’t come back automatically, however, so keep that in mind. You
might need to add the colors again when the mode restarts, depending on how your game works.

Example blinkenlight player from a show:

##! show: test

- time: 0

blinkenlights:

my_blinkenlight: red

Usage in config files

In config files, the blinkenlight player is used via the blinkenlight_player: section.

Usage in shows

In shows, the blinkenlight player is used via the blinkenlights: section of a step.

Express Config and Keyless Colors

As mentioned above, the express config for blinkenlight_player performs the add action. So, the color
you specify as the express config value will be the color to add to the blinkenlight. However, if you add
a color this way, there is no key value for the color. Or, more specifically, the key value will be empty.
We could refer to colors without a key value as a keyless color. If you later use the remove action and
don’t specify a key to remove, then the keyless color will be removed.

This is better explained with an example. Consider this blinkenlight_player:

Config Player in a Show 958

Mission Pinball Framework Documentation, Version

blinkenlight_player:

some_event:

my_blinkenlight: red

some_other_event:

my_blinkenlight:

action: remove

In this case, the color red will be added to my_blinkenlight when the some_event event is posted. This
color doesn’t have a key value, so this color is keyless. When the some_other_event event is posted, the
remove action is performed. Since this remove action also didn’t specify a key value, then MPF will look
for a keyless color and remove that color from the blinkenlight. In this case, the color red will be
removed.

Note that keyless colors are only valid within the context of the mode or show that is performing the
keyless action. So, a remove action from mode1 will not remove the keyless color that was added by
mode2. It will only remove the keyless color added by mode1.

There’s a special value you can use in the express config to remove a keyless color. Instead of using
the full config and specifying an action: remove as we did above, you can use the special color stop or
remove in the express config to do the same thing. The following is equivalent to the example above:

blinkenlight_player:

some_event:

my_blinkenlight: red

some_other_event:

my_blinkenlight: remove

In this case, the red color is added to the blinkenlight when some_event is posted, and then removed
when some_other_event is posted.

Config Options

See blinkenlight_player: for config details.

Coil player

The coil player is a config player that’s used pulse, enable, or disable coils and drivers.

This is an example:

coil_player:

some_event: coil_1

some_other_event:

coil_2:

action: enable

hold_power: .5

In the example above, when the event called some_event is posted, coil_1 will pulse. When the event
some_other_event is posted, coil_2 will enable (be held on) at power level 0.5 (means 50% of maximum
power).

Note that the some_event: coil_1 is entered in a different way than the some_other_event:. The first
one has a simple key/value pair, whereas the second has a complete nested sub-configuration.

Config Player in a Show 959

Mission Pinball Framework Documentation, Version

The first example shows the “express” config, while the second shows the full config. (What’s an
“express config?” Details here.

The coil player’s express config is the “pulse” action.

Example coil player from a show:

##! show: test

- time: 0

coils:

coil1: pulse

Usage in config files

In config files, the coil player is used via the coil_player: section.

Usage in shows

In shows, the coil player is used via the coils: section of a step.

Config Options

See coil_player: for config details.

Using LEDs as display (display_light_player)

You can map any display to your playfield LEDs or any LEDs (e.g. a LED matrix) in your machine. This
enables you to leverage any MC features and display them on any LEDs (or more specifically any
lights) in your machine.

Video about display_light_player:

https://youtu.be/38hc7IIfVJI

To use this in a show you can use this:

##! show: test_show

- display_lights:

your_source_display: # use any display defined in your machine

lights: "*" # map all lights. you can also use a tag

Or standalone:

display_light_player:

your_event:

your_source_display:

lights: "*"

Then map your lights to a position on the display:

Config Player in a Show 960

https://youtu.be/38hc7IIfVJI

Mission Pinball Framework Documentation, Version

lights:

l_light1:

number: 1

x: 0.3595817467355206

y: 0.026751757949132805

l_light2:

number: 2

x: 0.34303657433971446

y: 0.02873336964906857

You can map those in the MPF monitor and then copy the locations using the script in
tools/monitor_to_config.py or manually. You may need to adjust config names in the script
(improvements welcome).

Usage in config files

In config files, the display light player is used via the display_light_player: section.

Usage in shows

In shows, the display light player is used via the display_lights: section of a step.

Config Options

See display_light_player: for config details.

Event player

The event player is a config player that’s used to post events.

Video about events in MPF:

https://youtu.be/G3UbVP8gFU0

Basic Event Playing

event_player:

ball_starting:

- cmd_flippers_enable

- cmd_autofire_coils_enable

- cmd_drop_targets_reset

ball_ending:

- cmd_flippers_disable

- cmd_autofire_coils_disable

tilt:

- cmd_flippers_disable

- cmd_autofire_coils_disable

slam_tilt:

(continues on next page)

Config Player in a Show 961

https://youtu.be/G3UbVP8gFU0

Mission Pinball Framework Documentation, Version

(continued from previous page)

- cmd_flippers_disable

- cmd_autofire_coils_disable

The event player settings above will post the events cmd_flippers_enable, cmd_autofire_coils_enable,
and cmd_drop_targets_reset when the ball_starting event is posted. Similarly they will post events to
disable the flippers and autofire coils when ball end and tilt events are posted.

To use this, simply create an event_player: entry in your config file. Then create sub- entries for each
event you want to trigger other events, and add a list of one or more events that should be posted
automatically under each trigger event.

Remember that you can create this event_player: section in either your machine-wide or in
mode-specific config files. For example, if you want a target called “upper” to reset when a mode
called “shoot_here” starts, you could create an entry like this in the shoot here mode’s
shoot_here.yaml mode configuration file:

##! mode: shoot_here

event_player:

mode_shoot_here_started: cmd_upper_target_reset

Conditional Event Playing

Events in the event player can be conditional, to allow precise control over when an event is played:

##! mode: base

event_player:

mode_base_started{current_player.score>10000}:

- start_mode_superbonusround

- play_show_richy_rich

start_mode_battle{device.achievements.ironthrone.state!="completed"}: start_mode_choose_battle

start_mode_battle{device.achievements.ironthrone.state=="completed"}: start_mode_victory_lap

In the above example, both “start_mode_superbonusround” and “play_show_richy_rich” will only be
posted if the player’s score is over 10,000 when base mode starts. And if the battle mode is started,
either “start_mode_choose_battle” or “start_mode_victory_lap” will be posted depending on whether
the ironthrone achievement has been completed.

Conditions can also be applied to events within a list, to allow one event to trigger a variable number
of handlers:

##! mode: base

event_player:

reenable_nonrecruit_modes:

- start_mode_shadowbroker_base

- start_mode_n7_assignments

- start_mode_overlordlight{device.achievements.collectorship.state!="complete"}

- start_mode_arrival{device.achievements.collectorship.state=="complete"}

- start_mode_shopping{current_player.cash>=1000}

In the above example, both “start_mode_shadowbroker_base” and “start_mode_n7_assignments” will
be posted every time. One of either “start_mode_overlord” or “start_mode_arrival” will be posted,
depending on whether the player has completed the collectorship achievement. And if the player_var
“cash” is high enough, “start_mode_shopping” will also be posted.

Config Player in a Show 962

Mission Pinball Framework Documentation, Version

In many cases, conditions can be applied to either the triggering event or the handling event. For
more information and examples of conditions, see conditional events.

Dynamic Values in Events

There are numerous ways to include dynamic values (player variables, device states, mathematical
calculations) in events.

Dynamic Event Names

An event name can use parenthetical values to dynamically determine the event.

event_player:

mode_dynamo_started:

Player variables can be dropped into event names

- play_dynamo_show_phase_(current_player.phase_name)

Machine and device states can be used

- dynamo_started_with_state_(device.achievements.dynamo.state)

Dynamic evaluations can be done to calculate values

- player_score_is_("high" if current_player.score > 10000 else "low")

In the above example:

∙ With the player variable phase_name having a value of “attackwave”, starting the mode would
post the event play_dynamo_show_phase_attackwave

∙ If the “dynamo” achievement was completed, starting the mode would post
dynamo_started_with_state_completed. If the achievement was instead disabled, the event would
be dynamo_started_with_state_disabled

∙ If the player’s score is over 10,000 the event player_score_is_high will be posted, otherwise the
event player_score_is_low will be posted.

Any dynamic values can be used. Because event names are always strings, all dynamic values will be
converted to their string equivalent.

Dynamic Event Arguments

An event post can include arguments to provide event handlers with additional information about the
event. An event configured as an object will post the object properties as its arguments:

event_player:

mode_carchase_started:

Objects can be expanded for a key/value pair per line

set_environment_sounds:

env_name: driving

Objects can be inline for brevity

set_initial_laps_count: {count: 10}

You can go a step further and include dynamic values as the values for event arguments. To indicate
that an argument’s value is dynamic, use the value: property.

Config Player in a Show 963

Mission Pinball Framework Documentation, Version

event_player:

mode_dynamo_started:

set_dynamo_phase:

phase_name: {value: current_player.dynamo_phase}

In the above example, if the player variable dynamo_phase had the value “attackwave”, the event would
be posted as such:

Event: ======'set_dynamo_phase'====== Args={'phase_name': 'attackwave', priority': 0}

Because dynamic values can come from a variety of sources, you will need to explicitly define types for
the value’s format. Acceptable types are int, float, bool, and string. If no type is configured, the
value will be posted as a string.

event_player:

mode_dynamo_started:

This event arg will be correctly typed

set_dynamo_round_with_type:

round_number:

value: device.counters.dynamo_rounds.value

type: int

This event arg will be converted to a string

set_dynamo_round_without_type:

round_number:

value: device.counters.dynamo_rounds.value

Priority:

Note that as with other config players, event player can accept priorties for events to be posted. This
can be useful in scenarios such as where a player variable must be updated prior to a condtional
check, so that they happen in the desired order.

event_player:

mode_dynamo_started:

reset_pv_tokens_collected_to_0

priority: 50

play_slide{current_player.pv_tokens_collected <= 5}:

priority: 5

slide: dynamo_collect_more_tokens_slide

Usage in config files

In config files, the event player is used via the event_player: section.

Usage in shows

In shows, the event player is used via the events: section of a step.

Config Player in a Show 964

Mission Pinball Framework Documentation, Version

Config Options

See event_player: for config details.

Flasher player

The flasher player is a config player that’s used to flash lights.

Usage in config files

In config files, the flasher player is used via the flasher_player: section.

Usage in shows

In shows, the slide flasher is used via the flashers: section of a step.

Config Options

See flasher_player: for config details.

GI (general illumination) player

gi_player has been removed in 0.50. Use light_player instead.

Hardware Sound player

The hardware sound player is a config player that’s used to control sounds. (This player is part of the
MPF media controller and only available if you’re using MPF-MC for your media controller.)

Usage in config files

In config files, the sound player is used via the hardware_sound_player: section. Event names that will
trigger sound actions are nested sub-headings and sound names are either listed as nested
sub-headings below that.

Usage in shows

In shows, the sound player is used via the hardware_sounds: section of a step.

Optional settings

Additional information may be found in the hardware_sound_player configuration reference
documentation.

Config Player in a Show 965

Mission Pinball Framework Documentation, Version

LED player

led_player and matrix_light_player were replaced with light_player in MPF 0.50. See lights: for
details.

Light player

The light player is a config player that’s used to set the brightness and color of lights (including
turning them on and off).

Usage in config files

In config files, the light player is used via the light_player: section.

The light_player: section of your config is where you can control lights in config or shows. Example
in config:

light_player:

some_event:

led1:

color: red

fade: 200ms

led2:

color: ff0000

fade: 2000ms

Usage in shows

In shows, the light player is used via the lights: section of a step.

shows:

red_color:

- lights:

l_light: red

show_player:

turn_light_red_event: red_color

Setting multiple lights

lights:

l_target1:

number:

l_target2:

number:

shows:

rainbow:

- lights:

(leds): red

- lights:

(continues on next page)

Config Player in a Show 966

Mission Pinball Framework Documentation, Version

(continued from previous page)

(leds): orange

- lights:

(leds): yellow

- lights:

(leds): green

- lights:

(leds): blue

- lights:

(leds): purple

duration: 3s

show_player:

play_rainbow_show_on_targets:

rainbow:

show_tokens:

leds: l_target1, l_target2

The show rainbow will turn your LED(s) in the placeholder (leds) to a different color every second
(because 1s is the default duration of a step). The last step (purple) will stay for 3s. When you post
play_rainbow_show_on_targets the show is played on two lights which are referenced directly.

Setting lights via tags

shows:

rainbow:

- lights:

(tag): red

duration: 1s

- lights:

(tag): orange

duration: 1s

- lights:

(tag): yellow

duration: 1s

- lights:

(tag): green

duration: 1s

- lights:

(tag): blue

duration: 1s

- lights:

(tag): purple

duration: 1s

show_player:

play_rainbow_show_via_tag:

rainbow:

show_tokens:

tag: drops

In play_rainbow_show_via_tag we reference (two) lights via the tag drops.

Config Player in a Show 967

Mission Pinball Framework Documentation, Version

Fade lights between steps

There are two syntax to express fades. Short syntax which is (color)-f(time)(unit) (i.e. red-f200ms)
or extended syntax which is a dict with two entries for color and fade. Here is an example for the
short syntax:

shows:

rainbow_with_fade_f_syntax:

- lights:

l_rgb: red-f1s

duration: 1s

- lights:

l_rgb: orange-f1s

duration: 1s

- lights:

l_rgb: yellow-f1s

duration: 1s

- lights:

l_rgb: green-f1s

duration: 1s

- lights:

l_rgb: blue-f1s

duration: 1s

- lights:

l_rgb: purple-f1s

duration: 1s

show_player:

play_rainbow_show: rainbow_with_fade_f_syntax

And an example with extended syntax:

shows:

rainbow_with_fade_extended_syntax:

- lights:

l_rgb:

color: red

fade: 1s

duration: 1s

- lights:

l_rgb:

color: orange

fade: 1s

duration: 1s

- lights:

l_rgb:

color: yellow

fade: 1s

duration: 1s

- lights:

l_rgb:

color: green

fade: 1s

duration: 1s
(continues on next page)

Config Player in a Show 968

Mission Pinball Framework Documentation, Version

(continued from previous page)

- lights:

l_rgb:

color: blue

fade: 1s

duration: 1s

- lights:

l_rgb:

color: purple

fade: 1s

duration: 1s

show_player:

play_rainbow_show: rainbow_with_fade_extended_syntax

In most cases simple syntax is sufficient. Extended syntax is easier to use with placeholders.

Config Options

See light_player: for config details.

Playlist player

The playlist player is a config player that’s used to control playlists. (This player is part of the MPF
media controller and only available if you’re using MPF-MC for your media controller.)

Usage in config files

In config files, the playlist player is used via the playlist_player: section. Event names that will
trigger playlist actions are nested sub-headings and playlist names are either listed as nested
sub-headings below that.

Usage in shows

In shows, the sound player is used via the playlists: section of a step.

Optional settings

Additional information may be found in the sound_player configuration reference documentation.

Queue Event player

The queue event player is a config player that’s used to play queue events.

Video about events in MPF:

https://youtu.be/G3UbVP8gFU0

Config Player in a Show 969

https://youtu.be/G3UbVP8gFU0

Mission Pinball Framework Documentation, Version

Usage in config files

In config files, the event player is used via the queue_event_player: section.

Usage in shows

None. (It’s not valid in shows since it doesn’t make sense in shows.)

Config Options

See queue_event_player: for config details.

Queue Relay player

The queue relay player is a config player that’s used to block queue events.

Video about events in MPF:

https://youtu.be/G3UbVP8gFU0

Usage in config files

In config files, the event player is used via the queue_relay_player: section.

Usage in shows

None. (It’s not valid in shows since it doesn’t make sense in shows.)

Config Options

See queue_relay_player: for config details.

Random event player

The random event player is a config player that’s used to post random events from a list of events.

This is an example:

in your global config:

random_event_player:

play_random_event_global:

scope: machine

events:

- event1

- event2

- event3

##! mode: base

(continues on next page)

Config Player in a Show 970

https://youtu.be/G3UbVP8gFU0

Mission Pinball Framework Documentation, Version

(continued from previous page)

in your mode:

random_event_player:

play_random_event:

events:

- event1

- event2

- event3

play_random_event_with_weight:

events:

unlikely_event1: 2

unlikely_event2: 3

likely_event1: 45

likely_event2: 50

When play_random_event is posted a random event is posted out of the list event1, event2 or event3.

Usage in config files

In config files, the random event player is used via the random_event_player: section.

Usage in shows

In shows, the random event player is used via the random_events: section of a step.

Config Options

See random_event_player: for config details.

Segment Display player

The segment display player is a config player that’s used to show text or numbers on segment
displays.

Usage in config files

In config files, the segment display player is used via the segment_display_player: section.

Usage in shows

In shows, the segment display player is used via the segment_displays: section of a step.

Config Options

See segment_display_player: for config details.

Config Player in a Show 971

Mission Pinball Framework Documentation, Version

Show player

The show player is a config player that’s used to start, stop, pause, resume, advance, and/or update
shows.

Video about shows:

https://youtu.be/Ou5xqCAthZY

This is an example:

show_player:

some_event: your_show_name

some_other_event: another_show

In the example above, when the event some_event is posted, the show called your_show_name will be
played (started). When the event some_other_event is posted, the show called another_show will be
played.

Notice that the config above has simple key/value pairs in the form of event: show. You can list as
many of those as you want in the show player, and when each event is posted, it will start the show
with the same name.

However there are times when you might want to specify additional options for a show. Perhaps you
want to change the playback speed, or configure how it repeats. In that case, instead of putting the
show name on the same line as the event, you can put the show name on a new line under the event,
and then add additional settings under it, like this:

show_player:

some_event:

your_show_name:

loops: 0

some_other_event:

another_show:

speed: 2

sync_ms: 500

In the example above, the show your_show_name will play when the event some_event is posted, but
instead of playing with the default settings only, it will also play with the setting loops: 0 (meaning it
will not loop and just play once). Same for the other show above, which will play with a speed: 2 and
sync_ms: 500.

You can also mix-and-match formats, like this:

show_player:

some_event: your_show_name

some_other_event:

another_show:

speed: 2

sync_ms: 500

Show keys

Each show played by a show player will be referenced internally using an unique key. The
show_player will use the show name as key for the show by default if you do not specify a key (fine in

Config Player in a Show 972

https://youtu.be/Ou5xqCAthZY

Mission Pinball Framework Documentation, Version

most cases). This way it refences the show when starting or stopping it:

show_player:

start_my_show:

your_show_name: play

stop_my_show:

your_show_name: stop

In this example the event start_my_show will start your_show_name with key your_show_name. The event
stop_my_show will then stop the same show using the key your_show_name. This simple mechanism will
work fine for most cases.

However, in some cases you want to play multiple instances of one show in a single show. You can
manually assign keys to run distinct shows. That way you can also specifically stop them later:

show_player:

start_my_show1:

your_show_name:

action: play

key: show1

show_tokens:

leds: my_led1

start_my_show2:

your_show_name:

action: play

key: show2

show_tokens:

leds: my_led2

stop_my_show1:

show1: stop

stop_my_show2:

show2: stop

In this example start_my_show1 and start_my_show2 will start separate instances of your_show_name
which can indendently be stopped using stop_my_show1 and stop_my_show2. If you omit key in this
example start_my_show1 and start_my_show2 would stop the other and you would either see
your_show_name with my_led1 or my_led2 but not both at the same time.

A key is only unique to one show_player so different modes will not interfere.

Usage in config files

In config files, the show player is used via the show_player: section.

Usage in shows

In shows, the show player is used via the shows: section of a step. (Yes, you can include shows in
shows, meaning you can essentially use a parent show like a playlist, or as a controller that starts and
stops other shows.)

Config Player in a Show 973

Mission Pinball Framework Documentation, Version

Config Options

See show_player: for config details.

Slide player

The slide player is a config player in the MPF media controller that is used to play slide content,
including showing slides, hiding slides, and removing slides. (This player is part of the MPF media
controller and only available if you’re using MPF-MC for your media controller.)

Note that the slide player is a config_player, so everything mentioned below is valid in the
slide_player: section of a config file and in the slides: section of a show step. You can test slides
and widgets interactively using Interactive MC (iMC) .

Full instructions on how to use the slide_player are included in the How to Show a Slide on a Display
guide. The documentation here is for reference later.

Generically-speaking, there are two formats you can use for slide_player entries: “express” and “full”
configs. Express configs will look like this:

slide_player:

event1: slide1

event2: slide2

event3: slide3

Full configs will look like this:

slide_player:

event1:

slide1:

<settings>

event2:

slide2:

<settings>

event3:

slide3:

<settings>

In both cases, these configurations are saying, “When event1 is posted, show slide1. When event2 is
posted, show slide2. Etc.”

This “express” config is down-and-dirty, with no options, to just show slides. The full config lets you
specify additional options (based on the settings detailed below).

For example, the following config will show slide_1 when some_event is posted, but it will also
override the default settings and show the slide on the display target called display1 and at a priority
that’s 200 higher than the base priority.

slide_player:

some_event:

slide_1:

target: display1

priority: 200

Config Player in a Show 974

Mission Pinball Framework Documentation, Version

Showing dynamically-created slides

Both of the examples so far assumed that you were using the slide player to show a slide that had
already been defined in the slides: section if your config. However you can also define slides right
in-line in your slide player.

The following config will show a slide called slide_1 when the some_event is posted, but it assumes
that slide_1 does not yet exist, and it contains a list of widgets (one text widget and one rectangle
widget) which will be added to that slide.

Note that slide names are global in MPF, so if you already had a slide defined called slide_1 and you
redefine it in your slide player like the example below, this new slide will become slide_1 and the old
one will be gone.

slide_player:

some_event:

slide_1:

widgets:

- type: text

text: I AM A TEXT WIDGET

- type: rectangle

width: 200

height: 100

color: red

You can also mix-and-match defining a slide in the slide player as well as adjusting properties of how
the slide is shown. Just add multiple settings, like this:

slide_player:

some_event:

slide_1:

widgets:

- type: text

text: I AM A TEXT WIDGET

- type: rectangle

width: 200

height: 100

color: red

transition: wipe

Remember that these slide player settings can also be used in show steps (in a slides: section). Any
of the examples above apply, you just don’t include the event name, like this:

##! show: show1

#show_version=5

- time: 0

slides: slide1

- time: +3

slides: slide2

- time: +3

slides:

slide3: # newly-defined slide here

widgets:

- type: text

text: I AM SLIDE 3 IN THIS SHOW

(continues on next page)

Config Player in a Show 975

Mission Pinball Framework Documentation, Version

(continued from previous page)

color: lime

- time: +3

slides:

slide4:

transition:

type: move_out

duration: 1s

direction: up

Here’s a list of all the valid settings for individual slides in the slide_player: section of your config file
or the slides: section of a show. Note that all of these are optional. Any that you do not include will
be automatically added with the default values applied.

Usage in config files

In config files, the slide player is used via the slide_player: section.

Usage in shows

In shows, the slide player is used via the slides: section of a step.

List of settings and options

Refer to the slide_player section of the config file reference for a full explanation of how to use the
slide player in both config and show files.

Config Options

See slide_player: for config details.

Sound Loop player

The sound loop player is a config player that’s used to control sound loop sets (used by sound loop
audio tracks). (This player is part of the MPF media controller and only available if you’re using
MPF-MC for your media controller.)

Examples:

sound_loop_player:

play_basic_beat:

loops:

action: play

sound_loop_set: basic_beat

timing: loop_end

add_hi_hats:

loops:

action: play_layer

layer: 1

(continues on next page)

Config Player in a Show 976

Mission Pinball Framework Documentation, Version

(continued from previous page)

timing: loop_end

stop_hi_hats:

loops:

action: stop_looping_layer

layer: 1

add_snare:

loops:

action: play_layer

fade_in: 2s

layer: 2

timing: now

add_claps:

loops:

action: play_layer

layer: 3

timing: loop_end

Basic usage:

sound_loop_player:

<triggering_event_name>:

<sound_loop track name>:

action: <action name>

<optional settings>

<triggering_event_name>:

<sound_loop track name>:

action: <action name>

<optional settings>

Usage in config files

In config files, the sound player is used via the sound_loop_player: section. Event names that will
trigger sound actions are nested sub-headings and sound_loop_set names are either listed as nested
sub-headings below that.

Usage in shows

In shows, the sound player is used via the sounds_loop_sets: section of a step.

Optional settings

Additional information may be found in the sound_loop_player configuration reference documentation.

Sound player

The sound player is a config player that’s used to control sounds. (This player is part of the MPF
media controller and only available if you’re using MPF-MC for your media controller.)

See Sounds, Music & Audio and How to setup sound for your machine for details.

Config Player in a Show 977

Mission Pinball Framework Documentation, Version

Usage in config files

In config files, the sound player is used via the sound_player: section. Event names that will trigger
sound actions are nested sub-headings and sound names are either listed as nested sub-headings
below that.

Usage in shows

In shows, the sound player is used via the sounds: section of a step.

Optional settings

Additional information may be found in the sound_player configuration reference documentation.

Track player

The track player is a config player that’s used to control audio tracks when MPF events are received.
Tracks can be stopped, paused, or played with an optional fade time. The volume of a track can also
be changed with an optional fade time. Finally, all sounds currently playing on a track can be stopped
(again with an optional fade out time). (This player is part of the MPF media controller and only
available if you’re using MPF-MC for your media controller.)

Usage in config files

In config files, the track player is used via the track_player: section. Event names that will trigger
track actions are nested sub-headings and track names are listed as nested sub-headings below that.
__all__ can be used in place of a track name to apply the action to all audio tracks in the sound
system.

Example:

track_player:

pause_music_track:

music:

action: pause

fade: 1 sec

resume_music_track:

music:

action: play

stop_sounds_on_all_tracks:

__all__:

action: stop_all_sounds

fade: 0.5 sec

Usage in shows

In shows, the track player is used via the tracks: section of a step.

Example:

Config Player in a Show 978

Mission Pinball Framework Documentation, Version

shows:

my_show_with_sound:

- time: 0

tracks:

music:

action: set_volume

volume: 0.3

fade: 0.25 sec

- time: 3.5

tracks:

music:

action: set_volume

volume: 0.5

fade: 0.25 sec

Config Options

Additional information may be found in the track_player configuration reference documentation.

Variable player

The variable player is a config player that’s used to set the value of player and machine variables.
This is commonly used for scoring in your machine. See variable_player for more detailed information.

At the most basic level, you can use this to add to a player’s score (which is technically adding value to
the player variable called score), but in reality you can affect any player or machine variable.

Here’s an example:

##! mode: mode1

variable_player:

target_1_hit:

score: 1000 # adds 1000 to the player's "score" variable

ramp_1_hit:

score: 10000 # adds 10,000 to the player's "score" variable

ramps: 1 # adds 1 to the player's "ramps" variable

ramp_1_timeout:

ramps:

int: 0 # sets the player's "ramps" variable to 0.

action: set # means that this event will "set" (or reset) the variable to the value, rather␣

→˓than add to it

ramp_2_hit:

score:

int: 25000 * current_player.ramps # multiplies the value of the current player's "ramps"␣

→˓variable by 25,000 and adds the result to the player's "score" variable

block: true # "blocks" this event from being passed to variable player sections from lower-

→˓priority modes

counter_treasure_value_complete:

treasure_name:

string: RUBY # Sets the player's "treasure_name" variable to a string called "RUBY"

See our player variables reference and machine variables reference to learn about existing variables.
You can also create player variables on the fly if they did not exist. If you want to define defaults for

Config Player in a Show 979

Mission Pinball Framework Documentation, Version

variables you may define them in the player_vars: or machine_vars: sections.

Usage in config files

In config files, the variable player is used via the variable_player: section.

Usage in shows

In shows, the variable player is used via the variables: section of a step.

Config Options

See variable_player: for config details.

Widget player

The widget player is a config player that’s used to add or remove widgets to existing slides on a
display. (This player is part of the MPF media controller and only available if you’re using MPF-MC for
your media controller.)

Note that the widget player is a config_player, so everything mentioned below is valid in the
widget_player: section of a config file and in the widgets: section of a show step.

Full instructions on how to use the slide_player are included in the Widgets section of the
documentation. The stuff here in the config reference is for reference later. You can test slides and
widgets interactively using Interactive MC (iMC) .

Generically-speaking, there are two formats you can use for widget_player entries: “express” and
“full” configs. Express configs will look like this:

widget_player:

event1: widget1

event2: widget2

event3: widget3

Full configs will look like this:

widget_player:

event1:

widget1:

<settings>

event2:

widget2:

<settings>

event3:

widget3:

<settings>

In both cases, these configurations are saying, “When event1 is posted, add widget widget1. When
event2 is posted, add widget2. Etc.”

Config Player in a Show 980

Mission Pinball Framework Documentation, Version

This “express” config is down-and-dirty, with no options, to just add widgets to the current slide on the
default display. The full config lets you specify additional options (based on the settings detailed
below).

For example, the following config will add widget_1 when some_event is posted, but it will also
override the default settings and add widget to the slide called slide_2, even if that’s not the current
slide that’s showing.

widget_player:

some_event:

widget_1:

slide: slide_2

Usage in config files

In config files, the widget player is used via the widget_player: section.

Usage in shows

In shows, the widget player is used via the widgets: section of a step.

Config Options

See widget_player: for config details.

Config Player in a Show 981

CHAPTER15

Machine Management

MPF includes many features to help you manage your pinball machine.

(There’s a lot to add here. This will include things like the service mode, auditor, remote monitoring
and trouble reporting, etc. See: Help us to write it)

Warning: If the service mode is added to modes, the message “coil power off” will appear when
the coin door is open. This is only a message: MPF cannot actually turn the coil power off. You
must ensure that your power system is wired appropriately to turn HV off when the coin door is
open.

Auditor

Todo: Help us to write it

The Mission Pinball Framework contains an auditor that can be used to create audit logs of switch
events, game events, shots made, and player variables. The exact behavior of what is (and isn’t)
included in the audit log is controlled in the Auditor section of your machine configuration files.
Here’s a sample audit file:

Events:

ball_search_begin: 0

ball_started: 1

game_ended: 31

game_started: 41

machine_init_phase_1: 0

machine_reset: 29

Player:
(continues on next page)

982

Mission Pinball Framework Documentation, Version

(continued from previous page)

score:

average: 15634

top:

- 71130

- 59840

- 50190

- 47490

- 39350

- 33350

- 25700

- 24890

- 21980

- 21670

total: 31

Shots:

AirRaidRamp: 3

DropTarget: 99

FullRightOrbit: 5

Inlane: 54

LeftOrbit: 13

LeftRamp: 4

OrangeStandups: 11

Outlane: 14

RightRamp: 7

Slingshot: 105

WeakRightOrbit: 6

Switches:

ShooterLaneL: 20

alwaysClosed: 0

buyIn: 0

captiveBall1: 22

captiveBall2: 10

captiveBall3: 2

centerRampExit: 16

coin1: 0

coin2: 0

coin3: 0

coin4: 0

coinDoor: 0

craneRelease: 0

down: 0

dropTargetD: 9

dropTargetE: 51

dropTargetG: 45

dropTargetJ: 38

dropTargetU: 47

enter: 98

esc: 80

fireL: 0

fireR: 122

flipperLwL: 400

flipperLwL_EOS: 388

flipperLwR: 440

flipperLwR_EOS: 434

(continues on next page)

Auditor 983

Mission Pinball Framework Documentation, Version

(continued from previous page)

flipperUpL: 364

flipperUpL_EOS: 360

flipperUpR: 440

flipperUpR_EOS: 436

globePosition1: 108

globePosition2: 108

inlaneL: 40

inlaneR: 38

leftRampEnter: 24

leftRampExit: 8

leftRampToLock: 4

leftRollover: 136

leftScorePost: 42

magnetOverRing: 0

mystery: 8

outerInlaneR: 30

outlaneL: 22

outlaneR: 6

plumbBob: 0

popperL: 36

popperR: 20

rightRampExit: 14

rightTopPost: 28

shooterR: 106

slamTilt: 0

slingL: 134

slingR: 76

start: 47

subwayEnter1: 16

subwayEnter2: 16

superGame: 0

threeBankTargets: 22

ticketDispenser: 0

topCenterRollover: 24

topRampExit: 6

topRightOpto: 36

trough1: 120

trough2: 96

trough3: 96

trough4: 96

trough5: 96

trough6: 74

troughJam: 76

up: 0

Note that in the ‘Player’ section, the auditor will track the average, the Top 10, and the total numbers
of each item. You can configure all this (including how many of each item it records) in the auditor:
section of the configuration file‘.

Auditor 984

Mission Pinball Framework Documentation, Version

Service Mode

Service Mode is an important part of a pinball machine that provides an interface that allows the
user to perform a number of important operations to their machine. MPF provides a comprehensive
base set of service mode features, that can be extended if required.

The structure of the built-in Service Mode is as follows:

Utilities

MPF provides a Reset function that allows you to provide a set of standard functions to the user to
reset certain elements of the game, such as High Scores, Audits and Earnings. This menu option is
available from the service_menu_selected event with the label Utilities Menu.

Utilities has the following sub menus:

Coin Audits

Resets all counters for earnings data. All counters will be reset to zero in earnings.yaml in the /data
subfolder of your game.

Factory Reset

Resets the value of all of your machine variables in your machine_vars.yaml file in the /data subfolder
of your game to the initial_value if the persist: true setting is configured for that variable.

Service Mode 985

Mission Pinball Framework Documentation, Version

Credits

Resets the value of the credit_units machine variable in your machine_vars.yaml file in the /data
subfolder of your game to zero.

High Scores (HSTD)

Resets all values for game scores that are being monitored as configured in the categories: section of
your high_score.yaml mode configuration. All scores stored in the high_scores.yaml file in the /data
subfolder of your game will be reset to teh defaults: section of your high_score.yaml mode
configuration.

Game Audits

Resets all counters for game elements that are being audited as configured in the auditor: section of
your game configuration. All counters will be reset to zero in audits.yaml in the /data subfolder of
your game.

Adjustments

MPF provides an Adjustments function that presents all of your configured game variables in the
Settings section to the user to modify certain elements of the game. This menu option is available
from the service_menu_selected event with the label Adjustments Menu.

Audits

(To be completed)

Diagnostics

MPF provides a Diagnostics function that allows the user to test hardware elements of the game
such as switches, lights and coils. This menu option is available from the service_menu_selected event
with the label Diagnostics Menu.

Operator Settings

Help us to write it

Operator Settings 986

CHAPTER16

Tools

There are several tools that have been created to help you build your game in MPF.

MPF Monitor

The MPF Monitor is a graphical utility you can use to interact with a running instance of MPF. See
lights change in action, click to control switches, and lay out everything on an image of your playfield.

“Interactive” MC (or “iMC”)

The interactive MC lets you create YAML configurations for slides and widgets in realtime and see
them on a display. This is great for fine tuning and tweaking your slides.

Service Cli

The MPF service cli is a fast way to debug or troubleshoot your machine during development and
operation.

Build Production Configs

A command to prepare production config bundles.

987

Mission Pinball Framework Documentation, Version

Lightshow Creator

A lightshow generator for MPF.

Language Server in Your IDE

IDE support for your editor to support auto-complete for MPF configs.

MPF format

Reformat your MPF config files.

MPF test

Run single file tests to reproduce problems or verify behaviour.

MPF test

Commands to debug, upgrade or benchmark your hardware.

Machine Fuzzer

Fuzz your machine using afl to find crashes in MPF, your config or your code. Currently not
documented. Let us know if you want to use it.

Hardware Debugger

The hardware debugger allows you to scan all your configured hardware platforms. In some cases it
also supports firmware updates and configuration settings. See mpf hardware for details.

Future Tools

∙ GUI config builder

∙ Music builder / looper / manager

∙ Show builder

∙ Slide / animation tool

∙ Auto machine documentation builder

∙ Device / asset explorer (Why did this sound stop? Why is this LED red? etc)

Lightshow Creator 988

Mission Pinball Framework Documentation, Version

The MPF Monitor

The MPF monitor is a graphical app that connects to a live running instance of MPF and shows the
status of various devices. (LEDs, switches, ball locks, etc.) as well as a running list of recent MPF
events. You can add a picture of your playfield and drag-and-drop devices to their proper locations so
you can interact with your machine when you’re not near your physical machine and/or for developing
your game. MPF Monitor is also great when you have more than one person working on your MPF
code but your physical machine is at one person’s house. :)

The MPF Monitor can run on Windows, Mac, and Linux. It uses PyQt6 (Python bindings for Qt6) for its
visual framework.

Here’s a screen shot of it in action:

Note: The MPF Monitor is not a full pinball simulation with physics or moving balls or anything. But
it does enough that you can use it to do real work on a machine when that machine is not nearby.

Future Tools 989

https://www.riverbankcomputing.com/software/pyqt/intro

Mission Pinball Framework Documentation, Version

Future Tools 990

Mission Pinball Framework Documentation, Version

Video about developing your game without hardware:

https://youtu.be/7XmIIhzEREk

Features

∙ Connects to a live running instance of MPF.

∙ Automatically discovers all the pinball mechs and devices in the game.

∙ Device state is updated in real time in the “Devices” window.

∙ MPF events and their keyword arguments are posted in real time to “Events” window.

∙ You can add a photo of your playfield and then drag-and-drop LEDs, lights, and switches from the
device tree onto the playfield.

∙ LEDs (circle icons) show their color in real time.

∙ Lights (circle icons) show their brightness in real time between black and white.

∙ Switches (square icons) show their state (green = active, black = inactive).

∙ More device types will become “draggable” in the future.

∙ Left-click on a switch to “tap” it (activate & release). Right-click on a switch to “toggle” it
(change its state and hold it).

∙ Devices added to the playfield image are saved & restored when you restart the monitor.

∙ Window sizes, positions, and which windows are open are remembered and restored on next use.

∙ You can start the monitor and leave it running, and it will automatically connect (and
disconnect/reconnect) to MPF as MPF starts and stops.

Road Map Features

MPF Monitor is very rough at this point. (Really more of a proof-of-concept.) We plan to add more
features, including:

∙ More details for events, including listing registered handlers & making it so you can sort, search,
and clear the list.

∙ Adding all the “game logic” stuff, including modes, shots, shot groups, shot profiles, logic blocks,
timers, ball locks, multiballs, achievements, etc.

∙ Add shows (running shows, step they’re on, priority, etc.)

∙ Add players information (show all player variables and their values)

∙ A “snapshot” button that can dump the entire current state to a file for debugging later

∙ Export position (x/y) settings of widgets back to the MPF config

∙ Connect to MPF-MC to get information about slides, displays, widgets, etc.

∙ Add color controls to the playfield image to set brightness and color saturation

∙ Add buttons to enable/disable different types of devices (think of it like “layers” for the playfield
image.

∙ Show additional properties from the selected device (Click a device to see it’s full information.)

Future Tools 991

https://youtu.be/7XmIIhzEREk

Mission Pinball Framework Documentation, Version

∙ Change debug levels of various devices dynamically

∙ Save the config / layout with a specified file name

∙ Add multiple playfield views which could each have different devices

∙ Set colors, shapes, rotation, & sizes of devices (so inserts can be the right shape). Allow
configurable “off” colors which can include opacity and “glow” so inserts look like real lights.

∙ Allow all devices to be added to the playfield image, with custom representation (diverters that
animate, flippers that animate, etc.).

∙ Device state change history that shows what properties changed and when.

∙ Default (mostly blank) playfield image if no playfield image is specified

∙ Configurable default options (folder location, playfield image name, etc.)

Next Steps

Installing MPF Monitor

The MPF installer was rewritten for this current release (0.56).

MPF Monitor 0.56 now requires PyQt6. (Prior versions of MPF Monitor required PyQt5.)

pip install mpf-monitor

Running the MPF Monitor

1. Make sure you installed MPF Monitor first. (You need to actually run the installer. You can’t just
run the monitor from the download folder.)

2. Create a subfolder in your MPF machine folder called /monitor

3. Put an image of your playfield in that folder named playfield.jpg

4. Run MPF monitor from a command prompt via the command mpf monitor. Be sure to run this
from your machine folder (the same place where you run mpf both).

5. In a new terminal window, Start MPF and MPF-MC. You can start MPF before or after monitor is
started, and leave the monitor running while MPF is not.

6. MPF Monitor has multiple windows that can be viewed, though not all may be enabled by
default. The “Inspector” window is the main window where you can toggle other windows On
and Off. To enable different windows, click on the “Monitor” tab. This will show you a list of all
the different windows you can enable and view:

1. Show device window (this window lists all your switches, shots, targets, etc)

2. Show event window

3. Show playfield window (this window shows your playfield picture)

4. Show mode window

7. MPF Monitor should connect to MPF and populate the devices tree in the device window. You
can look through this list to see the states of various devices. The columns in each window are
sortable and resizeable.

Future Tools 992

Mission Pinball Framework Documentation, Version

8. You can drag-and-drop switches and LEDs from the Devices window onto the playfield image.
When you do this, a config file called /monitor/monitor.yaml will be created. If you open that file,
you’ll see that x/y values of devices are stored in percentages instead of pixels, so they should
stay in the right place even if you change your playfield image. The file is updated automatically.
You can drag devices that you previously placed on the playfield too (there’s a half- second delay
so you don’t accidentally move something when you’re clicking on it).

9. Edit monitor.yaml to remove devices from the playfield you don’t want anymore.

10. When you resize or reposition one of the monitor windows, the window positioning information
will be stored, so the monitor can restore the layout the next time you run it.

Understanding MPF Monitor folders & files

Here’s what your machine folder structure will look like when you’re using the monitor:

Using the MPF Monitor

We designed MPF Monitor so that all the windows are separate (instead of a main “parent” window),
meaning you can resize them all however you want and close the ones you don’t need. The idea is that
you can keep the monitor running off to the side and still see your MPF display window as well as the
terminal windows, like this:

Future Tools 993

Mission Pinball Framework Documentation, Version

Running with “virtual” hardware

You can use the MPF Monitor with or without a physical machine attached.

If you have a physical machine connected, be careful when toggling switches, since it can really
confuse things if a ball is sitting on a switch in your machine and then you use the Monitor to tell MPF
that the ball isn’t really there. :)

Still though it’s nice to be able to “peek inside” the inner workings of MPF even when it’s connected
to a physical machine, and the Monitor is great for that.

You can also use MPF Monitor with no hardware attached using one of MPF’s virtual platforms.
Specifically the smart virtual platform works great if you’re using MPF without physical hardware.

Modifying switches and lights on your playfield

More information on the usage of MPF Monitor (0.54+) can be found in Playfield Devices and Using
Device Inspector.

Future Tools 994

Mission Pinball Framework Documentation, Version

Playfield Devices

device In the context of MPF Monitor, a device refers to a switch, light, or diverter.

Adding devices to playfield

1. Locate the Devices window.

2. Locate the light or switch you want to add to the playfield.

3. Drag device to image of playfield.

Note: You can use the search box to filter to the name you are looking for.

Changing the default size of all devices

1. Ensure Device Inspector is disabled.

2. Change the size slider or spinbox.

Note: Any devices that have manually been resized will not be affected by the default size changes.
You can reset this for a device by selecting the device and clicking “Reset to Defaults”.

Sorting and filtering devices

∙ To filter devices, type your keyword in the device search box.

∙ Sorting devices:

1. Latest received Default

∙ Should match order of MPF config file

2. First received

3. Alphabetical, increasing:

∙ Useful when placing ordered targets, ie: “ltarget1”, “ltarget2”, “ltarget3”. . .

4. Alphabetical, decreasing

Using Device Inspector

Use Device Inspector to modify your playfield devices without sending switch hits to MPF

Future Tools 995

Mission Pinball Framework Documentation, Version

Enabling Device Inspector

1. Locate Inspector window.

2. Enable Device Inspector by clicking the button labeled “Toggle Device Inspector”.

3. Device inspector is enabled. The button will stay “clicked” as an indicator. The Playfield window
title will change to “Inspector Enabled - Playfield”.

4. Changes are saved automatically.

5. Disable Device Inspector by clicking again on “Toggle Device Inspector”.

Note: While device is inspector is enabled, clicks on switches will not be sent to MPF.

Viewing the name of a device

1. Enable Device Inspector.

2. On the playfield, select the device you want to view.

3. The name of the device will be shown below the “Toggle Device Inspector” button.

Changing display properties of device

Depending on your image dimensions switches and lights might be a little small or too large. You may
also want your device to display as a different shape, or rotated to match an insert. You can change
the size, rotation, and shape of a device.

1. Enable Device Inspector.

2. Click on the device you want to change.

3. Change size, shape or rotation by changing options in the inspector.

Note: While device is inspector is enabled, clicks on switches will not be sent to MPF.

Deleting devices from the playlist

1. Enable Device Inspector.

2. Click on the device you want to delete.

3. Click the delete button in inspector.

Resetting a device to its defaults

If you would like to clear your changes to a device’s parameters, you can reset all of them by selecting
the device and clicking “Reset to Defaults”.

1. Enable Device Inspector.

Future Tools 996

Mission Pinball Framework Documentation, Version

2. Click on the device you want to reset.

3. Click the “Reset to Defaults” button in inspector.

Warning: It is not possible to undo resetting a device to its defaults.

Interactive MC (iMC)

The MPF MC package includes an “interactive” MC which you can use to live-edit YAML
configurations for slides and widgets and see the results in realtime in your on-screen window.

Running the iMC does two things:

1. It launches the MC like normal, loading your game’s config files.

2. It launches a second window which has a multi-line editable text box where you can type or
paste slide configs.

The idea is you can use the iMC to keep tweaking and fine-tuning your slide and widget settings in a
way that’s much easier than starting your game and going through your game to find the slide you’re
looking for.

Note: The iMC does not connect to physical hardware, so if you have a physical DMD then you will
have to test with an on-screen virtual DMD.

Since the iMC uses the regular MC and the regular config files, you have access to all the named
widgets, images, videos, widget styles, fonts, etc. from your machine config.

See mpf imc command .

Service Command Line

The MPF service cli is a fast way to debug or troubleshoot your machine during development and
operation.

1. Start your game (e.g. using mpf both)

2. Start the service cli from within your game folder using mpf service.

Your game will go into service mode and you can run diagnostics commands. Once you are done the
game will continue and exit service mode. You can use tab to complete commands and arguments.

Commands

list_coils

List all coils in the machine.

coil_pulse <name>

Pulse coil <name>.

Future Tools 997

Mission Pinball Framework Documentation, Version

coil_enable <name>

Enable coil <name>. This only works if enable is allowed for this coil.

coil_disable <name>

Disable coil <name>.

list_switches

List all switches in the machine.

monitor_switches

Watch for switch changes. Prints any changes until you press Ctrl+c.

list_lights

List all lights in the machine.

light_color <name> <color>

Turn light <name> into color <color>.

light_off <name>

Turn light <name> off.

exit/quit

Exit service cli. Game will reset and start.

See mpf service command line reference.

MPF Showcreator

MPF supports playing light shows out of files in your config folder. Those are human readable and can
be created by hand. But isn’t that a bit cumbersome for larger shows? Especially, if you want to swipe
over all (or most) of your LEDs this might take days. Luckily, there is a tool for that.

The light show generator for MPF loads your LED positions from the The MPF Monitor config and lets
you create show for transitions.

Video about showcreator:

https://youtu.be/bjDWm_pO9_I

Future Tools 998

https://github.com/missionpinball/showcreator
https://youtu.be/bjDWm_pO9_I

Mission Pinball Framework Documentation, Version

Shows in MPF are written in YAML and can be used universally to control all kinds of things (such as
lights, coils, slides, widgets, sounds and more). Basically, shows are a list of actions combined with a
duration after which the next element in the list is played. Here is an example of a light show with
three lights which sequentially turn blue over one second:

##! show: my_show

#show_version=5

- duration: .25

lights:

l_arrow_1: off

l_arrow_2: off

l_arrow_3: off

- duration: .25

lights:

l_arrow_1: blue

l_arrow_2: off

l_arrow_3: off

- duration: .25

lights:

l_arrow_1: blue

l_arrow_2: blue

l_arrow_3: off

- duration: .25

lights:

l_arrow_1: blue

l_arrow_2: blue

l_arrow_3: blue

In this simple example it totally makes sense to create the show by hand. You could also throw in
tokens for the lights and reuse the show all over the machine for different light triples.

However, imagine you want to swipe over all lights in your machine. That would be a lot of text and
also hard to get right manually. Luckily, Mark, the maker of the Nightmare before Christmas custom
pinball machine, created this awesome MPF Lightshow generator.

Future Tools 999

https://pinside.com/pinball/forum/topic/the-nightmare-before-christmas
https://pinside.com/pinball/forum/topic/the-nightmare-before-christmas

Mission Pinball Framework Documentation, Version

The tool allows you to set a shape (i.e. a star in the example), choose a start and an end position and
color. Based on that it will create a light show for you which contains one section per step (at a
defined frame rate). Neat right? You might ask: How does it know where my lights are located on the
playfield?

Luckily, you probably already have them set if you used the MPF Monitor. It allows you to use drag
and drop to position all your switches and lights on a playfield image. Those positions are then saved
to the monitor/monitor.yaml file in your machine folder. All you have to do is point the light show
creator to the monitor/monitor.yaml file on startup.

You set the start and end positions, rotations, scales and colors of that shape anywhere you want over
the playfield.

Here we start with a gradient bar at the top of the playfield in a pink color.

Future Tools 1000

Mission Pinball Framework Documentation, Version

We want the final position to be here at the bottom, in a darker red shade.

Future Tools 1001

Mission Pinball Framework Documentation, Version

You can then adjust the length of the animation in milliseconds and hence the number of steps in the
final show. In this example, the shape will be moved from the start to finish in 24 steps.

Based on these settings, it will create a light show for you which contains all needed commands per
step for each of the lights the shape passes over. Lightshow playback speed can be adjusted in MPF.

You’re not restricted to just the included shapes. You can make your own shapes and drop them in the
shapes folder.

Future Tools 1002

Mission Pinball Framework Documentation, Version

Once you get the hang of animating a single shape, you can go further by adding in more shapes. You
can add a total of 256 shapes in animation segments. Each segment can be set to concurrent (start
and end same time as the previous segment) or follow (start after previous segment) This allows for
more interesting multipart shows. For example you could have several color swipes coming from
different directions one after the other or effects like multiple spotlights moving across the playfield
like a hollywood premiere.

Running the showcreator on Windows

1. Checkout or download the showcreator repository.

2. Double click on led.exe

Compiling and running the showcreator on Ubuntu

Inside a new install folder:

inside a new install folder

apt install linux-libc-dev:i386 libxft2:i386 g++-multilib gcc-multilib libxpm-dev:i386 libxxf86vm-

→˓dev:i386 libgl1-mesa-dev:i386 libglu1-mesa-dev:i386

git clone https://github.com/blitz-research/blitzmax.git

cd blitzmax

cd _src_/linux

./install.bat # yes its .bat

(continues on next page)

Future Tools 1003

https://github.com/missionpinball/showcreator.git

Mission Pinball Framework Documentation, Version

(continued from previous page)

cd ../../../ # back to your src folder

git clone https://github.com/missionpinball/showcreator.git

cd showcreator

../blitzmax/bin/bmk makeapp led.bmx

run it

./led

Afterwards you can run the showcreator using (from within your install folder):

./showcreator/led

Key bindings

∙ A - adjust rotation

∙ S - adjust x scale

∙ X - adjust y scale

∙ C - adjust both x and y scales

∙ HOLD SHIFT to reverse above functions

∙ HOLD CTRL to increase functions by 10X

∙ I - flash between START and FINISH end points

∙ L - toggle between viewing SHAPES or affected LEDs

∙ B - toggle between BW and full colour output

∙ B+SHIFT - change the B/W Threshold (16-240)/256

∙ SPC - toggle between START and FINISH end points

∙ U - play segment

∙ P - play complete set

∙ M - HOLD for slow motion during segment/set play

∙ P+SHIFT - play set and create script file

∙ ESC - quit - Y/N confirm quit

∙ Left Mouse Button Down over playfield adjusts position of current end (START or FINISH)
+SHIFT adjusts both START AND FINISH positions

Dynamic Shows

The tool is handy to render static shows which will not change during runtime. If you want to render
shows dynamically (using your GPU) you can also use your lights as display in MC but that will cost
much more resources during runtime than offline generated shows.

Future Tools 1004

Mission Pinball Framework Documentation, Version

Using the MPF Language Server in Your IDE to Edit Configs

The MPF language service implements the language server protocol (LSP) to bring syntax
highlighting, auto completion, diagnostics and more to numerous IDEs (and not just to one of them).
Your IDE most likely supports LSP either directly or via a plugin. Even some text editors (such as
Sublime) support LSP.

You can also follow our video about the perfect IDE setup:

https://youtu.be/QdDHEe2aEJo

Features

The MPF language server helps you to efficiently write MPF config. In the following you find a
selection of the features.

Context Help

Hover over a setting and the LSP will give you context about the type. In the future this will also show
you the documentation entry about this setting.

Error Highlighting

Auto Completion

Future Tools 1005

https://microsoft.github.io/language-server-protocol/
https://langserver.org/
https://youtu.be/QdDHEe2aEJo

Mission Pinball Framework Documentation, Version

Go To Definition

Installation

See the Language Server Documentation for now.

Build Command Line

The build command line mpf build can compile configs for production.

Commands

Future Tools 1006

https://github.com/missionpinball/mpf-ls

Mission Pinball Framework Documentation, Version

production_bundle

Call this inside your machine folder. It will create mpf_config.bundle and mpf_mc_config.bundle inside
your machine folder. Those two files contain the complete configuration including all shows for your
machine. If you change any configs, modes or shows rerun this command. Make sure that your final
machine runs exactly the same version of MPF or bad things will happen. Regenerate those files when
upgrading MPF (even when not changing configs).

See Tuning Software for Production for details about production machines.

Format And Lint Config Files

The command line mpf format can reformat your MPF configs.

Run it using mpf format path/to/your_file.yaml. It will show you a preview of the changes it your
make:

$ mpf format config/config.yaml

Parsing single test config/config.yaml.

Config is not linted.

+++

@@ -1,13 +1,13 @@

#config_version=5

config:

-- shots.yaml

-- switches.yaml

-- coils.yaml

-- devices.yaml

-- leds.yaml

-- slides.yaml

-- sound.yaml

+ - shots.yaml

+ - switches.yaml

+ - coils.yaml

+ - devices.yaml

+ - leds.yaml

+ - slides.yaml

+ - sound.yaml

mpf:

device_modules:

@@ -203,7 +203,7 @@

0.54: servo_pos2

ball_search_min: 0.35

ball_search_max: 0.55

- debug: True

+ debug: true

servo_figure_back:

number: servo_back-64-0

reset_events: machine_reset_phase_3

@@ -217,8 +217,7 @@

0.31: servo_pos2

(continues on next page)

Future Tools 1007

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_search_min: 0.1

ball_search_max: 0.3

- debug: True

+ debug: true

Not writing back changes. Use --yes to do this.

You can add --yes to the commandline to apply the changes.

Run Single File Tests

The command line mpf test can run single file tests or doc pages.

You can create a text file which contains the main config, shows and modes of your test machine. Then
at the bottom you can create some test assertions.

The structure look like this:

your machine-wide config here. That is what is normally in config/config.yaml.

you can have a few modes

##! mode: some_mode

mode config here

you can have a few modes

##! mode: another_mode

mode config here

additionally you can have separate shows

##! show: some_show

show here

now you can add a test

##! test

#! start_game

run the machine for 1 virtual second

#! advance_time_and_run 1

post an event

#! post some_event

All test assertions are defined in MpfDocTestCase. Just remove the command_ prefix and you are good
to go.

MPF Hardware Command

MPF allows has a few command line actions to check and update your hardware:

mpf hardware scan

You can run mpf hardware scan to get an overview over the connected hardware. MPF will try to
enumerate all connected boards and tell you what it know about your hardware. The output varies per
hardware platform from almost nothing to a lot.

Future Tools 1008

https://github.com/missionpinball/mpf/blob/dev/mpf/tests/MpfDocTestCase.py

Mission Pinball Framework Documentation, Version

mpf hardware firmware_update

MPF will try to upgrade the firmware of your hardware if this is supported for your hardware. There
will probably be specific configuration in your hardware platform section to enable this.

mpf hardware benchmark

Overview video about mpf hardware benchmark:

https://youtu.be/uRT--368J6A

MPF will benchmark latency and jitter of inputs, outputs and rules for your hardware setup (i.e. your
controller with your OS and hardware). This needs to be configured:

switches:

s_test1:

number:

s_test2:

number:

coils:

c_coil1:

number:

c_coil2:

number:

allow_enable: true

flippers:

f_flipper:

activation_switch: s_test1

main_coil: c_coil2

hardware_benchmark:

coil1: c_coil1

coil2: c_coil2

switch1: s_test1

switch2: s_test2

flipper: f_flipper

Disconnect or disable high voltage. Then connect s_test1 to c_coil1 and s_test2 to c_coil2. MPF will
enable the flipper f_flipper which will create a hardware rule on s_test1 to pulse c_coil2. Afterwards,
MPF will pulse c_coil1 which should then activate s_test1. In turn the hardware rule should pulse
c_coil2 which then activates s_test2. Hardware benchmark will measure the timings of the two
switches. It will repeat this procedure a few times and run some statistics on the results.

Future Tools 1009

https://youtu.be/uRT--368J6A

CHAPTER17

Testing your machine

This section moved to the developer documentation.

1010

CHAPTER18

Finalizing your machine

This section will discuss all the “final” steps you need to take to get your machine ready to run without
you.

Most of this is unfinished: See Help us to write it . Also let us know in the forum if you have any
questions about this.

Tuning Software for Production

Run MPF in production mode

YAML is quite slow to parse and reading configs dominates the startup time of MPF and MPF-MC. This
is mostly fine during development and we can partially mitigate the costs by caching. However, things
are different when running a production machine as caching will not work on a cold boot with a
typical read-only setup. Usually production machine setups use less beefy computers with slower
disks which makes thinks even worse.

Starting with version 0.54 MPF has a production mode which will use pre-compiled config bundles for
much faster start-up times. Additionally, this will disable some expensive config and runtime
validations to increase performance. Furthermore this will reduce the amount of debug output.

First run mpf build production_bundle which will create mpf_config.bundle and
mpf_mc_config.bundle. You have to recreate those files after every config, mode or show change.
Those bundles include all yaml files but not any other assets (such as videos or sounds). Second, add
the -P flag to the commandline to run MPF in production mode.

MPF will also try to keep running in some cases instead of exiting the game. This will not be helpful to
find bug but a when you ship machines you won’t see the log anyway. Finally, MPF will try to initialize
for 30s and then exit in case something went wrong. You can use that to run MPF in a while loop or to
reboot your PC in case initialization went wrong.

1011

Mission Pinball Framework Documentation, Version

Run MPF without text UI

Text UI costs some performance so disable it in production or on less powerful hardware in general.
You can do this by adding the -t flag to the MPF commandline.

Install the latest Python version

For instance, MPF runs significantly faster on Python 3.6 than on 3.5. Similarly, 3.5 is faster than 3.4.
We expect the same for the next releases. You might not need this if you are using PyPy.

Install uvloop

When running MPF on linux install uvloop will reduce latency and increase throughput for I/O
operations. This will keep your game responsive:

pip3 install uvloop

MPF will use uvloop once it is available. Requires at least Python 3.7 for the latest version.

Run MPF with PyPy

PyPy is a replacement for standard Python. It uses a Just-in-time compiler that makes it facter and
often use less memory. PyPy does not support all Python code, and currently works for MPF, but not
for MPF-MC because kivy is not yet compatible with PyPy. Performance and latency improvements are
around 10x in our benchmarks so this might be essential on low-end hardware. Download PyPy and
install it. Since PyPy is a separate Python environment you need to install pip and reinstall all pip
packages for PyPy.

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py

pypy get-pip.py

pypy -m pip install mpf

Afterward, you can start MPF within your game folder using:

pypy -m mpf game

Instead of the mpf command just use pypy -m mpf. For pip use pypy -m pip.

You still need to run MPF-MC using normal Python. This might change in the future.

Some random hints

∙ Optimize assets for your hardware. Audio should have the same sampling rate as your hardware
is using. Images and videos should be at native resolution to prevent scaling up or down.

∙ Re-encode your videos in a codec which can be efficiently decoded on your target hardware.

∙ Let us know if we missed something here.

Tuning Software for Production 1012

Mission Pinball Framework Documentation, Version

Choosing a computer to run MPF

Please make sure you read the Choosing a PC for MPF section first.

In this section we talk about a potential production setup. Thus, this is mostly about compromises.
What is the minimal (e.g. most cost effective) hardware? You probably want to tune your game first.

Help us to write it

Single-board versus “real” computers?

Picking an OS

The checklist

Now that you’ve read about all the background information that goes into picking a host computer,
let’s break it down into the questions you need to answer to pick the one that makes sense for you.

What OS are you familiar with?

More and more commercial machines are running Linux. But if you’re comfortable with Windows and
you’ve never used Linux, then by all means do not put a Linux computer in your pinball machine. It’s
just not worth the headache. Sure, this might mean that you have to buy a $150
motherboard/SSD/RAM/PSU combination versus a $50 single board computer, but meh, that 100
bucks will be worth it in terms of future pain avoided. And besides, pinball machines cost thousands of
dollars to build. What’s another 100 bucks to make your life easier?

Do you have anything you can use now?

The best host computer is the one that you already have. :) Seriously, if you have something laying
around, just start using it. You can always change it out later. BTW, we’ve received a few questions
from people wanting to use Mac Minis.

Is this a one-off machine, or are you taking something into production?

What are your graphics and display requirements?

The Bottom Line

Remember that MPF and Python work identically regardless of whether they’re running on Windows,
Mac, or Linux. So even if you pick the “wrong” host computer now, you can always change it out later
without having to change any of your code or configuration files. So if you have an old laptop sitting
around then go ahead and use it for MPF. You can always swap it out with a small single-board
computer down the road.

Choosing a computer to run MPF 1013

Mission Pinball Framework Documentation, Version

Choosing an OS for your final machine

Help us to write it

Talk about “Freezing” it, lock down, recovery, auto booting, etc.

Controlling your machine & computer power on / power off

Unlike computers pinball machines are not expected to have a shutdown procedure. Users tend to just
turn off the power which might cause problems with your operating system and filesystems.

Two general approaches exist here:

Computer Start-up and Shutdown Controller

Scott Danesi sells a board called Computer Start-up and Shutdown Controller (CSSC) which will
trigger a shutdown of your PC when the main power supply of your machine is turned of (part
number: #600-0322-00). However, you need to make sure that the PC still has power until shutdown
is complete. You can either use a separate outlet (and make sure not to disconnect it early) or add an
Uninterruptible power supply (UPS) to your machine.

This solution is very useful during development and early prototypes. Especially if you are using
(older) Windows which very much dislikes unclean shutdowns. However, with modern operating
systems and journalling filesystems (such as ext4 or ReFS) this became less of an issue.

Make it work on Linux

If you use a Linux distribution with systemd set HandlePowerKey=ignore in /etc/systemd/logind.conf.

To handle power button events install acpid. Add /etc/acpi/events/powerbtn with the following
content (or change it if if already exists):

event=button[/]power

action=/sbin/poweroff

Restart acpid (or your computer) and you should be good to go.

Read-only Filsystems

When you finished your machine you will usually run in on Linux on an embedded PC. Multiple
solutions exist here such as OpenEmbedded/Yocto. At that point you will usually have a build process
which builds an image which is then deployed to your target PC (via a SD card or flash process). This
image will be mounted read-only and cannot get damaged by a crash.

Furthermore, you often add one partition to store audits/highscores and sometimes logs. It is
recommended to use a journaling filesystem for this partition and expect it to break. Usually, there is
some kind of reset mechanism to wipe this partition in case it gets corrupted (sometimes automatic in
case it can no longer be mounted).

We are happy to discuss those topics in our forum (and extend this section as a result of that).

Choosing an OS for your final machine 1014

http://www.danesidesigns.com/products/cssc/

Mission Pinball Framework Documentation, Version

Using MPF to Shutdown a Computer

While the above two methods are the best ways to power your computer on or off, there may be times
when you want to use MPF to shutdown your computer.

For example, if you’re developing a DMD-based game and don’t have a computer monitor attached,
you can use MPF to safely shutdown your computer.

Create a mode called shutdown_computer and create a /code subfolder and a /config subfolder.

Create a shutdown_computer.py file in the /code folder with the following code:

from mpf.core.mode import Mode

import os

import platform

class shutdown_computer(Mode):

def mode_init(self):

self.log.info('shutdown_computer mode_init')

self.OS_type = platform.system().lower()

def mode_start(self, **kwargs):

self.log.info('shutdown_computer mode_start')

self.add_mode_event_handler('shutdown_host_computer', self.shutdown_host)

def shutdown_host(self, **kwargs):

#shutdown the mpf game if it's running

#shutdown the computer

if self.OS_type == 'linux':

shutdown_str = 'shutdown -t 0'

elif self.OS_type == 'windows':

shutdown_str == 'shutdown -s -t 0'

else:

self.log.warning(f'Sorry this feature is not available in {self.os_type}')

return

os.system(shutdown_str)

def mode_stop(self, **kwargs):

self.machine.events.post('shutdown_computer mode_ended')

self.log.info('shutdown_computer mode_stop')

Create a shutdown_computer.yaml file in the /config folder with the following code:

##! mode: shutdown_computer

#config_version=5

mode:

start_events: mode_base_started

stop_events: shutdown_mode_cancel

priority: 400

code: shutdown_computer.shutdown_computer

combo_switches:

shutdown_hold:

switches_1: s_left_flipper

switches_2: s_start

hold_time: 5s

events_when_both: shutdown_host_computer

Enable the mode in your machine config file.

The above config is an example on how you could shutdown the computer. This example requires you

Controlling your machine & computer power on / power off 1015

Mission Pinball Framework Documentation, Version

to hold down the left flipper and start button together for five seconds, then the computer will
shutdown.

You can change this and use the shutdown_host_computer event to shutdown your computer as you
like.

Enabling & fine-tuning ball search

Help us to write it

Fine-tuning ball device timing

Related Config File Sections
ball_devices:

The default timeouts in ball_devices are very conservative and usually too long. You might have
noticed delays after the eject of the second ball when starting a multiball. This is caused by the
default eject_timeouts setting which will cause the ball device to wait 10s until the ball is confirmed
to be on the playfield. Only after that the next ball will be ejected because before that timeout the ball
may return back into the device (e.g. roll back in the plunger lane).

To minimize delays during ejects to the playfield you need to measure the maximum time the ball may
take to return after an eject. Set eject_timeouts to that value but not lower. If you set it lower the ball
may become confirmed and then you end up with two simultanious ball inside the plunger lane. In
case that time is still too long you might be able to use confirm_eject_switch (but that might require a
hardware change).

Also, please note that this only applies to devices ejecting to a playfield. If you are ejecting into
another device (e.g. trough to plunger lane) the timeout does not really matter because the ball will
be confirmed once it hits the target device.

Fine-tuning switches

Help us to write it

Talk about debounce, also broken switch detection, alternative workarounds, etc.

See the switch debouncing section.

Enabling & fine-tuning ball search 1016

CHAPTER19

Flowcharts

The software that runs a pinball machine is really complex. Even though MPF hides a lot of that
complexity from you, it’s still helpful to know exactly what’s going on under the hood. This diagram
shows the high level flow. Read on to see the details of each step.

1017

Mission Pinball Framework Documentation, Version

MPF Boot Up / Start Up Sequence

The first phase of operation of MPF is the start up sequence which is basically everything that takes
from from the time you run mpf until the time your machine is up and running in attract mode. We’re
not going to list every single detail here—to see that just look at a log file generated in verbose
mode—but this should give you a pretty high level gist:

1. Loads the configuration from file: <your MPF project root>/mpf/mpfconfig.yaml

2. Loads the machine config file you specified in the command line. Note that this config file may
load other config files.

3. Sets the default hardware platform. (FAST, P-ROC, OPP, SPIKE, virtual, etc.)

4. Loads the system modules. The exact order is specified in mpfconfig.yaml. Currently it’s:

1. config_processor

2. timing

3. event manager

4. mode controller

MPF Boot Up / Start Up Sequence 1018

Mission Pinball Framework Documentation, Version

5. Device manager

1. Device modules are loaded

2. Machine-wide devices are created

6. switch controller

7. ball controller

8. light controller

9. bcp

10. logic blocks

11. variable player/scoring

12. shot profile manager

5. System events are registered (for things like shutdown, quit, etc.)

6. Posts the event init_phase_1 .

1. The event player is initialized

7. Posts the event init_phase_2 .

1. The ball controller configures eject targets

2. The playfield configures eject targets

3. Score reels configure their switches

4. BCP sets up connections

5. The switch controller sets up switch events

6. The device manager registers all the control_events for machine- wide devices

8. Plugins are loaded

9. Posts the event init_phase_3 .

1. The ball lock devices initialize

2. Diverters register for switches

3. The shot profile manager registers shot profiles

10. Scriptlets are loaded

11. Posts the event init_phase_4 .

1. Drop targets update their states from their switches

2. The auditor initializes

3. OSC starts

4. The asset managers start loading machine-wide assets

5. The mode controller processes and loads all the modes

12. Posts the event init_phase_5 .

1. The light controller processes machine-wide light scripts and light player entries

13. The machine controller’s reset() method is called.

MPF Boot Up / Start Up Sequence 1019

Mission Pinball Framework Documentation, Version

14. Reset posts the event machine_reset_phase_1.

1. Ball devices initialize their switches

2. BCP sends the reset command to any attached media controllers

15. Reset posts the event machine_reset_phase_2.

1. The ball controller updates its count of known balls

2. Ball devices configure their eject targets

16. Reset posts the event machine_reset_phase_3.

1. Ball locks are reset

2. Drop targets are reset

3. Drop target banks are reset

4. GI is enabled

5. Multiball devices are reset

6. The attract mode starts as its a registered handler for machine_reset_phase_3 .

Game Start Sequence

This sequence document starts with the attract mode running and ends with the running.

1. The player pushes a button tagged with “start”. The time is noted.

2. The player releases that button. (This is important because in MPF it’s possible to do different
things based on a so-called “long press” of the start button. For example, you might start the
machine in tournament mode, or allow players to select a player profile. So the game start
process doesn’t actually begin until the start button is released.)

3. The Attract mode posts the boolean event request_to_start_game. See the section below about
the “How the request_to_start_game event works.”

1. The ball controller makes sure there are enough balls and that they are all gathered.

2. Other modules make sure they are ready for the game to start and deny it if not.

4. The attract mode’s result_of_start_request is the callback for the request event. If the result is
True, this process continues.

5. The attract mode posts an event game_start.

6. The game mode is registered as a handler for the game_start event, so it starts.

7. The game mode posts a queue event called game_starting.

1. The score reels reset themselves

2. The auditor enables itself

3. Info lights reset

8. The game mode’s game_start() method is the callback for that queue event which is called when
that event is finished.

9. The game mode calls its _player_add() method.

Game Start Sequence 1020

Mission Pinball Framework Documentation, Version

1. The first player is created

2. The number of players is updated

10. The game mode posts the event game_started .

11. The game mode calls its player_turn_start() method.

At this point we have a running game!

How the “request_to_start_game” event works

When a player pushes (and releases) the start button during attract mode, the Attract Mode code
posts an MPF event called request_to_start_game.This event is not a normal event that is just posted
and forgotten, rather, it’s a special type of event called a “boolean event.” When a system component
posts a boolean event, it actually watches for responses from every other component that is watching
for that event. If this event is posted and nothing speaks up to stop it, then the module that posted
that event will continue. But if anything “kills” that event, that will cause whatever module that
posted it to not proceed. This can be a bit confusing, so let’s go through this in plain English:

1. When a player pushes and releases the start button, the attract mode says, “Hey! I’d like to start
a game now. Does anyone have a problem with that?

2. This gives other components a chance to pipe up and say, “Yeah! I have a problem with that.
You’re not starting a game!”

3. If no one speaks up, the attract mode will say, “Ok, I’m posting a follow up event to kick off the
game start process.”

4. But if any component denies the start, then the attract mode will do nothing, and the game
doesn’t start.

So what types of components might register to watch for and/or interrupt the game start request?
Lots of them.

The ball controller watches for this event and will make sure that the game has the minimum number
of balls installed, and that those balls are all in their “home” positions. If everything is ok when the
game start request comes in, then the ball controller will do nothing, allowing the start to proceed.
But if the start request comes in an the ball controller doesn’t have enough balls, it will “kill” the start
request, and the game won’t start. (When something kills an event like this, it’s up to that component
to make it obvious to the player what’s going on. For example, the ball controller might put a message
on the DMD which says something about balls being missing.)

Another component that might care about this game start request is the credits module. If the
machine is not set to free play, then when the request_to_start_game event is posted, the credits
module will make sure there’s at least one credit on the machine. If not, then it will kill the event and
not allow the game to start.

At this point you might be wondering what the point of all this is? Why have these start request
events? Isn’t this overly complicated? Why not just have MPF check all these things on its own?

The beauty of these types of events is that it makes it easy to customize and add features and
components to MPF without the core MPF software knowing (or caring) what’s installed and what
might be starting an event. The MPF core doesn’t know about credits or free play or any of that. It just
says, “Hey, I want to start a game. Is that cool?” If you don’t have a credits module, or if the credits
module isn’t active because the machine is on free play, then the credits module isn’t there to deny the

Game Start Sequence 1021

Mission Pinball Framework Documentation, Version

start and MPF can start the game no problem. But if then if you add or enable the credits module,then
this start request process is what gives that random module a “hook” into the game starting process.

The real power of this comes with future flexibility. You might want to create some other type of
component that we never thought of. (Maybe you don’t want any new games to start after 11pm or
something?) Thanks to this request event, you can write your own module as a simple snap- in which
“hooks” this game start event, and MPF doesn’t need to know about the details, and you don’t have to
resort to a “hack” of the MPF core to hook in whatever future crazy module you have. It’s very cool!

Ball Start Sequence

This sequence shows everything that happens when a new ball starts in MPF. There are actually a few
different ways we can end up here: If this the first ball of the first player in a new game:

1. After the game mode posts the game_started event, it will call its player_turn_start() method.

2. The player_turn_start() method does a few things:

1. If there’s not an active player (because this it the start of a new game), it called the game
mode’s player_rotate() method which maps the game’s player attribute to the current
player.

2. Posts an event called player_turn_started.

3. The game mode’s _player_turn_started() method is a callback for that event, which is
called next.

3. The _player_turn_started() method:

1. Increments the ball count for the player

2. Calls the game mode’s ball_starting() method.

4. The ball_starting() method:

1. Posts player, ball, and score information to the debug log

2. Posts the ball_starting event. Like the game_starting event from the last step, this is also a
queue event, meaning any component can hook in to do whatever it needs to do before
releasing control. (This could be per-player animations and cut scenes, maybe the tilt wants
to wait a few seconds for the plumb bob to stop rocking, etc.)

5. The game’s ball_started() method is the callback for the ball_starting event.

1. Event handlers for ball_drain are added.

2. balls_in_play is set to 1.

3. The ball_started event is posted.

6. Many things are configured to respond to the ball_started event, including:

1. Shots are enabled

2. Autofire devices are enabled

3. Flippers are enabled

4. Ball lock devices are enabled

5. Multiball devices are enabled

Ball Start Sequence 1022

Mission Pinball Framework Documentation, Version

7. The playfield’s add_ball() method is called.

1. The ball controller looks for a ball device in the default_source_device setting of your
playfield, and it changes that device’s desired ball count to 1. (In this example lets assume
that you have a plunger lane and a trough.)

2. The trough sees that one of its eject targets (the plunger lane) wants a ball, so it ejects one.

3. The plunger lane receives and confirms that it now has a ball.

4. If this machine has a launch button and a coil-fired plunger, the player hits a button tagged
with player_controlled_eject_tag.

5. The ball controller receives a request to add a live ball.

6. The ball device in the default_source_device of your playfield ejects its ball.

7. If the machine is configured with a player_controller_eject_tag, that tag is passed as the
trigger event that will launch the ball.

The ball is now in play.

Mode Start Sequence

Here’s what happens when a mode starts:

1. One of the events in the mode’s start_events: is posted.

2. The mode’s start() method responds since it’s registered as a handler for those events.

1. If the mode is currently active, this process ends.

2. If a callback kwarg is included in the event, it’s saved for later use.

3. Any kwargs that were attached to the event which started the mode are saved for later use.

3. Any devices that are configured in this mode’s config that are not already created are created
now.

4. Any events listed in the mode’s stop_events: setting are registered and will call the mode’s
stop() method if they’re posted.

1. These events are registered with the priority of the mode +1, so they are called first.

5. Any registered mode start_methods are called one-by-one. These are called with the mode, the
mode’s config, and the mode’s priority as kwargs.

6. Any device control_events from the mode config are registered

7. A queue event is posted called mode_<mode_name>_starting .

8. The mode’s _started() method is the callback for the starting queue event and is called when
that event is complete.

9. Mode timers are started.

10. An event mode_<mode_name>_started is posted.

11. The mode’s _mode_started_callback() method is the callback for the started event, so it’s called
once that event is complete.

12. The mode’s mode_start() method is called. (This is the method that can be subclassed to run
custom mode code.)

Mode Start Sequence 1023

Mission Pinball Framework Documentation, Version

1. Any kwargs that were passed along with the event that started the mode are passed to the
mode_start() method.

13. If a start callback was passed with the event that started the mode, it’s called now.

Mode Stop Sequence

Here’s what happens behind-the-scenes when a mode stops.

1. An event listed in the mode’s stop_events: setting is posted.

2. This is handled by the mode’s stop() method.

1. If the mode is not active, this process ends.

2. If a callback argument was passed, it’s saved now for later use

3. Other kwargs are saved for later use

3. Switch handlers registered by that mode are removed.

4. Timers set in that mode are stopped and removed.

5. Delays set in that mode are cleared.

6. An queue event is posted: mode_<mode_name>_stopping.

7. Once that queue is clear, the mode’s _stopped() method is called.

8. Any mode stop_methods registered for that mode are called one-by- one. (mode stop_methods
are based on anything that gets returned from the call to the mode’s start_methods when the
mode starts).

9. An event mode_<mode_name>_stopped is posted.

10. Once any handlers for that event have finished, the mode’s _mode_stopped_callback() method is
called.

11. Mode event handlers are removed.

12. Devices that were created as part of this mode are removed.

13. The mode’s mode_stop() method is called. (This is the method that can be subclassed in custom
mode code for things you want to run when the mode stops.)

1. If kwargs were passed as part of the event in Step 1, they’re included in the call to
mode_stop().

14. If a callback was saved in Step 2, it’s called now.

Ball End Sequence

This sequence starts with a ball live and in play and ends when the ball drains and the ball is over.

1. The ball enters a ball device device tagged with drain.

2. The ball controller’s _ball_drained_handler() method responds to the ball having entered a
device tagged with drain.

3. It posts a relay event called ball_drain, along with the number of balls that just drained.

Mode Stop Sequence 1024

Mission Pinball Framework Documentation, Version

1. Various modules can hook event this to “remove” a ball from the ball_drain event so it
doesn’t count as a drain. (For example, ball save.)

4. The game mode’s ball_drained() method is registered as a handler for the ball_drain event.

5. It subtracts the number of balls that just drained from its balls_in_play count.

6. If the balls_in_play count was a positive number and goes to zero, the game mode’s ball_ending()
method is called.

7. The game mode posts the queue event ball_ending.

8. Once that event is done, the game mode’s _ball_ending_done() method is called.

9. The event ball_ended is posted.

10. The game mode’s ball_ended() method is called.

1. If the player has any extra balls, the game mode’s shoot_again() method is called.

2. If the player is the last player, and the ball is the last ball, the game mode’s game_ending()
method is called.

11. Otherwise the game mode’s player_rotate() method is called.

12. The game mode’s player_turn_start() method is called.

Ball End Sequence 1025

CHAPTER20

Troubleshooting

Your machine is not starting, behaving weird or crashing? We are sorry to hear that. This chapter tries
to help you to help yourself. Please try to find the root of your problem. Maybe the solution will be
obvious then. If not we will help you in the forum.

Please remember that this is a two step process: First, try to diagnose the problem and collect as
much information as possible. Second, report the issue if you cannot find a solution yourself. If you
skip the first step we will likely send you to this page.

Step 1: Diagnosing Your Issue

Do you already know how to turn on debugging and increase log verbosity?

What kind of issue are you having?

Debugging Memory Leaks

Sometimes you might experience out of memory conditions. This might be due to bugs in MPF, custom
code or certain config features. We found that most leaks are caused either by dangling event handlers
or slide/widget which never get unloaded. For that reason, we added a feature to MPF and MPF-MC to
dump all of those. To trigger the debug dump start MPF and MPF-MC without the production flag and
post the debug_dump_stats events. For example, you can add a keyboard key d to do that:

keyboard:

d:

event: debug_dump_stats

The MPF log will contain something like this:

1026

Mission Pinball Framework Documentation, Version

2018-12-10 21:35:55,682 : INFO : EventManager : Event: ======'debug_dump_stats'====== Args={'_from_bcp

→˓': True}

2018-12-10 21:35:55,683 : INFO : EventManager : --- DEBUG DUMP EVENTS ---

2018-12-10 21:35:55,683 : INFO : EventManager : Total registered_handlers: 265. Total event_queue: 0.␣

→˓Total callback_queue: 0. Total _queue_tasks: 0

2018-12-10 21:35:55,683 : INFO : EventManager : Registered Handlers:

2018-12-10 21:35:55,683 : INFO : EventManager : Total handlers: 24 (for ball_starting)

[...]

2018-12-10 21:35:55,689 : INFO : EventManager : Total handlers: 1 (for balldevice_bd_scoop_front_ball_

→˓eject_failed)

2018-12-10 21:35:55,689 : INFO : EventManager : Queue events:

2018-12-10 21:35:55,689 : INFO : EventManager : --- DEBUG DUMP EVENTS END ---

MPF-MC will contain even more information:

2018-12-10 21:35:55,682 : EventManager : Event: ======'debug_dump_stats'====== Args={}

2018-12-10 21:35:55,702 : EventManager : --- DEBUG DUMP EVENTS ---

2018-12-10 21:35:55,703 : EventManager : Total registered_handlers: 42. Total event_queue: 0. Total␣

→˓callback_queue: 0. Total _queue_tasks: 0

2018-12-10 21:35:55,703 : EventManager : Registered Handlers:

2018-12-10 21:35:55,703 : EventManager : Total handlers: 2 (for service_power_off)

2018-12-10 21:35:55,703 : EventManager : Total handlers: 2 (for debug_dump_stats)

2018-12-10 21:35:55,703 : EventManager : Total handlers: 1 (for service_menu_show)

2018-12-10 21:35:55,703 : EventManager : Total handlers: 1 (for assets_to_load)

2018-12-10 21:35:55,703 : EventManager : Total handlers: 1 (for sound_loop_sets_clear)

2018-12-10 21:35:55,703 : EventManager : Total handlers: 1 (for master_volume_decrease)

2018-12-10 21:35:55,703 : EventManager : Total handlers: 1 (for service_menu_selected_switch)

[...]

2018-12-10 21:35:55,705 : EventManager : Total handlers: 1 (for service_coil_test_start)

2018-12-10 21:35:55,705 : EventManager : Total handlers: 1 (for service_door_opened)

2018-12-10 21:35:55,705 : EventManager : Queue events:

2018-12-10 21:35:55,705 : EventManager : --- DEBUG DUMP EVENTS END ---

2018-12-10 21:35:55,705 : mpfmc : --- DEBUG DUMP DISPLAYS ---

2018-12-10 21:35:55,705 : mpfmc : Active slides: {'playfield_blank': <Slide name=playfield_blank,␣

→˓priority=0, id=1>, 'transparent_playfield': <Slide name=transparent_playfield, priority=0, id=5>,

→˓'dmd_back_blank': <Slide name=dmd_back_blank, priority=0, id=2>, 'window_slide_1': <Slide name=window_

→˓slide_1, priority=0, id=6>, 'dmd_front': <Slide name=dmd_front, priority=10, id=8>, 'dmd_front_blank

→˓': <Slide name=dmd_front_blank, priority=0, id=4>, 'window_blank': <Slide name=window_blank,␣

→˓priority=0, id=3>, 'dmd_back': <Slide name=dmd_back, priority=10, id=7>} (Count: 8). Displays: {'dmd_

→˓front': <Display name=dmd_front[128, 32], current slide=dmd_front, total slides=2>, 'dmd_back':

→˓<Display name=dmd_back[128, 32], current slide=dmd_back, total slides=2>, 'window': <Display␣

→˓name=window[600, 700], current slide=window_slide_1, total slides=2>, 'playfield': <Display␣

→˓name=playfield[225, 250], current slide=transparent_playfield, total slides=2>} (Count: 4)

2018-12-10 21:35:55,705 : mpfmc : Listing children for display: <Display name=dmd_front[128, 32],␣

→˓current slide=dmd_front, total slides=2>

2018-12-10 21:35:55,705 : mpfmc : <Display name=dmd_front[128, 32], current slide=dmd_front, total␣

→˓slides=2>

2018-12-10 21:35:55,705 : mpfmc : <Slide name=dmd_front, priority=10, id=8>

2018-12-10 21:35:55,706 : mpfmc : <WidgetContainer id=None z=0 key=None>

2018-12-10 21:35:55,706 : mpfmc : <Image name=drache, size=[128, 32], pos=[64, 16]>

2018-12-10 21:35:55,706 : mpfmc : Total children: 4

[...]

2018-12-10 21:35:55,708 : mpfmc : <Slide name=transparent_playfield, priority=0, id=5>

2018-12-10 21:35:55,708 : mpfmc : <WidgetContainer id=None z=2 key=None>

2018-12-10 21:35:55,708 : mpfmc : <Image name=nyannyan, size=[110, 281], pos=[172.0, 155.

→˓70284725004058]> (continues on next page)

Step 1: Diagnosing Your Issue 1027

Mission Pinball Framework Documentation, Version

(continued from previous page)

2018-12-10 21:35:55,708 : mpfmc : <WidgetContainer id=None z=2 key=None>

2018-12-10 21:35:55,708 : mpfmc : <Image name=nyannyan, size=[110, 281], pos=[60.0, 100.44406174999192]>

2018-12-10 21:35:55,708 : mpfmc : Total children: 6

2018-12-10 21:35:55,708 : mpfmc : --- DEBUG DUMP DISPLAYS END ---

2018-12-10 21:35:55,732 : mpfmc : --- DEBUG DUMP OBJECTS ---

2018-12-10 21:35:55,732 : mpfmc : Elements in list (may be dead): 152

2018-12-10 21:35:55,732 : mpfmc : <Display name=playfield[225, 250], current slide=transparent_

→˓playfield, total slides=2>

2018-12-10 21:35:55,732 : mpfmc : <Display name=dmd_back[128, 32], current slide=dmd_back, total␣

→˓slides=2>

2018-12-10 21:35:55,732 : mpfmc : <Display name=window[600, 700], current slide=window_slide_1, total␣

→˓slides=2>

2018-12-10 21:35:55,732 : mpfmc : <Display name=dmd_front[128, 32], current slide=dmd_front, total␣

→˓slides=2>

2018-12-10 21:35:55,732 : mpfmc : <DisplayWidget size=[600, 700], pos=[0, 0], source=window>

2018-12-10 21:35:55,733 : mpfmc : <Slide name=playfield_blank, priority=0, id=1>

[...]

2018-12-10 21:35:55,737 : mpfmc : <Image name=drache, size=[128, 32], pos=[64, 16]>

2018-12-10 21:35:55,737 : mpfmc : <Image name=nyannyan, size=[110, 281], pos=[60.0, 100.44406174999192]>

2018-12-10 21:35:55,737 : mpfmc : <Image name=nyannyan, size=[110, 281], pos=[172.0, 155.

→˓70284725004058]>

2018-12-10 21:35:55,737 : mpfmc : --- DEBUG DUMP OBJECTS END ---

2018-12-10 21:35:55,737 : mpfmc : --- DEBUG DUMP CLOCK ---

2018-12-10 21:35:55,737 : mpfmc : <ClockEvent (1.0) callback=<function Cache._purge_by_timeout at␣

→˓0x7fe7c73eeae8>>

2018-12-10 21:35:55,737 : mpfmc : <ClockEvent (0.0) callback=<bound method SoundSystem.tick of <mpfmc.

→˓core.audio.SoundSystem object at 0x7fe7b89c0080>>>

2018-12-10 21:35:55,737 : mpfmc : <ClockEvent (0.0) callback=<bound method BcpProcessor._get_from_queue␣

→˓of <mpfmc.core.bcp_processor.BcpProcessor object at 0x7fe7b89457f0>>>

2018-12-10 21:35:55,737 : mpfmc : <ClockEvent (1.0) callback=<bound method MpfMc._check_crash_queue of

→˓<mpfmc.core.mc.MpfMc object at 0x7fe7c8ab91e8>>>

2018-12-10 21:35:55,737 : mpfmc : <ClockEvent (0.0) callback=<bound method MpfMc.tick of <mpfmc.core.mc.

→˓MpfMc object at 0x7fe7c8ab91e8>>>

2018-12-10 21:35:55,737 : mpfmc : <ClockEvent (0.2) callback=<bound method WindowSDL._check_keyboard_

→˓shown of <kivy.core.window.window_sdl2.WindowSDL object at 0x7fe7b833a180>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.0) callback=<bound method EffectWidget._update_glsl of

→˓<kivy.uix.effectwidget.EffectWidget object at 0x7fe7b79c1e80>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.0) callback=<bound method EffectWidget._update_glsl of

→˓<kivy.uix.effectwidget.EffectWidget object at 0x7fe7b79f0180>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.0) callback=<bound method EffectWidget._update_glsl of

→˓<kivy.uix.effectwidget.EffectWidget object at 0x7fe79edc9c78>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.0) callback=<bound method DmdBase.tick of <mpfmc.core.

→˓dmd.RgbDmd object at 0x7fe7b89ee198>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.0) callback=<bound method EffectWidget._update_glsl of

→˓<kivy.uix.effectwidget.EffectWidget object at 0x7fe79edc9f50>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.0) callback=<bound method DmdBase.tick of <mpfmc.core.

→˓dmd.RgbDmd object at 0x7fe7b88b36a0>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.1) callback=<bound method Image._anim of <kivy.core.

→˓image.Image object at 0x7fe7b7c0a800>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.0) callback=<bound method McDisplayLightPlayer._tick␣

→˓of BcpConfigPlayer.display_lights>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (9.0) callback=<bound method Widget.remove of <Image␣

→˓name=nyannyan, size=[110, 281], pos=[60.0, 100.44406174999192]>>>

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (0.0) callback=<bound method Animation._update of <mpfmc.

→˓uix.relative_animation.RelativeAnimation object at 0x7fe79d1f18d0>>> (continues on next page)

Step 1: Diagnosing Your Issue 1028

Mission Pinball Framework Documentation, Version

(continued from previous page)

2018-12-10 21:35:55,738 : mpfmc : <ClockEvent (9.0) callback=<bound method Widget.remove of <Image␣

→˓name=nyannyan, size=[110, 281], pos=[172.0, 155.70284725004058]>>>

2018-12-10 21:35:55,739 : mpfmc : <ClockEvent (0.0) callback=<bound method Animation._update of <mpfmc.

→˓uix.relative_animation.RelativeAnimation object at 0x7fe79d1f1e80>>>

2018-12-10 21:35:55,739 : mpfmc : --- DEBUG DUMP CLOCK END ---

Leaks usually occur over time so dump all objects on start of your machine. Leave it running for a few
minutes and dump all objects again. Then compare the output of those two. Look for events with a
very high number of handlers (or a number which is constantly increasing). Check for widgets or
slides which are existing more than once. If you got questions ask in the forum.

Debugging YAML Parse Errors

In case something goes wrong and you get errors like this:

ValueError: YAML error found in file config/config.yaml. Line 22,Position 10: mapping values are not␣

→˓allowed here

in "config/config.yaml", line 22, column 10

This means that the error might be at line 22, just before it or shortly after it. Sometimes it is tricky to
tell whats wrong when one space is off. A good editor might help but it might be still hard to spot the
exact point.

Install an IDE

We recommend the MPF language server with a supported IDE for that.

Install the extension

If you are struggling to find the problem you can reformat your file using ruamel.yaml. To do that you
first need to install the ruamel.yaml.cmd extension:

pip3 install ruamel.yaml.cmd==0.2

Make a backup

Before you continue: Make a backup of your machine config. Seriously, do it! Even better, use git and
commit right now!

Reformatting YAML files

After that you can reformat single files using the round-trip command. For example if you want to
reformat your_file.yaml first check the changes it would make:

yaml round-trip your_file.yaml

If that looks alright perform them by adding the --save flag:

Step 1: Diagnosing Your Issue 1029

Mission Pinball Framework Documentation, Version

yaml round-trip --save your_file.yaml

This will keep comments but reformat all your indents to two spaces per level. It should be easier now
to spot the problem.

Reformat Your Config Using MPF format

Run mpf format on your config. See Format And Lint Config Files for details.

What if it did not help?

If this did not help you can ask in the mpf-users Google group. Please post the full error message, your
log file and the relevant config file.

Debugging Segfaults

If you experience a crash/segfault or hang (especially in MC) you can run gdb on python to find the
crash or hang. You can attach a debugger to the running mc process like this:

$ ps aux | grep mpf

jan 9678 12.4 0.3 1082068 127304 pts/2 SNl+ 23:17 0:06 /usr/bin/python3 /usr/local/bin/mpf mc

jan 9760 37.0 0.1 571368 56660 pts/3 Sl+ 23:17 0:01 /usr/bin/python3 /usr/local/bin/mpf␣

→˓game -X

In this example 9678 is the pid of MC and 9760 is the pid of MPF. You can then attach gdb:

$ sudo gdb python3 9678

[...]

(gdb) thread apply all bt

[...]

(gdb) thread apply all py-bt

[...]

Please send us the complete output of gdb. That will help us to figure out the problem.

Debugging MPF installation problems

If you suspect a problem with MPF itself you can try to run the demo_man game. Make sure that you
select the same version as your MPF version (i.e. demo_man 0.33.x for MPF 0.33.10).

Additionally, you can run the MPF and MPF-MC unit tests (the number of tests may be different).

$ python3 -m unittest discover -s mpf.tests

[...]

--

Ran 622 tests in 20.818s

OK

Similarly, you can run MPF-MC unit tests (they will take a bit longer and might show some
deprecation warnings from kivy):

Step 1: Diagnosing Your Issue 1030

https://groups.google.com/forum/#!forum/mpf-users
https://wiki.python.org/moin/DebuggingWithGdb

Mission Pinball Framework Documentation, Version

$ python3 -m unittest discover -s mpfmc.tests

[...]

Ran 182 tests in 193.610s

OK

If you coils are not firing, switches are not working or hardware is behaving weirdly in general read
our hardware troubleshooting guide.

Step 2: Prepare a Report and Ask in the Forum

Please include the following information if available and relevant:

Output of MPF diagnosis

If your game won’t run, let’s make sure MPF is ok. This will also tell use which MPF and MPF-MC
version you are using. Run mpf diagnosis from within your machine folder to see if your installation is
fine:

$ mpf diagnosis

MPF version: MPF v0.50.0-dev.11

MPF install location: /data/home/jan/cloud/flipper/src/mpf/mpf

Machine folder detected: /data/home/jan/cloud/flipper/src/good_vs_evil

MPF-MC version: MPF-MC v0.50.0-dev.5 (config_version=5, BCP v1.1, Requires MPF v0.50.0-dev.10)

Serial ports found:

/dev/ttyUSB3

desc: Quad RS232-HS

hwid: USB VID:PID=0403:6011 LOCATION=1-12

/dev/ttyUSB2

desc: Quad RS232-HS

hwid: USB VID:PID=0403:6011 LOCATION=1-12

/dev/ttyUSB1

desc: Quad RS232-HS

hwid: USB VID:PID=0403:6011 LOCATION=1-12

/dev/ttyUSB0

desc: Quad RS232-HS

hwid: USB VID:PID=0403:6011 LOCATION=1-12

Relevant Configuration

Please provide the relevant configuration snippets. Leave out anything which is not related. For
instance if you got problems with lights on your P-Roc or FAST platform provide the configuration for
the relevant lights, the p_roc or fast section and any light_players or shows which are used when the
problem occurs.

Step 2: Prepare a Report and Ask in the Forum 1031

Mission Pinball Framework Documentation, Version

Attach a Log with debug and verbose logging

Please attach the log with verbose logging from MPF or MPF-MC (depending where your problem
occured). Make sure you enabled debug on the relevant devices and/or platforms. See how to turn on
debugging and increase log verbosity for details.

A link to your machine config also help. Ideally this would be some git repository which can be
checked out and browsed online.

Prepare the Error Message

Your error message likely is inside your log. However, please include it inside your message as well.
See Reading MPF Errors for how to read the error.

Please check the relevant device or platform documentation for any mentions of that error. Often we
already documented how to solve it.

Tell Us How to Reproduce Your Problem

It might be hard for us to help you if we cannot reproduce your issue. Is there a way you can provide a
minimal config which shows your problem? Try to remove everything unrelated to your problem and
bring it to its bare minimum. Sometimes you will find the root of the issue while doing this. You would
be surprised how often issues are caused by seemingly unrelated devices or configs.

Ideally you can provide a single file test which fails or shows your issue in its log. This allows us to
verify the issue quickly and provide a quick fix. But don’t worry if this not possible. Just a minimal
machine config is also fine. In that case please tell us how to run your machine to experience the issue.

Ask In the Forum

With all this information ask in our support forum. Please keep in mind that MPF is an open source
project and we are doing this for fun in our spare time. Be kind and patient. If you provide more
relevant information it is likely that somebody can help you. More is not always better if it is not
relevant to your problem. But missing information will just delay the overall process.

1. If you got a problem with a device (e.g. a ball_lock) or a platform (e.g. P-ROC or FAST) add
debug: True to the relevant config section to enable extra debug output.

2. Add a log of your game. Therefore, run your game with mpf both -v -V and grab the latest MPF
and MC log from the log folder in your machine.

3. Describe how to reproduce your problem.

4. Provide relevant config snippets or, if possible, a link to download/checkout your machine config
so we can reproduce the issue.

Attach a Log with debug and verbose logging 1032

https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Consider Improving the Documentation

Did you solve your issue but found that some relevant information in the documentation is missing or
should be linked/located elsewhere? Either tell us in the forum or consider improving the
documentation yourself to save future users some troubles the same way others saved you some
troubles by writing this documentation.

More Howtos

How to Turn On Debug and How to Increase Log Verbosity?

You got some kind of issue in MPF? A crash, weird behaviour or it won’t start? Then this guide is for
you. You will learn how to turn up logging and how to selectively enable debugging.

1. Run MPF without text ui

The text ui which is shown by default may hide some errors and make troubleshooting more difficult.
To disable text ui run mpf using:

$ mpf both -t

This will just show the log on the console. If some crashes occur this might reveal them as the text ui
sometimes hides them.

2. Start MPF and MPF-MC separately

If MPF and MPF-MC logs mix up too much you can start them separately:

$ mpf game -t

And in another console:

$ mpf mc

This might help you to find out where a crash or error is originating from.

3. Increase Log Verbosity

If you experience problems you should increase verbosity:

$ mpf game -t -v -V

Start MPF-MC in a separate console:

$ mpf mc -v -V

(This will also work with mpf both -t -v -V).

Scroll up in the console to find the error which was emitted.

Consider Improving the Documentation 1033

Mission Pinball Framework Documentation, Version

This will increase the size of your logs and slow down MPF a bit. It should not be used in production
but it should be fine to always use otherwise especially during development.

4. Checkout the Log Folder

MPF will generate separate logs for MPF and MPF-MC in the logs folder in your machine. Those will
also contain a bit more information than the console. Find the issue in your log. Keep this ready for
later in case you want to report an issue.

5. Enable Debugging

If you are having an issue with a specific device or platform you should try to enable debugging.
Almost all devices and platforms in MPF support a debug option. If in doubt check the config
reference. For instance if you suspect an issue with a switch add debug: true to it’s config:

switches:

my_switch:

number: 42

debug: true

Same works with all devices. It will generate more log lines but should not affect performance much.

Most platforms support the same. For instance with a P-Roc:

p_roc:

debug: true

For most platforms this will generate a lot of log lines and might also affect performance a lot. We
recommend to disable it after you finished debugging. See Troubleshooting Hardware Platforms for
details.

After enable debug check the log again to understand what your device or platform is actually doing
at the time of your issue.

Reading MPF Errors

MPF errors might be chained. This means that a more general error is caused by a more specific one.
In general, you need to read those error from the bottom to the top. On the bottom there will be the
most general error and all errors above will be more specific.

For instance a Switch might be unable to initialize because your hardware platform cannot connect to
the relevant node board:

INFO : EventManager : Event: ======'shutdown'====== Args={}

Shutdown because of an exception:

ERROR : Machine : Runtime Exception

Traceback (most recent call last):

File "/mpf/mpf/devices/switch.py", line 135, in _initialize

self.config['number'], config, self.config['platform_settings'])

File "/mpf/mpf/platforms/virtual.py", line 94, in configure_switch

raise AssertionError("Cannot find board for switch {}".format(number))

AssertionError: Cannot find board for switch 0-7

(continues on next page)

More Howtos 1034

Mission Pinball Framework Documentation, Version

(continued from previous page)

The above exception was the direct cause of the following exception:

Traceback (most recent call last):

File "/mpf/mpf/core/machine.py", line 741, in _run_loop

raise self._exception['exception']

File "uvloop/cbhandles.pyx", line 70, in uvloop.loop.Handle._run

File "/mpf/mpf/core/events.py", line 114, in _async_handler_done

future.result()

File "/mpf/mpf/core/device_manager.py", line 103, in _load_device_modules

await self.initialize_devices()

File "/mpf/mpf/core/device_manager.py", line 199, in initialize_devices

await collection[device_name].device_added_system_wide()

File "/mpf/mpf/core/system_wide_device.py", line 15, in device_added_system_wide

await self._initialize()

File "/mpf/mpf/devices/switch.py", line 137, in _initialize

raise AssertionError("Failed to configure switch {} in platform. See error above".format(self.

→˓name)) from e

AssertionError: Failed to configure switch s_door_back in platform. See error above

So in this case the door switch could not be configured because the node board was missing at the
hardware.

Attaching A Debugger to MPF

Video about how to attach a debugger using pycharm:

https://youtu.be/LPSfUHKIpYk

More Howtos 1035

https://youtu.be/LPSfUHKIpYk

CHAPTER21

How To Build Physical Pinball Machines

This chapter is about building physical pinball machines. If you plan to build a homebrew machine
read this section and you might be able to skip some mistakes which have been made by others
before. We try to cover most of the building part here. A few things are elsewhere, notably Pinball
Controll Systems and Pinball Mechs.

Where should you start? If you want to create a custom layout read our guide on layout
considerations.

What Should You Consider When Planning a Playfield Layout?

In general, it is a good idea if you really played pinball before. You need to get a feel for what is
rewarding as a player and then you need to understand how that works. For instance, where are the
switches to play the first sound when you hit the entrance of a shot? When and how does the machine
count the shot as successful?

Otherwise, you might end up with switches that when hit do absolutely nothing. Not even a blinking
light, score increment or a basic sound effect because it does not make sense at that point. Anyone
who had played even a little pinball would’ve known what people were expecting. As you observe and
play more pinball, you get a knack for what types of things will really immerse the player, and can
then incorporate them into your own games.

Some notes from people in our community (please tell us if you have more):

Pop Bumpers

Pop bumpers are great for randomizing the action of the ball. They can also offer the player a bit of
pause to consider where the ball is coming from. When designing your pop bumper area, it’s generally
good advice to have rubber surrounding the area to keep the ball action high.

1036

Mission Pinball Framework Documentation, Version

Surrounding pop bumpers with steel (like ball guides, for instance) is a quick way to kill the action
(and the fun).

Below is a picture of pop bumpers surrounded by steel, with large gaps to the lower playfield. Action
here will be very limited:

Below is a picture of pop bumpers surrounded by rubber, with a defined exit to the lower playfield.
Action here will be very high:

What Should You Consider When Planning a Playfield Layout? 1037

Mission Pinball Framework Documentation, Version

Upper Flippers

Upper flippers are a great way to add a second dimension to the shot flow of a game. For example, if
you have an upper right flipper, you can incorporate shots on the middle/upper left of the playfield
behind other objects. These are generally harder shots on their own. With that said, you should at
least have a feed to the upper flipper (from a ramp, an orbit, or some other shot). Generally its a good
idea to make the access to the flipper easier, because the shots off of the flipper will be more difficult.

What Should You Consider When Planning a Playfield Layout? 1038

Mission Pinball Framework Documentation, Version

Inserts

Make sure each shot has dedicated inserts so that you can indicate what you want the player to shoot.
RGB arrow inserts are great for denoting shots to the player (you can color code them) and you don’t
have to put text over the arrow. Lower inserts will generally be “mode specific”. You can look at the
ramp/orbit shots on Demolition Man to get an idea for the insert layout. The arrows are generic,
everything else is specific.

What Should You Consider When Planning a Playfield Layout? 1039

Mission Pinball Framework Documentation, Version

What Should You Consider When Planning a Playfield Layout? 1040

Mission Pinball Framework Documentation, Version

Ball Guides and Posts

The ball should never ever ever hit metal directly unless its a ball guide. Even then, the end of the ball
guide should have a rubber post (positioned such that the edge of the guide is covered, but a ball
rolling down the guide wont hit it and have its trajectory altered). (I knew this and still managed to
screw it up on Wizard Blocks as several shots immediately hit the lane guides or metal ramps. It
causes the whole game to play like a big clunky metal piece of garbage.)

Also, when positioning ball guides for an orbit shot, it is generally a pleasing experience to the player
to have the ball come off the orbit right toward the flipper. Some designs have placed orbits such that
they hit the tip of the slingshot and bounce the ball out of control. This makes for a more difficult
game, and if orbit shots are key to certain modes, this could be rather frustrating for a player who’s
trying to control the ball.

Shot Lines

It goes without saying that any shot you place on a playfield should be makeable from one or multiple
flippers. Fan layouts are a common occurence in playfield design (think of No Fear or Monster Bash),
typically arranged into a fan of 7 or 8 shots.

If you find yourself doing more asymmetric playfield designs, you should pay special attention to make
sure that the shots are makeable. You can draw shot lines from the flippers to measure this.

Every shot from the flipper generally leaves in a straight line. Take your playfield CAD/Drawing/etc
and see if you can draw a straight line up the playfield to the shot you’re testing. Be sure to account
for half the diameter of the ball to make sure a collision with another object won’t throw the ball off
course.

Shot lines are also a great tool to see which shots are able to be back handed off the flipper on the
same side.

Here’s an example of shot lines on Demolition Man:

Anything missing?

Do you have more advice? Did you make a stupid mistake (in retrospective) and want to tell other
about it? Please contribute a section to this guide or tell us in the MPF Users Google Group.

Planning Layout with CAD

Borrowing Shots With CAD

If you have planned shot in an area that matches an existing machine, you can borrow/take their
geometry. This way you know the geometry will be good without any revisions. PDF’s of instructions
manuals for games are a good source for the flat overhead pic you will need. IPDB.org is one good
source for these.

Most CAD programs have a function to overlay an image file directly onto your model. Search youtube
for “How to overlay image” + your CAD system.

Planning Layout with CAD 1041

https://groups.google.com/forum/#!forum/mpf-users
https://www.ipdb.org

Mission Pinball Framework Documentation, Version

You will have to move and skew the image until the flippers and size line up with your drawing. Once
this is done you can take a shot with confidence.

Here’s an example of a Spiderman pinball overlay onto a homebrew pinball machine to get the
geometry of the Venom ramp shot:

Planning Layout with CAD 1042

Mission Pinball Framework Documentation, Version

Using to CAD to Test/Plan Shots

You can draw a shot in CAD to see if it is makeable. Here is an example of testing if a newton ball shot
can be made from the right flipper:

Planning Layout with CAD 1043

Mission Pinball Framework Documentation, Version

Planning Layout with CAD 1044

Mission Pinball Framework Documentation, Version

Here we test where the balls will go coming of the orbit shots. (We left a small straight line at the
end/beginning of the orbit when designing, then made the dotted lines parallel):

Here we use CAD to see how a ball lock will exit when hit with a trapped newton ball:

Planning Layout with CAD 1045

Mission Pinball Framework Documentation, Version

Here we use CAD to see if balls wil get trapped after the ball lock:

Planning Layout with CAD 1046

Mission Pinball Framework Documentation, Version

Subtract the ball diameter (1.0625”) from ramp and lane shots to see their actual width.

Planning Layout with CAD 1047

Mission Pinball Framework Documentation, Version

Here you can see a .500” wide mini target is easier to hit than an over 2” wide ramp.

Planning Layout with CAD 1048

CHAPTER22

Example Configuration Files

MPF is very complex with lots of modules and options. In order to make sure that everything works,
we have over 700 automated tests that run every time we add or change something in MPF in order to
make sure we didn’t break something.

All of these automated tests include config files (machine configs, mode configs, and show files). In
many ways, these config files are the “ultimate truth” when it comes to what configs actually work
with MPF.

All of the links below show the actual config files (pulled from the MPF and MPF-MC packages) that
are used to test MPF. They’re also a valuable resource for people creating games with MPF since they
show many different options and configurations that are known to work.

You can click on any of the links below to see the actual config files for each topic. Each link may have
multiple separate machine configs, mode configs, and/or show configs.

accelerometer (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 1: your_machine_folder/accelerometer/config/config.yaml

#config_version=5

accelerometers:

test_accelerometer:

number:

level_x: 0

(continues on next page)

1049

/mpf_examples/accelerometer/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

level_y: 0

level_z: 1

hit_limits:

0.5: event_hit1

1.5: event_hit2

level_limits:

2: event_level1

5: event_level2

achievement (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 2: your_machine_folder/achievement/config/config.yaml

#config_version=5

switches:

test:

number:

lights:

led1:

number:

led2:

number:

led4:

number:

led5:

number:

led6:

number:

modes:

- base

- mode1

- auto_select

shows:

achievement1_enabled:

- time: 1

achievement1_started:

- time: 1

achievement1_completed:

- time: 1

achievement1_disabled:

- time: 1

achievement1_stopped:

(continues on next page)

achievement (example config files) 1050

/mpf_examples/achievement/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- time: 1

achievement2_disabled:

- time: 1

lights:

(led): off

achievement2_enabled:

- time: 1

lights:

(led): yellow

achievement2_started:

- time: 1

lights:

(led): green

achievement2_stopped:

- time: 1

lights:

(led): red

achievement2_completed:

- time: 1

lights:

(led): blue

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 3: your_machine_folder/achievement/modes/base/config/base.yaml

#config_version=5

mode:

start_events: ball_starting

priority: 100

achievements:

achievement1:

start_events: achievement1_start

stop_events: achievement1_stop

enable_events: achievement1_enable

disable_events: achievement1_disable

complete_events: achievement1_complete

reset_events: achievement1_reset

show_when_disabled: achievement1_disabled

show_when_enabled: achievement1_enabled

show_when_started: achievement1_started

show_when_stopped: achievement1_stopped

show_when_completed: achievement1_completed

restart_on_next_ball_when_started: True

achievement2:

(continues on next page)

achievement (example config files) 1051

/mpf_examples/achievement/modes/base/config/base.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_events: achievement2_start

stop_events: achievement2_stop

enable_events: achievement2_enable

disable_events: achievement2_disable

complete_events: achievement2_complete

reset_events: achievement2_reset

events_when_started: test_event, test_event2

show_when_enabled: achievement2_enabled

show_when_started: achievement2_started

show_when_completed: achievement2_completed

restart_after_stop_possible: False

enable_on_next_ball_when_enabled: False

show_tokens:

led: led1

achievement3:

start_events: achievement3_start

stop_events: achievement3_stop

enable_events: achievement3_enable

disable_events: achievement3_disable

complete_events: achievement3_complete

reset_events: achievement3_reset

events_when_started: test_event, test_event3

show_when_disabled: achievement_disabled

show_when_enabled: achievement_enabled

show_when_started: achievement_started

show_when_stopped: achievement_stopped

show_when_completed: achievement_completed

restart_after_stop_possible: False

achievement4:

start_events: achievement4_start

stop_events: achievement4_stop

enable_events: achievement4_enable

disable_events: achievement4_disable

complete_events: achievement4_complete

reset_events: achievement4_reset

show_when_disabled: achievement_disabled

show_when_enabled: achievement_enabled

show_when_started: achievement_started

show_when_stopped: achievement_stopped

show_when_completed: achievement_completed

show_when_selected: achievement_selected

show_tokens:

led: led4

achievement5:

start_events: achievement5_start

stop_events: achievement5_stop

enable_events: achievement5_enable

disable_events: achievement5_disable

complete_events: achievement5_complete

reset_events: achievement5_reset

events_when_started: test_event, test_event5

(continues on next page)

achievement (example config files) 1052

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_when_disabled: achievement_disabled

show_when_enabled: achievement_enabled

show_when_started: achievement_started

show_when_stopped: achievement_stopped

show_when_completed: achievement_completed

show_when_selected: achievement_selected

show_tokens:

led: led5

achievement6:

start_events: achievement6_start

stop_events: achievement6_stop

enable_events: achievement6_enable

disable_events: achievement6_disable

complete_events: achievement6_complete

reset_events: achievement6_reset

events_when_started: test_event, test_event6

show_when_disabled: achievement_disabled

show_when_enabled: achievement_enabled

show_when_started: achievement_started

show_when_stopped: achievement_stopped

show_when_completed: achievement_completed

show_when_selected: achievement_selected

show_tokens:

led: led6

achievement7: {}

achievement8: {}

achievement9: {}

achievement10:

debug: True

achievement11:

debug: True

achievement12:

enable_events: enable_achievements

achievement13:

enable_events: enable_achievements

achievement14: {}

achievement15: {}

achievement16: {}

achievement17: {}

mode1_a1:

enable_events: enable_all

(continues on next page)

achievement (example config files) 1053

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_events: start_all

stop_events: stop_all

complete_events: complete_all

mode1_a2:

enable_events: enable_all

start_events: start_all

stop_events: stop_all

complete_events: complete_all

achievement_groups:

group1:

achievements: achievement7, achievement8, achievement9

auto_select: true

group2:

achievements: achievement4, achievement5, achievement6

enable_events: group2_enable

disable_events: group2_disable

start_selected_events: group2_start

select_random_achievement_events: group2_random

rotate_right_events: group2_rotate_right

rotate_left_events: group2_rotate_left

disable_while_achievement_started: False

enable_while_no_achievement_started: False

events_when_all_completed: group2_complete

events_when_no_more_enabled: group2_no_more

events_when_enabled: group2_enabled

show_when_enabled: group2_show

show_tokens:

led: led2

group3:

achievements:

- achievement10

- achievement11

- achievement12

- achievement13

auto_select: yes

debug: True

group4:

debug: True

achievements: achievement14, achievement15, achievement16

enable_events: group4_enable

disable_events: group4_disable

start_selected_events: group4_start

select_random_achievement_events: group4_random

rotate_right_events: group4_rotate_right

rotate_left_events: group4_rotate_left

events_when_all_completed: group4_complete

(continues on next page)

achievement (example config files) 1054

Mission Pinball Framework Documentation, Version

(continued from previous page)

events_when_no_more_enabled: group4_no_more

events_when_enabled: group4_enabled

allow_selection_change_while_disabled: True

auto_select: True

shows:

group2_show:

- duration: .1

lights:

(led): red

- duration: .1

lights:

(led): blue

achievement_enabled:

- duration: 1

lights:

(led): yellow

achievement_disabled:

- duration: 1

lights:

(led): off

achievement_completed:

- duration: 1

lights:

(led): blue

achievement_started:

- duration: 1

lights:

(led): green

achievement_stopped:

- duration: 1

lights:

(led): red

achievement_selected:

- duration: 1

lights:

(led): orange

Listing 4: your_machine_folder/achievement/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

priority: 100

achievement_groups:

mode1_ag1:

achievements: mode1_a1, mode1_a2

events_when_no_more_enabled: enable_all

auto_select: yes

debug: True

achievement (example config files) 1055

/mpf_examples/achievement/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

Listing 5: your_machine_folder/achievement/modes/auto_select/config/auto_select.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

priority: 100

achievements:

spinTasticAward:

complete_events: mode_spinTasticAward_stopped

reset_events: reset_bonusAwards

debug: True

tagTeamAward:

complete_events: mode_tagTeamAward_stopped

reset_events: reset_bonusAwards

debug: True

doubleChanceAward:

complete_events: mode_doubleChanceAward_stopped

reset_events: reset_bonusAwards

debug: True

extraBallAward:

complete_events: extraBallAwardIntro_complete

reset_events: reset_bonusAwards

debug: True

prodigiousPopsAward:

complete_events: mode_prodigiousPopsAward_stopped

reset_events: reset_bonusAwards

debug: True

achievement_groups:

bonus_awards:

achievements:

- doubleChanceAward

- extraBallAward

- prodigiousPopsAward

- tagTeamAward

- spinTasticAward

auto_select: true

enable_while_no_achievement_started: false

rotate_right_events: sw_pops, s_spotTarget_active

allow_selection_change_while_disabled: true

disable_while_achievement_started: false

start_selected_events: start_event

disable_events: disable_bonus

enable_events: enable_group

debug: True

achievement (example config files) 1056

/mpf_examples/achievement/modes/auto_select/config/auto_select.yaml

Mission Pinball Framework Documentation, Version

animated_images (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 6: your_machine_folder/animated_images/config/test_animated_images.yaml

#config_version=5

displays:

default:

width: 400

height: 300

images:

stick-figures-skipframes:

file: reel.gif

frame_skips:

- from: 3

to: 8

slides:

slide1:

- type: image

image: ball

y: 250

fps: 30

- image: busy-stick-figures-animated

type: image

y: 100

x: 250

- type: text

text: ZIP FILE OF PNGs

y: 260

- type: text

text: ANIMATED GIF

x: 10

y: 100

anchor_x: left

- type: text

text: (ALSO TESTING STOPPING

x: 10

y: 80

font_size: 10

anchor_x: left

- type: text

text: SKIPPING, & STARTING)

font_size: 10

x: 14

y: 68

anchor_x: left

slide2:

(continues on next page)

animated_images (example config files) 1057

/mpfmc_examples/animated_images/config/test_animated_images.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- image: busy-stick-figures-animated

type: image

y: 100

x: 250

slide3:

- image: busy-stick-figures-animated

type: image

auto_play: false

start_frame: 4

slide4:

- image: stick-figures-skipframes

type: image

auto_play: false

animations:

advance_frames:

- property: end_frame

value: 10

duration: 0

slide_player:

slide1: slide1

slide1_remove:

slide1: remove

slide2:

slide2:

priority: 200

slide3: slide3

slide4: slide4

animation (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 7: your_machine_folder/animation/config/test_animation.yaml

#config_version=5

displays:

default:

width: 400

height: 300

slides:

slide1:

type: text

text: text

x: 0

animations:

show_slide:

- property: x # x, y, height, width, opacity, rotation?

(continues on next page)

animation (example config files) 1058

/mpfmc_examples/animation/config/test_animation.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

value: 101

duration: 1s

repeat: False

- property: x # x, y, height, width, opacity, rotation?

value: 100

duration: 1s

timing: with_previous # or after prev

repeat: True

reset_animations_events: pre_show_slide

slide2:

type: text

text: ANIMATION TEST

color: ff00ff

font_size: 100

x: 400

y: 300

animations:

entrance2:

property: x, y

value: 0, 0

duration: 1s

timing: with_previous # or after prev

slide3:

type: text

text: text3

color: green

opacity: 0

animations:

entrance3: fade_in, multi

fade_in: fade_in

advance_x: advance_x_50

advance_y: advance_y_50

advance_xy: advance_xy_50

slide4:

type: text

text: text4

animations:

entrance4: fade_in, multi

some_event4: multi

slide5:

type: text

text: text5

animations:

entrance5: fade_in, multi

event5:

property: x # x, y, height, width, opacity, rotation?

value: 98

duration: 1s

timing: with_previous # or after prev

repeat: True

(continues on next page)

animation (example config files) 1059

Mission Pinball Framework Documentation, Version

(continued from previous page)

slide6:

type: text

text: text6

slide7:

type: text

text: TEST ANIMATION ON show_slide

x: 100

color: ffaa00

font_size: 50

animations:

show_slide:

property: x

value: 500

duration: 500ms

slide8:

type: text

text: TEST ANIMATION FROM OFF SCREEN

y: 75%

base_slide:

background_color: blue

widgets:

type: text

text: WIDGET ANIMATION TESTS

slide9:

type: text

text: ANIMATION pre_show_slide

x: 100

color: ffaa00

font_size: 50

animations:

pre_show_slide:

property: x

value: 500

duration: 500ms

slide10:

type: text

text: ANIMATION show_slide

x: 100

color: ffaa00

font_size: 50

animations:

show_slide:

property: x

value: 500

duration: 500ms

slide11:

type: text

(continues on next page)

animation (example config files) 1060

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: ANIMATION pre_slide_leave

color: ffaa00

font_size: 50

animations:

pre_slide_leave:

property: x

value: -400

duration: 500ms

slide12:

type: text

text: ANIMATION slide_leave

color: ffaa00

font_size: 50

animations:

slide_leave:

property: x

value: 0

duration: 500ms

slide13:

type: text

text: RESET POSITION pre_show_slide

x: 100

animations:

show_slide:

- property: x

value: 200

duration: 1s

reset_animations_events: pre_show_slide

slide14:

type: text

text: RESET POSITION slide_play

x: 100

animations:

show_slide:

- property: x

value: 200

duration: 1s

reset_animations_events: slide_play

slide15:

type: text

text: RESET POSITION standard event

x: 100

animations:

show_slide:

- property: x

value: 200

duration: 1s

reset_animations_events: event1

slide_player:

(continues on next page)

animation (example config files) 1061

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_slide1: slide1

show_slide7: slide7

show_slide2: slide2

show_slide3: slide3

show_slide8: slide8

show_slide9:

slide9:

transition:

type: fade

duration: 1s

show_slide10:

slide10:

transition:

type: fade

duration: 1s

show_slide11: slide11

show_slide12: slide12

show_base_slide: base_slide

show_base_slide_with_transition:

base_slide:

transition:

type: fade

duration: 1s

show_slide13: slide13

show_slide14: slide14

show_slide15: slide15

widgets:

widget1:

type: text

text: WIDGET 1

color: red

x: -100

animations:

move_on_slide:

- property: x

value: 100

duration: 500ms

timing: after_previous

move_off_slide:

- property: x

value: -100

duration: 500ms

timing: after_previous

expire: 2s

widget2:

type: text

text: widget2

color: red

opacity: 0

animations:

animate_widget2: fade_in, multi

pulse_widget2: pulse, pulse, pulse, pulse

(continues on next page)

animation (example config files) 1062

Mission Pinball Framework Documentation, Version

(continued from previous page)

widget_player:

show_widget1: widget1

show_widget2: widget2

animations:

fade_in:

property: opacity

value: 1

duration: 1s

timing: with_previous

repeat: True

multi:

- property: y

value: 0

duration: 1s

- property: x

value: 0%

duration: 1s

timing: with_previous

repeat: False

pulse:

- property: opacity

value: 0

duration: 100ms

- property: opacity

value: 1

duration: 100ms

timing: after_previous

advance_x_50:

property: x

value: 50

relative: True

duration: 1s

advance_y_50:

property: y

value: 50

relative: True

duration: 1s

advance_xy_50:

property: x, y

value: 50, 50

relative: True

duration: 1s

apc (example config files)

apc (example config files) 1063

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 8: your_machine_folder/apc/config/config.yaml

#config_version=5

hardware:

platform: lisy

lisy:

connection: serial

port: com1

baud: 115200

switches:

s_test00:

number: 00

s_flipper:

number: 1

s_flipper_eos:

number: 2

s_slingshot:

number: 3

s_test37:

number: 37

s_test77_nc:

number: 77

type: 'NC'

coils:

c_test:

number: 0

c_test_allow_enable:

number: 1

default_hold_power: 1.0

c_trough_eject:

number: 103

default_pulse_ms: 3s

c_flipper_main:

number: 5

default_pulse_ms: 30

c_flipper_hold:

number: 6

allow_enable: True

c_slingshot:

number: 7

digital_outputs:

game_over_relay:

number: 1

type: light

enable_events: ball_started

(continues on next page)

apc (example config files) 1064

/mpf_examples/apc/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

disable_events: ball_will_end

flippers:

f_test_hold_eos:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

eos_switch: s_flipper_eos

use_eos: true

autofire_coils:

ac_slingshot:

coil: c_slingshot

switch: s_slingshot

lights:

test_light:

number: 3

segment_displays:

info_display:

number: 0

size: 16

player1_display:

number: 1

size: 5

player2_display:

number: 2

size: 7

player3_display:

number: 3

size: 3

player4_display:

number: 4

size: 16

hardware_sound_systems:

default:

label: APC

hardware_sound_player:

test2:

2:

action: play

test4:

5:

track: 2

action: play

play_file:

"some_file": play_file

play_file_loop:

"some_file":

action: play_file

(continues on next page)

apc (example config files) 1065

Mission Pinball Framework Documentation, Version

(continued from previous page)

platform_options:

loop: True

no_cache: False

play_text:

text:

action: text_to_speech

value: "Hello MPF"

platform_options:

loop: False

no_cache: True

volume_05:

set_volume:

action: set_volume

value: 0.5

increase_volume:

0.1: increase_volume

decrease_volume:

decrease_volume:

action: decrease_volume

value: 0.01

test3:

3: play

test_stop: stop

asset_manager (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 9: your_machine_folder/asset_manager/config/test_asset_loading.yaml

#config_version=5

mpf:

default_light_hw_update_hz: 1

lights:

led_01:

number: 0

led_02:

number: 1

light_01:

number: 0

subtype: matrix

label: Test 0

light_02:

number: 1

subtype: matrix

label: Test 1

(continues on next page)

asset_manager (example config files) 1066

/mpf_examples/asset_manager/config/test_asset_loading.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

gi_01:

subtype: gi

number: 0

flasher_01:

platform: coils

number: flasher_01

coils:

coil_01:

number: 1

default_pulse_ms: 30

flasher_01:

number: 2

label: Test flasher

default_pulse_ms: 40

modes:

- mode1

show_pools:

group1:

load: preload

shows:

- show1

- show2

- show3

type: random

group2:

load: preload

shows:

- show1

- show2

- show3|2

type: random

group3:

shows:

- show1

- show2

- show3

type: sequence

group4:

shows:

- show1|4

- show2|2

- show3

type: sequence

group5:

shows:

- show1|1

- show2|5

- show3|1

type: random_force_next

group6:

shows:

(continues on next page)

asset_manager (example config files) 1067

Mission Pinball Framework Documentation, Version

(continued from previous page)

- show1

- show2

- show3

type: random_force_all

group7:

shows:

- show1

- show2{mode.mode1.active}

- show3{mode.mode1.stopping}

type: random

group8:

shows:

- show1{mode.mode1.active}

- show2

- show3{mode.mode1.stopping}

type: sequence

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 10: your_machine_folder/asset_manager/modes/mode1/shows/show6.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

(continues on next page)

asset_manager (example config files) 1068

/mpf_examples/asset_manager/modes/mode1/shows/show6.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 11: your_machine_folder/asset_manager/modes/mode1/shows/on_demand/show10.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 12: your_machine_folder/asset_manager/modes/mode1/shows/preload/show7.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

(continues on next page)

asset_manager (example config files) 1069

/mpf_examples/asset_manager/modes/mode1/shows/on_demand/show10.yaml
/mpf_examples/asset_manager/modes/mode1/shows/preload/show7.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 13: your_machine_folder/asset_manager/modes/mode1/shows/custom1/show8.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800
(continues on next page)

asset_manager (example config files) 1070

/mpf_examples/asset_manager/modes/mode1/shows/custom1/show8.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

light_02: 00-f800

gi_01: 00

- time: 6

Listing 14: your_machine_folder/asset_manager/modes/mode1/shows/mode_start/show9.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 15: your_machine_folder/asset_manager/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 300

game_mode: False

Show file examples

Here are some example show files that go along with the above config(s).

Note that there are multiple shows here.

asset_manager (example config files) 1071

/mpf_examples/asset_manager/modes/mode1/shows/mode_start/show9.yaml
/mpf_examples/asset_manager/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

Listing 16: your_machine_folder/asset_manager/shows/show1.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 17: your_machine_folder/asset_manager/shows/show12.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

(continues on next page)

asset_manager (example config files) 1072

/mpf_examples/asset_manager/shows/show1.yaml
/mpf_examples/asset_manager/shows/show12.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 18: your_machine_folder/asset_manager/shows/show2.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

asset_manager (example config files) 1073

/mpf_examples/asset_manager/shows/show2.yaml

Mission Pinball Framework Documentation, Version

Listing 19: your_machine_folder/asset_manager/shows/show3.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 20: your_machine_folder/asset_manager/shows/on_demand/show5.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

(continues on next page)

asset_manager (example config files) 1074

/mpf_examples/asset_manager/shows/show3.yaml
/mpf_examples/asset_manager/shows/on_demand/show5.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 21: your_machine_folder/asset_manager/shows/preload/show4.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

asset_manager (example config files) 1075

/mpf_examples/asset_manager/shows/preload/show4.yaml

Mission Pinball Framework Documentation, Version

Listing 22: your_machine_folder/asset_manager/shows/preload/subfolder/show4b.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 23: your_machine_folder/asset_manager/shows/custom1/show13.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

(continues on next page)

asset_manager (example config files) 1076

/mpf_examples/asset_manager/shows/preload/subfolder/show4b.yaml
/mpf_examples/asset_manager/shows/custom1/show13.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 24: your_machine_folder/asset_manager/shows/custom1/show11.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

asset_manager (example config files) 1077

/mpf_examples/asset_manager/shows/custom1/show11.yaml

Mission Pinball Framework Documentation, Version

assets_and_image (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 25: your_machine_folder/assets_and_image/config/test_asset_loading.yaml

#config_version=5

modes:

- mode1

assets:

images:

default:

load: preload

preload:

load: preload

test_key: test_value

on_demand:

load: on_demand

mode_start:

load: mode_start

images:

image_12_new_name:

file: image12.png

test_key: test_value_override12

image_13_new_name:

file: image13.png

image3:

test_key: test_value_override3

image_pools:

group1:

load: preload

images:

- image1

- image2

- image3

type: random

group2:

load: preload

images:

- image1

- image2

- image3|2

type: random

group3:

(continues on next page)

assets_and_image (example config files) 1078

/mpfmc_examples/assets_and_image/config/test_asset_loading.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

images:

- image1

- image2

- image3

type: sequence

group4:

images:

- image1|4

- image2|2

- image3

type: sequence

group5:

images:

- image1|1

- image2|5

- image3|1

type: random_force_next

group6:

images:

- image1

- image2

- image3

type: random_force_all

Listing 26: your_machine_folder/assets_and_image/config/test_image.yaml

#config_version=5

modes:

- mode1

displays:

default:

width: 400

height: 300

slides:

random_image_test:

- type: image

image: random_image

x: 50

image_test:

- type: image

image: image1

x: 50

animations:

show_slide:

- property: rotation

value: 360

duration: 2s

- type: image

image: image2

rotation: 25

x: 80
(continues on next page)

assets_and_image (example config files) 1079

/mpfmc_examples/assets_and_image/config/test_image.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: image

image: image3

scale: 1.5

x: 110

- type: image

image: image4

rotation: -45

x: 140

- type: image

image: image5

x: 170

animations:

show_slide:

- property: scale

value: 3.0

duration: 1s

- property: scale

value: 0.1

duration: 1s

- property: scale

value: 3.0

duration: 1s

- property: scale

value: 1.0

duration: 1s

- type: image

image: image6

x: 200

- type: image

image: image7

x: 230

- type: image

image: image8

x: 260

- type: image

image: image9

x: 290

- type: image

image: image10

x: 320

- type: image

image: image11

x: 350

- type: image

image: image12

x: 380

image_pools:

random_image:

images:

- image1

- image2

- image3

(continues on next page)

assets_and_image (example config files) 1080

Mission Pinball Framework Documentation, Version

(continued from previous page)

widgets:

random_image_widget:

- type: image

image: random_image

rotation: 25

x: 80

slide_player:

show_slide1: image_test

show_random_slide: random_image_test

widget_player:

add_random_image:

random_image_widget:

slide: random_image_test

remove_random_image:

random_image_widget:

action: remove

assets:

images:

default:

load: preload

preload:

load: preload

test_key: test_value

on_demand:

load: on_demand

mode_start:

load: mode_start

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 27: your_machine_folder/assets_and_image/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 300

images:

image6:

file: image6.png

load: mode_start

audio (example config files)

audio (example config files) 1081

/mpfmc_examples/assets_and_image/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 28: your_machine_folder/audio/config/test_audio_sound_loop.yaml

#config_version=5

sound_system:

buffer: 2048

frequency: 44100

channels: 2

tracks:

loops:

type: sound_loop

volume: 0.6

music:

volume: 0.5

simultaneous_sounds: 1

sfx:

volume: 0.4

simultaneous_sounds: 8

preload: yes

voice:

volume: 0.6

simultaneous_sounds: 1

preload: yes

assets:

sounds:

default:

load: preload

loops:

load: preload

track: loops

voice:

load: preload

track: voice

sfx:

load: preload

track: sfx

music:

load: on_demand

track: music

playlist:

load: on_demand

track: sfx

sounds:

kick:

loops: -1

markers:

(continues on next page)

audio (example config files) 1082

/mpfmc_examples/audio/config/test_audio_sound_loop.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- time: 1.0s

events: kick_marker_1

hihat:

loops: -1

markers:

- time: 0.5s

events: hihat_marker_1

- time: 1.5s

events: hihat_marker_2

sound_loop_sets:

hi_hat:

sound: hihat

volume: 0.7

tempo: 130

events_when_played: hi_hat_played

events_when_looping: hi_hat_looping

events_when_stopped: hi_hat_stopped

basic_beat:

sound: kick

volume: 0.5

tempo: 130

events_when_played: basic_beat_played

events_when_looping: basic_beat_looping

events_when_stopped: basic_beat_stopped

basic_beat_layers:

sound: kick

volume: 0.5

tempo: 130

layers:

- sound: hihat

volume: 0.7

initial_state: stop

- sound: snare

volume: 0.6

initial_state: stop

- sound: clap

volume: 0.45

initial_state: stop

events_when_played: basic_beat_layers_played

events_when_looping: basic_beat_layers_looping

events_when_stopped: basic_beat_layers_stopped, sound_loop_set_stopped

basic_beat2:

sound: kick2

volume: 0.5

tempo: 130

events_when_played: basic_beat2_played

events_when_looping: basic_beat2_looping

events_when_stopped: basic_beat2_stopped

basic_beat_layers2:

(continues on next page)

audio (example config files) 1083

Mission Pinball Framework Documentation, Version

(continued from previous page)

sound: kick2

volume: 0.5

tempo: 130

layers:

- sound: hihat

volume: 0.7

- sound: snare

volume: 0.6

- sound: clap

volume: 0.45

initial_state: stop

- sound: bass_synth

volume: 0.5

initial_state: play

events_when_played: basic_beat_layers2_played

sound_loop_player:

play_hi_hat:

loops:

action: play

sound_loop_set: hi_hat

play_basic_beat:

loops:

action: play

sound_loop_set: basic_beat

play_basic_beat_layers:

loops:

action: play

sound_loop_set: basic_beat_layers

add_hi_hats:

loops:

action: play_layer

layer: 1

stop_hi_hats:

loops:

action: stop_looping_layer

layer: 1

add_snare:

loops:

action: play_layer

fade_in: 2s

layer: 2

add_claps:

loops:

action: play_layer

layer: 3

play_basic_beat2:

loops:

action: play

sound_loop_set: basic_beat2

(continues on next page)

audio (example config files) 1084

Mission Pinball Framework Documentation, Version

(continued from previous page)

play_basic_beat_layers2:

loops:

action: play

sound_loop_set: basic_beat_layers2

timing: next_beat_interval

interval: 2

add_bass_synth:

loops:

action: play_layer

layer: 4

fade_in: 3s

fade_out_bass_synth:

loops:

action: stop_layer

layer: 4

fade_out: 4s

stop_looping_current_loop:

loops:

action: stop_looping

stop_current_loop:

loops:

action: stop

fade_out: 1.5s

reset_current_loop:

loops:

action: jump_to

time: 0s

jump_to_middle_of_loop:

loops:

action: jump_to

time: 0.923s

sound_player:

play_sound_synthping: 210871_synthping

basic_beat_layers2_played: 210871_synthping

Listing 29: your_machine_folder/audio/config/test_audio_disabled.yaml

#config_version=5

sound_system:

enabled: False

modes:

- mode1

Listing 30: your_machine_folder/audio/config/test_audio_gstreamer.yaml

#config_version=5

displays:

default:

width: 400

height: 300

(continues on next page)

audio (example config files) 1085

/mpfmc_examples/audio/config/test_audio_disabled.yaml
/mpfmc_examples/audio/config/test_audio_gstreamer.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

sound_system:

buffer: 2048

frequency: 44100

channels: 2

tracks:

music:

volume: 0.5

simultaneous_sounds: 1

sfx:

volume: 0.3

simultaneous_sounds: 8

voice:

volume: 0.6

simultaneous_sounds: 1

assets:

sounds:

default:

load: preload

voice:

load: preload

track: voice

sfx:

load: on_demand

track: sfx

music:

load: on_demand

track: music

loops:

load: preload

track: sfx

playlist:

load: on_demand

track: sfx

videos:

default:

load: preload

preload:

load: preload

on_demand:

load: on_demand

mode_start:

load: mode_start

sounds:

264828_text:

volume: 0.1

events_when_played: text_sound_played

events_when_looping: text_sound_looping

events_when_stopped: text_sound_stopped

loops: 6

simultaneous_limit: 3

stealing_method: skip

(continues on next page)

audio (example config files) 1086

Mission Pinball Framework Documentation, Version

(continued from previous page)

210871_synthping:

simultaneous_limit: 3

stealing_method: oldest

events_when_played: synthping_played

198361_sfx-028:

volume: 0.25

263774_music:

volume: 0.4

city_loop:

file: 223093__qubodup__seamless-city-loop.flac

streaming: True

volume: 0.15

fade_in: 2.0 sec

sound_player:

play_sound_text: 264828_text

play_sound_synthping: 210871_synthping

play_sound_sfx_028: 198361_sfx-028

play_city_loop: city_loop

stop_city_loop:

city_loop:

action: stop

fade_out: 0.1s

slides:

video_test:

- type: video

video: mpf_video_small_test

- type: text

text: Sound and Video Test

y: bottom+20%

- type: text

text: ""

y: bottom+10%

slide_player:

show_slide1: video_test

videos:

mpf_video_small_test:

width: 100

height: 70

events_when_played: test_video_played

events_when_stopped: test_video_stopped

Listing 31: your_machine_folder/audio/config/test_audio_playlist.yaml

#config_version=5

sound_system:

buffer: 2048
(continues on next page)

audio (example config files) 1087

/mpfmc_examples/audio/config/test_audio_playlist.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

frequency: 44100

channels: 2

tracks:

playlist:

type: playlist

volume: 0.6

crossfade_time: 2s

assets:

sounds:

default:

load: preload

playlist:

load: preload

track: playlist

sounds:

drumbeat_7:

file: 144554__kxtells__drumbeat-7.ogg

events_when_played: drumbeat_7_played

events_when_stopped: drumbeat_7_stopped

hippie_ahead:

file: 214473__diboz__hippeahead.ogg

events_when_played: hippie_ahead_played

events_when_stopped: hippie_ahead_stopped

rainbow_disco_bears:

file: 322071__edemson86__rainbowdiscobears.ogg

events_when_played: rainbow_disco_bears_played

events_when_stopped: rainbow_disco_bears_stopped

dirty_grinding_beat_loop:

file: 385984__blockh34d__dirty-grinding-beat-loop.ogg

events_when_played: dirty_grinding_beat_loop_played

events_when_stopped: dirty_grinding_beat_loop_stopped

playlists:

attract_music:

sounds: drumbeat_7, rainbow_disco_bears, dirty_grinding_beat_loop, hippie_ahead

shuffle: False

repeat: False

events_when_played: attract_music_played

events_when_stopped: attract_music_stopped

events_when_looping: attract_music_looping

events_when_sound_changed: attract_music_sound_changed

events_when_sound_stopped: attract_music_sound_stopped

other_playlist:

sounds: hippie_ahead, rainbow_disco_bears

events_when_played: other_playlist_played

events_when_stopped: other_playlist_stopped

third_playlist:

sounds: dirty_grinding_beat_loop, drumbeat_7

events_when_played: third_playlist_played

events_when_stopped: third_playlist_stopped

playlist_player:

(continues on next page)

audio (example config files) 1088

Mission Pinball Framework Documentation, Version

(continued from previous page)

play_attract_music:

playlist:

playlist: attract_music

action: play

advance_playlist:

playlist:

action: advance

stop_playlist:

playlist:

action: stop

Listing 32: your_machine_folder/audio/config/test_audio_default_settings.yaml

#config_version=5

No sound_system section, default settings should be used

modes:

- mode1

assets:

sounds:

default:

load: preload

voice:

load: preload

track: default

sfx:

load: on_demand

track: default

ducking:

target: default

delay: 0

attack: 0.3 sec

attenuation: 0.45

release_point: 0.5 sec

release: 1.0 sec

music:

load: on_demand

track: default

loops:

load: preload

track: default

playlist:

load: on_demand

track: default

Listing 33: your_machine_folder/audio/config/test_audio_bad_buffer_setting.yaml

#config_version=5

sound_system:

(continues on next page)

audio (example config files) 1089

/mpfmc_examples/audio/config/test_audio_default_settings.yaml
/mpfmc_examples/audio/config/test_audio_bad_buffer_setting.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

buffer: 1000 # Not a power or two as required

tracks:

voice:

volume: 0.6

simultaneous_sounds: 1

preload: yes

sfx:

volume: 0.4

simultaneous_sounds: 8

preload: yes

music:

volume: 0.5

simultaneous_sounds: 1

modes:

- mode1

assets:

sounds:

default:

load: preload

voice:

load: preload

track: voice

sfx:

load: on_demand

track: sfx

music:

load: on_demand

track: music

loops:

load: preload

track: sfx

playlist:

load: on_demand

track: sfx

Listing 34: your_machine_folder/audio/config/test_audio.yaml

#config_version=5

sound_system:

buffer: 2048

frequency: 44100

channels: 2

tracks:

music:

volume: 0.5

simultaneous_sounds: 1

events_when_stopped: music_track_stopped

events_when_played: music_track_played, keep_going

events_when_paused: music_track_paused

sfx:

volume: 0.4

simultaneous_sounds: 8
(continues on next page)

audio (example config files) 1090

/mpfmc_examples/audio/config/test_audio.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

preload: yes

voice:

volume: 0.6

simultaneous_sounds: 1

preload: yes

modes:

- mode1

- mode2

assets:

sounds:

default:

load: preload

voice:

load: preload

track: voice

sfx:

load: preload

track: sfx

music:

load: on_demand

track: music

loops:

load: preload

track: sfx

playlist:

load: on_demand

track: sfx

sounds:

264828_text:

events_when_played: text_sound_played

events_when_looping: text_sound_looping

events_when_stopped: text_sound_stopped

loops: 7

simultaneous_limit: 3

stealing_method: skip

104457_moron_test:

streaming: False

events_when_played: moron_test_played

events_when_stopped: moron_test_stopped

events_when_about_to_finish: moron_test_about_to_finish

volume: 0.6

about_to_finish_time: 2s

ducking:

target: music

delay: 0

attack: 1.0sec

attenuation: -18db

release_point: 3sec

release: 2.25sec

markers:

(continues on next page)

audio (example config files) 1091

Mission Pinball Framework Documentation, Version

(continued from previous page)

- time: 2.5sec

events: moron_marker

- time: 3.5sec

name: verse_1

events: moron_next_marker, last_marker

- time: 5.39sec

name: about_to_finish

events: moron_about_to_finish_marker

210871_synthping:

priority: 1

simultaneous_limit: 3

stealing_method: oldest

events_when_played: synthping_played

max_queue_time: 2s

198361_sfx-028:

simultaneous_limit: 3

stealing_method: newest

263774_music:

streaming: False

looptest:

loop_start_at: 1.8461538s

loop_end_at: 3.6923077s

loops: 3

streaming: False

events_when_played: looptest_played

events_when_looping: looptest_looping

events_when_stopped: looptest_stopped

sound_pools:

drum_group:

load: preload

type: sequence

simultaneous_limit: 3

stealing_method: skip

track: sfx

sounds:

- 4832__zajo__drum07

- 84480__zgump__drum-fx-4

- 100184__menegass__rick-drum-bd-hard

sound_player:

load_music:

263774_music:

action: load

unload_music:

263774_music:

action: unload

play_sound_synthping: 210871_synthping

play_sound_text:

264828_text:

loops: -1

priority: 100

stop_sound_looping_text:

264828_text:

(continues on next page)

audio (example config files) 1092

Mission Pinball Framework Documentation, Version

(continued from previous page)

action: stop_looping

play_sound_moron_test: 104457_moron_test

stop_sound_moron_test:

104457_moron_test:

action: stop

play_sound_test:

113690_test:

volume: 0.25

play_sound_music:

263774_music:

volume: 0.5

stop_sound_music:

263774_music:

action: stop

play_sound_drum_group: drum_group

play_sound_text_default_params: 264828_text

play_sound_text_param_set_1:

264828_text:

volume: 0.67

loops: 2

priority: 1000

start_at: 0.05s

fade_in: 0.25s

fade_out: 0.1s

max_queue_time: 0.15s

events_when_played: text_sound_played_param_set_1

events_when_stopped: text_sound_stopped_param_set_1

events_when_looping: text_sound_looping_param_set_1

track_player:

stop_all_tracks:

__all__:

action: stop

fade: 1.5 sec

stop_music_track:

music:

action: stop

fade: 1.5 sec

play_music_track:

music:

action: play

fade: 1.5 sec

pause_music_track:

music:

action: pause

resume_music_track:

music:

action: play

set_music_track_volume_loud:

music:

action: set_volume

volume: 0.95

fade: 0.5 sec

set_music_track_volume_quiet:

(continues on next page)

audio (example config files) 1093

Mission Pinball Framework Documentation, Version

(continued from previous page)

music:

action: set_volume

volume: 0.3

fade: 0.5 sec

stop_all_sounds_on_music_track:

music:

action: stop_all_sounds

fade: 0.5 sec

stop_all_sounds:

__all__:

action: stop_all_sounds

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 35: your_machine_folder/audio/modes/mode2/config/mode2.yaml

#config_version=5

mode:

priority: 1000

sounds:

boing_mode2:

file: 140867__juskiddink__boing.wav

events_when_played: boing_sound_played

sound_player:

play_sound_boing_in_mode2: boing_mode2

play_sound_music_fade_at_mode_end:

263774_music:

volume: 0.8

mode_end_action: stop

fade_out: 1s

play_slingshot_sound: boing_mode2

play_slingshot_sound_with_express_config_block: boing_mode2|block

play_slingshot_sound_with_block:

boing_mode2:

block: true

Listing 36: your_machine_folder/audio/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 500

sound_player:

(continues on next page)

audio (example config files) 1094

/mpfmc_examples/audio/modes/mode2/config/mode2.yaml
/mpfmc_examples/audio/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

play_sound_synthping_in_mode: 210871_synthping

play_sound_drum_group_in_mode: drum_group

play_slingshot_sound: 210871_synthping

play_slingshot_sound_with_express_config_block: 210871_synthping

play_slingshot_sound_with_block:

210871_synthping:

block: true

auditor (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 37: your_machine_folder/auditor/config/config.yaml

#config_version=5

game:

balls_per_game: 1

auditor:

events:

- test_event1

- test_event2

player:

- my_var

modes:

- base

switches:

s_test:

number:

s_start:

number:

tags: start

s_ball:

number:

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 38: your_machine_folder/auditor/modes/base/config/base.yaml

#config_version=5

mode:

start_events: ball_started
(continues on next page)

auditor (example config files) 1095

/mpf_examples/auditor/config/config.yaml
/mpf_examples/auditor/modes/base/config/base.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

variable_player:

add_score:

score: 100

add_custom:

my_var: 100

add_not_audited:

not_audited: 100

autofire (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 39: your_machine_folder/autofire/config/config.yaml

#config_version=5

switches:

s_test:

number: 7

s_test_disabled:

number: 8

s_test_nc:

number: 1A

type: 'NC'

s_test_debounce_on:

number: 9

debounce: normal

coils:

c_test:

number: 4

default_pulse_ms: 23

c_test2:

number: 5

default_pulse_ms: 23

c_test_disabled:

number: 6

c_test_recycle_off:

number: 7

default_recycle: False

autofire_coils:

ac_test:

coil: c_test

switch: s_test

ac_test_inverted:

coil: c_test2

(continues on next page)

autofire (example config files) 1096

/mpf_examples/autofire/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

switch: s_test_nc

ac_test_inverted2:

coil: c_test2

switch: s_test

reverse_switch: True

ac_test_timeout:

coil: c_test

switch: s_test

timeout_watch_time: 1s

timeout_max_hits: 10

timeout_disable_time: 500ms

ac_test_disabled:

coil: c_test_disabled

switch: s_test_disabled

enable_events: enable_autofire

disable_events: disable_autofire

ac_test_defaults:

coil: c_test_recycle_off

switch: s_test_debounce_on

ac_test_overwrites:

coil: c_test

switch: s_test

switch_overwrite:

debounce: normal

coil_overwrite:

recycle: False

ac_test_overwrites2:

coil: c_test_recycle_off

switch: s_test_debounce_on

switch_overwrite:

debounce: quick

coil_overwrite:

recycle: True

ball_controller (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 40: your_machine_folder/ball_controller/config/config.yaml

#config_version=5

(continues on next page)

ball_controller (example config files) 1097

/mpf_examples/ball_controller/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

game:

balls_per_game: 1

machine:

min_balls: 3

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

s_ball_switch4:

number:

s_ball_switch_launcher:

number:

s_vuk:

number:

s_playfield:

number:

tags: playfield_active

playfields:

playfield:

default_source_device: test_launcher

tags: default

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3, s_ball_switch4

debug: true

eject_targets: test_launcher

tags: trough, drain, home

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

test_vuk:

eject_coil: eject_coil3

ball_switches: s_vuk

debug: true

ball_controller (example config files) 1098

Mission Pinball Framework Documentation, Version

Listing 41: your_machine_folder/ball_controller/config/regression.yaml

#config_version=5

playfields:

playfield:

enable_ball_search: True

default_source_device: shooter_lane

tags: default

machine:

balls_installed: 6

switches:

s_shooter_lane:

number:

s_trough_1:

number:

s_trough_2:

number:

s_trough_3:

number:

s_trough_4:

number:

s_trough_5:

number:

s_trough_6:

number:

s_trough_jam:

number:

s_popBumperAreaEject:

number:

s_underRightRampEject:

number:

s_underRightRampJam:

number:

s_sandTrap:

number:

coils:

c_plunger_lane:

number:

c_trough_eject:

number:

c_PopBumperAreaEject:

number:

c_UpperRightEject:

number:

c_SandTrapEject:

number:

ball_devices:

shooter_lane:

ball_switches: s_shooter_lane

(continues on next page)

ball_controller (example config files) 1099

/mpf_examples/ball_controller/config/regression.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

eject_coil: c_plunger_lane

player_controlled_eject_event: sw_plunger # for flipper launch

mechanical_eject: true # player can plunge as well

eject_timeouts: 2s

ball_search_order: 1

trough:

tags: trough, home, drain

ball_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4, s_trough_5, s_trough_6, s_trough_jam

eject_coil: c_trough_eject

confirm_eject_type: target

eject_targets: shooter_lane

eject_timeouts: 2s # default is 10 seconds, these needs to be lowered for multiballs

jam_switch: s_trough_jam

PopsEject:

ball_switches: s_popBumperAreaEject

eject_coil: c_PopBumperAreaEject

ball_search_order: 1230 # default 200 so do this last

entrance_event_timeout: 2s # default is 5 second

underRightRampEject:

ball_switches: s_underRightRampEject

eject_coil: c_UpperRightEject

ball_search_order: 1220 # default 200 so do this last

auto_fire_on_unexpected_ball: true

entrance_event_timeout: 1500ms # default is 5 second

jam_switch: s_underRightRampJam # only happens if 2 balls in there, one on top of the other

eject_coil_jam_pulse: 100 # if jammed, pulse harder since 2 balls there (in ms)

sandTrapEject:

ball_switches: s_sandTrap

eject_coil: c_SandTrapEject

ball_search_order: 2

auto_fire_on_unexpected_ball: true

entrance_event_timeout: 400ms # default is 5 second

virtual_platform_start_active_switches:

- s_trough_1

- s_trough_2

- s_trough_3

- s_trough_4

ball_device (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

ball_device (example config files) 1100

Mission Pinball Framework Documentation, Version

Listing 42: your_machine_folder/ball_device/config/test_single_device.yaml

#config_version=5

playfields:

playfield:

default_source_device: trough

tags: default

coils:

c_eject:

number:

switches:

s_trough:

number:

virtual_platform_start_active_switches:

s_trough

ball_devices:

trough:

eject_coil: c_eject

ball_switches: s_trough

tags: home, trough, drain

debug: True

Listing 43: your_machine_folder/ball_device/config/test_player_controlled_eject.yaml

#config_version=5

switches:

s_start_button:

number:

tags: start

s_launch_button:

number:

s_plunger_lane:

number:

s_trough1:

number:

s_trough2:

number:

s_trough3:

number:

coils:

c_plunger:

number:

c_trough_eject:

number:

ball_devices:

bd_trough:

(continues on next page)

ball_device (example config files) 1101

/mpf_examples/ball_device/config/test_single_device.yaml
/mpf_examples/ball_device/config/test_player_controlled_eject.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_switches: s_trough1, s_trough2, s_trough3

eject_coil: c_trough_eject

tags: trough, home, drain

eject_targets: bd_plunger

eject_timeouts: 3s

debug: true

bd_plunger:

ball_switches: s_plunger_lane

eject_coil: c_plunger

player_controlled_eject_event: s_launch_button_active

eject_timeouts: 1s

debug: true

playfields:

playfield:

default_source_device: bd_plunger

tags: default

debug: true

virtual_platform_start_active_switches: s_trough1, s_trough2, s_trough3

Listing 44: your_machine_folder/ball_device/config/trough_entrance_switch.yaml

#config_version=5

playfields:

playfield:

default_source_device: bd_trough

tags: default

switches:

s_drain:

number: 01

s_trough_enter:

number: 02

coils:

c_drain_eject:

number: 03

default_pulse_ms: 20

c_trough_release:

number: 04

default_pulse_ms: 20

ball_devices:

bd_drain:

ball_switches: s_drain

eject_coil: c_drain_eject

eject_targets: bd_trough

tags: drain

eject_timeouts: 4s

bd_trough:

counter:

class: mpf.devices.ball_device.entrance_switch_counter.EntranceSwitchCounter

entrance_switch: s_trough_enter

entrance_switch_full_timeout: 500ms

settle_time_ms: 3000

ball_capacity: 3
(continues on next page)

ball_device (example config files) 1102

/mpf_examples/ball_device/config/trough_entrance_switch.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

eject_coil: c_trough_release

tags: trough, home

eject_timeouts: 3s

machine:

balls_installed: 4

Listing 45: your_machine_folder/ball_device/config/test_ball_device_switch_confirmation.yaml

#config_version=5

game:

balls_per_game: 1

playfields:

playfield:

default_source_device: test_target1

tags: default

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

eject_coil4:

number:

eject_coil5:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_launcher_confirm:

number:

s_ball_switch_target1:

number:

s_ball_switch_target2_1:

number:

s_ball_switch_target2_2:

number:

s_ball_switch_target3:

number:

s_playfield:

number:

tags: playfield_active
(continues on next page)

ball_device (example config files) 1103

/mpf_examples/ball_device/config/test_ball_device_switch_confirmation.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: test_launcher

tags: trough, drain, home

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

confirm_eject_switch: s_launcher_confirm

debug: true

confirm_eject_type: switch

eject_targets: test_target1, test_target2

eject_timeouts: 6s, 10s

test_target1:

eject_coil: eject_coil3

ball_switches: s_ball_switch_target1

debug: true

confirm_eject_type: target

test_target2:

eject_coil: eject_coil4

ball_switches: s_ball_switch_target2_1, s_ball_switch_target2_2

debug: true

tags: trough, drain, home

confirm_eject_type: target

eject_targets: test_target3

test_target3:

eject_coil: eject_coil5

ball_switches: s_ball_switch_target3

debug: true

Listing 46: your_machine_folder/ball_device/config/test_enable_coil.yaml

#config_version=5

playfields:

playfield:

default_source_device: test

tags: default

coils:

eject_coil:

default_hold_power: 0.25

default_pulse_ms: 20

number:

switches:

s_ball1:

number:

s_ball2:

number:
(continues on next page)

ball_device (example config files) 1104

/mpf_examples/ball_device/config/test_enable_coil.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_devices:

test:

eject_coil: eject_coil

eject_coil_enable_time: 400ms

ball_switches: s_ball1, s_ball2

tags: home, trough

debug: true

Listing 47: your_machine_folder/ball_device/config/test_ball_device_manual_with_target.yaml

#config_version=5

playfields:

playfield:

default_source_device: test_launcher

tags: default

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

eject_coil4:

number:

eject_coil5:

number:

eject_coil6:

number:

switches:

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_ball_switch_launcher2:

number:

s_ball_switch_target:

number:

s_playfield:

number:

tags: playfield_active

s_launch:

number:

tags: launch

s_vuk:

number:

(continues on next page)

ball_device (example config files) 1105

/mpf_examples/ball_device/config/test_ball_device_manual_with_target.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: test_launcher

eject_timeouts: 3s

tags: trough, drain, home

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

eject_timeouts: 6s, 10s

eject_targets: playfield, test_target

mechanical_eject: true

confirm_eject_type: target

test_target:

eject_coil: eject_coil3

ball_switches: s_ball_switch_target

debug: true

eject_timeouts: 6s

confirm_eject_type: target

test_launcher_manual_on_unexpected:

eject_coil: eject_coil4

ball_switches: s_ball_switch_launcher2

debug: true

eject_timeouts: 6s

eject_targets: playfield

mechanical_eject: true

auto_fire_on_unexpected_ball: false

confirm_eject_type: target

test_vuk:

eject_coil: eject_coil5

ball_switches: s_vuk

debug: true

eject_timeouts: 3s

eject_targets: test_launcher

auto_fire_on_unexpected_ball: false

confirm_eject_type: target

Listing 48: your_machine_folder/ball_device/config/test_gottlieb_trough_with_initial_balls.yaml

#config_version=5

config: test_gottlieb_trough.yaml

virtual_platform_start_active_switches:

trough_entry

ball_device (example config files) 1106

/mpf_examples/ball_device/config/test_gottlieb_trough_with_initial_balls.yaml

Mission Pinball Framework Documentation, Version

Listing 49: your_machine_folder/ball_device/config/test_jam_and_ball_left.yaml

#config_version=5

playfields:

playfield:

tags: default

default_source_device: bd_plunger

switches:

s_plunger_lane:

number: 1

s_trough1:

number: 2

s_trough2:

number: 3

s_trough3:

number: 4

s_trough4:

number: 5

s_trough_jam:

number: 6

s_playfield:

number: 7

tags: playfield_active

s_start:

number: 10

tags: start

coils:

c_trough_eject:

number: A2-B0-7

default_pulse_ms: 10

c_plunger:

number: A2-B1-6

default_pulse_ms: 40

ball_devices:

bd_plunger:

ball_switches: s_plunger_lane

mechanical_eject: true

eject_timeouts: 3s

eject_coil: c_plunger

debug: true

file_log: full

bd_trough:

ball_switches: s_trough1, s_trough2, s_trough3, s_trough4, s_trough_jam

eject_coil: c_trough_eject

tags: trough, home, drain

jam_switch: s_trough_jam

eject_coil_jam_pulse: 10ms

eject_targets: bd_plunger

eject_timeouts: 1500ms

debug: yes

ball_device (example config files) 1107

/mpf_examples/ball_device/config/test_jam_and_ball_left.yaml

Mission Pinball Framework Documentation, Version

Listing 50: your_machine_folder/ball_device/config/test_modern_trough_plunger_setup.yaml

#config_version=5

playfields:

playfield:

default_source_device: bd_plunger

tags: default

coils:

c_trough_eject:

number:

c_autolauncher:

number:

switches:

s_trough_switch1:

number:

s_trough_switch2:

number:

s_trough_switch3:

number:

s_trough_jam:

number:

s_ball_switch_plunger_lane:

number:

s_playfield:

number:

tags: playfield_active

ball_devices:

bd_trough:

eject_coil: c_trough_eject

ball_switches: s_trough_switch1, s_trough_switch2, s_trough_switch3

jam_switch: s_trough_jam

eject_targets: bd_plunger

eject_timeouts: 3s

tags: trough, drain, home

debug: true

bd_plunger:

eject_coil: c_autolauncher

ball_switches: s_ball_switch_plunger_lane

mechanical_eject: True

eject_targets: playfield

eject_timeouts: 4s

debug: true

Listing 51: your_machine_folder/ball_device/config/test_gottlieb_trough.yaml

#config_version=5

game:

balls_per_game: 3

allow_start_with_ball_in_drain: True

(continues on next page)

ball_device (example config files) 1108

/mpf_examples/ball_device/config/test_modern_trough_plunger_setup.yaml
/mpf_examples/ball_device/config/test_gottlieb_trough.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

machine:

min_balls: 3

playfields:

playfield:

default_source_device: plunger

tags: default

coils:

outhole:

number: 1

trough:

number: 2

switches:

start:

number: 1

tags: start

outhole:

number: 2

trough_entry:

number: 3

plunger:

number: 4

playfield:

number: 5

tags: playfield_active

ball_devices:

outhole:

tags: drain

ball_switches: outhole

eject_timeouts: 2s

eject_coil: outhole

eject_targets: trough

confirm_eject_type: target

debug: true

trough:

tags: trough, home

entrance_switch: trough_entry

entrance_switch_full_timeout: 3s

eject_coil: trough

eject_targets: plunger

confirm_eject_type: target

ball_capacity: 3

debug: true

plunger:

ball_switches: plunger

mechanical_eject: true

eject_timeouts: 4s

debug: true

ball_device (example config files) 1109

Mission Pinball Framework Documentation, Version

Listing 52: your_machine_folder/ball_device/config/test_ball_device_event_ejector.yaml

#config_version=5

game:

balls_per_game: 1

playfields:

playfield:

default_source_device: test_trough

switches:

s_ball_switch1:

number:

s_ball_switch2:

number:

s_playfield:

number:

tags: playfield_active

ball_devices:

test_trough:

ejector:

class: mpf.devices.ball_device.event_ejector.EventEjector

events_when_eject_try: trough_eject

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

tags: trough, drain, home

Listing 53: your_machine_folder/ball_device/config/test_pulse_eject.yaml

#config_version=5

playfields:

playfield:

default_source_device: test

tags: default

coils:

eject_coil:

number:

switches:

s_ball1:

number:

s_ball2:

number:

s_ball3:

number:

s_ball4:

number:

ball_devices:

test:

(continues on next page)

ball_device (example config files) 1110

/mpf_examples/ball_device/config/test_ball_device_event_ejector.yaml
/mpf_examples/ball_device/config/test_pulse_eject.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ejector:

class: mpf.devices.ball_device.pulse_coil_ejector.PulseCoilEjector

eject_coil: eject_coil

eject_times: 40ms, 20ms, 15ms

ball_switches: s_ball1, s_ball2, s_ball3, s_ball4

tags: home, trough

debug: true

Listing 54: your_machine_folder/ball_device/config/test_ball_device_auto_manual_plunger.yaml

#config_version=5

coils:

trough_eject:

number:

plunger_eject:

number:

playfields:

playfield:

default_source_device: plunger

tags: default

switches:

s_trough_1:

number:

s_trough_2:

number:

s_plunger:

number:

s_playfield:

number:

tags: playfield_active

s_launch:

number:

tags: launch

ball_devices:

trough:

eject_coil: trough_eject

ball_switches: s_trough_1, s_trough_2

debug: true

tags: trough, drain, home

eject_targets: plunger

confirm_eject_type: target

plunger:

eject_coil: plunger_eject

ball_switches: s_plunger

debug: true

mechanical_eject: true

player_controlled_eject_event: sw_launch

ball_device (example config files) 1111

/mpf_examples/ball_device/config/test_ball_device_auto_manual_plunger.yaml

Mission Pinball Framework Documentation, Version

Listing 55: your_machine_folder/ball_device/config/trough_entrance_switch_initial_balls.yaml

#config_version=5

config:

- trough_entrance_switch.yaml

virtual_platform_start_active_switches: s_trough_enter

Listing 56: your_machine_folder/ball_device/config/test_ball_device_jam_switch_initial.yaml

#config_version=5

config:

- test_ball_device_jam_switch.yaml

virtual_platform_start_active_switches:

- s_trough_jam

Listing 57: your_machine_folder/ball_device/config/test_ball_device_no_plunger_switch.yaml

#config_version=5

playfields:

playfield:

default_source_device: trough

tags: default

coils:

trough_eject:

number:

switches:

s_trough_1:

number:

s_trough_2:

number:

s_trough_3:

number:

s_trough_4:

number:

s_trough_jam:

number:

s_playfield:

number:

tags: playfield_active

ball_devices:

trough:

eject_coil: trough_eject

ball_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4

debug: true

tags: trough, drain, home

ball_device (example config files) 1112

/mpf_examples/ball_device/config/trough_entrance_switch_initial_balls.yaml
/mpf_examples/ball_device/config/test_ball_device_jam_switch_initial.yaml
/mpf_examples/ball_device/config/test_ball_device_no_plunger_switch.yaml

Mission Pinball Framework Documentation, Version

Listing 58: your_machine_folder/ball_device/config/test_ball_device_routing.yaml

#config_version=5

game:

balls_per_game: 1

playfields:

playfield:

default_source_device: test_target1

tags: default

coils:

c_trough1:

number:

c_trough2:

number:

c_launcher:

number:

c_target1:

number:

c_drain1:

number:

switches:

s_trough1_1:

number:

s_trough1_2:

number:

s_trough2_1:

number:

s_trough2_2:

number:

s_launcher:

number:

s_target1:

number:

s_drain1:

number:

s_playfield:

number:

tags: playfield_active

ball_devices:

test_trough1:

eject_coil: c_trough1

ball_switches: s_trough1_1, s_trough1_2

eject_targets: test_launcher

tags: trough, drain, home

test_launcher:

eject_coil: c_launcher

ball_switches: s_launcher

eject_targets: test_trough2, test_target1

test_target1:

(continues on next page)

ball_device (example config files) 1113

/mpf_examples/ball_device/config/test_ball_device_routing.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

eject_coil: c_target1

ball_switches: s_target1

test_trough2:

eject_coil: c_trough2

ball_switches: s_trough2_1, s_trough2_2

tags: trough, drain, home

confirm_eject_type: target

test_drain:

eject_coil: c_drain1

ball_switches: s_drain1

tags: drain

eject_targets: playfield, test_target1, test_trough2

Listing 59: your_machine_folder/ball_device/config/test_ball_device_jam_switch.yaml

#config_version=5

coils:

trough_eject:

number:

plunger_eject:

number:

playfields:

playfield:

default_source_device: plunger

tags: default

switches:

s_trough_1:

number:

s_trough_2:

number:

s_trough_3:

number:

s_trough_4:

number:

s_trough_jam:

number:

s_plunger:

number:

s_playfield:

number:

tags: playfield_active

s_launch:

number:

tags: launch

ball_devices:

trough:

eject_coil: trough_eject

ball_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4, s_trough_jam

jam_switch: s_trough_jam

debug: true
(continues on next page)

ball_device (example config files) 1114

/mpf_examples/ball_device/config/test_ball_device_jam_switch.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags: trough, drain, home

eject_targets: plunger

confirm_eject_type: target

eject_coil_jam_pulse: 5

eject_coil_reorder_pulse: 2

eject_coil_retry_pulse: 15

plunger:

eject_coil: plunger_eject

ball_switches: s_plunger

debug: true

mechanical_eject: true

player_controlled_eject_event: sw_launch

Listing 60: your_machine_folder/ball_device/config/test_system_11_trough.yaml

#config_version=5

game:

balls_per_game: 3

allow_start_with_ball_in_drain: True

playfields:

playfield:

default_source_device: plunger

tags: default

coils:

outhole:

number: C09

default_pulse_ms: 20

trough:

number: C10

default_pulse_ms: 20

switches:

start:

number: S13

tags: start

outhole:

number: S15

trough1:

number: S16

trough2:

number: S17

trough3:

number: S18

plunger:

number: S28

playfield:

number:

tags: playfield_active

ball_devices:

outhole:
(continues on next page)

ball_device (example config files) 1115

/mpf_examples/ball_device/config/test_system_11_trough.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags: drain

ball_switches: outhole

eject_coil: outhole

eject_targets: trough

confirm_eject_type: target

debug: true

trough:

tags: trough, home

ball_switches: trough1, trough2, trough3

eject_coil: trough

eject_targets: plunger

confirm_eject_type: target

debug: true

plunger:

ball_switches: plunger

mechanical_eject: true

eject_timeouts: 4s

debug: true

Listing 61: your_machine_folder/ball_device/config/test_too_long_exit_count_delay.yaml

#config_version=5

playfields:

playfield:

default_source_device: plunger

tags: default

coils:

trough_eject:

number:

plunger_eject:

number:

switches:

s_trough_1:

number:

s_trough_2:

number:

s_trough_3:

number:

s_trough_4:

number:

s_trough_jam:

number:

s_plunger:

number:

s_playfield:

number:

tags: playfield_active

s_launch:

number:

tags: launch

(continues on next page)

ball_device (example config files) 1116

/mpf_examples/ball_device/config/test_too_long_exit_count_delay.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_devices:

trough:

eject_coil: trough_eject

ball_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4, s_trough_jam

jam_switch: s_trough_jam

debug: true

tags: trough, drain, home

eject_targets: plunger

confirm_eject_type: target

exit_count_delay: 3s

plunger:

eject_coil: plunger_eject

ball_switches: s_plunger

debug: true

mechanical_eject: true

player_controlled_eject_event: sw_launch

exit_count_delay: 300ms

Listing 62: your_machine_folder/ball_device/config/test_enable_coil_multiple.yaml

#config_version=5

playfields:

playfield:

default_source_device: test

tags: default

coils:

eject_coil:

default_hold_power: 0.25

default_pulse_ms: 20

number:

switches:

s_ball1:

number:

s_ball2:

number:

ball_devices:

test:

eject_coil: eject_coil

eject_coil_enable_time: 600ms, 200ms

ball_switches: s_ball1, s_ball2

tags: home, trough

debug: true

Listing 63: your_machine_folder/ball_device/config/test_ball_device_event_confirmation.yaml

#config_version=5

game:

balls_per_game: 1

(continues on next page)

ball_device (example config files) 1117

/mpf_examples/ball_device/config/test_enable_coil_multiple.yaml
/mpf_examples/ball_device/config/test_ball_device_event_confirmation.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

playfields:

playfield:

default_source_device: test_target1

tags: default

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

eject_coil4:

number:

eject_coil5:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_ball_switch_target1:

number:

s_ball_switch_target2_1:

number:

s_ball_switch_target2_2:

number:

s_ball_switch_target3:

number:

s_playfield:

number:

tags: playfield_active

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: test_launcher

tags: trough, drain, home

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: event

confirm_eject_event: launcher_confirm

(continues on next page)

ball_device (example config files) 1118

Mission Pinball Framework Documentation, Version

(continued from previous page)

eject_targets: test_target1, test_target2

eject_timeouts: 6s, 10s

test_target1:

eject_coil: eject_coil3

ball_switches: s_ball_switch_target1

debug: true

confirm_eject_type: target

test_target2:

eject_coil: eject_coil4

ball_switches: s_ball_switch_target2_1, s_ball_switch_target2_2

debug: true

tags: trough, drain, home

confirm_eject_type: target

eject_targets: test_target3

test_target3:

eject_coil: eject_coil5

ball_switches: s_ball_switch_target3

debug: true

Listing 64: your_machine_folder/ball_device/config/test_playfield_lock.yaml

#config_version=5

coils:

eject_coil1:

number:

switches:

s_ball_switch1:

number:

s_ball_switch2:

number:

ball_devices:

test_device:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

entrance_events: entrance_event

debug: true

ball_holds:

hold_test:

hold_devices: test_device

balls_to_hold: 1

release_one_events: release_test

Listing 65: your_machine_folder/ball_device/config/test_ball_device_trigger_events.yaml

#config_version=5

playfields:

playfield:

default_source_device: test_launcher

tags: default

(continues on next page)

ball_device (example config files) 1119

/mpf_examples/ball_device/config/test_playfield_lock.yaml
/mpf_examples/ball_device/config/test_ball_device_trigger_events.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

eject_coil4:

number:

eject_coil5:

number:

c_diverter:

number:

switches:

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_ball_switch_target:

number:

s_playfield:

number:

tags: playfield_active

s_launch:

number:

tags: launch

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: test_launcher

eject_timeouts: 3s

tags: trough, drain, home

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

eject_timeouts: 6s, 10s

eject_targets: playfield, test_target

confirm_eject_type: target

player_controlled_eject_event: sw_launch

test_target:

eject_coil: eject_coil3

ball_switches: s_ball_switch_target

debug: true

eject_timeouts: 6s

(continues on next page)

ball_device (example config files) 1120

Mission Pinball Framework Documentation, Version

(continued from previous page)

confirm_eject_type: target

Listing 66: your_machine_folder/ball_device/config/test_ball_device.yaml

#config_version=5

game:

balls_per_game: 1

playfields:

playfield:

default_source_device: test_target1

tags: default

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

eject_coil4:

number:

eject_coil5:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_ball_switch_target1:

number:

s_ball_switch_target2_1:

number:

s_ball_switch_target2_2:

number:

s_ball_switch_target3:

number:

s_ball_switch_target3_2:

number:

s_playfield:

number:

tags: playfield_active

s_entrance:

number:

ball_devices:

test_trough:
(continues on next page)

ball_device (example config files) 1121

/mpf_examples/ball_device/config/test_ball_device.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

max_eject_attempts: 3

eject_targets: test_launcher

tags: trough, drain, home

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_targets: test_target1, test_target2

eject_timeouts: 6s, 10s

test_target1:

eject_coil: eject_coil3

ball_switches: s_ball_switch_target1

debug: true

confirm_eject_type: target

test_target2:

eject_coil: eject_coil4

ball_switches: s_ball_switch_target2_1, s_ball_switch_target2_2

debug: true

tags: trough, drain, home

confirm_eject_type: target

eject_targets: test_target3

test_target3:

eject_coil: eject_coil5

ball_switches: s_ball_switch_target3, s_ball_switch_target3_2

eject_targets: playfield, test_trough

confirm_eject_type: target

debug: true

test_entrance_ignore_device:

ball_capacity: 2

eject_coil: eject_coil5

entrance_switch: s_entrance

entrance_switch_ignore_window_ms: 3000

Listing 67: your_machine_folder/ball_device/config/test_hold_coil.yaml

#config_version=5

playfields:

playfield:

default_source_device: test

tags: default

coils:

hold_coil:

number:

hold_coil2:

number:

hold_coil3:

number:
(continues on next page)

ball_device (example config files) 1122

/mpf_examples/ball_device/config/test_hold_coil.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

hold_coil4:

number:

switches:

s_entrance:

number:

s_entrance2:

number:

s_entrance_and_hold3:

number:

s_ball4_1:

number:

s_ball4_2:

number:

ball_devices:

test:

hold_coil: hold_coil

entrance_switch: s_entrance

hold_events: test_hold_event

ball_capacity: 3

debug: true

confirm_eject_type: fake

test2:

hold_coil: hold_coil2

entrance_switch: s_entrance2

hold_events: test_hold_event2

ball_capacity: 3

tags: trough, home

debug: true

confirm_eject_type: fake

test3:

hold_coil: hold_coil3

entrance_switch: s_entrance_and_hold3

hold_switches: s_entrance_and_hold3

tags: trough, home

debug: true

eject_timeouts: 2s

ball_capacity: 2

test4:

hold_coil: hold_coil4

hold_switches: s_ball4_1, s_ball4_2

ball_switches: s_ball4_1, s_ball4_2

tags: trough, home

debug: true

Listing 68: your_machine_folder/ball_device/config/test_system_11_trough_startup.yaml

#config_version=5

config: test_system_11_trough.yaml

virtual_platform_start_active_switches:

- trough1
(continues on next page)

ball_device (example config files) 1123

/mpf_examples/ball_device/config/test_system_11_trough_startup.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- trough2

- trough3

- outhole

ball_holds (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 69: your_machine_folder/ball_holds/config/test_ball_holds.yaml

#config_version=5

game:

balls_per_game: 1

modes:

- mode1

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

eject_coil4:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_ball_switch_hold1:

number:

s_ball_switch_hold2:

number:

s_ball_switch_hold3:

number:

s_ball_switch_hold4:

number:

s_ball_switch_hold5:

number:

(continues on next page)

ball_holds (example config files) 1124

/mpf_examples/ball_holds/config/test_ball_holds.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

s_playfield_active:

tags: playfield_active

number:

playfields:

playfield:

default_source_device: test_launcher

tags: default

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: test_launcher

tags: trough, drain, home

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 6s, 10s

test_hold:

eject_coil: eject_coil3

ball_switches: s_ball_switch_hold1, s_ball_switch_hold2, s_ball_switch_hold3

confirm_eject_type: target

debug: true

test_hold2:

eject_coil: eject_coil4

ball_switches: s_ball_switch_hold4, s_ball_switch_hold5

confirm_eject_type: target

debug: true

ball_holds:

hold_test:

hold_devices: test_hold

balls_to_hold: 2

release_one_events: release_test

hold_test3:

hold_devices: test_hold2

event_player:

test_conditional_event.1{device.ball_holds.hold_test["balls_held"] > 0}:

- "yes"

test_conditional_event.2{device.ball_holds.hold_test["balls_held"] == 0}:

- "no"

test_event_when_enabled:

- should_post_when_enabled{device.ball_holds.hold_test.enabled}

- should_not_post_when_enabled{not device.ball_holds.hold_test.enabled}

test_event_when_disabled:

- should_post_when_disabled{not device.ball_holds.hold_test.enabled}

- should_not_post_when_disabled{device.ball_holds.hold_test.enabled}

ball_holds (example config files) 1125

Mission Pinball Framework Documentation, Version

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 70: your_machine_folder/ball_holds/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

game_mode: False

ball_holds:

hold_test2:

hold_devices: test_hold

balls_to_hold: 2

release_one_events: release_test

tags:

label:

ball_routing (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 71: your_machine_folder/ball_routing/config/config.yaml

#config_version=5

modes:

- mode1

playfields:

playfield:

default_source_device: test_trough

tags: default

coils:

c_trough:

number:

c_device1:

number:

c_device2:

number:

c_device3:

number:

c_device4:

number:

switches:

s_ball_switch1:

(continues on next page)

ball_routing (example config files) 1126

/mpf_examples/ball_holds/modes/mode1/config/mode1.yaml
/mpf_examples/ball_routing/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

s_ball_switch2:

number:

s_device1:

number:

s_device2:

number:

s_device3:

number:

s_device4:

number:

ball_devices:

test_trough:

eject_coil: c_trough

ball_switches: s_ball_switch1, s_ball_switch2

eject_targets: playfield

tags: trough, drain, home

test_device1:

eject_coil: c_device1

ball_switches: s_device1

debug: True

eject_targets: test_device2, test_device3

test_device2:

eject_coil: c_device2

ball_switches: s_device2

debug: True

eject_targets: playfield

test_device3:

eject_coil: c_device3

ball_switches: s_device3

debug: True

eject_targets: test_device4

test_device4:

eject_coil: c_device4

ball_switches: s_device4

debug: True

eject_targets: playfield

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 72: your_machine_folder/ball_routing/modes/mode1/config/mode1.yaml

#config_version=5

ball_routings:

route_to_ball_device2:

source_devices: test_device1

target_device: test_device2

debug: True

enable_events: route_to_2

(continues on next page)

ball_routing (example config files) 1127

/mpf_examples/ball_routing/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

disable_events: route_to_4, no_route

route_to_ball_device4:

source_devices: test_device1

target_device: test_device4

debug: True

enable_events: route_to_4

disable_events: route_to_2, no_route

multiball_locks:

lock1:

balls_to_lock: 1

lock_devices: test_device4

enable_events: lock_enable

disable_events: lock_disable

debug: true

ball_save (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 73: your_machine_folder/ball_save/config/config.yaml

#config_version=5

game:

balls_per_game: 1

modes:

- mode1

- mode2

coils:

eject_coil1:

number:

eject_coil2:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

(continues on next page)

ball_save (example config files) 1128

/mpf_examples/ball_save/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

s_left_outlane:

number:

playfields:

playfield:

default_source_device: bd_launcher

tags: default

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 2s

ball_saves:

default:

active_time: 10s

hurry_up_time: 2s

grace_period: 2s

enable_events: enable1

timer_start_events: balldevice_bd_launcher_ball_eject_success

early_ball_save_events: s_left_outlane_active

auto_launch: yes

balls_to_save: 1

debug: yes

unlimited:

active_time: 30s

hurry_up_time: 2s

grace_period: 2s

enable_events: enable2

early_ball_save_events: s_left_outlane_active

auto_launch: yes

balls_to_save: -1

debug: yes

only_last:

enable_events: enable3

only_last_ball: True

debug: yes

eject_delay:

enable_events: enable4

eject_delay: 1s

debug: yes

unlimited_delay:

enable_events: enable5

delayed_eject_events: eject5

(continues on next page)

ball_save (example config files) 1129

Mission Pinball Framework Documentation, Version

(continued from previous page)

dynamic_active_time:

active_time: current_player.save_time

enable_events: enable6

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 74: your_machine_folder/ball_save/modes/mode2/config/mode2.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

ball_saves:

mode_ball_save_delayed:

balls_to_save: -1

debug: yes

delayed_eject_events: mode_ball_save_delayed_eject

Listing 75: your_machine_folder/ball_save/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

game_mode: False

ball_saves:

mode_ball_save:

active_time: 10s

hurry_up_time: 2s

grace_period: 2s

timer_start_events: balldevice_bd_launcher_ball_eject_success

auto_launch: yes

balls_to_save: 1

debug: yes

ball_search (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

ball_search (example config files) 1130

/mpf_examples/ball_save/modes/mode2/config/mode2.yaml
/mpf_examples/ball_save/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

Listing 76: your_machine_folder/ball_search/config/no_eject.yaml

#config_version=5

game:

balls_per_game: 3

machine:

min_balls: 1

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

hold_coil:

number:

drop_target_reset1:

number:

drop_target_reset2:

number:

drop_target_knockdown2:

number:

drop_target_reset3:

number:

drop_target_reset4:

number:

drop_target_knockdown4:

number:

flipper_coil:

number:

default_hold_power: 0.125

diverter_coil:

number:

default_hold_power: 0.250

autofire_coil:

number:

digital_outputs:

c_motor_run:

number:

type: driver

playfields:

playfield:

enable_ball_search: True

ball_search_timeout: 20s

ball_search_wait_after_iteration: 10s

ball_search_interval: 250ms

default_source_device: test_launcher

servos:

(continues on next page)

ball_search (example config files) 1131

/mpf_examples/ball_search/config/no_eject.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

servo1:

number:

reset_events:

motors:

motor1:

motor_left_output: c_motor_run

position_switches: !!omap

- up: s_position_up

- down: s_position_down

reset_position: down

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

s_ball_switch4:

number:

s_ball_switch_launcher:

number:

s_vuk:

number:

s_lock:

number:

s_playfield:

number:

tags: playfield_active

s_drop_target1:

number:

s_drop_target2:

number:

s_drop_target3:

number:

s_drop_target4:

number:

s_autofire:

number:

s_flipper:

number:

s_position_up:

number:

s_position_down:

number:

drop_targets:

target1:

reset_coil: drop_target_reset1

switch: s_drop_target1

(continues on next page)

ball_search (example config files) 1132

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_search_order: 10

target2:

reset_coil: drop_target_reset2

knockdown_coil: drop_target_knockdown2

switch: s_drop_target2

ball_search_order: 11

target3:

reset_coil: drop_target_reset3

switch: s_drop_target3

ball_search_order: 12

target4:

reset_coil: drop_target_reset4

knockdown_coil: drop_target_knockdown4

switch: s_drop_target4

ball_search_order: 13

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3, s_ball_switch4

debug: true

eject_targets: test_launcher

tags: trough, drain, home

ball_search_order: 1

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

eject_timeouts: 5s

eject_coil_jam_pulse: 5ms

debug: true

ball_search_order: 2

tags: no-eject-on-ballsearch

test_vuk:

eject_coil: eject_coil3

ball_switches: s_vuk

eject_timeouts: 2s

debug: true

ball_search_order: 3

test_lock:

hold_coil: hold_coil

ball_switches: s_lock

eject_timeouts: 2s

debug: true

ball_search_order: 4

diverters:

diverter1:

activation_coil: diverter_coil

ball_search_order: 14

flippers:

flipper1:

main_coil: flipper_coil

activation_switch: s_flipper

(continues on next page)

ball_search (example config files) 1133

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_search_order: 15

include_in_ball_search: True

autofire_coils:

autofire1:

coil: autofire_coil

switch: s_autofire

ball_search_order: 16

Listing 77: your_machine_folder/ball_search/config/config_ball_device.yaml

#config_version=5

playfields:

playfield:

enable_ball_search: True

ball_search_timeout: 20s

ball_search_wait_after_iteration: 10s

ball_search_interval: 250ms

default_source_device: bd_test

switches:

s_test:

number:

coils:

c_test:

number:

ball_devices:

bd_test:

ball_switches: s_test

eject_coil: c_test

tags: trough, home, drain

eject_timeouts: 1s

Listing 78: your_machine_folder/ball_search/config/config.yaml

#config_version=5

game:

balls_per_game: 3

machine:

min_balls: 1

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

(continues on next page)

ball_search (example config files) 1134

/mpf_examples/ball_search/config/config_ball_device.yaml
/mpf_examples/ball_search/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

hold_coil:

number:

drop_target_reset1:

number:

drop_target_reset2:

number:

drop_target_knockdown2:

number:

drop_target_reset3:

number:

drop_target_reset4:

number:

drop_target_knockdown4:

number:

flipper_coil:

number:

default_hold_power: 0.125

diverter_coil:

number:

default_hold_power: 0.250

autofire_coil:

number:

digital_outputs:

c_motor_run:

number:

type: driver

playfields:

playfield:

enable_ball_search: True

ball_search_timeout: 20s

ball_search_wait_after_iteration: 10s

ball_search_interval: 250ms

default_source_device: test_launcher

servos:

servo1:

number:

reset_events:

motors:

motor1:

motor_left_output: c_motor_run

position_switches: !!omap

- up: s_position_up

- down: s_position_down

reset_position: down

switches:

s_start:

number:

tags: start

s_ball_switch1:

(continues on next page)

ball_search (example config files) 1135

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

s_ball_switch4:

number:

s_ball_switch_launcher:

number:

s_vuk:

number:

s_lock:

number:

s_playfield:

number:

tags: playfield_active

s_drop_target1:

number:

s_drop_target2:

number:

s_drop_target3:

number:

s_drop_target4:

number:

s_autofire:

number:

s_flipper:

number:

s_position_up:

number:

s_position_down:

number:

drop_targets:

target1:

reset_coil: drop_target_reset1

switch: s_drop_target1

ball_search_order: 10

target2:

reset_coil: drop_target_reset2

knockdown_coil: drop_target_knockdown2

switch: s_drop_target2

ball_search_order: 11

target3:

reset_coil: drop_target_reset3

switch: s_drop_target3

ball_search_order: 12

target4:

reset_coil: drop_target_reset4

knockdown_coil: drop_target_knockdown4

switch: s_drop_target4

ball_search_order: 13

ball_devices:

(continues on next page)

ball_search (example config files) 1136

Mission Pinball Framework Documentation, Version

(continued from previous page)

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3, s_ball_switch4

debug: true

eject_targets: test_launcher

tags: trough, drain, home

ball_search_order: 1

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

eject_timeouts: 5s

eject_coil_jam_pulse: 5ms

debug: true

ball_search_order: 2

test_vuk:

eject_coil: eject_coil3

ball_switches: s_vuk

eject_timeouts: 2s

debug: true

ball_search_order: 3

test_lock:

hold_coil: hold_coil

ball_switches: s_lock

eject_timeouts: 2s

debug: true

ball_search_order: 4

diverters:

diverter1:

activation_coil: diverter_coil

ball_search_order: 14

flippers:

flipper1:

main_coil: flipper_coil

activation_switch: s_flipper

ball_search_order: 15

include_in_ball_search: True

autofire_coils:

autofire1:

coil: autofire_coil

switch: s_autofire

ball_search_order: 16

Listing 79: your_machine_folder/ball_search/config/config_with_balls.yaml

#config_version=5

config:

- config.yaml

virtual_platform_start_active_switches:

- s_ball_switch1
(continues on next page)

ball_search (example config files) 1137

/mpf_examples/ball_search/config/config_with_balls.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- s_ball_switch2

Listing 80: your_machine_folder/ball_search/config/missing_initial.yaml

#config_version=5

machine:

balls_installed: 3

config:

- config.yaml

virtual_platform_start_active_switches:

- s_ball_switch1

Listing 81: your_machine_folder/ball_search/config/mechanical_eject.yaml

#config_version=5

game:

balls_per_game: 3

machine:

min_balls: 1

coils:

eject_coil1:

number:

eject_coil2:

number:

playfields:

playfield:

enable_ball_search: True

ball_search_timeout: 20s

ball_search_wait_after_iteration: 10s

ball_search_interval: 250ms

default_source_device: test_launcher

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

s_ball_switch4:

number:

s_ball_switch_launcher:

number:

(continues on next page)

ball_search (example config files) 1138

/mpf_examples/ball_search/config/missing_initial.yaml
/mpf_examples/ball_search/config/mechanical_eject.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3, s_ball_switch4

debug: true

eject_targets: test_launcher

tags: trough, drain, home

ball_search_order: 1

test_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

mechanical_eject: True

debug: true

ball_search_order: 2

auto_fire_on_unexpected_ball: False

bcp (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 82: your_machine_folder/bcp/config/config.yaml

#config_version=5

modes:

- mode1

- mode2

switches:

s_start:

number: 1002

tags: start

s_test:

number: 1000

s_test2:

number: 1001

s_ball_switch_launcher:

number: 1005

label: Launcher

s_ball_switch1:

number: 1003

label: Ball One

s_ball_switch2:

number: 1004

(continues on next page)

bcp (example config files) 1139

/mpf_examples/bcp/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

label: Ball Two

game:

balls_per_game: 3

coils:

eject_coil2:

number: 1001

eject_coil1:

number: 1000

lights:

l_test2:

number: 1001

label: Other Light

l_test:

number: 1000

label: Light One

playfields:

playfield:

default_source_device: bd_launcher

tags: default

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 2s

event_player:

send_test_trigger: trigger_test

Listing 83: your_machine_folder/bcp/config/multiple_connections_config.yaml

#config_version=5

bcp:

debug: True

connections:

local_display:

host: localhost

port: 5050

type: mpf.core.bcp.bcp_socket_client.BCPClientSocket

required: True
(continues on next page)

bcp (example config files) 1140

/mpf_examples/bcp/config/multiple_connections_config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

exit_on_close: True

another_display:

host: localhost

port: 9001

type: mpf.core.bcp.bcp_socket_client.BCPClientSocket

required: True

exit_on_close: True

Listing 84: your_machine_folder/bcp/config/test_bcp_processor.yaml

#config_version=5

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 85: your_machine_folder/bcp/modes/mode2/config/mode2.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

game_mode: False

Listing 86: your_machine_folder/bcp/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

game_mode: False

priority: 200

bitmap_fonts (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 87: your_machine_folder/bitmap_fonts/config/test_bitmap_fonts.yaml

#config_version=5

(continues on next page)

bitmap_fonts (example config files) 1141

/mpfmc_examples/bcp/config/test_bcp_processor.yaml
/mpf_examples/bcp/modes/mode2/config/mode2.yaml
/mpf_examples/bcp/modes/mode1/config/mode1.yaml
/mpfmc_examples/bitmap_fonts/config/test_bitmap_fonts.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

displays:

default:

width: 800

height: 600

slides:

static_text:

- type: text

text: TEST

font_name: F1fuv

bitmap_font: True

animations:

add_to_slide:

- property: rotation

value: 360

duration: 2s

- property: scale

value: 0.01

duration: 1s

- type: text

text: STATIC TEXT

font_name: test_font

bitmap_font: True

y: 200

- type: text

text: Bitmap Font Test @!$

font_name: test_font_2

bitmap_font: True

y: top - 100

opacity: 0

animations:

add_to_slide:

- property: opacity

value: 1.0

duration: 1s

bitmap_fonts:

F1fuv:

file: F1fuv.png

descriptor: [' !"#$%&,()*+`-./', '0123456789:;<=>?', '@ABCDEFGHIJKLMNO', 'PQRSTUVWXYZ[\]^_', ''

→˓'abcdefghijklmno', 'pqrstuvwxyz{|}~ ']

slide_player:

static_text: static_text

blinkenlight (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

blinkenlight (example config files) 1142

Mission Pinball Framework Documentation, Version

Listing 88: your_machine_folder/blinkenlight/config/config.yaml

#config_version=5

modes:

- mode1

- mode2

lights:

l_light1:

channels:

red:

number: 1

green:

number: 2

blue:

number: 3

l_light2:

channels:

red:

number: 4

green:

number: 5

blue:

number: 6

l_light3:

channels:

red:

number: 7

green:

number: 8

blue:

number: 9

blinkenlights:

my_blinkenlight1:

cycle_duration: 3s

off_when_multiple: true

light: l_light1

my_blinkenlight2:

color_duration: 2s

off_when_multiple: false

light: l_light2

my_blinkenlight3:

cycle_duration: 2s

off_when_multiple: false

light: l_light3

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

blinkenlight (example config files) 1143

/mpf_examples/blinkenlight/config/config.yaml

Mission Pinball Framework Documentation, Version

Listing 89: your_machine_folder/blinkenlight/modes/mode2/config/mode2.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

game_mode: False

priority: 101

blinkenlight_player:

mode2_add_color_to_first_blinkenlight:

my_blinkenlight1: orange

mode2_add_color2_to_first_blinkenlight:

my_blinkenlight1:

color: turquoise

key: second

mode2_remove_mode_colors_from_first_blinkenlight:

my_blinkenlight1:

action: remove_mode

mode2_add_color_to_second_blinkenlight:

my_blinkenlight2: magenta

shows:

blinkenlight_token_show:

- time: 0

blinkenlights:

(blinkenlight_token): (color_token)

- time: 10

show_player:

play_blinkenlight_token_show:

blinkenlight_token_show:

show_tokens:

blinkenlight_token: my_blinkenlight2

color_token: gray

Listing 90: your_machine_folder/blinkenlight/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

game_mode: False

priority: 100

blinkenlight_player:

add_color_to_all_blinkenlights:

my_blinkenlight1:

action: add

key: mykey1

color: blue

my_blinkenlight2: green

(continues on next page)

blinkenlight (example config files) 1144

/mpf_examples/blinkenlight/modes/mode2/config/mode2.yaml
/mpf_examples/blinkenlight/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

my_blinkenlight3: cyan

add_color_to_first_blinkenlight:

my_blinkenlight1: red

add_color_to_second_blinkenlight:

my_blinkenlight2:

action: add

key: mykey3

color: yellow

add_color_to_third_blinkenlight:

my_blinkenlight3: purple

remove_color_from_first_blinkenlight:

my_blinkenlight1:

action: remove

key: mykey1

remove_color_from_second_blinkenlight:

my_blinkenlight2:

action: remove

key: mykey3

remove_color_from_third_blinkenlight:

my_blinkenlight3: stop

remove_all_colors_from_all_blinkenlights:

my_blinkenlight1:

action: remove_all

my_blinkenlight2:

action: remove_all

my_blinkenlight3:

action: remove_all

add_color_to_first_blinkenlight_with_duplicate_key:

my_blinkenlight1:

action: add

color: darkred

key: mykey1

blocking_events (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 91: your_machine_folder/blocking_events/config/config.yaml

#config_version=5

modes:

- mode1

- mode2

- mode3

blocking_events (example config files) 1145

/mpf_examples/blocking_events/config/config.yaml

Mission Pinball Framework Documentation, Version

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 92: your_machine_folder/blocking_events/modes/mode2/config/mode2.yaml

#config_version=5

mode:

priority: 200

game_mode: False

blocking:

event1:

all: True

Listing 93: your_machine_folder/blocking_events/modes/mode3/config/mode3.yaml

#config_version=5

mode:

priority: 300

game_mode: False

blocking:

event1:

block: 1

Listing 94: your_machine_folder/blocking_events/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

game_mode: False

blocking:

event1:

all: True

bonus (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

bonus (example config files) 1146

/mpf_examples/blocking_events/modes/mode2/config/mode2.yaml
/mpf_examples/blocking_events/modes/mode3/config/mode3.yaml
/mpf_examples/blocking_events/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

Listing 95: your_machine_folder/bonus/config/config.yaml

#config_version=5

modes:

- bonus

- mode1

- service

- tilt

machine:

min_balls: 0

game:

balls_per_game: 10 # we have a lot of bonus tests to run :)

switches:

s_start:

number:

tags: start

s_slam_tilt:

number:

tags: slam_tilt

s_door_open:

number: 1

tags: service_door_open, power_off

s_service_enter:

number: 17

tags: service_enter

s_service_esc:

number: 18

tags: service_esc

s_service_up:

number: 19

tags: service_up

player_vars:

bonus_multiplier:

initial_value: 1

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 96: your_machine_folder/bonus/modes/bonus/config/bonus.yaml

#config_version=5

mode_settings:

keep_multiplier: True

(continues on next page)

bonus (example config files) 1147

/mpf_examples/bonus/config/config.yaml
/mpf_examples/bonus/modes/bonus/config/bonus.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

bonus_entries:

- event: bonus_ramps

score: 1000

player_score_entry: ramps

reset_player_score_entry: True

skip_if_zero: false

- event: bonus_modes

score: 5000

player_score_entry: modes

reset_player_score_entry: False

Listing 97: your_machine_folder/bonus/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

priority: 200

variable_player:

hit_target:

score: 1337

score_ramps:

ramps: 1

score_modes:

modes: 1

add_multiplier:

bonus_multiplier: 1

bonus_additional_events (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 98: your_machine_folder/bonus_additional_events/config/config.yaml

#config_version=5

modes:

- bonus

- mode1

machine:

min_balls: 0

game:

balls_per_game: 10 # we have a lot of bonus tests to run :)

switches:
(continues on next page)

bonus_additional_events (example config files) 1148

/mpf_examples/bonus/modes/mode1/config/mode1.yaml
/mpf_examples/bonus_additional_events/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

s_start:

number:

tags: start

player_vars:

bonus_multiplier:

initial_value: 1

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 99: your_machine_folder/bonus_additional_events/modes/bonus/config/bonus.yaml

#config_version=5

mode_settings:

keep_multiplier: True

end_bonus_event: stop_bonus

bonus_entries:

- event: bonus_ramps

score: 1000

player_score_entry: ramps

reset_player_score_entry: True

skip_if_zero: false

- event: bonus_modes

score: 5000

player_score_entry: modes

reset_player_score_entry: False

Listing 100: your_machine_folder/bonus_additional_events/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

priority: 200

variable_player:

hit_target:

score: 1337

score_ramps:

ramps: 1

score_modes:

modes: 1

add_multiplier:

bonus_multiplier: 1

bonus_additional_events (example config files) 1149

/mpf_examples/bonus_additional_events/modes/bonus/config/bonus.yaml
/mpf_examples/bonus_additional_events/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

bonus_dynamic_keep_multiplier (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 101: your_machine_folder/bonus_dynamic_keep_multiplier/config/config.yaml

#config_version=5

modes:

- bonus

- mode1

machine:

min_balls: 0

game:

balls_per_game: 10 # we have a lot of bonus tests to run :)

switches:

s_start:

number:

tags: start

player_vars:

bonus_multiplier:

initial_value: 1

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 102: your_machine_folder/bonus_dynamic_keep_multiplier/modes/bonus/config/bonus.yaml

#config_version=5

mode_settings:

keep_multiplier: current_player.ball == 1

bonus_entries:

- event: bonus_ramps

score: 1000

player_score_entry: ramps

reset_player_score_entry: True

skip_if_zero: false

- event: bonus_modes

score: 5000

player_score_entry: modes

reset_player_score_entry: False

bonus_dynamic_keep_multiplier (example config files) 1150

/mpf_examples/bonus_dynamic_keep_multiplier/config/config.yaml
/mpf_examples/bonus_dynamic_keep_multiplier/modes/bonus/config/bonus.yaml

Mission Pinball Framework Documentation, Version

Listing 103: your_machine_folder/bonus_dynamic_keep_multiplier/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

priority: 200

variable_player:

hit_target:

score: 1337

score_ramps:

ramps: 1

score_modes:

modes: 1

add_multiplier:

bonus_multiplier: 1

bonus_no_keep_multiplier (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 104: your_machine_folder/bonus_no_keep_multiplier/config/config.yaml

#config_version=5

modes:

- bonus

- mode1

machine:

min_balls: 0

game:

balls_per_game: 10 # we have a lot of bonus tests to run :)

switches:

s_start:

number:

tags: start

player_vars:

bonus_multiplier:

initial_value: 1

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

bonus_no_keep_multiplier (example config files) 1151

/mpf_examples/bonus_dynamic_keep_multiplier/modes/mode1/config/mode1.yaml
/mpf_examples/bonus_no_keep_multiplier/config/config.yaml

Mission Pinball Framework Documentation, Version

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 105: your_machine_folder/bonus_no_keep_multiplier/modes/bonus/config/bonus.yaml

#config_version=5

mode_settings:

bonus_entries:

- event: bonus_ramps

score: 1000

player_score_entry: ramps

reset_player_score_entry: True

skip_if_zero: True

- event: bonus_modes

score: 5000

player_score_entry: modes

reset_player_score_entry: False

Listing 106: your_machine_folder/bonus_no_keep_multiplier/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

priority: 200

variable_player:

hit_target:

score: 1337

score_ramps:

ramps: 1

score_modes:

modes: 1

add_multiplier:

bonus_multiplier: 1

carousel (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 107: your_machine_folder/carousel/config/config.yaml

#config_version=5

modes:

- carousel

- second_carousel

- conditional_carousel

(continues on next page)

carousel (example config files) 1152

/mpf_examples/bonus_no_keep_multiplier/modes/bonus/config/bonus.yaml
/mpf_examples/bonus_no_keep_multiplier/modes/mode1/config/mode1.yaml
/mpf_examples/carousel/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- blocking_carousel

machine:

min_balls: 0

switches:

s_start:

number:

tags: start

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 108: your_machine_folder/carousel/modes/conditional_carousel/config/conditional_carousel.yaml

#config_version=5

mode:

start_events: start_mode3

stop_events: stop_mode3, conditional_carousel_item_selected

code: mpf.modes.carousel.code.carousel.Carousel

mode_settings:

selectable_items:

- item1{not current_player.hide_item1}

- item2{False}

- item3{machine.player2_score}

- item4{current_player.show_item4}

select_item_events: select

next_item_events: next

previous_item_events: previous

Listing 109: your_machine_folder/carousel/modes/second_carousel/config/second_carousel.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1, carousel_item_selected

code: mpf.modes.carousel.code.carousel.Carousel

mode_settings:

selectable_items: item1, item2, item3

select_item_events: select, select_additional

next_item_events: next, next2

previous_item_events: previous, previous2

carousel (example config files) 1153

/mpf_examples/carousel/modes/conditional_carousel/config/conditional_carousel.yaml
/mpf_examples/carousel/modes/second_carousel/config/second_carousel.yaml

Mission Pinball Framework Documentation, Version

Listing 110: your_machine_folder/carousel/modes/carousel/config/carousel.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1, carousel_item_selected

code: mpf.modes.carousel.code.carousel.Carousel

mode_settings:

selectable_items: item1, item2, item3

select_item_events: select, select_additional

next_item_events: next, next2

previous_item_events: previous, previous2

Listing 111: your_machine_folder/carousel/modes/blocking_carousel/config/blocking_carousel.yaml

#config_version=5

mode:

start_events: start_mode4

stop_events: stop_mode4, carousel_item_selected

code: mpf.modes.carousel.code.carousel.Carousel

mode_settings:

selectable_items: item1, item2, item3

select_item_events: select_item

next_item_events: s_flipper_right_inactive

previous_item_events: s_flipper_left_inactive

block_events: flipper_cancel

release_events: both_flippers_inactive

coil_player (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 112: your_machine_folder/coil_player/config/coil_player.yaml

#config_version=5

modes:

- mode1

coils:

coil_1:

number:

default_hold_power: 1.0

coil_2:

number:

coil_3:

(continues on next page)

coil_player (example config files) 1154

/mpf_examples/carousel/modes/carousel/config/carousel.yaml
/mpf_examples/carousel/modes/blocking_carousel/config/blocking_carousel.yaml
/mpf_examples/coil_player/config/coil_player.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

default_hold_power: 1.0

coil_player:

event1: coil_1

event2:

coil_1:

action: pulse

pulse_power: 1.0

coil_2:

action: pulse

pulse_power: 0.5

event3:

coil_1:

action: pulse

pulse_ms: 49

event4:

coil_1:

action: enable

event5:

coil_1:

action: disable

event6: coil_2

event7:

coil_3:

action: enable

hold_power: 0.5

event8:

coil_3: disable

event9:

coil_3: 30

event10:

coil_1:

action: on

event11:

coil_1:

action: off

pulse_1_100:

coil_1:

action: pulse

pulse_ms: 100

pulse_1_50_max_wait_ms:

coil_1:

action: pulse

pulse_ms: 50

max_wait_ms: 100

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

coil_player (example config files) 1155

Mission Pinball Framework Documentation, Version

Listing 113: your_machine_folder/coil_player/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

game_mode: False

coil_player:

event1_mode:

coil_3: enable

color (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 114: your_machine_folder/color/config/test_color.yaml

#config_version=5

displays:

default:

width: 400

height: 300

slides:

slide1:

- type: text

text: RED

color: red

y: 75

- type: text

text: 0000FF80

color: 0000ff80

- type: text

text: 00FF00

color: 00ff00

slide_player:

slide1: slide1

combo_switches (example config files)

color (example config files) 1156

/mpf_examples/coil_player/modes/mode1/config/mode1.yaml
/mpfmc_examples/color/config/test_color.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 115: your_machine_folder/combo_switches/config/combo_switches.yaml

#config_version=5

modes:

- mode1

switches:

switch1:

number:

switch2:

number:

switch3:

number:

switch4:

number:

switch5:

number:

tags: tag1

switch6:

number:

tags: tag1

switch7:

number:

tags: tag2

switch8:

number:

tags: tag2

switch9:

number:

tags: left_flipper

switch10:

number:

tags: right_flipper

combo_switches:

tag_combo:

tag_1: tag1

tag_2: tag2

switch_combo:

switches_1: switch1

switches_2: switch2

multiple_switch_combo:

switches_1: switch1, switch2

switches_2: switch3, switch4

custom_offset:

switches_1: switch1

switches_2: switch2

max_offset_time: 1s

custom_hold:

(continues on next page)

combo_switches (example config files) 1157

/mpf_examples/combo_switches/config/combo_switches.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

switches_1: switch1

switches_2: switch2

hold_time: 1s

custom_release:

switches_1: switch1

switches_2: switch2

release_time: 1s

custom_times_multiple_switches:

tag_1: tag1

tag_2: tag2

max_offset_time: 1s

hold_time: 1s

release_time: 1s

debug: true

custom_events:

switches_1: switch1

switches_2: switch2

events_when_both: active_event, active_event2

events_when_inactive: inactive_event

events_when_one: one_event

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 116: your_machine_folder/combo_switches/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

game_mode: no

combo_switches:

mode1_combo:

switches_1: switch1

switches_2: switch2

config_errors (example config files)

config_interface (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

config_errors (example config files) 1158

/mpf_examples/combo_switches/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

Listing 117: your_machine_folder/config_interface/config/test_config_interface_missing_version.yaml

game:

balls_per_game: 1

Listing 118: your_machine_folder/config_interface/config/test_config_interface_old_version.yaml

#config_version=2

game:

balls_per_game: 1

Listing 119: your_machine_folder/config_interface/config/test_config_interface.yaml

#config_version=5

game:

balls_per_game: 1

test_section:

true_key1: true

true_key2: True

true_key3: yes

true_key4: Yes

false_key1: false

false_key2: False

false_key3: no

false_key4: No

on_string: on

off_string: off

int_6400: 6400

str_001: 001

int_100: 100

int_6: 6

int_7: 07

str_00ff00: 00ff00

str_003200: 003200

str_plus5: +5

str_plus0point5: +0.5

case_sensitive_1: test

Case_sensitive_2: test

case_sensitive_3: Test

test an empty collection

switches:

config_loader (example config files)

config_loader (example config files) 1159

/mpf_examples/config_interface/config/test_config_interface_missing_version.yaml
/mpf_examples/config_interface/config/test_config_interface_old_version.yaml
/mpf_examples/config_interface/config/test_config_interface.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 120: your_machine_folder/config_loader/config/config.yaml

#config_version=5

modes:

- mode1

- mode2

show_player:

event4: show1

shows:

test_show:

- duration: 1

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 121: your_machine_folder/config_loader/modes/mode2/config/mode2.yaml

#config_version=5

mode:

priority: 200

game_mode: False

Listing 122: your_machine_folder/config_loader/modes/game/config/game.yaml

#config_version=5

event_player:

test_event: another_event

shows:

game_show:

- duration: 1

Listing 123: your_machine_folder/config_loader/modes/mode1/shows/mode1_show.yaml

#show_version=5

- time: 0

bananas:

banana2: express

- time: 2

config_loader (example config files) 1160

/mpf_examples/config_loader/config/config.yaml
/mpf_examples/config_loader/modes/mode2/config/mode2.yaml
/mpf_examples/config_loader/modes/game/config/game.yaml
/mpf_examples/config_loader/modes/mode1/shows/mode1_show.yaml

Mission Pinball Framework Documentation, Version

Listing 124: your_machine_folder/config_loader/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

game_mode: False

show_player:

event6: mode1_show

Show file examples

Here are some example show files that go along with the above config(s).

Listing 125: your_machine_folder/config_loader/shows/show1.yaml

#show_version=5

- time: 0

bananas:

banana1: express

- time: 2

config_players (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 126: your_machine_folder/config_players/config/test_config_players.yaml

#config_version=5

modes:

- mode1

- mode2

banana_player:

event1: express

event2:

some: key

event3:

this_banana:

some: key

that_banana:

some: key

show_player:

event4: show1

config_players (example config files) 1161

/mpf_examples/config_loader/modes/mode1/config/mode1.yaml
/mpf_examples/config_loader/shows/show1.yaml
/mpf_examples/config_players/config/test_config_players.yaml

Mission Pinball Framework Documentation, Version

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 127: your_machine_folder/config_players/modes/mode2/config/mode2.yaml

#config_version=5

mode:

priority: 200

game_mode: False

banana_player:

Listing 128: your_machine_folder/config_players/modes/mode1/shows/mode1_show.yaml

#show_version=5

- time: 0

bananas:

banana2: express

- time: 2

Listing 129: your_machine_folder/config_players/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

game_mode: False

banana_player:

event5: express

show_player:

event6: mode1_show

Show file examples

Here are some example show files that go along with the above config(s).

Listing 130: your_machine_folder/config_players/shows/show1.yaml

#show_version=5

- time: 0

bananas:

banana1: express

- time: 2

config_players (example config files) 1162

/mpf_examples/config_players/modes/mode2/config/mode2.yaml
/mpf_examples/config_players/modes/mode1/shows/mode1_show.yaml
/mpf_examples/config_players/modes/mode1/config/mode1.yaml
/mpf_examples/config_players/shows/show1.yaml

Mission Pinball Framework Documentation, Version

config_processor (example config files)

counters (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 131: your_machine_folder/counters/config/config.yaml

#config_version=5

lights:

l_chest_matrix_green_2:

number:

l_chest_matrix_green_3:

number:

l_chest_matrix_green_4:

number:

l_chest_matrix_green_5:

number:

modes:

- mode1

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 132: your_machine_folder/counters/modes/mode1/config/mode1.yaml

#config_version=5

counters:

my_counter:

starting_count: 0

count_complete_value: 5

count_events: count_up

light_player:

"{device.counters.my_counter.value > 0}":

l_chest_matrix_green_5: green

"{device.counters.my_counter.value > 1}":

l_chest_matrix_green_4: green

"{device.counters.my_counter.value > 2}":

l_chest_matrix_green_3: green

"{device.counters.my_counter.value > 3}":

l_chest_matrix_green_2: green

"{current_player.progress_value > 0}":

l_chest_matrix_green_5: green

config_processor (example config files) 1163

/mpf_examples/counters/config/config.yaml
/mpf_examples/counters/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

credits (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 133: your_machine_folder/credits/config/config_credit_tiers.yaml

#config_version=5

modes:

- credits

machine:

min_balls: 0

switches:

s_left_coin:

number:

s_right_coin:

number:

s_start:

number:

tags: start

credits:

max_credits: 30

free_play: no

switches:

- switch: s_left_coin

value: .25

- switch: s_right_coin

value: 1

pricing_tiers:

- price: .5

credits: 1

- price: 2

credits: 5

- price: 5

credits: 15

fractional_credit_expiration_time: 15m

credit_expiration_time: 2h

persist_credits_while_off_time: 1h

free_play_string: FREE PLAY

credits_string: CREDITS

Listing 134: your_machine_folder/credits/config/config.yaml

#config_version=5

(continues on next page)

credits (example config files) 1164

/mpf_examples/credits/config/config_credit_tiers.yaml
/mpf_examples/credits/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

modes:

- credits

machine:

min_balls: 0

switches:

s_left_coin:

number:

s_center_coin:

number:

s_right_coin:

number:

s_esc:

number:

s_start:

number:

tags: start

coils:

c_eject:

number:

settings:

replay_score:

label: Replay Score

values:

500000: "500000 (default)"

1000000: "1000000"

1500000: "1500000"

default: 500000

key_type: int

sort: 100

credits_price_one_credit:

label: Price for one credit

values:

.25: "25ct"

.5: "50ct"

.75: "75ct"

1: "1 dollar"

2: "2 dollar"

default: .5

key_type: float

sort: 500

credits_price_tier2:

label: Price for price tier 2

values:

.25: "25ct"

.5: "50ct"

.75: "75ct"

1: "1 dollar"

2: "2 dollar"

3: "3 dollar"

4: "4 dollar"

(continues on next page)

credits (example config files) 1165

Mission Pinball Framework Documentation, Version

(continued from previous page)

5: "5 dollar"

default: 2

key_type: float

sort: 510

credits_credits_tier2:

label: Number of credits for tier 2

values:

2: "2"

3: "3"

4: "4"

5: "5"

6: "6"

7: "7"

8: "8"

9: "9"

10: "10"

default: 5

key_type: int

sort: 520

credits:

max_credits: 12

free_play: no

service_credits_switch: s_esc

switches:

- switch: s_left_coin

type: money

value: .25

label: Left Quarter

- switch: s_center_coin

type: money

value: .25

label: Center Quarter

- switch: s_right_coin

type: money

value: 1

label: Right Dollar

events:

- event: game_ending{current_player.score > settings.replay_score}

type: award

credits: 1

pricing_tiers:

- price: settings.credits_price_one_credit

credits: 1

- price: settings.credits_price_tier2

credits: settings.credits_credits_tier2

fractional_credit_expiration_time: 15m

credit_expiration_time: 2h

persist_credits_while_off_time: 1h

free_play_string: FREE PLAY

credits_string: CREDITS

credits (example config files) 1166

Mission Pinball Framework Documentation, Version

Listing 135: your_machine_folder/credits/config/config_freeplay.yaml

#config_version=5

modes:

- credits

machine:

min_balls: 0

switches:

s_left_coin:

number:

s_center_coin:

number:

s_right_coin:

number:

s_esc:

number:

s_start:

number:

tags: start

coils:

c_eject:

number:

credits:

max_credits: 12

free_play: yes

service_credits_switch: s_esc

switches:

- switch: s_left_coin

type: money

value: .25

- switch: s_center_coin

type: money

value: .25

- switch: s_right_coin

type: money

value: 1

pricing_tiers:

- price: .50

credits: 1

- price: 2

credits: 5

fractional_credit_expiration_time: 15m

credit_expiration_time: 2h

persist_credits_while_off_time: 1h

free_play_string: FREE PLAY

credits_string: CREDITS

credits (example config files) 1167

/mpf_examples/credits/config/config_freeplay.yaml

Mission Pinball Framework Documentation, Version

Listing 136: your_machine_folder/credits/config/config_inhibit.yaml

#config_version=5

modes:

- credits

machine:

min_balls: 0

switches:

s_left_coin:

number:

s_start:

number:

tags: start

digital_outputs:

c_coin_inhibit:

type: driver

number:

credits:

max_credits: 4

free_play: no

switches:

- switch: s_left_coin

value: 1

coin_inhibit_disable_output: c_coin_inhibit

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 137: your_machine_folder/credits/modes/credits/config/config.yaml

#config_version=5

mode:

priority: 11000

start_events: machine_reset_phase_3

stop_on_ball_end: False

custom_code (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

custom_code (example config files) 1168

/mpf_examples/credits/config/config_inhibit.yaml
/mpf_examples/credits/modes/credits/config/config.yaml

Mission Pinball Framework Documentation, Version

Listing 138: your_machine_folder/custom_code/config/config.yaml

#config_version=5

custom_code:

- code.test_code.TestCustomCode

data_manager (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 139: your_machine_folder/data_manager/config/config.yaml

#config_version=5

mpf:

paths:

absolute_test: /data/test_dir/test_file.yaml

relative_test: subdir/subdir2/test.yaml

disabled_test: False

device (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 140: your_machine_folder/device/config/config.yaml

#config_version=5

lights:

light_01:

number: 0

label: Test 0

subtype: matrix

debug: True

light_02:

number: 1

label: Test 1

subtype: matrix

debug: True

(continues on next page)

data_manager (example config files) 1169

/mpf_examples/custom_code/config/config.yaml
/mpf_examples/data_manager/config/config.yaml
/mpf_examples/device/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

gi_01:

number: 1

subtype: gi

debug: True

gi_02:

number: 2

subtype: gi

debug: True

flasher_01:

number: flasher_01

platform: drivers

debug: True

flasher_02:

number: flasher_02

platform: drivers

debug: True

flasher_03:

number: flasher_03

platform: drivers

debug: True

coils:

flasher_01:

number: 4

label: Test flasher

default_pulse_ms: 40

max_hold_power: 1.0

flasher_02:

number: 5

label: Test flasher 2

default_pulse_ms: 100

max_hold_power: 1.0

flasher_03:

number: 6

max_hold_power: 1.0

show_player:

flash2:

flash_show:

action: play

show_tokens:

flashers: flasher_01, flasher_02

shows:

flash_show:

- flashers:

(flashers): 100ms

events: test

duration: 1s

flasher_player:

flash:

flasher_01: 100ms

device (example config files) 1170

Mission Pinball Framework Documentation, Version

Listing 141: your_machine_folder/device/config/config_dual_wound_coil.yaml

#config_version=5

coils:

c_hold:

number:

default_hold_power: 1.0

c_power:

number:

default_pulse_ms: 20

switches:

s_eos:

number:

dual_wound_coils:

c_test:

hold_coil: c_hold

main_coil: c_power

c_test_eos:

hold_coil: c_hold

main_coil: c_power

eos_switch: s_eos

Listing 142: your_machine_folder/device/config/coils.yaml

#config_version=5

coils:

coil_01:

number: 1

default_pulse_ms: 30

allow_enable: True

coil_02:

number: 2

default_pulse_ms: 60

coil_03:

number: 3

coil_max_hold_duration:

number: 4

default_hold_power: 0.5

max_hold_duration: 5s

coil_pulse_with_timed_enable:

number: 5

default_pulse_ms: 60

default_pulse_power: 0.25

default_hold_power: 0.5

default_timed_enable_ms: 200

pulse_with_timed_enable: true

device_collection (example config files)

device_collection (example config files) 1171

/mpf_examples/device/config/config_dual_wound_coil.yaml
/mpf_examples/device/config/coils.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 143: your_machine_folder/device_collection/config/test_device_collection.yaml

#config_version=5

lights:

led1:

number: 1

tags: tag1, tag2

led2:

number: 2

tags: tag1

led3:

number: 3

tags: tag2

led4:

number: 4

digital_output (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 144: your_machine_folder/digital_output/config/config.yaml

#config_version=5

digital_outputs:

light_output:

number: 1

type: light

light_subtype: test_subtype

driver_output:

number: 1

type: driver

digital_score_reels (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

digital_output (example config files) 1172

/mpf_examples/device_collection/config/test_device_collection.yaml
/mpf_examples/digital_output/config/config.yaml

Mission Pinball Framework Documentation, Version

Listing 145: your_machine_folder/digital_score_reels/config/test_digital_score_reels.yaml

#config_version=5

digital_score_reels:

player_score:

reel_count: 4

include_player_number: true

frames:

- character: 1

frame: 2

- character: 2

frame: 4

- character: 3

frame: 6

- character: 4

frame: 8

- character: 5

frame: 10

- character: 6

frame: 12

- character: 7

frame: 14

- character: 8

frame: 16

- character: 9

frame: 18

- character: 0

frame: 20

arbitrary_event:

reel_count: 3

start_value: X

frames:

- character: A

frame: 1

- character: B

frame: 2

- character: C

frame: 3

- character: D

frame: 4

- character: E

frame: 5

- character: X

frame: 6

display (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

display (example config files) 1173

/mpf_examples/digital_score_reels/config/test_digital_score_reels.yaml

Mission Pinball Framework Documentation, Version

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 146: your_machine_folder/display/config/test_display_multiple.yaml

#config_version=5

displays:

window:

width: 401

height: 301

display2:

width: 402

height: 302

default: true

Listing 147: your_machine_folder/display/config/test_display_single.yaml

#config_version=5

displays:

window:

width: 401

height: 301

Listing 148: your_machine_folder/display/config/test_display.yaml

#config_version=5

window:

width: 800

height: 600

title: Mission Pinball Framework - Demo Man

resizable: true

fullscreen: false

borderless: false

exit_on_escape: true

displays:

window:

width: 600

height: 200

dmd:

width: 128

height: 32

widget_styles:

text_default:

font_name: Quadrit

font_size: 10

adjust_top: 2

adjust_bottom: 3

medium:

font_name: pixelmix

font_size: 8

adjust_top: 1

adjust_bottom: 1
(continues on next page)

display (example config files) 1174

/mpfmc_examples/display/config/test_display_multiple.yaml
/mpfmc_examples/display/config/test_display_single.yaml
/mpfmc_examples/display/config/test_display.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

small:

font_name: smallest_pixel-7

font_size: 9

adjust_top: 2

adjust_bottom: 3

tall_title:

font_name: big_noodle_titling

font_size: 20

slides:

window_slide_1:

- type: display

width: 516

height: 128

source_display: dmd

effects:

- type: dmd

dot_color: ff5500

background_color: 220000

- type: text

style: tall_title

text: MISSION PINBALL FRAMEWORK

anchor_y: top

y: top-2

font_size: 30

color: white

- type: rectangle

width: 518

height: 130

color: 444444

- type: text

style: tall_title

text: DEMO MAN

anchor_x: right

anchor_y: bottom

y: bottom+2

x: right-42

font_size: 30

color: red

asset_status:

- type: text

text: "LOADING ASSETS"

slide_player:

mc_ready.1: window_slide_1

mc_ready.2:

asset_status:

target: dmd

display (example config files) 1175

Mission Pinball Framework Documentation, Version

Listing 149: your_machine_folder/display/config/test_display_none.yaml

#config_version=5

diverter (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 150: your_machine_folder/diverter/config/config.yaml

#config_version=5

coils:

eject_coil1:

number: 1

eject_coil2:

number: 2

c_diverter:

number: 3

default_hold_power: 0.250

c_diverter_disable:

number: 4

switches:

s_ball_switch1:

number: 1

s_ball_switch2:

number: 2

s_ball_switch3:

number: 100

s_diverter:

number: 3

s_playfield:

number: 4

tags: playfield_active

s_target1:

number: 5

s_target2:

number: 6

s_target3:

number: 7

playfields:

playfield:

default_source_device: test_target

tags: default
(continues on next page)

diverter (example config files) 1176

/mpfmc_examples/display/config/test_display_none.yaml
/mpf_examples/diverter/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_devices:

test_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3

confirm_eject_type: target

eject_targets: test_target, playfield

tags: trough, drain, home

test_target:

eject_coil: eject_coil2

ball_switches: s_target1, s_target2, s_target3

confirm_eject_type: target

eject_targets: playfield

virtual_platform_start_active_switches:

- s_ball_switch1

- s_ball_switch2

- s_ball_switch3

Listing 151: your_machine_folder/diverter/config/test_hold_activation_time.yaml

#config_version=5

config:

- config.yaml

diverters:

d_test_hold_activation_time:

activation_coil: c_diverter

activation_switches: s_diverter

type: hold

feeder_devices: test_trough

targets_when_active: playfield

targets_when_inactive: test_target

activation_time: 4s

debug: True

Listing 152: your_machine_folder/diverter/config/test_diverter_dual_wound_coil.yaml

#config_version=5

config:

- config.yaml

coils:

c_hold:

number: 5

c_power:

number: 6

dual_wound_coils:

c_dual_wound:

hold_coil: c_hold

(continues on next page)

diverter (example config files) 1177

/mpf_examples/diverter/config/test_hold_activation_time.yaml
/mpf_examples/diverter/config/test_diverter_dual_wound_coil.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

main_coil: c_power

diverters:

d_test_dual_wound:

activation_coil: c_dual_wound

activation_switches: s_diverter

type: hold

feeder_devices: test_trough

targets_when_active: playfield

targets_when_inactive: test_target

debug: True

Listing 153: your_machine_folder/diverter/config/test_diverter_auto_disable.yaml

#config_version=5

diverters:

d_test:

activation_coil: c_diverter

type: hold

debug: True

activation_switches: s_activate

disable_switches: s_disable

coils:

c_diverter:

number: 10

default_hold_power: 0.250

switches:

s_activate:

number: 1

s_disable:

number: 2

Listing 154: your_machine_folder/diverter/config/test_missing_ball_at_source.yaml

#config_version=5

config:

- config.yaml

diverters:

d_test:

activation_coil: c_diverter

feeder_devices: test_trough

targets_when_active: playfield

targets_when_inactive: test_target

activation_time: 4s

debug: True

diverter (example config files) 1178

/mpf_examples/diverter/config/test_diverter_auto_disable.yaml
/mpf_examples/diverter/config/test_missing_ball_at_source.yaml

Mission Pinball Framework Documentation, Version

Listing 155: your_machine_folder/diverter/config/test_eject_to_oposide_sides.yaml

#config_version=5

config:

- config.yaml

diverters:

d_test_hold:

activation_coil: c_diverter

type: hold

feeder_devices: test_trough, test_trough2

targets_when_active: playfield

targets_when_inactive: test_target

allow_multiple_concurrent_ejects_to_same_side: False

cool_down_time: 3s

debug: True

coils:

eject_coil3:

number: 10

switches:

s_ball_switch4:

number: 10

s_ball_switch5:

number: 11

ball_devices:

test_trough2:

eject_coil: eject_coil3

ball_switches: s_ball_switch4, s_ball_switch5

confirm_eject_type: target

eject_targets: test_target, playfield

tags: trough, drain, home

virtual_platform_start_active_switches:

- s_ball_switch4

- s_ball_switch5

Listing 156: your_machine_folder/diverter/config/diverter_with_activation_events.yaml

#config_version=5

coils:

test_coil:

number:

allow_enable: True

diverters:

test_diverter:

activation_coil: test_coil

type: hold

activate_events: activate_test_diverter

(continues on next page)

diverter (example config files) 1179

/mpf_examples/diverter/config/test_eject_to_oposide_sides.yaml
/mpf_examples/diverter/config/diverter_with_activation_events.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

enable_events: ball_started

disable_events: ball_ended

targets_when_active: playfield

targets_when_inactive: playfield

Listing 157: your_machine_folder/diverter/config/test_pulsed_activation_time.yaml

#config_version=5

config:

- config.yaml

diverters:

d_test_pulse:

activation_coil: c_diverter

deactivation_coil: c_diverter_disable

type: pulse

feeder_devices: test_trough

targets_when_active: playfield

targets_when_inactive: test_target

debug: True

Listing 158: your_machine_folder/diverter/config/test_eject_to_oposide_sides2.yaml

#config_version=5

config:

- config.yaml

diverters:

d_test_hold:

activation_coil: c_diverter

type: hold

feeder_devices: test_trough, test_trough2

targets_when_active: playfield

targets_when_inactive: test_target

allow_multiple_concurrent_ejects_to_same_side: False

cool_down_time: 3s

debug: True

coils:

eject_coil3:

number: 10

switches:

s_ball_switch4:

number: 10

s_ball_switch5:

number: 11

s_ball_switch6:

number: 12

ball_devices:

(continues on next page)

diverter (example config files) 1180

/mpf_examples/diverter/config/test_pulsed_activation_time.yaml
/mpf_examples/diverter/config/test_eject_to_oposide_sides2.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

test_trough2:

eject_coil: eject_coil3

ball_switches: s_ball_switch4, s_ball_switch5, s_ball_switch6

confirm_eject_type: target

eject_targets: test_target, playfield

tags: trough, drain, home

virtual_platform_start_active_switches:

- s_ball_switch4

- s_ball_switch5

- s_ball_switch6

Listing 159: your_machine_folder/diverter/config/test_delayed_eject.yaml

#config_version=5

config:

- config.yaml

diverters:

d_test_delayed_eject:

activation_coil: c_diverter

type: hold

feeder_devices: test_trough

targets_when_active: playfield

targets_when_inactive: test_target

activation_time: 4s

debug: True

Listing 160: your_machine_folder/diverter/config/test_hold_no_activation_time.yaml

#config_version=5

config:

- config.yaml

diverters:

d_test_hold:

activation_coil: c_diverter

activation_switches: s_diverter

type: hold

feeder_devices: test_trough

targets_when_active: playfield

targets_when_inactive: test_target

debug: True

Listing 161: your_machine_folder/diverter/config/test_activation_switch_and_eject_confirm_switch.yaml

#config_version=5

config:

- config.yaml

(continues on next page)

diverter (example config files) 1181

/mpf_examples/diverter/config/test_delayed_eject.yaml
/mpf_examples/diverter/config/test_hold_no_activation_time.yaml
/mpf_examples/diverter/config/test_activation_switch_and_eject_confirm_switch.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

diverters:

d_test_hold_activation_time:

activation_coil: c_diverter

activation_switches: s_diverter

type: hold

feeder_devices: test_trough2

targets_when_active: playfield

targets_when_inactive: test_target

activation_time: 4s

debug: True

coils:

eject_coil3:

number: 10

switches:

s_ball_switch10:

number:

s_ball_switch11:

number:

s_diverter:

number: 12

ball_devices:

test_trough2:

eject_coil: eject_coil3

ball_switches: s_ball_switch10, s_ball_switch11

confirm_eject_type: switch

confirm_eject_switch: s_diverter

eject_targets: test_target, playfield

tags: trough, drain, home

virtual_platform_start_active_switches:

- s_ball_switch10

- s_ball_switch11

Listing 162: your_machine_folder/diverter/config/only_events_no_coils.yaml

#config_version=5

config:

- config.yaml

diverters:

d_test_with_events:

debug: true

feeder_devices: test_trough

targets_when_active: playfield

targets_when_inactive: test_target

servos:

s_diverter:

number:

positions:
(continues on next page)

diverter (example config files) 1182

/mpf_examples/diverter/config/only_events_no_coils.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

0.7: diverter_d_test_with_events_activating

0.2: diverter_d_test_with_events_deactivating

steppers:

s_diverter:

number:

named_positions:

20: diverter_d_test_with_events_activating

400: diverter_d_test_with_events_deactivating

Listing 163: your_machine_folder/diverter/config/test_diverter_with_switch.yaml

#config_version=5

diverters:

d_test:

activation_coil: c_diverter

type: hold

debug: True

activation_switches: s_activate

deactivation_switches: s_deactivate

disable_switches: s_disable

coils:

c_diverter:

number: 10

default_hold_power: 0.250

switches:

s_activate:

number: 1

s_disable:

number: 2

s_deactivate:

number: 3

dmd (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 164: your_machine_folder/dmd/config/testRgbDmd.yaml

#config_version=5

rgb_dmds:

(continues on next page)

dmd (example config files) 1183

/mpf_examples/diverter/config/test_diverter_with_switch.yaml
/mpf_examples/dmd/config/testRgbDmd.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

test_dmd:

label: Test

hardware_brightness: settings.dmd_brightness

settings:

dmd_brightness:

label: DMD Brightness

values:

0.1: "10%"

0.25: "25%"

0.5: "50%"

0.75: "75%"

1.0: "100% (default)"

default: 1.0

key_type: float

sort: 100

Listing 165: your_machine_folder/dmd/config/testDmd.yaml

#config_version=5

dmds:

test_dmd:

label: Test

Listing 166: your_machine_folder/dmd/config/test_color_dmd.yaml

#config_version=5

displays:

default:

width: 800

height: 600

dmd:

width: 128

height: 32

slides:

slide1:

- type: display

width: 640

height: 160

source_display: dmd

effects:

- type: color_dmd

- type: text

text: COLOR DMD TEST

y: 200

- type: rectangle

width: 642

height: 162

color: gray

slide2:

(continues on next page)

dmd (example config files) 1184

/mpf_examples/dmd/config/testDmd.yaml
/mpfmc_examples/dmd/config/test_color_dmd.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: display

y: top - 25

anchor_y: top

width: 640

height: 160

source_display: dmd

effects:

- type: color_dmd

- type: display

width: 640

height: 160

source_display: dmd

effects:

- type: dmd

- type: display

y: bottom + 25

anchor_y: bottom

width: 640

height: 160

source_display: dmd

effects:

- type: scanlines

- type: monochrome

dmd_slide:

- type: text

text: DMD TEXT

anchor_x: center

x: 128

animations:

show_slide:

- property: x

value: 10%

duration: .25s

- property: x

value: 35%

repeat: true

duration: 250ms

- type: rectangle

width: 8

height: 32

color: red

x: 4

- type: rectangle

width: 8

height: 32

color: orange

x: 12

- type: rectangle

width: 8

height: 32

color: yellow

x: 20

- type: rectangle

width: 8

(continues on next page)

dmd (example config files) 1185

Mission Pinball Framework Documentation, Version

(continued from previous page)

height: 32

color: green

x: 28

- type: rectangle

width: 8

height: 32

color: blue

x: 36

- type: rectangle

width: 8

height: 32

color: purple

x: 44

- type: rectangle

width: 8

height: 32

color: pink

x: 52

- type: rectangle

width: 8

height: 32

color: dddddd

x: 60

- type: rectangle

width: 8

height: 32

color: bbbbbb

x: 68

- type: rectangle

width: 8

height: 32

color: 888888

x: 76

- type: rectangle

width: 8

height: 32

color: 666666

x: 84

- type: rectangle

width: 8

height: 32

color: 444444

x: 92

- type: rectangle

width: 8

height: 32

color: 333333

x: 100

- type: rectangle

width: 8

height: 32

color: 222222

x: 108

- type: rectangle

(continues on next page)

dmd (example config files) 1186

Mission Pinball Framework Documentation, Version

(continued from previous page)

width: 8

height: 32

color: 111111

x: 116

- type: rectangle

width: 8

height: 32

color: 000000

x: 124

slide_player:

slide1: slide1

slide2: slide2

dmd_slide:

dmd_slide:

target: dmd

Listing 167: your_machine_folder/dmd/config/test_dmd.yaml

#config_version=5

displays:

default:

width: 800

height: 600

dmd:

width: 128

height: 32

widgets:

right_dmd_widget:

type: text

text: "Right Widget"

x: right

left_dmd_widget:

type: text

text: "Left Widget"

x: left

top_dmd_widget:

type: text

text: "Top Widget"

y: 100%

bottom_dmd_widget:

type: text

text: "Bottom Widget"

y: 0%

slides:

container_slide:

- type: display

width: 640

height: 160

source_display: dmd

effects:

- type: dmd

- type: text
(continues on next page)

dmd (example config files) 1187

/mpfmc_examples/dmd/config/test_dmd.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: TRADITIONAL DMD TEST

y: 200

- type: rectangle

width: 642

height: 162

color: gray

dmd_slide:

- type: text

text: DMD TEXT

anchor_x: center

x: 128

animations:

show_slide:

- property: x

value: 10%

duration: .25s

- property: x

value: 35%

repeat: true

duration: 250ms

- type: rectangle

width: 8

height: 32

color: ffffff

x: 4

- type: rectangle

width: 8

height: 32

color: eeeeee

x: 12

- type: rectangle

width: 8

height: 32

color: dddddd

x: 20

- type: rectangle

width: 8

height: 32

color: cccccc

x: 28

- type: rectangle

width: 8

height: 32

color: bbbbbb

x: 36

- type: rectangle

width: 8

height: 32

color: aaaaaa

x: 44

- type: rectangle

width: 8

height: 32

color: 999999

(continues on next page)

dmd (example config files) 1188

Mission Pinball Framework Documentation, Version

(continued from previous page)

x: 52

- type: rectangle

width: 8

height: 32

color: 888888

x: 60

- type: rectangle

width: 8

height: 32

color: 777777

x: 68

- type: rectangle

width: 8

height: 32

color: 666666

x: 76

- type: rectangle

width: 8

height: 32

color: 555555

x: 84

- type: rectangle

width: 8

height: 32

color: 444444

x: 92

- type: rectangle

width: 8

height: 32

color: 333333

x: 100

- type: rectangle

width: 8

height: 32

color: 222222

x: 108

- type: rectangle

width: 8

height: 32

color: 111111

x: 116

- type: rectangle

width: 8

height: 32

color: 000000

x: 124

slide_player:

container_slide: container_slide

dmd_slide:

dmd_slide:

target: dmd

show_gamma_test: dmd_gamma_test

(continues on next page)

dmd (example config files) 1189

Mission Pinball Framework Documentation, Version

(continued from previous page)

widget_player:

position_widget_right:

right_dmd_widget:

target: dmd

position_widget_left:

left_dmd_widget:

target: dmd

position_widget_top:

top_dmd_widget:

target: dmd

position_widget_bottom:

bottom_dmd_widget:

target: dmd

drop_targets (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 168: your_machine_folder/drop_targets/config/test_multiple_drop_resets_on_startup.yaml

#config_version=5

switches:

switch1:

number:

coils:

coil1:

number:

drop_targets:

m1:

debug: True

switch: switch1

drop_target_banks:

multiple_resets_on_game_start:

drop_targets: m1

reset_coils: coil1

reset_events:

game_started.0: 0

game_started.1: 3s

game_started.2: 6s

drop_targets (example config files) 1190

/mpf_examples/drop_targets/config/test_multiple_drop_resets_on_startup.yaml

Mission Pinball Framework Documentation, Version

Listing 169: your_machine_folder/drop_targets/config/test_drop_targets.yaml

#config_version=5

switches:

switch1:

number:

switch2:

number:

switch3:

number:

switch4:

number:

switch5:

number:

switch6:

number:

switch7:

number:

switch8:

number:

switch9:

number:

switch10:

number:

switch11:

number:

coils:

coil1:

number:

coil2:

number:

coil3:

number:

coil4:

number:

default_hold_power: 0.250

coil5:

number:

coil6:

number:

coil7:

number:

modes:

- mode1

drop_targets:

left1:

debug: True

switch: switch1

left2:

debug: True

(continues on next page)

drop_targets (example config files) 1191

/mpf_examples/drop_targets/config/test_drop_targets.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

switch: switch2

left3:

debug: True

switch: switch3

left4:

debug: True

switch: switch4

left5:

debug: True

switch: switch5

left6:

debug: True

switch: switch6

reset_coil: coil2

knockdown_coil: coil3

knockdown_events: knock_knock

reset_events: reset_target

left7:

debug: True

reset_coil: coil4

switch: switch7

enable_keep_up_events: keep_up

disable_keep_up_events: no_more_keep_up

ignore_switch_ms: 100

max_reset_attempts: 3

right1:

switch: switch8

right2:

switch: switch9

center1:

switch: switch10

ball_search_order: 1

ignore_switch_ms: 1000

reset_events: reset_center1

reset_coil: coil6

knockdown_coil: coil7

knockdown_events: knockdown_center1

drop_target_banks:

left_bank:

debug: True

drop_targets: left1, left2, left3

reset_coils: coil1

reset_events:

drop_target_bank_left_bank_down: 1s

right_bank:

drop_targets: right1, right2

reset_coils: coil5

ignore_switch_ms: 1000

reset_events: reset_right_bank

drop_targets (example config files) 1192

Mission Pinball Framework Documentation, Version

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 170: your_machine_folder/drop_targets/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

game_mode: False

drop_target_banks:

left_bank_2:

drop_targets: left4, left5, left6

reset_coils: coil2

reset_on_complete: 1s

event_manager (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 171: your_machine_folder/event_manager/config/test_event_manager.yaml

#config_version=5

event_player:

test_event_player1:

- test_event_player2

- test_event_player3

test_event_player_delayed:

- test_event_player2|2s

- test_event_player3:2s

random_event_player:

test_random_event_player1:

events:

- test_random_event_player2

- test_random_event_player3

scope: machine

modes:

- test_mode

- game_mode

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

event_manager (example config files) 1193

/mpf_examples/drop_targets/modes/mode1/config/mode1.yaml
/mpf_examples/event_manager/config/test_event_manager.yaml

Mission Pinball Framework Documentation, Version

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 172: your_machine_folder/event_manager/modes/test_mode/config/test_mode.yaml

#config_version=5

mode:

start_events: test_mode_start

stop_events: test_mode_end

game_mode: False

event_player:

test_event_player_mode1:

- test_event_player_mode2

- test_event_player_mode3

random_event_player:

test_random_event_player_mode1:

scope: machine

events:

- test_random_event_player_mode2

- test_random_event_player_mode3

test_random_event_player_weighted:

scope: machine

force_different: False

force_all: False

events:

out3: 1

out4: 1000

Listing 173: your_machine_folder/event_manager/modes/game_mode/config/game_mode.yaml

#config_version=5

mode:

start_events: game_mode_start

stop_events: game_mode_end

random_event_player:

test_random_event_player_mode2:

- out1

- out2

event_players (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

event_players (example config files) 1194

/mpf_examples/event_manager/modes/test_mode/config/test_mode.yaml
/mpf_examples/event_manager/modes/game_mode/config/game_mode.yaml

Mission Pinball Framework Documentation, Version

Listing 174: your_machine_folder/event_players/config/test_event_player.yaml

#config_version=5

modes:

- mode1

event_player:

play_express_single: event1

play_express_multiple: event1, event2

play_single_list:

- event1

play_single_string:

event1

play_multiple_list:

- event1

- event2

- event3

play_multiple_string:

event1, event2, event3

play_multiple_args2:

event1:

a: b

c: d

play_multiple_args:

event1: {"a": "b"}

event2: {}

event3: {"a": 1, "b": 2}

test_conditional{arg.abc==1}: condition_ok

test_conditional.2{arg.abc==1}: condition_ok2

test_conditional.3: priority_ok

test_time_delay1: td1|1500ms

test_time_delay2: td2|1.5s

test_conditional_mode{mode.mode1.active}: mode1_active

test_conditional_mode{not mode.mode1.active}: mode1_not_active

test_conditional_handlers:

- event_always

- event_if_modeactive{mode.mode1.active}

- event_if_modestopping{mode.mode1.stopping}

test_conditional_multiples:

conditional_response{value==0}:

amount: zero

conditional_response{value==1}:

amount: one

conditional_response{value>1}:

amount: greater

play_placeholder_event:

- my_event_(machine.test)_123

play_placeholder_args:

loaded_event_int:

foo:

value: machine.testint

type: int

loaded_event_float:

(continues on next page)

event_players (example config files) 1195

/mpf_examples/event_players/config/test_event_player.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

foo:

value: machine.testfloat

type: float

loaded_event_bool:

foo:

value: machine.testbool

type: bool

loaded_event_string:

foo:

value: machine.teststring

type: string

loaded_event_notype:

foo:

value: machine.testnotype

play_event_with_kwargs:

- event_always

- event_(name)

play_event_with_param_kwargs:

event_with_param_kwargs:

foo:

value: (result)

type: string

maths:

value: 5 * (initial)

type: int

shows:

test_event_show:

- events:

- event1

- event2

- event3

Listing 175: your_machine_folder/event_players/config/test_queue_event_player.yaml

#config_version=5

modes:

- mode1

queue_event_player:

play:

queue_event: queue_event1

events_when_finished: queue_event1_finished

queue_relay_player:

relay.1:

post: relay_start

wait_for: relay_done

relay:

post: relay2_start

wait_for: relay2_done

relay_with_args:

post: relay_with_args_start
(continues on next page)

event_players (example config files) 1196

/mpf_examples/event_players/config/test_queue_event_player.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

wait_for: relay_with_args_done

pass_args: True

Listing 176: your_machine_folder/event_players/config/test_random_event_player.yaml

#config_version=5

modes:

- mode2

game:

balls_per_game: 1

switches:

s_ball:

number:

coils:

c_eject:

number:

playfields:

playfield:

default_source_device: s_trough

tags: default

ball_devices:

s_trough:

ball_switches: s_ball

eject_coil: c_eject

tags: trough, drain, home

random_event_player:

test_machine_force_different:

scope: machine

force_different: true

events:

- event1

- event2

- event3

- event4

test_machine_force_all:

scope: machine

force_all: true

events:

- event1

- event2

- event3

- event4

test_machine_disable_random:

scope: machine

disable_random: true

events:

- event1
(continues on next page)

event_players (example config files) 1197

/mpf_examples/event_players/config/test_random_event_player.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- event2

- event3

- event4

test_machine_conditional_random:

scope: machine

events:

- event1{False==True}

- event2{True==True}

- event3{event_arg=="foo"}

- event4{machine.settings.foo=="bar"}

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 177: your_machine_folder/event_players/modes/mode2/config/mode2.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

random_event_player:

test_player_force_different:

force_different: true

events:

- event1

- event2

- event3

- event4

test_player_force_all:

force_all: true

events:

- event1

- event2

- event3

- event4

test_player_disable_random:

disable_random: true

events:

- event1

- event2

- event3

- event4

Listing 178: your_machine_folder/event_players/modes/mode1/config/mode1.yaml

#config_version=5

mode:

(continues on next page)

event_players (example config files) 1198

/mpf_examples/event_players/modes/mode2/config/mode2.yaml
/mpf_examples/event_players/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

game_mode: False

queue_relay_player:

relay3:

post: relay3_start

wait_for: relay3_done

extra_ball (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 179: your_machine_folder/extra_ball/config/config.yaml

#config_version=5

modes:

- mode1

playfields:

playfield:

default_source_device: bd_launcher

tags: default

coils:

eject_coil1:

number:

eject_coil2:

number:

switches:

s_trough1:

number:

s_trough2:

number:

s_ball_switch_launcher:

number:

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_trough1, s_trough2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

(continues on next page)

extra_ball (example config files) 1199

/mpf_examples/extra_ball/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

debug: true

confirm_eject_type: target

eject_timeouts: 2s

extra_ball_groups:

main:

enabled: yes

award_events: award_group_eb

max_lit: 1

max_per_ball: 2

disabled_eb:

enabled: no

no_memory:

lit_memory: false

max_per_game: 2

event_player:

ball_started{current_player.ball==1 and not is_extra_ball}: first_ball

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 180: your_machine_folder/extra_ball/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

extra_balls:

eb1:

award_events: award_eb1

max_per_game: 1

eb2:

light_events: light_eb2

max_per_game: 2

eb3:

award_events: award_eb3

enabled: false

eb4:

light_events: light_eb4

enabled: false

eb5:

award_events: award_eb5

light_events: light_eb5

group: main

eb6:

light_events: light_eb6

group: main

eb7:

light_events: light_eb7

(continues on next page)

extra_ball (example config files) 1200

/mpf_examples/extra_ball/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

group: main

eb8:

light_events: light_eb8

award_events: award_eb8

group: disabled_eb

eb9:

group: no_memory

light_events: light_eb9

award_events: award_eb9

max_per_game: None

fast (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 181: your_machine_folder/fast/config/error_lights.yaml

#config_version=5

hardware:

platform: fast

fast:

driverboards: fast

ports: com3, com4, com5, com6

debug: true

lights:

test_led:

start_channel: 3

type: rgb

test_led1:

previous: test_led

type: rgb

Listing 182: your_machine_folder/fast/config/config.yaml

#config_version=5

hardware:

platform: fast

fast:

driverboards: fast

ports: com3, com4, com5, com6

(continues on next page)

fast (example config files) 1201

/mpf_examples/fast/config/error_lights.yaml
/mpf_examples/fast/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

debug: true

firmware_updates:

- type: net

version: "2.04"

file: "firmware/FAST_NET_01_04_00.txt"

switches:

s_test:

number: 7

platform_settings:

debounce_open: 26

debounce_close: 5

s_test_nc:

number: 26

type: 'NC'

s_slingshot_test:

number: 22

s_flipper:

number: 1

s_flipper_eos:

number: 2

s_autofire:

number: 3

s_test3:

number: 3-1

s_nux_up:

number: 0-11

s_nux_down:

number: 0-12

digital_outputs:

c_nux_motor:

number: 0-1

type: driver

motors:

motorized_drop_target_bank:

motor_left_output: c_nux_motor

position_switches: !!omap

- up: s_nux_up

- down: s_nux_down

reset_position: up

go_to_position:

go_up: up

go_down: down

coils:

c_test:

number: 4

default_pulse_ms: 23

default_recycle: True

platform_settings:

recycle_ms: 27

c_test_allow_enable:

(continues on next page)

fast (example config files) 1202

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 6

default_pulse_ms: 23

max_hold_power: 1.0

c_slingshot_test:

number: 7

c_pulse_pwm32_mask:

number: 17

default_pulse_power: 0.53

default_hold_power: 0.40

c_hold_ssm:

number: 19

default_hold_power: 0.25 # approximately

platform_settings:

hold_pwm_patter: "84224244"

c_long_pulse:

number: 18

default_pulse_ms: 2000

max_hold_power: 1.0

c_timed_enable:

number: 22

default_pulse_ms: 20

default_timed_enable_ms: 200

default_hold_power: 0.25

c_default_timed_enable:

number: 23

default_pulse_ms: 20

default_timed_enable_ms: 200

default_hold_power: 0.25

pulse_with_timed_enable: true

c_flipper_main:

number: 32

default_pulse_ms: 10

default_hold_power: 0.125

c_flipper_hold:

number: 3-5

default_hold_power: 0.125

autofire_coils:

ac_slingshot_test:

coil: c_slingshot_test

switch: s_slingshot_test

ac_inverted_switch:

coil: c_slingshot_test

switch: s_test_nc

ac_same_switch1:

coil: c_test

switch: s_autofire

enable_events: ac_same_switch

ac_same_switch2:

coil: c_test_allow_enable

switch: s_autofire

enable_events: ac_same_switch

ac_broken_combination:

coil: c_flipper_hold

(continues on next page)

fast (example config files) 1203

Mission Pinball Framework Documentation, Version

(continued from previous page)

switch: s_slingshot_test

ac_different_boards:

coil: c_flipper_hold

switch: s_test

ac_board_3:

coil: c_flipper_hold

switch: s_test3

servos:

servo1:

number: 3

servo20:

number: 3-2

flippers:

f_test_single:

debug: true

main_coil_overwrite:

pulse_ms: 11

main_coil: c_flipper_main

activation_switch: s_flipper

f_test_hold:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

f_test_hold_eos:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

eos_switch: s_flipper_eos

use_eos: true

lights:

test_pdb_light:

number: 35

subtype: matrix

test_gi:

number: 42

subtype: gi

test_led:

number: 2-23

type: grb

test_led2:

previous: test_led

type: grb

l_o_circle:

number: 0-10

type: grb

fast (example config files) 1204

Mission Pinball Framework Documentation, Version

Listing 183: your_machine_folder/fast/config/config_v1.yaml

#config_version=5

hardware:

platform: fast

fast:

driverboards: fast

ports: com3, com4, com5, com6

debug: true

firmware_updates:

- type: net

version: "1.04"

file: "firmware/FAST_NET_01_04_00.txt"

switches:

s_test:

number: 7

platform_settings:

debounce_open: 26

debounce_close: 5

s_test_nc:

number: 26

type: 'NC'

s_slingshot_test:

number: 22

s_flipper:

number: 1

s_flipper_eos:

number: 2

s_autofire:

number: 3

s_test3:

number: 3-1

s_nux_up:

number: 0-11

s_nux_down:

number: 0-12

digital_outputs:

c_nux_motor:

number: 0-1

type: driver

motors:

motorized_drop_target_bank:

motor_left_output: c_nux_motor

position_switches: !!omap

- up: s_nux_up

- down: s_nux_down

reset_position: up

go_to_position:

go_up: up

(continues on next page)

fast (example config files) 1205

/mpf_examples/fast/config/config_v1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

go_down: down

coils:

c_test:

number: 4

default_pulse_ms: 23

default_recycle: True

platform_settings:

recycle_ms: 27

c_test_allow_enable:

number: 6

default_pulse_ms: 23

max_hold_power: 1.0

c_slingshot_test:

number: 7

c_pulse_pwm32_mask:

number: 17

default_pulse_power: 0.53

default_hold_power: 0.40

c_hold_ssm:

number: 19

default_hold_power: 0.25 # approximately

platform_settings:

hold_pwm_patter: "84224244"

c_long_pulse:

number: 18

default_pulse_ms: 2000

max_hold_power: 1.0

c_timed_enable:

number: 22

default_pulse_ms: 20

default_timed_enable_ms: 200

default_hold_power: 0.25

c_default_timed_enable:

number: 23

default_pulse_ms: 20

default_timed_enable_ms: 200

default_hold_power: 0.25

pulse_with_timed_enable: true

c_flipper_main:

number: 32

default_pulse_ms: 10

default_hold_power: 0.125

c_flipper_hold:

number: 3-5

default_hold_power: 0.125

autofire_coils:

ac_slingshot_test:

coil: c_slingshot_test

switch: s_slingshot_test

ac_inverted_switch:

coil: c_slingshot_test

switch: s_test_nc

(continues on next page)

fast (example config files) 1206

Mission Pinball Framework Documentation, Version

(continued from previous page)

ac_same_switch1:

coil: c_test

switch: s_autofire

enable_events: ac_same_switch

ac_same_switch2:

coil: c_test_allow_enable

switch: s_autofire

enable_events: ac_same_switch

ac_broken_combination:

coil: c_flipper_hold

switch: s_slingshot_test

ac_different_boards:

coil: c_flipper_hold

switch: s_test

ac_board_3:

coil: c_flipper_hold

switch: s_test3

servos:

servo1:

number: 3

servo20:

number: 3-2

flippers:

f_test_single:

debug: true

main_coil_overwrite:

pulse_ms: 11

main_coil: c_flipper_main

activation_switch: s_flipper

f_test_hold:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

f_test_hold_eos:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

eos_switch: s_flipper_eos

use_eos: true

lights:

test_pdb_light:

number: 35

subtype: matrix

test_gi:

number: 42

subtype: gi

test_led:

(continues on next page)

fast (example config files) 1207

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 2-23

type: grb

test_led2:

previous: test_led

type: grb

l_o_circle:

number: 0-10

type: grb

flippers (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 184: your_machine_folder/flippers/config/hold_no_eos.yaml

#config_version=5

hardware:

platform: fast

driverboards: fast

switches:

s_left_flipper:

number: 0-0

tags: left_flipper

s_right_flipper:

number: 0-1

tags: right_flipper

coils:

c_flipper_left_main:

number: 0-0

default_pulse_ms: 30

c_flipper_left_hold:

number: 0-1

default_hold_power: 1.0

c_flipper_right_main:

number: 0-2

default_pulse_ms: 30

c_flipper_right_hold:

number: 0-3

default_hold_power: 1.0

flippers:

left_flipper:

(continues on next page)

flippers (example config files) 1208

/mpf_examples/flippers/config/hold_no_eos.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_left_flipper

enable_events: machine_reset_phase_3

right_flipper:

main_coil: c_flipper_right_main

hold_coil: c_flipper_right_hold

activation_switch: s_right_flipper

enable_events: machine_reset_phase_3

Listing 185: your_machine_folder/flippers/config/config.yaml

#config_version=5

game:

balls_per_game: 1

coils:

c_flipper_main:

number:

default_pulse_ms: 10

default_hold_power: 0.125

c_flipper_hold:

number:

default_hold_power: 1.0

switches:

s_flipper:

number: 1

tags: left_flipper

s_flipper_eos:

number: 2

flippers:

f_test_single:

debug: true

main_coil: c_flipper_main

activation_switch: s_flipper

sw_flip_events: flip_single

sw_release_events: release_single

f_test_hold:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

f_test_hold_eos:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

eos_switch: s_flipper_eos
(continues on next page)

flippers (example config files) 1209

/mpf_examples/flippers/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

use_eos: true

sw_flip_events: flip_hold

sw_release_events: release_hold

f_test_flippers_with_settings:

debug: true

main_coil: c_flipper_main

power_setting_name: flipper_power

activation_switch: s_flipper

Listing 186: your_machine_folder/flippers/config/software_eos_repulse.yaml

#config_version=5

hardware:

platform: fast

driverboards: fast

switches:

s_flipper_single:

number: 0-0

s_flipper_single_eos:

number: 0-1

s_flipper_dual_wound:

number: 0-2

s_flipper_dual_wound_eos:

number: 0-3

coils:

c_flipper_single_main:

number: 0-0

default_pulse_ms: 30

default_hold_power: .3

c_flipper_dual_wound_hold:

number: 0-1

default_hold_power: 1.0

c_flipper_dual_wound_main:

number: 0-2

default_pulse_ms: 30

flippers:

single_flipper:

main_coil: c_flipper_single_main

activation_switch: s_flipper_single

eos_switch: s_flipper_single_eos

use_eos: true

repulse_on_eos_open: true

enable_events: enable_flipper_single

disable_events: disable_flipper_single

dual_wound_flipper:

main_coil: c_flipper_dual_wound_main

hold_coil: c_flipper_dual_wound_hold

activation_switch: s_flipper_dual_wound

eos_switch: s_flipper_dual_wound_eos
(continues on next page)

flippers (example config files) 1210

/mpf_examples/flippers/config/software_eos_repulse.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

use_eos: true

repulse_on_eos_open: true

enable_events: enable_flipper_dual_wound

disable_events: disable_flipper_dual_wound

fonts (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 187: your_machine_folder/fonts/config/built_in_dmd_fonts.yaml

#config_version=5

displays:

window:

width: 800

height: 600

dmd:

width: 128

height: 32

default: yes

slides:

window:

- type: display

width: 640

height: 160

effects:

type: dmd

- type: text

text: DMD FONT & POSITIONING TEST

font_size: 50

y: 410

- type: rectangle

width: 642

height: 162

color: gray

dmd_small:

- type: text

style: small

text: DMD_SMALL

anchor_y: top

y: top

- type: text

style: small

text: DMD_SMALL

anchor_y: bottom

y: bottom

(continues on next page)

fonts (example config files) 1211

/mpfmc_examples/fonts/config/built_in_dmd_fonts.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

dmd_med:

- type: text

style: medium

text: DMD_MED

anchor_y: top

y: top

- type: text

style: medium

text: DMD_MED

anchor_y: bottom

y: bottom

dmd_big:

- type: text

style: big

text: DMD_BIG

anchor_y: top

y: top

- type: text

style: big

text: DMD_BIG

anchor_y: bottom

y: bottom

slide_player:

window_slide:

window:

target: window

dmd_small: dmd_small

dmd_med: dmd_med

dmd_big: dmd_big

game (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 188: your_machine_folder/game/config/config.yaml

#config_version=5

game:

balls_per_game: 3

start_game_event: start_my_game

add_player_event: add_my_player

machine:

(continues on next page)

game (example config files) 1212

/mpf_examples/game/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

min_balls: 2

balls_installed: 2

coils:

eject_coil1:

number:

eject_coil2:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

s_ball_switch_launcher:

number:

playfields:

playfield:

default_source_device: bd_launcher

tags: default

enable_ball_search: True

second_playfield:

default_source_device: bd_launcher

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_targets: playfield, second_playfield

eject_timeouts: 2s

Listing 189: your_machine_folder/game/config/config_with_balls.yaml

#config_version=5

config:

- config.yaml

virtual_platform_start_active_switches:
(continues on next page)

game (example config files) 1213

/mpf_examples/game/config/config_with_balls.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- s_ball_switch1

head2head (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 190: your_machine_folder/head2head/config/config.yaml

#config_version=5

playfields:

playfield: # remove default playfield

_delete: True

playfield_front:

label: Playfield Front

default_source_device: bd_feeder_front

playfield_back:

label: Playfield Back

default_source_device: bd_feeder_back

switches:

s_trough1_front:

number:

s_trough2_front:

number:

s_trough3_front:

number:

s_trough4_front:

number:

s_trough1_back:

number:

s_trough2_back:

number:

s_trough3_back:

number:

s_trough4_back:

number:

s_launcher_lane_front:

number:

s_launcher_lane_back:

number:

s_middle_front1:

number:

s_middle_back1:

number:

s_feeder_front:

number:

s_feeder_back:

(continues on next page)

head2head (example config files) 1214

/mpf_examples/head2head/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

s_launcher_diverter_front:

number:

s_launcher_diverter_back:

number:

s_transfer_front_back:

number:

s_transfer_back_front:

number:

s_playfield_front:

number:

tags: playfield_front_active

s_playfield_back:

number:

tags: playfield_back_active

coils:

c_trough_eject_front:

number:

c_trough_eject_back:

number:

c_launcher_eject_front:

number:

c_launcher_eject_back:

number:

c_lock_figur_front:

number:

default_hold_power: 0.125

c_lock_figur_back:

number:

default_hold_power: 0.125

c_feeder_front:

number:

default_hold_power: 0.125

c_feeder_back:

number:

default_hold_power: 0.125

ball_devices:

bd_trough_front:

ball_switches: s_trough1_front, s_trough2_front, s_trough3_front, s_trough4_front

eject_coil: c_trough_eject_front

eject_targets: bd_launcher_front

tags: trough, home, drain

captures_from: playfield_front

ball_missing_target: playfield_front

debug: true

bd_trough_back:

ball_switches: s_trough1_back, s_trough2_back, s_trough3_back, s_trough4_back

eject_coil: c_trough_eject_back

eject_targets: bd_launcher_back

tags: trough, home, drain

captures_from: playfield_back

ball_missing_target: playfield_back

(continues on next page)

head2head (example config files) 1215

Mission Pinball Framework Documentation, Version

(continued from previous page)

debug: true

bd_launcher_front:

ball_switches: s_launcher_lane_front

confirm_eject_type: switch

confirm_eject_switch: s_launcher_diverter_back

eject_coil: c_launcher_eject_front

eject_targets: bd_feeder_back, bd_trough_back

captures_from: playfield_front

ball_missing_target: playfield_back

debug: true

bd_launcher_back:

ball_switches: s_launcher_lane_back

confirm_eject_type: switch

confirm_eject_switch: s_launcher_diverter_front

eject_coil: c_launcher_eject_back

eject_targets: bd_feeder_front, bd_trough_front

captures_from: playfield_back

ball_missing_target: playfield_front

debug: true

bd_middle_front:

hold_switches: s_middle_front1

ball_switches: s_middle_front1

confirm_eject_type: target

hold_coil: c_lock_figur_front

eject_targets: playfield_front

captures_from: playfield_back

ball_missing_target: playfield_front

target_on_unexpected_ball: playfield_front

debug: true

bd_middle_back:

hold_switches: s_middle_back1

ball_switches: s_middle_back1

confirm_eject_type: target

hold_coil: c_lock_figur_back

eject_targets: playfield_back

captures_from: playfield_front

ball_missing_target: playfield_back

target_on_unexpected_ball: playfield_back

debug: true

bd_feeder_front:

ball_switches: s_feeder_front

hold_switches: s_feeder_front

hold_coil: c_feeder_front

eject_targets: playfield_front

captures_from: playfield_front

ball_missing_target: playfield_front

eject_timeouts: 2s

debug: true

bd_feeder_back:

ball_switches: s_feeder_back

hold_switches: s_feeder_back

hold_coil: c_feeder_back

eject_targets: playfield_back

captures_from: playfield_back

(continues on next page)

head2head (example config files) 1216

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_missing_target: playfield_back

eject_timeouts: 2s

debug: true

playfield_transfers:

transfer_front_back:

ball_switch: s_transfer_front_back

captures_from: playfield_front

eject_target: playfield_back

transfer_back_front:

ball_switch: s_transfer_back_front

captures_from: playfield_back

eject_target: playfield_front

high_score (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 191: your_machine_folder/high_score/config/high_score.yaml

#config_version=5

modes:

- high_score

- tilt

switches:

s_tilt:

tags: tilt_warning

number:

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 192: your_machine_folder/high_score/modes/high_score/config/high_score.yaml

#config_version=5

high_score:

_overwrite: True

categories: !!omap

- score:

- GRAND CHAMPION

- HIGH SCORE 1

- HIGH SCORE 2

- HIGH SCORE 3

- HIGH SCORE 4
(continues on next page)

high_score (example config files) 1217

/mpf_examples/high_score/config/high_score.yaml
/mpf_examples/high_score/modes/high_score/config/high_score.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- loops:

- LOOP CHAMP

defaults:

score:

- BRI: 4242

- GHK: 2323

- JK: 1337

- QC: 42

- MPF: 23

loops:

- JK: 42

high_score_reverse (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 193: your_machine_folder/high_score_reverse/config/high_score.yaml

#config_version=5

modes:

- high_score

- tilt

switches:

s_tilt:

tags: tilt_warning

number:

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 194: your_machine_folder/high_score_reverse/modes/high_score/config/high_score.yaml

#config_version=5

high_score:

_overwrite: True

categories: !!omap

- score:

- GRAND CHAMPION

- HIGH SCORE 1

- HIGH SCORE 2

- HIGH SCORE 3

- HIGH SCORE 4

- loops:

- LOOP CHAMP
(continues on next page)

high_score_reverse (example config files) 1218

/mpf_examples/high_score_reverse/config/high_score.yaml
/mpf_examples/high_score_reverse/modes/high_score/config/high_score.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- time_to_wizard:

- FASTEST WIZARD

- ALMOST FASTEST WIZARD

defaults:

score:

- BRI: 4242

- GHK: 2323

- JK: 1337

- QC: 42

- MPF: 23

loops:

- JK: 42

time_to_wizard:

- JK: 300

- BM: 350

reverse_sort:

- time_to_wizard

i2c_servo_controller (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 195: your_machine_folder/i2c_servo_controller/config/config.yaml

#config_version=5

hardware:

servo_controllers: i2c_servo_controller

servos:

servo1:

number: 3

servo2:

number: bus1-64-7

servo3:

number: 4

info_lights (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

i2c_servo_controller (example config files) 1219

/mpf_examples/i2c_servo_controller/config/config.yaml

Mission Pinball Framework Documentation, Version

Listing 196: your_machine_folder/info_lights/config/config.yaml

#config_version=5

machine:

min_balls: 0

switches:

s_start:

number: 1

tags: start

lights:

match00:

number:

subtype: matrix

match10:

number:

subtype: matrix

match20:

number:

subtype: matrix

match30:

number:

subtype: matrix

match40:

number:

subtype: matrix

match50:

number:

subtype: matrix

match60:

number:

subtype: matrix

match70:

number:

subtype: matrix

match80:

number:

subtype: matrix

match90:

number:

subtype: matrix

bip1:

number:

subtype: matrix

bip2:

number:

subtype: matrix

bip3:

number:

subtype: matrix

player1:

number:

(continues on next page)

info_lights (example config files) 1220

/mpf_examples/info_lights/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

subtype: matrix

player2:

number:

subtype: matrix

tilt:

number:

gameOver:

number:

info_lights:

match_00:

light: match00

match_10:

light: match10

match_20:

light: match20

match_30:

light: match30

match_40:

light: match40

match_50:

light: match50

match_60:

light: match60

match_70:

light: match70

match_80:

light: match80

match_90:

light: match90

ball_1:

light: bip1

ball_2:

light: bip2

ball_3:

light: bip3

player_1:

light: player1

player_2:

light: player2

tilt:

light: tilt

game_over:

light: gameOver

keyboard (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

keyboard (example config files) 1221

Mission Pinball Framework Documentation, Version

Listing 197: your_machine_folder/keyboard/config/test_keyboard.yaml

#config_version=5

keyboard:

a:

switch: switch_a

b:

switch: switch_b

toggle: true

c:

switch: switch_c

invert: true

d:

event: event_d

e:

event: event_e

params:

foo: bar

mission: pinball

f:

mc_event: event_f

g:

mc_event: event_g

params:

foo: bar

mission: pinball

shift-a:

switch: shift_a

shift+b:

switch: shift_b

shift-ctrl-c:

switch: shift_ctrl_c

1:

switch: switch_1

.:

switch: switch_period

/:

switch: switch_slash

kickback (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 198: your_machine_folder/kickback/config/config.yaml

#config_version=5

coils:

(continues on next page)

kickback (example config files) 1222

/mpfmc_examples/keyboard/config/test_keyboard.yaml
/mpf_examples/kickback/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

kickback_coil:

number:

default_pulse_ms: 100

switches:

s_kickback:

number:

kickbacks:

kickback_test:

coil: kickback_coil

switch: s_kickback

enable_events: kickback_enable

disable_events: kickback_kickback_test_fired

ball_saves:

kickback_save:

balls_to_save: 1

active_time: 5s

enable_events: kickback_kickback_test_fired

light (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 199: your_machine_folder/light/config/lights_on_drivers.yaml

#config_version=5

hardware:

platform: virtual

coils:

coil_01:

number: 1

allow_enable: True

lights:

light_on_driver:

number: coil_01

platform: drivers

debug: True

light (example config files) 1223

/mpf_examples/light/config/lights_on_drivers.yaml

Mission Pinball Framework Documentation, Version

Listing 200: your_machine_folder/light/config/light_default_color_correction.yaml

#config_version=5

light_settings:

default_color_correction_profile: correction_profile_1

color_correction_profiles:

correction_profile_1:

gamma: 1

whitepoint: [0.9, 0.8, 0.7]

linear_slope: 0.75

linear_cutoff: 0.1

lights:

led1:

number: 1

Listing 201: your_machine_folder/light/config/matrix_lights.yaml

#config_version=5

lights:

light_01:

number: 0

subtype: matrix

debug: True

light_02:

number: 1

subtype: matrix

debug: True

Listing 202: your_machine_folder/light/config/light.yaml

#config_version=5

light_settings:

color_correction_profiles:

correction_profile_1:

gamma: 1

whitepoint: [0.9, 0.8, 0.7]

linear_slope: 0.75

linear_cutoff: 0.1

named_colors:

jans_red: [251, 23, 42]

lights:

led1:

number: 1

default_on_color: red

debug: True

x: 0.4

y: 0.5

z: 0

led2:
(continues on next page)

light (example config files) 1224

/mpf_examples/light/config/light_default_color_correction.yaml
/mpf_examples/light/config/matrix_lights.yaml
/mpf_examples/light/config/light.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

channels:

red:

number: 4

green:

number: 3

blue:

number: 2

debug: True

x: 0.6

y: 0.7

led_bgr_2:

type: bgr

number: 42

debug: True

led3:

channels:

red:

- number: 7

green:

- number: 8

blue:

- number: 9

white:

- number: 10

debug: True

led4:

number: 11

fade_ms: 1s

led_corrected:

number:

color_correction_profile: correction_profile_1

led_www:

number: 23

type: www

debug: True

Listing 203: your_machine_folder/light/config/light_groups.yaml

#config_version=5

light_stripes:

stripe1:

number_start: 10

light_template:

tags: test

count: 5

debug: True

stripe2:

number_start: 200

number_template: 7-{}

count: 5

direction: 90

start_x: 10

start_y: 20
(continues on next page)

light (example config files) 1225

/mpf_examples/light/config/light_groups.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

distance: 5

debug: True

stripe3:

start_channel: ABC-123

count: 5

direction: 90

start_x: 10

start_y: 20

distance: 5

debug: True

light_template:

type: rgbw

light_rings:

ring1:

number_start: 20

count: 12

radius: 3

start_angle: 90

center_x: 100

center_y: 50

debug: True

neoseg_displays:

neoSeg_0:

start_channel: 0-0-0

size: 8digit

light_template:

type: w

subtype: led

neoSeg_1:

start_channel: 0-0-120

size: 2digit

light_template:

type: w

subtype: led

light_player (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 204: your_machine_folder/light_player/config/light_player_named_colors.yaml

#config_version=5

lights:

(continues on next page)

light_player (example config files) 1226

/mpf_examples/light_player/config/light_player_named_colors.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

l_gi_1:

number:

l_gi_2:

number:

named_colors:

tt_yellow: [255, 220, 0]

show_player:

skill_started:

giSwipeDown:

show_tokens:

frontColor: black

backColor: tt_yellow

shows:

giSwipeDown:

- time: 0

lights:

l_gi_1: (frontColor)

l_gi_2: (backColor)

Listing 205: your_machine_folder/light_player/config/light_player.yaml

#config_version=5

modes:

- mode1

- mode2

lights:

led1:

debug: True

number:

tags: tag1

led2:

debug: True

number:

tags: tag1

led3:

debug: True

number:

tags:

led4:

debug: True

number:

tags:

led5:

debug: True

number:

default_on_color: red

led6:

debug: True
(continues on next page)

light_player (example config files) 1227

/mpf_examples/light_player/config/light_player.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

light_player:

"{machine.a == 7}":

led1: red

event1:

led1:

color: red

fade: 0

priority: 200

led2:

color: ff0000

fade: 0

led3:

color: red

fade: 0

event2:

tag1:

color: blue

fade: 200ms

priority: 100

event3:

led1: lime-f500

led2: lime - f 500ms

led3: 00ff00-f.5s

event4:

tag1: 00ffff

event5:

led5: on

shows:

show1:

- time: 0

lights:

led1: red

led2: red

led3: red

show2:

- time: 0

lights:

led1: red

led2: red

led3: red

- time: 1

show3:

- time: 0

lights:

led1: blue

led2: blue

led3: blue

- time: 1

show2_stay_on:

- time: 0

duration: -1

(continues on next page)

light_player (example config files) 1228

Mission Pinball Framework Documentation, Version

(continued from previous page)

lights:

led1: red

led2: red

led3: red

show_player:

play_show1: show_ext1

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 206: your_machine_folder/light_player/modes/mode2/config/mode2.yaml

#config_version=5

mode:

priority: 200

start_events: ball_starting

stop_events: ball_ending

light_player:

"{machine.test == 23}":

led4: red

"{current_player.test == 42}":

led5: red

Listing 207: your_machine_folder/light_player/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

game_mode: False

light_player:

event5:

led1:

color: orange

led2:

color: orange

led3:

color: orange

priority: 200

"{machine.test == 23}":

led4: red

Show file examples

Here are some example show files that go along with the above config(s).

light_player (example config files) 1229

/mpf_examples/light_player/modes/mode2/config/mode2.yaml
/mpf_examples/light_player/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

Note that there are multiple shows here.

Listing 208: your_machine_folder/light_player/shows/show_ext1.yaml

#show_version=5

- shows:

attract:

show: show_ext2

show_tokens:

light_color: blue

duration: 3s

- shows:

attract:

show: show_ext2

show_tokens:

light_color: red

duration: 3s

Listing 209: your_machine_folder/light_player/shows/show_ext2.yaml

#show_version=5

- duration: -1

shows:

instance1:

show: show_ext3

show_tokens:

led1: led1

led2: led2

led3: led3

color_on: (light_color)

color_off: black

instance2:

show: show_ext3

show_tokens:

led1: led4

led2: led5

led3: led6

color_on: (light_color)

color_off: black

Listing 210: your_machine_folder/light_player/shows/show_ext3.yaml

#show_version=5

- lights:

(led1): (color_on)

(led2): (color_off)

(led3): (color_off)

duration: 1s

- lights:

(led1): (color_off)

(led2): (color_on)

(led3): (color_off)

duration: 1s

- lights:

(led1): (color_off)
(continues on next page)

light_player (example config files) 1230

/mpf_examples/light_player/shows/show_ext1.yaml
/mpf_examples/light_player/shows/show_ext2.yaml
/mpf_examples/light_player/shows/show_ext3.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

(led2): (color_off)

(led3): (color_on)

duration: 1s

light_segment_displays (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 211: your_machine_folder/light_segment_displays/config/config.yaml

#config_version=5

hardware:

segment_displays: light_segment_displays

lights:

segment1_a:

number:

segment1_b:

number:

segment1_c:

number:

segment1_d:

number:

segment1_e:

number:

segment1_f:

number:

segment1_g:

number:

segment2_a:

number:

segment2_b:

number:

segment2_c:

number:

segment2_d:

number:

segment2_e:

number:

segment2_f:

number:

segment2_g:

number:

segment3_x0:

(continues on next page)

light_segment_displays (example config files) 1231

/mpf_examples/light_segment_displays/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

segment3_x1:

number:

segment3_x2:

number:

segment3_x3:

number:

segment4_x0:

number:

segment4_x1:

number:

segment4_x2:

number:

segment4_x3:

number:

segment5_a:

number:

segment5_b:

number:

segment5_c:

number:

segment5_d:

number:

segment5_e:

number:

segment5_f:

number:

segment5_g:

number:

segment5_h:

number:

neoseg_displays:

neoSeg_0:

start_channel: 0-0-0

size: 8digit

light_template:

type: w

subtype: led

neoSeg_1:

start_channel: 0-0-120

size: 8digit

light_template:

type: w

subtype: led

segment_displays:

display1:

number: 1

size: 4

platform_settings:

lights:

- a: segment1_a

b: segment1_b

(continues on next page)

light_segment_displays (example config files) 1232

Mission Pinball Framework Documentation, Version

(continued from previous page)

c: segment1_c

d: segment1_d

e: segment1_e

f: segment1_f

g: segment1_g

- a: segment2_a

b: segment2_b

c: segment2_c

d: segment2_d

e: segment2_e

f: segment2_f

g: segment2_g

type: 7segment

display2:

number: 2

size: 4

platform_settings:

lights:

- x0: segment3_x0

x1: segment3_x1

x2: segment3_x2

x3: segment3_x3

- x0: segment4_x0

x1: segment4_x1

x2: segment4_x2

x3: segment4_x3

type: bcd

display3:

number: 4

size: 1

platform_settings:

lights:

- a: segment5_a

b: segment5_b

c: segment5_c

d: segment5_d

e: segment5_e

f: segment5_f

g: segment5_g

h: segment5_h

type: 8segment

neoSegTop:

number: 1

size: 16

integrated_dots: true

use_dots_for_commas: true

default_transition_update_hz: 30

platform_settings:

light_groups:

- neoSeg_0

- neoSeg_1

type: 14segment

segment_display_player:

(continues on next page)

light_segment_displays (example config files) 1233

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_1337:

display1:

text: "1337"

display1_color_red_green_blue_yellow:

display1:

action: set_color

color: [red, green, blue, yellow]

display1_color_white:

display1:

action: set_color

color: [white]

show_88:

display1:

text: "88"

show_11:

display1:

text: "11"

remove_text_display1:

display1:

action: remove

show_centered_11:

neoSegTop:

text: " 11 "

Listing 212: your_machine_folder/light_segment_displays/config/config_dots.yaml

#config_version=5

hardware:

segment_displays: light_segment_displays

lights:

segment1_a:

number:

segment1_b:

number:

segment1_c:

number:

segment1_d:

number:

segment1_e:

number:

segment1_f:

number:

segment1_g:

number:

segment1_dp:

number:

segment2_a:

number:

segment2_b:

number:

segment2_c:

number:
(continues on next page)

light_segment_displays (example config files) 1234

/mpf_examples/light_segment_displays/config/config_dots.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

segment2_d:

number:

segment2_e:

number:

segment2_f:

number:

segment2_g:

number:

segment2_dp:

number:

segment_displays:

display1:

number: 1

size: 2

integrated_dots: true

platform_settings:

lights:

- a: segment1_a

b: segment1_b

c: segment1_c

d: segment1_d

e: segment1_e

f: segment1_f

g: segment1_g

dp: segment1_dp

- a: segment2_a

b: segment2_b

c: segment2_c

d: segment2_d

e: segment2_e

f: segment2_f

g: segment2_g

dp: segment2_dp

type: 7segment

segment_display_player:

show_37dot:

display1:

text: "37."

color: [red, blue]

lisy (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

lisy (example config files) 1235

Mission Pinball Framework Documentation, Version

Listing 213: your_machine_folder/lisy/config/config.yaml

#config_version=5

hardware:

platform: lisy

lisy:

debug: True

connection: network

network_port: 1234

network_host: "localhost"

connection: serial

port: com1

baud: 115200

switches:

s_test00:

number: 00

s_test37:

number: 37

s_test77_nc:

number: 77

type: 'NC'

coils:

c_test:

number: 0

c_test_allow_enable:

number: 1

default_hold_power: 1.0

c_trough_eject:

number: 103

default_pulse_ms: 3s

digital_outputs:

game_over_relay:

number: 1

type: light

enable_events: ball_started

disable_events: ball_will_end

lights:

test_light:

number: 3

segment_displays:

info_display:

number: 0

player1_display:

number: 1

player2_display:

number: 2

(continues on next page)

lisy (example config files) 1236

/mpf_examples/lisy/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

hardware_sound_systems:

default:

label: LISY

hardware_sound_player:

test2:

2:

action: play

play_file:

"some_file": play_file

play_file_loop:

"some_file":

action: play_file

platform_options:

loop: True

no_cache: False

play_text:

text:

action: text_to_speech

value: "Hello MPF"

platform_options:

loop: False

no_cache: True

volume_05:

set_volume:

action: set_volume

value: 0.5

increase_volume:

0.1: increase_volume

decrease_volume:

decrease_volume:

action: decrease_volume

value: 0.01

test3:

3: play

test_stop: stop

Listing 214: your_machine_folder/lisy/config/config_modern.yaml

#config_version=5

hardware:

platform: lisy

lisy:

connection: serial

port: com1

baud: 115200

debug: true

switches:

s_test00:

number: 00

s_flipper:
(continues on next page)

lisy (example config files) 1237

/mpf_examples/lisy/config/config_modern.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 1

s_flipper_eos:

number: 2

s_slingshot:

number: 3

s_test37:

number: 37

s_test77_nc:

number: 77

type: 'NC'

coils:

c_test:

number: 0

c_test_allow_enable:

number: 1

default_hold_power: 1.0

c_flipper_main:

number: 5

default_pulse_ms: 30

c_flipper_hold:

number: 6

allow_enable: True

c_slingshot:

number: 7

lights:

test_light0:

start_channel: 0

type: rgb

subtype: light

test_light1:

previous: test_light0

type: rgbw

subtype: light

flippers:

f_test_hold_eos:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

eos_switch: s_flipper_eos

use_eos: true

autofire_coils:

ac_slingshot:

coil: c_slingshot

switch: s_slingshot

Listing 215: your_machine_folder/lisy/config/config_system11.yaml

#config_version=5

(continues on next page)

lisy (example config files) 1238

/mpf_examples/lisy/config/config_system11.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

hardware:

platform: lisy

coils: system11

lisy:

connection: network

network_port: 1234

network_host: "localhost"

system11:

ac_relay_driver: c_ac_relay

switches:

s_test00:

number: 00

s_test37:

number: 37

s_test77_nc:

number: 77

type: 'NC'

coils:

c_test:

number: 0

c_test1_c_side:

number: 1c

c_test1_a_side:

number: 1a

c_ac_relay:

number: 8

allow_enable: True

segment_displays:

info_display:

number: 0

player1_display:

number: 1

player2_display:

number: 2

logic_blocks (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 216: your_machine_folder/logic_blocks/config/config.yaml

#config_version=5

(continues on next page)

logic_blocks (example config files) 1239

/mpf_examples/logic_blocks/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

lights:

led1:

number:

led2:

number:

led3:

number:

switches:

s_qualify1:

number:

s_qualify2:

number:

system wide logic blocks

accruals:

accrual1:

events:

- accrual1_step1a, accrual1_step1b, accrual1_step1c

- accrual1_step2a, accrual1_step2b, accrual1_step2c

- accrual1_step3a, accrual1_step3b, accrual1_step3c

events_when_complete: accrual1_complete1, accrual1_complete2

enable_events: accrual1_enable

disable_events: accrual1_disable

reset_events: accrual1_reset

events_when_hit: accrual1_hit

advance_random_events: accrual1_random_advance

accrual2:

events:

- accrual2_step1

- accrual2_step2

restart_events: accrual2_restart

accrual3:

events:

- accrual3_step1

- accrual3_step2

reset_on_complete: False

disable_on_complete: True

enable_events: accrual3_enable

disable_events: accrual3_disable

reset_events: accrual3_reset

accrual4:

events:

- accrual4_step1

- accrual4_step2

reset_on_complete: False

disable_on_complete: False

enable_events: accrual4_enable

disable_events: accrual4_disable

reset_events: accrual4_reset

accrual10:

events:

- accrual10_step1

- accrual10_step2

(continues on next page)

logic_blocks (example config files) 1240

Mission Pinball Framework Documentation, Version

(continued from previous page)

reset_on_complete: True

disable_on_complete: False

enable_events: accrual10_enable

disable_events: accrual10_disable

reset_events: accrual10_reset

accrual7:

events:

- accrual7_step1

- accrual7_step2

- accrual7_step3

events_when_complete: accrual7_complete

events_when_hit: accrual7_hit

reset_on_complete: True

disable_on_complete: False

enable_events: accrual7_enable

disable_events: accrual7_disable

reset_events: accrual7_reset

logic_block_timeout: 50

counters:

counter1:

count_events: counter1_count

starting_count: 5

count_complete_value: 0

direction: down

enable_events: counter1_enable

disable_events: counter1_disable

restart_events: counter1_restart

reset_events: counter1_reset

counter3:

count_events: counter3_count

starting_count: 0

count_complete_value: 5

count_interval: -1

direction: up

enable_events: counter3_enable

disable_events: counter3_disable

restart_events: counter3_restart

reset_events: counter3_reset

multiple_hit_window: 1s

counter4:

count_events: counter4_count

starting_count: machine.start if machine.start else 0

count_complete_value: current_player.hits

direction: up

enable_events: counter4_enable

disable_events: counter4_disable

restart_events: counter4_restart

reset_events: counter4_reset

counter5:

count_events: counter5_count

counter9:

count_events: counter9_count

starting_count: 5

count_complete_value: 0

(continues on next page)

logic_blocks (example config files) 1241

Mission Pinball Framework Documentation, Version

(continued from previous page)

direction: down

enable_events: counter9_enable

disable_events: counter9_disable

restart_events: counter9_restart

reset_events: counter9_reset

logic_block_timeout: 50

sequences:

sequence1:

events:

- sequence1_step1a, sequence1_step1b

- sequence1_step2a, sequence1_step2b

- sequence1_step3a, sequence1_step3b

events_when_complete: sequence1_complete

enable_events: sequence1_enable

disable_events: sequence1_disable

reset_events: sequence1_reset

sequence2:

events:

- sequence2_step1a, sequence2_step1b

- sequence2_step2a, sequence2_step2b

- sequence2_step3a, sequence2_step3b

events_when_complete: sequence2_complete

enable_events: sequence2_enable

disable_events: sequence2_disable

reset_events: sequence2_reset

logic_block_timeout: 50

logic blocks in mode1

modes:

- mode1

- mode2

- mode3

- mode4

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 217: your_machine_folder/logic_blocks/modes/mode2/config/mode2.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

counters:

counter_with_lights:

count_events: counter_with_lights_count

enable_events: counter_with_lights_enable

starting_count: 0

(continues on next page)

logic_blocks (example config files) 1242

/mpf_examples/logic_blocks/modes/mode2/config/mode2.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

count_complete_value: 3

direction: up

persist_state: True

show_player:

logicblock_counter_with_lights_updated:

counter_show:

start_step: device.counters.counter_with_lights["value"] + 1

shows:

counter_show:

- duration: -1

lights:

led1: on

led2: stop

led3: stop

- duration: -1

lights:

led1: stop

led2: on

led3: stop

- duration: -1

lights:

led1: stop

led2: stop

led3: on

Listing 218: your_machine_folder/logic_blocks/modes/mode3/config/mode3.yaml

#config_version=5

mode:

start_events: start_mode3

stop_events: stop_mode3

counters:

qualify1:

count_events: qualify1_count, s_qualify1_active

disable_events: disable_qualify

enable_events: enable_qualify

start_enabled: True

events_when_complete: disable_qualify, qualify_start_mode1

starting_count: 0

count_complete_value: 3

persist_state: True

debug: True

qualify2:

count_events: qualify2_count, s_qualify2_active

disable_events: disable_qualify

enable_events: enable_qualify

start_enabled: True

events_when_complete: disable_qualify, qualify_start_mode2

starting_count: 0

count_complete_value: 3

persist_state: True
(continues on next page)

logic_blocks (example config files) 1243

/mpf_examples/logic_blocks/modes/mode3/config/mode3.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

debug: True

Listing 219: your_machine_folder/logic_blocks/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

counters:

counter2:

count_events: counter2_count

events_when_hit: counter2_hit

events_when_complete: counter2_complete

starting_count: 0

count_complete_value: 3

direction: up

reset_on_complete: True

disable_on_complete: False

counter_persist:

count_events: counter_persist_count

enable_events: counter_persist_enable

direction: down

starting_count: 5

count_complete_value: 0

persist_state: true

accruals:

accrual5:

events:

- accrual5_step1

- accrual5_step2

persist_state: True

Listing 220: your_machine_folder/logic_blocks/modes/mode4/config/mode4.yaml

#config_version=5

mode:

start_events: start_mode4

stop_events: stop_mode4

counters:

counter6:

count_events: counter6_count

events_when_hit: counter6_hit

events_when_complete: counter6_complete

starting_count: 0

count_complete_value: 10

direction: up

reset_on_complete: True

disable_on_complete: False

control_events:

- event: increase_counter6_5

action: add

(continues on next page)

logic_blocks (example config files) 1244

/mpf_examples/logic_blocks/modes/mode1/config/mode1.yaml
/mpf_examples/logic_blocks/modes/mode4/config/mode4.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

value: 5

- event: increase_counter6_3

action: add

value: 3

- event: increase_counter6_0

action: add

value: 0

- event: reduce_counter6_5

action: subtract

value: 5

- event: reduce_counter6_3

action: subtract

value: 3

- event: reduce_counter6_0

action: subtract

value: 0

- event: set_counter6_25

action: jump

value: 25

- event: set_counter6_0

action: jump

value: 0

counter7:

count_events: counter7_count

events_when_hit: counter7_hit

events_when_complete: counter7_complete

starting_count: 5

count_complete_value: 0

direction: down

reset_on_complete: True

disable_on_complete: False

control_events:

- event: increase_counter7_5

action: add

value: 5

- event: reduce_counter7_5

action: subtract

value: 5

- event: reduce_counter7_3

action: subtract

value: 3

- event: set_counter7_negative25

action: jump

value: -25

- event: set_counter7_3

action: jump

value: 3

- event: set_counter7_0

action: jump

value: 0

- event: set_counter_placeholder

action: jump

value: machine.test2

- event: subtract_counter_placeholder

(continues on next page)

logic_blocks (example config files) 1245

Mission Pinball Framework Documentation, Version

(continued from previous page)

action: subtract

value: machine.test3

- event: add_counter_placeholder

action: add

value: machine.test4

accruals:

accrual6:

events:

- accrual6_step1

- accrual6_step2

persist_state: True

machine_vars (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 221: your_machine_folder/machine_vars/config/config.yaml

#config_version=5

machine_vars:

test1:

initial_value: 4

value_type: int

persist: True

test2:

initial_value: '5'

value_type: str

persist: True

test3:

initial_value: 6

value_type: int

persist: False

event_player:

"{machine.time.second >= 30}": test_event3

"{machine.time.second >= 40}": test_event4

magnet (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

machine_vars (example config files) 1246

/mpf_examples/machine_vars/config/config.yaml

Mission Pinball Framework Documentation, Version

Listing 222: your_machine_folder/magnet/config/config.yaml

#config_version=5

coils:

magnet_coil1:

number:

default_pulse_ms: 100

default_hold_power: 0.375

magnet_coil2:

number:

default_pulse_ms: 100

default_hold_power: 0.375

magnet_coil3:

number:

default_pulse_ms: 100

default_hold_power: 0.375

switches:

grab_switch1:

number:

grab_switch2:

number:

grab_switch3:

number:

magnets:

magnet1:

magnet_coil: magnet_coil1

grab_switch: grab_switch1

enable_events: magnet1_enable

disable_events: magnet1_disable

release_ball_events: magnet1_release

fling_ball_events: magnet1_fling

magnet_ball_save:

magnet_coil: magnet_coil2

grab_switch: grab_switch2

enable_events: magnet_ball_save_enable

disable_events: magnet_magnet_ball_save_grabbed_ball

fling_ball_events: magnet_magnet_ball_save_grabbed_ball

magnet_auto_enable:

magnet_coil: magnet_coil3

grab_switch: grab_switch3

ball_saves:

magnet_save:

balls_to_save: 1

active_time: 5s

enable_events: magnet_magnet_ball_save_grabbing_ball

magnet (example config files) 1247

/mpf_examples/magnet/config/config.yaml

Mission Pinball Framework Documentation, Version

match_mode (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 223: your_machine_folder/match_mode/config/config_highscore.yaml

#config_version=5

config:

- config.yaml

modes:

- high_score

- service

Listing 224: your_machine_folder/match_mode/config/config.yaml

#config_version=5

game:

balls_per_game: 1

credits:

free_play: no

events:

- event: add_credit

type: award

credits: 1

- event: match_has_match

type: award

credits: winners

modes:

- match

- credits

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 225: your_machine_folder/match_mode/modes/match/config/match.yaml

#config_version=5

slide_player:

match_has_match: match

(continues on next page)

match_mode (example config files) 1248

/mpf_examples/match_mode/config/config_highscore.yaml
/mpf_examples/match_mode/config/config.yaml
/mpf_examples/match_mode/modes/match/config/match.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

match_no_match: no_match

slides:

match:

- type: text

text: asd

no_match:

- type: text

text: asd

mma8451 (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 226: your_machine_folder/mma8451/config/config.yaml

#config_version=5

hardware:

platform: virtual

accelerometers: mma8451

accelerometers:

test_accelerometer:

number: 29

level_x: 0

level_y: 0

level_z: 1

platform: mma8451

platform_settings:

i2c_platform: virtual

mode_tests (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

mma8451 (example config files) 1249

/mpf_examples/mma8451/config/config.yaml

Mission Pinball Framework Documentation, Version

Listing 227: your_machine_folder/mode_tests/config/test_empty_modes_section.yaml

#config_version=5

modes:

empty mode section

Listing 228: your_machine_folder/mode_tests/config/test_modes_in_game.yaml

#config_version=5

modes:

- mode_restart_on_next_ball

Listing 229: your_machine_folder/mode_tests/config/test_loading_invalid_modes.yaml

#config_version=5

modes:

- invalid

- mode2

Listing 230: your_machine_folder/mode_tests/config/test_mode_without_config.yaml

#config_version=5

modes:

- mode_without_config

Listing 231: your_machine_folder/mode_tests/config/test_modes.yaml

#config_version=5

modes:

- mode1

- mode2

- mode3

- mode4

Listing 232: your_machine_folder/mode_tests/config/test_missing_mode_section.yaml

#config_version=5

modes:

- broken_mode2

- mode2

mode_tests (example config files) 1250

/mpf_examples/mode_tests/config/test_empty_modes_section.yaml
/mpf_examples/mode_tests/config/test_modes_in_game.yaml
/mpf_examples/mode_tests/config/test_loading_invalid_modes.yaml
/mpf_examples/mode_tests/config/test_mode_without_config.yaml
/mpf_examples/mode_tests/config/test_modes.yaml
/mpf_examples/mode_tests/config/test_missing_mode_section.yaml

Mission Pinball Framework Documentation, Version

Listing 233: your_machine_folder/mode_tests/config/test_broken_mode_config.yaml

#config_version=5

modes:

- mode2

- broken_mode

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 234: your_machine_folder/mode_tests/modes/mode2/config/mode2.yaml

#config_version=5

mode:

stop_events: stop_mode2

stop_priority: 2

restart_on_next_ball: true

Listing 235: your_machine_folder/mode_tests/modes/mode_in_sub_folder/mode5/mode8/config/mode8.yaml

#config_version=5

mode:

start_events: start_mode8

stop_events: stop_mode8

priority: 200

start_priority: 1

stop_on_ball_end: false

game_mode: False

mode_settings:

this: true

config:

- test.yaml

Listing 236: your_machine_folder/mode_tests/modes/mode_in_sub_folder/mode5/mode8/config/test.yaml

#config_version=5

mode_settings:

test: 123

Listing 237: your_machine_folder/mode_tests/modes/mode_in_sub_folder/mode5/config/mode5.yaml

#config_version=5

mode:

start_events: start_mode5

(continues on next page)

mode_tests (example config files) 1251

/mpf_examples/mode_tests/config/test_broken_mode_config.yaml
/mpf_examples/mode_tests/modes/mode2/config/mode2.yaml
/mpf_examples/mode_tests/modes/mode_in_sub_folder/mode5/mode8/config/mode8.yaml
/mpf_examples/mode_tests/modes/mode_in_sub_folder/mode5/mode8/config/test.yaml
/mpf_examples/mode_tests/modes/mode_in_sub_folder/mode5/config/mode5.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

stop_events: stop_mode5

priority: 200

start_priority: 1

stop_on_ball_end: false

game_mode: False

mode_settings:

this: true

config:

- test.yaml

Listing 238: your_machine_folder/mode_tests/modes/mode_in_sub_folder/mode5/config/test.yaml

#config_version=5

mode_settings:

test: 123

Listing 239: your_machine_folder/mode_tests/modes/mode_in_sub_folder/sub_mode/mode7/config/test.yaml

#config_version=5

mode_settings:

test: 123

Listing 240: your_machine_folder/mode_tests/modes/mode_in_sub_folder/sub_mode/mode7/config/mode7.yaml

#config_version=5

mode:

start_events: start_mode7

stop_events: stop_mode7

priority: 200

start_priority: 1

stop_on_ball_end: false

game_mode: False

mode_settings:

this: true

config:

- test.yaml

Listing 241: your_machine_folder/mode_tests/modes/mode_in_sub_folder/sub_mode/mode6/config/test.yaml

#config_version=5

mode_settings:

test: 123

Listing 242: your_machine_folder/mode_tests/modes/mode_in_sub_folder/sub_mode/mode6/config/mode6.yaml

#config_version=5

mode:

start_events: start_mode6

(continues on next page)

mode_tests (example config files) 1252

/mpf_examples/mode_tests/modes/mode_in_sub_folder/mode5/config/test.yaml
/mpf_examples/mode_tests/modes/mode_in_sub_folder/sub_mode/mode7/config/test.yaml
/mpf_examples/mode_tests/modes/mode_in_sub_folder/sub_mode/mode7/config/mode7.yaml
/mpf_examples/mode_tests/modes/mode_in_sub_folder/sub_mode/mode6/config/test.yaml
/mpf_examples/mode_tests/modes/mode_in_sub_folder/sub_mode/mode6/config/mode6.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

stop_events: stop_mode6

priority: 200

start_priority: 1

stop_on_ball_end: false

game_mode: False

mode_settings:

this: true

config:

- test.yaml

Listing 243: your_machine_folder/mode_tests/modes/broken_mode2/config/broken_mode2.yaml

#config_version=5

event_player:

test: test2

Listing 244: your_machine_folder/mode_tests/modes/mode3/code/mode3.py

from mpf.core.mode import Mode

class Mode3(Mode):

def mode_init(self):

self.custom_code = True

def mode_start(self, **kwargs):

pass

def mode_stop(self, **kwargs):

pass

Listing 245: your_machine_folder/mode_tests/modes/mode3/config/mode3.yaml

#config_version=5

mode:

code: mode3.Mode3

Listing 246: your_machine_folder/mode_tests/modes/mode_restart_on_next_ball/config/mode_restart_on_next_ball.yaml

#config_version=5

mode:

start_events: start_mode_restart_on_next_ball

restart_on_next_ball: True

Listing 247: your_machine_folder/mode_tests/modes/mode1/config/mode1.yaml

#config_version=5

mode:

(continues on next page)

mode_tests (example config files) 1253

/mpf_examples/mode_tests/modes/broken_mode2/config/broken_mode2.yaml
/mpf_examples/mode_tests/modes/mode3/code/mode3.py
/mpf_examples/mode_tests/modes/mode3/config/mode3.yaml
/mpf_examples/mode_tests/modes/mode_restart_on_next_ball/config/mode_restart_on_next_ball.yaml
/mpf_examples/mode_tests/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_events: start_mode1

stop_events: stop_mode1

priority: 200

start_priority: 1

stop_on_ball_end: false

game_mode: False

mode_settings:

this: true

config:

- test.yaml

Listing 248: your_machine_folder/mode_tests/modes/mode1/config/test.yaml

#config_version=5

mode_settings:

test: 123

Listing 249: your_machine_folder/mode_tests/modes/mode4/config/mode4.yaml

#config_version=5

mode:

start_events: start_mode4

use_wait_queue: True

game_mode: False

Listing 250: your_machine_folder/mode_tests/modes/broken_mode/config/broken_mode.yaml

#config_version=5

mode:

invalid_key: crap

modes (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

modes (example config files) 1254

/mpf_examples/mode_tests/modes/mode1/config/test.yaml
/mpf_examples/mode_tests/modes/mode4/config/mode4.yaml
/mpf_examples/mode_tests/modes/broken_mode/config/broken_mode.yaml

Mission Pinball Framework Documentation, Version

Listing 251: your_machine_folder/modes/config/test_modes.yaml

#config_version=5

modes:

- mode1

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 252: your_machine_folder/modes/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 300

motor (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 253: your_machine_folder/motor/config/multiposition_motor_home_in_the_middle.yaml

#config_version=5

switches:

s_multiposition_motor_1:

number:

s_multiposition_motor_2:

number:

s_multiposition_motor_3:

number:

s_multiposition_motor_4:

number:

digital_outputs:

c_multiposition_motor_left:

number:

type: driver

c_multiposition_motor_right:

number:

type: driver

motors:

(continues on next page)

motor (example config files) 1255

/mpfmc_examples/modes/config/test_modes.yaml
/mpfmc_examples/modes/modes/mode1/config/mode1.yaml
/mpf_examples/motor/config/multiposition_motor_home_in_the_middle.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

multiposition_motor2:

debug: True

motor_left_output: c_multiposition_motor_left

motor_right_output: c_multiposition_motor_right

position_switches: !!omap

- position1: s_multiposition_motor_1

- position2: s_multiposition_motor_2

- position3: s_multiposition_motor_3

- position4: s_multiposition_motor_4

reset_position: position2

go_to_position:

goto_position1: position1

goto_position2: position2

goto_position3: position3

goto_position4: position4

Listing 254: your_machine_folder/motor/config/drop_target.yaml

#config_version=5

switches:

s_position_up:

number:

s_position_down:

number:

digital_outputs:

c_motor_run:

number:

type: driver

motors:

motorized_drop_target_bank:

debug: True

motor_left_output: c_motor_run

position_switches: !!omap

- up: s_position_up

- down: s_position_down

reset_position: down

go_to_position:

go_up: up

go_down: down

go_down2: down

Listing 255: your_machine_folder/motor/config/ghostbusters.yaml

#config_version=5

switches:

s_slimer_home:

number: 8-1

s_slimer_away:

number: 8-2

(continues on next page)

motor (example config files) 1256

/mpf_examples/motor/config/drop_target.yaml
/mpf_examples/motor/config/ghostbusters.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

digital_outputs:

c_slimer_motor_forward:

number: 8-3

type: light

c_slimer_motor_backward:

number: 8-4

type: light

motors:

ghostbusters_slimer:

debug: True

motor_left_output: c_slimer_motor_forward

motor_right_output: c_slimer_motor_backward

position_switches: !!omap

- home: s_slimer_home

- away: s_slimer_away

reset_position: home

go_to_position:

slimer_home: home

slimer_away: away

Listing 256: your_machine_folder/motor/config/multiposition_motor.yaml

#config_version=5

switches:

s_multiposition_motor_1:

number:

s_multiposition_motor_2:

number:

s_multiposition_motor_3:

number:

s_multiposition_motor_4:

number:

digital_outputs:

c_multiposition_motor_left:

number:

type: driver

c_multiposition_motor_right:

number:

type: driver

motors:

multiposition_motor:

debug: True

motor_left_output: c_multiposition_motor_left

motor_right_output: c_multiposition_motor_right

position_switches: !!omap

- position1: s_multiposition_motor_1

- position2: s_multiposition_motor_2

- position3: s_multiposition_motor_3

- position4: s_multiposition_motor_4
(continues on next page)

motor (example config files) 1257

/mpf_examples/motor/config/multiposition_motor.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

reset_position: position4

go_to_position:

goto_position1: position1

goto_position2: position2

goto_position3: position3

goto_position4: position4

Listing 257: your_machine_folder/motor/config/multiposition_motor_start_on_end_switch.yaml

#config_version=5

switches:

s_multiposition_motor_1:

number:

s_multiposition_motor_2:

number:

s_multiposition_motor_3:

number:

s_multiposition_motor_4:

number:

digital_outputs:

c_multiposition_motor_left:

number:

type: driver

c_multiposition_motor_right:

number:

type: driver

motors:

multiposition_motor:

debug: True

motor_left_output: c_multiposition_motor_left

motor_right_output: c_multiposition_motor_right

position_switches: !!omap

- position1: s_multiposition_motor_1

- position2: s_multiposition_motor_2

- position3: s_multiposition_motor_3

- position4: s_multiposition_motor_4

reset_position: position2

go_to_position:

goto_position1: position1

goto_position2: position2

goto_position3: position3

goto_position4: position4

virtual_platform_start_active_switches: s_multiposition_motor_4

mpf_plugin_config_player_validation (example config files)

mpf_plugin_config_player_validation (example config files) 1258

/mpf_examples/motor/config/multiposition_motor_start_on_end_switch.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 258: your_machine_folder/mpf_plugin_config_player_validation/config/mpf_plugin_validation.yaml

#config_version=5

show_player:

event1: show1

Show file examples

Here are some example show files that go along with the above config(s).

Listing 259: your_machine_folder/mpf_plugin_config_player_validation/shows/show1.yaml

#show_version=5

- time: 0

slides:

slide1: # device

type: text # device_settings

text: TEST 1

color: ff0000

font_size: 100

- time: 1

slides:

slide_7: # device

- type: text # device_settings

text: TEXT FROM SLIDE_PLAYER LIST

color: red

font_size: 15

y: 66%

- type: text

text: WIDGET 2

color: purple

font_size: 15

y: 33%

- time: 2

slides:

slide_8: # device

widgets: # device_settings

- type: text

text: TEXT FROM SLIDE_PLAYER WIDGET LIST

color: green

font_size: 15

y: 66%

- type: text

text: WIDGET 2

color: lime

font_size: 15

y: 33%

target: display1
(continues on next page)

mpf_plugin_config_player_validation (example config files) 1259

/mpfmc_examples/mpf_plugin_config_player_validation/config/mpf_plugin_validation.yaml
/mpfmc_examples/mpf_plugin_config_player_validation/shows/show1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

transition: move_in

- time: 3

slides: slide2

- time: 4

slides:

slide_9:

widgets: # device_settings

- type: text

text: TEXT FROM SLIDE_PLAYER WIDGET LIST

color: green

font_size: 15

y: 66%

- type: text

text: WIDGET 2

color: lime

font_size: 15

y: 33%

target: display1

transition: move_in

slide_10:

widgets: # device_settings

- type: text

text: TEXT FROM SLIDE_PLAYER WIDGET LIST

color: green

font_size: 15

y: 66%

- type: text

text: WIDGET 2

color: lime

font_size: 15

y: 33%

target: dmd

transition: move_in

mpftestcase (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 260: your_machine_folder/mpftestcase/config/test_mpftestcase.yaml

#config_version=5

switches:

switch1:

number:

mpftestcase (example config files) 1260

/mpf_examples/mpftestcase/config/test_mpftestcase.yaml

Mission Pinball Framework Documentation, Version

multiball (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 261: your_machine_folder/multiball/config/config.yaml

#config_version=5

game:

balls_per_game: 1

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

event_player:

test_event_when_enabled:

- should_post_when_enabled{device.multiballs.mb1.enabled}

- should_not_post_when_enabled{not device.multiballs.mb1.enabled}

test_event_when_disabled:

- should_post_when_disabled{not device.multiballs.mb1.enabled}

- should_not_post_when_disabled{device.multiballs.mb1.enabled}

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

s_ball_switch4:

number:

s_ball_switch5:

number:

s_ball_switch6:

number:

s_lock1:

number:

s_lock2:

number:

s_ball_switch_launcher:

number:

playfields:

(continues on next page)

multiball (example config files) 1261

/mpf_examples/multiball/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

playfield:

default_source_device: bd_launcher

tags: default

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3, s_ball_switch4, s_ball_switch5,␣

→˓s_ball_switch6

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

confirm_eject_type: target

eject_timeouts: 2s

bd_lock:

eject_coil: eject_coil3

ball_switches: s_lock1, s_lock2

eject_timeouts: 2s

modes:

- mode1

- mode2

- mode3

- mode4

- mode5

multiballs:

mb1:

ball_count: 1

ball_count_type: add

shoot_again: 30s

enable_events: mb1_enable

disable_events: mb1_disable

start_events: mb1_start

stop_events: mb1_stop

mb2:

ball_count: 2

ball_count_type: add

shoot_again: -1

enable_events: mb2_enable

disable_events: mb2_disable

start_events: mb2_start

stop_events: mb2_stop

mb3:

ball_count: 1

ball_count_type: add

shoot_again: 0

enable_events: mb3_enable

disable_events: mb3_disable

start_events: mb3_start

stop_events: mb3_stop

(continues on next page)

multiball (example config files) 1262

Mission Pinball Framework Documentation, Version

(continued from previous page)

mb10:

ball_count: 3

ball_count_type: total

shoot_again: 20s

start_events: mb10_start

mb_add_a_ball:

ball_count: 2

start_or_add_a_ball_events: start_or_add

add_a_ball_events: add_ball

mb_placeholder:

ball_count: 2

shoot_again: machine.shoot_again_sec * 1000

start_events: mb_placeholder_start

stop_events: mb_placeholder_stop

mb_alltimers:

ball_count: 2

shoot_again: 30s

hurry_up_time: 10s

grace_period: 5s

start_events: mb_alltimers_start

stop_events: mb_alltimers_stop

mb_add_a_ball_timers:

ball_count: 2

shoot_again: 30s

hurry_up_time: 10s

grace_period: 5s

add_a_ball_events: add_ball

add_a_ball_shoot_again: 20s

add_a_ball_hurry_up_time: 5s

add_a_ball_grace_period: 10s

start_events: mb_add_a_ball_timers_start

stop_events: mb_add_a_ball_timers_stop

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 262: your_machine_folder/multiball/modes/mode2/config/mode2.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

multiballs:

mb5:

ball_count: 1

ball_count_type: add

start_events: mb5_start

multiball (example config files) 1263

/mpf_examples/multiball/modes/mode2/config/mode2.yaml

Mission Pinball Framework Documentation, Version

Listing 263: your_machine_folder/multiball/modes/mode3/config/mode3.yaml

#config_version=5

mode:

start_events: start_mode3

stop_events: stop_mode3

multiballs:

mb_autostart:

ball_count: 2

start_events: mode_mode3_started

Listing 264: your_machine_folder/multiball/modes/mode5/config/mode5.yaml

#config_version=5

mode:

start_events: start_mode5

stop_events: stop_mode5

multiballs:

mb_mode5:

ball_count: 2

shoot_again: 30s

hurry_up_time: 10s

grace_period: 5s

start_events: mb_mode5_start

stop_events: mb_mode5_stop

mb_mode5_lean:

ball_count: 2

shoot_again: 30s

start_events: mb_mode5_lean_start

stop_events: mb_mode5_lean_stop

Listing 265: your_machine_folder/multiball/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

multiballs:

mb4:

ball_count: 1

ball_count_type: add

shoot_again: 30s

enable_events: mb4_enable

disable_events: mb4_disable

start_events: mb4_start

stop_events: mb4_stop

mb11:

ball_count: 2
(continues on next page)

multiball (example config files) 1264

/mpf_examples/multiball/modes/mode3/config/mode3.yaml
/mpf_examples/multiball/modes/mode5/config/mode5.yaml
/mpf_examples/multiball/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_count_type: total

shoot_again: 20s

start_events: mb11_start

ball_locks: bd_lock

mb12:

ball_count: current_player.lock_mb6_locked_balls

ball_count_type: add

shoot_again: 20s

start_events: mb12_start

ball_locks: bd_lock

mb6:

ball_count: 2

ball_count_type: add

shoot_again: 0

start_events: mb6_start

ball_locks: bd_lock

multiball_locks:

lock_mb6:

lock_devices: bd_lock

balls_to_lock: 2

reset_count_for_current_player_events: mb6_start

disable_events: mb6_start

Listing 266: your_machine_folder/multiball/modes/mode4/config/mode4.yaml

#config_version=5

mode:

start_events: start_mode4

stop_events: stop_mode4

multiballs:

mb4_autostart:

ball_count: 2

ball_count_type: total

shoot_again: 0s

start_events: multiball_lock_lock_mb_autostart_full

ball_locks: bd_lock

multiball_locks:

lock_mb_autostart:

lock_devices: bd_lock

balls_to_lock: 1

multiball_locks (example config files)

multiball_locks (example config files) 1265

/mpf_examples/multiball/modes/mode4/config/mode4.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 267: your_machine_folder/multiball_locks/config/testPhysicalOnly.yaml

#config_version=5

config: config.yaml

modes:

- physical_only

Listing 268: your_machine_folder/multiball_locks/config/testVirtualOnly.yaml

#config_version=5

config: config.yaml

modes:

- virtual_only

Listing 269: your_machine_folder/multiball_locks/config/config.yaml

#config_version=5

game:

balls_per_game: 2

coils:

eject_coil1:

number:

eject_coil2:

number:

eject_coil3:

number:

eject_coil4:

number:

switches:

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

s_ball_switch4:

number:

s_ball_switch5:

number:

s_ball_switch6:

number:

s_lock1:
(continues on next page)

multiball_locks (example config files) 1266

/mpf_examples/multiball_locks/config/testPhysicalOnly.yaml
/mpf_examples/multiball_locks/config/testVirtualOnly.yaml
/mpf_examples/multiball_locks/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

s_lock2:

number:

s_lockt1:

number:

s_lockt2:

number:

s_lockt3:

number:

s_lockb1:

number:

s_lockb2:

number:

playfields:

playfield:

default_source_device: bd_trough

tags: default

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3, s_ball_switch4, s_ball_switch5,␣

→˓s_ball_switch6

tags: trough, drain, home

eject_timeouts: 2s

bd_lock:

eject_coil: eject_coil2

ball_switches: s_lock1, s_lock2

eject_timeouts: 2s

bd_lock_triple:

eject_coil: eject_coil3

ball_switches: s_lockt1, s_lockt2, s_lockt3

eject_timeouts: 2s

bd_lock_block:

eject_coil: eject_coil4

ball_switches: s_lockb1, s_lockb2

eject_timeouts: 2s

multiballs:

mb:

ball_count: 2

shoot_again: 0

start_events: mb_start

ball_locks: bd_lock

Listing 270: your_machine_folder/multiball_locks/config/testDefault.yaml

#config_version=5

config: config.yaml

modes:

- default

- blocking

multiball_locks (example config files) 1267

/mpf_examples/multiball_locks/config/testDefault.yaml

Mission Pinball Framework Documentation, Version

Listing 271: your_machine_folder/multiball_locks/config/testSourceDevices.yaml

#config_version=5

config: config.yaml

modes:

- source_devices

Listing 272: your_machine_folder/multiball_locks/config/testMinVirtualPhysical.yaml

#config_version=5

config: config.yaml

modes:

- min_virtual_physical

Listing 273: your_machine_folder/multiball_locks/config/testNoVirtual.yaml

#config_version=5

config: config.yaml

modes:

- no_virtual

Listing 274: your_machine_folder/multiball_locks/config/testPhysicalOnlyNoStealing.yaml

#config_version=5

config: config.yaml

modes:

- physical_only_no_stealing

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 275: your_machine_folder/multiball_locks/modes/default/config/default.yaml

#config_version=5

mode:

start_events: start_default

event_player:

test_event_when_enabled:

- should_post_when_enabled{device.multiball_locks.lock_default.enabled}

- should_not_post_when_enabled{not device.multiball_locks.lock_default.enabled}

test_event_when_disabled:

- should_post_when_disabled{not device.multiball_locks.lock_default.enabled}

- should_not_post_when_disabled{device.multiball_locks.lock_default.enabled}

(continues on next page)

multiball_locks (example config files) 1268

/mpf_examples/multiball_locks/config/testSourceDevices.yaml
/mpf_examples/multiball_locks/config/testMinVirtualPhysical.yaml
/mpf_examples/multiball_locks/config/testNoVirtual.yaml
/mpf_examples/multiball_locks/config/testPhysicalOnlyNoStealing.yaml
/mpf_examples/multiball_locks/modes/default/config/default.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

multiball_locks:

lock_default:

lock_devices: bd_lock

balls_to_lock: 2

locked_ball_counting_strategy: virtual_only

lock_triple:

lock_devices: bd_lock_triple

balls_to_lock: 3

locked_ball_counting_strategy: virtual_only

lock_with_block:

lock_devices: bd_lock_block

balls_to_lock: 2

locked_ball_counting_strategy: virtual_only

blocking_facility: foo

Listing 276: your_machine_folder/multiball_locks/modes/virtual_only/config/virtual_only.yaml

#config_version=5

mode:

start_events: start_virtual_only

multiball_locks:

lock_virtual_only:

lock_devices: bd_lock

balls_to_lock: 2

locked_ball_counting_strategy: virtual_only

debug: True

Listing 277: your_machine_folder/multiball_locks/modes/source_devices/config/source_devices.yaml

#config_version=5

mode:

start_events: start_source_devices

multiball_locks:

lock2:

lock_devices: bd_lock

source_devices: bd_lock_triple

balls_to_lock: 2

locked_ball_counting_strategy: virtual_only

lock1:

lock_devices: bd_lock_triple

balls_to_lock: 2

locked_ball_counting_strategy: virtual_only

Listing 278: your_machine_folder/multiball_locks/modes/blocking/config/blocking.yaml

#config_version=5

mode:

start_events: start_blocking

priority: 1000

(continues on next page)

multiball_locks (example config files) 1269

/mpf_examples/multiball_locks/modes/virtual_only/config/virtual_only.yaml
/mpf_examples/multiball_locks/modes/source_devices/config/source_devices.yaml
/mpf_examples/multiball_locks/modes/blocking/config/blocking.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

blocking:

balldevice_bd_lock_block_ball_enter:

foo: 102

Listing 279: your_machine_folder/multiball_locks/modes/physical_only_no_stealing/config/physical_only_no_stealing.yaml

#config_version=5

mode:

start_events: start_physical_only

multiball_locks:

lock_physical_only:

lock_devices: bd_lock

balls_to_lock: 2

locked_ball_counting_strategy: physical_only

empty_lock_devices_on_ball_end: true

debug: True

Listing 280: your_machine_folder/multiball_locks/modes/physical_only/config/physical_only.yaml

#config_version=5

mode:

start_events: start_physical_only

multiball_locks:

lock_physical_only:

lock_devices: bd_lock

balls_to_lock: 2

locked_ball_counting_strategy: physical_only

debug: True

lock_physical_only_smaller_than_device:

lock_devices: bd_lock_triple

balls_to_lock: 2

locked_ball_counting_strategy: physical_only

debug: True

Listing 281: your_machine_folder/multiball_locks/modes/min_virtual_physical/config/min_virtual_physical.yaml

#config_version=5

mode:

start_events: start_min_virtual_physical

multiball_locks:

lock_min_virtual_physical:

lock_devices: bd_lock

balls_to_lock: 2

locked_ball_counting_strategy: min_virtual_physical

debug: True

Listing 282: your_machine_folder/multiball_locks/modes/no_virtual/config/no_virtual.yaml

#config_version=5

mode:
(continues on next page)

multiball_locks (example config files) 1270

/mpf_examples/multiball_locks/modes/physical_only_no_stealing/config/physical_only_no_stealing.yaml
/mpf_examples/multiball_locks/modes/physical_only/config/physical_only.yaml
/mpf_examples/multiball_locks/modes/min_virtual_physical/config/min_virtual_physical.yaml
/mpf_examples/multiball_locks/modes/no_virtual/config/no_virtual.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_events: start_no_virtual

multiball_locks:

lock_no_virtual:

lock_devices: bd_lock

balls_to_lock: 2

locked_ball_counting_strategy: no_virtual

debug: True

mypinballs (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 283: your_machine_folder/mypinballs/config/config.yaml

#config_version=5

hardware:

segment_displays: mypinballs

mypinballs:

port: /dev/ttyUSB0

debug: True

segment_displays:

display1:

number: 1

display2:

number: 2

display6:

number: 6

null (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

mypinballs (example config files) 1271

/mpf_examples/mypinballs/config/config.yaml

Mission Pinball Framework Documentation, Version

Listing 284: your_machine_folder/null/config/null.yaml

#config_version=5

openpixel (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 285: your_machine_folder/openpixel/config/config.yaml

#config_version=5

lights:

test_led:

number: 99

type: grb

test_led2:

number: 0-20

type: grb

test_led3:

number: 1-99

type: grb

Listing 286: your_machine_folder/openpixel/config/fadecandy.yaml

#config_version=5

config:

- config.yaml

lights:

test_rgbw:

channels:

red:

- number: 2-0

green:

- number: 2-1

blue:

- number: 2-2

white:

- number: 2-3

test_rgbw2:

channels:

red:

- number: 2-4

(continues on next page)

openpixel (example config files) 1272

/mpf_examples/null/config/null.yaml
/mpf_examples/openpixel/config/config.yaml
/mpf_examples/openpixel/config/fadecandy.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

green:

- number: 2-5

blue:

- number: 2-6

white:

- number: 2-7

test_led_serial:

previous: test_led2

type: rgb

test_led_serial2:

previous: test_led_serial

type: rgbw

opp (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 287: your_machine_folder/opp/config/config.yaml

#config_version=5

hardware:

platform: opp

opp:

ports: com1

baud: 115200

debug: True

switches:

s_test:

number: 0-0

s_test_no_debounce:

number: 0-1

debounce: quick

s_test_nc:

number: 0-2

type: 'NC'

s_flipper:

number: 0-3

s_test_card2:

number: 0-8

s_test_neo:

number: 1-0

(continues on next page)

opp (example config files) 1273

/mpf_examples/opp/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

coils:

c_test:

number: 0-0

default_pulse_ms: 23

c_test_allow_enable:

number: 0-1

default_pulse_ms: 23

platform_settings:

recycle_factor: 3

default_hold_power: 1.0

c_flipper_hold:

number: 0-2

default_hold_power: 1.0

c_flipper_main:

number: 0-3

default_pulse_ms: 10

default_hold_power: 0.375

c_holdpower_16:

number: 1-12

default_hold_power: 0.0625

lights:

test_light1:

number: 0-16

subtype: matrix

test_light2:

number: 0-17

subtype: matrix

test_led1:

number: 1-0

test_led2:

previous: test_led1

type: rgb

autofire_coils:

ac_slingshot_test:

coil: c_test

switch: s_test

ac_slingshot_test2:

coil: c_test_allow_enable

switch: s_test_no_debounce

ac_delayed_kickback:

coil: c_test

switch: s_test

coil_pulse_delay: 20

flippers:

f_test_single:

debug: true

#main_coil_overwrite:

pulse_ms: 11

main_coil: c_flipper_main

(continues on next page)

opp (example config files) 1274

Mission Pinball Framework Documentation, Version

(continued from previous page)

activation_switch: s_flipper

f_test_hold:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

Listing 288: your_machine_folder/opp/config/config2.yaml

#config_version=5

hardware:

platform: opp

opp:

ports: com1

baud: 115200

debug: True

switches:

s_test:

number: 0-0

s_test_no_debounce:

number: 0-1

debounce: quick

s_test_nc:

number: 0-2

type: 'NC'

s_flipper:

number: 0-3

s_test_card2:

number: 0-8

s_matrix_test:

number: 3-48

s_matrix_test2:

number: 3-32

s_matrix_test3:

number: 3-95

coils:

c_test:

number: 0-0

default_pulse_ms: 23

c_test_allow_enable:

number: 0-1

default_pulse_ms: 23

platform_settings:

recycle_factor: 3

default_hold_power: 1.0

c_flipper_hold:

number: 0-2

default_hold_power: 1.0

c_flipper_main:
(continues on next page)

opp (example config files) 1275

/mpf_examples/opp/config/config2.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 0-3

default_pulse_ms: 10

default_hold_power: 0.375

c_holdpower_16:

number: 1-12

default_hold_power: 0.0625

c_matrix_test:

number: 3-0

default_pulse_ms: 42

lights:

test_light1:

number: 0-16

subtype: matrix

test_light2:

number: 0-17

subtype: matrix

test_led1:

number: 1-0

test_led2:

number: 1-1

autofire_coils:

ac_slingshot_test:

coil: c_test

switch: s_test

ac_slingshot_test2:

coil: c_test_allow_enable

switch: s_test_no_debounce

ac_matrix_slingshot_test:

coil: c_matrix_test

switch: s_matrix_test

flippers:

f_test_single:

debug: true

main_coil: c_flipper_main

activation_switch: s_flipper

f_test_hold:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

Listing 289: your_machine_folder/opp/config/config_stm32.yaml

#config_version=5

hardware:

platform: opp

(continues on next page)

opp (example config files) 1276

/mpf_examples/opp/config/config_stm32.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

opp:

ports: com1, com2

baud: 115200

debug: True

switches:

s_test:

number: 19088743-0-0

s_test_no_debounce:

number: 19088743-0-1

debounce: quick

lights:

l2-0:

number: 2-0-16

subtype: incand

l2-1:

number: 2-0-17

subtype: incand

l2-2:

number: 2-0-18

subtype: incand

l2-3:

number: 2-0-19

subtype: incand

l2-4:

number: 2-0-20

subtype: incand

l2-5:

number: 2-0-21

subtype: incand

l2-6:

number: 2-0-22

subtype: incand

l2-7:

number: 2-0-23

subtype: incand

l3-7:

number: 2-0-31

subtype: incand

l_neo_0:

number: 19088743-0-0

subtype: led

type: rgb

l_neo_1:

previous: l_neo_0

type: rgb

subtype: led

m0-0:

number: 2-0-0

subtype: matrix

m0-1:

number: 2-0-1

subtype: matrix

(continues on next page)

opp (example config files) 1277

Mission Pinball Framework Documentation, Version

(continued from previous page)

m0-63:

number: 2-0-63

subtype: matrix

servos:

servo1:

servo_min: 0

servo_max: 1

speed_limit: 20

positions:

0.392: servo_up

0.784: servo_down

reset_position: 0.588

reset_events: reset_servo

number: 19088743-0-8

osc (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 290: your_machine_folder/osc/config/config.yaml

#config_version=5

hardware:

platform: osc

osc:

remote_ip: 127.0.0.1

remote_port: 8000

events_to_send:

- my_test_event

- my_other_test_event

- player_turn_started

lights:

test_light1:

channels:

red:

- number: light1/red

blue:

- number: light1/blue

green:

- number: light1/green

test_light2:

number: light2

(continues on next page)

osc (example config files) 1278

/mpf_examples/osc/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

switches:

switch_1:

number: 1

type: NO

switch_abc:

number: abc

p3_roc (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 291: your_machine_folder/p3_roc/config/config.yaml

#config_version=5

hardware:

platform: p3_roc

servo_controllers: i2c_servo_controller

driverboards: pdb

p_roc:

use_separate_thread: False

trace_bus: True

debug: true

pd_led_boards:

2:

use_servo_0: True

4:

use_stepper_0: True

use_stepper_1: True

gpio_map:

0: input

1: output

2: output

3: input

5: output

7: input

digital_outputs:

d_gpio1:

number: gpio-1

type: driver

d_gpio5:

number: gpio-5

type: driver

switches:

(continues on next page)

p3_roc (example config files) 1279

/mpf_examples/p3_roc/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

s_test_000:

number: A0-B0-0

s_test_001:

number: 0/0/3

s_test:

number: A1-B0-7

s_test_no_debounce:

number: A1-B1-0

debounce: quick

s_slingshot_test:

number: A2-B1-0

s_test_nc:

number: A2-B1-1

type: 'NC'

s_flipper:

number: 1

s_flipper_eos:

number: 2

s_stepper1_home:

number: A4-B0-0

s_stepper2_home:

number: A4-B0-1

s_sling_default: # just defaults

number: A4-B0-2

s_gpio0:

number: gpio-0

s_gpio7:

number: gpio-7

coils:

c_test:

number: A1-B1-2

default_pulse_ms: 23

c_test_allow_enable:

number: A1-B1-3

default_pulse_ms: 23

default_hold_power: 1.0

c_slingshot_test:

number: A0-B1-0

c_coil_pwm_test:

number: A0-B1-1

default_hold_power: 0.2

c_flipper_main:

number: A0-B0-1

default_pulse_ms: 10

default_hold_power: 0.375

c_flipper_hold:

number: A0-B0-2

default_hold_power: 0.125

test_gi:

number: A2-B0-3

default_hold_power: 1.0

default_pulse_ms: 0

c_sling_pulse_power: # just defaults

(continues on next page)

p3_roc (example config files) 1280

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: A2-B0-4

default_pulse_power: 0.5

default_pulse_ms: 12

with those two coils we test that we also configure the opposite bank on the PD-16

do not configure other coils on A5 or A6 in this test

c_bank_test:

number: A5-B0-2

c_bank2_test:

number: A6-B1-7

autofire_coils:

ac_slingshot_test:

coil: c_slingshot_test

switch: s_slingshot_test

ac_switch_nc_test:

coil: c_coil_pwm_test

switch: s_test_nc

ac_sling_pulse_power:

coil: c_sling_pulse_power

switch: s_sling_default

servos:

servo1:

number: 3

servo_pd_led_0:

platform: p3_roc

number: 2-0

accelerometers:

p3_roc_accelerometer:

number: 1

flippers:

f_test_single:

debug: true

main_coil_overwrite:

pulse_ms: 11

main_coil: c_flipper_main

activation_switch: s_flipper

f_test_hold:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

f_test_hold_eos:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

eos_switch: s_flipper_eos

(continues on next page)

p3_roc (example config files) 1281

Mission Pinball Framework Documentation, Version

(continued from previous page)

use_eos: true

f_test_single_eos:

debug: true

main_coil: c_flipper_main

activation_switch: s_flipper

eos_switch: s_flipper_eos

use_eos: true

lights:

test_pdb_light:

number: C-A2-B0-0:R-A2-B1-0

subtype: matrix

test_gi:

platform: drivers

number: test_gi

test_led:

number: 2-1-2-3

test_led2:

channels:

red:

number: 2-7

green:

number: 2-8

blue:

number: 2-9

test_led3:

previous: test_led2

type: rgb

test_led_inverted:

number: 2-4-5-6

platform_settings:

polarity: True

subtype: led

steppers:

stepper1:

number: 4-0

debug: True

homing_mode: switch

homing_switch: s_stepper1_home

stepper2:

number: 4-1

debug: True

homing_mode: switch

homing_switch: s_stepper2_home

p_roc (example config files)

p_roc (example config files) 1282

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 292: your_machine_folder/p_roc/config/config.yaml

#config_version=5

hardware:

platform: p_roc

p_roc:

driverboards: pdb

use_separate_thread: False

dmd_timing_cycles: 1, 2, 3, 4

debug: true

trace_bus: True

switches:

s_test_000:

number: 0

s_test_001:

number: 2

s_test:

number: 23

s_test_no_debounce:

number: 24

debounce: quick

s_slingshot_test:

number: 40

s_direct:

number: SD01

s_matrix:

number: 2/3

coils:

c_test:

number: A1-B1-2

default_pulse_ms: 23

c_test_allow_enable:

number: A1-B1-3

default_pulse_ms: 23

default_hold_power: 1.0

c_slingshot_test:

number: A0-B1-0

c_test2: # unused. just to configure bank 0

number: A0-B0-0

c_direct:

number: C01

test_gi:

(continues on next page)

p_roc (example config files) 1283

/mpf_examples/p_roc/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: A2-B0-3

default_hold_power: 1.0

default_pulse_ms: 0

c_direct2_pulse_power:

number: C02

default_pulse_power: 0.9

default_pulse_ms: 20

autofire_coils:

ac_slingshot_test:

coil: c_slingshot_test

switch: s_slingshot_test

lights:

test_pdb_light:

number: C-A2-B0-0:R-A2-B1-0

subtype: matrix

test_direct_light:

number: L01

test_gi:

platform: drivers

number: test_gi

segment_displays:

display1:

number: 0

Listing 293: your_machine_folder/p_roc/config/snux.yaml

#config_version=5

hardware:

coils: snux

switches: snux

platform: p_roc

p_roc:

driverboards: wpc

use_separate_thread: False

trace_bus: True

debug: true

system11:

ac_relay_delay_ms: 75

ac_relay_driver: c_ac_relay

platform: p_roc

snux:

diag_led_driver: c_diag_led_driver

switches:

s_test_fliptronics:

number: sf1

s_test_direct:
(continues on next page)

p_roc (example config files) 1284

/mpf_examples/p_roc/config/snux.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: sd1

s_test_matrix:

number: s26

coils:

c_test_direct:

number: c01

c_test_a_side:

number: c02a

c_test_c_side:

number: c02c

default_hold_power: 1.0

c_flipper_enable_driver:

number: c23

default_hold_power: 1.0

c_diag_led_driver:

number: c24

default_hold_power: 1.0

c_ac_relay:

number: c25

default_hold_power: 1.0

autofire_coils:

ac_slingshot_test:

coil: c_test_direct

switch: s_test_direct

Listing 294: your_machine_folder/p_roc/config/wpc.yaml

#config_version=5

hardware:

platform: p_roc

p_roc:

driverboards: wpc

use_separate_thread: False

trace_bus: True

debug: true

switches:

s_test_fliptronics:

number: sf1

s_test_direct:

number: sd1

s_test_matrix:

number: s26

s_slingshot_test:

number: s20

coils:

c_test_direct:

number: c01

default_pulse_ms: 23
(continues on next page)

p_roc (example config files) 1285

/mpf_examples/p_roc/config/wpc.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

c_test_fliptronics:

number: fllm

default_pulse_ms: 23

test_gi:

number: g01

default_pulse_ms: 0

c_slingshot_test:

number: c02

lights:

test_light:

number: l11

subtype: matrix

test_gi:

platform: drivers

number: test_gi

autofire_coils:

ac_slingshot_test:

coil: c_slingshot_test

switch: s_slingshot_test

pkone (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 295: your_machine_folder/pkone/config/config.yaml

#config_version=5

Hardware setup for tests: Extension boards at addresses 0 and 1, Lightshow boards at 2 (rgb) and 3␣

→˓(rgbw)

hardware:

platform: pkone

pkone:

port: com3

debug: true

switches:

s_test:

number: 0-7

s_test_nc:

number: 0-26

type: 'NC'

s_slingshot_test:

number: 0-22

s_flipper:

number: 1-5

(continues on next page)

pkone (example config files) 1286

/mpf_examples/pkone/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

s_flipper_eos:

number: 1-6

s_autofire:

number: 1-7

s_up:

number: 1-11

s_down:

number: 1-12

s_test_1:

number: 0-1

s_test_2:

number: 0-2

s_test_3:

number: 0-3

s_test_4:

number: 0-4

s_test_11:

number: 1-1

s_test_12:

number: 1-2

s_test_13:

number: 1-3

s_test_14:

number: 1-4

coils:

c_test:

number: 1-4

default_pulse_ms: 23

default_recycle: True

platform_settings:

recycle_ms: 27

c_test_allow_enable:

number: 1-6

default_pulse_ms: 23

max_hold_power: 1.0

c_slingshot_test:

number: 0-7

c_long_pulse:

number: 1-8

default_pulse_ms: 2000

max_hold_power: 1.0

c_flipper_main:

number: 1-1

default_pulse_ms: 10

default_hold_power: 0.125

c_flipper_hold:

number: 1-2

default_hold_power: 0.125

autofire_coils:

ac_slingshot_test:

coil: c_slingshot_test

switch: s_slingshot_test

(continues on next page)

pkone (example config files) 1287

Mission Pinball Framework Documentation, Version

(continued from previous page)

ac_inverted_switch:

coil: c_slingshot_test

switch: s_test_nc

ac_same_switch1:

coil: c_test

switch: s_autofire

enable_events: ac_same_switch

ac_same_switch2:

coil: c_test_allow_enable

switch: s_autofire

enable_events: ac_same_switch

ac_different_boards:

coil: c_flipper_hold

switch: s_test

ac_board_3:

coil: c_flipper_hold

switch: s_test_13

flippers:

f_test_single:

debug: true

main_coil_overwrite:

pulse_ms: 11

main_coil: c_flipper_main

activation_switch: s_flipper

f_test_hold:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

f_test_hold_eos:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

eos_switch: s_flipper_eos

use_eos: true

servos:

servo1:

number: 0-11

servo_min: 0.012

servo_max: 0.108

reset_position: 0

servo2:

number: 0-14

lights:

test_rgb_led_1:

start_channel: 2-1-0

type: rgb

subtype: led

test_rgb_led_2:

(continues on next page)

pkone (example config files) 1288

Mission Pinball Framework Documentation, Version

(continued from previous page)

previous: test_rgb_led_1

type: rgb

subtype: led

test_rgb_led_3:

previous: test_rgb_led_2

type: rgbw

subtype: led

test_rgb_led_4:

previous: test_rgb_led_3

type: rgb

subtype: led

test_rgbw_led_1:

start_channel: 3-1-0

type: rgbw

subtype: led

test_rgbw_led_2:

previous: test_rgbw_led_1

type: rgbw

subtype: led

test_rgbw_led_3:

previous: test_rgbw_led_2

type: rgb

subtype: led

test_rgbw_led_4:

previous: test_rgbw_led_3

type: rgbw

subtype: led

test_simple_led:

number: 2-17

subtype: simple

test_other_simple_led:

number: 3-1

subtype: simple

platform (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

platform (example config files) 1289

Mission Pinball Framework Documentation, Version

Listing 296: your_machine_folder/platform/config/test_virtual.yaml

#config_version=5

switches:

s_test:

number: 1

platform_settings:

debounce_open: 20ms

switch1_p_roc: # this should not cause duplicate switch exceptions

number: 1

platform: p_roc

switch1_p_fast:

number: 1

platform: fast

coils:

c_test:

default_pulse_power: 0.128

number: 1

c_test_no_allow_enable:

number: 2

c_test_allow_enable:

number: 3

max_hold_power: 1.0

c_test_hold_power:

number: 4

default_hold_power: 0.1

coil1_p_roc: # this should not cause duplicate coil exceptions

number: 1

platform: p_roc

coil1_fast:

number: 1

platform: fast

this should not cause duplicate light exceptions

lights:

light1_p_roc:

number: 1

platform: p_roc

light1_fast:

number: 1

platform: fast

light1_virtual:

number: 1

Listing 297: your_machine_folder/platform/config/test_platform.yaml

#config_version=5

hardware:

platform: smart_virtual, virtual

switches:

(continues on next page)

platform (example config files) 1290

/mpf_examples/platform/config/test_virtual.yaml
/mpf_examples/platform/config/test_platform.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

switch1:

number: 1

switch2:

number: 2

platform: virtual

player_vars (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 298: your_machine_folder/player_vars/config/player_vars.yaml

#config_version=5

player_vars:

some_var:

initial_value: 4

some_float:

initial_value: 4

value_type: float

some_string:

initial_value: 4

value_type: str

some_other_string:

initial_value: hello

value_type: str # required for non-ints

machine_vars:

test1:

initial_value: 4

value_type: int

test2:

initial_value: '5'

value_type: str

below is the min config we need to be able to start a game

game:

balls_per_game: 3

coils:

eject_coil1:

number:

eject_coil2:

number:

switches:

s_start:

(continues on next page)

player_vars (example config files) 1291

/mpf_examples/player_vars/config/player_vars.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

playfields:

playfield:

default_source_device: bd_launcher

tags: default

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 2s

playfield (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 299: your_machine_folder/playfield/config/test_playfield.yaml

#config_version=5

switches:

s_playfield:

number:

tags: playfield_active

playfield_transfer (example config files)

playfield (example config files) 1292

/mpf_examples/playfield/config/test_playfield.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 300: your_machine_folder/playfield_transfer/config/config.yaml

#config_version=5

switches:

s_transfer:

number:

playfield_transfers:

transfer1:

ball_switch: s_transfer

captures_from: playfield1

eject_target: playfield2

transfer2:

transfer_events: transfer_ball

captures_from: playfield1

eject_target: playfield2

playfields:

playfield1:

label: Playfield 1

default_source_device: None

playfield2:

label: Playfield 2

default_source_device: None

plugin_config_player (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 301: your_machine_folder/plugin_config_player/config/plugin_config_player.yaml

#config_version=5

modes:

- mode1

test_player:

event1: some_string

event2:

some: dict

with: arbitrary

values: '.'

(continues on next page)

plugin_config_player (example config files) 1293

/mpf_examples/playfield_transfer/config/config.yaml
/mpf_examples/plugin_config_player/config/plugin_config_player.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

event5{foo==0}: some_string

test2_player:

event2: slide1

event3: slide2

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 302: your_machine_folder/plugin_config_player/modes/mode1/shows/show2.yaml

#show_version=5

- time: 0

tests:

some:

key1: thing

- time: 1

tests:

some:

key: value

key1: value

test2s:

some:

key1: value

Listing 303: your_machine_folder/plugin_config_player/modes/mode1/shows/show3.yaml

#show_version=5

- time: 0

test3s:

test3_something:

test3_key: test3_value

Listing 304: your_machine_folder/plugin_config_player/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 400

game_mode: False

test_player:

event1: some_string

event4: something

test2_player:

event2: slide1

(continues on next page)

plugin_config_player (example config files) 1294

/mpf_examples/plugin_config_player/modes/mode1/shows/show2.yaml
/mpf_examples/plugin_config_player/modes/mode1/shows/show3.yaml
/mpf_examples/plugin_config_player/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

event3: slide2

show_player:

start_show2: show2

start_show3: show3

Show file examples

Here are some example show files that go along with the above config(s).

Listing 305: your_machine_folder/plugin_config_player/shows/show1.yaml

#show_version=5

- time: 0

tests:

some5:

key5: thing

- time: 1

tests:

slide1:

key6: value

key6.1: value

transition:

key7: value2

key7.1: value3

test2s:

some7:

key7: value

pololu_maestro (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 306: your_machine_folder/pololu_maestro/config/pololu_maestro.yaml

#config_version=5

hardware:

platform: virtual

driverboards: virtual

servo_controllers: pololu_maestro

pololu_maestro:

port: COM5

servo_min: 3000

servo_max: 9000
(continues on next page)

pololu_maestro (example config files) 1295

/mpf_examples/plugin_config_player/shows/show1.yaml
/mpf_examples/pololu_maestro/config/pololu_maestro.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

servos:

servo1:

servo_min: 0.0

servo_max: 1.0

reset_position: 0.5

speed_limit: 0.5

acceleration_limit: 0.5

reset_events: reset_servo1

number: 1

servo2:

servo_min: 0.2

servo_max: 0.8

reset_position: 1.0

reset_events: reset_servo2

number: 2

servo1_controller_13:

number: 13-1

pololu_tic (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 307: your_machine_folder/pololu_tic/config/config.yaml

#config_version=5

hardware:

platform: virtual

switches: pololu_tic

stepper_controllers: pololu_tic

switches:

s_home:

number: 1337-SDA

s_test:

number: 1337-RX

steppers:

stepper1:

number: 1337

homing_mode: switch

homing_switch: s_home

named_positions:

10: test_00

20: test_01

50: test_10

pololu_tic (example config files) 1296

/mpf_examples/pololu_tic/config/config.yaml

Mission Pinball Framework Documentation, Version

randomizer (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 308: your_machine_folder/randomizer/config/randomizer.yaml

#config_version=5

rpi (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 309: your_machine_folder/rpi/config/config.yaml

#config_version=5

hardware:

platform: rpi

raspberry_pi:

ip: localhost

port: 8888

switches:

s_test:

number: 1

s_test2:

number: 7

coils:

c_test:

number: 23

default_pulse_ms: 23

c_test_allow_enable:

number: 30

default_hold_power: 1.0

c_pwm:

number: 2

default_hold_power: 0.2

servos:

servo1:

number: 10

randomizer (example config files) 1297

/mpf_examples/randomizer/config/randomizer.yaml
/mpf_examples/rpi/config/config.yaml

Mission Pinball Framework Documentation, Version

rpi_dmd (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 310: your_machine_folder/rpi_dmd/config/config.yaml

#config_version=5

hardware:

platform: rpi_dmd

rpi_dmd:

gpio_slowdown: 2

pwm_lsb_nanoseconds: 300

displays:

dmd:

width: 32

height: 32

rgb_dmds:

rpi_dmd:

label: RPi RGB DMD

score_queue (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 311: your_machine_folder/score_queue/config/config.yaml

#config_version=5

modes:

- mode1

coils:

c_chime_1000:

number:

c_chime_100:

number:

c_chime_10:

number:

score_queues:

score:

(continues on next page)

rpi_dmd (example config files) 1298

/mpf_examples/rpi_dmd/config/config.yaml
/mpf_examples/score_queue/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

chimes: c_chime_1000, c_chime_100, c_chime_10, None

debug: True

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 312: your_machine_folder/score_queue/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

priority: 200

score_queue_player:

score_2k:

score: 2000

score_200:

score: 200

score_reels (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 313: your_machine_folder/score_reels/config/config.yaml

#config_version=5

switches:

s_start:

number: 1

tags: start

score_1p_10k_0:

number: 2

score_1p_10k_9:

number: 3

score_1p_1k_0:

number: 4

score_1p_1k_9:

number: 5

score_1p_100_0:

number: 6

score_1p_100_9:

number: 7

score_1p_10_0:

number: 8
(continues on next page)

score_reels (example config files) 1299

/mpf_examples/score_queue/modes/mode1/config/mode1.yaml
/mpf_examples/score_reels/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

score_1p_10_9:

number: 9

score_2p_10_0:

number: 10

score_2p_10_9:

number: 11

virtual_platform_start_active_switches:

- score_1p_10k_0

- score_1p_1k_0

- score_1p_100_0

- score_1p_10_0

- score_2p_10_0

coils:

player1_10k:

number:

player1_1k:

number:

player1_100:

number:

player1_10:

number:

player2_10:

number:

chime1:

number:

chime2:

number:

chime3:

number:

score_reels:

score_1p_10k:

coil_inc: player1_10k

switch_0: score_1p_10k_0

switch_9: score_1p_10k_9

limit_hi: 9

limit_lo: 0

debug: True

score_1p_1k:

coil_inc: player1_1k

switch_0: score_1p_1k_0

switch_9: score_1p_1k_9

limit_hi: 9

limit_lo: 0

debug: True

score_1p_100:

coil_inc: player1_100

switch_0: score_1p_100_0

switch_9: score_1p_100_9

limit_hi: 9

limit_lo: 0

debug: True

(continues on next page)

score_reels (example config files) 1300

Mission Pinball Framework Documentation, Version

(continued from previous page)

score_1p_10:

coil_inc: player1_10

switch_0: score_1p_10_0

switch_9: score_1p_10_9

limit_hi: 9

limit_lo: 0

debug: True

score_2p_10:

coil_inc: player2_10

switch_0: score_2p_10_0

switch_9: score_2p_10_9

limit_hi: 9

limit_lo: 0

debug: True

score_reel_groups:

player1:

reels: score_1p_10k, score_1p_1k, score_1p_100, score_1p_10, None

tags: player1

chimes: None, chime1, chime2, chime3, None

lights_tag: player1

debug: True

player2:

reels: score_2p_10, None

tags: player2

chimes: chime3, None

lights_tag: player2

debug: True

lights:

light_p1:

number:

tags: player1

light_p2:

number:

tags: player2

scriptlet (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 314: your_machine_folder/scriptlet/config/config.yaml

#config_version=5

scriptlets: test_scriptlet.TestScriptlet

scriptlet (example config files) 1301

/mpf_examples/scriptlet/config/config.yaml

Mission Pinball Framework Documentation, Version

segment_display (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 315: your_machine_folder/segment_display/config/game.yaml

#config_version=5

segment_displays:

display1:

number: 1

display2:

number: 2

display3:

number: 3

display4:

number: 4

display5:

number: 5

segment_display_player:

empty all displays on game start and setup display5

game_start:

display1:

text: ""

display2:

text: ""

display3:

text: ""

display4:

text: ""

display5:

text: "{current_player.ball:d}"

clear only display5 after game

game_ended{machine.player1_score > 0}:

display1:

text: "{machine.player1_score:d}"

game_ended{machine.player2_score > 0}:

display2:

text: "{machine.player2_score:d}"

game_ended{machine.player3_score > 0}:

display3:

text: "{machine.player3_score:d}"

game_ended{machine.player4_score > 0}:

display4:

text: "{machine.player4_score:d}"

game_ended:

(continues on next page)

segment_display (example config files) 1302

/mpf_examples/segment_display/config/game.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

display5:

text: ""

flash display on player turn

player_turn_started.1{number==1}:

display1:

action: flash

player_turn_ended.2{number==1}:

display1:

action: no_flash

player_turn_started.3{number==2}:

display2:

action: flash

player_turn_ended.4{number==2}:

display2:

action: no_flash

player_turn_started.5{number==3}:

display3:

action: flash

player_turn_ended.6{number==3}:

display3:

action: no_flash

player_turn_started.7{number==4}:

display4:

action: flash

player_turn_ended.8{number==4}:

display4:

action: no_flash

show score when adding players

player_added.1{num==1}:

display1:

text: "{players[0].score:d}"

player_added.2{num==2}:

display2:

text: "{players[1].score:d}"

player_added.3{num==3}:

display3:

text: "{players[2].score:d}"

player_added.4{num==4}:

display4:

text: "{players[3].score:d}"

Listing 316: your_machine_folder/segment_display/config/config.yaml

#config_version=5

modes:

- mode1

segment_displays:

display1:

number: 1

size: 10
(continues on next page)

segment_display (example config files) 1303

/mpf_examples/segment_display/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

display2:

number: 2

display3:

number: 3

display4:

number: 1

size: 10

integrated_commas: true

display5:

number: 1

size: 10

integrated_dots: true

segment_display_player:

test_event1:

display1: "HELLO1"

display2:

text: "HELLO2"

test_event2:

display1:

action: remove

test_event3:

display2:

action: remove

test_flashing:

display1:

action: flash

test_no_flashing:

display1:

action: no_flash

test_score:

display1:

text: "1: {players[0].score:d}"

display2:

text: "2: {machine.test:d}"

test_score_two_player:

display1:

text: "{players[0].score:d}"

display2:

text: "{players[1].score:d}"

test_flash:

display1:

priority: 10

key: flash

text: "TEST"

expire: 2s

test_update_events:

display3:

text: "UPDATE"

(continues on next page)

segment_display (example config files) 1304

Mission Pinball Framework Documentation, Version

(continued from previous page)

color: FF0000

test_transition:

display1:

priority: 15

key: transition

text: " SCROLL "

color: red

transition:

type: push

direction: right

transition_out:

type: push

direction: left

expire: 2s

test_transition_2:

display1:

priority: 15

key: transition

text: "0123456789"

transition:

type: split

mode: wipe

direction: out

test_transition_3:

display1:

priority: 15

key: transition

text: "ABCDEFGHIJ"

transition:

type: uncover

direction: right

test_set_color_to_white:

display3:

action: set_color

color: white

test_set_color_to_red:

display3:

action: set_color

color: red

Listing 317: your_machine_folder/segment_display/config/config_transition.yaml

#config_version=5

segment_displays:

display1:

debug: true

number: 1

size: 10

(continues on next page)

segment_display (example config files) 1305

/mpf_examples/segment_display/config/config_transition.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

segment_display_player:

test_event1:

display1:

priority: 1

text: EVENT1

color: red

expire: 2s

transition:

type: push

direction: left

transition_out:

type: cover

direction: left

test_event2:

display1:

priority: 10

text: EVENT2

color: blue

expire: 5s

transition:

type: push

direction: right

test_event3:

display1:

key: test3

priority: 1

text: EVENT3

color: red

expire: 2s

transition:

type: push

direction: left

transition_out:

type: cover

direction: left

test_event4:

display1:

key: test4

priority: 10

text: EVENT4

color: blue

expire: 5s

transition:

type: push

direction: right

Listing 318: your_machine_folder/segment_display/config/config_colors.yaml

#config_version=5

segment_displays:

display1:

debug: true

number: 1
(continues on next page)

segment_display (example config files) 1306

/mpf_examples/segment_display/config/config_colors.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

size: 10

segment_display_player:

test_event1:

display1:

text: EVENT1

color: [red, blue, yellow, green, white, purple]

test_event2:

display1:

text: EVENT2

color: [red, blue, yellow, green, white, purple]

transition:

type: uncover

direction: left

Listing 319: your_machine_folder/segment_display/config/config_flashing.yaml

#config_version=5

segment_displays:

display1:

debug: true

number: 1

size: 10

segment_display_player:

test_event1:

display1:

flashing: all

text: EVENT1

transition:

type: push

direction: left

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 320: your_machine_folder/segment_display/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

segment_display_player:

mode_mode1_started:

display1:

text: "MODE1"

display2:

text: "MODE1"

expire: 10s

segment_display (example config files) 1307

/mpf_examples/segment_display/config/config_flashing.yaml
/mpf_examples/segment_display/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

segment_display_widget (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 321: your_machine_folder/segment_display_widget/config/test_segment_display_widget.yaml

#config_version=5

window:

width: 800

height: 600

widgets:

segment_display_widget_top:

type: segment_display_emulator

name: display1

character_count: 7

character_slant_angle: 6

character_spacing: 20

segment_width: 0.11

segment_interval: 0.04

segment_off_color: 4b4c4a30

segment_on_color: fe961bff

side_bevel_enabled: true

dot_enabled: true

comma_enabled: true

character_map:

16: 54

17: 8264

18: 456

19: 235

20: 1240

text: "*HELLO*"

width: 600

height: 150

y: 450

segment_display_widget_middle:

type: segment_display_emulator

name: display3

display_type: 7seg

character_count: 8

character_slant_angle: 6

character_spacing: 5

segment_width: 0.11

segment_interval: 0.04

segment_off_color: 4b4c4a30

segment_on_color: f01020ff,f01020ff,f01020ff,f01020ff,f01020ff,f01020ff,f01020ff,008000ff

side_bevel_enabled: true

flash_mode: "mask"

flash_mask: "_______F"

(continues on next page)

segment_display_widget (example config files) 1308

/mpfmc_examples/segment_display_widget/config/test_segment_display_widget.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

flash_frequency: 4

dot_enabled: false

comma_enabled: true

text: "BALL 2"

width: 500

height: 120

y: 260

segment_display_widget_bottom:

type: segment_display_emulator

name: display2

character_count: 16

character_slant_angle: 6

character_spacing: 5

segment_width: 0.11

segment_interval: 0.04

segment_off_color: 4b4c4a30

segment_on_color: fe961bff

side_bevel_enabled: true

dot_enabled: true

comma_enabled: true

character_map:

16: 54

17: 8264

18: 456

19: 235

20: 1240

text: ">TESTS<"

width: 700

height: 100

y: 100

widget_player:

show_top_display: segment_display_widget_top

show_middle_display: segment_display_widget_middle

show_bottom_display: segment_display_widget_bottom

update_display:

segment_display_widget_top:

action: update

widget_settings:

text: "GOODBYE"

segment_display_widget_bottom:

action: update

widget_settings:

text: ""

sequence_shot (example config files)

sequence_shot (example config files) 1309

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 322: your_machine_folder/sequence_shot/config/config.yaml

#config_version=5

modes:

- mode1

switches:

seq2_1:

number:

seq2_2:

number:

seq2_3:

number:

seq2_cancel:

number:

seq2_delay:

number:

seq4_1:

number:

seq4_delay:

number:

sequence_shots:

sequence1:

event_sequence:

- event1

- event2

- event3

cancel_events: cancel

delay_event_list:

delay1: 1s

sequence_timeout: 3s

sequence2:

switch_sequence:

- seq2_1

- seq2_2

- seq2_3

cancel_switches: seq2_cancel

delay_switch_list:

seq2_delay: 1s

sequence_timeout: 3s

sequence3:

event_sequence:

- event3_1

sequence_with_dupes:

event_sequence:

- event_1

- event_2

- event_1

(continues on next page)

sequence_shot (example config files) 1310

/mpf_examples/sequence_shot/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- event_3

- event_1

sequence4:

debug: True

switch_sequence:

- seq4_1

delay_switch_list:

seq4_delay: 1s

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 323: your_machine_folder/sequence_shot/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

game_mode: False

sequence_shots:

sequence_mode_event:

event_sequence:

- event1

- event2

cancel_events: cancel

delay_event_list:

delay1: 1s

sequence_timeout: 3s

sequence_mode_switch:

switch_sequence:

- seq2_1

- seq2_2

cancel_switches: seq2_cancel

delay_switch_list:

seq2_delay: 1s

sequence_timeout: 3s

service_mode (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 324: your_machine_folder/service_mode/config/config.yaml

#config_version=5

(continues on next page)

service_mode (example config files) 1311

/mpf_examples/sequence_shot/modes/mode1/config/mode1.yaml
/mpf_examples/service_mode/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

game:

balls_per_game: 1

modes:

- attract

- game

- service

- credits

credits:

free_play: no

service_credits_switch: s_service_esc

coils:

c_test:

number: 1

label: First coil

c_test2:

number: 2

label: Second coil

c_test3:

number: 1000

label: Sixth coil

c_test4:

number: 100

label: Fifth coil

c_test5:

number: 3

label: Third coil

c_test6:

default_hold_power: 1.0

number: 10

label: Fourth coil

switches:

s_door_open:

number: 1

tags: service_door_open, power_off

s_service_enter:

number: 17

tags: service_enter

s_service_esc:

number: 18

tags: service_esc

s_service_up:

number: 19

tags: service_up

s_service_down:

number: 20

tags: service_down

lights:

l_light1:

(continues on next page)

service_mode (example config files) 1312

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 1

l_light5:

number: 5

label: Light Five

sound_system:

tracks:

sfx: []

enabled: true

keyboard:

right:

switch: s_service_enter

left:

switch: s_service_esc

up:

switch: s_service_up

down:

switch: s_service_down

enter:

switch: s_door_open

toggle: true

servo (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 325: your_machine_folder/servo/config/config.yaml

#config_version=5

servos:

limited_servo:

number: 1

servo_min: 0.2

servo_max: 0.8

test_servo:

number: 2

reset_position: 0.5

reset_events: test_reset

positions:

0.0: test_00

0.1: test_01

1.0: test_10

test_servo_with_timeout:

number: 3

stop_timeout_after_last_move: 2s

positions:

(continues on next page)

servo (example config files) 1313

/mpf_examples/servo/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

0.0: test_20

0.5: test_25

1.0: test_30

settings (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 326: your_machine_folder/settings/config/config.yaml

#config_version=5

settings:

custom_setting_int:

label: "Int Setting"

key_type: int

default: 0

sort: 1

values:

0: "Zero"

1: "One"

2: "Two"

custom_setting_str:

label: "String Setting"

key_type: str

default: "one"

sort: 2

values:

zero: "Zero"

one: "One"

two: "Two"

shapes (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 327: your_machine_folder/shapes/config/test_shapes.yaml

#config_version=5

displays:

default:

(continues on next page)

settings (example config files) 1314

/mpf_examples/settings/config/config.yaml
/mpfmc_examples/shapes/config/test_shapes.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

width: 400

height: 300

slides:

slide1:

- type: points

points: 50, 50, 75, 50, 100, 30, 200, 50, 68, 250

pointsize: 3

- type: line

points: 0, 0, 100, 100, 100, 200

color: 00ff00

thickness: 10

close: true

- type: bezier

points: 400, 300, 100, 100, 400, 0

color: pink

thickness: 5

- type: triangle

points: 400, 300, 200, 300, 400, 200

color: red

- type: quad

points: 50, 50, 55, 70, 100, 75, 110, 45

color: lightblue

- type: ellipse

width: 100

height: 100

color: purple

angle_start: 0

angle_end: 45

- type: rectangle

x: 250

y: 125

width: 200

height: 100

color: orange

corner_radius: 30

- type: rectangle

x: 350

y: 50

width: 50

height: 100

color: blue

slide_player:

slide1: slide1

shots (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

shots (example config files) 1315

Mission Pinball Framework Documentation, Version

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 328: your_machine_folder/shots/config/test_shots.yaml

#config_version=5

modes:

- base2

- base3

- mode1

- mode2

switches:

switch_1:

number:

switch_2:

number:

switch_3:

number:

switch_4:

number:

switch_5:

number:

switch_6:

number:

switch_7:

number:

switch_8:

number:

switch_9:

number:

switch_10:

number:

s_delay:

number:

switch_11:

number:

switch_12:

number:

switch_13:

number:

switch_14:

number:

switch_15:

number:

switch_16:

number:

switch_17:

number:

switch_18:

number:

switch_19:

number:

switch_20:

(continues on next page)

shots (example config files) 1316

/mpf_examples/shots/config/test_shots.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

switch_21:

number:

switch_22:

number:

switch_26:

number:

switch_27:

number:

switch_28:

number:

lights:

light_1:

number:

tags: tag1

subtype: matrix

light_2:

number:

tags: tag2

subtype: matrix

light_3:

number:

subtype: matrix

light_4:

number:

subtype: matrix

light_5:

number:

subtype: matrix

light_6:

number:

subtype: matrix

led_1:

number:

led_2:

number:

led_3:

number:

led_4:

number:

led_5:

number:

led_6:

number:

led_11:

number:

led_12:

number:

led_13:

number:

led_14:

number:

led_15:

(continues on next page)

shots (example config files) 1317

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

led_16:

number:

led_17:

number:

led_18:

number:

led_19:

number:

led_20:

number:

led_21:

number:

led_23:

number:

led_24:

number:

led_25:

number:

led_26:

number:

led_27:

number:

led_28:

number:

led_29:

number:

shows:

rainbow:

- lights:

(leds): red

- lights:

(leds): orange

- lights:

(leds): yellow

- lights:

(leds): green

- lights:

(leds): blue

- lights:

(leds): purple

rainbow_stay_on:

- lights:

(leds): red

- lights:

(leds): orange

- lights:

(leds): yellow

- lights:

(leds): green

- lights:

(leds): blue

- lights:

(continues on next page)

shots (example config files) 1318

Mission Pinball Framework Documentation, Version

(continued from previous page)

(leds): purple

duration: -1

rainbow2:

- lights:

(leds): aliceblue

- lights:

(leds): antiquewhite

- lights:

(leds): aquamarine

- lights:

(leds): azure

rainbow3:

- lights:

(leds): beige

- lights:

(leds): blueviolet

- lights:

(leds): brown

- lights:

(leds): burlywood

Listing 329: your_machine_folder/shots/config/test_shot_groups.yaml

#config_version=5

modes:

- base

switches:

switch_1:

number:

switch_2:

number:

switch_3:

number:

switch_4:

number:

s_rotate_l:

number:

s_rotate_r:

number:

switch_10:

number:

switch_11:

number:

switch_30:

number:

switch_31:

number:

switch_32:

number:

switch_33:

number:

switch_34:
(continues on next page)

shots (example config files) 1319

/mpf_examples/shots/config/test_shot_groups.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

switch_35:

number:

switch_36:

number:

switch_37:

number:

switch_38:

number:

switch_39:

number:

switch_40:

number:

switch_41:

number:

switch_42:

number:

switch_43:

number:

switch_44:

number:

switch_45:

number:

switch_46:

number:

s_GAS_G:

number:

s_GAS_A:

number:

s_GAS_S:

number:

s_special_left:

number:

s_special_right:

number:

lights:

led_10:

number:

led_11:

number:

led_30:

number:

led_31:

number:

led_32:

number:

led_33:

number:

led_34:

number:

led_35:

number:

led_36:

(continues on next page)

shots (example config files) 1320

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

led_37:

number:

led_38:

number:

led_39:

number:

led_40:

number:

led_41:

number:

led_42:

number:

l_GAS_G:

number:

l_GAS_A:

number:

l_GAS_S:

number:

l_special_right:

number:

subtype: matrix

l_special_left:

number:

subtype: matrix

shows:

rainbow:

- lights:

(leds): off

- lights:

(leds): red

- lights:

(leds): orange

- lights:

(leds): yellow

- lights:

(leds): green

leds_off:

- lights:

(led): off

leds_on:

- lights:

(led): white

Listing 330: your_machine_folder/shots/config/test_shot_group_rotate_with_exclude.yaml

#config_version=5

modes:

- rotate_with_exclude

switches:

s_rotate_l:
(continues on next page)

shots (example config files) 1321

/mpf_examples/shots/config/test_shot_group_rotate_with_exclude.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

s_rotate_r:

number:

switch_1:

number:

switch_2:

number:

switch_3:

number:

switch_4:

number:

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 331: your_machine_folder/shots/modes/mode2/config/mode2.yaml

#config_version=5

mode:

priority: 200

shots:

mode2_shot_rainbow:

switch: switch_27

show_tokens:

leds: led_27

profile: rainbow

mode2_shot_rainbow_start_step:

switch: switch_28

show_tokens:

leds: led_28

profile: rainbow_start_step

mode2_shot_2:

switch: switch_2

show_tokens:

leds: light_2

profile: rainbow_start_step

mode2_shot_show_tokens:

hit_events: mode2_shot_show_tokens_advance

enable_events: mode2_shot_show_tokens_enable

reset_events: mode2_shot_show_tokens_reset

disable_events: mode2_shot_show_tokens_disable

show_tokens:

leds: (machine.leds)

profile: show_tokens_profile

mode2_shot_changing_profile:

profile: changing_profile_one

(continues on next page)

shots (example config files) 1322

/mpf_examples/shots/modes/mode2/config/mode2.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

shows:

show_with_tokens:

- lights:

(leds): (color)

shot_profiles:

show_tokens_profile:

states:

- name: one

show: show_with_tokens

show_tokens:

color: (machine.color1)

- name: two

show: show_with_tokens

show_tokens:

color: (machine.color2)

- name: three

show: show_with_tokens

show_tokens:

color: (machine.color3)

mode2_shot_21:

states:

- name: mode2_one

- name: mode2_two

- name: mode2_three

mode2_shot_22:

states:

- name: mode2_one

- name: mode2_two

- name: mode2_three

rainbow_start_step:

states:

- name: red

show: rainbow

start_step: 1

manual_advance: True

- name: orange

show: rainbow

start_step: 2

manual_advance: True

- name: yellow

show: rainbow

start_step: 3

manual_advance: True

- name: green

show: rainbow

start_step: 4

manual_advance: True

- name: blue

show: rainbow

start_step: 5

manual_advance: True

- name: purple

show: rainbow

(continues on next page)

shots (example config files) 1323

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_step: 6

manual_advance: True

changing_profile_one:

states:

- name: first

show: show_with_tokens

show_tokens:

leds: led_20

color: yellow

changing_profile_two:

states:

- name: first

show: show_with_tokens

show_tokens:

leds: led_20

color: purple

mode2_shot_26:

states:

- name: mode2_one

show: rainbow3

- name: mode2_two

show: rainbow3

- name: mode2_three

show: rainbow3

Listing 332: your_machine_folder/shots/modes/base/config/base.yaml

#config_version=5

mode:

start_events: player_turn_started

stop_events: player_turn_stopped

priority: 100

shots:

shot_1:

switch: switch_1

shot_2:

switch: switch_2

shot_3:

switch: switch_3

shot_4:

switch: switch_4

shot_10:

switch: switch_10

show_tokens:

leds: led_10

shot_11:

switch: switch_11

show_tokens:

leds: led_11

shot_30:

switch: switch_30

show_tokens:

leds: led_30
(continues on next page)

shots (example config files) 1324

/mpf_examples/shots/modes/base/config/base.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

profile: rainbow

shot_31:

switch: switch_31

show_tokens:

leds: led_31

profile: rainbow

shot_32:

switch: switch_32

show_tokens:

leds: led_32

start_enabled: False

profile: rainbow

shot_33:

switch: switch_33

show_tokens:

leds: led_33

start_enabled: False

profile: rainbow

shot_34:

switch: switch_34

show_tokens:

leds: led_34

enable_events: None

shot_35:

switch: switch_35

show_tokens:

leds: led_35

enable_events: None

shot_36:

switch: switch_36

show_tokens:

leds: led_36

enable_events: None

shot_37:

switch: switch_37

show_tokens:

leds: led_37

enable_events: None

shot_38:

switch: switch_38

show_tokens:

leds: led_38

enable_events: None

shot_39:

switch: switch_39

show_tokens:

leds: led_39

enable_events: None

shot_40:

switch: switch_40

show_tokens:

leds: led_40

profile: shot_profile_40

shot_41:

(continues on next page)

shots (example config files) 1325

Mission Pinball Framework Documentation, Version

(continued from previous page)

switch: switch_41

show_tokens:

leds: led_41

profile: shot_profile_40

shot_42:

switch: switch_42

show_tokens:

leds: led_42

profile: shot_profile_40

shot_43:

switch: switch_43

shot_44:

switch: switch_44

shot_45:

switch: switch_45

profile: rainbow

shot_46:

switch: switch_46

profile: rainbow

lane_special_left:

switch: s_special_left

show_tokens:

light: l_special_left

profile: prof_toggle

lane_special_right:

switch: s_special_right

show_tokens:

light: l_special_right

profile: prof_toggle

shot_profiles:

rainbow:

show: rainbow

states:

- name: unlit

- name: red

- name: orange

- name: yellow

- name: green

rainbow_no_hold:

show: rainbow

states:

- name: unlit

- name: red

- name: orange

- name: yellow

- name: green

shot_profile_40:

show: rainbow

rotation_pattern: r, r, l, l

states:

- name: unlit

- name: red

- name: orange

(continues on next page)

shots (example config files) 1326

Mission Pinball Framework Documentation, Version

(continued from previous page)

- name: yellow

- name: green

prof_toggle:

states:

- name: unlit_toggle

show: off

- name: lit_toggle

show: on

loop: true

shot_groups:

test_group:

shots: shot_1, shot_2, shot_3, shot_4

rotate_left_events: s_rotate_l_active

rotate_right_events: s_rotate_r_active

debug: True

test_group_2:

shots: shot_10, shot_11

rotate_left_events: rotate_11_left

shot_group_30:

shots: shot_30, shot_31

shot_group_32:

shots: shot_32, shot_33

enable_events: group32_enable

disable_events: group32_disable

reset_events: group32_reset

restart_events: group32_restart

rotate_left_events: group32_rotate_left

rotate_right_events: group32_rotate_right

enable_rotation_events: group32_enable_rotation

disable_rotation_events: group32_disable_rotation

shot_group_34:

shots: shot_34, shot_35, shot_36

shot_group_37:

shots: shot_37, shot_38, shot_39

shot_group_40:

shots: shot_40, shot_41, shot_42

shot_group_43:

shots: shot_43, shot_44

shot_group_45:

shots: shot_45, shot_46

special:

shots: lane_special_left

Listing 333: your_machine_folder/shots/modes/base3/config/base3.yaml

#config_version=5

mode:

start_events: player_turn_started

stop_events: player_turn_stopped

priority: 50

shots:

shot_state_1:
(continues on next page)

shots (example config files) 1327

/mpf_examples/shots/modes/base3/config/base3.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

switch: switch_1

show_tokens:

light: light_1

profile: state_toggle

advance_events: advance_event1

reset_events: reset_event1

control_events:

- events: state_event1, state_event10

state: 1

shot_state_2:

switch: switch_2

show_tokens:

light: light_2

profile: state_loop_3

advance_events: advance_event2

reset_events: reset_event2

enable_events: enable_event2

disable_events: disable_event2

control_events:

- events: state_event2

state: 0

force: false

- events: state_event3

state: 0

- events: state_event4

state: 2

shot_profiles:

state_toggle:

states:

- name: unlit

- name: lit

state_loop_3:

loop: True

states:

- name: one

- name: two

- name: three

Listing 334: your_machine_folder/shots/modes/rotate_with_exclude/config/rotate_with_exclude.yaml

#config_version=5

mode:

start_events: ball_started

priority: 100

shot_profiles:

profile_state_names_to_not_rotate:

state_names_to_not_rotate: unlit

states:

- name: unlit

- name: red

- name: orange
(continues on next page)

shots (example config files) 1328

/mpf_examples/shots/modes/rotate_with_exclude/config/rotate_with_exclude.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

shots:

shot_1:

switch: switch_1

profile: profile_state_names_to_not_rotate

shot_2:

switch: switch_2

profile: profile_state_names_to_not_rotate

shot_3:

switch: switch_3

profile: profile_state_names_to_not_rotate

shot_4:

switch: switch_4

profile: profile_state_names_to_not_rotate

shot_groups:

test_group:

shots: shot_1, shot_2, shot_3, shot_4

rotate_left_events: s_rotate_l_active

rotate_right_events: s_rotate_r_active

debug: True

Listing 335: your_machine_folder/shots/modes/base2/config/base2.yaml

#config_version=5

mode:

start_events: player_turn_started

stop_events: player_turn_stopped

priority: 50

shots:

shot_1:

switch: switch_1

show_tokens:

light: light_1

shot_2:

switch: switch_2

show_tokens:

light: light_2

profile: three_states_loop

shot_3:

switch: switch_3

show_tokens:

light: tag1

shot_4:

switch: switch_1

led_1:

switch: switch_1

show_tokens:

led: led_1

shot_delay:

switch: switch_1

delay_switch:

s_delay: 2s
(continues on next page)

shots (example config files) 1329

/mpf_examples/shots/modes/base2/config/base2.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

shot_delay_same_switch:

switch: switch_15

delay_switch:

switch_15: 2s

default_show_light:

switch: switch_5

show_tokens:

light: light_4

default_show_lights:

switch: switch_6

show_tokens:

lights: light_5, light_6

default_show_led:

switch: switch_7

show_tokens:

led: led_4

default_show_leds:

switch: switch_8

show_tokens:

leds: led_5, led_6

show_in_profile_root:

switch: switch_9

show_tokens:

leds: led_3

profile: rainbow

shot_11:

switch: switch_11

show_tokens:

leds: led_11

profile: profile_11

shot_12:

switch: switch_12

show_tokens:

leds: led_12

profile: profile_12

shot_13:

switch: switch_13

show_tokens:

leds: led_13

profile: profile_13

shot_14:

switch: switch_14

show_tokens:

leds: led_14

profile: profile_14

shot_15:

switches: switch_13, switch_14

shot_16:

switch: switch_16

enable_events: custom_enable_16

disable_events: custom_disable_16

reset_events: custom_reset_16

hit_events: custom_hit_16

advance_events: custom_advance_16

(continues on next page)

shots (example config files) 1330

Mission Pinball Framework Documentation, Version

(continued from previous page)

restart_events: custom_restart_16

shot_17:

switch: switch_17

profile: profile_17

shot_19:

switch: switch_19

profile: profile_19

start_enabled: False

show_tokens:

leds: led_19

shot_20:

switch: switch_20

profile: profile_20

start_enabled: False

show_tokens:

leds: led_20

shot_21:

switch: switch_21

profile: profile_21

shot_22:

switch: switch_22

profile: profile_22

shot_23:

show_tokens:

leds: led_23

profile: profile_23

shot_24:

show_tokens:

leds: led_24

profile: profile_24

shot_25:

show_tokens:

leds: led_25

profile: profile_25

shot_26:

switch: switch_26

show_tokens:

leds: led_26

profile: profile_26

shot_27:

switch: switch_1

shot_28:

hit_events: event1

shot_profiles:

prof_toggle2:

states:

- name: unlit2

show: off

- name: lit2

show: on

loop: true

(continues on next page)

shots (example config files) 1331

Mission Pinball Framework Documentation, Version

(continued from previous page)

three_states_loop:

loop: True

states:

- name: one

- name: two

- name: three

rainbow:

show: rainbow

states:

- name: red

- name: orange

- name: yellow

- name: green

- name: blue

- name: purple

profile_11:

loop: true

states:

- name: step1

show: rainbow

- name: step2

show: rainbow2

profile_12:

show: rainbow

states:

- name: one

- name: two

- name: three

show: rainbow2

loops: -1

- name: four

- name: five

profile_13:

states:

- name: one

show: rainbow

- name: two

- name: three

show: rainbow2

profile_14:

states:

- name: one

show: rainbow_stay_on

loops: 0

- name: two

profile_17:

advance_on_hit: false

states:

- name: one

- name: two

- name: three

- name: four

- name: five

profile_19:

(continues on next page)

shots (example config files) 1332

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_when_disabled: true

states:

- name: one

show: rainbow

- name: two

show: rainbow2

profile_20:

show_when_disabled: false

states:

- name: one

show: rainbow

- name: two

show: rainbow2

profile_21:

states:

- name: base_one

- name: base_two

- name: base_three

profile_22:

states:

- name: base_one

- name: base_two

- name: base_three

profile_23:

states:

- name: base_one

show: rainbow

- name: base_two

show: rainbow

- name: base_three

show: rainbow

profile_24:

states:

- name: base_one

show: rainbow_stay_on

loops: 0

- name: base_two

show: rainbow_stay_on

profile_25:

states:

- name: base_one

show: rainbow

loops: 0

- name: base_two

show: rainbow

profile_26:

states:

- name: base_one

show: rainbow

- name: base_two

show: rainbow

- name: base_three

show: rainbow

shots (example config files) 1333

Mission Pinball Framework Documentation, Version

Listing 336: your_machine_folder/shots/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

shots:

mode1_shot_1:

switch: switch_3

start_enabled: True

enable_events: custom_enable_1

disable_events: custom_disable_1

mode1_shot_17:

switch: switch_17

enable_events: custom_enable_17

disable_events: custom_disable_17

reset_events: custom_reset_17

hit_events: custom_hit_17

mode1_shot_2:

switch: switch_2

show_tokens:

leds: light_2

start_enabled: True

profile: mode1_shot_2

mode1_shot_3:

switch: switch_3

profile: mode1_shot_3

shot_profiles:

mode1_shot_2:

show: rainbow2

states:

- name: mode1_one

- name: mode1_two

- name: mode1_three

mode1_shot_3:

show: rainbow2

block: True

states:

- name: mode1_one

- name: mode1_two

- name: mode1_three

shows (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different

shows (example config files) 1334

/mpf_examples/shots/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

options. You wouldn’t actually use more than one.

Listing 337: your_machine_folder/shows/config/test_show_pools.yaml

#config_version=5

lights:

led_01:

number: 0

tags: tag1, row0

led_02:

number: 1

tags: tag1, row0

led_03:

number: 2

tags: row1

led_04:

number: 3

tags: row2

light_01:

number: 0

label: Test 0

tags: tag1

subtype: matrix

debug: True

light_02:

number: 1

label: Test 1

tags: tag1

subtype: matrix

debug: True

light_03:

number: 2

label: Test 1

fade_ms: 1s

subtype: matrix

debug: True

gi_01:

number: 0

subtype: gi

flasher_01:

platform: drivers

number: flasher_01

coils:

coil_01:

number: 1

default_pulse_ms: 30

flasher_01:

number: 2

label: Test flasher

default_pulse_ms: 40

max_hold_power: 1.0

shows:

(continues on next page)

shows (example config files) 1335

/mpf_examples/shows/config/test_show_pools.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

leds_name_token:

- time: 0

lights:

(leds): red

leds_single_color:

- time: 0

lights:

led_01: (color)

leds_color_token:

- time: 0

lights:

led_01: (color1)

- time: +1

lights:

led_02: (color2)

- time: +1

leds_extended:

- time: 0

lights:

(leds):

color: red

fade: 1s

lights_basic:

- time: 0

lights:

(lights): ff

multiple_tokens:

- time: 0

lights:

(leds): blue

(lights): ff

show_assoc_tokens:

- time: 0

lights:

(line1num): (line1color)

show_with_time_and_duration:

- time: +1s

- time: 5s

- time: +1s

duration: 1s

- lights:

led_02: red

- time: 10s

duration: 3s

leds_color_token_and_fade:

- time: 0

lights:

led_01: (color1)

- time: +1

lights:

led_02: (color2)-f900ms

- time: +1

manual_advance:

- duration: -1

(continues on next page)

shows (example config files) 1336

Mission Pinball Framework Documentation, Version

(continued from previous page)

lights:

(leds): red

- duration: -1

lights:

(leds): lime

- duration: -1

lights:

(leds): blue

event_show:

- duration: 1

events:

- step1

- duration: 1

events:

- step2

- duration: 1

events:

- step3

show_pools:

pool_random:

shows:

- leds_name_token

- leds_single_color

- leds_color_token

- leds_extended

type: random

pool_sequence:

shows:

- multiple_tokens

- show_assoc_tokens

- leds_color_token_and_fade

type: sequence

pool_rfn:

shows:

- lights_basic

- show_with_time_and_duration

- manual_advance

- event_show

type: random_force_next

pool_rfa:

shows:

- leds_name_token

- leds_single_color

- leds_color_token

- leds_extended

- multiple_tokens

- show_assoc_tokens

- leds_color_token_and_fade

- lights_basic

- show_with_time_and_duration

- manual_advance

- event_show

type: random_force_all

(continues on next page)

shows (example config files) 1337

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_player:

play_pool_random:

pool_random:

show_tokens:

leds: led_01

color: blue

color1: green

color2: yellow

stop_pool_random:

pool_random: stop

play_pool_sequence:

pool_sequence:

show_tokens:

leds: led_01

lights: light_01

line1num: led_01

line1color: red

color1: violet

color2: orange

play_pool_rfn:

pool_rfn:

show_tokens:

lights: light_01

leds: led_01

play_pool_rfa:

pool_rfa:

show_tokens:

leds: led_01

color: blue

color1: green

color2: yellow

lights: light_01

line1num: led_01

line1color: red

Listing 338: your_machine_folder/shows/config/test_show_player_queue.yaml

#config_version=5

shows:

show1:

- duration: 1

events:

- step1_1

- duration: 1

events:

- step1_2

- duration: 1

events:

- step1_3

show2:

- duration: 1
(continues on next page)

shows (example config files) 1338

/mpf_examples/shows/config/test_show_player_queue.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

events:

- step2_1

- duration: 1

events:

- step2_2

- duration: 1

events:

- step2_3

show3:

- duration: 1

events:

- step3_1

- duration: 1

events:

- step3_2

- duration: 1

events:

- step3_3

show_queues:

queue1:

label: Queue 1

queue2:

label: Queue 2

show_player:

play_show1_on_queue1:

show1:

action: queue

show_queue: queue1

loops: 0

play_show2_on_queue1:

show2:

action: queue

show_queue: queue1

loops: 0

play_show3_on_queue1:

show3:

action: queue

show_queue: queue1

loops: 0

play_show1_on_queue2:

show1:

action: queue

show_queue: queue2

loops: 0

play_show2_on_queue2:

show2:

action: queue

show_queue: queue2

loops: 0

shows (example config files) 1339

Mission Pinball Framework Documentation, Version

Listing 339: your_machine_folder/shows/config/test_shows.yaml

#config_version=5

modes:

- mode1

- mode2

- mode3

- mode4

lights:

led_01:

number: 0

tags: tag1, row0

led_02:

number: 1

tags: tag1, row0

led_03:

number: 2

tags: row1

led_04:

number: 3

tags: row2

light_01:

number: 0

label: Test 0

tags: tag1

subtype: matrix

debug: True

light_02:

number: 1

label: Test 1

tags: tag1

subtype: matrix

debug: True

light_03:

number: 2

label: Test 1

fade_ms: 1s

subtype: matrix

debug: True

gi_01:

number: 0

subtype: gi

flasher_01:

platform: drivers

number: flasher_01

coils:

coil_01:

number: 1

default_pulse_ms: 30

flasher_01:

number: 2

(continues on next page)

shows (example config files) 1340

/mpf_examples/shows/config/test_shows.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

label: Test flasher

default_pulse_ms: 40

max_hold_power: 1.0

shows:

leds_name_token:

- time: 0

lights:

(leds): red

leds_single_color:

- time: 0

lights:

led_01: (color)

leds_color_token:

- time: 0

lights:

led_01: (color1)

- time: +1

lights:

led_02: (color2)

- time: +1

leds_extended:

- time: 0

lights:

(leds):

color: red

fade: 1s

lights_basic:

- time: 0

lights:

(lights): ff

multiple_tokens:

- time: 0

lights:

(leds): blue

(lights): ff

show_assoc_tokens:

- time: 0

lights:

(line1num): (line1color)

show_with_time_and_duration:

- time: +1s

- time: 5s

- time: +1s

duration: 1s

- lights:

led_02: red

- time: 10s

duration: 3s

leds_color_token_and_fade:

- time: 0

lights:

led_01: (color1)

- time: +1

(continues on next page)

shows (example config files) 1341

Mission Pinball Framework Documentation, Version

(continued from previous page)

lights:

led_02: (color2)-f900ms

- time: +1

manual_advance:

- duration: -1

lights:

(leds): red

- duration: -1

lights:

(leds): lime

- duration: -1

lights:

(leds): blue

event_show:

- duration: 1

events:

- step1

- duration: 1

events:

- step2

- duration: 1

events:

- step3

flash_multiple:

- duration: -1

shows:

flash_color:

show_tokens:

leds: "{led1}, {led2}, {led3}"

color: "{color}"

speed: 4

show_player:

flash_multiple_leds:

flash_multiple:

show_tokens:

led1: led_01

led2: led_02

led3: led_03

color: red

play_on_led1:

on:

key: on_led_01

show_tokens:

lights: led_01

play_on_led2:

on:

key: on_led2

show_tokens:

lights: led_02

stop_on_led1:

on_led_01: stop

stop_on_led2:

on_led2: stop

(continues on next page)

shows (example config files) 1342

Mission Pinball Framework Documentation, Version

(continued from previous page)

play_test_show1: test_show1

play_with_priority:

test_show1:

priority: 15

play_with_speed:

test_show1:

speed: 2

play_with_start_step:

test_show1:

start_step: 2

play_with_neg_start_step:

test_show1:

start_step: -2

play_with_loops:

test_show1:

loops: 2

play_with_sync_ms_1000:

test_show1:

sync_ms: 1000

play_with_sync_ms_500:

test_show1:

sync_ms: 500

play_with_manual_advance:

test_show1:

manual_advance: True

pause_test_show1:

test_show1:

action: pause

resume_test_show1:

test_show1:

action: resume

stop_test_show1:

test_show1: stop

play_show_assoc_tokens:

show_assoc_tokens:

speed: 1

show_tokens:

line1num: tag1

line1color: red

stop_show_assoc_tokens:

show_assoc_tokens:

action: stop

test_mode_started:

8linesweep:

loops: 0

speed: 1

show_tokens:

line1num: row0

line1color: red

line2num: row1

line2color: orange

line3num: row2

line3color: yellow

line4num: row2

(continues on next page)

shows (example config files) 1343

Mission Pinball Framework Documentation, Version

(continued from previous page)

line4color: green

line5num: row2

line5color: blue

line6num: row2

line6color: indigo

line7num: row2

line7color: violet

line8num: row2

line8color: midnightblue

test_mode_stopped:

8linesweep:

action: stop

play_manual_advance:

manual_advance:

show_tokens:

leds: led_01

advance_manual_advance:

manual_advance: advance

advance_manual_step_back:

manual_advance: step_back

queue_play:

event_show:

block_queue: True

action: play

loops: 0

play_with_emitted_events:

test_show1:

events_when_played: test_show1_played, test_show1_played2

events_when_stopped: test_show1_stopped

events_when_looped: test_show1_looped

events_when_paused: test_show1_paused

events_when_resumed: test_show1_resumed

events_when_advanced: test_show1_advanced

events_when_stepped_back: test_show1_stepped_back

events_when_completed: test_show1_completed

stop_emitted_events_show:

test_show1: stop

pause_emitted_events_show:

test_show1: pause

resume_emitted_events_show:

test_show1: resume

advance_emitted_events_show:

test_show1: advance

step_back_emitted_events_show:

test_show1: step_back

play_with_completed_event:

test_show1:

events_when_completed: test_show1_completed

events_when_stopped: test_show1_stopped

loops: 0

play_show_with_token_in_key:

test_show_key_token:

show_tokens:

num: "01"

(continues on next page)

shows (example config files) 1344

Mission Pinball Framework Documentation, Version

(continued from previous page)

color: red

play_show_with_placeholder_in_token:

test_show_key_token:

show_tokens:

num: (machine.test_num)

color: (machine.test_color)

play_show_with_condition_in_event{green==False}:

leds_single_color:

action: play

show_tokens:

color: purple

play_show_with_condition_in_event{green==True}:

leds_single_color:

action: play

show_tokens:

color: green

play_show_with_condition_in_show:

leds_single_color{not blue}:

action: play

show_tokens:

color: red

leds_single_color{blue}:

action: play

show_tokens:

color: blue

play_show_with_placeholder_in_token_and_event_args:

test_show_key_token:

show_tokens:

num: (test_num)

color: (test_color)

Listing 340: your_machine_folder/shows/config/test_sync_ms.yaml

#config_version=5

lights:

light:

number: 1

led_01:

number:

led_02:

number:

light_01:

number:

light_02:

number:

gi_01:

number:

gi_02:

number:

shows:

my_show1:

- duration: -1
(continues on next page)

shows (example config files) 1345

/mpf_examples/shows/config/test_sync_ms.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

lights:

light: red

my_show2:

- duration: -1

lights:

light: blue

show_player:

play_show_sync_ms1:

my_show1:

key: sync_show

sync_ms: 250

play_show_sync_ms2:

my_show2:

key: sync_show

sync_ms: 250

stop_show:

sync_show: stop

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 341: your_machine_folder/shows/modes/mode2/config/mode2.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

priority: 300

start_priority: 1

stop_on_ball_end: false

game_mode: False

show_player:

mode_mode2_started: test_show2

mode_mode2_stopped:

test_show2:

action: stop

Listing 342: your_machine_folder/shows/modes/mode3/config/mode3.yaml

#config_version=5

mode:

start_events: start_mode3

stop_events: stop_mode3

priority: 100

start_priority: 1

(continues on next page)

shows (example config files) 1346

/mpf_examples/shows/modes/mode2/config/mode2.yaml
/mpf_examples/shows/modes/mode3/config/mode3.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

stop_on_ball_end: false

game_mode: False

show_player:

mode_mode3_started: test_show3

mode_mode3_stopped:

test_show3:

action: stop

Listing 343: your_machine_folder/shows/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

priority: 200

start_priority: 1

game_mode: False

stop_on_ball_end: false

show_player:

mode_mode1_started:

test_show1:

loops: -1

mode_mode1_stopped:

test_show1:

action: stop

"{machine.test == 42}": show_from_mode

"{machine.test == 23}":

show_from_mode2:

key: test_key1

show_from_mode3:

key: test_key2

shows:

show_from_mode2:

- duration: -1

show_from_mode3:

- duration: -1

show_from_mode:

- time: 0

lights:

(leds): red

- time: 1

Listing 344: your_machine_folder/shows/modes/mode4/config/mode4.yaml

#config_version=5

mode:

priority: 100

game_mode: False

(continues on next page)

shows (example config files) 1347

/mpf_examples/shows/modes/mode1/config/mode1.yaml
/mpf_examples/shows/modes/mode4/config/mode4.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_player:

test_token:

test_show4:

show_tokens:

fade_time: 100

shows:

test_show4:

- lights:

led_01:

color: red

fade: (fade_time)

Show file examples

Here are some example show files that go along with the above config(s).

Note that there are multiple shows here.

Listing 345: your_machine_folder/shows/shows/8linesweep.yaml

#show_version=5

- time: 0

lights:

(line1num): (line1color)

- time: +1s

lights:

(line1num): black

(line2num): (line2color)

- time: +1s

lights:

(line2num): black

(line3num): (line3color)

- time: +1s

lights:

(line3num): black

(line4num): (line4color)

- time: +1s

lights:

(line4num): black

(line5num): (line5color)

- time: +1s

lights:

(line5num): off

(line6num): (line6color)

- time: +1s

lights:

(line6num): off

(line7num): (line7color)

- time: +1s

lights:

(line7num): off

(continues on next page)

shows (example config files) 1348

/mpf_examples/shows/shows/8linesweep.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

(line8num): (line8color)

- time: +1s

lights:

(line8num): off

- time: +1s

Listing 346: your_machine_folder/shows/shows/test_show_key_token.yaml

#show_version=5

- duration: -1

lights:

led_(num): (color)

Listing 347: your_machine_folder/shows/shows/test_show1.yaml

#show_version=5

- time: 0

lights:

led_01: 006400

led_02: CCCCCC

light_01: CC

light_02: 78

gi_01: FF

- time: 1

lights:

led_01: DarkGreen

led_02: Black

- time: 2

lights:

led_01: DarkSlateGray

led_02: Tomato

light_01: FF

light_02: 33

gi_01: 99

- time: +1

lights:

led_01: MidnightBlue-f500 ms

led_02: DarkOrange-f0.5 s

gi_01: 33

- time: 4

lights:

led_01: Off-f800

led_02: Off-f800

light_01: 00-f800

light_02: 00-f800

gi_01: 00

- time: 6

Listing 348: your_machine_folder/shows/shows/test_show2.yaml

#show_version=5

- time: 0

events:

(continues on next page)

shows (example config files) 1349

/mpf_examples/shows/shows/test_show_key_token.yaml
/mpf_examples/shows/shows/test_show1.yaml
/mpf_examples/shows/shows/test_show2.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

test_event:

test_event2:

play_sound: {"sound": "test_1", "volume": 0.5, "loops": -1}

- time: 1

events:

play_sound: {"sound": "test_2"}

- time: 2

events:

play_sound: {"sound": "test_3", "volume": 0.35, "loops": 1}

- time: 3

Listing 349: your_machine_folder/shows/shows/myparentshow.yaml

#show_version=5

- duration: -1

shows:

mychildshow:

speed: 1

loops: 0

Listing 350: your_machine_folder/shows/shows/test_variable_show.yaml

#show_version=5

- time: 0

variables:

foo:

action: set_machine

int: 0

- time: 1

variables:

foo:

action: add_machine

int: 1

Listing 351: your_machine_folder/shows/shows/test_show3.yaml

#show_version=5

- time: 0

flashers: flasher_01

- time: 1

coils:

coil_01: pulse

- time: 2

coils:

coil_01:

pulse_power: .45

- time: 3

shows (example config files) 1350

/mpf_examples/shows/shows/myparentshow.yaml
/mpf_examples/shows/shows/test_variable_show.yaml
/mpf_examples/shows/shows/test_show3.yaml

Mission Pinball Framework Documentation, Version

Listing 352: your_machine_folder/shows/shows/on_demand/mychildshow.yaml

#show_version=5

- time: 0

events: test

slide (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 353: your_machine_folder/slide/config/test_slides.yaml

#config_version=5

modes:

- mode1

displays:

display1:

width: 401

height: 301

display2:

width: 402

height: 302

default: true

slides:

slide1:

- type: text

text: SLIDE TEST 1-1

y: -50

color: ff0000

font_size: 50

- type: text

text: SLIDE TEST 1-2

color: 00ff00

font_size: 50

- type: text

text: SLIDE TEST 1-3

y: 50

color: 0000ff

font_size: 50

slide2:

type: text

text: SLIDE TEST 2-1

color: 00ffff

font_size: 50

(continues on next page)

slide (example config files) 1351

/mpf_examples/shows/shows/on_demand/mychildshow.yaml
/mpfmc_examples/slide/config/test_slides.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

slide3:

widgets:

type: text

text: SLIDE TEST 3-1

color: 00ff00

font_size: 50

slide4:

widgets:

type: text

text: SLIDE TEST 4-1

color: ffff00

font_size: 50

transition: move_in

slide5:

widgets:

type: text

text: SLIDE TEST 5-1

color: ffaa00

font_size: 50

transition:

type: move_in

direction: right

slide6:

background_color: ff0000ff

opacity: 0.5

widgets:

type: text

text: TEST BACKGROUND COLOR & OPACITY

slide7:

- type: text

text: TEST Z-ORDER 50-1

y: -50

z: 50

color: ff0000

font_size: 50

- type: text

text: TEST Z-ORDER 100

z: 100

color: 00ff00

font_size: 50

- type: text

text: TEST Z-ORDER 0

y: 50

color: 0000ff

font_size: 50

- type: text

text: TEST Z-ORDER 50-2

y: 75

z: 50

color: ffff00

font_size: 50

slide (example config files) 1352

Mission Pinball Framework Documentation, Version

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 354: your_machine_folder/slide/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 500

slides:

mode1_slide1:

type: text

text: MODE 1 SLIDE 1

x: 25%

color: ffaa00

font_size: 100

slide_player (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 355: your_machine_folder/slide_player/config/test_slide_player.yaml

#config_version=5

modes:

- mode1

displays:

display1:

height: 400

width: 300

display2:

height: 400

width: 300

display3:

height: 400

width: 300

enabled: false

slides:

slide_with_var:

- type: text

text: SLIDE WITH VAR (test)

slide_condition_foo:

- type: text

text: Conditional Slide (FOO)

slide_condition_bar:

(continues on next page)

slide_player (example config files) 1353

/mpfmc_examples/slide/modes/mode1/config/mode1.yaml
/mpfmc_examples/slide_player/config/test_slide_player.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: text

text: Conditional Slide (BAR)

machine_slide_1:

- type: text

text: TEST SLIDE PLAYER - SLIDE 1

color: ff0000

font_size: 100

- type: rectangle

width: 400

height: 300

color: blue

machine_slide_2:

- type: text

text: TEST SLIDE PLAYER - SLIDE 2

color: ffaa00

font_size: 100

- type: rectangle

width: 400

height: 300

color: purple

machine_slide_3:

- type: text

text: TEST SLIDE PLAYER - SLIDE 3

color: 00ff00

font_size: 100

- type: rectangle

width: 400

height: 300

color: yellow

machine_slide_4:

- type: text

text: TEST SLIDE PLAYER - SLIDE 4

color: 0000ff

font_size: 100

- type: rectangle

width: 400

height: 300

color: pink

machine_slide_5:

- type: text

text: TEST SLIDE PLAYER - SLIDE 5

color: ff00ff

font_size: 100

- type: rectangle

width: 400

height: 300

color: green

machine_slide_6:

- type: text

text: BASE SLIDE

- type: rectangle

width: 400

height: 300

color: blue

(continues on next page)

slide_player (example config files) 1354

Mission Pinball Framework Documentation, Version

(continued from previous page)

machine_slide_7:

widgets:

- type: text

text: EXPIRE 1s

color: red

- type: rectangle

width: 400

height: 300

color: yellow

expire: 1s

machine_slide_8:

widgets:

- type: text

text: EXPIRE 1s

color: purple

y: 66%

- type: text

text: WITH TRANSITION OUT

color: purple

y: 33%

- type: rectangle

width: 400

height: 300

color: orange

expire: 1s

transition_out: wipe

machine_slide_9:

widgets:

- type: text

text: TRANSITION IN

- type: rectangle

width: 400

height: 300

color: lime

transition: move_in

machine_slide_10: # used for test_SlidePlayer::test_animation_triggers

widgets:

- type: text

text: WIDGET 1

animations:

flash_widget_1:

- property: opacity

value: 1

duration: .25s

- property: opacity

value: 0

duration: .25s

repeat: yes

slide_player:

show_slide_1: machine_slide_1

show_slide_2:

machine_slide_2:

target: display1

(continues on next page)

slide_player (example config files) 1355

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_slide_3:

machine_slide_3:

target: display2

show_slide_4: machine_slide_4

show_slide_5: machine_slide_5

show_slide_4_p200:

machine_slide_4:

priority: 200

show_slide_1_force:

machine_slide_1:

force: true

show_slide_display3:

machine_slide_1:

target: display3

anon_slide_dict:

slide_6:

type: text

text: TEXT FROM SLIDE_PLAYER DICT

color: ff00ff

font_size: 15

anon_slide_list:

slide_7:

- type: text

text: TEXT FROM SLIDE_PLAYER LIST

color: red

font_size: 15

y: 66%

- type: text

text: WIDGET 2

color: purple

font_size: 15

y: 33%

anon_slide_widgets:

slide_8:

widgets:

- type: text

text: TEXT FROM SLIDE_PLAYER WIDGET LIST

color: green

font_size: 15

y: 66%

- type: text

text: WIDGET 2

color: lime

font_size: 15

y: 33%

target: display1

transition: move_in

anon_slide_widgets2:

slide_8:

widgets:

- type: text

text: Another text

color: green

font_size: 15

(continues on next page)

slide_player (example config files) 1356

Mission Pinball Framework Documentation, Version

(continued from previous page)

y: 66%

target: display1

transition: none

base_slide_no_expire: machine_slide_6

new_slide_expire:

machine_slide_1:

expire: 1s

show_slide_7: machine_slide_7

show_slide_8: machine_slide_8

show_slide_9: machine_slide_9

show_slide_5_with_transition:

machine_slide_5:

transition: fade

show_slide_9_with_transition:

machine_slide_9:

transition: fade

slide_2_dont_show:

machine_slide_2:

show: no

remove_slide_4:

machine_slide_4:

action: remove

remove_slide_4_with_transition:

machine_slide_4:

action: remove

transition: wipe

remove_slide_8:

machine_slide_8:

action: remove

remove_slide_8_fade:

machine_slide_8:

action: remove

transition: fade

slide1_expire_1s:

machine_slide_1:

expire: 1s

slide2_expire_1s:

machine_slide_2:

expire: 1s

random_player_with_animations: # used for test_SlidePlayer::test_animation_triggers

random_slide:

widgets:

- type: text

text: WIDGET 1

animations:

flash_widget_2:

- property: opacity

value: 1

duration: .25s

- property: opacity

value: 0

duration: .25s

repeat: yes

show_slide_with_animations:

(continues on next page)

slide_player (example config files) 1357

Mission Pinball Framework Documentation, Version

(continued from previous page)

my_slide:

widgets:

- type: text

text: WIDGET 1

animations:

pre_show_slide:

- property: opacity

value: 1

duration: .25s

- property: opacity

value: 0

duration: .25s

repeat: yes

remove_slide_with_animations:

my_slide: remove

show_slide_with_var:

slide_with_var:

tokens:

test: asd

show_conditional_slide:

slide_condition_foo{var=="foo"}:

action: play

slide_condition_bar{var=="bar"}:

action: play

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 356: your_machine_folder/slide_player/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 500

slides:

mode1_slide:

type: text

text: MODE 1 SLIDE 1

color: 00ff00

font_size: 100

mode1_slide_2:

type: text

text: MODE 1 SLIDE 2

color: 00ffff

font_size: 150

slide_player:

show_mode1_slide: mode1_slide

remove_mode1_slide:

mode1_slide: remove

(continues on next page)

slide_player (example config files) 1358

/mpfmc_examples/slide_player/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_mode1_slide_2:

mode1_slide_2:

priority: -350

smart_matrix (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 357: your_machine_folder/smart_matrix/config/config.yaml

#config_version=5

hardware:

rgb_dmd: smartmatrix

smartmatrix:

smartmatrix_1:

port: com4

baud: 3400000

smartmatrix_2:

port: com5

baud: 3400000

old_cookie: true

displays:

dmd:

width: 128

height: 32

rgb_dmds:

smartmatrix_1:

hardware_brightness: .5

smartmatrix_2:

hardware_brightness: .5

Listing 358: your_machine_folder/smart_matrix/config/old_cookie.yaml

#config_version=5

config:

- config.yaml

smart_virtual_platform (example config files)

smart_matrix (example config files) 1359

/mpf_examples/smart_matrix/config/config.yaml
/mpf_examples/smart_matrix/config/old_cookie.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 359: your_machine_folder/smart_virtual_platform/config/test_smart_virtual_initial.yaml

#config_version=5

config: test_smart_virtual.yaml

virtual_platform_start_active_switches:

- device1_s1

Listing 360: your_machine_folder/smart_virtual_platform/config/test_entrance_switch.yaml

#config_version=5

switches:

s_trough_1:

number:

s_trough_2:

number:

s_trough_3:

number:

s_entrance:

number:

coils:

c_trough_eject:

number:

ball_devices:

trough:

tags: trough, home, drain

entrance_switch: s_entrance

ball_capacity: 3

eject_coil: c_trough_eject

playfields:

playfield:

default_source_device: trough

tags: default

Listing 361: your_machine_folder/smart_virtual_platform/config/test_coil_fired_plunger.yaml

#config_version=5

machine:

balls_installed: 5

min_balls: 1

(continues on next page)

smart_virtual_platform (example config files) 1360

/mpf_examples/smart_virtual_platform/config/test_smart_virtual_initial.yaml
/mpf_examples/smart_virtual_platform/config/test_entrance_switch.yaml
/mpf_examples/smart_virtual_platform/config/test_coil_fired_plunger.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

virtual_platform_start_active_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4, s_trough_5

switches:

s_start:

number: s13

label:

tags: start, player, high_score_select

s_ball_launch:

number: s11

label:

tags: plunger, player

s_shooter_lane:

number: s27

label:

tags:

s_trough_1:

number: s31

label:

tags:

type: NC

s_trough_2:

number: s32

label:

tags:

type: NC

s_trough_3:

number: s33

label:

tags:

type: NC

s_trough_4:

number: s34

label:

tags:

type: NC

s_trough_5:

number: s35

label:

tags:

type: NC

s_trough_jam:

number: s36

label:

tags:

type: NC

s_standup:

number: s38

label:

tags: playfield_active

coils:

c_trough_eject:

number: c01

label:

(continues on next page)

smart_virtual_platform (example config files) 1361

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags:

default_pulse_ms: 25

c_plunger_lane:

number: c03

label:

tags:

default_pulse_ms: 25

ball_devices:

trough:

tags: trough, home, drain

ball_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4, s_trough_5, s_trough_jam

eject_coil: c_trough_eject

confirm_eject_type: target

eject_targets: shooter_lane

jam_switch: s_trough_jam

shooter_lane:

ball_switches: s_shooter_lane

eject_coil: c_plunger_lane

player_controlled_eject_event: sw_plunger

playfields:

playfield:

default_source_device: shooter_lane

tags: default

Listing 362: your_machine_folder/smart_virtual_platform/config/test_smart_virtual.yaml

#config_version=5

virtual_platform_start_active_switches:

- trough1

- trough2

- trough3

smart_virtual:

simulate_manual_plunger: True

simulate_manual_plunger_timeout: 3s

coils:

outhole:

number: C09

default_pulse_ms: 20

trough:

number: C10

default_pulse_ms: 20

trough2:

number:

plunger:

number: 1

device1:

number: 2

device2:
(continues on next page)

smart_virtual_platform (example config files) 1362

/mpf_examples/smart_virtual_platform/config/test_smart_virtual.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 3

coil1:

number:

coil3:

number:

coil4:

number:

device3_c:

number:

device4_c:

number:

switches:

switch1:

number:

switch2:

number:

switch3:

number:

start:

number: 1

tags: start

outhole:

number: 2

trough1:

number: 3

trough2:

number: 4

trough3:

number: 5

plunger:

number: 6

playfield:

number: 7

tags: playfield_active

device1_s1:

number: 8

device1_s2:

number: 9

device2_s1:

number: 10

device2_s2:

number: 11

device3_s:

number: 12

device4_s:

number: 13

trough2_1:

number:

trough2_2:

number:

trough2_3:

number:

plunger2:

(continues on next page)

smart_virtual_platform (example config files) 1363

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

drop_targets:

left1:

switch: switch1

left2:

switch: switch2

left3:

switch: switch3

reset_coil: coil3

knockdown_coil: coil4

drop_target_banks:

left_bank:

drop_targets: left1, left2

reset_coils: coil1

reset_events:

drop_target_bank_left_bank_down: 1s

ball_devices:

outhole:

tags: drain

ball_switches: outhole

eject_coil: outhole

eject_targets: trough

confirm_eject_type: target

debug: true

trough:

tags: trough, home

ball_switches: trough1, trough2, trough3

eject_coil: trough

eject_targets: plunger

confirm_eject_type: target

debug: true

plunger:

tags: home

ball_switches: plunger

eject_coil: plunger

debug: true

device1:

ball_switches: device1_s1, device1_s2

eject_coil: device1

eject_targets: device2

confirm_eject_type: target

tags: home # has to be home or attract will collect the balls

device2:

ball_switches: device2_s1 #, device2_s2

confirm_eject_type: target

mechanical_eject: true

device3:

tags: home

entrance_switch: device3_s

eject_coil: device3_c

ball_capacity: 3

(continues on next page)

smart_virtual_platform (example config files) 1364

Mission Pinball Framework Documentation, Version

(continued from previous page)

auto_fire_on_unexpected_ball: False

debug: true

device4:

tags: home

entrance_switch: device4_s

eject_coil: device4_c

ball_capacity: 3

entrance_switch_full_timeout: 500ms

auto_fire_on_unexpected_ball: False

debug: true

trough2:

tags: drain, trough, home

ball_switches: trough2_1, trough2_2, trough2_3

eject_coil: trough2

eject_targets: plunger2

confirm_eject_type: target

debug: true

plunger2:

ball_switches: plunger2

mechanical_eject: True

debug: true

smbus2 (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 363: your_machine_folder/smbus2/config/config.yaml

#config_version=5

hardware:

platform: smbus2

snux (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 364: your_machine_folder/snux/config/config.yaml

#config_version=5

(continues on next page)

smbus2 (example config files) 1365

/mpf_examples/smbus2/config/config.yaml
/mpf_examples/snux/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

hardware:

platform: virtual

driverboards: wpc

coils: snux

switches: snux

system11:

ac_relay_delay_ms: 75

ac_relay_driver: c_ac_relay

snux:

diag_led_driver: c_diag_led_driver

coils:

c_diag_led_driver:

number: c24

default_hold_power: 1.0

c_flipper_enable_driver:

number: c23

default_hold_power: 1.0

c_ac_relay:

number: c25

default_hold_power: 1.0

c_side_a1:

number: c11a

c_side_a2:

number: c12a

default_hold_power: 0.5

c_side_c1:

number: c11c

c_side_c2:

number: c12c

default_hold_power: 0.5

c_flipper_left_main:

number: FLLM

c_flipper_left_hold:

number: FLLH

allow_enable: true

switches:

s_flipper_left:

number: sf01

s_test:

number: s77

flippers:

f_test_single:

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_flipper_left

snux (example config files) 1366

Mission Pinball Framework Documentation, Version

spi_bit_bang (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 365: your_machine_folder/spi_bit_bang/config/config.yaml

#config_version=5

hardware:

platform: virtual, spi_bit_bang

spi_bit_bang:

miso_pin: s_miso

cs_pin: o_cs

clock_pin: o_clock

digital_outputs:

o_cs:

number: 1

type: driver

o_clock:

number: 2

type: driver

switches:

s_trough_0:

number: 0

platform: spi_bit_bang

s_trough_1:

number: 1

platform: spi_bit_bang

s_trough_2:

number: 2

platform: spi_bit_bang

s_trough_3:

number: 3

platform: spi_bit_bang

s_trough_4:

number: 4

platform: spi_bit_bang

s_trough_5:

number: 5

platform: spi_bit_bang

s_trough_6:

number: 6

platform: spi_bit_bang

s_trough_7:

number: 7

platform: spi_bit_bang

s_miso:

(continues on next page)

spi_bit_bang (example config files) 1367

/mpf_examples/spi_bit_bang/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 10

platform: virtual

spike (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 366: your_machine_folder/spike/config/config.yaml

#config_version=5

hardware:

platform: spike

spike:

port: /dev/ttyUSB0

baud: 115200

debug: True

nodes: 0, 1, 8, 9, 10, 11

poll_hz: 10

node_config:

1:

num_leds: 16

num_inputs: 22

8:

coil_priorities: 0, 5, 6, 7, 1, 4, 3, 2

num_leds: 56

num_inputs: 16

11:

coil_priorities: 0, 1, 3, 5, 6, 7, 2, 4

coils:

c_test:

number: 1-0

default_pulse_ms: 100

default_hold_power: 0.625

c_flipper_main:

number: 8-1

default_hold_power: 0.625

c_flipper_hold:

number: 8-3

default_hold_power: 1.0

c_pop:

number: 8-10

default_pulse_power: 0.5

lights:

backlight:

(continues on next page)

spike (example config files) 1368

/mpf_examples/spike/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 0-0

l_1_3:

number: 1-3

l_8_3:

number: 8-3

l_8_30:

number: 8-40

l_rgb_insert:

channels:

red:

number: 1-10

green:

number: 1-11

blue:

number: 1-12

switches:

s_service:

number: 0-13

s_start:

number: 1-11

s_8_3:

number: 8-3

s_flipper:

number: 8-13

s_flipper_eos:

number: 8-15

s_pop:

number: 8-4

s_pop2:

number: 8-5

type: NC

s_stepper_home:

number: 10-1

autofire_coils:

ac_pops:

coil: c_pop

switch: s_pop

ac_pops2:

coil: c_pop

switch: s_pop2

flippers:

f_test_single:

main_coil: c_flipper_main

activation_switch: s_flipper

f_test_hold:

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

f_test_hold_eos:

(continues on next page)

spike (example config files) 1369

Mission Pinball Framework Documentation, Version

(continued from previous page)

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

use_eos: True

eos_switch: s_flipper_eos

f_test_single_eos:

main_coil: c_flipper_main

activation_switch: s_flipper

use_eos: True

eos_switch: s_flipper_eos

dmds:

spike_dmd:

fps: 5

steppers:

stepper1:

number: 10-0

homing_mode: switch

homing_switch: s_stepper_home

platform_settings:

speed: 20

light_number: 10-10

named_positions:

100: test_00

200: test_01

500: test_10

spinners (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 367: your_machine_folder/spinners/config/test_spinners.yaml

#config_version=5

switches:

switch1:

number:

switch2:

number:

switch3:

number:

switch4:

number:

spinners:

(continues on next page)

spinners (example config files) 1370

/mpf_examples/spinners/config/test_spinners.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

spin1:

switch: switch1

active_ms: 800

idle_ms: 0

spin2:

switches: switch2, switch3

labels: foo, bar

active_ms: 400

idle_ms: 800

spin3:

switches: switch4

active_ms: 400

idle_ms: 800

reset_when_inactive: false

state_machine (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 368: your_machine_folder/state_machine/config/config.yaml

#config_version=5

modes:

- game_mode

- non_game_mode

state_machines:

my_state:

states:

start:

label: Start state

step1:

label:

show_when_active:

show: on

show_tokens: None

events_when_started: step1_start

events_when_stopped: step1_stop

step2:

label:

transitions:

- source: start

target: step1

events: state_machine_proceed

- source: step1

target: step2

events: state_machine_proceed2

(continues on next page)

state_machine (example config files) 1371

/mpf_examples/state_machine/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

events_when_transitioning: going_to_step2

- source: step2

target: start

events: state_machine_proceed3

- source: step1, step2

target: start

events: state_machine_reset

second_state:

starting_state: foo

states:

bar:

label: Bar

foo:

label: Foo

transitions:

- source: foo

target: bar

events: state_machine_outoforder

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 369: your_machine_folder/state_machine/modes/non_game_mode/config/non_game_mode.yaml

#config_version=5

mode:

start_events: machine_reset_phase_3

game_mode: false

state_machines:

non_game_mode_state_machine:

persist_state: false

states:

start:

label: Start state

done:

label: Done state

events_when_started: non_game_mode_state_machine_done

transitions:

- source: start

target: done

events: non_game_mode_state_machine_proceed

Listing 370: your_machine_folder/state_machine/modes/game_mode/config/game_mode.yaml

#config_version=5

mode:

start_events: ball_started

(continues on next page)

state_machine (example config files) 1372

/mpf_examples/state_machine/modes/non_game_mode/config/non_game_mode.yaml
/mpf_examples/state_machine/modes/game_mode/config/game_mode.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

state_machines:

game_mode_state_machine:

persist_state: true

states:

start:

label: Start state

done:

label: Done state

events_when_started: game_mode_state_machine_done

transitions:

- source: start

target: done

events: game_mode_state_machine_proceed

step_stick (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 371: your_machine_folder/step_stick/config/config.yaml

#config_version=5

hardware:

platform: virtual

stepper_controllers: step_stick

digital_outputs:

c_direction:

number: 1

type: driver

c_step:

number: 2

type: driver

c_enable:

number: 3

type: driver

switches:

s_home:

number: 1

steppers:

stepper1:

number: c_direction:c_step:c_enable

homing_mode: switch

homing_switch: s_home

(continues on next page)

step_stick (example config files) 1373

/mpf_examples/step_stick/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

named_positions:

10: test_00

20: test_01

50: test_10

stepper (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 372: your_machine_folder/stepper/config/config.yaml

#config_version=5

steppers:

linearAxis_stepper:

number: 1

pos_min: -5 #user units (negative is behind home flag)

pos_max: 1000 #user units

homing_direction: clockwise

homing_mode: hardware

reset_position: 0

reset_events: test_reset

debug: True

named_positions:

-5: test_00

999: test_01

500: test_10

this is needed to test ball search

coils:

coil1:

number: 1

switches:

switch1:

number: 1

autofire_coils:

ac_test:

coil: coil1

switch: switch1

switch_controller (example config files)

stepper (example config files) 1374

/mpf_examples/stepper/config/config.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 373: your_machine_folder/switch_controller/config/config.yaml

#config_version=5

switches:

s_test:

number: 1

s_test_events:

number: 2

events_when_activated: test_active|100ms, test_active2

events_when_deactivated: test_inactive, test_inactive2|2s

s_test_window_ms:

number: 3

ignore_window_ms: 100ms

s_test_invert:

number: 4

type: 'NC'

switch_player (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 374: your_machine_folder/switch_player/config/config.yaml

#config_version=5

switches:

s_test1:

number:

x: 0.4

y: 0.5

z: 0

s_test2:

number:

x: 0.6

y: 0.7

s_test3:

number:

plugins: switch_player

switch_player:

start_event: test_start

steps:

(continues on next page)

switch_player (example config files) 1375

/mpf_examples/switch_controller/config/config.yaml
/mpf_examples/switch_player/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- time: 100ms

switch: s_test1

action: activate

- time: 600ms

switch: s_test3

action: hit

- time: 100ms

switch: s_test1

action: deactivate

- time: 1s

switch: s_test2

action: activate

- time: 1s

switch: s_test3

action: hit

- time: 100ms

switch: s_test2

action: deactivate

- time: 1s

switch: s_test3

action: hit

text (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 375: your_machine_folder/text/config/test_text.yaml

#config_version=5

modes:

- mode1

displays:

default:

width: 400

height: 300

slides:

static_text:

- type: text

text: TEST

- type: text

text: STATIC TEXT

y: 200

text_from_event_param1:

- type: text

text: (param1)

(continues on next page)

text (example config files) 1376

/mpfmc_examples/text/config/test_text.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: text

text: TEXT FROM EVENT PARAMETER

y: 200

color: red

text_from_event_param2:

- type: text

text: HI (param1)

- type: text

text: MIX STATIC AND DYNAMIC FROM EVENT

y: 200

color: orange

text_from_event_param3:

- type: text

text: MIX (param1) MATCH

- type: text

text: MIX STATIC SURROUNDING DYNAMIC

y: 200

color: yellow

text_from_event_param4:

- type: text

text: NO(param1)

- type: text

text: MIX WITH NO SPACE

y: 200

color: green

text_from_event_param5:

- type: text

text: NUMBER (param1)

- type: text

text: DYNAMIC INTEGER

y: 200

color: lightblue

text_from_event_param6:

- type: text

text: (param1)

- type: text

text: PURELY DYNAMIC NO MIX

y: 200

color: blue

text_from_event_param7:

- type: text

text: 1)

- type: text

text: PARENTHESIS IN STRING

y: 200

color: pink

text_from_event_param8:

- type: text

text: ((param1))

- type: text

text: COMBINE PARENTHESIS AND DYNAMIC

y: 200

color: purple

(continues on next page)

text (example config files) 1377

Mission Pinball Framework Documentation, Version

(continued from previous page)

text_with_player_var1:

- type: text

text: (test_var)

font_size: 100

- type: text

text: TESTING WIDGET AUTO UPDATE

y: 90

color: pink

- type: text

text: FROM PLAYER VAR

y: 70

color: pink

text_with_player_var2:

- type: text

text: (player|test_var)

- type: text

text: DEFAULT PLAYER

y: 200

color: red

text_with_player_var3:

- type: text

text: (player1|test_var)

- type: text

text: NAMED PLAYER

y: 200

color: blue

text_with_player_var4:

- type: text

text: (player2|test_var)

- type: text

text: NAMED PLAYER THAT DOESN'T EXIST

y: 200

color: brown

text_with_player_var_and_event:

- type: text

text: (player_var) (test_param)

- type: text

text: MIX EVENT PARAM AND PLAYER VAR

y: 200

color: orange

text_string1:

- type: text

text: $greeting

- type: text

text: TEST text_string

y: 200

color: green

text_string2:

- type: text

text: $greeting $name

- type: text

text: TEST 2 text_strings

y: 200

(continues on next page)

text (example config files) 1378

Mission Pinball Framework Documentation, Version

(continued from previous page)

color: purple

text_string3:

- type: text

text: $money

- type: text

text: TEST text_string without dollar sign

y: 200

color: red

text_string4:

- type: text

text: $$dollar

- type: text

text: TEST text_string with dollar sign

y: 200

number_grouping:

- type: text

text: 0

min_digits: 2

number_grouping: yes

- type: text

text: TEST NUMBER GROUPING & DOUBLE ZEROS

y: 200

text_nocase:

- type: text

text: sAmPlE tExT caSiNg

- type: text

text: TEST CASING none

y: 200

text_lower:

- type: text

text: sAmPlE tExT caSiNg

casing: lower

- type: text

text: TEST CASING lower

y: 200

text_upper:

- type: text

text: sAmPlE tExT caSiNg

casing: upper

- type: text

text: TEST CASING upper

y: 200

text_title:

- type: text

text: sAmPlE tExT caSiNg

casing: title

- type: text

text: TEST CASING title

y: 200

text_capitalize:

- type: text

text: sAmPlE tExT caSiNg

(continues on next page)

text (example config files) 1379

Mission Pinball Framework Documentation, Version

(continued from previous page)

casing: capitalize

- type: text

text: TEST CASING capitalize

y: 200

text_line_break:

- type: text

text: "line\nbreak"

text_bad_line_break:

- type: text

text: no line\nbreak

mpfmc_font:

- type: text

text: MPF-MC FONT TEST

font_name: pixelmix

machine_font:

- type: text

text: TEST FONT FROM MACHINE FOLDER

font_name: big_noodle_titling

baseline:

- type: text

text: aaa

x: 50

y: 100

anchor_y: bottom

- type: text

text: aaa

x: 150

y: 100

anchor_y: baseline

- type: text

text: yyy

x: 250

y: 100

anchor_y: bottom

- type: text

text: yyy

x: 350

y: 100

anchor_y: baseline

- type: line

points: 0, 100, 800, 100

color: red

slide_player:

static_text: static_text

text_from_event_param1: text_from_event_param1

text_from_event_param2: text_from_event_param2

text_from_event_param3: text_from_event_param3

text_from_event_param4: text_from_event_param4

text_from_event_param5: text_from_event_param5

text_from_event_param6: text_from_event_param6

text_from_event_param7: text_from_event_param7

(continues on next page)

text (example config files) 1380

Mission Pinball Framework Documentation, Version

(continued from previous page)

text_from_event_param8: text_from_event_param8

text_with_player_var1: text_with_player_var1

text_with_player_var2: text_with_player_var2

text_with_player_var3: text_with_player_var3

text_with_player_var4: text_with_player_var4

text_with_player_var_and_event: text_with_player_var_and_event

number_grouping: number_grouping

text_nocase: text_nocase

text_lower: text_lower

text_upper: text_upper

text_title: text_title

text_capitalize: text_capitalize

text_string1: text_string1

text_string2: text_string2

text_string3: text_string3

text_string4: text_string4

mpfmc_font: mpfmc_font

machine_font: machine_font

baseline: baseline

text_line_break: text_line_break

text_bad_line_break: text_bad_line_break

text_strings:

greeting: HELLO

ball: (ball)

name: PLAYER

dollar: 100

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 376: your_machine_folder/text/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

text_strings:

greeting: HELLO FROM MODE 1

slides:

text_string1_mode1:

- type: text

text: $greeting

slide_player:

text_string1_mode1: text_string1_mode1

text (example config files) 1381

/mpfmc_examples/text/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

text_input (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 377: your_machine_folder/text_input/config/text_input.yaml

#config_version=5

displays:

default:

width: 400

height: 300

slides:

slide1:

- type: text

text: TEXT HIGH SCORE ENTRY

color: red

y: top-5

anchor_y: top

- type: text_input

initial_char: C

key: key1

style: score_entry

animations:

show_slide:

- property: opacity

value: 1

duration: .25s

- property: opacity

value: 0

duration: .25s

repeat: yes

block_events: test_block

release_events: test_release

- type: text

text: ""

key: key1

style: score_entry

widget_styles:

score_entry:

font_size: 50

slide_player:

slide1: slide1

tilt (example config files)

text_input (example config files) 1382

/mpfmc_examples/text_input/config/text_input.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 378: your_machine_folder/tilt/config/config_system_11_trough.yaml

#config_version=5

config:

- settings.yaml

game:

balls_per_game: 3

allow_start_with_ball_in_drain: True

modes:

- tilt

- base

playfields:

playfield:

default_source_device: bd_plunger

tags: default

coils:

c_outhole:

number:

default_pulse_ms: 20

c_trough:

number:

default_pulse_ms: 20

switches:

s_start:

number:

tags: start

s_outhole:

number:

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

s_plunger:

number:

s_playfield:

number:

tags: playfield_active

s_tilt:

number:

(continues on next page)

tilt (example config files) 1383

/mpf_examples/tilt/config/config_system_11_trough.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags: tilt

s_tilt_warning:

number:

tags: tilt_warning

s_slam_tilt:

number:

tags: slam_tilt

ball_devices:

bd_outhole:

tags: drain

ball_switches: s_outhole

eject_coil: c_outhole

eject_targets: bd_trough

confirm_eject_type: target

debug: true

bd_trough:

tags: trough, home

ball_switches: s_ball_switch1, s_ball_switch2, s_ball_switch3

eject_coil: c_trough

eject_targets: bd_plunger

confirm_eject_type: target

debug: true

bd_plunger:

ball_switches: s_plunger

mechanical_eject: true

eject_timeouts: 4s

debug: true

Listing 379: your_machine_folder/tilt/config/config.yaml

#config_version=5

config:

- settings.yaml

modes:

- tilt

- base

game:

balls_per_game: 2

playfields:

playfield:

default_source_device: bd_launcher

tags: default

coils:

eject_coil1:

number:

eject_coil2:

number:

c_flipper:
(continues on next page)

tilt (example config files) 1384

/mpf_examples/tilt/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number:

default_hold_power: 0.125

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_tilt:

number:

tags: tilt

s_tilt_warning:

number:

tags: tilt_warning

s_slam_tilt:

number:

tags: slam_tilt

s_flipper:

number:

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 6s, 10s

flippers:

f_test:

main_coil: c_flipper

activation_switch: s_flipper

Listing 380: your_machine_folder/tilt/config/settings.yaml

#config_version=5

settings:

warnings_to_tilt:

label: Number of tilt warnings

values:

0: "no warnings"
(continues on next page)

tilt (example config files) 1385

/mpf_examples/tilt/config/settings.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

1: "1"

2: "2"

3: "3"

5: "5"

10: "10"

default: 3

key_type: int

sort: 600

settle_time:

label: Time to wait on tilt to settle bob

values:

3000: "3s"

5000: "5s"

10000: "10s"

default: 5000

key_type: int

sort: 610

multiple_hit_window:

label: Tilt sensitivity

values:

150: "sensitive"

300: "normal"

500: "insensitive"

1000: "very insensitive"

default: 300

key_type: int

sort: 620

shoot_again:

label: Multiball Ball Save Timeout

values:

10: "10 Seconds (default)"

20: "20 Seconds"

30: "30 Seconds"

default: 10000

key_type: int

sort: 630

Listing 381: your_machine_folder/tilt/config/config_mechanical_eject.yaml

#config_version=5

config:

- settings.yaml

modes:

- tilt

- base

game:

balls_per_game: 2

playfields:

playfield:

default_source_device: bd_launcher
(continues on next page)

tilt (example config files) 1386

/mpf_examples/tilt/config/config_mechanical_eject.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags: default

coils:

eject_coil1:

number:

eject_coil2:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_tilt:

number:

tags: tilt

s_tilt_warning:

number:

tags: tilt_warning

s_slam_tilt:

number:

tags: slam_tilt

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 6s, 10s

mechanical_eject: True

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

tilt (example config files) 1387

Mission Pinball Framework Documentation, Version

Listing 382: your_machine_folder/tilt/modes/base/config/base.yaml

#config_version=5

mode:

start_events: ball_starting

priority: 100

variable_player:

test_scoring:

score: 100

Listing 383: your_machine_folder/tilt/modes/tilt/config/tilt.yaml

#config_version=5

tilt:

reset_warnings_events: tilt_reset_warnings

tilt_events: tilt_event

multiple_hit_window: settings.multiple_hit_window

settle_time: settings.settle_time

warnings_to_tilt: settings.warnings_to_tilt

tilt_defaults (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 384: your_machine_folder/tilt_defaults/config/config.yaml

#config_version=5

modes:

- tilt

playfields:

playfield:

default_source_device: bd_launcher

tags: default

coils:

eject_coil1:

number:

eject_coil2:

number:

c_flipper:

number:

default_hold_power: 0.125

(continues on next page)

tilt_defaults (example config files) 1388

/mpf_examples/tilt/modes/base/config/base.yaml
/mpf_examples/tilt/modes/tilt/config/tilt.yaml
/mpf_examples/tilt_defaults/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

s_tilt:

number:

tags: tilt

s_tilt_warning:

number:

tags: tilt_warning

s_slam_tilt:

number:

tags: slam_tilt

s_flipper:

number:

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 6s, 10s

flippers:

f_test:

main_coil: c_flipper

activation_switch: s_flipper

timed_switches (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

timed_switches (example config files) 1389

Mission Pinball Framework Documentation, Version

Listing 385: your_machine_folder/timed_switches/config/timed_switches.yaml

#config_version=5

modes:

- mode1

switches:

switch1:

number:

switch2:

number:

switch3:

number:

switch4:

number:

tags: left_flipper

switch5:

number:

tags: right_flipper

timed_switches:

group1:

switches: switch1, switch2

time: 2s

another_one:

switches: switch3

time: 2000ms

state: inactive

events_when_active: active_event

events_when_released: release_event

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 386: your_machine_folder/timed_switches/modes/mode1/config/mode1.yaml

#config_version=5

mode:

game_mode: False

timed_switches:

mode_switch:

switches: switch2, switch3

time: 2s

timer (example config files)

timer (example config files) 1390

/mpf_examples/timed_switches/config/timed_switches.yaml
/mpf_examples/timed_switches/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 387: your_machine_folder/timer/config/test_timer.yaml

#config_version=5

modes:

- mode_with_timers

- mode_with_timers2

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 388: your_machine_folder/timer/modes/mode_with_timers2/config/mode_with_timers2.yaml

#config_version=5

mode:

start_events: player_turn_started

stop_events: stop_mode_with_timers2

timers:

timer_start_with_game:

debug: True

start_value: 0

end_value: 10

direction: up

tick_interval: 1s

start_running: yes

timer_with_player_var_control_events:

start_value: 0

control_events:

- action: start

event: start_player_var_timer

- action: add

event: add_player_var_timer

value: current_player.timer_amount

- action: subtract

event: subtract_player_var_timer

value: current_player.timer_amount

Listing 389: your_machine_folder/timer/modes/mode_with_timers/config/mode_with_timers.yaml

#config_version=5

mode:

start_events: start_mode_with_timers

stop_events: stop_mode_with_timers

game_mode: false

timers:
(continues on next page)

timer (example config files) 1391

/mpf_examples/timer/config/test_timer.yaml
/mpf_examples/timer/modes/mode_with_timers2/config/mode_with_timers2.yaml
/mpf_examples/timer/modes/mode_with_timers/config/mode_with_timers.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

timer_down:

debug: True

bcp: True

start_value: 5

end_value: 0

direction: down

tick_interval: 1.5s

start_running: no

control_events:

- event: start_timer_down

action: start

- event: reset_timer_down

action: reset

- event: pause_timer_down

action: pause

value: 2

- event: add_timer_down

action: add

value: 2

- event: subtract_timer_down

action: subtract

value: 2

timer_start_running:

debug: True

start_value: 0

end_value: 10

direction: up

tick_interval: 1s

start_running: yes

timer_restart_on_complete:

debug: True

start_value: 0

end_value: 5

direction: up

tick_interval: 1s

start_running: yes

restart_on_complete: yes

timer_up:

bcp: True

debug: True

start_value: 0

end_value: 10

max_value: 15

direction: up

tick_interval: 1s

start_running: no

control_events:

- event: start_timer_up

action: start

- event: reset_timer_up

action: reset

- event: stop_timer_up

action: stop

- event: restart_timer_up

(continues on next page)

timer (example config files) 1392

Mission Pinball Framework Documentation, Version

(continued from previous page)

action: restart

- event: jump_timer_up

action: jump

value: 5

- event: jump_over_max_timer_up

action: jump

value: 20

- event: add_timer_up

action: add

value: 2

- event: change_tick_interval_timer_up

action: change_tick_interval

value: 4

- event: set_tick_interval_timer_up

action: set_tick_interval

value: 2

- event: reset_tick_interval

action: reset_tick_interval

timer_player_var:

debug: True

start_value: current_player.start

end_value: current_player.end

direction: up

tick_interval: 1s

start_running: yes

timer_change_tick:

start_value: 30

end_value: 0

tick_interval: 1s

direction: down

start_running: no

control_events:

- event: timer_change_tick_start

action: start

- event: timer_change_tick_event

action: change_tick_interval

value: 0.1

- event: timer_set_tick_event_fixed

action: set_tick_interval

value: 0.2

- event: timer_set_tick_event_kwarg

action: set_tick_interval

value: event_value

transitions (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

transitions (example config files) 1393

Mission Pinball Framework Documentation, Version

Listing 390: your_machine_folder/transitions/config/test_transitions.yaml

#config_version=5

displays:

default:

width: 400

height: 300

slides:

slide1:

- type: text

text: TRANSITION TEST

y: 33%

color: ff0000

font_size: 50

- type: text

text: ========== SLIDE 1 ===========

y: 66%

color: ff0000

font_size: 50

- type: rectangle

width: 400

height: 300

color: 330000

slide2:

- type: text

text: TRANSITION TEST

color: 00ff00

font_size: 50

y: 33%

- type: text

text: ---------- SLIDE 2 -----------

color: 00ff00

font_size: 50

y: 66%

- type: rectangle

width: 400

height: 300

color: 003300

slide_player:

show_slide1: slide1

show_slide2:

slide2:

transition:

type: push

easing: out_bounce

duration: 2s

direction: right

push_left:

slide2:

transition:

(continues on next page)

transitions (example config files) 1394

/mpfmc_examples/transitions/config/test_transitions.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

type: push

direction: left

push_right:

slide2:

transition:

type: push

direction: right

push_up:

slide2:

transition:

type: push

direction: up

push_down:

slide2:

transition:

type: push

direction: down

move_in_left:

slide2:

transition:

type: move_in

direction: left

move_in_right:

slide2:

transition:

type: move_in

direction: right

move_in_top:

slide2:

transition:

type: move_in

direction: top

move_in_bottom:

slide2:

transition:

type: move_in

direction: bottom

move_out_left:

slide2:

transition:

type: move_out

direction: left

move_out_right:

slide2:

transition:

type: move_out

direction: right

move_out_top:

slide2:

transition:

type: move_out

direction: top

move_out_bottom:

slide2:

(continues on next page)

transitions (example config files) 1395

Mission Pinball Framework Documentation, Version

(continued from previous page)

transition:

type: move_out

direction: bottom

wipe:

slide2:

transition:

type: wipe

swap:

slide2:

transition:

type: swap

fade:

slide2:

transition:

type: fade

fade_back:

slide2:

transition:

type: fade_back

rise_in:

slide2:

transition:

type: rise_in

no_transition_1:

slide2

transition: None

no_transition_2:

slide2

transition: false

no_transition_3:

slide2

transition:

type: none

show_slide1_with_push:

slide1:

transition:

type: push

direction: right

show_slide2_no_transition: slide2

trinamics_steprocker (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

trinamics_steprocker (example config files) 1396

Mission Pinball Framework Documentation, Version

Listing 391: your_machine_folder/trinamics_steprocker/config/trinamics_steprocker.yaml

#config_version=5

hardware:

platform: virtual

driverboards: virtual

stepper_controllers: trinamics_steprocker

trinamics_steprocker:

port: /dev/ttyACM0

steppers:

#Scenario: 1.8 stepper that spins something continuously when activated; that you want to control␣

→˓in units of degrees

#TODO: Add limit switches

velocityStepper:

number: 0

mode: velocity

move_current: 25 #percent

hold_current: 5 #percent

microstep_per_fullstep: 16 # 1/16 mode (1 step = 1/16 of a full step)

fullstep_per_userunit: 0.55 # UU = 1 Degree = 1 / 1.8 Degrees per Fullstep

velocity_limit: 360 #user units/sec (so, 360 degrees per Sec)

acceleration_limit: 720 #user units/sec^2 (so, 720 degrees per Sec^2)

Scenario: 1.8 degree stepper attached to a 7:1 gear ratio with homing flag that you want to␣

→˓control in units of revolutions

positionStepper:

number: 0

reset_position: 0

reset_events: test_reset

homing_direction: clockwise #when facing the shaft

homing_mode: hardware

named_positions:

0.0: test_00

0.6: test_01

1.0: test_10

platform_settings:

move_current: 25 #percent

hold_current: 5 #percent

homing_speed: 0.1 #user units/sec

microstep_per_fullstep: 16 # 1/16 mode (1 step = 1/16 of a full step)

fullstep_per_userunit: 1400 # UU=1 Revolution = 200 full steps per rev (1.8 deg stepper) *␣

→˓7 gear ratio

velocity_limit: 0.5 #user units/sec (so, 0.8 RPS of output gear)

acceleration_limit: 2.0 #user units/sec^2 (so, 2 RPS^S of output gear)

twitch_client (example config files)

twitch_client (example config files) 1397

/mpf_examples/trinamics_steprocker/config/trinamics_steprocker.yaml

Mission Pinball Framework Documentation, Version

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 392: your_machine_folder/twitch_client/config/config.yaml

#config_version=5

twitch_client:

user: jan

password: MPF

channel: MPF-rocks

utils (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 393: your_machine_folder/utils/config/test_utils.yaml

#config_version=5

slides:

slide1:

- type: text

text: widget1

z: 100

- type: text

text: widget2

z: 50

- type: text

text: widget3

slide_player:

show_slide1:

slide: slide1

variable_player (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

utils (example config files) 1398

/mpf_examples/twitch_client/config/config.yaml
/mpfmc_examples/utils/config/test_utils.yaml

Mission Pinball Framework Documentation, Version

Listing 394: your_machine_folder/variable_player/config/config.yaml

#config_version=5

switches:

s_counter_target:

number:

s_kills_counter_target:

number:

modes:

- mode1

- mode2

- mode3

- mode_for_logic_block

- non_game_mode

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Note that there are multiple mode config examples here. You might not necessarily use more than one
in your machine.

Listing 395: your_machine_folder/variable_player/modes/mode2/config/mode2.yaml

#config_version=5

mode:

start_events: start_mode2

stop_events: stop_mode2

priority: 300

restart_on_next_ball: True

variable_player:

test_event1:

score: 1000|block

var_a: 0|block

var_b: 1

var_c: current_player.ramps * 10|block

test_score_mode:

score:

int: 1000

block: true

Listing 396: your_machine_folder/variable_player/modes/mode_for_logic_block/config/mode_for_logic_block.yaml

#config_version=5

actived when all 5 drop targets have dropped

user wants to continue hitting those

hitting the special kills the mode

mode:

start_events: counter_target_complete # from logic_block

priority higher that mode1 priority
(continues on next page)

variable_player (example config files) 1399

/mpf_examples/variable_player/config/config.yaml
/mpf_examples/variable_player/modes/mode2/config/mode2.yaml
/mpf_examples/variable_player/modes/mode_for_logic_block/config/mode_for_logic_block.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

priority: 300

stop_events: s_kills_counter_target_active

variable_player:

s_counter_target_active:

score: 100|block

s_kills_counter_target_active:

score: 500|block

Listing 397: your_machine_folder/variable_player/modes/non_game_mode/config/non_game_mode.yaml

#config_version=5

mode:

start_events: start_non_game_mode

game_mode: False

priority: 200

variable_player:

test_event:

test:

string: "123"

action: set_machine

test2:

int: 7

action: add_machine

"{machine.test5}":

test6:

action: set_machine

string: "{value}-suffix"

Listing 398: your_machine_folder/variable_player/modes/mode3/config/mode3.yaml

#config_version=5

mode:

start_events: start_mode3

stop_events: stop_mode3

priority: 400

variable_player:

score_player1:

score:

int: 42

player: 1

score_player2:

score:

int: 23

player: 2

reset_player2:

score:

int: 10

player: 2

action: set

score_float2:

(continues on next page)

variable_player (example config files) 1400

/mpf_examples/variable_player/modes/non_game_mode/config/non_game_mode.yaml
/mpf_examples/variable_player/modes/mode3/config/mode3.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

score:

float: 2.0

score_float3:

score: 100 * current_player.multiplier

set_float:

multiplier:

float: 1.5

action: set

score_floordiv:

score: 123456 // 100 * 100

set_player7:

score:

int: 10

player: 7

action: set

add_player7:

score:

int: 10

player: 7

action: add

Listing 399: your_machine_folder/variable_player/modes/mode1/config/mode1.yaml

#config_version=5

mode:

start_events: start_mode1

stop_events: stop_mode1

priority: 200

variable_player:

test_event1:

score: 100

var_a: 1

var_c: current_player.ramps

test_set_100:

test1:

int: 100

action: set

test_set_200:

test1:

int: 200

action: set

test_set_string:

string_test:

action: set

string: HELLO

test_set_machine_var:

my_var:

int: 100

action: set_machine

test_add_machine_var:

my_var:

int: 23

action: add_machine
(continues on next page)

variable_player (example config files) 1401

/mpf_examples/variable_player/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

player_score:

my_var2:

int: change

action: add_machine

test_score_mode:

score: 100

s_counter_target_active:

score: 10

s_kills_counter_target_active:

score: 100

video (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 400: your_machine_folder/video/config/test_video.yaml

#config_version=5

displays:

default:

width: 400

height: 300

modes:

- mode1

slides:

video_test:

- type: video

video: mpf_video_small_test

- type: text

text: Video Test

y: bottom+20%

- type: text

text: ""

y: bottom+10%

video_test2:

- type: video

video: mpf_video_small_test

control_events:

- event: play1

action: play

- event: stop1

action: stop

- event: pause1

action: pause

- event: seek1

(continues on next page)

video (example config files) 1402

/mpfmc_examples/video/config/test_video.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

action: seek

value: .5

- event: position1

action: position

value: 4

- event: mute

action: volume

value: 0

- type: text

text: Video Control Events Test

y: bottom+20%

- type: text

text: ""

y: bottom+10%

video_test3:

- type: video

video: mpf_video_small_test

control_events:

- event: pre_show_slide

action: seek

value: .5

video_test4:

- type: video

video: mpf_video_small_test

control_events:

- event: show_slide

action: seek

value: .5

video_test5:

- type: video

video: mpf_video_small_test

control_events:

- event: pre_slide_leave

action: seek

value: .5

video_test6:

- type: video

video: mpf_video_small_test

control_events:

- event: slide_leave

action: seek

value: .5

video_test7:

- type: video

video: mpf_video_small_test

auto_play: true

end_behavior: loop

volume: .2

control_events:

- event: seek1

action: seek

value: .9

video_test8:

- type: video

(continues on next page)

video (example config files) 1403

Mission Pinball Framework Documentation, Version

(continued from previous page)

video: mpf_video_small_test

auto_play: false

end_behavior: stop

volume: 0.8

control_events:

- event: play1

action: play

- event: seek1

action: seek

value: .9

video_test9:

- type: text

text: Machine slide, no video

slide_player:

show_slide1: video_test

show_slide2: video_test2

show_slide3: video_test3

show_slide4: video_test4

show_slide5: video_test5

show_slide6: video_test6

show_slide7: video_test7

show_slide8: video_test8

show_slide9: video_test9

videos:

mpf_video_small_test:

width: 100

height: 70

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 401: your_machine_folder/video/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 100

slide_player:

mode_mode1_started:

mode1_slide1:

widgets:

- type: video

video: mpf_video_small_test

- type: text

text: Video from Mode

y: bottom+20%

video (example config files) 1404

/mpfmc_examples/video/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

virtual_pinball (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 402: your_machine_folder/virtual_pinball/config/config.yaml

#config_version=5

hardware:

platform: virtual

switches:

s_test:

number: 0-0

s_test_no_debounce:

number: 0-1

debounce: quick

s_test_nc:

number: 0-2

type: 'NC'

s_flipper:

number: 0-3

s_test_card2:

number: 0-8

coils:

c_test:

number: 0-0

default_pulse_ms: 23

c_test_allow_enable:

number: 0-1

default_pulse_ms: 23

platform_settings:

recycle_factor: 3

default_hold_power: 1.0

c_flipper_hold:

number: 0-2

default_hold_power: 1.0

c_flipper_main:

number: 0-3

default_pulse_ms: 10

default_hold_power: 0.375

c_holdpower_16:

number: 1-12

default_hold_power: 0.0625

lights:

test_light1:

number: 0-16

subtype: matrix

test_light2:

(continues on next page)

virtual_pinball (example config files) 1405

/mpf_examples/virtual_pinball/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 0-17

subtype: matrix

test_led1:

number: 1-0

test_led2:

number: 1-1

autofire_coils:

ac_slingshot_test:

coil: c_test

switch: s_test

ac_slingshot_test2:

coil: c_test_allow_enable

switch: s_test_no_debounce

flippers:

f_test_single:

debug: true

#main_coil_overwrite:

pulse_ms: 11

main_coil: c_flipper_main

activation_switch: s_flipper

f_test_hold:

debug: true

main_coil: c_flipper_main

hold_coil: c_flipper_hold

activation_switch: s_flipper

virtual_segment_display_connector (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 403: your_machine_folder/virtual_segment_display_connector/config/config.yaml

#config_version=5

segment_displays:

display1:

number: 1

display2:

number: 2

display3:

number: 3

virtual_segment_display_connector:

segment_displays: display1, display2

virtual_segment_display_connector (example config files) 1406

/mpf_examples/virtual_segment_display_connector/config/config.yaml

Mission Pinball Framework Documentation, Version

vpe (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 404: your_machine_folder/vpe/config/config.yaml

#config_version=5

hardware:

platform: visual_pinball_engine

playfields:

playfield:

tags: default

default_source_device: None

vpe:

debug: True

rgb_dmds:

test_dmd:

source_display: rgb_dmd_display

dmds:

default:

source_display: dmd_display

segment_displays:

segment1:

number: 0

size: 10

switches:

s_sling:

number: 0

s_flipper:

number: 3

s_test:

number: 6

coils:

c_sling:

number: 0

c_flipper:

number: 1

allow_enable: True

c_test:

number: 2

allow_enable: True

lights:

(continues on next page)

vpe (example config files) 1407

/mpf_examples/vpe/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

test_light1:

number: 0

test_light2:

number: 1

autofire_coils:

ac_slingshot_test:

coil: c_sling

switch: s_sling

flippers:

f_test:

main_coil: c_flipper

activation_switch: s_flipper

vpx (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 405: your_machine_folder/vpx/config/config.yaml

#config_version=5

hardware:

platform: virtual_pinball

switches:

s_sling:

number: 0

s_flipper:

number: 3

s_test:

number: 6

coils:

c_sling:

number: 0

c_flipper:

number: 1

allow_enable: True

c_test:

number: 2

allow_enable: True

lights:

test_light1:

number: 0

subtype: matrix

(continues on next page)

vpx (example config files) 1408

/mpf_examples/vpx/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

test_light2:

number: 1

test_flasher:

number: 0

subtype: flasher

test_led1:

number: 0

subtype: led

test_led2:

number: 1

subtype: led

test_gi:

number: 0

subtype: gi

autofire_coils:

ac_slingshot_test:

coil: c_sling

switch: s_sling

flippers:

f_test:

main_coil: c_flipper

activation_switch: s_flipper

widget_styles (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Listing 406: your_machine_folder/widget_styles/config/test_widget_styles.yaml

#config_version=5

modes:

- mode1

displays:

default:

width: 400

height: 300

widget_styles:

text_default:

font_size: 21

color: red

bigStyle:

font_size: 100

halign: left

(continues on next page)

widget_styles (example config files) 1409

/mpfmc_examples/widget_styles/config/test_widget_styles.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

stackedStyle:

color: blue

slides:

slide1:

- type: text

text: HELLO

style: bigStyle

halign: right

- type: text

text: Default Style

y: 100

slide3:

- type: text

font_size: 30

text: COLOR FROM DEFAULT STYLE

slide4:

- type: text

text: TESTING INVALID STYLE

style: bogus

slide5:

- type: text

text: HELLO

style: bigStyle

font_size: 50

slide6:

- type: text

text: HELLO TOO

style: bigStyle, stackedStyle

slide7:

- type: text

text: HELLO THREE

style:

- text_default

- stackedStyle

slide_player:

slide1: slide1

slide3: slide3

slide4: slide4

slide5: slide5

slide6: slide6

slide7: slide7

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 407: your_machine_folder/widget_styles/modes/mode1/config/mode1.yaml

#config_version=5

(continues on next page)

widget_styles (example config files) 1410

/mpfmc_examples/widget_styles/modes/mode1/config/mode1.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

mode:

priority: 100

widget_styles:

text_default:

font_size: 50

slides:

slide2:

- type: text

text: MODE1 DEFAULT STYLE

y: 75

- type: text

style: big

text: BIG FROM BASE

y: 225

slide_player:

slide2: slide2

widgets (example config files)

Machine config examples

Here are some example machine-wide config files that show real-world examples of how these configs
are used.

Note that there are multiple machine config examples here. They’re just included to show different
options. You wouldn’t actually use more than one.

Listing 408: your_machine_folder/widgets/config/test_widgets.yaml

#config_version=5

modes:

- mode1

displays:

default:

width: 800

height: 600

widgets:

widget1:

type: text

text: widget1

color: ffff00

font_size: 100

y: top-40%

widget2:

- type: text

(continues on next page)

widgets (example config files) 1411

/mpfmc_examples/widgets/config/test_widgets.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: widget2

y: 50

color: ff0000

font_size: 100

widget3:

- type: text

text: widget3.1

color: ff0000

font_size: 100

- type: text

text: widget3.2

color: 00ff66

font_size: 100

- type: text

text: widget3.3

color: ff00ff

font_size: 100

widget4:

- type: text

text: widget4.1

y: 300

z: 1

color: ff0000

font_size: 100

- type: text

text: widget4.2

z: 1000

y: 250

color: ffff00

font_size: 100

- type: text

text: widget4.3

y: 200

color: 00ff00

font_size: 100

- type: text

text: widget4.4

z: 1

y: 150

color: 00ffff

font_size: 100

- type: text

text: widget4.5

z: 1000

y: 100

color: 0000ff

font_size: 100

- type: text

text: widget4.6

color: ff00ff

font_size: 100

y: 50

- type: text

text: widget4.7

(continues on next page)

widgets (example config files) 1412

Mission Pinball Framework Documentation, Version

(continued from previous page)

y: 0

color: 888888

font_size: 100

widget5:

type: text

text: widget5

z: 200

y: 150

font_size: 100

widget6:

type: text

text: widget6

z: 100

color: 774303

font_size: 100

widget7:

type: text

text: EXPIRES 1S (player|test)

color: orange

font_size: 100

expire: 1s

animations:

test_event:

- property: rotation

value: 360

duration: .5s

widget8:

type: text

text: WIDGET 8

color: orange

font_size: 100

box11:

- type: text

text: box11

box12:

- type: text

text: box12

box13:

- type: text

text: box13

box14:

- type: text

text: box14

widget9:

- type: text

text: named_widget9

key: widget9_key

widget10:

type: text

text: (text)

widget_bezier:

- type: bezier

points: 400, 300, 100, 100, 400, 0

color: red

(continues on next page)

widgets (example config files) 1413

Mission Pinball Framework Documentation, Version

(continued from previous page)

thickness: 5

animations:

add_to_slide:

- property: color, points

value: 0, 1, 0, 1, 200, 200, 50, 100, 100, 250

duration: 2s

- property: rotation

value: -300

duration: 2s

timing: with_previous

- property: color

value: 0, 0, 1, 1

duration: 1s

- property: color

value: 1, 1, 0, 1

duration: 1s

widget_ellipse:

- type: ellipse

width: 200

height: 100

angle_end: 0

color: magenta

opacity: 0.5

animations:

add_to_slide:

- property: pos

value: 100, 100

relative: true

duration: 2s

- property: rotation

value: 360

duration: 2s

timing: with_previous

widget_quad:

- type: quad

points: 300, 100, 350, 200, 500, 150, 450, 50

color: cornflowerblue

animations:

add_to_slide:

- property: points

value: 50, -50, -50, 50, 50, -50, -50, 50

duration: 1.5

relative: true

- property: rotation, scale

value: -720, -0.9

relative: true

duration: 1.5s

timing: with_previous

- property: points

value: -50, 50, 50, -50, -50, 50, 50, -50

duration: 1.5

relative: true

- property: rotation, scale

value: 720, 0.9

(continues on next page)

widgets (example config files) 1414

Mission Pinball Framework Documentation, Version

(continued from previous page)

relative: true

duration: 1.5s

timing: with_previous

widget_rectangle:

- type: rectangle

x: 600

y: 300

width: 100

height: 200

color: gold

animations:

add_to_slide:

- property: rotation, scale, corner_radius

value: 540, 0.5, 50

duration: 1.5s

- property: scale

value: 0.5

duration: 1.0s

- property: rotation, scale, corner_radius

value: 0, 1.0, 0

duration: 1.5s

widget_line:

- type: line

points: 200, 50, 600, 50

thickness: 10

color: darkcyan

animations:

add_to_slide:

- property: rotation, scale

value: 360, 1.5

duration: 3s

widget_triangle:

- type: triangle

points: 100, 450, 100, 550, 200, 450

color: lawngreen

animations:

add_to_slide:

- property: rotation, scale

value: -900, 1.5

duration: 3s

easing: in_quint

widget_points:

- type: points

points: 100, 450, 100, 550, 200, 450

pointsize: 2

color: deeppink

animations:

add_to_slide:

- property: rotation, scale, pointsize

value: 900, 1.5, 8

duration: 3s

easing: in_quint

widget_text:

- type: text

(continues on next page)

widgets (example config files) 1415

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: TEST

font_size: 50

bold: true

color: lightyellow

animations:

add_to_slide:

- property: rotation, scale

value: 45, 1.5

duration: 2s

easing: in_quint

- property: scale

value: 0.75

duration: 1s

easing: out_quint

widget_reusable:

- type: text

text: Reusable Widget

widget_placeholder_value1:

- type: text

text: Value One

widget_placeholder_value2:

- type: text

text: Value Two

widget_custom_events1:

- type: text

text: Testing events

events_when_added: custom_events1_added

events_when_removed: custom_events1_removed

widget_custom_events2:

- type: rectangle

x: 600

y: 300

width: 100

height: 200

color: gold

events_when_added: custom_events2_added, custom_events2_added_again

events_when_removed: custom_events2_removed, custom_events2_removed_again

widget_player:

add_widget1_to_current: widget1

add_widget2_to_current: widget2

add_widget2_to_slide1:

widget2:

slide: slide1

update_widget2:

widget2:

action: update

slide: slide1

remove_widget2:

widget2:

action: remove

add_widget6:

widget6:

widget_settings:

(continues on next page)

widgets (example config files) 1416

Mission Pinball Framework Documentation, Version

(continued from previous page)

z: -1

remove_widget1_by_key:

widget1:

action: remove

key: widget1

remove_widget1:

widget1:

action: remove

add_widget7: widget7

add_widget8_expire:

widget8:

widget_settings:

expire: 1s

add_widget8_expire_parent:

widget8:

widget_settings:

expire: 1s

z: -1

add_widget8_custom_settings:

widget8:

widget_settings:

color: red

font_size: 70

x: right-10

anchor_x: right

add_widget8_opacity_50:

widget8:

widget_settings:

opacity: .5

text: 50% OPACITY

font_size: 50

widget1:

action: add

event_a:

widget1:

action: update

widget_settings:

text: A

color: red

event_s:

widget1:

action: update

widget_settings:

text: S

color: lime

event_d:

widget1:

action: update

widget_settings:

text: D

color: blue

widget_4up:

box14:

widget_settings:

(continues on next page)

widgets (example config files) 1417

Mission Pinball Framework Documentation, Version

(continued from previous page)

x: 25

expire: 6s

box13:

widget_settings:

x: 105

expire: 6s

box12:

widget_settings:

x: 185

expire: 6s

box11:

widget_settings:

x: 265

expire: 6s

widget_4up_red:

box14:

widget_settings:

color: red

box13:

widget_settings:

color: red

box12:

widget_settings:

color: red

box11:

widget_settings:

color: red

widget_to_parent:

box11:

widget_settings:

z: -1

box12:

widget_settings:

z: 2

color: red

y: middle+2

show_christmas_slide_full:

widget2:

widget_settings:

expire: 5s

slide: slide1

key: xmas_intro_keyname

remove_christmas_full:

widget2:

action: remove

key: xmas_intro_keyname

show_widget9:

widget9:

key: wigdet9_wp_key

show_widget10:

widget10:

action: add

show_bezier_widget: widget_bezier

show_ellipse_widget: widget_ellipse

(continues on next page)

widgets (example config files) 1418

Mission Pinball Framework Documentation, Version

(continued from previous page)

show_quad_widget: widget_quad

show_rectangle_widget: widget_rectangle

show_line_widget: widget_line

show_triangle_widget: widget_triangle

show_points_widget: widget_points

show_text_widget: widget_text

show_custom_events1_widget: widget_custom_events1

show_custom_events2_widget: widget_custom_events2

remove_custom_events1_widget:

widget_custom_events1:

action: remove

remove_custom_events2_widget:

widget_custom_events2:

action: remove

slide_player:

show_slide_1:

slide_1:

- type: text

text: WIDGET WITH KEY

key: widget1

color: red

y: 33%

- type: text

text: WIDGET NO KEY

color: red

y: 66%

show_slide_1_with_expire:

slide_1:

- type: text

text: WIDGET EXPIRE 1s

expire: 1s

color: red

y: 33%

- type: text

text: WIDGET NO EXPIRE

color: red

y: 66%

show_slide_2:

slide_2:

- type: text

text: TEST UPDATING EXISTING WIDGET SETTINGS

y: bottom

anchor_y: bottom

show_slide_3:

slide_3:

widgets:

- type: text

text: WIDGET REPLACEMENT

y: 25%

show_slide_with_widgets:

slide_1:

- type: text

text: widget4.1

(continues on next page)

widgets (example config files) 1419

Mission Pinball Framework Documentation, Version

(continued from previous page)

y: 300

z: 1

color: ff0000

font_size: 100

- type: text

text: widget4.2

z: 1000

y: 250

color: ffff00

font_size: 100

- type: text

text: widget4.3

y: 200

color: 00ff00

font_size: 100

- type: text

text: widget4.4

z: 1

y: 150

color: 00ffff

font_size: 100

- type: text

text: widget4.5

z: 1000

y: 100

color: 0000ff

font_size: 100

- type: text

text: widget4.6

color: ff00ff

font_size: 100

y: 50

- type: text

text: widget4.7

y: 0

color: 888888

font_size: 100

show_slide_with_lots_of_widgets: slide_with_lots_of_widgets

show_new_slide:

new_slide2:

widgets:

- type: text

text: NEW SLIDE

y: 0

anchor_y: bottom

events_when_added: text_on_new_slide2_added

events_when_removed: text_on_new_slide2_removed

remove_new_slide:

new_slide2:

action: remove

slides:

slide_with_lots_of_widgets:

- type: text

(continues on next page)

widgets (example config files) 1420

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: widget4.1

y: 300

z: 1

color: ff0000

font_size: 100

- type: text

text: widget4.2

z: 1000

y: 250

color: ffff00

font_size: 100

- type: text

text: widget4.3

y: 200

color: 00ff00

font_size: 100

- type: text

text: widget4.4

z: 1

y: 150

color: 00ffff

font_size: 100

- type: text

text: widget4.5

z: 1000

y: 100

color: 0000ff

font_size: 100

- type: text

text: widget4.6

color: ff00ff

font_size: 100

y: 50

- type: text

text: widget4.7

y: 0

color: 888888

font_size: 100

Listing 409: your_machine_folder/widgets/config/test_widgets_with_named_colors.yaml

#config_version=5

displays:

default:

width: 800

height: 600

named_colors:

tt_yellow: [255,220, 0]

widgets:

base_score_widget:

- type: text
(continues on next page)

widgets (example config files) 1421

/mpfmc_examples/widgets/config/test_widgets_with_named_colors.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

text: HELLO

color: tt_yellow

widget_player:

add_widget1_to_current: base_score_widget

Mode config examples

Here are some example mode config files that go along with the machine-wide config above.

Listing 410: your_machine_folder/widgets/modes/mode1/config/mode1.yaml

#config_version=5

mode:

priority: 500

widget_player:

mode1_add_widgets: widget2

mode1_add_widget6:

widget6:

widget_settings:

z: -1

mode1_add_widget_with_key:

widget2:

key: newton_crosby

mode1_update_widget2:

widget2:

action: update

key: newton_crosby

widget_settings:

text: UPDATED TEXT

show_widget_with_placeholder: widget_with_placeholder

widgets:

widget_with_placeholder:

- type: text

text: Placeholder widget

- widget: widget_placeholder_(value)

slide_player:

show_slide_with_named_widget: slide_with_named_widget

slides:

slide_with_named_widget:

- type: text

text: One Use Widget

- widget: widget_reusable

widgets (example config files) 1422

/mpfmc_examples/widgets/modes/mode1/config/mode1.yaml

CHAPTER23

Example Machine Projects you can learn from

The mpf-examples project

Contains several examples of MPF configs you can run and learn from, including:

∙ Demo Man

∙ MC Demo

∙ Cookbook recipes

∙ Tutorial config files

Full details about the mpf-examples project and how to download it are here.

State Fair Pinball

An upcoming machine we’re working on. Details: http://statefairpinball.com. GitHub repo:
https://github.com/missionpinball/state_fair

Brooks ‘n Dunn

One of the projects we took on in 2015 was to rewire and build and MPF config for Gottlieb’s Brooks
‘n Dunn. (BnD). BnD was the machine that Gottlieb was working on when they shut down in 1996.

This config is probably the most complete of any MPF project that’s publicly available. However it
contains lots of licensed assets (music, videos, images, etc.) that are not in the public repo. This
means you won’t be able to actually run it, but you can look through the configs (which are well
commented) to see how we do things.

The BnD repo is at https://github.com/gabeknuth/bnd

1423

http://statefairpinball.com
https://github.com/missionpinball/state_fair
https://github.com/gabeknuth/bnd

Mission Pinball Framework Documentation, Version

Mass Effect 2

An extensive project to build a complete MPF game from scratch and play on a re-skinned Game of
Thrones cabinet (Spike platform), inspired by the video game Mass Effect 2. With the exception of
audio tracks extracted from the Mass Effect 2 data files, all of the game code is available to clone from
the repo and run. MPF monitor is supported so you can simulate gameplay without the Spike GoT
hardware.

All of the project code is at https://github.com/avanwinkle/masseffect2

How to download the mpf-examples bundle

We maintain a GitHub repo called mpf-examples which contains a few different example MPF configs
and some templates you can use.

The mpf-examples repo doesn’t have an installer, rather, you just download it and unzip it and start
using the stuff it contains.

Each software repo in GitHub has several “branches”. (Think of branches kind of like versions.) The
mpf-examples repo has multiple branches that each match a specific version of MPF. For example, the
0.21 branch of the mpf-examples repo is for MPF 0.21, the 0.30 branch is for MPF 0.30, etc.

Here are the direct links (to ZIP files) for the various branches of mpf-examples that you can download
based on your version of MPF:

∙ |branch|0.56

If you are looking for another version please switch to the documentation of that MPF version.

Unzip the file to any location you want, and then browse the files to see what’s there, or open a
console window to launch MPF and/or MPF MC in each folder.

demo_man

Williams Demolition Man. This config is pretty basic, but you can play complete games and
it has some simple shots, scoring, and modes. It also contains custom code to run the Cryro
Claw. See details which explain how to “play” this game on your computer here.

mc_demo

A machine config that demonstrates several capabilities of the MPF Media Controller
(MPF-MC). Details here.

tutorial (and several tutorial_step_XX folders)

Contains the config files used in the MPF Tutorial .

wpc_template

A template config you can use for WPC machines (with either a P-ROC or FAST WPC
controller).

How to run “Demo Man”, an MPF example game

One of the development machines we have for MPF is a 1994 Williams Demolition Man, and we have a
simple MPF configuration built for it that you can run to see MPF in action.

Mass Effect 2 1424

https://github.com/avanwinkle/masseffect2
https://github.com/missionpinball/mpf-examples

Mission Pinball Framework Documentation, Version

Even if you don’t have a physical Demolition Man machine (which we assume you don’t), you can run
our “Demo Man” config using MPF’s smart virtual platform.

1. Download the MPF examples bundle

Instructions here.

2. Run DemoMan, a sample game that comes with MPF

Open a command prompt (like you did when you installed MPF) and switch to the folder where you
unzipped the mpf-examples ZIP file, then change to the demo_man folder and run:

mpf both -X

(Note that’s an uppercase “X”)

The mpf both command launches both the MPF game engine and media controller at the same time,
the -X command line option tells MPF to use the “Smart Virtual” platform (instead of the P-ROC
platform that the Demo Man files are configured for) since you most likely don’t have a Demolition
Man machine connected to your computer right now.

You should see a bunch of stuff scroll by and a pop up window which shows the Demo Man DMD, like
this:

If you don’t see the DMD window pop up, make sure it isn’t hiding behind another window.

3. “Play” your first game

Since you don’t have physical hardware attached, you can use the keyboard to simulate machine
switch changes.

Mass Effect 2 1425

Mission Pinball Framework Documentation, Version

The Demo Man configuration files have the “S” key mapped to start, so if you click in the graphical
window with the DMD in it (to give it focus) and push the S key, then you should see the DMD attract
mode stop and it change to a score screen showing a score of 00 and BALL 1 FREE PLAY :

If your speakers are on you should also hear a music loop playing. (Depending on your system, you
might not hear the music when the DMD window doesn’t have focus.)

At this point you can “play” the game via your keyboard. Hit the L key to launch the ball into play. You
should hear the music loop change to the main background music.

You can hit the X key to simulate the left slingshot hit which should play a sound effect on top of the
music as well as show a score. You can hit the 1 key to simulate the ball draining and entering the
trough. Then you can hit the L key again to launch the ball into play again. You can also press the S
key additional times during Ball 1 to add additional players.

When you play through a complete game (3 balls per player), the machine should go back into attract
mode (or possibly the high score entry mode).

You can quit the game by making sure the Demo Man popup window is in focus and hitting the Esc
key.

To summarize the instructions for “playing” a game from the paragraphs above:

1. Launch both the MPF core engine and the media controller and make sure you see the the popup
graphical window with the DMD in it.

2. Click the mouse into the DMD window so that it has “focus”

3. Press the S key to start a game. You should hear the music loop start.

4. Press the L key to launch a ball into play. You should her the music switch to the main
background theme for the game.

5. Press the X key a few times to simulate hitting the left slingshot. You should see the score change
each time you do this.

6. Press the 1 key to drain the ball.

7. Repeat Steps 4-6 until you finish your game or get bored.

8. If you get a high score, the Z and / keys are mapped to the left and right flipper buttons to
highlight a letter, and the S key (start) selects it.

9. Press the Esc key to exit

What if it did not work?

In the following we list some common problems and solutions. If you got another problem please ask
in our MPF User Forum.

Keyboard does not work

If your keyboard does not work first make sure that the MC window has focus. Afterward, please check
if numlock is enabled. This seems to be common issue on Windows 10. Disable numlock in this case.

Mass Effect 2 1426

https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Game does not start errors

Version mismatch - Make sure you are using the exact version of demo_man for your MPF, MPF-MC
and MPF monitor (optional). For instance use 0.30.x if you are on MPF 0.30.2. MPF-MC and (if
installed) MPF monitor need to have the same major version (0.30 in this case). You can check
installed versions using pip3 list.

FT_ListDevices(2) or WARNING : P-Roc : Failed to instantiate pinproc.PinPROC(3) error - By
default the Demo Man example expects to be connected to P-Roc hardware. If you see this you
probably forgot to add the -X switch to your mpf both command which tells MPF to override the
hardware setting to the Smart Virtual platform. This sometimes happens when trying to debug
another error and you follow the guide about verbose logging using the -v -V switches.

How to run the “MC Demo” example

The MPF Examples GitHub repository includes a machine configuration called “MC Demo” which is a
demo of many different features of the MPF media controller. Here are a few random screen shots of
it:

You can run it and use the arrow keys on your computer to step through different slides, and then you
can look at the source config file to see how it all works.

It’s designed to both show you what’s possible and to show you how to do different things with the MC.

Mass Effect 2 1427

Mission Pinball Framework Documentation, Version

1. Download the MPF examples bundle

Instructions here.

2. Run it

Open a command prompt or terminal window, and change to the “mc_demo” folder in the
“mpf-examples” package you downloaded. Then run:

mpf both

When you run the demo, use the left and right arrow keys to step through the different slides.

3. Check out the config (with notes!)

You can browse the complete config in the mc_demo/config/config.yaml file. Or check it out online
here.

Mass Effect 2 1428

https://github.com/missionpinball/mpf-examples/blob/dev/mc_demo/config/config.yaml

CHAPTER24

The MPF Cookbook

The MPF cookbook contains recipes (how to guides) which show you how you would implement
complex features in your pinball machines using MPF.

Here are the recipes that are done:

∙ The Addams Family: Mansion Awards

∙ Attack From Mars: Super Jets

∙ Indiana Jones: Rollover Lanes (with Lane Change)

∙ Batman 66: Gadgets Targets

∙ Modifying the Game mode: Dual launch devices

∙ Skillshots with Lane Change

∙ Skillshots with Auto-Rotate

∙ Sequential Drop Bank Targets

If you’ve ever played a game and wondered, “How would I do that?” then let us know and we’ll write a
recipe for it! And here’s what’s on our to-do list:

∙ Attack from Mars: 5-Way Combo

∙ Red & Ted’s RoadShow: Bulldozer hits to ball lock & multiball

∙ Red & Ted’s RoadShow: City modes

∙ Centigrade 37: Flip-flopping groups of lit targets

∙ Judge Dredd DeadWorld ball lock and multiball

∙ Demolition Man Crane elevator & unloader

1429

Mission Pinball Framework Documentation, Version

Recipe: The Addams Family Mansion Awards

This guide shows you how to build an MPF config for The Addams Family’s Mansion Awards and Tour
the Mansion feature. The idea is you can use this as a guide to implement a similar feature in your
machine.

Note: This recipe requires MPF 0.33 or newer.

This guide uses the following concepts in MPF that you should be familiar with:

∙ Modes

∙ Achievements

∙ Achievement Groups

∙ Shows

This guide will also show you how to do a few tricky things, including:

∙ From a group of 12 achievements, ensure that the randomly selected one when the game starts
is 1 of 2, not random from all 12.

∙ Have two shots that light the achievements, but one of the shots lights the achievements
indefinitely and the other only lights them for 3 seconds.

You can find the complete runnable machine config for this recipe in the cookbook/TAF_mansion_awards
folder of the mpf-examples repository on GitHub.

What are the Mansion Awards & Tour the Mansion?

In The Addams Family, the Mansion Awards are the name for the 12 “goals” which each have a light in
the mansion on the playfield just above the flippers.

Tour the Mansion is a wizard mode (associated with the question mark insert at the top of the
mansion) that can be started after all 12 mansion awards have been collected.

Recipe: The Addams Family Mansion Awards 1430

https://github.com/missionpinball/mpf-examples

Mission Pinball Framework Documentation, Version

Here are the specific rules we need to implement:

Mansion Awards

∙ Lights for incomplete awards are off.

∙ Complete awards are on solid.

∙ The currently selected award’s light is flashing.

∙ Hitting any pop bumper will change the currently selected award to another random from the
awards that are not yet complete.

∙ When the game starts, either “Hit Cousin It” or “Mamushka” are selected.

∙ The selected award is awarded / collected when the electric chair is lit (yellow and red lights on
the chair toy) and either the electric chair or swamp shot is hit. (The swamp is technically an
operator setting, but we’ll use it since that’s what the default it.)

∙ Some of the awards start modes, and others are instant awards with a short show. Collecting an

Recipe: The Addams Family Mansion Awards 1431

Mission Pinball Framework Documentation, Version

award immediately turns its light on solid and selects another random uncollected award.

∙ If 3 Mil is awarded, 6 Mil is spotted (automatically set to complete) as well, and vice-versa. (This
differs in the Gold Edition of the game, and is also an operator setting, but we’re just going to
hard code this behavior for this recipe.)

∙ The electric chair is lit for 3 seconds after the right inlane is hit.

∙ The electric chair is lit indefinitely after either ramp is hit.

∙ The electric chair is lit at the beginning of each ball

∙ For awards that start modes, the chair can be relit and another award awarded even while the
prior award’s mode is running.

∙ Accumulating 15, 25, 35, 45, 55, 65, 75, 85, 95 bear kicks (center ramp) collects the currently
selected award (except Tour the Mansion), even if the chair is not lit.

∙ Each award collected adds 500k to the bonus.

Tour the Mansion

∙ Once all 12 Mansion Awards have been collected, the Tour the Mansion light (the question mark
at the top of the mansion) is selected.

∙ The electric chair must be lit in the same way as before, and then the shot must be made to the
electric chair or the swamp as before.

∙ This starts the Tour the Mansion mode

∙ When Tour the Mansion completes, all the mansion awards are reset and a new random one is
selected.

∙ If Tour the Mansion ends before the ball ends, no mansion award can be awarded until the next
ball.

Step 1. The machine-wide prerequisites

Before we dig into how to handle the mansion itself, we need to create a machine-wide config that has
all the devices we’ll need, including the lights for the mansion, switches for the shots we need, the
ramps, the right inlane, and the switches, coils, and ball devices we need to glue it all together.

Here’s what our machine config looks like. (Note that this is complete in terms of what we need to
make this recipe work, but if you have a real Addams Family then you’ll probably have a lot more than
this in your machine config file.)

#config_version=5

modes:

- mansion_awards

- chair_lit

- chair_lit_3s

switches:

start:

number: S13

tags: start

drain:

number:

trough1:

(continues on next page)

Recipe: The Addams Family Mansion Awards 1432

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: S15

trough2:

number: S16

trough3:

number: S17

plunger_lane:

number: S27

swamp_kickout:

number: S74

electric_chair:

number: S43

left_ramp:

number: S66

center_ramp:

number: S65

right_inlane:

number: S25

upper_left_jet:

number: S31

tags: jet

upper_right_jet:

number: S32

tags: jet

center_left_jet:

number: S33

tags: jet

center_right_jet:

number: S34

tags: jet

lower_jet:

number: S35

tags: jet

virtual_platform_start_active_switches: trough1, trough2, trough3

coils:

drain:

number: "05"

trough:

number: "04"

swamp_kickout:

number: "08"

electric_chair:

number: "01"

lights:

9_mil:

number: L66

subtype: matrix

6_mil:

number: L54

subtype: matrix

3_mil:

number: L68

subtype: matrix

thing:

number: L51

(continues on next page)

Recipe: The Addams Family Mansion Awards 1433

Mission Pinball Framework Documentation, Version

(continued from previous page)

subtype: matrix

quick_multiball:

number: L55

subtype: matrix

graveyard_at_max:

number: L67

subtype: matrix

raise_the_dead:

number: L52

subtype: matrix

festers_tunnel_hunt:

number: L56

subtype: matrix

lite_extra_ball:

number: L53

subtype: matrix

seance:

number: L57

subtype: matrix

hit_cousin_it:

number: L58

subtype: matrix

mamushka:

number: L45

subtype: matrix

mansion_question:

number: L65

subtype: matrix

electric_chair_yellow:

number: L64

subtype: matrix

electric_chair_red:

number: L47

subtype: matrix

ball_devices:

drain:

ball_switches: drain

eject_coil: drain

eject_targets: trough

tags: drain

trough:

ball_switches: trough1, trough2, trough3

eject_coil: trough

eject_targets: plunger_lane

tags: trough, home

plunger_lane:

ball_switches: plunger_lane

mechanical_eject: true

eject_timeouts: 3s

tags: home

electric_chair:

ball_switches: electric_chair

eject_coil: electric_chair

swamp_kickout:

(continues on next page)

Recipe: The Addams Family Mansion Awards 1434

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_switches: swamp_kickout

eject_coil: swamp_kickout

playfields:

playfield:

default_source_device: plunger_lane

tags: default

##! mode: mansion_awards

mode will be defined below

##! mode: chair_lit

mode will be defined below

##! mode: chair_lit_3s

mode will be defined below

Step 2. Add the achievements

Each mansion award will be an achievement. We decided to create a separate mode called
“mansion_awards” just so we can keep everything separate. (This isn’t required, it’s just to help us
keep it clear in our minds, and it’s ok to have lots and lots of modes in MPF.)

We’ll configure this mode to start on the ball_starting event so it’s always running when a ball is in
play. We won’t configure a stop event which means this mode will automatically stop when the ball
ends.

Next we add an achievements: section and then subsections for our 12 mansion achievements.

You’ll notice that most of them are almost identical. For example, here’s the entry for Thing Multiball:

##! mode: mansion_awards

achievements:

thing_multiball:

show_tokens:

lights: thing

show_when_selected: flash

show_when_completed: on

events_when_started: award_thing_multiball # starts thing_multiball mode

enable_events: initialize_mansion, reset_mansion

complete_events: award_thing_multiball

reset_events: reset_mansion

Stepping through how we’re using each setting:

show_tokens: link this achievement to it’s light on the playfield.

show_when_selected: flash Plays the show called “flash” when this achievement is selected. Note
that the default “flash” show is 1 sec on / 1 sec off. While you can play it faster, the original
Addams Family flashed the lights more like .75s on / .25 off, so you’d probably want to create a
custom version of the “flash” show for TAF that flashed them more like the original version.

show_when_completed: on Plays the show called “on” when this achievement is complete

events_when_started: award_thing_multiball Posts an event called award_thing_multiball when this
achievement is started. We’ll use this as the start event for the Thing Multiball mode.

enable_events: initialize_mansion, reset_mansion Enables this achievement when either of the
events initialize_mansion or reset_mansion is posted. Prior to that, this achievement will be

Recipe: The Addams Family Mansion Awards 1435

Mission Pinball Framework Documentation, Version

disabled.

complete_events: award_thing_multiball Watches for the event award_thing_multiball, and when it
sees it, it marks this achievement as complete. Notice this is the same event that this
achievement posts when it starts. In other words, we’ve configured it so the achievement is
complete as soon as it starts! This is by design, because the rules state that once an achievement
is awarded, the chair can be relit immediately, and it’s possible to receive the next award even
while the mode from the prior award is still running.

reset_events: reset_mansion Watches for an event called reset_mansion that will reset this
achievement back to its initial (disabled) state.

This achievements configuration takes care of the following rules:

∙ Lights for incomplete awards are off.

∙ Complete awards are on solid.

∙ The currently selected award’s light is flashing.

Step 3. Create an achievement group

Next we need to create an achievement group called “mansion_awards” which will group the 12
mansion achievements together. That will look like this:

##! mode: mansion_awards

achievement_groups:

mansion_awards:

achievements:

- 9_mil

- 6_mil

- 3_mil

- thing_multiball

- quick_multiball

- graveyard_at_max

- raise_the_dead

- festers_tunnel_hunt

- lite_extra_ball

- seance

- hit_cousin_it

- mamushka

show_tokens:

lights: electric_chair_yellow, electric_chair_red

auto_select: true

events_when_all_completed: select_tour_mansion

enable_while_no_achievement_started: false

show_when_enabled: on

select_random_achievement_events: sw_jet

allow_selection_change_while_disabled: true

disable_while_achievement_started: false

start_selected_events: balldevice_electric_chair_ball_enter, balldevice_swamp_kickout_ball_enter,␣

→˓award_mansion_from_bear

enable_events: light_chair

disable_events: unlight_chair

Let’s look at each of these settings:

Recipe: The Addams Family Mansion Awards 1436

Mission Pinball Framework Documentation, Version

achievements: This is just the list of the 12 achievements that make up this group.

show_tokens: These are the show tokens for the group itself. In this case they’re the two lights on the
electric chair, since those lights turn on and off to indicate whether the chair or swamp can be
shot to award the currently selected item.

auto_select: yes This is used to make sure that one achievement is selected at all times. If the
currently selected achievement is completed, the achievement group will notice that there is no
currently selected achievement and it will pick one from random from the remaining
achievements (those that are “enabled”).

events_when_all_completed: select_tour_mansion Posts an event called select_tour_mansion once all
12 achievements in this group in complete. We’ll use this later to light the “tour mansion” award.

enable_while_no_achievement_started: no In our case, we do not want to automatically enable the
achievement group when no achievement is started, because the rules for Addams Family say
that the player has to shoot the center ramp or right inlane to light the chair (which is enabling
this achievement group).

show_when_enabled: on This plays the show called “on” when the achievement group is in the enabled
state. This will have the effect of turning on the red and yellow chair lights (from the
show_tokens: section) when the achievement group is enabled and the selected item can be
awarded.

select_random_achievement_events: sw_jet In Addams Family, each pop bumper hit changes the
currently selected mansion award. To make this happen, we added a tag called “jet” to the five
pop bumper switches. (That will post an event called sw_jet any time one of these switches is hit.
Then we add that event name here which will cause this achievement group to change the
currently selected award.

allow_selection_change_while_disabled: yes The pop bumper hits to change the current selection
happens regardless of whether the group is enabled (e.g. the chair is lit) or not, so we use this
setting to allow that selection change to happen at any time.

start_selected_events: balldevice_electric_chair_ball_enter, balldevice_swamp_kickout_ball_enter, award_mansion_from_bear
A shot to either the electric chair or the swamp kickout will award the selected achievement.

enable_events: light_chair When an event called light_chair is posted, this achievement group will
be enabled (which will turn on the chair lights and allow the selected achievement to be started
via the start_selected_events:.

disable_events: unlight_chair When an event called light_chair is posted, this achievement group
will be disabled. The chair lights will turn off, and the start_selected_events: will not cause the
current selected achievement to start.

This step takes care of:

∙ Hitting any pop bumper will change the currently selected award to another random from the
awards that are not yet complete.

∙ The selected award is awarded / collected when the electric chair is lit (yellow and red lights on
the chair toy) and either the electric chair or swamp shot is hit.

Step 4. Light the electric chair

Now that we have the basic achievements and achievement group structure laid out, let’s focus on
getting the chair lit. We’ll look at the following four rules:

Recipe: The Addams Family Mansion Awards 1437

Mission Pinball Framework Documentation, Version

∙ The electric chair is lit for 3 seconds after the right inlane is hit.

∙ The electric chair is lit indefinitely after either ramp is hit.

∙ The electric chair is lit at the beginning of each ball

∙ For awards that start modes, the chair can be relit and another award awarded even while the
prior award’s mode is running.

At first this seems pretty straightforward. If the center ramp is shot, post an event to enable the
achievement group. If the right inlane is hit, post an event to enable the achievement group and also
set a timer that will disable it 3 seconds later. The problem with this is that if the chair was previously
lit from the ramp when the inlane is hit, we don’t want the inlane timer to disable the chair after 3
seconds.

There are several ways in MPF to achieve this. In our case, we’re going to use modes. (We really like
using modes for game logic.)

The two modes we’re going to create are:

∙ chair_lit_3s

∙ chair_lit

The chair_lit_3s mode

Let’s look at the config for the “chair_lit_3s” mode:

##! mode: chair_lit_3s

#config_version=5

mode:

priority: 101

start_events: right_inlane_active

stop_events: unlight_chair balldevice_electric_chair_ball_enter balldevice_swamp_kickout_ball_enter␣

→˓cancel_chair_timer

event_player:

mode_chair_lit_3s_started: light_chair

timer_unlight_chair_complete: unlight_chair

timers:

unlight_chair:

end_value: 3

start_running: true

Notice that this mode started when the right_inlane_active switch is hit, which means it starts when
the right inlane is hit. Pretty simple.

When it comes to stop events, we have four of them. First is unlight_chair. This mode has a timer (for
3 seconds) which starts when the mode starts, so when that completes, it posts
timer_unlight_chair_complete which the event player uses to post unlight_chair which will stop the
mode. (The unlight_chair event is also used by the mansion achievement group to disable itself.

There are also stop events for balldevice_electric_chair_ball_enter and
balldevice_swamp_kickout_ball_enter which stop this mode if either of those shots are hit. Notice
those are also start_selected_events: for the achievement group, so hitting either one of those will
start the selected achievement (if the group is enabled) and also stop this mode.

Recipe: The Addams Family Mansion Awards 1438

Mission Pinball Framework Documentation, Version

You may be wondering why we have both of those ball enter events listed here? Why not just use an
“events_when_started” setting in the achievement group to stop this mode? The reason is for this rule
here:

∙ Accumulating 15, 25, 35, 45, 55, 65, 75, 85, 95 bear kicks (center ramp) collects the currently
selected award (except Tour the Mansion), even if the chair is not lit.

This shot will “start” an award, but if the chair is lit, we do not want it to unlight, so that’s why we
need to stop the chair_lit_3s mode based on the actual chair or swamp being hit, not just any time the
selected award is started.

Finally, notice there’s also an event called cancel_chair_timer which will stop this mode. We’ll talk
about that in a bit.

The only other thing to discuss in this mode is the event_player:. We talked about the timer being
used to post the unlight_chair event. But notice there’s also an entry mode_chair_lit_3s_started:
light_chair which posts the light_chair event when the mode starts. (This event is listed in the
achievement group as the event which enables it.) These settings, in combination, mean that when the
chair_lit_3s mode is running, the mansion achievement group will be enabled (e.g. the chair is lit).

The chair_lit mode

The second mode we’re going to create will be like the chair_lit_3s mode, except instead of having a
timer that stops the mode after 3 seconds, this mode will stay active until the chair or swamp is hit.
(Well, or until the ball ends, as by default, all modes end when the ball ends automatically.)

Here’s the config for this mode:

##! mode: chair_lit

#config_version=5

mode:

priority: 102

start_events: center_ramp_active, ball_starting

stop_events: balldevice_electric_chair_ball_enter balldevice_swamp_kickout_ball_enter

event_player:

mode_chair_lit_stopping: unlight_chair

mode_chair_lit_started: light_chair, cancel_chair_timer

mode_chair_lit_3s_started: cancel_chair_timer

counters:

initialize_mansion:

count_events: mode_chair_lit_started

events_when_complete: initialize_mansion

count_complete_value: 1

persist_state: true

The start_events: are pretty straightforward. We start the mode when the center ramp is hit, and also
on ball_starting since the Addams Family rules state that the chair is lit at the beginning of every ball.

This mode has an event_player to help with the logic. When this mode stops, we also post the
unlight_chair event which is one of the disable events for the mansion achievement group. We also
post the light_chair event when the mode starts to enable the group.

The final two event player settings help us with the interaction between this mode and the 3 second
timed version. We have cancel_chair_timer as an event that’s fired when this mode starts too. Notice
that that event is one of the stop_events for the other mode. The reason for this is that if the ball hits
the right inline and the chair is lit for 3 seconds, and then the ball hits the center ramp within those 3

Recipe: The Addams Family Mansion Awards 1439

Mission Pinball Framework Documentation, Version

seconds, we need to make sure the chair stays lit indefinitely, meaning we need to stop the 3s mode so
it doesn’t shut the chair off. So that’s what this event is doing.

Similarly if the player had previously hit the center ramp (which starts this mode to light the chair),
and then the player hits the right inline, we also need to kill that 3s mode to make sure it doesn’t turn
off the chair, so we do that with the event player setting mode_chair_lit_3s_started:
cancel_chair_timer. Basically this setting means that if this mode sees the 3s mode, it shuts it down.
:) And obviously this shut down only happens if this mode is running.

What about that logic block? Let’s discuss that in the next step. . .

Step 5. Select the proper award at game start

One of the twists of the Addams Family mansion awards is that when the game first starts, it always
starts with either “Hit Cousin It” or “Mamuska” selected. So we have to figure out a way to randomly
pick from one of those two (instead of all 12) at the start of the game, but then every random choice
after that has to be from all 12 (well, of the ones that have not yet been awarded out of all 12.

We’ll tackle this in two parts.

First, take a look at the Hit Cousin It and Mamuska achievements:

##! mode: mansion_awards

achievements:

hit_cousin_it:

show_tokens:

lights: hit_cousin_it

show_when_selected: flash

show_when_completed: on

events_when_started: award_hit_cousin_it # starts hit_cousin_it mode

complete_events: award_hit_cousin_it

reset_events: reset_mansion

mamushka:

show_tokens:

lights: mamushka

show_when_selected: flash

show_when_completed: on

events_when_started: award_mamushka # starts mamushka mode

complete_events: award_mamushka

reset_events: reset_mansion

Notice that they’re slightly different than the other 10 mansion awards in that they do NOT have
enable events.

The reason for this is that devices in MPF that have enable_events in their configurations are NOT
automatically enabled when they’re created. (This is because MPF thinks, “Hey, you have enable
events, so you have some way to enable them, so you can enable them whenever you want.” But if
there are no enable events, like these two, then MPF will enable them immediately.)

This means that when this mode first starts and these 12 mansion achievements are created, the
hit_cousin_it and mamuska achievements are enabled immediately (since they don’t have enable
events), and the other 10 mansion awards are disabled (since they do have enable events). Since the
achievement group is configured for auto_select: yes, it will automatically (and immediately) pick
one of the enabled achievements which will change into the selected state (and start it’s select show,
etc.). This means that the initial selection will always be one of those two.

Recipe: The Addams Family Mansion Awards 1440

Mission Pinball Framework Documentation, Version

However, once the initial selection is made, we need a way to enable the remaining 10 mansion
awards. For this we’ll use a counter logic block:

##! mode: chair_lit

This is in the chair_lit mode config, NOT machine-wide config

counters:

initialize_mansion:

count_events: mode_chair_lit_started

events_when_complete: initialize_mansion

count_complete_value: 1

persist_state: true

This is a simple counter that “counts” the mode_chair_lit_started event (which is posted by this mode
once it’s fully started and done initializing). The count complete value is one, meaning that once it
sees this event once, it’s done. We tell it to persist its state so that it remembers where it was from
ball-to-ball (meaning it will only run once ever in the game) and when it’s done (which is after it sees
that event once) it will post the event initialize_mansion.

(Remember that logic block states are stored on a per-player basis, so everything we say happens
“once” here is really “once per player”.)

Note also that in the 10 “other” mansion achievements, we have initialize_mansion listed as one of
their enable events. This means that when this counter completes its count (of 1) that it will post that
event which will enable the other 10 achievements.

At this point you’ll have 1 achievement selected (which will be either Hit Cousin It or Mamushka), and
you’ll have the other 11 in the “enabled” state.

Hitting a pop bumper will pick a new random selected achievement.

Step 6. Kick off the award

Next up we have an easy thing: Starting the modes and/or kicking off the shows for each mansion
award.

In this case, note that our 12 mansion achievements each have an events_when_started: setting with a
unique event name, like award_seance or award_lite_extra_ball. So just use that event to either start a
mode or to play a show. Simple!

∙ Some of the awards start modes, and others are instant awards with a short show. Collecting an
award immediately turns its light on solid and selects another random uncollected award.

Step 7. Collect the selected award via the bear kick

Todo: Need to explain this fully

∙ Accumulating 15, 25, 35, 45, 55, 65, 75, 85, 95 bear kicks (center ramp) collects the currently
selected award (except Tour the Mansion), even if the chair is not lit.

Step 8. Setup the 3 Mil / 6 Mil linking

∙ If 3 Mil is awarded, 6 Mil is spotted (automatically set to complete) as well, and vice-versa.

Recipe: The Addams Family Mansion Awards 1441

Mission Pinball Framework Documentation, Version

This is pretty simple. Just add the events posted when one achievement is started to the complete
events for the other. Here are the examples:

##! mode: mansion_awards

achievements:

6_mil:

show_tokens:

lights: 6_mil

show_when_selected: flash

show_when_completed: on

events_when_started: award_6_mil # instant points award & plays shows, also spots 3 mil

enable_events: initialize_mansion, reset_mansion

complete_events: award_6_mil, award_3_mil

reset_events: reset_mansion

3_mil:

show_tokens:

lights: 3_mil

show_when_selected: flash

show_when_completed: on

events_when_started: award_3_mil # instant points award & plays shows, also spots 6 mil

enable_events: initialize_mansion, reset_mansion

complete_events: award_3_mil, award_6_mil

reset_events: reset_mansion

Notice that the 6_mil’s complete_events: includes award_3_mil and vice-versa.

Step 8. Add 500k to the bonus for each award collected

Todo: Need to explain this fully

∙ Each award collected adds 500k to the bonus.

Step 9. Move on to Tour the Mansion after all 12 awards have been completed

Todo: Need to explain this fully

∙ Once all 12 Mansion Awards have been collected, the Tour the Mansion light (the question mark
at the top of the mansion) is selected.

∙ The electric chair must be lit in the same way as before, and then the shot must be made to the
electric chair or the swamp as before.

∙ This starts the Tour the Mansion mode

Step 10. Reset everything when Tour the Mansion is complete

Todo: Need to explain this fully

Recipe: The Addams Family Mansion Awards 1442

Mission Pinball Framework Documentation, Version

∙ When Tour the Mansion completes, all the mansion awards are reset and a new random one is
selected.

∙ If Tour the Mansion ends before the ball ends, no mansion award can be awarded until the next
ball.

Recipe: Attack FromMars Super Jets

This guide shows you how to build an MPF config for Attack From Mar’s Super Jets feature. The idea
is you can use this as a guide to implement a similar feature in your machine.

Note: This recipe requires MPF 0.33 or newer.

This guide uses the following concepts in MPF that you should be familiar with:

∙ Modes

∙ Counter Logic Blocks

∙ Shows

You can find the complete runnable machine config for this recipe in the cookbook/AFM_super_jets
folder of the mpf-examples repository on GitHub.

What is a Super Jets mode?

In Attack From Mars, Super Jets occur when the player hits the jet bumpers in the top right of the
playfield 100 times in the course of a game. The effect of Super Jets is that once the mode is active,
each jet bumper hit is worth 3,000,000 points instead of 1,000,000. The mode stops when the ball
drains, but once achieving it, it only takes 25 more jet bumper hits to restart it.

Here are the specific rules we need to implement:

Super Jets

∙ Jet Bumper hits are initially 1,000,000 per hit.

∙ Each completion of the two inlanes above the jet bumpers add 50,000 to each jet bumper hit
(1,050,000, 1,100,000, and so on.)

∙ Lit inlanes are movable with the flippers.

∙ One the inlane value reaches 2,000,000 per it, the inlanes stop adding 50,000 when completed.

∙ Super Pops occur when 100 jet bumper hits occue in the game. The amount of hits carry over to
the next ball.

∙ Once the Super Pops mode has been made, the mode is active until the ball drains.

∙ Super Pops can be restarted by hitting the jet bumpers 25 more times.

∙ Once Super Pops have been made, the Super Pops insert on the playfield turns on and stays on.

Recipe: Attack FromMars Super Jets 1443

https://github.com/missionpinball/mpf-examples

Mission Pinball Framework Documentation, Version

Step 1. The machine-wide prerequisites

Before we dig into how to handle the mode itself, we need to create a machine-wide config that has all
the devices we’ll need, including the switches for the jet bumpers and lanes.

Here’s what our machine config looks like. (Note that this is complete in terms of what we need to
make this recipe work, but if you have a real Attack From Mars then you’ll probably have a lot more
than this in your machine config file. Also, the coil, switch, and light numbers are generic and need to
be changes for a real machine.)

Notice the “player_vars” section. It has a player variable named “sj_active”. We will explain this later
on, but for now we’ll just say that it is how we will tell if we are starting Super Jets for the first time or
resuming it after starting it but draining.

#config_version=5

player_vars:

sj_active:

value_type: int

initial_value: 0

modes:

- super_jets_setup

- super_jets

switches:

s_left_flipper:

number: 0

tags: left_flipper

s_right_flipper:

number: 71

tags: right_flipper

s_credit:

number: 6

tags: start

s_outhole:

number: 8

tags:

s_left_bumper:

number: 17

tags: jets

s_middle_bumper:

number: 18

tags: jets

s_right_bumper:

number: 19

tags: jets

s_right_rollover:

number: 22

tags: playfield_active, right_rollover

s_left_rollover:

number: 23

tags: playfield_active, left_rollover

s_trough_5:

number: 36

(continues on next page)

Recipe: Attack FromMars Super Jets 1444

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags:

s_trough_4:

number: 37

tags:

s_trough_3:

number: 38

tags:

s_trough_2:

number: 39

tags:

s_trough_1:

number: 40

tags:

virtual_platform_start_active_switches: s_trough_1 s_trough_2 s_trough_3 s_trough_4 s_trough_5

coils:

c_flipper_left_main:

number: 0

default_pulse_ms: 20

c_flipper_left_hold:

number: 1

allow_enable: true

c_flipper_right_main:

number: 2

default_pulse_ms: 20

c_flipper_right_hold:

number: 3

allow_enable: true

c_trough_eject:

number: 4

allow_enable: true

c_left_bumper:

number: c01

label:

tags:

default_pulse_ms: 25

c_middle_bumper:

number: c02

label:

tags:

default_pulse_ms: 25

c_right_bumper:

number: c03

label:

tags:

default_pulse_ms: 25

c_ball_eject:

number: c12

label:

tags:

default_pulse_ms: 20

c_outhole:

number: c14

(continues on next page)

Recipe: Attack FromMars Super Jets 1445

Mission Pinball Framework Documentation, Version

(continued from previous page)

label:

tags:

default_pulse_ms: 20

lights:

l_right_rollover:

number: 5

l_left_rollover:

number: 7

l_super_jets:

number: 9

ball_devices:

bd_drain:

ball_switches: s_outhole

eject_coil: c_outhole

eject_targets: bd_trough

tags: drain, outhole

bd_trough:

ball_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4, s_trough_5

eject_coil: c_ball_eject

tags: trough, home

autofire_coils:

left_jet:

coil: c_left_bumper

switch: s_left_bumper

mid_jet:

coil: c_middle_bumper

switch: s_middle_bumper

right_jet:

coil: c_right_bumper

switch: s_right_bumper

playfields:

playfield:

default_source_device: bd_trough

tags: default

##! mode: super_jets_setup

mode will be defined below

##! mode: super_jets

mode will be defined below

Step 2. Add Super Jets values

We’ll start off with the easier mode first as all the heavy lifting is handled by the setup mode for Super
Jets. In super_jets.yaml, we set up our starting events for the mode itself, the values of the jet
bumpers when Super Jets are active, and also a call to show a slide stating that Super Jets are active.

##! mode: super_jets

mode:

(continues on next page)

Recipe: Attack FromMars Super Jets 1446

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_events: Super_Jets_Go, Super_Jets_Resume_Go

priority: 300

variable_player:

s_left_bumper_active:

score: 3000000|block

s_middle_bumper_active:

score: 3000000|block

s_right_bumper_active:

score: 3000000|block

show_player:

mode_super_jets_started:

super_jets_startup:

loops: 0

Super_Jets_on:

show_tokens:

lights: l_super_jets

Stepping through how we’re using each setting:

start_events: Super_Jets_Go, Super_Jets_Resume_Go

The way the super_jets mode is called is if either “Super_Jets_Go” or “Super_Jets_Resume_Go” are
posted.

s_left_bumper_active:

score: 3000000|block

Everytime “s_left_bumper_active” is seen, the score has 3,000,000 points added onto it. The |block is
used to prevent any other instances that awards points for hitting “s_left_bumper_active” from adding
points as well.

This code is used for all three jets.

show_player:

mode_super_jets_started:

super_jets_startup:

loops: 0

The Show Player shows the slide names “super_jets_started” at the start of the mode. The settings in
super_jets_started.yaml dictate the size, font, and duration of the slide being used.

Super_Jets_on:

show_tokens:

lights: l_super_jets

Plays the show called “Super_Jets_on” when this mode starts, lighting the Super Jets light on the
playfield.

Step 3. Create an setup mode for Super Jets

Next we need to create a mode called “super_jets_setup” to control when to call the “super_jets”
mode. There’s lot going on here, but we’ll go through it step by step.

Recipe: Attack FromMars Super Jets 1447

Mission Pinball Framework Documentation, Version

##! mode: super_jets_startup

#config_version=5

mode:

start_events: ball_starting

priority: 200

shots:

jets:

switch: s_right_bumper, s_left_bumper, s_middle_bumper

right_rollover:

switch: s_right_rollover

show_tokens:

light: l_right_rollover

left_rollover:

switch: s_left_rollover

show_tokens:

light: l_left_rollover

shot_groups:

rollover_lanes:

shots: right_rollover, left_rollover

rotate_left_events: s_left_flipper_active

rotate_right_events: s_right_flipper_active

reset_events:

rollover_lanes_lit_complete: 1s

counters:

lb_jets_count:

count_events: jets_hit

starting_count: 0

count_complete_value: 100

count_interval: 1

direction: up

persist_state: true

events_when_complete: Super_Jets_Go

debug: true

lb_jets_resume:

enable_events: mode_base_started{current_player.sj_active>0}

count_events: jets_hit

starting_count: 0

count_complete_value: 25

count_interval: 1

direction: up

persist_state: false

events_when_complete: Super_Jets_Resume_Go

debug: true

reset_on_complete: true

lb_rollover_complete_count:

count_events: rollover_lanes_complete

events_when_hit: rollover_lanes_done

starting_count: 0

count_complete_value: 40

reset_on_complete: false

direction: up
(continues on next page)

Recipe: Attack FromMars Super Jets 1448

Mission Pinball Framework Documentation, Version

(continued from previous page)

persist_state: false

event_player:

Super_Jets_Go:

start_mode_super_jets

Super_Jets_Go_Again:

start_mode_super_jets

variable_player:

s_left_bumper_active:

score: 1000000 + (device.counters.lb_rollover_complete_count.value * 50000)

s_middle_bumper_active:

score: 1000000 + (device.counters.lb_rollover_complete_count.value * 50000)

s_right_bumper_active:

score: 1000000 + (device.counters.lb_rollover_complete_count.value * 50000)

rollover_lanes_complete:

score: 1000

mode_super_jets_started:

sj_active:

int: 1

action: set

show_player:

mode_super_jets_setup_started{current_player.sj_active>0}:

Super_Jets_on:

show_tokens:

lights: l_super_jets

Let’s look at each of these settings:

start_events: ball_starting

Here, we are saying that we want “super_jets_setup” to start as soon as the game starts a ball,
including extra balls.

shots:

jets:

switch: s_right_bumper, s_left_bumper, s_middle_bumper

right_rollover:

switch: s_right_rollover

show_tokens:

light: l_right_rollover

left_rollover:

switch: s_left_rollover

show_tokens:

light: l_left_rollover

This section establishes our shots. Any time “s_right_bumper”, “s_left_bumper”, or
“s_middle_bumper” is activated, the shot “jet” will register a hit.

“right_rollover” and “left_rollover” will show a hit any time their associated switch is made. Also,
when their shots are made, their corresponding insert will also light up because we have a
“show_tokens” section listing a light.

Recipe: Attack FromMars Super Jets 1449

Mission Pinball Framework Documentation, Version

shot_groups:

rollover_lanes:

shots: right_rollover, left_rollover

rotate_left_events: s_left_flipper_active

rotate_right_events: s_right_flipper_active

reset_events:

rollover_lanes_lit_complete: 1s

This section is to set up the behavior of our rollover lanes. First, we list our shots, “right_rollover” and
“left_rollover”. Then we designate our left flipper as a switch to rotate our shots left, and the right
flipper to rotate the shots right. This is how we can use the flippers to move a lit rollover to the other
lane to try and get the ball to go into an unlit rollover lane and complete the rollovers. “reset_events”
is used to pause the shot group for 1 second as the rollover lanes are reset so they are both off again.

counters:

lb_jets_count:

count_events: jets_hit

starting_count: 0

count_complete_value: 100

count_interval: 1

direction: up

persist_state: true

events_when_complete: Super_Jets_Go

debug: true

lb_jets_resume:

enable_events: mode_base_started{current_player.sj_active>0}

count_events: jets_hit

starting_count: 0

count_complete_value: 25

count_interval: 1

direction: up

persist_state: false

events_when_complete: Super_Jets_Resume_Go

debug: true

reset_on_complete: true

lb_rollover_complete_count:

count_events: rollover_lanes_complete

events_when_hit: rollover_lanes_done

starting_count: 0

count_complete_value: 40

reset_on_complete: false

direction: up

persist_state: false

This is the heart of the mode. There are three counters here to help control the program.

“lb_jets_count” is the main counter. It is set up to increment from 0 to 100 every time the jets shot
registers a hit, which is set up to include all the jet bumpers. By using “persist_state: true” we have
the program not reset the count to 0 if the ball drains. If it takes all 3 balls for the player to hit 100
hits, they can still get Super Jets to start. When the counter hits 100, it causes the event
“Super_Jets_Go” to post, and the event player later in the code handles what needs to be done now
that it has posted.

“lb_jets_resume” is a similar counter, but it has a few very important differences. First, it has an
“enable_events” requirement. If “sj_active” is not greater than 0, this counter will not run. That

Recipe: Attack FromMars Super Jets 1450

Mission Pinball Framework Documentation, Version

means that the previous counter, “lb_jets_count”, had to start the super_jets mode first, and that the
variavle “sj_active” has to somehow be set to greater than 0. When it is active, the counter counts up
from 0 to 25. At 25, the counter stops and posts the “Super_Jets_Resume_Go” event. Another
important difference is that we use “persist_state: false” to reset the counter on every ball. For
example, a player can’t get 12 hits in the jets, drain, and then expect Super Jets to start by hitting the
jets just 13 more times. It has to be 25 without draining.

The final counter is for the rollover lanes, “lb_rollover_complete_count”. We use this to track how
many times the rollovers are comeplete, form 0 to 40. We use 40, because 50,000 * 40 = 2,000,000
which is the maximum addition of points we can add to the jets if not in Super Jets mode. By using
“persist_state: false” we reset the count on the end of every ball back to 0.

event_player:

Super_Jets_Go:

start_mode_super_jets

Super_Jets_Go_Again:

start_mode_super_jets

Here is where we call our modes depending on what events are posted by the mode. Both events,
“Super_Jets_Go” and “Super_Jets_Resume_Go” call the same mode to start, “super_jets”, but because
we have two different counters calling the mode under different conditions, we have to set it up like
this.

variable_player:

s_left_bumper_active:

score: 1000000 + (device.counters.lb_rollover_complete_count.value * 50000)

s_middle_bumper_active:

score: 1000000 + (device.counters.lb_rollover_complete_count.value * 50000)

s_right_bumper_active:

score: 1000000 + (device.counters.lb_rollover_complete_count.value * 50000)

rollover_lanes_complete:

score: 1000

mode_super_jets_started:

sj_active:

int: 1

action: set

This is how the scoring is handled before Super Pops is active. Each jet bumper hit is worth 1,000,000
at the start. But, we also have to add 50,000 points for each time the rollovers are completed. To do
that, we take the value of the counter, “lb_rollover_complete_count” and multiply it by 50000. Then we
add that value to the standard 1,000,000. Remember in “super_jets” that we added |block to the end
of the scoring? That was in part to keep these lines from continuing to add to the score, and to just
have the scoring from “super_jets.yaml” to appear.

We also have a small score for when the rollover lanes are completed.

What is “sj_active”? This is a player variable set up previously to help with determining when to use
which counter to activate super jets. Initially, the game sets “sj_active” to an integer value of 0. But,
when Super Pops are activated by “lb_jets_count” because we hit the target of 100 hit, the variable
player sets “sj_active” to an integer of 1 as the mode starts. Now, if the ball drains, and a new ball is
launched, “lb_jets_resume” will be enabled to start counting, and because its count ends at 25 instead
of 100, it will call super_jets before “lb_jets_count”. “sj_active” will also stay at a value of 1 because
every time the super_jets mode is called, we set “sj_active” is set to 1.

Recipe: Attack FromMars Super Jets 1451

Mission Pinball Framework Documentation, Version

show_player:

mode_super_jets_setup_started{current_player.sj_active>0}:

Super_Jets_on:

show_tokens:

lights: l_super_jets

When “sj_active” has been set to 1, it is greater than 0. Now, the light for Super Jets will stay on from
now on whenever a ball starts, and the super_jets_setup mode starts.

Step 4. Set up your Super Jets Slide

Here we set up a quick slide that pops up on the DMD when we’ve started Super Pops.

##! mode: super_jets_startup

- duration: 2s

slides:

super_jets_startup:

widgets:

- type: text

text: SUPER JETS

font_size: 20

y: 60%

priority: 200

Step 5. Add the light for Super Jets

And finally, we set up a lightshow for turning on the Super Jets insert on the playfield.

##! mode: Super_Jets_on

- time: 0

lights:

l_super_jets: ff

At this point you should have a working Super Pop mode. If any of this feels unclear or I’ve muddied
up the explanation, feel free to join the discussion in the forums at
https://groups.google.com/forum/#!topic/mpf-users/oVwBRQOgodY .

Recipe: Rollover Lanes (with Lane Change)

This guide shows you how to build an MPF config for rotating rollover lanes, as found in Indiana Jones,
Attack From Mars, Medieval Madness, and many, many more.

What are Rollover Lanes?

Rollover lanes are found where pinball machines have a series of parallel lanes the ball can roll
through. These are commonly found at the top of the playfield, often above pop bumpers and accessed
via the outer orbit loop. Some games, like Medieval Madness, also use the outlanes and return lanes
together as a group of rollover lanes

Recipe: Rollover Lanes (with Lane Change) 1452

https://groups.google.com/forum/#!topic/mpf-users/oVwBRQOgodY

Mission Pinball Framework Documentation, Version

Each lane in the rollover lane group has a switch and a light. To start, all the lights are off. When the
ball passes through a lane, that lane’s light turns on. When the player turns on all the lights, they are
awarded some prize and the lanes reset to off.

What is a Lane Change?

Games that use rollover lanes usually incorporate a “lane change” feature to make the completion
easier. Lane changes use the flipper buttons to rotate the lit and unlit lane shots, shifting them left
and right according to which button is pressed.

If a ball is about to enter a lane that’s already been lit, the player can use the flipper buttons to shift
the lanes so that the lane with the ball is unlit when the ball rolls over. By changing the lanes ahead of
the ball, the player can complete the lane set more frequently—and it also gives the player more to do
while the ball is away from the flippers!

Step 1. Create a lane change mode

Lane changes are typically available at all times during a game, so it’s wise to create a separate mode
for them. This mode can be run at the same time as other modes (but stopped any time, maybe during
wizard modes if you want).

The first thing our mode needs is shots:. Each lane will count as a shot, and for this example we’ll use
the I-N-D-Y lanes from the Indiana Jones pinball game. We’ll assume that the machine has switches
defined in the switches: config section for each of the top lanes, called s_top_lane_1 through
s_top_lane_4.

##! mode: top_lanes

mode:

start_events: start_mode_top_lanes

stop_events: stop_mode_top_lanes, ball_will_end

shots:

top_lane_i:

switch: s_top_lane_1

top_lane_n:

switch: s_top_lane_2

top_lane_d:

switch: s_top_lane_3

top_lane_y:

switch: s_top_lane_4

Step 2. Creating a profile for the lanes

We can create a shot_profile for the top lanes that starts with the light on, and turns it off after the
shot is hit.

##! mode: top_lanes

shot_profiles:

top_lane_profile:

states:

- name:

(continues on next page)

Recipe: Rollover Lanes (with Lane Change) 1453

Mission Pinball Framework Documentation, Version

(continued from previous page)

show: off

- name: hit

show: on

Note: In common pinball parlance, a shot is “lit” if the player should try an hit it. In almost all cases
this means the light for the shot is on (i.e. “lit”), but rollover lane shots are the opposite: the light is
off when the shot is lit, and on after the shot is hit.

We can apply our shot profile to each of the shots we defined earlier. Each lane has its own light,
which we can specify using show_tokens. This tells MPF that when it plays the show (in this case, the
“on” show) for a specific shot, use the light that corresponds to that shot.

We’ll assume the machine has four lights defined in the lights: config section, called l_top_lane_1
through l_top_lane_4

##! mode: top_lanes

shots:

top_lane_i:

switch: s_top_lane_1

profile: top_lane_profile

show_tokens:

led: l_top_lane_1

top_lane_n:

switch: s_top_lane_2

profile: top_lane_profile

show_tokens:

led: l_top_lane_2

top_lane_d:

switch: s_top_lane_3

profile: top_lane_profile

show_tokens:

led: l_top_lane_2

top_lane_y:

switch: s_top_lane_4

profile: top_lane_profile

show_tokens:

led: l_top_lane_2

Step 3. Creating a shot_group for the lanes

To tell MPF that the four lane shots are related to each other, we create a shot_group with all the
shots in it.

Shot groups are powerful because they control behavior of all the shots together. In this case, we’ll
use our shot group to:

∙ Rotate the lit and hit shots

∙ Trigger an event when all the shots are hit

∙ Reset all the shots to be lit

Recipe: Rollover Lanes (with Lane Change) 1454

Mission Pinball Framework Documentation, Version

##! mode: top_lanes

shot_groups:

top_lane_group:

shots: top_lane_i, top_lane_n, top_lane_d, top_lane_y

reset_events: top_lane_group_hit_complete

rotate_left_events: s_flipper_left_active

rotate_right_events: s_flipper_right_active

The rotate_left_events and rotate_right_events allow the lane changes based on the flipper events.

A shot group tracks the profile state of each shot, and will post an event
(shot_group_name)_(state_name)_complete event whenever all shots in the group are the same state.
In the profile “top_lane_profile” we said that the second state is called “hit”, so we can use the
top_lane_group_hit_complete event to know that all the shots are hit. The name of the state is up to
you.

When the top_lane_group_hit_complete event is triggered, the shot group will reset all the shots to
their initial state: the “lit” state of the profile with the light off. Now the lanes are ready for the player
to complete again!

Step 4. Rewards for rollover lane completion

Presumably when the player completes the rollover lanes, they should get some reward: a bonus
multiplier, a counter advance, some points. . . it can be anything.

In this example, we’ll use the variable_player: to award the player 10,000 points for completing the
rollover lanes, and also increase a the bonus multiplier for the end-of-game bonus.

variable_player:

top_lane_group_hit_complete:

score: 10000

bonus_multiplier: 1

See End of Ball Bonus for details on bonus_multiplier.

The full mode config code

##! mode: top_lanes

mode:

start_events: start_mode_top_lanes

stop_events: stop_mode_top_lanes, ball_will_end

shots:

top_lane_i:

switch: s_top_lane_1

profile: top_lane_profile

show_tokens:

led: l_top_lane_1

top_lane_n:

switch: s_top_lane_2

profile: top_lane_profile

show_tokens:

(continues on next page)

Recipe: Rollover Lanes (with Lane Change) 1455

Mission Pinball Framework Documentation, Version

(continued from previous page)

led: l_top_lane_2

top_lane_d:

switch: s_top_lane_3

profile: top_lane_profile

show_tokens:

led: l_top_lane_2

top_lane_y:

switch: s_top_lane_4

profile: top_lane_profile

show_tokens:

led: l_top_lane_2

shot_groups:

top_lane_group:

shots: top_lane_i, top_lane_n, top_lane_d, top_lane_y

reset_events: top_lane_group_hit_complete

rotate_left_events: s_flipper_left_active

rotate_right_events: s_flipper_right_active

shot_profiles:

top_lane_profile:

states:

- name:

show: off

- name: hit

show: on

variable_player:

top_lane_group_hit_complete:

score: 10000

bonus_multiplier: 1

Related Docs

∙ shots:

∙ shot_groups:

∙ shot_profiles:

∙ variable_player:

Recipe: GADGET Targets from Stern Batman ‘66

This guide shows you how to build an MPF config for Batman 66’s GADGET targets. The idea is you
can use this as a guide to implement a similar feature in your machine.

Note: This recipe requires MPF 0.53 or newer.

This guide uses the following concepts in MPF:

Recipe: GADGET Targets from Stern Batman ‘66 1456

Mission Pinball Framework Documentation, Version

∙ Modes

∙ Event player

∙ Accrual Logic Blocks

∙ Conditional Events

∙ Show player

∙ Shows

TODO You can find the complete runnable machine config for this recipe in the cookbook/B66_Gadget
folder of the mpf-examples repository on GitHub.

What is GADGET mode?

In Bataman ‘66, a player may hit each of the 6 stand-up targets representing the letters of the word
“GADGET”. When all letters have been hit, the player is awarded a “Gadget” which gives the players
special ability in the game.

Here are the specific rules we need to implement:

GADGET

∙ Each letter begin unlit

∙ Letters become lit when hit individually

∙ When an already-lit letter is hit, award one adjacent unlit letter. (Friendly Neighbor)

∙ After all letters are hit, award a gadget and reset the letters to the beginning.

∙ Players may earn multiple gadgets

∙ Light the lockdown bar to indicate to the player that they have earned a gadget.

Using an earned Gadget is outside the scope of this document. This cookbook only covers earning
gadgets.

Step 1. The machine-wide prerequisites

Before we dig into how to handle the mode itself, we need to create a machine-wide config that has all
the devices we’ll need, including the switches for the targets.

Here’s what our machine config looks like. (Note that this is complete in terms of what we need to
make this recipe work, but if you have a real Batman ‘66 then you’ll probably have a lot more than this
in your machine config file. Also, the coil, switch, and light numbers are generic and need to be
changes for a real machine.)

Notice the “player_vars” section. It has a two player variables named “gadgets_available” &
“gadgets_earned”. This exists outside of the mode to ‘protect’ earned, but unused gadgets from being
reset in the rare cases when we may need to stop the mode that allows players to earn gadgets.

#config_version=5

modes:

- gadget

(continues on next page)

Recipe: GADGET Targets from Stern Batman ‘66 1457

https://github.com/missionpinball/mpf-examples

Mission Pinball Framework Documentation, Version

(continued from previous page)

player_vars:

gadgets_available:

initial_value: 0

gadgets_earned:

initial_value: 0

switches:

s_left_flipper:

number: 0

tags: left_flipper, playfield_active

s_right_flipper:

number: 71

tags: right_flipper

s_credit:

number: 6

tags: start

s_outhole:

number: 8

tags:

s_gadget_g1:

number: 17

tags: gadget_targets

s_gadget_a:

number: 18

tags: gadget_targets

s_gadget_d:

number: 19

tags: gadget_targets

s_gadget_g2:

number: 22

tags: gadget_targets

s_gadget_e:

number: 23

tags: gadget_targets

s_gadget_t:

number: 24

tags: gadget_targets

s_trough_6:

number: 33

tags:

s_trough_5:

number: 36

tags:

s_trough_4:

number: 37

tags:

s_trough_3:

number: 38

tags:

s_trough_2:

number: 39

tags:

s_trough_1:

number: 40

(continues on next page)

Recipe: GADGET Targets from Stern Batman ‘66 1458

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags:

s_start_button:

number: 99

tags: start, playfield_active

keyboard:

s:

switch: s_start_button

virtual_platform_start_active_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4, s_trough_5, s_

→˓trough_6

coils:

c_flipper_left_main:

number: 0

default_pulse_ms: 20

c_flipper_left_hold:

number: 1

allow_enable: true

c_flipper_right_main:

number: 2

default_pulse_ms: 20

c_flipper_right_hold:

number: 3

allow_enable: true

c_trough_eject:

number: 4

allow_enable: true

c_ball_eject:

number: c12

label:

tags:

default_pulse_ms: 20

c_outhole:

number: c14

label:

tags:

default_pulse_ms: 20

lights:

l_gadget_g1:

number: 5

tags: gadget_letter

l_gadget_a:

number: 6

tags: gadget_letter

l_gadget_d:

number: 7

tags: gadget_letter

l_gadget_g2:

number: 8

tags: gadget_letter

l_gadget_e:

number: 9

(continues on next page)

Recipe: GADGET Targets from Stern Batman ‘66 1459

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags: gadget_letter

l_gadget_t:

number: 10

tags: gadget_letter

l_lockdown_bar:

number: 11

ball_devices:

bd_drain:

ball_switches: s_outhole

eject_coil: c_outhole

eject_targets: bd_trough

tags: drain, outhole

bd_trough:

ball_switches: s_trough_1, s_trough_2, s_trough_3, s_trough_4, s_trough_5

eject_coil: c_ball_eject

tags: trough, home

playfields:

playfield:

default_source_device: bd_trough

tags: default

##! mode: gadget

Step 2. Create the Gadget Mode Config File

Next, we can start setting up our gadget mode; below you see the contents of gadget.yaml

##! mode: gadget

config:

- logic_blocks.yaml

- event_player.yaml

- show_player.yaml

- variable_player.yaml

mode:

#this mode starts when the ball starts

start_events: ball_started

priority: 500

Stepping through how we’re using each setting:

##! mode: gadget

config:

- logic_blocks.yaml

The config section imports other config files; this is often easier to manage than on long config file.

##! mode: gadget

priority: 500

Recipe: GADGET Targets from Stern Batman ‘66 1460

Mission Pinball Framework Documentation, Version

The Gadget mode in Batman ‘66 is nearly always running and rarely blocked, so we have assigned it a
very high priority, but one that can still be superceded if the need arises.

Step 3. Create the Accrual Logic Block

Also in our mode config folder, we will add logic_blocks.yaml to hold our mode-specific logic_blocks.
In this case, we’re using an Accrual Logic Blocks to track when all of the letters have been hit.

##! mode: gadget

accruals:

gadget_accrual:

events:

- gadget_g1_complete # index [0]

- gadget_a_complete # index [1]

- gadget_d_complete # index [2]

- gadget_g2_complete # index [3]

- gadget_e_complete # index [4]

- gadget_t_complete # index [5]

reset_on_complete: true

disable_on_complete: false

reset_events: mode_gadget_started

events_when_complete: award_gadget, reset_gadget_lights

Stepping through once again:

##! mode: gadget

accruals:

gadget_accrual:

These two lines simply tell MPF that we have an accrual and we’ve named it “gadget_accrual”.

##! mode: gadget

events:

- gadget_g1_complete # index [0]

- gadget_a_complete # index [1]

- gadget_d_complete # index [2]

- gadget_g2_complete # index [3]

- gadget_e_complete # index [4]

- gadget_t_complete # index [5]

Next, we have a list of events for the accrual to track. Accruals behave like arrays, so I added a
comment after each event to help me remember the index of each event. We’ll need to reference these
events and their index later.

##! mode: gadget

reset_on_complete: true

Once the player has hit all of the letters, we want the accrual to reset so that they can earn more
Gadgets.

##! mode: gadget

disable_on_complete: false

We also have to tell MPF to leave our accrual enabled, even after it’s completed.

Recipe: GADGET Targets from Stern Batman ‘66 1461

Mission Pinball Framework Documentation, Version

##! mode: gadget

events_when_complete: award_gadget, reset_gadget_lights

When the accrual is complete, we want it to fire the two events in the list. We’ll see what these events
actually do a bit later.

Step 4. Create the ‘Friendly Neighbor’ Behavior

The Gadget targets exhibit a player-friendly behavior that makes them easier to complete. If the
player hits a letter that is already complete, the game will award one of the neigbhoring targets if they
are incomplete. To accomplish this, we’ll use conditional events in our event player.

##! mode: gadget

event_player:

#plus one gadget when accrual is complete

award_gadget:

- gadgets_earned

- gadgets_available

s_gadget_g1_active:

#if the g is hit, and unlit

- gadget_g1_complete{device.accruals.gadget_accrual.value[0]==False}

#award a if we already have g1

- gadget_a_complete{device.accruals.gadget_accrual.value[0]==True}

s_gadget_a_active:

#if a is hit and unlit

- gadget_a_complete{device.accruals.gadget_accrual.value[1]==False}

#award g1 if we already have a

- gadget_g1_complete{device.accruals.gadget_accrual.value[0]==False and device.accruals.gadget_

→˓accrual.value[1]==True}

#award d if we already have a and g1

- gadget_d_complete{device.accruals.gadget_accrual.value[0]==True and device.accruals.gadget_

→˓accrual.value[1]==True and device.accruals.gadget_accrual.value[2]==False}

s_gadget_d_active:

- gadget_d_complete{device.accruals.gadget_accrual.value[2]==False}

- gadget_a_complete{device.accruals.gadget_accrual.value[1]==False and device.accruals.gadget_

→˓accrual.value[2]==True}

- gadget_g2_complete{device.accruals.gadget_accrual.value[1]==True and device.accruals.gadget_

→˓accrual.value[2] and device.accruals.gadget_accrual.value[3]==False}

s_gadget_g2_active:

- gadget_g2_complete{device.accruals.gadget_accrual.value[3]==False}

- gadget_d_complete{device.accruals.gadget_accrual.value[2]==False and device.accruals.gadget_

→˓accrual.value[3]==True}

- gadget_e_complete{device.accruals.gadget_accrual.value[2]==True and device.accruals.gadget_

→˓accrual.value[3]==True and device.accruals.gadget_accrual.value[4]==False}

s_gadget_e_active:

- gadget_e_complete{device.accruals.gadget_accrual.value[4]==False}

- gadget_g2_complete{device.accruals.gadget_accrual.value[3]==False and device.accruals.gadget_

→˓accrual.value[4]==True}

- gadget_t_complete{device.accruals.gadget_accrual.value[3]==True and device.accruals.gadget_

→˓accrual.value[4]==True and device.accruals.gadget_accrual.value[5]==False}

s_gadget_t_active:

- gadget_t_complete{device.accruals.gadget_accrual.value[5]==False}

(continues on next page)

Recipe: GADGET Targets from Stern Batman ‘66 1462

Mission Pinball Framework Documentation, Version

(continued from previous page)

- gadget_e_complete{device.accruals.gadget_accrual.value[4]==False and device.accruals.gadget_

→˓accrual.value[5]==True}

There’s a lot happening here, so let’s get the easy stuff out of the way first:

##! mode: gadget

award_gadget:

- gadgets_earned

- gadgets_available

The “award_gadget” event - triggered by the accrual completion, simply adds one to both player_vars
we configured in step one.

##! mode: gadget

s_gadget_a_active:

#if a is hit and unlit

- gadget_a_complete{device.accruals.gadget_accrual.value[1]==False}

This is our first conditional event, which covers the case of “a” having not yet been hit. When the “a”
switch is active, trigger the event “gadget_a_complete” if it hasn’t been seen by the accrual. Note the
value[1] which refers to the 2nd index of our accrual.

##! mode: gadget

- gadget_g1_complete{device.accruals.gadget_accrual.value[0]==False and device.accruals.gadget_

→˓accrual.value[1]==True}

Now, we trigger gadget_g1_complete if it hasn’t been seen by the accrual AND “a” is already complete.

##! mode: gadget

- gadget_d_complete{device.accruals.gadget_accrual.value[0]==True and device.accruals.gadget_

→˓accrual.value[1]==True and device.accruals.gadget_accrual.value[2]==False}

The final case for “a” is if “g1” and “a” are complete, then trigger the event for “d” if it hasn’t been
triggered yet.

If all three cases “g1”, “a” and “d” have all been captured by the accrual, then nothing happens.

We repeat this series of conditional events for all letters. “g1” and “t” have fewer events because they
each only have one neighboring target.

Step 5. Add Your Light Shows

Now, we’ll add some visual feedback for the player to know when they’ve been awarded a letter, or
completed the “gadget_accrual”. This show is “light_gadget_letter.yaml” and it’s in the “shows” folder
for the mode. It’s pretty straightforward, but uses tokens and tags to be efficient.

##! show: light_gadget_letter

- time: 0

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

- time: +.05

lights:

(continues on next page)

Recipe: GADGET Targets from Stern Batman ‘66 1463

Mission Pinball Framework Documentation, Version

(continued from previous page)

(gadget_letter_made_led): off

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

- time: +.05

lights:

(gadget_letter_made_led): off

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

- time: +.05

lights:

(gadget_letter_made_led): off

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

- time: +.05

lights:

(gadget_letter_made_led): off

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

- time: +.05

lights:

(gadget_letter_made_led): off

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

- time: +.05

lights:

(gadget_letter_made_led): off

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

- time: +.05

lights:

(gadget_letter_made_led): off

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

(continues on next page)

Recipe: GADGET Targets from Stern Batman ‘66 1464

Mission Pinball Framework Documentation, Version

(continued from previous page)

- time: +.05

lights:

(gadget_letter_made_led): off

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_final_color)

duration: -1

This show isn’t terribly complicated, but let’s look at some of the features.

##! show: light_gadget_letter

- time: 0

lights:

(gadget_letter_made_led): (gadget_letter_made_color)

- time: +.05

lights:

(gadget_letter_made_led): off

When the show starts, it accepts a token from the show_player (we’ll configure that next), that tells
MPF what corresponding light(s) we’re going to flash, and what color to flash them.

In a real Batman ‘66, we would simply flash the light because the inserts are yellow. However, since
many custom games are using RGB LED, we’ll allow for any color the builder prefers.

##! show: light_gadget_letter

- time: +.05

lights:

(gadget_letter_made_led): (gadget_letter_final_color)

duration: -1

The last step is special for two reasons. We’re passing in a second color that will be ‘held’ at the end of
the show indefinitely as indicated by duration -1. We’ve done this in order to allow for the same show
to end in a ‘lit’ or ‘unlit’ state, depending on our need in a situation.

In the code you can download from the link at the beginning of this cookbook, there is another show
that lights the LED on the lockdown bar, but it’s not worth explaining here.

Step 6. Configure the Show Player

Our show player is watching for events and triggering the appropriate shows.

show_player:

gadget_g1_complete:

light_gadget_letter:

priority: 10

key: gadget_g1_hit_show

show_tokens:

gadget_letter_made_led: l_gadget_g1

gadget_letter_made_color: yellow

gadget_letter_final_color: yellow

Recipe: GADGET Targets from Stern Batman ‘66 1465

Mission Pinball Framework Documentation, Version

gadget_g1_complete:

light_gadget_letter:

When the “gadget_g1_complete” event is triggered, start the “light_gadget_letter” show starts.

key: gadget_g1_hit_show

We’ll add a key to the show so that we can keep re-using the same show for all the letters.

gadget_letter_made_led: l_gadget_g1

gadget_letter_made_color: yellow

gadget_letter_final_color: yellow

Finally, we pass show tokens to the show to tell it what light and what color we want for the on steps
and the final step. This repeats for all of the individual letters.

show_player:

reset_gadget_lights:

light_gadget_letter:

priority: 10

show_tokens:

gadget_letter_made_led: gadget_letter

gadget_letter_made_color: yellow

gadget_letter_final_color: 000000

“reset_gadget_lights” is fired by the accrual when it’s complete. We make two small, but important
changes. First “gadget_letter” is a tag from the machine config assigned to all the letters in GADGET.
This will cause all of the letters to play the show simultaneously. Second, “gadget_letter_final_color” is
now black/off. This effectively resets the lights and prepares the inserts for a new accrual to begin.

At this point, your Gadget mode is ready to go. You can add scoring in a variable_player and extend
this by writing ways to use gadgets and reduce the “gadgets_available” player_vars. If any of this feels
unclear or I’ve muddied up the explanation, feel free to join the discussion in the forums at
https://groups.google.com/forum/#!topic/mpf-users/oVwBRQOgodY .

Recipe: Modifying the game mode - Dual launch devices

While the following example adds a very unusual feature, it makes for a very simple and clean
example of how to override default behavior in MPF.

One of the base assumptions that the MPF system makes is that there is only one launch device. While
quite reasonable, what if you wanted both a left and right plugger? You can add a ball device for each
system, but MPF expects a default_source_device to be defined for the main playfield, and it won’t
take a list. This means at the start of each player round, the game can only kick up a ball in the default
device.

Here’s what the hardware configuration for two plungers (and troughs) would look like:

#config_version=5

switches:

Cabinet Buttons

s_start_button:

number:

(continues on next page)

Recipe: Modifying the game mode - Dual launch devices 1466

https://groups.google.com/forum/#!topic/mpf-users/oVwBRQOgodY

Mission Pinball Framework Documentation, Version

(continued from previous page)

tags: start

s_left_launch_button:

number:

s_right_launch_button:

number:

Plunger Trough

s_left_plunger_lane:

number:

s_right_plunger_lane:

number:

s_left_trough1:

number:

s_left_trough2:

number:

s_right_trough1:

number:

s_right_trough2:

number:

coils:

c_left_plunger:

number:

default_pulse_ms: 20

c_left_trough_eject:

number:

default_pulse_ms: 20

c_right_plunger:

number:

default_pulse_ms: 20

c_right_trough_eject:

number:

default_pulse_ms: 20

ball_devices:

bd_left_trough:

ball_switches: s_left_trough1, s_left_trough2

eject_coil: c_left_trough_eject

tags: trough, home, drain

eject_targets: bd_left_plunger

bd_left_plunger:

ball_switches: s_left_plunger_lane

eject_coil: c_left_plunger

player_controlled_eject_event: s_left_launch_button_active

eject_timeouts: 1s

bd_right_trough:

ball_switches: s_right_trough1, s_right_trough2

eject_coil: c_right_trough_eject

tags: trough, home, drain

eject_targets: bd_right_plunger

bd_right_plunger:

ball_switches: s_right_plunger_lane

eject_coil: c_right_plunger

player_controlled_eject_event: s_right_launch_button_active

eject_timeouts: 1s

(continues on next page)

Recipe: Modifying the game mode - Dual launch devices 1467

Mission Pinball Framework Documentation, Version

(continued from previous page)

playfields:

playfield:

default_source_device: bd_left_plunger

tags: default

virtual_platform_start_active_switches: s_left_trough1, s_left_trough2, s_right_trough1, s_right_trough2

It is the game mode that handles the ball start procedure and assumes a single launch device. Now
MPF’s game mode does a lot more than that, so in most cases you probably don’t want to go through
re-writing the whole thing just to change one behavior. Instead we will change the parts we need to.

First, see how the default game mode works. Within the MPF source library you’ll see a directory
called mpf/modes/game. This is just like the modes directory in your own game definitions. Let’s look
at the config file first (mpf/modes/game/config/game.yaml):

##! mode: game

#config_version=5

mode:

start_events: game_start

stop_events: game_ended, service_mode_entered

priority: 20

code: mpf.modes.game.code.game.Game

game_mode: false # this is the game so it is started outside of a game

stop_on_ball_end: false

This is pretty straight-forward. First the standard mode settings, and then it points to the source for a
Python module that defines a class called Game. We can look at that code in
mpf/modes/game/code/game.py. While we won’t repost the full source, you can look at it here. We won’t
get into all that it does, because we don’t need to. Looking through the file, we really only need to
know where this mode adds a ball to the playfield. That can be found as the last line of the
_start_ball() method. It makes the following call:

self.machine.playfield.add_ball(player_controlled=True)

Looking at the add_ball() method from the playfield class (mpf/mpf/devices/playfield.py) we can see
that it can actually take a source device as an argument:

add_ball(self, balls=1, source_device=None, player_controlled=False) -> bool:

"""Add live ball(s) to the playfield.

Args:

balls: Integer of the number of balls you'd like to add.

source_device: Optional ball device object you'd like to add the

ball(s) from.

player_controlled: Boolean which specifies whether this event is

player controlled. (See not below for details)

This means that what we really want is the game class except with slightly different _start_ball()
method. To do that, we will define our own game mode. Just like any other mode we add it to our
folder of modes. Your file layout will become as follows:

+-- config

+-- config.yaml

(continues on next page)

Recipe: Modifying the game mode - Dual launch devices 1468

https://github.com/missionpinball/mpf/blob/dev/mpf/modes/game/config/game.yaml
https://github.com/missionpinball/mpf/blob/dev/mpf/modes/game/code/game.py
https://github.com/missionpinball/mpf/blob/dev/mpf/devices/playfield.py#L169

Mission Pinball Framework Documentation, Version

(continued from previous page)

+-- data

+-- logs

+-- modes

+-- game

+-- __init__.py

+-- config

+-- game.yaml

+-- code

+-- __init__.py

+-- game.py

Your game.yaml will look like this:

#config_version=5

mode:

start_events: game_start

stop_events: game_ended, service_mode_entered

priority: 20

code: game.MyGameName

game_mode: False # this is the game so it is started outside of a game

stop_on_ball_end: False

Now for our own game mode class that inherits everything it needs from the original Game mode
class:

from mpf.modes.game.code.game import Game

class MyGameName(Game):

def __init__(self, *arg, **kwargs):

super().__init__(*arg, **kwargs)

self.log.debug("MyGameName init")

async def _start_ball(self, is_extra_ball=False):

"""Perform ball start procedure.

Note this method is called for each ball that starts, even if it's

after a Shoot Again scenario for the same player.

Posts a queue event called *ball_starting*, giving other modules the

opportunity to do things before the ball actually starts. Once that

event is clear, this method calls :meth:`ball_started`.

"""

:

Cut and paste original game.py code for _start_ball() here.

:

Replace self.machine.playfield.add_ball(player_controlled=True) with:

left_switch_pressed_future = self.machine.switch_controller.wait_for_switch(self.machine.switches[

→˓"s_left_launch_button"])

right_switch_pressed_future = self.machine.switch_controller.wait_for_switch(self.machine.switches[

→˓"s_right_launch_button"])

first_switch = await Util.race({left_switch_pressed_future: "left", right_switch_pressed_future:

→˓"right"})

if first_switch == "left":

self.machine.playfield.add_ball(source_device=self.machine.ball_devices['bd_left_plunger'],␣

→˓player_controlled=True) (continues on next page)

Recipe: Modifying the game mode - Dual launch devices 1469

Mission Pinball Framework Documentation, Version

(continued from previous page)

else:

self.machine.playfield.add_ball(source_device=self.machine.ball_devices['bd_right_plunger'],␣

→˓player_controlled=True)

Notice that we’ve only had to define our _start_ball() method. It is really just a copy of the original,
except that we wait for one of the two launch buttons and then eject a ball on that side.

Finally, the __init__.py files are all empty.

Now, when you hit the start button on your game, both sides will load a ball for each plunger. Again, a
weird thing to do, but a simple example of customizing the game mode when you run up against a
default that doesn’t work for your design.

Here is a complete example:

#config_version=5

switches:

Cabinet Buttons

s_start_button:

number:

tags: start

s_left_launch_button:

number:

s_right_launch_button:

number:

Plunger Trough

s_left_plunger_lane:

number:

s_right_plunger_lane:

number:

s_left_trough1:

number:

s_left_trough2:

number:

s_right_trough1:

number:

s_right_trough2:

number:

coils:

c_left_plunger:

number:

default_pulse_ms: 20

c_left_trough_eject:

number:

default_pulse_ms: 20

c_right_plunger:

number:

default_pulse_ms: 20

c_right_trough_eject:

number:

default_pulse_ms: 20

ball_devices:

bd_left_trough:

(continues on next page)

Recipe: Modifying the game mode - Dual launch devices 1470

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_switches: s_left_trough1, s_left_trough2

eject_coil: c_left_trough_eject

tags: trough, home, drain

eject_targets: bd_left_plunger

bd_left_plunger:

ball_switches: s_left_plunger_lane

eject_coil: c_left_plunger

eject_timeouts: 1s

bd_right_trough:

ball_switches: s_right_trough1, s_right_trough2

eject_coil: c_right_trough_eject

tags: trough, home, drain

eject_targets: bd_right_plunger

bd_right_plunger:

ball_switches: s_right_plunger_lane

eject_coil: c_right_plunger

eject_timeouts: 1s

playfields:

playfield:

default_source_device: bd_left_plunger

tags: default

virtual_platform_start_active_switches: s_left_trough1, s_left_trough2, s_right_trough1, s_right_trough2

##! mode: game

#config_version=5

mode:

start_events: game_start

stop_events: game_ended, service_mode_entered

priority: 20

code: modes.game.code.game.MyGameName

game_mode: false # this is the game so it is started outside of a game

stop_on_ball_end: false

from mpf.modes.game.code.game import Game

from mpf.core.utility_functions import Util

class MyGameName(Game):

def __init__(self, *arg, **kwargs):

super().__init__(*arg, **kwargs)

self.log.debug("MyGameName init")

async def _start_ball(self, is_extra_ball=False):

"""Perform ball start procedure.

Note this method is called for each ball that starts, even if it's

after a Shoot Again scenario for the same player.

Posts a queue event called *ball_starting*, giving other modules the

opportunity to do things before the ball actually starts. Once that

event is clear, this method calls :meth:`ball_started`.

"""

event_args = {

(continues on next page)

Recipe: Modifying the game mode - Dual launch devices 1471

Mission Pinball Framework Documentation, Version

(continued from previous page)

"player": self.player.number,

"ball": self.player.ball,

"balls_remaining": self.balls_per_game - self.player.ball,

"is_extra_ball": is_extra_ball}

self.debug_log("***")

self.debug_log("****************** BALL STARTING ******************")

self.debug_log("** **")

self.debug_log("** Player: {} Ball: {} Score: {}".format(self.player.number,

self.player.ball,

self.player.score

).ljust(49) + '**')

self.debug_log("** **")

self.debug_log("***")

self.debug_log("***")

await self.machine.events.post_async('ball_will_start', **event_args)

'''event: ball_will_start

desc: The ball is about to start. This event is posted just before

:doc:`ball_starting`.

args:

ball: The ball number

balls_remaining: The number of balls left in the game (not including this one)

is_extra_ball: True if this ball is an extra ball (default False)

player: The player number'''

await self.machine.events.post_queue_async('ball_starting', **event_args)

'''event: ball_starting

desc: A ball is starting. This is a queue event, so the ball won't

actually start until the queue is cleared.

args:

ball: The ball number

balls_remaining: The number of balls left in the game (not including this one)

is_extra_ball: True if this ball is an extra ball (default False)

player: The player number'''

register handlers to watch for ball drain and live ball removed

self.add_mode_event_handler('ball_drain', self.ball_drained)

self.balls_in_play = 1

self.debug_log("ball_started for Ball %s", self.player.ball)

await self.machine.events.post_async('ball_started', **event_args)

'''event: ball_started

desc: A new ball has started.

args:

ball: The ball number

balls_remaining: The number of balls left in the game (not including this one)

is_extra_ball: True if this ball is an extra ball (default False)

player: The player number'''

if self.num_players == 1:

await self.machine.events.post_async('single_player_ball_started')

(continues on next page)

Recipe: Modifying the game mode - Dual launch devices 1472

Mission Pinball Framework Documentation, Version

(continued from previous page)

'''event: single_player_ball_started

desc: A new ball has started, and this is a single player game.'''

else:

await self.machine.events.post_async('multi_player_ball_started')

'''event: multi_player_ball_started

desc: A new ball has started, and this is a multiplayer game.'''

await self.machine.events.post_async(

'player_{}_ball_started'.format(self.player.number))

'''event player_(number)_ball_started

desc: A new ball has started, and this is a multiplayer game.

The player number is the (number) in the event that's posted.'''

if not hasattr(self.machine, "playfield") or not self.machine.playfield:

raise AssertionError("The game did not define default playfield. Did you add tags: default to␣

→˓one of your "

"playfield?")

left_switch_pressed_future = self.machine.switch_controller.wait_for_switch(self.machine.switches[

→˓"s_left_launch_button"])

right_switch_pressed_future = self.machine.switch_controller.wait_for_switch(self.machine.switches[

→˓"s_right_launch_button"])

first_switch = await Util.race({left_switch_pressed_future: "left", right_switch_pressed_future:

→˓"right"})

if first_switch == "left":

self.machine.playfield.add_ball(source_device=self.machine.ball_devices['bd_left_plunger'],␣

→˓player_controlled=True)

else:

self.machine.playfield.add_ball(source_device=self.machine.ball_devices['bd_right_plunger'],␣

→˓player_controlled=True)

Recipe: Sequential Drop Target Banks

This guide shows you how to build an MPF config for a drop target bank with targets that must be hit
in a specific order.

The mode starts with one target flashing as the correct target to hit, and all the rest off. Hitting the
correct target will keep the hit target down, hold the light on, and flash the next target. Hitting an
incorrect target will reset that target’s coil and keep the light off.

Step 1. Create a sequential_drops mode and lane shots

We’ll create a separate mode called sequential_drops to manage the game logic. Separate modes keep
the code clean and make it easy to turn the drop sequence on and off as needed (e.g. during a
multiball or wizard mode).

The first thing our mode needs is shots:. Each drop target will be a shot (in this example, we’ll have
four). Each shot has a switch, a light, and a shot profile to track its state.

Each shot will also have unique advance_events configured, which will advance the shot (from “off” to
“lit”) when its predecessor is hit, and again advance the shot (from “lit” to “down”) when it is hit. The
final shot does not need to advance from “lit” to “down” because the sequence resets when it’s hit.

Recipe: Sequential Drop Target Banks 1473

Mission Pinball Framework Documentation, Version

Each shot also has reset_events configured, so that the entire sequence can be reset after completion.

##! mode: sequential_drops

mode:

start_events: start_mode_sequential_drops

stop_events: stop_mode_sequential_drops

priority: 200

shots:

drop_1:

advance_events: advance_drop_1, drop_1_lit_hit

reset_events: reset_drop_sequence

switch: s_drop_1

profile: drop_sequence

show_tokens:

led: l_drop_1

drop_2:

advance_events: drop_1_lit_hit, drop_2_lit_hit

reset_events: reset_drop_sequence

switch: s_drop_2

profile: drop_sequence

show_tokens:

led: l_drop_2

drop_3:

advance_events: drop_2_lit_hit, drop_3_lit_hit

reset_events: reset_drop_sequence

switch: s_drop_3

profile: drop_sequence

show_tokens:

led: l_drop_3

drop_4:

advance_events: drop_3_lit_hit

reset_events: reset_drop_sequence

switch: s_drop_4

profile: drop_sequence

show_tokens:

led: l_drop_4

Step 2. Create a profile for the targets

We can create a shot_profile for the targets that starts with the light off, flashes it after one
advancement, and keeps the light on solid after a second advancement. By default, a shot will advance
its profile when the shot is hit, but we don’t want that here so we’ll set advance_on_hit: false.

This profile uses three built-in shows, off, flash, and on. These shows accept the show_tokens from
our shots. In this case, it is the LED we wish to control. You can create your own shows to change LED
color, play sounds, etc.

##! mode: sequential_drops

shot_profiles:

drop_sequence:

advance_on_hit: false

(continues on next page)

Recipe: Sequential Drop Target Banks 1474

Mission Pinball Framework Documentation, Version

(continued from previous page)

states:

- name: off

show: off

- name: lit

show: flash

- name: down

show: on

Step 3. Create a Sequence Logic Block to track the progression

MPF includes a number of convenient ways for tracking progress called Logic Blocks, including the
sequence that we can use to require a series of events to occur in a specific order.

The below sequence requires all four drop target shots to be hit, but only registers a hit if the shot is
in the “lit” state. This allows us to track where we are in the sequence without having to monitor each
shot individually.

The sequence also has restart_events so we can restart when the mode starts and when the sequence
completes. All logicblocks have a default completion event called logicblock_(name)_complete so we
don’t need to explicitly define any completion event.

##! mode: sequential_drops

sequences:

drop_sequence:

restart_events: reset_drop_sequence

events:

- drop_1_lit_hit

- drop_2_lit_hit

- drop_3_lit_hit

- drop_4_lit_hit

Step 4. Start, advance, and reset the shots

We will use events to manage the behavior of the shots and the drop targets. The first step is to
identify all the rules of how the sequence and shots behave.

∙ Rule 1: When the mode starts, reset the drop sequence

∙ Rule 2: When the sequence is completed, reset the drop sequence

On a reset, all of the shots will be in their “off” state. We need the first target to be “lit” in order for
the sequence to start.

∙ Rule 3: When the sequence resets, advance the first target from “off” to “lit”

When a shot is in the “off” state and gets hit, we want to fire the reset coil for the target so that the
target stays up.

∙ Rule 4: When an “off” shot is hit, reset its coil

We can apply all of these rules based on the corresponding events, like follows.

Recipe: Sequential Drop Target Banks 1475

Mission Pinball Framework Documentation, Version

##! mode: sequential_drops

event_player:

When the mode starts, reset the drop sequence

mode_sequential_drops_started: reset_drop_sequence

When the sequence is completed, reset the drop sequence

logicblock_drop_sequence_complete: reset_drop_sequence

When the sequence resets, advance the first target

reset_drop_sequence: advance_drop_1

When an "off" shot is hit, reset its coil

drop_1_off_hit: reset_drop_1

drop_2_off_hit: reset_drop_2

drop_3_off_hit: reset_drop_3

drop_4_off_hit: reset_drop_4

The above configuration requires that each drop target coil has the corresponding reset events, as
configured below.

drop_targets:

drop_1:

switch: s_drop_1

reset_coil: c_drop_1

reset_events: ball_starting, machine_reset_phase_3, reset_drop_1

drop_2:

switch: s_drop_2

reset_coil: c_drop_2

reset_events: ball_starting, machine_reset_phase_3, reset_drop_2

drop_3:

switch: s_drop_3

reset_coil: c_drop_3

reset_events: ball_starting, machine_reset_phase_3, reset_drop_3

drop_4:

switch: s_drop_4

reset_coil: c_drop_4

reset_events: ball_starting, machine_reset_phase_3, reset_drop_4

Step 5. Rewards for progression and completion

When a drop target is hit, The sequence logic block keeps track of whether it is the part of the
sequence or not. We can easily award points for progression with the logicblock_(name)_hit event
(when a lit target is hit) and the logicblock_(name)_complete event (when the full sequence is
completed).

##! mode: sequential_drops

variable_player:

logicblock_drop_sequence_hit:

score: 1000

(continues on next page)

Recipe: Sequential Drop Target Banks 1476

Mission Pinball Framework Documentation, Version

(continued from previous page)

logicblock_drop_sequence_complete:

score: 50_000

Full Example Code

The full code from this example can be found as a fully-working game template in the MPF Examples
repository.

https://github.com/missionpinball/mpf-examples/tree/dev/cookbook/sequential_drop_banks

Related Docs

∙ shots:

∙ shot_groups:

∙ shot_profiles:

∙ sequences:

∙ variable_player:

Recipe: Skillshot (with Lane Change)

This guide shows you how to build an MPF config for a skillshot with rotating rollover lanes (a.k.a
“lane change”).

For a description of rollover lanes, see Rollover Lanes with Lane Change

Step 1. Create a skillshot mode and lane shots

Skillshots are a self-contained set of rules, so it’s wise to create a separate mode that can be started
when a player’s ball starts and ended after the skillshot is hit (or missed).

We’ll assume that the machine has switches defined in the switches: config section for each of the
lanes, called s_lane_left, s_lane_middle, and s_lane_right. We’ll also use corresponding lights
l_lane_left etc. to indicate which lane is lit.

#config_version=5

modes:

- skillshot_with_lane_change

switches:

s_lane_left:

number: 1

s_lane_middle:

number: 2

s_lane_right:

number: 3

lights:

l_lane_left:

(continues on next page)

Recipe: Skillshot (with Lane Change) 1477

https://github.com/missionpinball/mpf-examples/tree/dev/cookbook/sequential_drop_banks

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 1

l_lane_middle:

number: 2

l_lane_right:

number: 3

shot_profiles:

skillshot_profile:

states:

- name: off

- name: on

##! mode: skillshot_with_lane_change

The first thing our mode needs is shots:. Each lane will count as a shot, and for this example we’ll
have three lanes “left”, “middle”, and “right”.

##! mode: skillshot_with_lane_change

mode:

start_events: start_mode_skillshot_with_lane_change

stop_events: stop_mode_skillshot_with_lane_change

priority: 1000

shots:

skillshot_left:

advance_events: advance_skillshot_left

profile: skillshot_profile

switch: s_lane_left

show_tokens:

led: l_lane_left

skillshot_middle:

advance_events: advance_skillshot_middle

profile: skillshot_profile

switch: s_lane_middle

show_tokens:

led: l_lane_middle

skillshot_right:

advance_events: advance_skillshot_right

profile: skillshot_profile

switch: s_lane_right

show_tokens:

led: l_lane_right

Step 2. Creating a profile for the lanes

We can create a shot_profile for the lanes that starts with the light off and makes it flash if that lane is
lit for the skillshot.

By default, a shot will advance its profile when the shot is hit, but we don’t want that here so we’ll set
advance_on_hit: false. Instead, we have explicit advance_events set on the shots so we can advance
them for the lane change.

Recipe: Skillshot (with Lane Change) 1478

Mission Pinball Framework Documentation, Version

##! mode: skillshot_with_lane_change

shot_profiles:

skillshot_profile:

advance_on_hit: false

states:

- name: off

show: off

- name: lit

show: flash

Step 3. Creating a shot_group for the lanes

To tell MPF that the lane shots are related to each other, we create a shot_group with all the shots in
it.

Shot groups are powerful because they control behavior of all the shots together. In this case, we’ll
use our shot group to rotate the lit shots.

##! mode: skillshot_with_lane_change

shot_groups:

skillshot:

shots: skillshot_left, skillshot_middle, skillshot_right

disable_rotation_events: s_plunger_lane_inactive

rotate_left_events: s_flipper_left_active

rotate_right_events: s_flipper_right_active

The rotate_left_events and rotate_right_events trigger the lane changes based on the flipper
events. The disable_rotation_events will prevent the player from changing lanes after they plunge
the ball, for a true “skill” shot. (If you want to allow lane changes after plunge, just remove that line.)

Step 4. Light a random shot when the mode starts

The starting state of the shot profile is “off”, so we need to pick one shot at random and advance it to
its “lit” state. We’ll use the random_event_player: for this.

##! mode: skillshot_with_lane_change

random_event_player:

mode_skillshot_started:

events:

- advance_skillshot_left

- advance_skillshot_middle

- advance_skillshot_right

Step 5. Rewards for Skillshot

When the player hits the lit skillshot shot, they get an award of points. We can use the variable_player:
for this.

Recipe: Skillshot (with Lane Change) 1479

Mission Pinball Framework Documentation, Version

When a shot in a shot group is hit, the shot group will post an event with the state name of the shot
that was hit. By using the shot group events, we can check when any shot is hit, rather than having to
check each shot in the group individually.

##! mode: skillshot_with_lane_change

variable_player:

skillshot_lit_hit:

score: 20_000

Step 6. Ending the mode on skillshot hit, or any other hit

After any skillshot lane is hit, the skillshot mode should end. We can again use the shot group to
detect any shot being hit, but we’ll use a hit event without any state because it doesn’t matter
whether the shot was lit or not.

We also want to end the skillshot mode if any other switch on the playfield was hit, which we can
detect from the playfield_active event. However, when the skillshot is hit the playfield_active event
will post before the skillshot_lit_hit event, so if we end the mode immediately then no score will be
awarded. Instead, we add a 1 second delay after playfield activation before ending the mode.

##! mode: skillshot_with_lane_change

event_player:

skillshot_hit: stop_mode_skillshot

playfield_active: stop_mode_skillshot|1s

Full Example Code

The full code from this example can be found as a fully-working game template in the MPF Examples
repository.

https://github.com/missionpinball/mpf-examples/tree/dev/cookbook/skillshot_with_lane_change

Related Docs

∙ random_event_player:

∙ shots:

∙ shot_groups:

∙ shot_profiles:

∙ variable_player:

Recipe: Skillshot (with Auto-Rotate)

This guide shows you how to build an MPF config for a skillshot with automatically-rotating targets.
When the player’s turn starts the target shots will rotate one “lit” shot rapidly, and when the ball is
plunged the rotation will stop and the lit shot will flash as the skillshot target.

Recipe: Skillshot (with Auto-Rotate) 1480

https://github.com/missionpinball/mpf-examples/tree/dev/cookbook/skillshot_with_lane_change

Mission Pinball Framework Documentation, Version

Step 1. Create a skillshot mode and shots

Skillshots are a self-contained set of rules, so it’s wise to create a separate mode that can be started
when a player’s ball starts and ended after the skillshot is hit (or missed).

#config_version=5

modes:

- skillshot_with_auto_rotate

switches:

s_dropbank_1:

number: 1

s_dropbank_2:

number: 2

s_dropbank_3:

number: 3

s_dropbank_4:

number: 4

s_dropbank_5:

number: 5

lights:

l_dropbank_1:

number: 1

l_dropbank_2:

number: 2

l_dropbank_3:

number: 3

l_dropbank_4:

number: 4

l_dropbank_5:

number: 5

##! mode: skillshot_with_auto_rotate

mode will be defined below

The first thing our mode needs is shots:. Each possible target will be a shot (in this example, we’ll
have five). Each shot has a switch, a light, and a shot profile to track its state. The sample code below
uses dropbank switches for the skillshot, but you are free to use any switches you like.

Each shot will also have unique advance_events configured, which will be explained in detail in section
4. What’s important to note now is that the first shot includes advance_events:
mode_skillshot_started so that this shot will automatically light when the mode starts, as the first
shot in the rotation.

##! mode: skillshot_with_auto_rotate

mode:

start_events: start_mode_skillshot_with_auto_rotate

stop_events: stop_mode_skillshot_with_auto_rotate

priority: 1000

shots:

skillshot_drop_1:

switch: s_dropbank_1

advance_events: mode_skillshot_with_auto_rotate_started, advance_skillshot_1

profile: skillshot_profile

show_tokens:

(continues on next page)

Recipe: Skillshot (with Auto-Rotate) 1481

Mission Pinball Framework Documentation, Version

(continued from previous page)

leds: l_dropbank_1

skillshot_drop_2:

switch: s_dropbank_2

advance_events: advance_skillshot_2

profile: skillshot_profile

show_tokens:

leds: l_dropbank_2

skillshot_drop_3:

switch: s_dropbank_3

advance_events: advance_skillshot_3

profile: skillshot_profile

show_tokens:

leds: l_dropbank_3

skillshot_drop_4:

switch: s_dropbank_4

advance_events: advance_skillshot_4

profile: skillshot_profile

show_tokens:

leds: l_dropbank_4

skillshot_drop_5:

switch: s_dropbank_5

advance_events: advance_skillshot_5

profile: skillshot_profile

show_tokens:

leds: l_dropbank_5

Step 2. Create a profile for the targets

We can create a shot_profile for the targets that starts with the light off, lights it solid after one
advancement, and makes it flash after a second advancement. By default, a shot will advance its
profile when the shot is hit, but we don’t want that here so we’ll set advance_on_hit: false.

When the mode starts, all shots will be in the first profile state “off”. The first shot will immediately
advance to the “on” state (from the advance_events: mode_skillshot_with_auto_rotate_started noted
above). Every time the shot group rotates, the next shot in sequence will shift to “on”. This creates the
rotation effect of the lit shot moving across the targets.

When the ball is plunged, whichever shot is in the “on” state will be advanced to the “lit” state and its
light will flash. When any shot is hit, we’ll check whether it is “lit” or not to know whether the skillshot
should be awarded.

##! mode: skillshot_with_auto_rotate

shot_profiles:

skillshot_profile:

advance_on_hit: false

states:

- name: off

show: off

- name: on

show: on

- name: lit

show: flash

Recipe: Skillshot (with Auto-Rotate) 1482

Mission Pinball Framework Documentation, Version

Step 3. Create a shot_group for the lanes, and a rotation timer

To tell MPF that the five shots are related to each other, we create a shot_group with all the shots in it.

Shot groups are powerful because they control behavior of all the shots together. In this case, we’ll use
our shot group control the rotation of the shots, and a timer to trigger a rotation every half-second.

##! mode: skillshot_with_auto_rotate

shot_groups:

skillshot:

shots:

- skillshot_drop_1

- skillshot_drop_2

- skillshot_drop_3

- skillshot_drop_4

- skillshot_drop_5

rotate_events: timer_skillshot_rotate_tick

timers:

skillshot_rotate:

tick_interval: 500ms

start_running: true

control_events:

- event: s_plunger_lane_inactive

action: stop

The rotate_events will move the state of the shots each time the timer ticks, and the ball leaving the
plunger lane will stop the timer and thus stop the rotation.

Step 4. Flash the lit shot when the rotation stops

When the timer stops, one of the shots will be in the “on” state. Whichever shot this is should be
advanced to the “lit” state so the light is flashing, and we can use conditional events to listen for the
timer stop and advance only the lit shot.

Shot profile states are numbered starting with zero, so our “off” state is number 0 and the “on” state
is number 1. The following code will only post the advance event for a shot if that shot is in state
number 1, a.k.a. “on”.

##! mode: skillshot_with_auto_rotate

event_player:

timer_skillshot_rotate_stopped:

- advance_skillshot_1{device.shots.skillshot_drop_1.state==1}

- advance_skillshot_2{device.shots.skillshot_drop_2.state==1}

- advance_skillshot_3{device.shots.skillshot_drop_3.state==1}

- advance_skillshot_4{device.shots.skillshot_drop_4.state==1}

- advance_skillshot_5{device.shots.skillshot_drop_5.state==1}

Each shot configured in step 1 above has advance_events that correspond to its shot number, so the
above event player will trigger the correct shot to advance to its “lit” state.

Recipe: Skillshot (with Auto-Rotate) 1483

Mission Pinball Framework Documentation, Version

Step 5. Rewards for skillshot

When the player hits the lit shot, they get an award of points. We can use the variable_player: for this.

When a shot in a shot group is hit, the shot group will post an event with the state name of the shot
that was hit. This way, we can check when any shot is hit rather than having to check each shot
individually.

##! mode: skillshot_with_auto_rotate

variable_player:

skillshot_lit_hit:

score: 20_000

Step 6. End the mode on skillshot hit, or any other hit

After any skillshot shot is hit, the skillshot mode should end. We can again use the shot group to
detect any shot being hit, but we’ll use a hit event without a state name because it doesn’t matter
whether the shot was lit or not.

We also want to end the skillshot mode if any other switch on the playfield was hit, which we can
detect from the playfield_active event. However, when the skillshot is hit the playfield_active event
will post before the skillshot_lit_hit event, so if we end the mode immediately then no score will be
awarded. Instead, we add a 1 second delay after playfield activation before ending the mode.

##! mode: skillshot_with_auto_rotate

event_player:

Add these lines after timer_skillshot_rotate_stopped (defined above)

skillshot_hit: stop_mode_skillshot

playfield_active: stop_mode_skillshot|1s

Full Example Code

The full code from this example can be found as a fully-working game template in the MPF Examples
repository.

https://github.com/missionpinball/mpf-examples/tree/dev/cookbook/skillshot_with_auto_rotate

Related Docs

∙ shots:

∙ shot_groups:

∙ shot_profiles:

∙ timers:

∙ variable_player:

Recipe: Skillshot (with Auto-Rotate) 1484

https://github.com/missionpinball/mpf-examples/tree/dev/cookbook/skillshot_with_auto_rotate

CHAPTER25

Config file reference

This section contains details about every possible entry you can use in your YAML config files. Each
entry also has information about whether it’s valid in your machine-wide config, a mode-specific
config, or both.

Instructions

As you dig into the specific settings for individual config sections, it’s important to understand how
various settings mentioned in the reference are used:

Config file instructions

This section contains some general formatting guidelines.

Understanding the #config_version setting

Since MPF is mainly “programmed” with YAML-based config files, we need a way for MPF to know
that the config file(s) it’s loading are compatible with the version of MPF that’s running.

This is specified in the very first line of a config file (in both the machine-wide configs and mode config
files). You specify the config version with a list that starts with a hash sign, like this:

#config_version=5

In YAML, lines that start with # are ignored, which means the YAML processor skips this line, but
MPF uses it to make sure the config file it’s trying to load will work with that version of MPF.

Not every new version of MPF changes the config_version number. If we release a new version of MPF
that does not have a new config_version number, then you can use the new version of MPF without
needing to make any changes to your config files.

1485

Mission Pinball Framework Documentation, Version

Updating your config files to the latest version

MPF includes a config file migration tool that can automatically migrate your config files to the latest
version.

Which versions of MPF require which config_versions?

∙ MPF 0.50+: #config_version=5

∙ MPF 0.30-0.33: #config_version=4

∙ MPF 0.20-0.21: #config_version=3

∙ MPF 0.19: #config_version=2

∙ MPF 0.17-0.18: #config_version=1

∙ MPF 0.1-0.16: config_version not used (a.k.a. config version 0)

Machine config files

Some config sections can only be used in your machine-wide configs. Others can only exist in
mode_config or some in either of them. Those are usually hardware related and/or exist outside of the
game. You can see if this is the case at the top of the relevant config section. For instance lights are
defined machine-wide because they are used throughout the whole lifecycle of a machine.

Mode config files

Modes usually start with a mode: section (see mode) which defines their priority and when they start
or stop:

##! mode: mode1

mode:

start_events: ball_starting

stop_events: timer_mode_timer_complete, shot_right_ramp

priority: 300

Not all config sections can be used in your machine-wide config (see machine_config). Some devices
may only exist in modes (usually if they require an active game with one or more players). You can see
if this is the case at the top of the relevant config section. For instance extra_balls are player-bound
and can only be used in modes.

Using dynamic runtime values in config files

MPF config files can contain values in the form of links to dynamic placeholders which are evaluated
live when MPF is running rather than being hard-coded into a config file.

Dynamic values can come from several sources, including player variables, machine variables,
operator settings, properties of devices, etc. (Read on for a full list.)

For example, you might want to have a shot called “jackpot” that scores a multiplier which is the
number of shots made times 100k points.

Without dynamic values, your variable_player (scoring) section would be static, like this:

Instructions 1486

Mission Pinball Framework Documentation, Version

##! mode: mode1

variable_player:

shot_jackpot_hit:

score: 100000

But let’s say you have a player variable called “troll_hits” which holds the number of trolls hit that you
want to multiply by 100,000 when the shot is made. You can use the “current_player” dynamic value
in your variable_player config like this:

##! mode: mode1

variable_player:

shot_jackpot_hit:

score: current_player.troll_hits * 100000

You can access other values dynamically as well, such as a timer ticking away a hurry-up or a counter
to track how many times a multiplier switch has been hit

##! mode: mode1

variable_player:

collect_hurryup:

score: 1000 * device.timers.hurryup_clock.ticks_remaining * device.counters.hurryup_multiplier.value

Another example might be operator settings. Rather than hard coding tilt warnings to 3, you might
want to like the operator choose the tilt warnings.

So instead of this:

##! mode: tilt

in your tilt mode

tilt:

warnings_to_tilt: 3

You would have this instead:

in your machine config

settings:

warnings_to_tilt:

label: Number of tilt warnings

values:

0: "no warnings"

1: "1"

2: "2"

3: "3"

5: "5"

10: "10"

default: 3

key_type: int

sort: 600

##! mode: tilt

in your tilt mode

tilt:

warnings_to_tilt: settings.warnings_to_tilt

Note the example above requires that you have a settings: section in your machine config and that
you’ve defined a setting called “tilt_warnings”. See Tilt for more details.

Instructions 1487

Mission Pinball Framework Documentation, Version

You can also use dynamic values in conditional events.

Types of dynamic values

You can use the following types of placeholders.

Current Player Variables

You can access a player variable X of the current player using current_player.X. For instance,
current_player.my_player_var will access my_player_var of the current player. This placeholder is
only available when a game is active.

Common player variables are:

∙ current_player.score - Score of the current player

∙ current_player.ball - Current ball

Player Variables of Specific Player

You can access a player variable X of a specific player P using players[P].X. P starts at 0. So player 1
will be players[0].P. For instance, players[1].my_player_var will access my_player_var for player 2.
players[0].my_player_var will access player 1. This placeholder is only available when a game is
active.

Common player variables are:

∙ players[0].score - Score of player 1

∙ players[1].score - Score of player 2

∙ players[2].score - Score of player 3

∙ players[3].score - Score of player 4

Game Variables

You can access game variable X using game.X. This placeholder is only available when a game is active.

Common game variables are:

∙ game.max_players - Maximum players currently allowed

∙ game.num_players - Number of players in game

∙ game.balls_per_game - Balls per game

∙ game.balls_in_play - Balls in play

∙ game.tilted - True if the game has been tilted

∙ game.slam_tilted - True if the game has been slam tilted

Additionally, a game has all common mode variables (see below). game.X is just a convenient way to
access mode.game.X.

Instructions 1488

Mission Pinball Framework Documentation, Version

Machine Variables

You can access machine variable X using machine.X.

Common machine variables are:

∙ machine.player1_score - Player 1 score from the last game

∙ machine.player2_score - Player 2 score from the last game

∙ machine.player3_score - Player 3 score from the last game

∙ machine.player4_score - Player 4 score from the last game

∙ machine.credits_string - String for credits or freeplay

∙ machine.credits_value - Human readable credits string

Settings

You can access setting X using settings.X.

Devices

You can access property X of device D of type T using device.T.D.X. For instance you can access the
value of counter my_counter using device.counters.my_counter.value.

Common device properties are:

∙ device.counters.my_counter.value

∙ device.counters.my_counter.enabled

∙ device.flippers.left_flipper.enabled

∙ device.playfields.playfield.balls

∙ device.ball_devices.my_lock.balls

∙ device.counters.superjets_counter.value

∙ device.accruals.magic_tokens.enabled

∙ device.sequences.world_tour.completed

MPF uses consistent names across devices, so for example any device that tracks a number will have a
value property and any device that can be enabled/disabled will have an enabled property. The full list
of properties available for a specific device are listed in the “Monitorable Properties” section of that
device’s documentation page.

Modes

You can access property X of mode M using mode.M.X.

Common mode properties are:

∙ mode.my_mode.active

Instructions 1489

Mission Pinball Framework Documentation, Version

Using if/else logic with dynamic values

##! mode: mode1

counters:

my_counter:

count_events: count_up

count_complete_value: 5 if player.wizard_complete else 3

Gamma correction in MPF

MPF includes functionality to allow you to adjust the gamma of the color information that is sent to
physical DMDs (RGB and mono) and to RGB LEDs. (You don’t need to set the gamma of an LCD
display since that’s handled by your OS.)

You can read full details in the Gamma correction article on Wikipedia, but the quick explanation is
that the human eye doesn’t not perceive a change in brightness at the same ratio that an LED sets its
brightness.

When you’re setting colors in MPF, you expect that 100% brightness looks fully bright, and that 50%
looks like 50%, etc. Here is a screenshot of a slide which has 16 bars which fade from off to fully
white, in a more-or-less even fashion:

However if you show this slide on your physical DMD with no gamma correction, it looks something
like this:

Even though the individual pixels are showing their “correct” brightness, the human eye can’t really
tell a different between 50% and 100%, and pretty much everything on the right half of the DMD looks
fully white.

So you can adjust this by setting the gamma value. By default, MPF uses a gamma value of 2.5 for
RGB LEDs, and 2.2 for RGB DMDs. (It also uses a value of 1.0 for mono DMDs since some of the

Instructions 1490

https://en.wikipedia.org/wiki/Gamma_correction#Power_law_for_video_display

Mission Pinball Framework Documentation, Version

hardware controllers do their own internal gamma correction, though others don’t, so you might have
to change them.

We recommend you read the documentation for the dmds:, rgb_dmds:, and light_settings: (for LEDs)
to set the proper gamma.

Tuning your DMD gamma

MPF includes a built-in gamma test slide (the one used in the images above) which you can use to
dial-in your gamma setting.

The easiest way to show this slide on your physical DMD is to make a temporary addition to your
machine config to add a slide player, like this:

slide_player:

mode_attract_started:

dmd_gamma_test:

priority: 10000000

This will just show the gamma test slide at a crazy high priority so it shows on top of everything else.
(Remember if your DMD is not your default display, you’ll also have to add target: dmd or whatever
you use to target slides to your DMD.)

Now you can play with different gamma settings for your DMD in either your dmds: or rgb_dmds:
section. (Note you’ll have to restart MPF after each change you make.)

Note that you might also have to adjust brightness: along with gamma:. For example, some people had
to set the brightness of their RGB DMDs to a super low value, like 0.1 or 0.2 before MPF had gamma
control, but with proper gamma settings, you can probably take your brightness up to somewhere
around 0.5.

We like to use the gamma test slide and set the brightness first based on the right-most brightest
block, and then once that’s set, we start messing with the gamma. It will probably be some
trial-and-error, but once it’s dialed in it’s a “set it and forget it” type of thing.

How to enter gain values in config files

The sound-related items in your config files contain various volume settings that may be specified as a
gain value. MPF gives you the flexibility to specify gain values as simple numeric values between 0.0
and 1.0 or as a decibel string between -inf and 0.0 db. Individuals with audio or video editing
experience may be more comfortable working with decibel values.

Entering a simple numeric gain value

To enter a simple numeric gain value, simply enter a number between 0.0 and 1.0 with no appended
label string. Some examples:

volume: 0.1334

volume: 1.0

volume: 0.0

Instructions 1491

Mission Pinball Framework Documentation, Version

Entering a gain value in decibels

To enter a gain value in decibels, enter your value between -inf and 0.0 and add a “db” after your
value. (This can be uppercase or lowercase, and you can put a space in between your value and the
letters if you want.)

Note: -inf indicates the minimum gain value (equivalent to 0.0 in a simple numeric gain value) and
should not contain a “db” suffix. For all other decibel values if you do not enter the “db” suffix after
your value, then MPF will read in the gain value as a simple numeric gain value between 0.0 and 1.0.

Some examples:

volume: -17.5db

volume: 0.0 db

volume: -inf

It makes no difference whether you enter your gain values in simple numeric format or decibels, as
MPF will convert everything to simple gain values under-the-hood when it reads in your configuration
files.

How to enter time strings in config files

You machine configuration files are full of settings which require time values to be entered, such as
“10 seconds” or “250 milliseconds.”

Rather than arbitrarily decide which values should be entered as seconds versus milliseconds, we’ve
built MPF so that you can enter either one whenever a time entry is needed which MPF will internally
convert to the proper value.

These time values are used all over the place. (Ball device count delays, ball save time, ball search
settings, reset delays, slide expiration times, etc.)

We’ll use an example from a ball device for the ball_count_delay: setting. (Again, this is just an
example. You use these same options whenever you need to enter a time value):

Entering a time duration in seconds

To enter a time duration in seconds, simply add an “s” or “sec” after your number. (This can be
uppercase or lowercase and you can put a space in between your number and the letters if you want.)
Some examples:

ball_count_delay: 0.5s

ball_count_delay: 0.5 S

ball_count_delay: 0.5sec

Entering a time duration in milliseconds

To enter a time duration in seconds, simply add an “ms” or “msec” after your number. (This can be
uppercase or lowercase, and you can put a space in between your number and the letters if you want.)

Instructions 1492

Mission Pinball Framework Documentation, Version

Note that if you do not enter and letters, then MPF will read in the time duration in whatever the
default scale is for that particular setting. (The instructions for each setting should say whether the
default is seconds or ms.

Some examples:

ball_count_delay: 500ms

ball_count_delay: 500 MS

ball_count_delay: 500msec

ball_count_delay: 500

It makes no difference whether you enter your time durations as seconds or milliseconds, as MPF will
convert everything to milliseconds (since that’s the default for ball_count_delay when it reads in your
configuration files.

Entering a time duration in minutes, hours, or days

You can also enter time strings in MPF for time periods longer than seconds or milliseconds. While
this isn’t practical for things like ball device delays, it’s used in certain modules (like the credits
module) for some settings.

Some examples:

credit_expiration_time: 2m # 2 minutes

credit_expiration_time: 2h # 2 hours

credit_expiration_time: 2d # 2 days

Case insensitivity in config files

Setting names config files are case sensitive (starting with 0.50). In 0.17 to 0.33 settings were case
insensitive but it caused many problems and thus has been dropped. Generally, a safe approach is to
use only lower case in config files, though, it is fine to use upper case in slides. Using lower case is
recommended for naming modes, devices, timers, etc. . . .

Device Control Events

Many devices in MPF have configuration options which lets them be controlled via events. (These are
called “device control events”.) For example, flippers and autofire coils have enable_events and
disable_events, shots have enable_events, disable_events, and reset_events, shot groups have
enable_events, disable_events, reset_events, rotate_right_events, and rotate_left_events, etc.

You can specify these events in each device’s settings on a machine- wide basis in your machine
config, and you can also specify these events that are only active when a mode is active in your mode
config files. There are several options for how you specify these device control events, depending on
what you want to do.

Instructions 1493

Mission Pinball Framework Documentation, Version

If you have just one event

Even though these configuration entries use the word “events” (plural), you can configure them for
just one event. For example, if you have a flipper device that you want to enable when a ball starts,
you can add the following line to the configuration for your flipper:

enable_events: ball_started

If you have multiple events

If you want one of these actions to be performed based on any one of multiple events, you can enter
multiple events. For example, maybe you want to disable a flipper when the ball ends, but you also
want to make sure it’s disabled when a tilt or slam tilt event is posted. In that case you’d enter your
configuration like this:

disable_events: ball_ending, tilt, slam_tilt

Note that in this case, the flipper will disable if any of these events is posted. If you want to get fancy
and require that multiple events need to be posted before you disable your flipper, then you would use
an Accrual or Sequence Logic Block to track those events, and then you’d add a new event to your
events_when_complete: in that Logic Block and then enter that same event in the disable_events: for
your flipper.

Note that when you’re entering multiple events, you can enter them all on the same line separated by
commas, or you can enter each one on its own line started with a dash and a space, like this:

disable_events:

- ball_ending

- tilt

- slam_tilt

It makes no difference to MPF, rather this is just a personal preference for how you want your config
files to look.

If you want to configure “delays” before performing your action

You can also enter delays (in either seconds or milliseconds) which cause the enable, disable, or reset
events to wait after one of your events is fired. Here’s an example from the “Solids” drop target bank
in Big Shot:

reset_events:

ball_starting: 0

collect_special: .75s

In this case when the ball_starting event is posted, MPF will reset the drop target group immediately
(no delay, due to the “0” value), and when the collect_special event is posted, MPF will wait 0.75
seconds before resetting it. (So you see that different events can have different delays.) In case you’re
wondering why we did this, take a look at the reset_events configuration for the other bank of drop
targets (called “Stripes”) in Big Shot:

Instructions 1494

Mission Pinball Framework Documentation, Version

reset_events:

ball_starting: 0.25s

collect_special: 1s

If you look at these two sets of configurations together, you see that when the ball_starting event is
posted, MPF will reset the Solids drop target bank immediately and then wait a quarter of a second
before resetting the Stripes drop target bank. We did this so that the reset emulates the original
characteristics of resetting one then the other in succession, rather than resetting them both at the
same time.

Also note that we have a similar quarter-second delay between the two drop target banks when we
reset them after the special is collected, but in this case we reset them after 0.75 and 1 second. That’s
because that collecting the special awards a replay which fires the knocker, but if the knocker fires at
the same time as the drop targets are reset then the player can’t hear the knocker since the drop
target reset coils in Big Shot are so massive. So when the special is collected, we fire the knocker
immediate, then 0.75 seconds later we reset the Solids drop target bank, then 0.25 seconds after that
we reset the Stripes drop target bank.

You can enter these delay times in either seconds or milliseconds, as outlined here. All this is done via
the config files with no custom Python code needed! :)

Messing with priorities

By default the handler will have the priority of your mode or 1 if its ouside of a mode. In addition,
some devices increase the priority of some handlers over others. For instance, disable is handled
before enabled (in case you are using both on the same event). Normally, this is just fine and you do
not have to worry. However, there are cases where you want to increase the priority of a certain
handler. You add .x to your event to increase the priority by x.

In the following example, we ensure that the device will first enable, then score and finally disable:

enable_events: ball_started.3

score_events: ball_started.2

disable_events: ball_started.1

Without explicit priorities (or some logic in the device) the order of the three handlers would be
random and you might see the following entry in the log:

Duplicate handler for class MyDevice on event ball_started with priority 1. Handlers: x

You can read more about event handler priorities

Overwriting config files

Help us to write it

Specifying Colors in Config Files

Colors in config files can be specified by name (like “red”) or by hex value (“ff0000”).

You can see a list of valid color names (and their respective colors) here.

In addition to the 140 standard named colors, MPF adds the following color options:

Instructions 1495

http://htmlcolorcodes.com/color-names/

Mission Pinball Framework Documentation, Version

∙ on - turns on an LED with that LED’s default_color: setting. (Default is “white” if you don’t
specify a color.)

∙ off - maps (0,0,0) which is more intuitive than “black” when you’re working with LEDs.

∙ stop - removes the current color being displayed allowing a color from a lower priority light_player or
show_player to become visible.

You can also specify color by hex string. If you do this, do NOT put a # in it, since YAML files use those
for comments which are ignored.

∙ CORRECT: color: ff0000

∙ WRONG: color: #ff0000

Specifying opacity / alpha

For colors which will be processed by the media controller (such as slide background and widget
colors), you can optionally add two more characters to a hex color to specify the alpha value.

For example:

∙ ff0000ff (fully opaque)

∙ ff000080 (50% opacity)

See the Widget Opacity & Transparency documentation for details.

Understanding tags

General Theory

A common definition of a tag is “a label attached to someone or something for the purpose of
identification or to give other information”. This sums up the whole idea behind tags in MPF. You can
add one or more tags on to the various parts of your game. These tag identifiers can then be used in
various ways such as firing events or identifying a device in some particular way.

Tags and Events

Some tags will cause events to be generated. An example of this is a switch device. You can tag a
switch device with one or more tags.

switches:

mygame_switch_button_start:

number: 1

tags: start, skyfall

In this case, whenever the start switch is activated, there will be two events fired. You will see
something like this in the log:

2018-09-26 20:32:14,215 : INFO : EventManager : Event: ======'sw_start'====== Args={}

2018-09-26 20:32:14,215 : INFO : EventManager : Event: ======'sw_start_active'====== Args={}

2018-09-26 20:32:14,215 : INFO : EventManager : Event: ======'sw_skyfall'====== Args={}

2018-09-26 20:32:14,215 : INFO : EventManager : Event: ======'sw_skyfall_active'====== Args={}

Instructions 1496

Mission Pinball Framework Documentation, Version

Both events are prefixed with sw_ as a default. You can override this with the mpf: section.

Note: Please note that those events will only show up if either a handler for them exists (i.e. an
event_player) or when you set debug: True to your switch. This is purely a performance optimization
and also will safe you a lot of log lines.

Power of Tags

While tags and events can be used interchangeably at times, the real power lies in multiple tagging.
When you use the same tags on multiple devices it can save you coding time and reduce the size of
your configurations.

Example 1 - Pop Bumpers

For this example, a game with 3 popbumpers will all behave in the same way. To start we will give 100
points for every hit of a pop bumper.

Firstly we define the popbumper switches.

switches:

mygame_popbumper_left:

number: 55

tags: mygame_popbumper

mygame_popbumper_top:

number: 56

tags: mygame_popbumper

mygame_popbumper_right:

number: 57

tags: mygame_popbumper

Now we want to score 100 points every time a pop bumper is hit. We have two ways of accomplishing
this same goal. One with pure events and one with tags.

Example with events:

##! mode: my_mode

variable_player:

mygame_popbumper_left_active:

score: 100

mygame_popbumper_top_active:

score: 100

mygame_popbumper_right_active:

score: 100

Now with tags:

##! mode: my_mode

variable_player:

sw_mygame_popbumper:

score: 100

Instructions 1497

Mission Pinball Framework Documentation, Version

As you can see, if you have a repeating event you can save yourself some time and coding by using
tags. Any switch tagged as mygame_popbumper will echo a sw_mygame_popbumper event.

Example 2 - Playfield is active

Another example is tagging specific switches on a playfield to validate if a ball is in play or not. These
would be any switches a ball could hit within regular game play which are not part of a device. Some
devices such as drop targets will trigger their own switch during ball search and we do not want them
to end ball search doing that. Therefore, they got built-in support for marking the playfield active and
your should not tag those switches (MPF will also complain if you do).

For our purposes we will check if a ball hits the roll over in the orbit after it was plunged. At that point
it is obviously on the playfield and ball search should not start.

All we need to do is add a tag:

switches:

mygame_orbit_l:

number: 55

tags: playfield_active

mygame_orbit_r:

number: 56

tags: playfield_active

Reserved Tags in MPF

MPF contains some reserved tags that are used for certain devices. An example of this is a ball trough.

ball_devices:

mygame_balldevice_trough:

ball_switches: mygame_switch_trough_1, mygame_switch_trough_2, mygame_switch_trough_3

eject_coil: mygame_coil_trough_eject

eject_targets: mygame_balldevice_shooter_lane

tags: trough, home

The two tags on the ball trough device assist MPF in determining various characteristics of this
device. Namely that it is considered a ‘home’ device where balls can come to rest when a game is not
in play. And the ‘trough’ tag to help MPF denote that this is a ball trough and not some other style of
captive device like a saucer.

Understanding the debug: setting

Almost every device and platform in MPF contains a debug setting. If you set this to True MPF will
generate more log output for this device. This may greatly increase the log size and decrease
performance. Enable it if you got problems with a certain device or platform to debug problems later
on.

Config player “express” configs

Instructions 1498

Mission Pinball Framework Documentation, Version

Todo: Need to add this

How to add lists to config files

Throughout the Mission Pinball Framework config files, there are several places where the
configuration items need to be a “list” or a “list of lists.” The MPF config files are in a YAML format, so
you add list items by following the YAML spec, but it can be a kind of confusing. So this page is our
“how to” guide for the various ways you can add list items to MPF config files. First of all, there are
several different places we need lists. For example, device tags, logic block events, switches that
make up shots, etc. For our explanation, we’ll use a generic list item with generic configurations.
Some examples:

coils:

flipperLeft:

number: SD18

tags: flipper, player # this is a list

##! mode: mode1

shots:

outlane:

switch: leftOutlane, rightOutlane #this is a list

auditor:

save_events: # This config wants a list

- game_started # This is the first list item

- ball_ended # This is the second list item

- game_ended # This is the third list item

accruals:

my_accrual:

events:

- sw_eightball # this is the first list item

- drop_targets_Solids_lit_complete, drop_targets_Stripes_lit_complete # 2nd list item, which␣

→˓itself has two items

Valid options for lists

Ok, so let’s say you have a config item that needs a list. We’ll use a made-up config called “config”
with three list items: item1, item2, and item3. You can enter this into your config file in one of several
ways. First, you can enter all the items on one line separated by commas:

config: item1, item2, item3

Second, you can enter each item on its own line, indented, with each line starting with a dash, like
this: (Be sure to include the space after the dash before the list item. It’s a YAML thing.)

config:

- item1

(continues on next page)

Instructions 1499

Mission Pinball Framework Documentation, Version

(continued from previous page)

- item2

- item3

So you have two options. Which one should you pick? It really doesn’t matter. You can use whichever
one has the style you prefer and whichever one makes your config files easiest to read. (We tend to
just use commas, but if it’s a long list then we’ll put each item on its own line so the line doesn’t wrap.)

Valid options for “lists of lists”

Some config items require “lists of lists” where there is a list with multiple items, and then each of
those items is itself another list which may have multiple items. (This is seen a lot in MPF’s Logic
Blocks where we have multiple steps that can each be made up of one or more events.) The easiest
way to enter these into your configuration files is to combine the method using commas and dashes,
like this:

config:

- item1, item2

- item3, item4, item5

- item6

How to create and understand YAML files

Indentation

any number is fine

2, 4, 3, 17, whatever

only key is that things at the same level are indented all the same

any increase in indent indicates that line is a subsection of the line above it

Dashes

Colons

Quotes

Text Templates

Text templates can contain python format strings to show text placeholder.

This is an example which will show the player 1 score of the previous game as number:

Player 1 score: {machine.player1_score:d}

Current score (during a game only):

Score {current_player.score:d}

Instructions 1500

Mission Pinball Framework Documentation, Version

Any variable needs to be enclosed in {}. Either you can use {variable} or {variable:format_string}.
Any python format string will work here.

Common format strings

Assuming variable has a value of 1337.

Alignment and Padding

Left aligned and padded to 10 characters:

{variable:10}

Output:

"1337 "

Right aligned and padded to 10 characters with zeros:

{variable:0>10}

Output:

"0000001337"

Centered and padded to 10 characters with spaces:

{variable:^10}

Output:

" 1337 "

Number as float (2 decimals):

{variable:5.2f}

Output:

" 1337.00"

Number as integer:

{variable:5d}

Output:

" 1337"

Instructions 1501

https://docs.python.org/3/library/string.html#string-formatting

Mission Pinball Framework Documentation, Version

Truncating long strings

Centered and padded to 10 characters with spaces:

{variable:.3}

Output:

"133"

Index of config sections

Here’s a list of every single config section from both MPF and the MPF-MC. Some of these are valid
only in machine-wide configs, and others only work in mode config files. (And some are valid in both.)
The detail page for each setting indicated which type of config file it’s valid in.

accelerometers:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Hardware platforms which support accelerometers
P3-Roc
MMA8451-based I2C accelerometers

The accelerometers: section of your config is where you configure accelerometers, including how
many G forces trigger different events.

Like other hardware devices, you create a sub-entry for each accelerometer, then under there you
configure additional settings. For example:

accelerometers:

test_accelerometer:

number: 1

level_x: 0

level_y: 0

level_z: 1

hit_limits:

0.5: event_hit1

1.5: event_hit2

level_limits:

2: event_level1

5: event_level2

Required settings

The following sections are required in the accelerometers: section of your config:

Index of config sections 1502

Mission Pinball Framework Documentation, Version

number:

Single value, type: string. Defaults to empty.

Number of this device in your hardware platform. The actual meaning of this number depends on your
hardware platform.

Optional settings

The following sections are optional in the accelerometers: section of your config. (If you don’t include
them, the default will be used).

alpha:

Single value, type: number (will be converted to floating point). Default: 0.8

The smoothing factor for single exponential smoothing (aka sliding window).

hit_limits:

One or more sub-entries. Each in the format of number (will be converted to floating point) : string

Events which are posted at a certain G-force/acceleration. You can specify multiple limits. You might
use those to trigger tilt warnings.

level_limits:

One or more sub-entries. Each in the format of number (will be converted to floating point) : string

How much degree may the level be off? You can define multiple limits and which event should be
posted when it exceeded.

level_x:

Single value, type: integer. Default: 0

level_x, level_y and‘‘level_z‘‘ define the default axis which is considered as levelled. Defaults to (0,
0, 1) which means that the board is laying straight on the ground. If you mount it in the cab you want
about 3 degree. Under the playfield you want 6-7 degree.

level_y:

Single value, type: integer. Default: 0

level_x, level_y and‘‘level_z‘‘ define the default axis which is considered as levelled. Defaults to (0,
0, 1) which means that the board is laying straight on the ground. If you mount it in the cab you want
about 3 degree. Under the playfield you want 6-7 degree.

Index of config sections 1503

Mission Pinball Framework Documentation, Version

level_z:

Single value, type: integer. Default: 1

level_x, level_y and‘‘level_z‘‘ define the default axis which is considered as levelled. Defaults to (0,
0, 1) which means that the board is laying straight on the ground. If you mount it in the cab you want
about 3 degree. Under the playfield you want 6-7 degree.

platform:

Single value, type: string. Defaults to empty.

Name of the platform this accelerometer is connected to. The default value of None means the default
hardware platform will be used. You only need to change this if you have multiple different hardware
platforms in use and this coil is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

platform_settings:

One or more sub-entries. Each in the format of string : string

The platform-specific hardware settings of this accelerometer.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

Index of config sections 1504

Mission Pinball Framework Documentation, Version

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Todo: Help us to write it

Related How To guides

∙ Accelerometers

accruals:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The structure of accrual logic blocks are like this:

accruals:

the_name_of_this_logic_block:

<settings>

some_other_logic_block:

<settings>

a_third_logic_block:

<settings>

Note that the actual name of the logic block doesn’t really matter. Mainly they’re used in the logs.

Required settings

The following sections are required in the accruals: section of your config:

events:

List of one (or more) events. The device will add handlers for those events. Defaults to empty.

The events section of an accrual logic block is where you define the events this logic block will watch
for in order to make progress towards completion.

The real power of logic blocks is that you can enter more than one event for each step, and only one of
the of the events of that step has to happen for that step to be complete.

Another way to look at it is that there’s an AND between all the steps. For the Accrual to complete,
you need Step 1 AND Step 2 AND Step 3. But since you can enter more than one event for each step,
you could think of those like OR*s. So you have Step 1 (event1 *OR event2) AND Step 2 (event3) AND
Step 3 (event4 OR event5), like this:

Index of config sections 1505

Mission Pinball Framework Documentation, Version

accruals:

my_accrual:

events:

- event1, event2

- event3

- event4, event5

It might seem kind of confusing at first, but you can build this up bit-by-bit and figure them out as you
go along.

You can enter anything you want for your events, whether it’s one of MPF’s built-in events or a
made-up event that another logic block posts when it completes. (This is how you chain multiple logic
blocks together to form complex logic.)

For example:

accruals:

logic_block_1:

events:

- event1

- event2

- event3

- event4

- event5

events_when_complete: logic_block_1_done

logic_block_2:

events:

- event1, event2, event3

- event4

- event5

events_when_complete: logic_block_2_done

In the example above, there are two logic blocks. The first one just has five steps that need to
complete (in any order since we’re dealing with accrual logic blocks), and each step only has one
event that will mark is as complete. So basically any of those five events 1-5 can be posted in any
order, and then logic_block_1_done will be posted.

In the second example, if event 1, 2, or 3 is posted, that will count for step 1, and then both events 4
and 5 need to be posted for steps 2 and 3. (Again, in any order.)

So in the second one, you could get event4, event2, then event5 posted, for example, and that will lead
to logic_block_2_done being posted.

Note that you can have two logic blocks with the same events at the same time, and MPF will track
the state of each logic block separately. So in the above config with those two logic blocks, if the
events were posted in the order event2, event3, event4, then event5, that would complete logic block
2. Then later if event1 was posted, that would complete logic block 1.

Optional settings

The following sections are optional in the accruals: section of your config. (If you don’t include them,
the default will be used).

Index of config sections 1506

Mission Pinball Framework Documentation, Version

advance_random_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

The advance_random_events section of an accrual logic block is where you define the event or events
that this logic block will watch for in order to randomly complete one of the steps in the logic block.
As stated above, while there can be multiple steps that could complete this step of the logic block, this
will act as one of the events as well that will complete the given step.

This will not update any lights that are associated with the events that are required to complete this
step. For example, if you have a shot that could complete this step, and the step is completed by this
event, the light will still remain on even though it will not progress this logic block any further. To
update the lights you will want to add a hit_event to the underlying shot. This should be the event
from the log logicblock_YOUR_ACCRUAL_hit {step == X} where YOUR_ACCRUAL is the name of your
accrual, and X is the value of the step to which this shot is tied, which begins with 0.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Currently unused.

Index of config sections 1507

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the logic_blocks_common: section of your config. (If you don’t
include them, the default will be used).

disable_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will disable this logic block.

A logic block must be enabled to track hits, progress, and to post events.

disable_on_complete:

Single value, type: boolean (true/false). Default: true

True/False (or Yes/No) which controls whether this logic block disables itself once it completes. This
does not reset the current value.

enable_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will enable this logic block.

A logic block must be enabled to track hits, progress, and to post events.

If you don’t have any enable_events listed, then the logic block will automatically be enabled when the
player’s ball starts.

events_when_complete:

List of one (or more) events.

Events that will be posted when this device is completed.

events_when_hit:

List of one (or more) events.

Events that will be posted when this device is hit or advanced.

persist_state:

Single value, type: boolean (true/false). Default: false

Boolean setting (yes/no or true/false) which controls whether this logic block remembers where it was
from ball-to-ball. If False, then this logic block will reset itself whenever a new ball starts. If True,
then this logic block will be saved to the player variable <logic_block_name>_state.

Index of config sections 1508

Mission Pinball Framework Documentation, Version

Note that logic block state is reset on mode end when this is False and, as normal modes stop at the
end of a ball, the state is always maintained on a per-player basis, regardless of what this setting is
configured for.

reset_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will reset this logic block back to its original value. This has no effect on the
enabled/disabled state of the block.

Note that there are also reset_on_complete: and persist_state: settings which also affect how and
when the logic block is reset.

You can reset a logic block regardless of whether it’s enabled.

reset_on_complete:

Single value, type: boolean (true/false). Default: true

True/False (or Yes/No) which controls whether this logic block resets itself once it completes. This just
resets the current value or progress. It does not change the enabled or disabled state.

Note, disable_on_complete default is true, which may seem like reset isn’t working. For something
like a counter that automatically starts again change disable_on_complete to false.

restart_events:

List of one (or more) device control events (Instructions for entering device control events).

List of one (or more) events which, when posted, will restart this logic block. A restart is a reset, then
an enable, combined into a single action.

start_enabled:

Single value, type: boolean (true/false).

If true this device will start enabled. If false this device will start disabled. If you omit this the device
will start enabled unless you specify enable_events in which case the device will start disabled.

Related How To guides

∙ Accrual Logic Blocks

∙ Integrating Logic_Blocks and Shows

achievements:

Config file section

Index of config sections 1509

Mission Pinball Framework Documentation, Version

Valid in machine config files NO
Valid in mode config files YES

The achievements: section of your config is where you configure player-based “achievement” tracking.

Like most things in MPF configs, the highest-level entries in the achievements: section of your config
are the names of the individual achievements, and then indented under each of those are the settings
for that individual achievement.

Here’s an example achievements section from Brooks & Dunn:

##! mode: mode1

achievements:

world_tour:

show_tokens:

leds: l_world_tour

show_when_selected: flash

show_when_started: flash

show_when_completed: on

events_when_started: start_world_tour_mode

restart_after_stop_possible: true

events_when_completed: rotate_mission_rotator, light_mission_select

complete_events: world_tour_success

enable_events: world_tour_fail, ball_will_end

money_bags:

show_tokens:

leds: l_money_bags

show_when_selected: flash

show_when_started: flash

show_when_completed: on

events_when_started: start_money_bags_mode

restart_after_stop_possible: true

events_when_completed: rotate_mission_rotator, light_mission_select

complete_events: money_bags_success

enable_events: money_bags_fail, ball_will_end

music_awards:

show_tokens:

leds: l_music_awards

show_when_selected: flash

show_when_started: flash

show_when_completed: on

events_when_started: start_music_awards_mode

restart_after_stop_possible: true

complete_events: music_awards_success

events_when_completed: rotate_mission_rotator, light_mission_select

enable_events: music_awards_fail, ball_will_end

jukebox:

show_tokens:

leds: l_jukebox_insert

show_when_selected: flash

show_when_started: flash

show_when_completed: on

events_when_started: start_jukebox_mode

restart_after_stop_possible: true

events_when_completed: rotate_mission_rotator, light_mission_select
(continues on next page)

Index of config sections 1510

Mission Pinball Framework Documentation, Version

(continued from previous page)

complete_events: jukebox_success

enable_events: jukebox_fail, ball_will_end

play_poker:

show_tokens:

leds: l_play_poker

show_when_selected: flash

show_when_started: flash

show_when_completed: on

events_when_started: start_play_poker_mode

restart_after_stop_possible: true

events_when_completed: rotate_mission_rotator, light_mission_select

complete_events: play_poker_success

enable_events: play_poker_fail, ball_will_end

More examples:

∙ Recipe: The Addams Family Mansion Awards

∙ achievement (example config files)

Shows

The show_when_xxx settings control which show is played when this achievement switches to a new
state.

Note that whatever show was playing from the previous state will be stopped.

Also, any tokens configured in the show_tokens: section will be passed to the show here.

Events posted by achievements

You can configure achievements to post certain events when they change state.

Note that all achievements will by default post events in the form achievement_(name)_state_(state)
when they change state. The events listed below as events_when_xxx, if defined, will replace the
default event.

Control Events

The following xxx_events settings specify which MPF events cause this achievement to move to a new
state.

Optional settings

The following sections are optional in the achievements: section of your config. (If you don’t include
them, the default will be used).

complete_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Index of config sections 1511

Mission Pinball Framework Documentation, Version

Events in this list, when posted, cause this achievement to switch to its “completed” state. This must
be in the “started” state in order to be moved to the “completed” state when these events post. These
events will also cause the achievement to play the show defined in the show_when_completed: setting
and to emit (post) events in the events_when_completed: setting.

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, cause this achievement to switch to its “disabled” state. These events
will also cause the achievement to play the show defined in the show_when_disabled: setting and to
emit (post) events in the events_when_disabled: setting.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, cause this achievement to switch to its “enabled” state. These events
will also cause the achievement to play the show defined in the show_when_enabled: setting and to
emit (post) events in the events_when_enabled: setting.

enable_on_next_ball_when_enabled:

Single value, type: boolean (true/false). Default: true

If True/Yes, this achievement will stay “enabled” when the next ball starts if it was enabled when the
last ball ended. If False/No, this achivement will be changed to “disabled” when the next ball starts.

This is similar to the restart_on_next_ball_when_started: event from above, except it applies to the
“enabled” state instead of the “started” state.

This setting will also play the show_when_enabled: show and post the events_when_enabled: events
when re-enabling, but will not play or post anything when disabling.

events_when_completed:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when this achievement is complete.

events_when_disabled:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when this achievement is disabled.

Index of config sections 1512

Mission Pinball Framework Documentation, Version

events_when_enabled:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when this achievement is enabled.

events_when_selected:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when this achievement is selected.

events_when_started:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when this achievement is started.

events_when_stopped:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when this achievement is stopped.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, cause this achievement to reset back to its default state (which will
either be “disabled” or, if you have start_enabled: true, “enabled”)

restart_after_stop_possible:

Single value, type: boolean (true/false). Default: true

Is it possible to restart this achievement after it’s been stopped?

restart_on_next_ball_when_started:

Single value, type: boolean (true/false). Default: false

If True/Yes, then this achievement will stay in the “started” state when the player’s next ball starts if it
was in the “started” state when the previous ball ended. This is useful if you want to restart a mode
that was running when the ball ended.

Note that this restart will also play the show_when_started: show, and it will also post the
events_when_started: events.

If False/No, this achievement’s state will change from “started” to “stopped” when the next ball starts.
This will not play the show_when_stopped: show and it will not post the events_when_stopped: events.

Index of config sections 1513

Mission Pinball Framework Documentation, Version

select_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, cause this achievement’s selected property to ‘true’. These events will
also cause the achievement to play the show defined in the show_when_selected: setting and to emit
(post) events in the events_when_selected: setting.

Note that “selected” property, in MPF, is used to describe an achievement that is currently selected
(“highlighted” or “lit”) and available to be started. This would typically be tied to a show (via the
show_when_selected: setting) that causes a light or LED to flash.

Also, note that more than one achivement may be selected at a time; see unselect_events: to change
the selected property to false.

show_tokens:

One or more sub-entries. Each in the format of string : string

This is an indented list of key/value pairs for the show tokens that will be sent to the shows that are
played when this achievement changes state. (See the settings called “show_when_XXX” further down
in this documentation.)

show_when_completed:

Single value, type: string name of a shows device. Defaults to empty.

Name of the show that will be started when this achievement has been completed.

show_when_disabled:

Single value, type: string name of a shows device. Defaults to empty.

Name of the show that will be started when this achievement has been disabled.

show_when_enabled:

Single value, type: string name of a shows device. Defaults to empty.

Name of the show that will be started when this achievement has been enabled.

show_when_selected:

Single value, type: string name of a shows device. Defaults to empty.

Name of the show that will be started when this achievement has been selected.

Index of config sections 1514

Mission Pinball Framework Documentation, Version

show_when_started:

Single value, type: string name of a shows device. Defaults to empty.

Name of the show that will be started when this achievement has been started.

show_when_stopped:

Single value, type: string name of a shows device. Defaults to empty.

Name of the show that will be started when this achievement has been stopped.

speed:

Single value, type: number (will be converted to floating point). Default: 1

Playback speed of all shows that are referenced by this achievement.

start_enabled:

Single value, type: boolean (true/false). Defaults to empty.

Whether this achievment is enabled or disabled when it is first loaded.

start_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause this achievement to switch to its “started” state. These events
will also cause the achievement to play the show defined in the show_when_started: setting and to
emit (post) events in the events_when_started: setting.

stop_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause this achievement to switch to its “stopped” state. These events
will also cause the achievement to play the show defined in the show_when_stopped: setting and to
emit (post) events in the events_when_stopped: setting.

Index of config sections 1515

Mission Pinball Framework Documentation, Version

sync_ms:

Single value, type: integer. Defaults to empty.

A sync_ms value used for any shows which are started by this achievement. See the full sync_ms
documentation for details.

unselect_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, cause this achievement’s ‘selected’ property to become false.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Enables debug logging.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Achievement Groups

∙ Achievements

Index of config sections 1516

Mission Pinball Framework Documentation, Version

achievement_groups:

Config file section

Valid in machine config files NO
Valid in mode config files YES

The achievements_groups: section of your config is where you configure grouping of multiple
player-based “achievement” tracking.

Like most things in MPF configs, the highest-level entries in the achievement_groups: section of your
config are the names of the individual achievement group, and then indented under each of those are
the settings for that group.

Here’s an example achievement_groups section from Brooks & Dunn. (This is related to the example
in the achievements config documentation.)

##! mode: mode1

achievement_groups:

my_group:

achievements: world_tour, money_bags, music_awards, jukebox, play_poker

enable_events: enable_mission_selection

start_selected_events: shot_lower_vuk_from_playfield_hit

select_random_achievement_events: rotate_mission_rotator

events_when_enabled: mission_rotator_ready

rotate_right_events: sw_toggle

show_tokens:

leds: l_begin_round

show_when_enabled: flash

More examples:

∙ Recipe: The Addams Family Mansion Awards

∙ achievement (example config files)

Required settings

The following sections are required in the achievement_groups: section of your config:

achievements:

List of one (or more) values, each is a type: string name of a achievements device. Defaults to empty.

This is a list of the achievements (from the achievements: section of your mode config) that make up
this group. The order here defines the order individual achievements are rotated in via the
rotate_right_events: and/or rotate_left_events: settings.

Optional settings

The following sections are optional in the achievement_groups: section of your config. (If you don’t
include them, the default will be used).

Index of config sections 1517

Mission Pinball Framework Documentation, Version

allow_selection_change_while_disabled:

Single value, type: boolean (true/false). Default: false

Controls whether the currently selected achievement can be changed when the achievement group is
disabled. If False/No, then the rotate and select random events will have no effect when the group is
disabled.

auto_select:

Single value, type: boolean (true/false). Default: false

If True, this achievement group will automatically ensure that one of its member achievements is
always selected. The selected achievement will be chosen at random from all the achievements in the
“enabled” states (and the “stopped” states if restart_after_stop_possible: is set to True).

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, disable this achievement group. These events will also cause the
achievements to play the show defined in their show_when_disabled: setting and to emit (post) events
in their events_when_disabled: settings.

disable_random:

Single value, type: boolean (true/false). Default: false

Todo: Help us to write it

disable_while_achievement_started:

Single value, type: boolean (true/false). Default: true

If True, this achievement will automatically disable itself when any of its member achievements are in
the “started” states. This is the default behavior because an achievement group is typically used to
select an achievement to run, and while an achievement is running, you usually want to disable the
selection process for the next achievement.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, will enable this achievement group. This will play the
show_when_enabled: and will post events in the events_when_enabled: settings.

Index of config sections 1518

Mission Pinball Framework Documentation, Version

This will also check to see if all the member achievements are complete, it will check to see if there
are no more enabled achievements, and it will update the selected achievement.

Starting the selected achievement only works if the group is enabled. In other words, if something has
to be “lit” before an achievement can start, then that is done via the group’s “enable” functionality.

enable_while_no_achievement_started:

Single value, type: boolean (true/false). Default: true

If True, this achievement will automatically enable itself when none of its member achievements are in
the “started” states. This is the default behavior because an achievement group is typically used to
select an achievement to run, so when none are running, you want to enable the group so that the
next achievement can be selected.

events_when_all_completed:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when all the achievements in this group are in
the “completed” state. This is useful for posting events to start a wizard mode, for example.

events_when_enabled:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when this achievement group is enabled.

events_when_no_more_enabled:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A single event, or a list of events, that will be posted when one of the events in the
select_random_achievement: is posted but there are no more available achievements to be selected.

rotate_left_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Same as rotate_right_events:, but it rotates the selected achievement in the opposite direction.

rotate_right_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Index of config sections 1519

Mission Pinball Framework Documentation, Version

Causes the states of the available achievements in this group to be rotated to the right.

Note that the allow_selection_change_while_disabled: controls whether these events will work when
the achievement group is disabled.

This is used to “switch” the current selected achievement. For example, many games have main
achievements you need to complete to get to wizard mode. Completed achievements have a light
that’s solid on, available (enabled) achievements have a light that’s off (since they’re not yet complete
but available to be played), and the current selected achievement has a light that’s flashing (indicating
that it’s the next one to be played).

Then when you hit a slingshot or pop bumper, the currently selected (flashing) achievement changes,
but you only want to rotate with other achievements that are enabled (available but not yet complete).

So if this is the current state:

∙ Mission 1: completed

∙ Mission 2: selected

∙ Mission 3: enabled

∙ Mission 4: enabled

∙ Mission 5: enabled

And then one of the rotate_right_events: is posted (like from a pop bumper hit), the new list would
look like this:

∙ Mission 1: completed

∙ Mission 2: enabled

∙ Mission 3: selected

∙ Mission 4: enabled

∙ Mission 5: enabled

Notice that the “selected” state moved from Mission 2 to Mission 3, and the completed state of
Mission 1 did not change.

Even though these are called “rotate” events, what really happens is that when this rotation occurs,
the previously selected achievement changes from “selected” to “enabled”, and the newly selected
achievement changes from “enabled” to “selected”. Both achievements will stop their current shows
and play the shows associated with their new states, and both will post the events associted with their
new states.

Note that if you want to select a random achievement instead of the next one on the list, you can use a
select_random_achievement_events: event instead.

select_random_achievement_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, will randomly pick one of the available achievements and change it to
its “selected” state. This is useful when a game is starting and you want one of the available
achievements to start in a selected state. (e.g. pick a random mission to be highlighted.)

Index of config sections 1520

Mission Pinball Framework Documentation, Version

Note that the allow_selection_change_while_disabled: controls whether these events will work when
the achievement group is disabled.

The “available” achievements which could be chosen here include achievements that are one of the
following:

∙ enabled

∙ selected

∙ stopped (if the achievement’s restart_after_stop_possible: is true/yes

An example of this would be in Attack From Mars, where the next country is randomly chosen
(selected) after you default the saucer for the previous country.

If there are no more available events to be selected, then the events in events_when_no_more_enabled:
are posted.

Note that if you want to always select a certain achievement (instead of randomly picking one), then
you can just set that particular achievement’s select_events: entry rather than using this random
selecting setting.

show_tokens:

One or more sub-entries. Each in the format of string : string

This is an indented list of key/value pairs for the show tokens that will be sent to the shows that are
played when this achievement changes state.

Note that you can configure show_tokens: at the group level (here) or the individual achievement level.
That’s done for convenience, and in practical use, you’d just configure the show tokens in one place.

show_when_enabled:

Single value, type: string name of a shows device. Defaults to empty.

Name of the show that will be started when this achievement group has been enabled. Also, any
tokens configured in the show_tokens: section will be passed to the show here.

start_selected_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause any achievements in this group that are in the “selected” state
to switch to their “started” state. (Typically there would only be a single achievement in the group
that’s “selected” at any time, but you could have more than one.)

These events only work if the achievement group is enabled.

When the individual achievements change from “selected” to “started”, they will play their
show_when_started: shows and post their events_when_started: events.

Index of config sections 1521

Mission Pinball Framework Documentation, Version

sync_ms:

Single value, type: integer. Defaults to empty.

Todo: Help us to write it

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used

Related How To guides

∙ Achievement Groups

∙ Achievements

Index of config sections 1522

Mission Pinball Framework Documentation, Version

animations:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The animations: section of your config is where you list the reusable “named” animations.

Note that while you can add animations in both the machine-wide and a mode-specific config, the list
of animations is global, meaning that any animation is available in any mode, and you can’t have two
different animations with the same name.

For example:

animations:

fade_in:

property: opacity

value: 1

duration: 1s

fade_out:

property: opacity

value: 0

duration: 1s

The above example defines animations named fade_in and fade_out that you can use, by name, in any
widget or widget_player config where you would ordinarily define your own animations.

Related How To guides

∙ How to animate display widgets

assets:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The assets: section of a config file lets you configure the default settings for different types of assets
based on what folder those assets are in. Any settings you specify here are just the defaults, though,
and you can still override the defaults for an individual asset by adding an entry for it to your machine
or mode config file.

Let’s take a look at an example:

assets:

images:

default:

load: preload

preload:

load: preload

(continues on next page)

Index of config sections 1523

Mission Pinball Framework Documentation, Version

(continued from previous page)

on_demand:

load: on_demand

potato:

some_key: some_value

something_else: whatever

The above config contains the asset settings for image assets. Notice there are 4 entries under
images:: default, preload, on_demand, and potato. Those names represent sub-folders that could
contain image assets.

Then under each of those, there are one or more key/value pairs. These key/value pairs are applied to
assets located in the sub-folders above.

Note: Although you can create sub-folders nested as many levels deep as you wish, only the top-level
sub-folder can be listed in the assets section. Any assets in sub-folders below the top level will inherit
the settings from their top-level sub-folder parent.

The default entry is special, as it applies to the root folder as well as any assets that are in folders
that are not specified here.

Consider the following files & folders in a machine folder with the assets: section from above:

Index of config sections 1524

Mission Pinball Framework Documentation, Version

In this case, /your_machine/images/hello.jpg would have the default: settings applied,
/your_machine/images/preload/special.jpg would have the load: preload key/value pair applied to it,
/your_machine/images/potato/toppings/cheese.jpg would have the some_key: some_value and
something_else: whatever key/value pairs applied to it, etc.

The assets: section of the config file doesn’t really care what the key/value pairs are. They’re just the
defaults for the assets in those folders, and if they’re not valid settings then MPF will give you an
error. (Note that different types of assets have different settings options and different keys & values
that are correct.)

Currently MPF supports four kinds of assets. Click on each to go to that asset type’s description in the
config file reference which will explain what settings and be used and what the options are.

Asset types include:

∙ shows: (use file_shows entry)

∙ images:

∙ sounds:

∙ videos:

Index of config sections 1525

Mission Pinball Framework Documentation, Version

auditor:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The auditor: section of the machine configuration file lets you control what events the MPF’s auditor
module includes in its audits.

Here’s an example which is the settings we including in the default mpfconfig.yaml file. (So these are
the settings that are included by default with every game you run.) Also, by default, the auditor saves
its audits to /audits/audits.yaml in the folder for each machine. (Check out the documentation on the
Auditor to see a sample audit log file.)

auditor:

save_events: ball_ended game_ended

audit: shots switches events player

events: ball_search_begin machine_init_phase_1 game_started game_ended machine_reset

player: score

num_player_top_records: 10

Optional settings

The following sections are optional in the auditor: section of your config. (If you don’t include them,
the default will be used).

audit:

List of one (or more) values, each is a type: string. Defaults to empty.

This is a list of the various types of things you want to include in your audit file. There are currently
four options:

∙ shots - tracks the number of times each shot has been made

∙ switches - tracks the number of times each switch has been hit.

∙ events - whether the auditor should audit certain events. (Add the events you want to track to
the events section.)

∙ player - includes player variables (score, maybe shots or goals they’ve achieved, etc.) See the
player section below for details.

events:

List of one (or more) events. The device will add handlers for those events. Defaults to empty.

A list of which events you want to audit. These are the names of any events you want.

Index of config sections 1526

Mission Pinball Framework Documentation, Version

num_player_top_records:

Single value, type: integer. Default: 1

For player-specific variables, you have the option of track the “top” number of each. So in the example
above, since the only player item is score, the auditor will track the top 10 highest scores, plus the
total count and the overall average.

player:

List of one (or more) values, each is a type: string. Defaults to empty.

A list of player variables you want to audit. The auditor will save a certain number (configurable via
the num_player_top_records: setting), as well as the total number of entries and the current average.

reset_audit_events:

List of one (or more) events. The device will add handlers for those events. Default:
auditor_reset,factory_reset

Events to reset audits in the machine. This is used by the service mode.

save_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_ended

Default: ball_ended

Events in this list, when posted, trigger the auditor to save its audits to disk.

Related How To guides

∙ Auditor

autofire_coils:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The autofire_coils: section of your config file contains all the settings for the coils which you would
like to fire automatically based on a switch activation in a pinball machine.

Here’s an example:

Index of config sections 1527

Mission Pinball Framework Documentation, Version

switches:

s_left_sling:

number: 1

s_right_sling:

number: 2

coils:

c_left_sling:

number: 1

default_pulse_ms: 10ms

c_right_sling:

number: 2

default_pulse_ms: 10ms

autofire_coils:

left_sling:

coil: c_left_sling

switch: s_left_sling

right_sling:

coil: c_right_sling

switch: s_right_sling

Note that autofire coils in MPF are 1-to-1 in terms of coils-to- switches, so a single entry is for one
switch to control one coil. On some platforms, you can have two switches control a single coil (or two
coils controlled by a single switch), but to do that you would create two separate autofire_coils:
entries with one coil and one switch each. (And again, that’s platform-specific. Check your hardware
platform documentation for details.)

If you’re wiring your slingshots and you want two switches to control a single coil, on nearly 100% of
pinball machines in the world, those two switches are wired together and use a single input, so the
hardware sees them as a single switch. (Just be sure to wire them in parallel, not series, so that either
switch closing causes the hardware to see the switch activation.) The top-level setting is the name you
can refer to this autofire coil as, such as left_sling: or right_sling: in the example above.

Then each entry has the following required and optional settings:

Required settings

The following sections are required in the autofire_coils: section of your config:

coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the coil you want to fire. (Actually, perhaps we should phrase it as the name of the coil
you want to change the state on, because you can also use these autofire coil rules to cause coils to
stop firing based on a switch change.)

switch:

Single value, type: string name of a switches device. Defaults to empty.

The name of the switch which will trigger the autofire coil. More precisely, this switch is used together
with the coil in the hardware rules which will instruct your pinball hardware to pulse the coil.

Index of config sections 1528

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the autofire_coils: section of your config. (If you don’t include
them, the default will be used).

ball_search_order:

Single value, type: integer. Default: 100

A relative value which controls the order individual devices are pulsed when ball search is running.
Lower numbers are checked first. Set to 0 if you do not want this device to be included in the ball
search. See the Ball Search documentation for details.

coil_overwrite:

Single value, type: coil_overwrites. Defaults to empty.

You can overwrite recycle, pulse_ms, pulse_power or hold_power of the coil for this device.

This is an example:

switches:

s_left_sling:

number: 1

coils:

c_left_sling:

number: 1

default_pulse_ms: 10ms

autofire_coils:

stronger_left_sling:

coil: c_left_sling

switch: s_left_sling

coil_overwrite:

pulse_ms: 20ms

In this example we increase pulse_ms of the slingshot. If you define multiple versions of a autofire_coil
(here slingshot) make sure that you only enable one of them at a time.

coil_pulse_delay:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

This setting will delay the pulse of your coil by a certain milliseconds after your switch has activated.
Please note that this has to be supported in your hardware platform and not all platforms do that.

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_will_end, service_mode_entered

Disables this autofire coil by clearing the hardware rule from the pinball controller hardware.

Index of config sections 1529

Mission Pinball Framework Documentation, Version

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_started

Enables this autofire coil by writing the hardware rule to the pinball controller hardware.

playfield:

Single value, type: string name of a playfields device. Default: playfield

The name of the playfield that this autofire device is on. The default setting is “playfield”, so you only
have to change this value if you have more than one playfield and you’re managing them separately.

reverse_switch:

Single value, type: boolean (true/false). Default: false

Boolean which controls whether this autofire device fires when the switch is active or inactive. The
default behavior is that the coil is fired when the switch goes to an active state. If you want to reverse
that, so the coil fires when the switch goes to inactive, then set this to False. (This is what you would
use if you have an opto.) Default is False.

switch_overwrite:

One or more sub-entries. Each in the format of string : string

You can overwrite the debounce setting of your switch in this device.

timeout_disable_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

To prevent machine gunning of your autofire coils (i.e. pops or slings) you can define a windows
timeout_watch_time. If more than timeout_max_hits hits to your switch (and thus responses by your
coil) are seen by MPF it will disable the hardware rule for timeout_disable_time and reinstall it
afterwards.

timeout_max_hits:

Single value, type: integer. Default: 0

To prevent machine gunning of your autofire coils (i.e. pops or slings) you can define a windows
timeout_watch_time. If more than timeout_max_hits hits to your switch (and thus responses by your
coil) are seen by MPF it will disable the hardware rule for timeout_disable_time and reinstall it
afterwards.

Index of config sections 1530

Mission Pinball Framework Documentation, Version

timeout_watch_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

To prevent machine gunning of your autofire coils (i.e. pops or slings) you can define a windows
timeout_watch_time. If more than timeout_max_hits hits to your switch (and thus responses by your
coil) are seen by MPF it will disable the hardware rule for timeout_disable_time and reinstall it
afterwards.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

The plain-English name for this device that will show up in operator menus and trouble reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for autofire coils: None

See the documentation on tags for details.

Related How To guides

∙ Autofire Coils

∙ Pop Bumpers

∙ kickbacks:

Index of config sections 1531

Mission Pinball Framework Documentation, Version

ball_devices:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The ball_devices: section of your config is where you configure your ball devices.

You can find examples here:

∙ Troughs

∙ Plungers

∙ Scoops/Vertical UP Kickers (VUKs)/Saucer Holes

Optional settings

The following sections are optional in the ball_devices: section of your config. (If you don’t include
them, the default will be used).

auto_fire_on_unexpected_ball:

Single value, type: boolean (true/false). Default: true

If a ball randomly shows up in this device, should it be automatically ejected?

ball_capacity:

Unknown type. See description below.

Optional value for how many balls this device can hold. You only need to specify this if your device
holds more balls that it has ball_switches for. (In other words, probably 99% of the ball devices in the
world don’t need this because they have one switch for each ball.) Some devices, like the Dead World
lock in Judge Dredd or the gumball machine in Twilight Zone don’t have a 1-to-1 mapping for ball
switches to balls held, so you would use this setting to tell MPF how many balls that device can hold.
Default will be set to the number of ball_switches there are.

ball_missing_target:

Single value, type: string name of a playfields device. Default: playfield

When a ball is goes missing from a device, this is the name of the ball device that will get the ball
added to it. (After all, the ball didn’t just vaporize. It went somewhere.) The default is playfield. (In
other words, if a ball disappears from a device, MPF assumes it’s on the playfield unless you specify a
different device here.) Most devices have ball switches which means that a ball which disappears from
a device that only has an exit to another device will be picked up by that device. But if you have a
device that leads into another device that doesn’t know how many balls it has, or if you have multiple
playfields, you can set that target here. Default is playfield.

Index of config sections 1532

Mission Pinball Framework Documentation, Version

ball_missing_timeouts:

List of one (or more) values, each is a type: time string (ms) (Instructions for entering time strings).
Defaults to empty.

A list of timeouts that correspond to how much time after a ball goes missing passes before MPF
assumes that ball went into this device’s target device. This is a list, so you can enter multiple values
to match the multiple entries in your eject_targets: list. If you don’t enter a value here, or if the
number of values you enter here are less than the number of eject targets this device has, MPF uses
20 seconds as the default.

ball_search_order:

Single value, type: integer. Default: 200

A relative value which controls the order individual devices are pulsed when ball search is running.
Lower numbers are checked first. Set to 0 if you do not want this device to be included in the ball
search. See the Ball Search documentation for details.

ball_switches:

Unknown type. See description below.

A list of switch names that are active when a ball is in the device. It’s assumed there is a one-to-one
ball switch to ball ratio, so if you have three switches then MPF assumes that device can hold three
balls. (Note that if your device can hold more balls than it has switches for, like the gumball machine
in Twilight Zone , then you can use the ball_capacity: setting to specify how many balls it can hold.)
MPF uses these switches to count how many balls a device has at any time by counting how many of
them are active. Note that “active switch” means “there is a ball here.” So if you have a trough with
opto switches which “invert” their state, then you will have to configure those switches with the “NC”
(normally closed) type in the switches: section of your config file. Default is None . (Meaning this
device tracks the number of balls it has virtually based on entrance_switch activations.)

captures_from:

Single value, type: string name of a playfields device. Default: playfield

This is the name of the ball device that this device captures balls from. In other words, if a ball
randomly appears in this device, it assumes it came from this captures_from device. Default is
playfield.

confirm_eject_event:

Single event. The device will add an handler for this event. Defaults to empty.

This is the name of the event that will be used to confirm a successful ball eject if you have
confirm_eject_type: event.

Index of config sections 1533

Mission Pinball Framework Documentation, Version

confirm_eject_switch:

Single value, type: string name of a switches device. Defaults to empty.

This is the name of the switch activation that will be used to confirm a successful ball eject if you have
confirm_eject_type: switch.

confirm_eject_type:

Single value, type: one of the following options: target, switch, event, fake. Default: target

Whenever the a ball device attempts to eject a ball, it needs to verify that the ball was actually ejected
properly. There are several ways that eject verification can take place, and this option allows you to
specify which verification method you want. Note that many of these options require further
configuration settings. Options for confirming the eject include:

∙ target (default) - This device will confirm the eject via a ball successfully entering the “target”
device it was ejecting the ball to. (The target device is one of the entries from your eject_targets:
list and can either be a ball device or the playfield. Note that if the target device is a playfield
and the playfield already has an active ball, then the eject confirmation will be changed to count
since it wouldn’t know if a playfield switch being hit was based on the newly-ejected ball or one
of the existing playfield balls.

∙ event - The ball device will look for a specific event, and when it sees that event, it knows the
eject was successful. This can be any event you want, specified via the confirm_eject_event:
setting.

∙ switch - If your ball device has a switch which is activated when the ball exits, you can use this
switch*type of confirmation. Then when the ball device sees this switch become active (even if
it’s momentary), it knows the eject was successful. An example of this might be if there’s a
switch on the ball gate at the top of a plunger lane. Note that you only want to use this type of
eject confirmation if the eject confirmation switch cannot be activated by balls on the playfield.
Otherwise if you’re trying to eject a ball when you already have one in play, you wouldn’t know if
the newly-ejected ball hit that switch or if an existing live ball hit it. This can be any switch you
want, specified via the *confirm_eject_switch: setting.

∙ fake - This is a setting that’s used by other devices (such as the ball lock) when they do not want
to use eject confirmation because they have another way of confirming the eject. It’s not an
option that you would use when setting up devices, but it’s included here in case you happen to
see a reference to it in the code or the log files.

counter:

Unknown type. See description below.

Todo: Help us to write it

Index of config sections 1534

Mission Pinball Framework Documentation, Version

eject_all_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Causes this device to eject all its balls.

eject_coil:

Unknown type. See description below.

The coil that is fired to eject a ball from this device.This eject_coil is optional, since some devices (like
a manual plunger or the playfield) don’t have eject coils. Default is None.

eject_coil_enable_time:

Unknown type. See description below.

When using an eject_coil and specifying eject_coil_enable_time MPF will enable to eject_coil for
eject_coil_enable_time instead of pulsing that coil.

eject_coil_jam_pulse:

Unknown type. See description below.

This is the pulse time, in ms, that the eject coil will use if the jam switch is active and the first eject
attempt failed to eject the ball. (In other words, if the jam switch is active, the ball device will try to
eject the ball with the regular pulse time. If that fails, then subsequent ejects will use this pulse time
instead. Default is None which means the ball device will not change the pulse time after 2 attempts.

eject_coil_max_wait_ms:

Unknown type. See description below.

MPF might delay the eject by eject_coil_max_wait_ms to ensure consistent pulses. See psus: for
details.

eject_coil_reorder_pulse:

Unknown type. See description below.

Pulse duration to use to reorder balls. If the ball device assumes that the balls are not settled properly
it will pulse the eject_coil for eject_coil_reorder_pulse and recount the balls. This might happen if
multiple balls disappear or the jam_switch is active.

eject_coil_retry_pulse:

Unknown type. See description below.

Index of config sections 1535

Mission Pinball Framework Documentation, Version

The new pulse time, in ms, that the eject coil will use if the eject has failed too many times. This pulse
time is used up until the device stops trying. Default is None which means the ball device will not
change the pulse time after failed attempts.

Note that the number of times the ball device will attempt the eject before increasing the pulse time is
controlled in the retries_before_increasing_pulse: setting.

eject_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Causes this device to eject one ball.

eject_targets:

List of one (or more) values, each is a type: string name of a ball_devices device. Default: playfield

A list of one or more ball devices and/or the word “playfield” which is used to specify all the ball
devices this device can directly eject a ball to. This is a very important concept and can be somewhat
confusing, so bear with us as we try to explain it.

Every time a ball device ejects a ball, MPF needs to “confirm” that the ball was successfully ejected.
There are several different methods which can be used to confirm the eject, and you configure which
method you want to use for each ball device via the confirm_eject_type: setting.

In many cases, it’s possible that a single ball device can actually eject a ball into one of several
different targets. For example, in Star Trek: The Next Generation, the main plunger catapult fires the
ball into the top of the playfield where there is a controlled drop target blocking the entrance to a
subway. If that drop target is up, then the ball bounces off it and then is live on the playfield. If that
drop target is down, a ball ejected from the catapult flies past it and into the subway. Once in the
subway, there is a series of diverters which can activate or deactivate to route the ball to either the
left VUK, the leftcannon, or the right cannon. In that machine, the left VUK, left cannon, and right
cannon are all ball devices. So the eject_targets: setting looks like this:

eject_targets: playfield, bd_leftVUK, bd_leftCannonVUK, bd_rightCannonVUK

In other words, the eject_targets: list is a list of all possible ball devices that this device can eject a
ball to.

Notice that the word playfield is also in that list, because if that drop target is up, then the ball ejected
from the catapult ends up on the playfield, so playfield is a valid target too. (In MPF, the playfield is
also a ball device.)

At this point you might be wondering what the point of this is? The reason you specify all these target
devices is because MPF’s ball controller and ball device code work hand-in-hand with MPF’s diverter
code to automatically “route” balls to ball devices that want them. So in Star Trek, you can use a
command to say “the left VUK should have one ball,” and MPF will see the source device for that ball
(the catapult, in this case, since it includes bd_leftVUK*in its list of eject targets) and it will cause the
catapult to eject a ball. (What’s happening behind the scenes is that the catapult posts an event which
says “I’m ejecting a ball with a target destination of the *bd_leftVUK”), and all the diverters (including
that top drop target) will see that and automatically position themselves accordingly so the ball gets to
where it needs to go.

Index of config sections 1536

Mission Pinball Framework Documentation, Version

Note that you only want to include devices in this list that are directly accessible as targets for balls
ejecting from this device. In other words your machine will probably have lots of ball locks and other
devices that the player can hit via flippers and balls from the playfield. Those devices should not be on
this list, because technically balls enter them from the playfield, not from the catapult.

The order of your eject_targets: list doesn’t really matter except for the first entry. If a ball device is
ever asked to eject a ball but a target is not specified, then the first entry on this list will be used as
the target. (In practice this shouldn’t really ever happen.)

eject_timeouts:

List of one (or more) values, each is a type: time string (ms) (Instructions for entering time strings).
Defaults to empty.

This is an optional list of one or more MPF time strings that specify how long the device should wait
for an ejected ball to be confirmed before it assumes the eject failed. The order you enter them here
matches up with the order of your eject_targets. For example, consider the following two lines from a
ball device configuration:

eject_targets: playfield, bd_leftVUK, bd_leftCannonVUK, bd_rightCannonVUK

eject_timeouts: 500ms, 2s, 4s, 4s

When this device is ejecting a ball to the playfield, the timeout will be 500ms. When it’s ejecting to the
bd_leftVUK, the timeout is 2 seconds, etc. If you don’t specify a list of eject timeouts, or if the length
of the list is less than the number of eject targets, then the default value of 10 seconds is used.

See Fine-tuning ball device timing for details about thouse timeouts.

ejector:

Unknown type. See description below.

You ejector implemententation and settings. By default MPF will select an implementation based on
the settings and configure it accordingly.

Default ejectors (you can use those via the ball device config):

∙ mpf.devices.ball_device.pulse_coil_ejector.PulseCoilEjector

∙ mpf.devices.ball_device.enable_coil_ejector.EnableCoilEjector

∙ mpf.devices.ball_device.hold_coil_ejector.HoldCoilEjector

Additional ejectors:

∙ mpf.devices.ball_device.event_ejector.EventEjector

ball_devices:

device_with_eject_event:

ejector:

class: mpf.devices.ball_device.event_ejector.EventEjector

events_when_eject_try: my_ball_device_eject

ball_switches: s_ball_switch1, s_ball_switch2

Index of config sections 1537

Mission Pinball Framework Documentation, Version

entrance_count_delay:

Unknown type. See description below.

This is the time delay (in MPF time string format) that this ball device will wait before counting the
balls after any of the ball_switches changes state. This delay exists because there’s often a “settling
time” when a ball first enters a device where the balls are bouncing around and the switches change
state really fast. Default is 500ms.

entrance_event_timeout:

Unknown type. See description below.

How long does the ball need after an entrance_event to settle in the ball device? This is used for some
heuristics to determine if this is a new ball or if the ball returned from a failed eject.

entrance_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

device control events format.

Default: None (Note that if you add an entry here, it will replace the default. So if you also want the
default value(s) to apply, add them too.)

These events tell this ball device that a ball has entered (been added to) the device.

entrance_switch:

Unknown type. See description below.

The name of a switch that is activated when a ball enters the device. Most devices don’t have this,
since they have the ball switches that are updated and will count the balls. But some devices, like
those that do not have switches for each ball, have a switch at the entrance that is triggered when a
ball enters. This switch has no effect if your ball device has ball_switches. Default is None.

entrance_switch_full_timeout:

Unknown type. See description below.

When using an entrance_switch and setting this to anything except 0, the device will be considered to
be full after entrance_switch_full_timeout ms. This is used in some troughs where the last ball sits on
the entrance switch (see How to configure an older style trough with two coils and only one ball
switch).

entrance_switch_ignore_window_ms:

Unknown type. See description below.

How long should another entrance switch be ignored after a previous activation?

Index of config sections 1538

Mission Pinball Framework Documentation, Version

exit_count_delay:

Unknown type. See description below.

This is the time delay that the device will wait before counting the balls after any after it attempts to
eject a ball if the device is configured to verify the eject via a count of the switches.

hold_coil:

Unknown type. See description below.

The name of a coil that is held in the enabled position to hold a ball. This is used in place of an
eject_coil, and it’s for devices that have to hold (like a post) to keep a ball in the device. Disabling the
hold coil releases a ball. Default is None. An example for such a hold coil is the lock that comes up
below Magneto in X-Men. A further lock of this kind is in Avatar below Jake Sully in the transporter
link.

hold_coil_release_time:

Unknown type. See description below.

This is the time (in MPF time string format) that devices with hold_coils will hold their coil open to
release a ball. Default is 1 second.

hold_events:

Unknown type. See description below.

These events cause this device to enable its hold coil.

hold_switches:

Unknown type. See description below.

A switch (or list of switches) that indicates a ball is in position to be captured by a hold_coil. Default is
None.

idle_missing_ball_timeout:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 5s

How long should the device wait before declaring a ball missing if it disappeared outside of an eject?
Usually balls do not disappear when the device is not ejecting.

jam_switch:

Unknown type. See description below.

Some pinball trough devices have a switch in the “exit lane” part of the trough that can detect if a ball
fell back into the trough from the plunger lane. (The extra switch is needed because when the trough

Index of config sections 1539

Mission Pinball Framework Documentation, Version

ejects the ball, the remaining balls in the trough will all roll down, so if the ejected ball falls back in, it
ends up sitting “on top” of the existing balls, so a normal trough ball switch won’t see it.)

This switch is known by different names by different manufacturers, having variously been called
trough jam, ball up switch, or ball stacked switch. If your ball device has a switch that can detect
jams, enter that switch name here. The ball device code in the MPF has a jam switch handler which
watches what happens to that switch. For example, if there’s an eject in progress and the jam switch
becomes active, it assumes the ball fell back in and will try the eject again.

max_eject_attempts:

Single value, type: integer. Default: 0

Defines how many times this ball device will attempt to eject a ball before deciding that the eject
permanently failed. A value of zero means there’s no limit. (e.g. the device will just keep trying to
eject the ball forever.)

mechanical_eject:

Single value, type: boolean (true/false). Default: false

Boolean setting which is used to specify whether this ball device has a mechanical eject option. In
MPF, a mechanical eject is what happens when a player is able to eject a ball from the ball device
mechanically, without MPF knowing about it. (A traditional spring- powered plunger is the most
common use.) This setting is used because when a mechanical eject happens, from MPF’s standpoint
it’s like the ball just disappeared, so this setting is used to let MPF know that that might happen. Set
this to True if a mechanical eject is an option for this ball device. Note that it’s entirely possible to
have devices that support both mechanical ejects as well as coil-fired ejects (with an eject_coil), such
as a plunger lane with a spring plunger and a coil-fired collar which can be used in auto or manual
mode. Default is False. However, if this device does not have an eject_coil or hold_coil defined, then
the mechanical_eject setting will automatically be set to True.

player_controlled_eject_event:

Single event. The device will add an handler for this event. Defaults to empty.

When using player controlled eject wait for this event to autofire the ball. (Instructions for entering
device control events)

request_ball_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

These events cause this device to request a ball to be sent to it.

retries_before_increasing_pulse:

Unknown type. See description below.

Index of config sections 1540

Mission Pinball Framework Documentation, Version

The number of times this ball device will attempt to eject the ball before increasing the eject coil pulse
time as specified in the eject_coil_retry_pulse: above.

Note that this number is the attempts that it will increase the pulse, so the default setting of 4 means
that it will try the original pulse value 3 times and then increase it on the 4th.

target_on_unexpected_ball:

Single value, type: string name of a ball_devices device. Defaults to empty.

Target playfield to use when capturing an unexpected ball.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

The plain-English name for this device that will show up in operator menus and trouble reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

See the documentation on tags for details.

Special-purpose tags for ball devices include:

∙ home - Specifies that any balls here are “home” and that the game can start. When MPF boots up,
any balls that are in devices not tagged with “home” are automatically ejected.

∙ drain - Specifies that a ball entering this device means the ball has “drained” from the playfield.
(i.e. it’s used to indicate a player lost the ball, versus some other random playfield lock.)

Index of config sections 1541

Mission Pinball Framework Documentation, Version

∙ trough - Specifies that this device holds the ball(s) that are not in play. In most cases, your
“drain” and “trough” tags will be the same device, though older games (Williams System 11 and
early WPC) actually have two devices under the apron, with a “drain” device receiving balls from
the playfield which it then immediately kicks over to a “trough” device which holds the balls that
are not in play. + no-eject-on-ballsearch - Specifies that this device should never attempt to
eject a ball as a result of ball search, even when idle and containing no balls.

The use of ball_add_live is discontinued. Use default_source_device in your playfield instead.

Related How To guides

∙ Ball Devices

ball_holds:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The ball_holds: section of your config is used to list and configure ball holds.

Note that ball holds are used to temporarily hold a ball while the game is doing something else.
(Starting a video mode, playing an intro show, etc.) If you want to hold and lock a ball towards
multiball, use the multiball_locks: section instead.

Ball holds do not affect the “balls in play” count, and they are not used to hold balls from ball-to-ball or
between players.

Here’s an example

ball_devices:

bd_bunker:

eject_coil: c_eject

ball_switches: s_ball1

ball_holds:

bunker:

balls_to_hold: 1

hold_devices: bd_bunker

Each sub-entry under the ball_holds: section is the name of the logical ball hold (“bunker”) in the
example above. Then each named ball hold has the following settings:

Required settings

The following sections are required in the ball_holds: section of your config:

hold_devices:

List of one (or more) values, each is a type: string name of a ball_devices device. Defaults to empty.

A list of one (or more) ball devices that will collect balls which will count towards this hold.

Index of config sections 1542

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the ball_holds: section of your config. (If you don’t include
them, the default will be used).

balls_to_hold:

Single value, type: integer. Defaults to empty.

The number of balls this ball hold should hold. If you don’t include it, then the ball hold capacity will
be automatically calculated based on the combined capacity of all the ball devices that make up this
ball hold.

If one of the associated hold devices receives a ball and this ball hold is full, then the ball device will
just release the ball again.

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event(s) which disable this ball hold.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event(s) which enable this ball hold.

priority:

Single value, type: integer. Default: 0

Relative priority when claiming balls entering a device. This can be used to give one ball_hold or
multiball_lock preference when claiming balls.

release_all_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event(s) which cause this ball hold to release all balls.

release_one_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event(s) which cause this ball hold to release a single ball.

Index of config sections 1543

Mission Pinball Framework Documentation, Version

release_one_if_full_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event(s) which cause this ball hold to release a single ball only if the ball hold contains the number of
balls that matches its balls_to_hold: setting.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
machine_reset_phase_3, ball_starting, ball_will_end, service_mode_entered

Event(s) which cause this ball hold to reset its held ball count.

source_playfield:

Single value, type: string name of a ball_devices device. Default: playfield

The name of the playfield that feeds balls to this hold. If you only have one playfield (which is most
games), you can leave this setting out. Default is the playfield called playfield.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

A descriptive label.

Index of config sections 1544

Mission Pinball Framework Documentation, Version

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for ball holds: None

See the documentation on tags for details.

Related How To guides

∙ Ball Holds

∙ Mystery Awards

∙ Ball Locks

∙ Scoops / Vertical up Kickers (VUKs) / Saucer holes

ball_locks:

Important: The “ball_locks config section have been removed in MPF 0.54. It’s been replaced with
the ball_holds: and multiball_locks: sections.

ball_saves:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The ball_saves: section of your config is where you create ball save devices. Here’s an example:

ball_saves:

default:

active_time: 10s

hurry_up_time: 2s

grace_period: 2s

enable_events: mode_base_started

timer_start_events: balldevice_plunger_lane_ball_eject_success

auto_launch: true

balls_to_save: 1

debug: true

Optional settings

The following sections are optional in the ball_saves: section of your config. (If you don’t include
them, the default will be used).

Index of config sections 1545

Mission Pinball Framework Documentation, Version

active_time:

Single value, type: time string (secs) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 0

How long the ball save is active (in MPF time string format) once it starts counting down. This
includes the hurry_up_time, but does not include the grace_period time. Leave this setting out (or set
it to 0) for unlimited time. Default is 0.

auto_launch:

Single value, type: boolean (true/false). Default: true

True/False which controls whether the ball save should auto launch the saved ball or wait for the
player to launch it.

ball_locks:

List of one (or more) values, each is a type: string name of a ball_devices device. Defaults to empty.

Use those devices first when ejecting balls to the playfield on ball save. If there are not enough balls
in the lock more balls will be requested to the source_playfield.

balls_to_save:

Single value, type: integer. Default: 1

How many balls this ball saver should save before disabling itself. Set it to -1 for unlimited.

delayed_eject_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Delay the eject until a event from delayed_eject_events is posted. For instance, this can be used in
combination with only_last_ball at the end of a wizard mode to drain all balls and continue the game
later.

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_will_end, service_mode_entered

Event(s) which disable this ball save, meaning a drained ball will no longer be saved.

early_ball_save_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Index of config sections 1546

Mission Pinball Framework Documentation, Version

Event(s) which will trigger a ball save to take place before the current ball has drained. A typical
example of this might be switch activation events from outlane switches which can be used to trigger
a ball save as soon as the ball hits the outlane.

eject_delay:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

Delay the eject of the new ball for eject_delay ms. This might be useful if you want to play a show or
some sounds first for dramatic reasons.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event(s) which enable this ball save. This also starts the ball save timer running unless there are
optional timer_start_events present, see below.

grace_period:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

The “secret” time (in MPF time string format) the ball save is still active. This is added onto the
active_time. Default is 0.

hurry_up_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

The time before the ball save ends (in MPF time string format) that will cause the
ball_save_<name>_hurry_up event to be posted. Use this to change the script for the light or trigger
other effect. Default is 0.

only_last_ball:

Single value, type: boolean (true/false). Default: false

Only save the last ball. In case two balls are in play and only one drains it will not be saved.

source_playfield:

Single value, type: string name of a ball_devices device. Default: playfield

Playfield to eject the saved balls to.

Index of config sections 1547

Mission Pinball Framework Documentation, Version

timer_start_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, start this ball saver’s countdown timer provided the ball save has
been enabled, above. This allows the timer to be started separate from the save being enabled. For
example, a light might turn on when a the ball save is enabled at the beginning of a players turn. To
avoid the timer running out (if the player takes a break before plunging a ball) the timer can be
configured not to start until an event in this list is posted.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see more debug output.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

The plain-English name for this device that will show up in operator menus and trouble reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for ball saves: None

See the documentation on tags for details.

Related How To guides

∙ Ball Saves

∙ Ball Start and End Behaviour

∙ Kickbacks

Index of config sections 1548

Mission Pinball Framework Documentation, Version

bcp:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The bcp: section of your config file controls how the MPF core engine communicates with the
standalone media controller.

There’s a default bcp: section in the default mpfconfig.yaml system-wide defaults section that should
be fine to get started, and then you can override it if needed for a specific situation:

bcp:

connections:

local_display:

host: localhost

port: 5050

type: mpf.core.bcp.bcp_socket_client.BCPClientSocket

required: true

exit_on_close: true

servers:

url_style:

ip: 127.0.0.1

port: 5051

type: mpf.core.bcp.bcp_socket_client.BCPClientSocket

debug: false

Optional settings

The following sections are optional in the bcp: section of your config. (If you don’t include them, the
default will be used).

connections:

List of one (or more) values, each is a type: bcp_connection. Defaults to empty.

The connections: section is where you can specify the connections the MPF core engine will make to
standalone media controllers. MPF supports connecting to multiple media controllers simultaneously
which is why you can add multiple entries here.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see more debug messages in the log.

servers:

List of one (or more) values, each is a type: bcp_server. Defaults to empty.

Index of config sections 1549

Mission Pinball Framework Documentation, Version

The servers: section is where you can specify bcp server instances which can be connected from other
processes. For instance, this is used for the service cli . MPF supports connecting to multiple servers
simultaneously which is why you can add multiple entries here.

Related How To guides

∙ The MPF Unity BCP Server

∙ Creating your own Media Controller

bcp_connection:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The connections: setting in your bcp: section of your config is where you configure BCP connections
MPF should establish on startup.

Required settings

The following sections are required in the bcp_connection: section of your config:

type:

Single value, type: string.

The class to implement the transport. Use mpf.core.bcp.bcp_socket_client.BCPClientSocket to use
the standard MPF BCP protocol.

More implementations are possible here. For instance, a highly efficient implemententation for
production or an encrypted socket for communication over the Internet.

Optional settings

The following sections are optional in the bcp_connection: section of your config. (If you don’t include
them, the default will be used).

exit_on_close:

Single value, type: boolean (Yes/No or True/False). Default: True

Whatever MPF should exit if this connection disconnects. This is usually true for the media manager
because we want MPF to exit once it is closed.

Index of config sections 1550

Mission Pinball Framework Documentation, Version

host:

Single value, type: string.

The host to connect to for this connection.

port:

Single value, type: integer. Default: 5050

The port to connect to for this connection.

required:

Single value, type: boolean (Yes/No or True/False). Default: True

Whatever this connection is required for MPF to run. Set this to false if you want MPF not to wait for
this connection on start.

Related How To guides

∙ The MPF Unity BCP Server

∙ Creating your own Media Controller

bcp_server:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The servers: setting in your bcp: section of your config is where you configure listeners for incoming
BCP connections.

Required settings

The following sections are required in the bcp_server: section of your config:

type:

Single value, type: string.

The class to implement the transport. Use mpf.core.bcp.bcp_socket_client.BCPClientSocket to use
the standard MPF BCP protocol.

Index of config sections 1551

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the bcp_server: section of your config. (If you don’t include
them, the default will be used).

ip:

Single value, type: string.

The IP to bind the server on. Starting in MPF 0.33, you can use ip: None and MPF will listen for
incoming connections on all network interfaces.

port:

Single value, type: integer. Default: 5050

The port to listen for incoming connections.

Related How To guides

∙ The MPF Unity BCP Server

∙ Creating your own Media Controller

bitmap_fonts:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The bitmap_fonts: section of your config is where you configure non-default parameter values for any
bitmap font assets you want to use in your game. Note: You do not have to have an entry for every
single bitmap font you want to use, rather, you only need to add individual assets to your config file
that have settings which differ from the default values. (This section is part of the MPF media
controller and only available if you’re using MPF-MC for your media controller.)

A bitmap font is one that stores each glyph (character) as an array of pixels (that is, a bitmap). It is
less commonly known as a raster font. Bitmap fonts are simply collections of raster images of glyphs.
For each variant of the font, there is a complete set of glyph images, with each set containing an
image for each character. For example, if a font has three sizes, and any combination of bold and
italic, then there must be 12 complete sets of images.

MPF-MC currently supports Portable Network Graphics (.png), Graphic Interchange Format (.gif), and
bitmap (.bmp) image files for bitmap fonts. In order for MPF to use the bitmap font, a font descriptor
must be present. This contains the information necessary to locate each glyph (character) in the
bitmap image and other associated information. The font descriptor information may be loaded from a
file or provided in the asset settings (font descriptor file format). MPF supports both .xml, .fnt, and
.txt files for font descriptor files (binary files are not currently supported).

Index of config sections 1552

http://www.angelcode.com/products/bmfont/doc/file_format.html

Mission Pinball Framework Documentation, Version

There is a great online tool for generating bitmap fonts (and the associated font descriptor file) from
True Type Fonts: http://kvazars.com/littera/

Here’s an example:

bitmap_fonts:

F1fuv:

file: F1fuv.png

descriptor: [' !"#$%&,()*+`-./', '0123456789:;<=>?', '@ABCDEFGHIJKLMNO', 'PQRSTUVWXYZ[\]^_', ''

→˓'abcdefghijklmno', 'pqrstuvwxyz{|}~ ']

example_font:

file: example_font.png

descriptor: example_font_descriptor.xml

Optional settings

The following sections are optional in the bitmap_fonts: section of your config. (If you don’t include
them, the default will be used).

descriptor:

Unknown type. See description below.

Here is an example of a descriptor list for a bitmap image that contains three rows of 15 characters
and the specific characters mapped to each position in each row:

descriptor: ['abcdefghijklmno', 'pqrstuvwxyz 012', '3456789,.:=<>-+']

Remember the descriptor list only works for monospaced characters (characters that are all the same
width and height).

file:

Single value, type: string. Defaults to empty.

The file to load when using this bitmap font.

load:

Single value, type: string. Defaults to empty.

When should the asset loader load this file? One out of mode_start, on_demand or preload.

Related How To guides

∙ Bitmap Fonts

∙ Bitmap Fonts (asset type)

Index of config sections 1553

http://kvazars.com/littera/

Mission Pinball Framework Documentation, Version

blinkenlight_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the blinkenlights: section of a step.

The blinkenlight_player: section of your config is where you add or remove colors to or from a
blinkenlight based on events. It’s also used in shows (via the blinkenlights: section) to add or remove
colors in that show step.

Example from a config file:

blinkenlight_player:

some_event:

my_blinkenlight1:

action: add

color: red

key: mykey1

some_other_event:

my_blinkenlight1:

action: remove

key: mykey1

In the example above, when the event called some_event is posted, the color red will be added to
my_blinkenlight1’s list of colors (this will cause the light to immediately start flashing if it wasn’t
already). The new color will have the key mykey1. The key is used like a name of the color, so that it
can be removed later using that key. When the event some_other_event is posted, the red color (key
mykey1) will be removed from the blinkenlight.

Example blinkenlight player from a show:

##! show: test

- time: 0

blinkenlights:

my_blinkenlight1:

action: add

color: blue

key: blue_color

my_blinkenlight2: purple

The first example shows the full config, while the second shows the “express” config. (What’s an
“express config?” Details here.

The blinkenlight player’s express config is the “add” action.

See Blinkenlight player for details.

Index of config sections 1554

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the blinkenlight_player: section of your config. (If you don’t
include them, the default will be used).

action:

Single value, type: one of the following options: add, remove, remove_mode, remove_all. Default: add

What action the blinkenlight should perform. The remove_all action will remove all the colors from the
blinkenlight, effectively turning it off. The remove_mode action will remove all the colors that were
added by the mode that the remove_mode action is coming from (remember that a blinkenlight can have
colors added from lots of different modes – that’s its whole purpose!).

color:

Single value, type: color_or_token. Default: white

The only action that requires a color setting is the add action. It sets the color to add to this
blinkenlight. Color values may be a hex string (e.g. 22FFCC), a list of RGB values (e.g. [50, 128, 206]),
a color name (e.g. turquoise), or a brightness value (i.e. AA or 120). MPF knows 140+ standard web
color names, and you can define your own custom colors in the named_colors: section of your config.
If you use brightness on an RGB light MPF will use the brightness for every channel. For instance
brigness AA will result in color AAAAAA.

key:

Single value, type: string. Defaults to empty.

You can think of this value as a name for the color you’re adding or removing from the blinkenlight. If
you add a color, then the key allows you to remove the color later using the key to specify which color
to remove. If you don’t specify a key, then the color is considered “keyless” (see Blinkenlight player
for more information about keyless colors).

Related How To guides

∙ Blinkenlight player

blinkenlights:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The blinkenlights: section of your config file is used to define lights on your pinball machine that can
be shared by multiple different modes at the same time. Blinkenlights work best with RGB LEDs,
because each mode that uses a blinkenlight can specify a color that the blinkenlight should flash for
that mode. The blinkenlight will then flash each of its colors in a cycle according to a given schedule.

Index of config sections 1555

Mission Pinball Framework Documentation, Version

Here’s an example section:

blinkenlights:

blinkenlight_1:

color_duration: 1s

off_when_multiple: false

light: l_left_ramp_arrow

priority: 1000

blinkenlight_2:

cycle_duration: 1s

off_when_multiple: false

light: l_right_ramp_arrow

priority: 1000

With the above configuration, two blinkenlights are configured: blinkenlight_1 and blinkenlight_2. You
can then use a blinkenlight_player to add or remove colors to these blinkenlights from within your
modes.

The options are as follows:

Optional settings

The following sections are optional in the blinkenlights: section of your config. (If you don’t include
them, the default will be used).

color_duration:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

Either color_duration or cycle_duration (see below) must be specified for each blinkenlight, but not
both.

This specifies the amount of time that each of the blinkenlight’s colors will be turned on. For example,
if this value is 1s, then each of the blinkenlight’s colors will be on for 1 second.

The more colors that are added to the blinkenlight when color_duration is specified, the longer it will
take to cycle through all the colors. If you want the blinkenlight’s cycle to always last the same
amount of time regardless of how many colors the blinkenlight has, then use cycle_duration instead
(see below).

cycle_duration:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

Either cycle_duration or color_duration (see above) must be specified for each blinkenlight, but not
both.

This specifies the length of one cycle of the blinkenlight. The blinkenlight will show all of its colors in
one cycle. This includes the “off” color at the end of the cycle, if applicable (see off_when_multiple
below). For example, if this value is 1s, and the blinkenlight has 2 colors in its list, and
off_when_multiple is false, then each color will be displayed for 0.5 seconds. If off_when_multiple is
true, then the “off” color will count as a color in the blinkenlight’s cycle, and so the each color will
only be displayed for 1/3 of a second.

Index of config sections 1556

Mission Pinball Framework Documentation, Version

The more colors that are added to the blinkenlight when cycle_duration is specified, the shorter each
color will be displayed. If you want each color to be displayed for a certain length of time regardless of
the number of colors, then use color_duration instead (see above).

light:

Single value, type: string name of a lights device. Defaults to empty.

This is the name of the light which this blinkenlight controls.

off_when_multiple:

Single value, type: boolean (true/false). Default: false

This specifies whether or not to include an “off” color at the end of each cycle when the blinkenlight
has more than one color in its list.

For example, if the blinkenlight has 2 colors (red and green) and off_when_multiple is False (the
default value), then the cycles will be red, green, red, green. However, if off_when_multiple is True,
then the cycles will be red, green, off, red, green, off. The “off” color in this case is treated as another
color for the purposes of the color_duration and cycle_duration settings above.

A blinkenlight that only has 1 color in its list will be off at the end of its cycle, regardless of whether
off_when_multiple is True or False. For example, the cycles of a blinkenlight that has 1 color (red) will
be red, off, red, off.

priority:

Single value, type: integer. Default: 0

The priority of the blinkenlight. If there is a show that uses this blinkenlight’s light, and the show and
the blinkenlight are happening at the same time, then the light will be controlled by whichever one
has the highest priority.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1557

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Todo: Help us to write it

Related How To guides

Todo: Help us to write it

bonus (mode_settings:)

Config File section

Valid in machine config files NO
Valid in mode config files YES

This section explains how to use the mode_settings: section for your machine’s End of Ball Bonus
mode. You should probably read the full End of Ball Bonus documentation first, and then just use this
for a reference for the settings later.

Note that the “mode_settings:” section is pretty much a generic placeholder that any mode can use for
its own custom settings. So the settings described here are specifically the settings that are used by
MPF’s built-in bonus mode, and so these settings are only valid in the bonus mode’s mode
configuration file.

Here’s an example from Brooks ‘n Dunn:

##! mode: mode1

mode_settings:

display_delay_ms: 4000

hurry_up_delay_ms: 500

hurry_up_event: flipper_cancel

bonus_entries:

- event: quarter_bonus

score: current_player.quarters * current_player.album_value

- event: wizard_bonus

score: 25000

player_score_entry: num_albums

Index of config sections 1558

Mission Pinball Framework Documentation, Version

Settings

display_delay_ms:

Time value, default 2s

The time between each “display event” generated by the bonus mode when its running. (In other
words, this is essentially how long each bonus slide is show.) This can be overridden on a slide-by-slide
basis.

hurry_up_delay_ms:

Time value, default 500ms

The time between each “display event” after the bonus “hurry up” mode has been triggered. So if the
display_delay_ms: is 2 seconds, and then the player hits both flippers at the same time to “hurry up”
the bonus display, that hurry up time will be used here.

Note that if you don’t want to show the slides faster, rather you just want to jump directly to the last
slide, then you can enter a value of 0 here.

hurry_up_event:

Name of an event. Default is flipper_cancel.

The event that will cause the bonus mode to change its delay between slides from the
display_delay_ms: time to the hurry_up_delay_ms: time. When this event is posted, the next slide is
shown immediately, and the timing is set to the new hurry up value.

end_bonus_event:

Name of an event. Default is None.

If you enter an event name here, the bonus mode will pause before posting its bonus_done event and
wait for this event to be posted. If this event is None, then the bonus mode will automatically end. You
can enter an event name here if you have something custom you want to do in the bonus mode.

keep_multiplier:

Boolean True/False or Yes/No. Default is False.

Controls whether the bonus_multiplier player variable should be reset (to 1) when the bonus mode is
over. Default is False which will not keep the bonus. (e.g. default is to reset it). Conditional values are
supported.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

Index of config sections 1559

Mission Pinball Framework Documentation, Version

bonus_entries:

A list of sub-entries, with one entry for each “thing” you want to track in the bonus.

This is the real meat of the bonus section. Many modern pinball machines have lots of different things
that go into the bonus calculation. So rather than just saying, “Your bonus is 5400 points”, it’s more
like “5 aliens x 25k points each, plus 15 modes x 1m each, plus 4 combos x 100k each, all times the
bonus multiplier.”

Since this section is entered like a list, you need a dash and a space at the beginning of each new
entry so MPF knows where one entry ends and one begins.

Here’s how an example might look based on the aliens, modes, and combos example just mentioned:

bonus_entries:

∙ event: alien_bonus score: 25000 player_score_entry: aliens

∙ event: mode_bonus score: 1000000 player_score_entry: num_modes

∙ event: combo_bonus score: 100000 player_score_entry: combos

Let’s look at each option you can use in each bonus entry:

event: (required)

The name of the event that is posted by the bonus mode. You should use a slide_player: in your
bonus mode with slide entries based on these names, so when the bonus mode posts that event, you
can show a slide with the relevant information for that bonus entry.

score: (required)

How many points this bonus entry is worth. Note that this will be multiplied by the
player_score_entry: (if it’s present). Also note that you can use dynamic values here if you want to do
advanced math.

player_score_entry:

An optional name of a player variable that will be multiplied by the score: entry. This is useful for the
“easy” entries where it’s just “some player variable multiplied by some score”. (For example, “number
of aliens times 25,000”.) In the example above, the first entry called “alien_bonus” will multiply the
“aliens” player variable times 25000.

Note that the bonus mode doesn’t care what player variable you use, and it would be up to you to
make sure that the player variable you choose is updated throughout your game (either through a
variable_player: section or a logic block or something like that).

Also if you choose not to include this entry, that’s fine. In that case the score: entry will be used by
itself. Notice in the example at the top of this page from Brooks ‘n Dunn that it’s not used when we
need the advanced math of multiplying two player variables together.

Index of config sections 1560

Mission Pinball Framework Documentation, Version

reset_player_score_entry:

Boolean (True/False or Yes/No). Default is False.

If this is true/yes, then the bonus mode will reset the player_score_entry: back to 0 once the bonus
mode is over. This is just a convenience thing for simpler bonus calculations that need to be reset per
ball. You don’t have to use it can could also reset the player variable some other way.

skip_if_negative:

Boolean (True/False or Yes/No). Default is False.

If this is True/Yes and if the score calculation for this bonus entry is less than 0, the event for this
bonus entry is not posted and the value is not subtracted from the player’s score.

skip_if_zero:

Boolean (True/False or Yes/No). Default is True.

If this is True/Yes, then if the score calculation for this bonus entry turns out to be 0, then the event
for this bonus entry is not posted. This is nice if you don’t want a bonus screen to show up for
something the player has not done, like “0 ramps = 0 points” or whatever. (Or maybe you want to
make this “true” to show the player how bad they are?) :)

coil_overwrites:

Config file section

Valid in machine config files NO
Valid in mode config files NO

Some devices offer one or multiple coil_overwrites: settings where you can overwrite coil settings.

Most commonly this is used in flippers: and autofire_coils:.

Optional settings

The following sections are optional in the coil_overwrites: section of your config. (If you don’t
include them, the default will be used).

hold_power:

Single value, type: float(0,1).

Overwrite the hold_power of the coil for this device. See default_hold_power in coils: for details.

Index of config sections 1561

Mission Pinball Framework Documentation, Version

pulse_ms:

Single value, type: time string (ms) (Instructions for entering time strings).

Overwrite the pulse_ms of the coil for this device. See default_pulse_ms in coils: for details.

pulse_power:

Single value, type: float(0,1).

Overwrite the pulse_power of the coil for this device. See default_pulse_power in coils: for details.

recycle:

Single value, type: boolean (Yes/No or True/False).

Overwrite the recycle setting of the coil for this device. See recycle in coils: for details.

Related How To guides

∙ flippers:

∙ kickbacks:

∙ autofire_coils:

coil_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the coils: section of a step.

The coil_player: section of your config is where you configure coil/solenoid/driver actions (pulse,
enable, disable, etc.) based on events. It’s also used in shows (via the coils: section) to perform coil
actions in that show step.

Example from a config file:

coil_player:

some_event: coil_1

some_other_event:

coil_2:

action: enable

hold_power: .5

Index of config sections 1562

Mission Pinball Framework Documentation, Version

In the example above, when the event called some_event is posted, coil_1 will pulse. When the event
some_other_event is posted, coil_2 will enable (be held on) at power level 0.5 (means 50% of maximum
power).

Note that the some_event: coil_1 is entered in a different way than the some_other_event:. The first
one has a simple key/value pair, whereas the second has a complete nested sub-configuration.

The first example shows the “express” config, while the second shows the full config. (What’s an
“express config?” Details here.

The coil player’s express config is the “pulse” action.

Example coil player from a show:

##! show: test

- time: 0

coils:

coil1: pulse

See Coil player for details.

Optional settings

The following sections are optional in the coil_player: section of your config. (If you don’t include
them, the default will be used).

action:

Single value, type: one of the following options: pulse, on, off, enable, disable. Default: pulse

What action the coil should perform. Note that “on” and “enable” are the same, and that “disable” and
“off” are the same.

hold_power:

Single value, type: number (will be converted to floating point). Defaults to empty.

This setting lets you control how much power is sent to the coil when it’s “held” in the on position.
This is an float value from 0-1 (i.e. 0% power to 100% power) which controls the relative power. If not
set it will use default_hold_power of the coils:.

max_wait_ms:

Single value, type: integer. Defaults to empty.

The maximum time in ms which MPF might use to delay this pulse for power management reasons.
See Power Management in Software for details.

pulse_ms:

Single value, type: integer. Defaults to empty.

Index of config sections 1563

Mission Pinball Framework Documentation, Version

The number of milliseconds you’d like this coil to pulse for. This setting overrides the coil’s
default_pulse_ms setting. Note that this setting only affects pulse actions. Make sure you are not
exceeding the coil’s max_pulse_ms setting. If not set it will use default_pulse_ms of the coils:.

pulse_power:

Single value, type: number (will be converted to floating point). Defaults to empty.

The power factor which controls how much power is applied during the initial pulse phase of the coil’s
activation. (Note that not all hardware platforms support variable pulse power.)

If not set it will use default_pulse_power of the coils:.

Related How To guides

∙ Coil player

∙ Coils (Solenoids)

∙ Shakers

coils:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The coils: section of your config is used to map coil (solenoid) names to driver board outputs. You
can also set the default pulse times, set tags, and specify power levels for coils that get held on. This
section can be used in your machine-wide config files. This section cannot be used in mode-specific
config files. Here’s an example section:

coils:

flipper_right_main:

number: A0-B0-0

default_pulse_ms: 30

max_pulse_ms: 100

default_pulse_power: 0.7

max_pulse_power: 1.0

flipper_right_hold:

number: A0-B0-1

default_hold_power: 0.25

max_hold_power: 0.5

knocker:

number: A0-B1-0

default_pulse_ms: 20

max_pulse_ms: 100

pop_bumper_left:

number: A0-B1-1

default_pulse_ms: 18

max_pulse_ms: 100

(continues on next page)

Index of config sections 1564

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_gate:

number: A0-B1-2

default_hold_power: 0.375

max_hold_power: 0.5

Warning: Please ensure that you have established common ground between logic and coil power
before turning on high voltage on your coils (especially on homebrew machines). Ignoring this
might lock on your coils, overheat them, burn down your house or kill you. We are serious, floating
grounds are dangerous. If you are not an electrical engineer read the guide about voltages and
power.

In a nutshell: You need to connect your logic ground (5V/12V) and your high voltage ground (48V or
80V). A power entry or power filter board is a convenient solution to solve this (and more) issues.

Always turn all PSUs off when connecting power or you might fry all boards at once. This is
generally a good idea but even more important when connecting more than one power supply to a
board.

IF YOU DID NOT UNDERSTAND WHAT THIS WARNING MEANS STOP NOW AND TRY TO
UNDERSTAND IT. OTHERWISE YOUR HARDWARE WILL LIKELY BURST INTO FLAMES AND
YOU NEED TO WAIT A FEW DAYS FOR A REPLACEMENT OR EVEN WORSE IT MIGHT KILL YOU.
IGNORING THIS IS THE MOST COMMON CAUSE FOR BROKEN DRIVER BOARDS.

The options are as follows:

Required settings

The following sections are required in the coils: section of your config:

number:

Single value, type: string. Defaults to empty.

This is the number of the coil which specifies which driver output the coil is physically connected to.
The exact format used here will depend on which control system you’re using and how the coil is
connected.

See the How to configure “number:” settings guide for details.

Optional settings

The following sections are optional in the coils: section of your config. (If you don’t include them, the
default will be used).

allow_enable:

Single value, type: boolean (true/false). Default: false

Index of config sections 1565

Mission Pinball Framework Documentation, Version

MPF will not enable any coil at 100% power unless you also add an allow_enable: true entry to that
coils’ settings. We include this as a safety precaution since many coils will burn up if you enable them
on solid, so the fact that you have to explicitly allow this for a coil prevents you from screwing
something up and accidentally enabling a coil that isn’t supposed to be enabled. If you have a
default_hold_power: setting less than 8 (full power), then you don’t need this allow_enable: entry
since you are implying you want to hold the coil by adding the default_hold_power setting. The default
default_hold_power is 100%, so if you just want to be able to enable a coil at 100% then just add
allow_enable: true and you don’t have to add a default_hold_power entry. If you try to enable a coil
that does not have default_hold_power configured or allow_enabled set to true, then the coil will not
actually be enabled and you’ll get an error in your log file.

default_hold_power:

Single value, type: float(0,1). Defaults to empty.

This setting lets you control how much power is sent to the coil when it’s “held” in the on position.
This is an float value from 0-1 (i.e. 0% power to 100% power) which controls the relative power.

Different hardware platforms implement the hold power in different ways, so this 0-1
default_hold_power setting provides a generic interface that works with all hardware platforms. (You
can also add platform- specific settings here for more fine-grained control of how the hold power is
applied. See the How To guide for your specific hardware platform for details.) This
default_hold_power: section is optional, and you only need it for coils you intend to hold on. In other
words, if a coil is just pulsed (which is most of them), then you don’t need to worry about this section.

This provides the default value for any enable calls on the coil. Devices might call enable with a
different power setting.

default_pulse_ms:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Defaults to empty.

The default amount of time, in milliseconds, that this coil will pulse for. This can be overridden in
other ways, but this is the default that will be used most of the time. Default is 10ms, which is
extremely weak, but set low for safety purposes.

default_pulse_power:

Single value, type: float(0,1). Defaults to empty.

The power factor which controls how much power is applied during the initial pulse phase of the coil’s
activation. (Note that not all hardware platforms support variable pulse power.) See the section on
default_hold_power: above for details. It will also used in rules.

default_recycle:

Single value, type: boolean (true/false). Defaults to empty.

Controls whether this coil should add a small delay before it’s allowed to be fired again. (This is used
on things like pop bumpers and slingshots to prevent “machine gunning.”)

Index of config sections 1566

Mission Pinball Framework Documentation, Version

This is a boolean setting because it’s implemented differently depending on the hardware platform
used. See the documentation for your specific hardware platform if you’d like more control than
what’s available with the straight on/off settings.

default_timed_enable_ms:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Defaults to empty.

Todo: Help us to write it

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Disables this coil (meaning that if it’s active, it’s shut off).

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Enables (holds on) this coil. This requires that allow_enable is true or that a default_hold_power or
max_hold_power setting is configured.

max_hold_duration:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

Todo: Help us to write it

max_hold_power:

Single value, type: float(0,1). Defaults to empty.

This controlls the maximum allowed hold power for this this coil. While default_hold_power sets the
default for all enable calls on the coil this defined the upper limit. If this is not set MPF will use
default_hold_power. Usually you can omit this setting.

max_pulse_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

Maximum allowed pulse time for this coil. If set, MPF will raise an error if any code tries to pulse the
coil for more than max_pulse_ms.

Index of config sections 1567

Mission Pinball Framework Documentation, Version

max_pulse_power:

Single value, type: float(0,1). Default: 1.0

Set the maxium pulse power. If pulse is called on the coil without any parameters default_pulse_power
is used.

platform:

Single value, type: string. Defaults to empty.

Name of the platform this coil is connected to. The default value of None means the default hardware
platform will be used. You only need to change this if you have multiple different hardware platforms
in use and this coil is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

platform_settings:

Single value, type: dict. Defaults to empty.

Dict of platform specific settings. Consult your platform documentation for those settings.

psu:

Single value, type: string name of a psus device. Default: default

Specify to which power supply unit this coil is connected. This is used for power management. In
some cases, MPF can deliberately delay coil pulses to prevent too many coils from firing and drawing
to much current from your PSU.

pulse_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

device control events format.

Default: None (Note that if you add an entry here, it will replace the default. So if you also want the
default value(s) to apply, add them too.)

Event(s) that pulse this coil (at its default_pulse_ms and power settings).

pulse_with_timed_enable:

Single value, type: boolean (true/false). Default: false

Todo: Help us to write it

Index of config sections 1568

Mission Pinball Framework Documentation, Version

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

A descriptive name for this device which will show up in the service menu and reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for coils: None

See the documentation on tags for details.

Related How To guides

∙ Coils (Solenoids)

color_correction_profile:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The color_correction_profiles: section of your light_settings: is where you list your color correction
profiles for your lights.

Index of config sections 1569

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the color_correction_profile: section of your config. (If you
don’t include them, the default will be used).

gamma:

Single value, type: number (will be converted to floating point). Default: 2.5

Specifies the gamma correction value for the lights. The default is 2.5.

linear_cutoff:

Single value, type: number (will be converted to floating point). Default: 0.0

This is best explained by quoting the FadeCandy documentation: By default, brightness curves are
entirely nonlinear. By setting linearCutoff to a nonzero value, though, a linear area may be defined at
the bottom of the brightness curve. The linear section, near zero, avoids creating very low output
values that will cause distracting flicker when dithered. This isn’t a problem when the lights are
viewed indirectly such that the flicker is below the threshold of perception, but in cases where the
flicker is a problem this linear section can eliminate it entirely at the cost of some dynamic range. To
enable the linear section, set linearCutoff to some nonzero value. A good starting point is 1/256.0,
corresponding to the lowest 8-bit PWM level.

linear_slope:

Single value, type: number (will be converted to floating point). Default: 1.0

Specifies the slope (output / input) of the linear section of the brightness curve for the lights. The
default is 1.0.

whitepoint:

List of one (or more) values, each is a type: number (will be converted to floating point). Default: 1.0,
1.0, 1.0

Specifies the white point (or white balance) of your lights. Enter it as a list of three floating point
values that correspond to the red, blue, and green light segments. These values are treated as
multipliers to all incoming color commands. The default of 1.0, 1.0, 1.0 means that no white point
adjustment is used. 1.0, 1.0, 0.8 would set the blue segment to be at 80% brightness while red and
green are 100%, etc.

You can use this to affect the overall brightness of lights (e.g. 0.8, 0.8, 0.8 would be 80% brightness
as every color would be multiplied by 0.8). You can also use this to affect the “tint” (lowering the blue,
for example).

Related How To guides

∙ lights:

∙ light_settings:

Index of config sections 1570

http://en.wikipedia.org/wiki/Gamma_correction

Mission Pinball Framework Documentation, Version

combo_switches:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The combo_switches: section of your config is where you configure combo switches which are used for
things like “flipper cancel” or super skill shots where the player holds in one flipper button while
hitting the launch button.

Here’s an example machine config file using them:

#config_version=5

modes:

- mode1

switches:

switch1:

number:

switch2:

number:

switch3:

number:

switch4:

number:

switch5:

number:

tags: tag1

switch6:

number:

tags: tag1

switch7:

number:

tags: tag2

switch8:

number:

tags: tag2

switch9:

number:

tags: left_flipper

switch10:

number:

tags: right_flipper

combo_switches:

tag_combo:

tag_1: tag1

tag_2: tag2

switch_combo:

switches_1: switch1

switches_2: switch2

multiple_switch_combo:

(continues on next page)

Index of config sections 1571

Mission Pinball Framework Documentation, Version

(continued from previous page)

switches_1: switch1, switch2

switches_2: switch3, switch4

custom_offset:

switches_1: switch1

switches_2: switch2

max_offset_time: 1s

custom_hold:

switches_1: switch1

switches_2: switch2

hold_time: 1s

custom_release:

switches_1: switch1

switches_2: switch2

release_time: 1s

custom_times_multiple_switches:

tag_1: tag1

tag_2: tag2

max_offset_time: 1s

hold_time: 1s

release_time: 1s

debug: true

custom_events:

switches_1: switch1

switches_2: switch2

events_when_both: active_event, active_event2

events_when_inactive: inactive_event

events_when_one: one_event

To use combo switches, add a combo_switches: section to either a mode or machine config. Then
create subsections for each combo you want to use. (A switch can be part of more than one combo.)

The name of each combo doesn’t really matter, though it’s used to construct the events that are posted
by this combo unless you override them.

Note about switch and tag “groups”

MPF’s combo switches are meant to be used in pairs of two. (We figure that players only have two
hands, so it doesn’t really make sense to do combos that require three buttons to be pushed at once.
Though if you want that then you can write some custom code for it.)

Usually combos would just be two switches. left_flipper + right_flipper or left_flipper +
launch_button. However to give the most flexibility, you can enter your switches using either tags or
switch names. It doesn’t matter which you use (and you can mix-and-match if you want), the main
thing is for the combo to work, you need to have at least one switch in the “1” side and one switch on
the “2” side.

Note that if you have more than one switch in either group (either by specifying multiple switches for
the switch config, or by using a tag that’s applied to multiple switches, or both), then the combo will
become active when any switch from either group is active. (This can be useful if you have two-stage
flipper buttons where a half-push of the button controls the bottom flipper and a full push controls the
top flipper. In that case you technically have two switches per flipper button and you can add both to
each group in your combo.)

Index of config sections 1572

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the combo_switches: section of your config. (If you don’t include
them, the default will be used).

events_when_both:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

This is an event (or a list of events) that will be posted when both switches are held in. If you have a
max_offset_time: configured, then both switches will need to have been pressed within that time. If
you have a hold_time: configured, then both switches will need to be active for at least that long
before this event (or these events) are posted.

If the player pushes both switches, then releases one, then pushes in the switch that was released
again, this event will be re-posted.

If you don’t set this value, then a default event with the name of your combo plus _both will be used.

events_when_inactive:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

This is an event (or list of events) that will be posted when the player releases both of the buttons,
essentially “releasing” the combo.

If you don’t set this value, then a default event with the name of your combo plus _inactive will be
used.

events_when_one:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

This is an event (or list of events) that will be posted when the player releases one switch after both
switches have been pressed together. (In other words, this event will only be posted after the
events_when_both event is posted.)

If you don’t set this value, then a default event with the name of your combo plus _one will be used.

events_when_switches_1:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

This is event (or list of events) will be posted when only switches from switches_1 were active for
max_offset_time.

events_when_switches_2:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

This is event (or list of events) will be posted when only switches from switches_2 were active for
max_offset_time.

Index of config sections 1573

Mission Pinball Framework Documentation, Version

hold_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

How long each button has to be pressed in order for it to count as a combo. The default is 0 which
means that as soon as both switches are active, the combo is active.

If you set hold_time: 1s, that means that the player will have to press and hold both buttons for 1
second before the combo’s “both” event is posted.

max_offset_time:

Single value, type: time string (secs) (Instructions for entering time strings). Default: -1

Specifies a time window that a switch from group 1 and group 2 have to be hit within in order to
register as a combo.

The default value of -1 means there is no time limit, meaning that the player can hit and hold one
button, and then five minutes later hit the next button, and the combo will count.

If you set max_offset_time: 1s, that means that the player will have to hit (and hold) both switches
within 1 second of each other.

release_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

How long a button has to be released before the combo will switch from “both” state to the “one”
state. The default is 0 which means this is instant.

Note that once both buttons are released, the combo is cleared. This setting only affects the scenario
when one button is held in while the other is released.

switches_1:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

A switch name (or a list of switches) that will be used for the group 1 of the combo. You can use this
setting or the tag_1: setting above.

switches_2:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

A switch name (or a list of switches) that will be used for the group 1 of the combo. You can use this
setting or the tag_2: setting above.

tag_1:

List of one (or more) values, each is a type: string. Defaults to empty.

Index of config sections 1574

Mission Pinball Framework Documentation, Version

A tag (or list of tags) of switches (in the switches: section of your machine config that will be used for
switches for group 1 of the combo. You can either use a tag, or use the switches_1: setting (or both,
really).

tag_2:

List of one (or more) values, each is a type: string. Defaults to empty.

A tag (or list of tags) of switches (in the switches: section of your machine config that will be used for
switches for group 2 of the combo. You can either use a tag, or use the switches_2: setting (or both).

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Combo Switches (“flipper cancel”, etc.)

Index of config sections 1575

Mission Pinball Framework Documentation, Version

config:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The config: section of your configuration files allows you to specify additional configuration files that
will be read in after the current file is loaded. Here’s an example:

config:

- machine.yaml

- devices.yaml

- game.yaml

- textstrings.yaml

- keymap.yaml

Note that each file is on its own line, which starts with a minus, then a space, then the file. (The space
is important.) Also note that you can (optionally) specify a path, like this:

- config\machine.yaml

- config/my_game/machine.yaml

MPF will attempt to convert relative and absolute paths based on your OS, and it can deal with slashes
in either direction.

MPF will then open those files one-by-one and merge their settings into the master configuration
dictionary. The settings are merged together in the order the files are listed, so if multiple files specify
the same configuration option then whichever one comes later in the list will overwrite any options
that have already been specified.

You can also have config: sections in other config files, meaning that one config file can call another
which will call another, etc.

Whenever MPF encounters a new config file, it will add it to the end of the list. And since files are
processed in order, if there are any conflicting settings then the last file on the list will “win.” Also
note that the framework will attempt to load the file from the current working directory (containing
the config file that config: entry is from. If that fails then it will try the last known good directory that
worked for a config file.

Related How To guides

∙ Layering Modes Example

counters:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Index of config sections 1576

Mission Pinball Framework Documentation, Version

The counters: section of your config is where you configure counter logic blocks. See also counters.
The structure of counter logic blocks is like this:

##! mode: mode1

counters:

the_name_of_this_counter:

count_events: my_count_event

count_complete_value: 10

some_other_counter:

count_events: s_my_switch_active

starting_count: 50

count_interval: 10

count_complete_value: 100

Note that the actual name of the counter doesn’t really matter. Mainly it’s used in the logs and for
event names.

Counters no longer save their state in player variables. If you are using something like
(YOUR_COUNTER_count) in a slide or widget you can use a variable_player to restore the old behaviour:

##! mode: my_mode

variable_player:

logicblock_YOUR_COUNTER_updated:

YOUR_COUNTER_count:

int: value

action: set

Required settings

The following sections are required in the counters: section of your config:

count_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

This is an event (or a list of events) that, when posted, will increment or decrement the count for this
Counter.

Note that if you include multiple events in this list, any one of the events being posted will cause the
hit count to increase. If you want to track different kinds of events separately, use an Accrual or
Sequence Logic Block instead.

This setting is required.

Optional settings

The following sections are optional in the counters: section of your config. (If you don’t include them,
the default will be used).

Index of config sections 1577

Mission Pinball Framework Documentation, Version

control_events:

List of one (or more) values, each is a type: counter_control_events. Defaults to empty.

Control events to change the value of this counter. MPF currently supports adding/substracting from
the count or jumping to a certain value.

For instance in the following example add_five_event will add 5 to the counter:

counters:

counter_with_control_events:

count_events: count_up

control_events:

- event: add_five_event

action: add

value: 5

count_complete_value:

Single value, type: integer or template (Instructions for entering templates). Defaults to empty.

When the Counter exceeds (or gets below if you’re counting down) this value, it will post its
“complete” event and be considered complete.

count_interval:

Single value, type: integer. Default: 1

Specifies the numeric count change is for each hit. In other words, this is how much is added or
removed from the count with each hit. Default is 1, but you can make it whatever you want if you want
your count to increase by more or less than one whenever a count event occurs. You could use this, for
example, in a mode to create a counter that tracks the value of a shot. Maybe it starts at 2,000,000,
but each shot a playfield standup increases the value by 250,000.

Default is 1.

direction:

Single value, type: one of the following options: up, down. Default: up

This is either up or down and specifies whether this counter counts up or counts down.

Default is up.

multiple_hit_window:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

This is an MPF time value string that will be used to group together multiple count_events as if they
were one single event. So if you have multiple_hit_window: 500ms and you get three hit events 100ms
apart, they will all count as one hit.

Index of config sections 1578

Mission Pinball Framework Documentation, Version

Note that subsequent hits that come in during the time window do not extend the time. So with the
500ms hit_window from above, the first hit counts and sets the timer, another hit 300ms later won’t
count, but a third hit 300ms after the second (and 600ms after the initial hit) will count (and it will set
its own 500ms timer to ignore future hits).

Default is 0 (which means all hits are counted).

starting_count:

Single value, type: integer or template (Instructions for entering templates). Default: 0

This is the starting value of the Counter and the value it goes back to when it’s reset. Default is zero.
If you’re configuring a counter with direction: down, you’ll want to also set this to something more
than zero.

Default is 0.

Note that you can use a dynamic value for this setting.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Currently unused.

Index of config sections 1579

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the logic_blocks_common: section of your config. (If you don’t
include them, the default will be used).

disable_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will disable this logic block.

A logic block must be enabled to track hits, progress, and to post events.

disable_on_complete:

Single value, type: boolean (true/false). Default: true

True/False (or Yes/No) which controls whether this logic block disables itself once it completes. This
does not reset the current value.

enable_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will enable this logic block.

A logic block must be enabled to track hits, progress, and to post events.

If you don’t have any enable_events listed, then the logic block will automatically be enabled when the
player’s ball starts.

events_when_complete:

List of one (or more) events.

Events that will be posted when this device is completed.

events_when_hit:

List of one (or more) events.

Events that will be posted when this device is hit or advanced.

persist_state:

Single value, type: boolean (true/false). Default: false

Boolean setting (yes/no or true/false) which controls whether this logic block remembers where it was
from ball-to-ball. If False, then this logic block will reset itself whenever a new ball starts. If True,
then this logic block will be saved to the player variable <logic_block_name>_state.

Index of config sections 1580

Mission Pinball Framework Documentation, Version

Note that logic block state is reset on mode end when this is False and, as normal modes stop at the
end of a ball, the state is always maintained on a per-player basis, regardless of what this setting is
configured for.

reset_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will reset this logic block back to its original value. This has no effect on the
enabled/disabled state of the block.

Note that there are also reset_on_complete: and persist_state: settings which also affect how and
when the logic block is reset.

You can reset a logic block regardless of whether it’s enabled.

reset_on_complete:

Single value, type: boolean (true/false). Default: true

True/False (or Yes/No) which controls whether this logic block resets itself once it completes. This just
resets the current value or progress. It does not change the enabled or disabled state.

Note, disable_on_complete default is true, which may seem like reset isn’t working. For something
like a counter that automatically starts again change disable_on_complete to false.

restart_events:

List of one (or more) device control events (Instructions for entering device control events).

List of one (or more) events which, when posted, will restart this logic block. A restart is a reset, then
an enable, combined into a single action.

start_enabled:

Single value, type: boolean (true/false).

If true this device will start enabled. If false this device will start disabled. If you omit this the device
will start enabled unless you specify enable_events in which case the device will start disabled.

Related How To guides

∙ Counter Logic Blocks

∙ Integrating Logic_Blocks and Shows

counter_control_events:

Config file section

Index of config sections 1581

Mission Pinball Framework Documentation, Version

Valid in machine config files NO
Valid in mode config files NO

Counter can contain control_events: which can add or substract to the count of your counter.
Alternatively, you can set the counter to a certain value using an event.

Required settings

The following sections are required in the counter_control_events: section of your config:

action:

Single value, type: one of the following options: add, subtract, jump.

add will add value to the current count of your counter. subtract will subtract value from the current
count of your counter. jump will set your counter to value.

event:

Single value, type: string.

The event to trigger the action.

Optional settings

The following sections are optional in the counter_control_events: section of your config. (If you
don’t include them, the default will be used).

value:

Single value, type: integer or template (Instructions for entering templates).

The value to use in action.

Related How To guides

∙ counters:

credits:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The credits: section of your config contains settings for the credits mode.

Index of config sections 1582

Mission Pinball Framework Documentation, Version

There’s a full How To guide which walks you through setting up the credits mode, so be sure to read
that for the details. This page just contains the settings which control how the credits mode behaves.
Here’s an example config:

credits:

max_credits: 12

free_play: false

price_tier_template: "{{credits}} CREDITS ${{price}}"

service_credits_switch: s_esc

switches:

- switch: s_left_coin

type: dollars

value: .25

- switch: s_right_coin

type: dollars

value: 1

pricing_tiers:

- price: .50

credits: 1

- price: 2

credits: 5

events:

- event: special

type: special

credits: 1

- event: replay

type: replay

credits: 1

- event: high_score_credit

type: high_score

credits: 1

- event: match

type: match

credits: 1

fractional_credit_expiration_time: 15m

credit_expiration_time: 2h

persist_credits_while_off_time: 1h

free_play_string: FREE PLAY

credits_string: CREDITS

Optional settings

The following sections are optional in the credits: section of your config. (If you don’t include them,
the default will be used).

credit_expiration_time:

Single value, type: time string (ms) (Instructions for entering time strings) . Default: 0

The amount of time before any credits on the machine are removed (resetting the number of credits
back to 0). This timer only runs while the machine is in attract mode, and its reset each time a new
credit (or partial credit) is added to the machine. If a game is played, the timer starts fresh when the

Index of config sections 1583

Mission Pinball Framework Documentation, Version

game is over and the machine goes back to attract mode. This value is entered as a standard MPF
time string and can be minutes, hours, or even days long. Default is 2 hours.

credits_string:

Single value, type: string. Default: CREDITS

This is the text that will make up the credits_string before the number of credits. For example, if there
are 2 1/2 credits on the machine, the credits_string will be CREDITS 2 1/2. Default is CREDITS.

fractional_credit_expiration_time:

Single value, type: time string (ms) (Instructions for entering time strings) . Default: 0

The amount of time before fractions of credits are removed from the machine. This doesn’t affect
whole credits, so if the machine is sitting there with 2 1/4 credits on it, after this time expires MPF
will clear the 1/4 credit leaving 2 whole credits. This timer only runs while the machine is in attract
mode, and its reset each time a new credit (or partial credit) is added to the machine. If a game is
played, the timer starts fresh when the game is over and the machine goes back to attract mode. This
value is entered as a standard MPF time string and can be minutes, hours, or even days long. Default
is 15 minutes.

free_play:

Single value, type: boolean (Yes/No or True/False). Default: yes

Controls whether the machine is in free play mode. Note that if you want your machine to always be in
free play mode, then you can also choose to not use the credits mode altogether.

free_play_string:

Single value, type: string. Default: FREE PLAY

The text string that will be used in the credits_string machine variable when the machine is in free
play. Default is FREE PLAY.

max_credits:

Single value, type: integer. Default: 0

The maximum number of credits you want to allow on the machine. Note that pinball machines can’t
prevent players from adding money to machines, so be careful with this.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

Index of config sections 1584

Mission Pinball Framework Documentation, Version

persist_credits_while_off_time:

Single value, type: time string (secs) (Instructions for entering time strings) . Default: 1h

The amount of time that credits will remain on the machine even when MPF is not running. Set to 0 if
you do not want to MPF to retain credits when its powered off. The way this works behind the scenes
is that whenever a new credit (or a fraction of a credit) is added to the machine, MPF writes that to
disk as a persistent machine variable with an expiration time and date based on the current time plus
the delay time you add here. When MPF boots up, it loads the credits from the machine variables file
and checks their expiration time, and if it’s in the past then it doesn’t add them back. This value is
entered as a standard MPF time string and can be minutes, hours, or even days long. Default is 1 hour.

service_credits_switch:

List of one (or more) values, each is a type: string name of a switches: device. Default: None

This is the name of a switch that’s used to add so-called “service credits” to the machine. This switch
has a 1-to-1 ratio, meaning that one credit is added to the machine each time this switch is pressed.

switches:

The switches: section contains the following nested sub-settings.

A list of switches that, when triggered, add credits (or fractions of a credit) to the machine. Notice
that the sub-entries under switches are actually a list with the settings for switch, type, and value,
repeated multiple times.

Optional settings

The following sections are optional in the switches: section of your config. (If you don’t include them,
the default will be used).

switch:

Single value, type: string name of a switches: device. Default: None

The name of the switch (from your machine-wide switches: section) for the credit switch.

type:

Single value, type: string. Default: money

What type of currency is being deposited when that switch is hit. This doesn’t affect the actual
behavior of MPF, rather it’s just used in as the column name and for totaling the earnings reports (so
you can track “money” separate from “tokens”). You can enter whatever you want here: money,
dollars, dinars, etc.

Index of config sections 1585

Mission Pinball Framework Documentation, Version

value:

Single value, type: number (will be converted to floating point). Default: 0.25

How much value is added whenever this switch is hit. Notice that there are no currency symbols here
or anything. A value of .25 could be 0.25 dollars or 0.25 Euros or 0.25 Francs—it really doesn’t matter.
The key is that it’s 0.25 of whatever monetary system you have.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

price_tier_template

Default “{{credits}} CREDITS ${{price}}”

Placeholder to generate the credits string.

pricing_tiers:

The pricing_tiers: section contains the following nested sub-settings.

This is where you actually set your pricing by mapping how many of your monetary units you want to
equate to a certain number of credits. The default config is fairly common, with 0.50 currency
resulting in 1 credit, with a price break at 2 that gives the player 5 credits instead of 4. (So basically
they get one free credit if they put in enough money for 4 credits.) The most important thing to know
here is that MPF always requires that 1 credit is used to start a game, and 1 credit is required to add
an additional player to a game. So if you want to change the price of your game, you don’t change the
number of credits per game, rather, you change the number of credits a certain amount of money is
worth. The pricing tier discount processing is reset when Ball 2 starts. So if it costs $0.50 for one
credit or $2 for 5 credits, if the player puts $0.50 in the machine and plays a game, if they wait until
that game is over and deposit another $1.50, they’ll only get 3 more credits. You can have as many
pricing_tiers as you want. The first one dictates how much a regular game costs and is required. If
you don’t want any price breaks, then just add the first one.

Here’s an example:

credits:

...

pricing_tiers:

- price: .50

credits: 1

- price: 2

credits: 5

price:

Price for number of credits.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

Index of config sections 1586

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the pricing_tiers: section of your config. (If you don’t include
them, the default will be used).

credits:

Single value, type: integer. Default: 1

The total number of credits that will be added based on this price tier

price:

Single value, type: number (will be converted to floating point). Default: .50

The numeric currency value for this pricing tier.

events:

A list of one or more events with settings which add credits based on MPF events. Like the
pricing_tiers section, start each entry here with a minus sign and a space.

credits:

...

events:

- event: special

type: special

credits: 1

- event: replay

type: replay

credits: 1

- event: high_score_credit

type: high_score

credits: 1

- event: match

type: match

credits: 1

event:

The event that will trigger a credit action.

type:

String which can be whatever you want, used for audits. This lets you track different types of credits,
for example, money in versus replays versus specials versus high score awards, etc.

Index of config sections 1587

Mission Pinball Framework Documentation, Version

award:

Numeric value of the number of credits you’d like to award.

custom_code:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The custom_code: section of your config is a list where you register your custom code classes. You can
find an example here: custom_code (example config files) .

Related How To guides

∙ MPF developer documentation.

display_light_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the display_lights: section of a step.

The display_light_player: section of your config is where you use your lights as a display. See Using
LEDs as display (display_light_player) for details.

Optional settings

The following sections are optional in the display_light_player: section of your config. (If you don’t
include them, the default will be used).

action:

Single value, type: one of the following options: play, stop. Default: play

Play or stop the display.

bcp_connection:

Single value, type: string. Default: local_display

Which BCP client provides the content for your display. You can usually leave this at the default.

Index of config sections 1588

http://developer.missionpinball.org/en/dev/code/machine_code.html

Mission Pinball Framework Documentation, Version

lights:

List of one (or more) values, each is a type: string. Defaults to empty.

Which LEDs should receive the updates. You usually use a tag here or ‘*’ for all of them.

max_x:

Single value, type: integer. Defaults to empty.

Unused.

max_y:

Single value, type: integer. Defaults to empty.

Unused.

min_x:

Single value, type: integer. Default: 0

Unused.

min_y:

Single value, type: integer. Default: 0

Unused.

Related How To guides

∙ Using LEDs as display (display_light_player)

displays:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The displays: section of your config is where you configure the logical displays in your machine. A
display is used to show slides, and can be an on-screen window or a DMD.

You can have more than one display. For example, if you want to have a DMD and also display an
on-screen window, you’ll actually have two displays:, the DMD is one and the on-screen window is the
other.

Here’s an example displays: section from Demo Man with two displays:

Index of config sections 1589

Mission Pinball Framework Documentation, Version

displays:

window:

height: 200

width: 600

dmd:

width: 128

height: 32

default: true

round_anchor_x: left

In the example above, one of the displays is called window and the other is called dmd. Note that the
names here are completely arbitrary. Just naming a display “window” does not make it show up in the
window, and naming a display “dmd” doesn’t make it show up in the DMD. (When you configure your
window in the window: section of your config, you specify the name of the display you want to be the
source for the window content. Same for the DMD.)

The names of the displays are used as “targets” for your slides. So when you show a slide, you specify
which display you want it to show on. If you don’t specify a target, it will choose the default. If you
only have one display, you never have to worry about this because that display will always be the
default. If you have more than one, you can add the default: true to a display here to tell MPF which
display is your default which is used when you play slides without specifying a target.

Note: Starting in MPF v0.33, If you do not put a displays: section in your machine config, MPF will
automatically create a single display called “default” with a size of 800x600. (This matches the default
window size.)

Each display in your displays: section can have the following settings:

Optional settings

The following sections are optional in the displays: section of your config. (If you don’t include them,
the default will be used).

default:

Single value, type: boolean (true/false). Default: false

Specifies that this display is the default, meaning it’s the display that’s used if you show a slide without
specifying a target for that slide. If you only have one display, it will be the default automatically.

enabled:

Single value, type: boolean (true/false). Default: true

Whether this display is enabled. If false, all slide and widget player calls targeting this display will be
ignored.

Index of config sections 1590

Mission Pinball Framework Documentation, Version

height:

Single value, type: integer. Default: 600

The height if the display, in pixels. Note that if you’re showing this display on the screen, you can
scale the screen window which will scale the display. So the height here can be thought of as the
“native” height of the display.

round_anchor_x:

Single value, type: string. Default: center

Indicates that this display should not render widgets on fractional horizontal pixels, e.g. anchoring an
11px-wide widget at -5.5 pixels. When specified with left or right, this display will round the pixel
position to the nearest whole pixel in that direction.

This setting can also be configured on an individual widget to override the display’s configuration.

round_anchor_y:

Single value, type: string. Default: middle

Indicates that this display should not render widgets on fractional vertical pixels, e.g. anchoring an
11px-high widget at -5.5 pixels. When specified with bottom or top, this display will round the pixel
position to the nearest whole pixel in that direction.

This setting can also be configured on an individual widget to override the display’s configuration.

width:

Single value, type: integer. Default: 800

The width of the display, in pixels.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1591

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Unused.

Related How To guides

∙ Displays, DMDs, & Graphics

digital_outputs:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The digital_outputs: section of your config is where you configure digital outputs. Those can be
either mapped to a light or a driver and support only enabling and diabling. In contrast to a light,
digital_outputs do not support any fading or pwm/brightness. Opposed to drivers, digital_outputs
do not support pulsing, pattern or hardware rules. Use them to control digital logic. MPF uses them to
control motors with additional control logic.

Some platforms such as Stern Spike, Gottlieb System 1 or Gottlieb System 80 use lights outputs to
control logic. In other platforms you usually use drivers.

Required settings

The following sections are required in the digital_outputs: section of your config:

number:

Single value, type: string. Defaults to empty.

The number of your light or driver. The exact meaning of this number depends on your platform but is
exactly the same as if this was a light or driver (depending on the type setting).

type:

Single value, type: one of the following options: light, driver. Defaults to empty.

Whether this output is mapped as light or driver.

Index of config sections 1592

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the digital_outputs: section of your config. (If you don’t
include them, the default will be used).

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Those events will disable this output when posted.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Those events will enable this output when posted.

light_subtype:

Single value, type: string. Defaults to empty.

If this is mapped as light (type: light) you can set the subtype here (see lights for details about
subtype). The exact meaning depends on your platform.

platform:

Single value, type: string. Defaults to empty.

In case you want to overwrite the default platform (as defined in hardware:), you can choose a
platform for this output.

platform_settings:

Single value, type: dict. Defaults to empty.

Dict of platform specific settings. Consult your platform documentation for those settings.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

Index of config sections 1593

Mission Pinball Framework Documentation, Version

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Motors

∙ How to use Step Stick Steppers in MPF

∙ Using the Stern Spike Trough

∙ Configuring and Enabling Flippers/Pop Bumpers/Slingshots in LISY

∙ Arduino Pinball Controller

∙ How to configure coils/drivers/magnets (P-ROC/P3-ROC)

diverters:

Config file section

Valid in machine config files YES
Valid in mode config files NO

You create and configure your diverters in the diverters: section of your machine configuration file.
Here’s an example from Star Trek: The Next Generation:

Index of config sections 1594

Mission Pinball Framework Documentation, Version

diverters:

top_diverter:

activation_coil: c_top_divertor # WMS uses the -tor spelling

type: hold

activation_time: 3s

activation_switches: s_enter_left_ramp

enable_events: ball_started

disable_events: ball_ended, borg_lock_Lit

targets_when_active: playfield

targets_when_inactive: bd_borg_ship

subway_top_diverter:

activation_coil: c_under_divertor_top

type: hold

activation_time: 3s

activation_switches: s_under_top_hole, s_under_left_hole, s_under_borg_hole

targets_when_active: bd_left_cannon_vuk

targets_when_inactive: bd_left_vuk

feeder_devices: bd_catapult

subway_bottom_diverter:

activation_coil: c_under_divertor_bottom

type: hold

activation_time: 3s

activation_switches: s_under_top_hole, s_under_ueft_hole, s_under_borg_hole

targets_when_active: bd_left_cannon_vuk

targets_when_inactive: bd_left_vuk

feeder_devices: bd_catapult

drop_target:

activation_coil: c_top_drop_down

deactivation_coil: c_top_drop_up

type: pulse

targets_when_active: bd_left_cannon_vuk, bd_right_cannon_vuk, bd_left_vuk

targets_when_inactive: playfield

feeder_devices: bd_catapult

Optional settings

The following sections are optional in the diverters: section of your config. (If you don’t include
them, the default will be used).

activate_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause this diverter to activate.

activation_coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the coil that is used to activate your diverter.

Index of config sections 1595

Mission Pinball Framework Documentation, Version

activation_switches:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

A list of one or more switches that trigger the diverter to activate. This switch only activates the
diverter if the diverter has been enabled (either manually or via one of the enable_events. If you have
an activation switch, MPF writes a hardware autofire coil rule to the pinball controller which fires the
diverter automatically when the activation_switch is hit. This is done so the diverter will have
instantaneous response time, needed to get the diverter to fire in time to catch a fast-moving ball.

activation_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

This is how long the diverter stays active once it’s been activated. A value of zero (or omitting this
setting) means this diverter does not timeout, and it will stay active until it’s disabled or you manually
deactivate it.

allow_multiple_concurrent_ejects_to_same_side:

Single value, type: boolean (true/false). Default: true

Todo: Help us to write it

ball_search_hold_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 1s

How long this diverter will be activated for when it is activated during ball search.

ball_search_order:

Single value, type: integer. Default: 100

A relative value which controls the order individual devices are pulsed when ball search is running.
Lower numbers are checked first. Set to 0 if you do not want this device to be included in the ball
search. See the Ball Search documentation for details.

cool_down_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

How long does the diverter need to cool down until the next eject can happen into the diverter?

Index of config sections 1596

Mission Pinball Framework Documentation, Version

deactivate_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, cause this diverter to deactivate.

deactivation_coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the coil that’s used to deactivate your diverter. You only need to specify this coil if it’s a
different coil from from activation_coil. (In other words this is only used with diverters that have two
coils.)

An example of this is when a drop target is used to block the entrance of a ball device. (For example,
the drop target under the saucer in Attack from Mars, the drop target to the left of the upper lanes in
Star Trek: The Next Generation, or the middle letter “D” drop target in Judge Dredd.) Each of these
has one coil to “knock down” the drop target and a second coil to “reset” the drop target.

By the way, if you have two coils to control a diverter, it doesn’t really matter which one is the
activation_coil and which is the deactivation_coil. Just know that after the activation_coil is fired, MPF
will consider that diverter to be in the active state, and once the deactivation_coil is fired, MPF will
consider that diverter to be in the inactive state, and set up your targets accordingly.

deactivation_switches:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

A list of one or more switches that will deactivate a diverter. (For example, this might be a switch
that’s “after” the diverter in a subway, so once this switch is activated then MPF knows the ball made
it through the diverter and it can deactivate it.)

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, disable this diverter. Typically it’s ball_ending (which is posted when
a ball is in the process of ending), meaning this diverter will not be enabled when the next ball is
started. You might also set a disable event to occur based on the event posted from a mode ending.

disable_switches:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

A list of one more more switches that will automatically disable this diverter. It’s optional, since the
diverter will also be disabled based on one of your disable_events being posted.

Index of config sections 1597

Mission Pinball Framework Documentation, Version

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, enable this diverter. (Remember that enabling a diverter is not the
same as activating it.)

feeder_devices:

List of one (or more) values, each is a type: string name of a ball_devices device. Default: playfield

This is a list of one or more ball devices that can eject balls which have the option of being sent to this
diverter. This is an important part of the diverter’s ability to automatically route balls to the devices
they go to.

When you configure a feeder_device: setting for a diverter, it causes the diverter to watch for balls
ejecting from that device. Every ball that’s ejected in MPF has a “target” (either a ball device or the
playfield), so when a diverter’s feeder device ejects a ball, the diverter will see what the eject target
is, and if that target is included in the diverter’s list of targets_when_active or targets_when_inactive,
then the diverter will activate or deactivate itself to make sure the balls gets to where it needs to go.

playfield:

Single value, type: string name of a playfields device. Default: playfield

The name of the playfield that this diverter is on. The default setting is “playfield”, so you only have to
change this value if you have more than one playfield and you’re managing them separately.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
machine_reset_phase_3

Reset will disable the diverter.

targets_when_active:

List of one (or more) values, each is a type: string name of a ball_devices device. Default: playfield

This is a list of all ball devices that can be reached by a ball passing through this diverter when it’s
active. Valid options include the names of ball devices and the word “playfield.”

This setting exists because diverters in MPF can be configured so that they automatically activate or
deactivate when one of their target devices wants a ball. For example, if you have a diverter on a ramp
that will route a ball to a lock when its active, you can add the name of that ball device here. Then if
that device ever needs a ball, the diverter will automatically activate to send a ball there. This greatly
simplifies programming, because all you have to do is essentially say, “I want this device to have a
ball,” and MPF will make sure the diverter sets itself appropriately to get a ball to that device.

Let’s look at the diverter configuration from Star Trek: The Next Generation included at the top of
this section for an example. In the settings for the dropTarget diverter, notice that there are three

Index of config sections 1598

Mission Pinball Framework Documentation, Version

items in the targets_when_active: list: bd_leftCannonVUK, bd_rightCannonVUK, and bd_leftVUK. This
means that when this diverter is active, balls passing through it are able to reach any one of those
three ball devices. Note that this particular diverter doesn’t exactly know how the ball gets to any of
those devices—that’s actually handled via additional downstream diverters (subwayTopDiverter and
subwayBottomDiverter). All the dropTarget diverter needs to know is, “If a ball needs to go to one of
these three diverters, then I better be active.”

targets_when_inactive:

List of one (or more) values, each is a type: string name of a ball_devices device. Default: playfield

This is exactly like the target_when_active:*above, except it represents the target devices that a ball
can reach when this diverter is disabled. Looking at the same *dropTarget diverter example from
above, we see that when the dropTarget is inactive, the ball is routed to the playfield.

type:

Single value, type: one of the following options: hold, pulse. Default: hold

Specifies how the activation_coil should be activated. You have two options here:

∙ pulse - MPF will pulse the coil to activate the diverter.

∙ hold - MPF should hold the diverter coil in a constant state of “on” when the diverter is active.
Note that if the coil is configured with a default_hold_power, then it will use that pwm pattern to
hold the coil on. If no default_hold_power is configured, then MPF will use a continuous enable
to hold the coil. (In this case you would need to add allow_enable: true or max_hold_power to
that coil’s configuration in the coils: section of your machine configuration file.)

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to True to see more debug output.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1599

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

Name in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Tags are currently unused.

Related How To guides

∙ Diverters

dmds:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The dmds: section of your config is where you configure the settings for physical DMDs (dot matrix
displays). You only need this section if you have a physical monochrome DMD connected to a 14-pin
header on a hardware controller. If you have an RGB DMD, configure that in the rgb_dmds: section.

If you want to show a virtual DMD in an on-screen window, you configure that as a display widget with
a dot filter. That does not involve this dmds: section.

Note that there are no height and width settings here. The pixel size of your DMD is determined by
the size of the source: display which drives the content for this DMD.

displays:

dmd:

width: 128

height: 32

dmds:

my_dmd: # name of this DMD which can be whatever you want

brightness: .5

fps: 25

gamma: 2.5

Note that this section is called dmds: (plural). Just like “switches” and “coils” and most everything else
in MPF, this is a section that contains all your DMDs. Now since this is a DMD, you probably only have
one, (though MPF can support as many as you want), but it’s important to note that you add a dmds:
section to your config, then under that you add an entry for a specific DMD (which can be whatever
you want), and then you enter one or more of the following settings:

(If you don’t include any of the settings below, the default will be used).

Index of config sections 1600

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the dmds: section of your config. (If you don’t include them, the
default will be used).

brightness:

Single value, type: number (will be converted to floating point). Default: 1.0

A brightness multiplier for the DMD. Default is 1.0 which is full brightness, but if you want to dim the
DMD, you can set this to some value lower than 1.0. (e.g. a value of 0.9 will be 90% brightness, etc.)

fps:

Single value, type: integer. Default: 30

How many frames per second this DMD will be updated. A value of 30 should be fine and smooth.
Some people claim that higher values look better, but as far as we can tell, that just makes your CPU
work harder. But feel free to experiment.

gamma:

Single value, type: number (will be converted to floating point). Default: 1.0

Sets the gamma of the DMD. See Gamma correction in MPF for details.

Note that the default setting of 1.0 means that no gamma correction is used. Some physical DMDs do
their own internal gamma correction, so this setting is fine. Others require pre-corrected gamma, so
you can set that value here.

You might try a value of 2.2 first and adjust up or down until it looks right.

Important: Gamma setting is important!

We can’t stress enough that setting the gamma for your DMD is important for making it look right. So
click the link above and make the adjustment. It’s a one-time thing.

luminosity:

List of one (or more) values, each is a type: number (will be converted to floating point). Default: .299,
.587, .114

A list of three values (from 0.0 to 1.0) that represent the percentage of red, green, and blue that will
be used to produce the monochrome colors from the source display. All three of these values should
add up to 1.0.

Index of config sections 1601

Mission Pinball Framework Documentation, Version

only_send_changes:

Single value, type: boolean (true/false). Default: false

Specifies whether every frame is sent to the DMD, or only changed frames.

platform:

Single value, type: string. Defaults to empty.

Name of the platform this DMD is connected to. The default value of None means the default hardware
platform will be used. You only need to change this if you have multiple different hardware platforms
in use and this coil is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

shades:

Single value, type: integer (must be a power of 2). Default: 16

How many shades the physical DMD can show. Modern pinball controllers support 16 shades.

source_display:

Single value, type: string. Default: dmd

The name of the display (from the displays: section of your machine config) that is the source for this
physical DMD. Whatever’s on the source display will be displayed on the DMD. If you don’t specify a
source, MPF will automatically use a source display called “dmd”.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1602

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Using a traditional (single color) physical DMD

drop_target_banks:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Once you’ve configured your individual drop targets, you group them together into banks via the
drop_target_banks: section of your config file. Here’s an example from Judge Dredd :

drop_target_banks:

judge:

drop_targets: j, u, d, g, e

reset_coils: reset_drop_targets

reset_on_complete: 1s

Notice there are no settings to control lights associated with drop targets, but many machines (like
Judge Dredd used in the example) have lights for each drop target. To control those lights, you’d
create shots based on the lights and switches for each drop target, and then you control them just like
any other shot with the shot settings, shot_group settings, and shot profiles. In this case you’d end up
specifying your switch for this drop target as well as for a shot for it. It’s ok to have the same switch in
both places.

Create a subsection under drop_target_banks: for each bank of drop targets you have. The name of
each section is the name you’ll refer to the drop target as in your game code. (“judge”, in this
example.)

Required settings

The following sections are required in the drop_target_banks: section of your config:

Index of config sections 1603

Mission Pinball Framework Documentation, Version

drop_targets:

List of one (or more) values, each is a type: string name of a drop_targets device. Defaults to empty.

A list of the names of the individual drop targets (from the names you chose in the drop_targets:
section of your config file) that are included in this bank. Note that single drop target devices can be
members of multiple banks at the same time. For example, you might have two banks of three drop
targets, from which you could actually actually three drop target banks. One for the first three, one
for the second three, and one for all six. Then you could track separate up and down events for a
subset of three or for all six getting knocked down.

Optional settings

The following sections are optional in the drop_target_banks: section of your config. (If you don’t
include them, the default will be used).

ignore_switch_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 500ms

How long this device should ignore switch changes while ball search is running. (Otherwise the ball
search pulsing coils will set switches that could add to the score, start modes, etc.

max_reset_attempts:

Single value, type: integer. Defaults to empty.

Todo: Help us to write it

reset_coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the coil that is fired to reset this bank of drop targets.

reset_coil_max_wait_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 100ms

Max time allowed to delay the pulse of the reset coil. This is used to prevent excess power usage. See
psus: for details.

reset_coils:

List of one (or more) values, each is a type: string name of a coils device. Defaults to empty.

Index of config sections 1604

Mission Pinball Framework Documentation, Version

If your drop target bank has two reset coils (as was common in older machines which huge banks of
drop targets), you can add a reset_coils section (plural) and then specific a list of multiple coils. In this
case, MPF will pulse all the coils at the same time to reset the bank of drop targets.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
machine_reset_phase_3, ball_starting

Resets this drop target bank by pulsing this bank’s reset_coil or reset_coils.

reset_on_complete:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

By default, when a drop target bank completes, it does not automatically reset. If you want it to reset,
then use this setting along with a time delay for when you want it to reset after it completes.

For example:

reset_on_complete: 500ms

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

A descriptive name for this device which will show up in the service menu and reports.

Index of config sections 1605

Mission Pinball Framework Documentation, Version

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for drop target banks: None

See the documentation on tags for details.

Related How To guides

∙ Drop Target Bank

drop_targets:

Config file section

Valid in machine config files YES
Valid in mode config files NO

You configure individual drop targets in your machine in the drop_targets: section of your machine
config file. (This section is only used for individual targets. Once you configure them here, then you
group them into banks in the drop_target_banks: section.) Here’s an example from Judge Dredd, with
five drop targets we’ve given names J, U, D, G, and E.

drop_targets:

j:

switch: drop_target_j

reset_coil: reset_drop_targets

u:

switch: drop_target_u

reset_coil: reset_drop_targets

d:

switch: drop_target_d

reset_coil: reset_drop_targets

knockdown_coil: trip_drop_target_d

g:

switch: drop_target_g

reset_coil: reset_drop_targets

e:

switch: drop_target_e

reset_coil: reset_drop_targets

Important: Not all “drop targets” in your machine will be configured as “drop targets.” Some
machines have drop target mechanisms that actually act as diverters. For example, in Attack From
Mars, the drop target under the saucer is actually a diverter. When it’s up, the ball stays on the
playfield. When it’s down, the ball enters the lock. Star Trek: The Next Generation has this with the
drop target up above the lanes, and The Wizard of Oz has this for the drop target in front of the
Winkie Guard. If a drop target in your machine is guarding a path to somewhere the ball can go, it
might be a diverter. Of course sometime a drop target can be both, like the “D” target in Judge Dredd.
Feel free to post to the forum with questions.

Notice there are no settings to control lights associated with drop targets, but many machines (like
Judge Dredd used in the example) have lights for each drop target. To control those lights, you’d

Index of config sections 1606

Mission Pinball Framework Documentation, Version

create shots based on the lights and switches for each drop target, and then you control them just like
any other shot with the shot settings, shot_group settings, and shot profiles. In this case you’d end up
specifying your switch for this drop target as well as for a shot for it. It’s okay to have the same switch
in both places.

Create one entry in your drop_targets: section for each drop target in your machine. Don’t worry
about grouping drop targets into banks here. (That’s done in the drop_target_banks: section.) The
drop target name can be whatever you want, and it will be the name for this drop target which is used
throughout your machine.

Required settings

The following sections are required in the drop_targets: section of your config:

switch:

Single value, type: string name of a switches device. Defaults to empty.

The name of the switch that’s activated when this drop target is down. (Note that active switch =
target down, so if your drop target uses opto switches which are reversed, then you need to configure
this switch with type: NC in the switches: section of your config file.) MPF will automatically update
the state of the drop target whenever the switch changes state.

Optional settings

The following sections are optional in the drop_targets: section of your config. (If you don’t include
them, the default will be used).

ball_search_order:

Single value, type: integer. Default: 100

A relative value which controls the order individual devices are pulsed when ball search is running.
Lower numbers are checked first. Set to 0 if you do not want this device to be included in the ball
search. See the Ball Search documentation for details.

disable_keep_up_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, will send a “disable” command to the drop target’s reset coil,
disabling the “keep up”.

enable_keep_up_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Index of config sections 1607

Mission Pinball Framework Documentation, Version

Events in this list, when posted, will send enable the drop target’s reset coil which means that balls
that hit it do not cause the drop target to fall since the reset coil is being held on. Note that this will
require either allow_enable: true in the coil’s configuration or a default_hold_power:/max_hold_power
setting. See the (Adjust coil hold power) documentation for details.

Also note that many drop target coils are not designed to be held on at full power, so you’ll most likely
want to use a hold power of less than 8. Start low and only use the minimum power you need to keep
the drop target up.

ignore_switch_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 500ms

How long this device should ignore switch changes while ball search is running. (Otherwise the ball
search pulsing coils will set switches that could add to the score, start modes, etc. Default is 500ms.

knockdown_coil:

Single value, type: string name of a coils device. Defaults to empty.

This is an optional coil that’s used to knock down a drop target. Most drop targets do not have these.
(In the Judge Dredd example above, you’ll notice that only the D target has a knockdown coil.

knockdown_coil_max_wait_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 100ms

Max time allowed to delay the pulse of the knockdown coil. This is used to prevent excess power
usage. See psus: for details.

knockdown_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, pulse this drop target’s knockdown coil. (If this drop target doesn’t
have a knockdown coil, then these events will have no effect.)

max_reset_attempts:

Single value, type: integer. Defaults to empty.

Todo: Help us to write it

Index of config sections 1608

Mission Pinball Framework Documentation, Version

playfield:

Single value, type: string name of a playfields device. Default: playfield

The name of the playfield that this autofire device is on. The default setting is “playfield”, so you only
have to change this value if you have more than one playfield and you’re managing them separately.

reset_coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the coil that is pulsed to reset this drop target. The pulse time will be whatever you
configure as the default pulse time for this coil in the coils: section of your machine configuration file.
Important: Only enter a reset_coil name here if this coil is only resets this drop target. For banks of
drop targets where a single coil resets the entire bank of targets, enter the reset_coil in the
drop_target_banks: configuration, not here. Why? Because if you have three drop targets in a bank,
you only want to pulse the coil once to reset all the drop targets. If you enter the coil three times (one
for each drop target), then it will pulse three times when the bank is reset.

reset_coil_max_wait_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 100ms

Max time allowed to delay the pulse of the reset coil. This is used to prevent excess power usage. See
psus: for details.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_starting, machine_reset_phase_3

Default: ball_starting, machine_reset_phase_3

Resets this drop target. If this drop target is not part of a drop target bank, then resetting this target
will pulse its reset coil. If this drop target is part of a drop target bank, then resetting this drop target
will have no effect. (Instead you would reset the bank.) Default is ball_starting,
machine_reset_phase_3.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

Index of config sections 1609

Mission Pinball Framework Documentation, Version

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

A descriptive name for this device which will show up in the service menu and reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for drop targets: None

See the documentation on tags for details.

Related How To guides

∙ Drop Targets

dual_wound_coils:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The dual_wound_coils: section of your config is where you configure dual-would coils that are added
to your “coils” device list which can be used anywhere in MPF.

Here’s an example:

coils:

c_hold:

number:

allow_enable: true

c_power:

number:

default_pulse_ms: 20

switches:

s_eos:

number:

dual_wound_coils:

c_dual_wound:

hold_coil: c_hold

main_coil: c_power

eos_switch: s_eos

Index of config sections 1610

Mission Pinball Framework Documentation, Version

In the configuration above, a new coil called c_dual_wound is created that, when enabled, would
energize both the c_hold and c_power coils. Then when the s_eos switch is activated, the c_power coil
would be de-energized, leaving just the c_hold coil active until the c_dual_wound coil is deactivated.

Note: Note: Dual-wound flipper coils are configured in the flippers: section of the config, so you
don’t have to define them here. Other dual-wound coils (like for diverters, etc.) should be defined here
since other MPF devices do not have explicit support for dual-wound coils.

Required settings

The following sections are required in the dual_wound_coils: section of your config:

hold_coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the hold coil winding. This coil must be a valid coil defined in your coils: section.

main_coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the main (power) coil winding. This coil must be a valid coil defined in your coils:
section.

When this dual-wound coils is enabled, this coil will be pulsed for the number of milliseconds specified
in the original coil’s default_pulse_ms: setting.

Optional settings

The following sections are optional in the dual_wound_coils: section of your config. (If you don’t
include them, the default will be used).

eos_switch:

Single value, type: string name of a switches device. Defaults to empty.

The name of a switch which, when activated, will disable the power to the main coil winding.

Todo: Verify whether this has been implemented?

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

Index of config sections 1611

Mission Pinball Framework Documentation, Version

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

A descriptive name for this device which will show up in the service menu and reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for dual-wound coils: None

See the documentation on tags for details.

Related How To guides

∙ Dual-wound Coils

event_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the events: section of a step.

You can use the event_player: section of your config files to cause additional events to be
automatically posted when a specific event is posted. The event_player can be thought of as a really
simple way to implement game logic. (e.g. “When this happens, do this.”)

If you add this section to your machine-wide config file, the entries here will always be active. If you
enter it into a mode-specific config file, entries will only be active while that mode is active.

This is an example:

Index of config sections 1612

Mission Pinball Framework Documentation, Version

event_player:

ball_starting:

- show_ball_start_animation

- play_start_sound

- start_first_mode

ball_ending:

- show_ball_ending_animation

- play_drain_sound

See Event player for details.

Related How To guides

∙ Event player

extra_balls:

Config file section

Valid in machine config files NO
Valid in mode config files YES

The extra_balls: section of your config is where you configure which events trigger and reset extra
ball awards.

Note that this extra ball abstract device only takes care of awarding the extra ball and can lit a light
when enabled/available. The logic to qualify for an extra ball has to be implemented in your mode. See
Extra Balls for more details.

Here’s an example:

##! mode: mode1

extra_balls:

my_mode_eb:

award_events: alien_smashed

In the above example, the extra ball called my_mode_eb will be given to the player when the event
alien_smashed is posted. After that, future alien_smashed events will not lead to additional extra balls.
(The my_mode_eb extra ball is “used up”, in a sense).

This is all tracked per-player in a player variable dictionary called “extra_balls_awarded”

Optional settings

The following sections are optional in the extra_balls: section of your config. (If you don’t include
them, the default will be used).

award_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Index of config sections 1613

Mission Pinball Framework Documentation, Version

Events in this list, when posted, award this extra ball to the current player.

enabled:

Single value, type: boolean (true/false). Default: true

Whether the device starts enabled or disabled.

group:

Single value, type: string name of a extra_ball_groups device. Defaults to empty.

The extra ball group which this ball belongs to which can further limit the maximum number of balls
and enable/disable the device.

light_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event to light the extra ball (if enabled).

max_per_game:

Single value, type: integer. Default: 1

Maximum number of extra balls to award per player for this particular extra ball device. This might be
further limited by the extra_ball_group max_per_game limit. In that case if either of the two limits is
exceeded no more balls will be awarded.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1614

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

A descriptive name for this device which will show up in the service menu and reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for extra balls: None

See the documentation on tags for details.

Related How To guides

∙ Extra Balls

extra_ball_groups:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The extra_ball_groups: section of your config is where you. . .

Todo: Help us to write it

Optional settings

The following sections are optional in the extra_ball_groups: section of your config. (If you don’t
include them, the default will be used).

award_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Immediately awards an extra ball.

This event first checks to make sure the limits of the max extra balls have not been exceeded and that
this group is enabled.

Note that this method will work even if this group does not have any extra balls or extra balls lit. You
can use this to directly award an extra ball.

Index of config sections 1615

Mission Pinball Framework Documentation, Version

award_lit_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events to award a lit extra ball. If the player does not have any lit extra balls, this method does
nothing.

enabled:

Single value, type: boolean (true/false). Default: true

Whether this ball group is enabled.

light_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Light the extra ball for possible collection by the player. This method checks that the group is enabled
and that the max lit value has not been exceeded. If so, this method will post the extra ball disabled
events.

lit_memory:

Single value, type: boolean (true/false). Default: true

Todo: Help us to write it

max_lit:

Single value, type: integer. Defaults to empty.

Max concurrent lit extra balls.

max_per_ball:

Single value, type: integer. Defaults to empty.

Maximum number of extra balls per ball.

max_per_game:

Single value, type: integer. Defaults to empty.

Maximum number of extra balls per game.

Index of config sections 1616

Mission Pinball Framework Documentation, Version

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Extra Balls

fadecandy:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The fadecandy: section of your config is where you configure your fadecandy hardware platform.
Usually you can leave this at the defaults. See How to configure a FadeCandy RGB LED Controller for
more details.

From the fadecandy documentation:

Fadecandy internally represents colors with 16 bits of precision per channel, or 48 bits per pixel. Why
48-bit color? In combination with our dithering algorithm, this gives a lot more color resolution. It’s

Index of config sections 1617

https://github.com/scanlime/fadecandy

Mission Pinball Framework Documentation, Version

especially helpful near the low end of the brightness range, where stair-stepping and color popping
artifacts can be most apparent.

Each pixel goes through the following processing steps in Fadecandy:

∙ 8 bit per channel framebuffer values are expanded to 16 bits per channel

∙ We interpolate smoothly from the old framebuffer values to the new framebuffer values

∙ This interpolated 16-bit value goes through the color LUT, which itself is linearly interpolated

∙ The final 16-bit value is fed into our temporal dithering algorithm, which results in an 8-bit color

∙ These 8-bit colors are converted to the format needed by OctoWS2811’s DMA engine

∙ In hardware, the converted colors are streamed out to eight LED strings in parallel

The color lookup tables can be used to implement gamma correction, brightness and contrast, and
white point correction. Each channel (RGB) has a 257 entry table. Each entry is a 16-bit intensity.
Entry 0 corresponds to the 16-bit color 0x0000, entry 1 corresponds to 0x0100, etc. The 257th entry
corresponds to 0x10000, which is just past the end of the 16-bit intensity space.

Since MPF cannot do any better we suggest that you use this instead of our software color correction
(which is limited to 8-bit resolution here).

Optional settings

The following sections are optional in the fadecandy: section of your config. (If you don’t include
them, the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

dithering:

Single value, type: boolean (true/false). Default: true

Enabled temporal dithering for 16bit color precision. You want to leave this enabled since it looks
much nicer (especially at low brightness).

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

gamma:

Single value, type: number (will be converted to floating point). Default: 2.5

Specifies the gamma correction value for the lights. The default is 2.5.

Index of config sections 1618

http://en.wikipedia.org/wiki/Gamma_correction

Mission Pinball Framework Documentation, Version

keyframe_interpolation:

Single value, type: boolean (true/false). Default: true

Whatever the fadecandy should fade between keyframes. You usually want to leave this at true since it
looks much nicer.

linear_cutoff:

Single value, type: number (will be converted to floating point). Default: 0.0

This is best explained by quoting the FadeCandy documentation: By default, brightness curves are
entirely nonlinear. By setting linearCutoff to a nonzero value, though, a linear area may be defined at
the bottom of the brightness curve. The linear section, near zero, avoids creating very low output
values that will cause distracting flicker when dithered. This isn’t a problem when the lights are
viewed indirectly such that the flicker is below the threshold of perception, but in cases where the
flicker is a problem this linear section can eliminate it entirely at the cost of some dynamic range. To
enable the linear section, set linearCutoff to some nonzero value. A good starting point is 1/256.0,
corresponding to the lowest 8-bit PWM level.

linear_slope:

Single value, type: number (will be converted to floating point). Default: 1.0

Specifies the slope (output / input) of the linear section of the brightness curve for the lights. The
default is 1.0.

whitepoint:

List of one (or more) values, each is a type: number (will be converted to floating point). Default: 1.0,
1.0, 1.0

Specifies the white point (or white balance) of your lights. Enter it as a list of three floating point
values that correspond to the red, blue, and green light segments. These values are treated as
multipliers to all incoming color commands. The default of 1.0, 1.0, 1.0 means that no white point
adjustment is used. 1.0, 1.0, 0.8 would set the blue segment to be at 80% brightness while red and
green are 100%, etc.

You can use this to affect the overall brightness of lights (e.g. 0.8, 0.8, 0.8 would be 80% brightness
as every color would be multiplied by 0.8). You can also use this to affect the “tint” (lowering the blue,
for example).

Related How To guides

∙ How to configure a FadeCandy RGB LED Controller

fast:

Config file section

Index of config sections 1619

Mission Pinball Framework Documentation, Version

Valid in machine config files YES
Valid in mode config files NO

The fast: section of your machine-wide config is where you configure hardware options that are
specific to the FAST Pinball Controller. Note that we have a how to guide which includes all the
FAST-specific settings throughout your entire config file, so be sure to read that if you have FAST
hardware.

fast:

ports: com3, com4, com5

Required settings

The following sections are required in the fast: section of your config:

default_normal_debounce_close:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

Specifies the default value for the debounce time for switches that are configured with debounce:
normal when they close.

Even though this is listed as a required setting, this entry is in the mpfconfig.yaml file, (with a value of
10ms), so you don’t have to enter it here unless you want to override that.

Also, keep in mind that this setting is only a default. You can override it for any switch in that switch’s
config.

default_normal_debounce_open:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

Specifies the default value for the debounce time for switches that are configured with debounce:
normal when they open.

Even though this is listed as a required setting, this entry is in the mpfconfig.yaml file, (with a value of
10ms), so you don’t have to enter it here unless you want to override that.

Also, keep in mind that this setting is only a default. You can override it for any switch in that switch’s
config.

default_quick_debounce_close:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

Specifies the default value for the debounce time for switches that are configured with debounce:
quick when they close.

Even though this is listed as a required setting, this entry is in the mpfconfig.yaml file, (with a value of
2ms), so you don’t have to enter it here unless you want to override that.

Index of config sections 1620

Mission Pinball Framework Documentation, Version

Also, keep in mind that this setting is only a default. You can override it for any switch in that switch’s
config.

default_quick_debounce_open:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

Specifies the default value for the debounce time for switches that are configured with debounce:
quick when they open.

Even though this is listed as a required setting, this entry is in the mpfconfig.yaml file, (with a value of
2ms), so you don’t have to enter it here unless you want to override that.

Also, keep in mind that this setting is only a default. You can override it for any switch in that switch’s
config.

ports:

List of one (or more) values, each is a type: string. Defaults to empty.

A comma-separated list of the serial port names your FAST controller uses.

Optional settings

The following sections are optional in the fast: section of your config. (If you don’t include them, the
default will be used).

baud:

Single value, type: integer. Default: 921600

The baud rate for the FAST COM ports.

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

dmd_buffer:

Single value, type: integer. Default: 3

Max backlog for the DMD port to prevent overflows in the FAST CPU.

Index of config sections 1621

Mission Pinball Framework Documentation, Version

driverboards:

Single value, type: one of the following options: fast, wpc, None. Defaults to empty.

Which driverboards are you using? Most likely fast. Similar to driverboards in the hardware: section.
Use this setting if you use multiple playforms (i.e. FAST and P3-Roc) in one machine.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

firmware_updates:

List of one (or more) values, each is a type: fast_firmware_update. Defaults to empty.

A list of firmware versions which can be installed using mpf hardware (command-line utility) .

hardware_led_fade_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

Controls how quickly LEDs will fade to their new color when they receive a color instruction from MPF.

The default is 0, which means if you set an LED to be red, it will turn red instantly. But if you set
hardware_led_fade_time: 20, that means that when an LED receives an instruction to turn RED, it will
smoothly fade from whatever color it is now to red over a period of 20ms.

You can play with different settings to pick something you like. Some people prefer the instant 0ms
snappiness that’s possible with LEDs. Others like to set this value to something like 100ms which gives
LEDs the more gentle fade style reminiscent of incandescent bulbs.

ignore_rgb_crash:

Single value, type: boolean (true/false). Default: false

Ignore if the RGB CPU crashes. It will restart and the light will mostly recovery within a few seconds.
If you set this to False MPF will shutdown when this happens because the hardware state is undefined
when this happens.

net_buffer:

Single value, type: integer. Default: 10

Max backlog for the NET port to prevent overflows in the FAST CPU.

Index of config sections 1622

Mission Pinball Framework Documentation, Version

rgb_buffer:

Single value, type: integer. Default: 3

Max backlog for the RGB port to prevent overflows in the FAST CPU.

watchdog:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 1000

The FAST controllers include a “watchdog” timer. A watchdog is a timer that is continuously counting
down towards zero, and if it ever hits zero, the controller shuts off all the power to the drivers. The
idea is that every time MPF runs a game loop (so, 30 times a second or whatever), MPF tells the FAST
controller to reset the watchdog timer. So this timer is constantly getting reset and never hits zero.

But if MPF crashes or loses communication with the FAST controller, then this watchdog timer won’t
be reset. When it hits zero, the FAST controller will kill the power to the drivers. This should prevent
an MPF crash from burning up driver or somehow damaging your hardware in another way.

You can set the watchdog timer to whatever you want. (This is essentially the max time a driver could
be stuck “on” if MPF crashes.) The default is 1 second which is probably fine for almost everyone, and
you don’t have to include this section in your config if you want to use the default.

Related How To guides

∙ How to configure MPF for FAST Pinball hardware

fast_coils:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The fast_coils: section of your config is where you configure platform specific settings for coils in
the FAST platform.

Optional settings

The following sections are optional in the fast_coils: section of your config. (If you don’t include
them, the default will be used).

connection:

Single value, type: one of the following options: network, local, auto. Default: auto

How is your coil connected? For WPC this might be local otherwise network.

Index of config sections 1623

Mission Pinball Framework Documentation, Version

recycle_ms:

Single value, type: time string (ms) (Instructions for entering time strings).

The cooldown time of a coil after each pulse. Any pulse during that time will be ignored to prevent
overheating the coil.

Related How To guides

∙ How to configure MPF for FAST Pinball hardware

fast_firmware_update:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The firmware_updates: section of your fast: config is where you list all your firmware images. Those
can then be installed using mpf hardware firmware_update.

Required settings

The following sections are required in the fast_firmware_update: section of your config:

file:

Single value, type: string.

The path of your firmware file.

type:

Single value, type: one of the following options: net, rgb.

For which CPU is this firmware file?

version:

Single value, type: string.

The exact version of the firmware. MPF will check that if this is higher than the installed version
reported by the FAST CPU.

Related How To guides

∙ How to configure MPF for FAST Pinball hardware

Index of config sections 1624

Mission Pinball Framework Documentation, Version

fast_switches:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The fast_switches: section of your config is where you configure platform specific details about
switches when using fast hardware.

switches:

some_switch:

number:

platform_settings:

debounce_close: 2ms

debounce_open: 4ms

Please make sure to read Debouncing in Pinball Machines before changing those times.

Optional settings

The following sections are optional in the fast_switches: section of your config. (If you don’t include
them, the default will be used).

debounce_close:

Single value, type: string.

Set the switch debounce time for closing the switch.

debounce_open:

Single value, type: string.

Set the switch debounce time for opening the switch.

Related How To guides

∙ How to configure MPF for FAST Pinball hardware

flasher_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Index of config sections 1625

Mission Pinball Framework Documentation, Version

Note: This section can also be used in a show file in the flashers: section of a step.

The flasher_player: section of your config is where you can flash lights. See Flasher player for
details.

Optional settings

The following sections are optional in the flasher_player: section of your config. (If you don’t include
them, the default will be used).

color:

Single value, type: string. Default: on

Set a color for flashing, if the flasher supports RGB coloring.

Color values may be a hex string (e.g. 22FFCC), a list of RGB values (e.g. [50, 128, 206]), a color name
(e.g. turquoise), or a brightness value (i.e. AA or 120). MPF knows 140+ standard web color names,
and you can define your own custom colors in the named_colors: section of your config. If you use
brightness on an RGB light MPF will use the brightness for every channel. For instance brigness AA
will result in color AAAAAA.

ms:

Single value, type: ms_or_token. Default: 100ms

Configures how long should that flasher be enabled.

Related How To guides

∙ Flashers

flashers:

Removed in 0.50.

In most cases flashers can be configured as coils. You can use coil_player to pulse/flash them.
Alternatively, you can configure them as lights and use light_player or flasher_player to control them.

Here is an example:

configure the flasher as coil

coils:

flasher_01:

number: 4 # this number depends on your hardware

default_pulse_ms: 40 # pulse duration to use if no specified elsewhere

max_hold_power: 1.0 # needed if you want to use flasher and light_player

you can flash the flasher using flasher player

coil_player:

(continues on next page)

Index of config sections 1626

Mission Pinball Framework Documentation, Version

(continued from previous page)

flash_coil:

flasher_01:

action: pulse # will use the default 40ms pulse

create a light which is backed by a coil (optional if you want to use light_player and flasher_player)

lights:

flasher_01:

number: flasher_01 # name of your coil

platform: drivers # use a coil

use the light to flash the flasher

flasher_player:

flash_flasher_01:

flasher_01: 100ms

flippers:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The flippers: section of your config contains all the settings for the flippers in a pinball machine.

Here’s an example from a Judge Dredd machine with four flippers. (Note Judge Dredd technically has
four flipper buttons too, but it’s the style where you push the button part way in to flip the lower
flipper, and all the way in to flip the upper flipper too. But as far as the game code is concerned, it
sees two separate switches in each flipper button—-one that’s activated via the half-press, and the
second via the full press.)

Also note that flippers are kind of complex and there are a lot of options. Read the Flippers tech note
for details. (You should definitely read that first before digging into the configuration options here.)

Note: The flippers: section of the config is only used for controlled flippers in newer machines.
Early solid-state (pre-WPC) machines used enable relays to enable the flippers, and those are
configured elsewhere. (See the How To guides for details.)

flippers:

lower_left:

main_coil: c_flipper_lower_left_main

hold_coil: c_flipper_lower_left_hold

activation_switch: s_flipper_left

eos_switch: flipperLwL_EOS

label: Left Main Flipper

lower_right:

main_coil: c_flipper_lower_right_main

hold_coil: c_flipper_lower_right_hold

activation_switch: s_flipper_right

eos_switch: flipperLwR_EOS

label: Right Main Flipper

upper_left:

main_coil: flipperUpLMain

(continues on next page)

Index of config sections 1627

Mission Pinball Framework Documentation, Version

(continued from previous page)

hold_coil: flipperUpLHold

activation_switch: flipperUpL

eos_switch: flipperUpL_EOS

label: Upper Left Flipper

upper_right:

main_coil: flipperUpRMain

hold_coil: flipperUpRHold

activation_switch: flipperUpR

eos_switch: flipperUpR_EOS

label: Upper Right Flipper

Required settings

The following sections are required in the flippers: section of your config:

main_coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the main flipper coil. For flippers that only have single- wound coils, this is where you
specify that coil. In that case you would also configure the lower-power hold option for this coil in the
coils: section of your config.

Optional settings

The following sections are optional in the flippers: section of your config. (If you don’t include them,
the default will be used).

activation_switch:

Single value, type: string name of a switches device. Defaults to empty.

The switch that controls this flipper (i.e. the flipper button). This setting is optional because you can
also use sw_flip_enable below but activation_switch is far more common and recommended instead.

ball_search_hold_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 1s

How long this flipper will be activated for when it is activated during ball search.

ball_search_order:

Single value, type: integer. Default: 100

A relative value which controls the order individual devices are pulsed when ball search is running.
Lower numbers are checked first. See the Ball Search documentation for details.

Index of config sections 1628

Mission Pinball Framework Documentation, Version

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_will_end, service_mode_entered

(Note that if you add an entry here, it will replace the default. So if you also want the default value(s)
to apply, add them too.)

Disables this flipper (meaning pushing the flipper button doesn’t active the flipper).

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_started

(Note that if you add an entry here, it will replace the default. So if you also want the default value(s)
to apply, add them too.)

Enables this flipper.

eos_active_ms_before_repulse:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 500

If you specify repulse_on_eos_open MPF will wait this many milliseconds until issuing an EOS repulse.
The rational for this is that we do not want to stress the main coil too much. For instance if the hold
coil break we do not want to continuously pulse the coil.

eos_switch:

Single value, type: string name of a switches device. Defaults to empty.

EOS switch on this flipper (if there is one).

eos_switch_overwrite:

One or more sub-entries. Each in the format of string : string

One or more sub-entries, each in the format of string : string If you’re using an end of stroke switch
with this flipper, enter the switch name here.

hold_coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the hold coil winding for dual-wound flipper coils.

Index of config sections 1629

Mission Pinball Framework Documentation, Version

hold_coil_overwrite:

Single value, type: coil_overwrites. Defaults to empty.

Overwrites settings on the hold_coil. See coil_overwrites: for details.

include_in_ball_search:

Single value, type: boolean (true/false). Default: false

Controls whether this flipper is included in ball search.

Usually flippers aren’t included in ball search. However if you have upper flippers, it’s probably good
to include them in the ball search since it’s often possible for an upper flipper to disable and hold a ball
under the flipper. Usually this isn’t an issue since the player can just flip to release the ball. However
if the machine has tilted (or the flippers are otherwise disabled), then it’s possible for a flipper to
come down on the ball and get it stuck. So you definitely want to include upper flippers in ball search.

BTW, this is something that happened to us in Wizard of Oz, so that’s how we thought to include an
option for flippers in ball search. :)

main_coil_overwrite:

Single value, type: coil_overwrites. Defaults to empty.

Overwrites settings on the main_coil. See coil_overwrites: for details.

playfield:

Single value, type: string name of a playfields device. Default: playfield

change this value if you have more than one playfield and you’re managing them separately.

power_setting_name:

Single value, type: string. Defaults to empty.

A machine setting to use to adjust the (relative) power. It can be used to allow the operator to adjust
the power in service mode.

This is an example:

coils:

c_flipper_main:

number:

switches:

s_flipper:

number: 1

tags: left_flipper

flippers:

f_test_flippers_with_settings:

main_coil: c_flipper_main

(continues on next page)

Index of config sections 1630

Mission Pinball Framework Documentation, Version

(continued from previous page)

power_setting_name: flipper_power

activation_switch: s_flipper

MPF comes with a setting called flipper_power by default and you can add additional ones.

repulse_on_eos_open:

Single value, type: boolean (true/false). Default: false

Whether MPF should repulse the main coil of the flipper when the EOS reopens and the flipper
buttons are still active. Not all platforms support this in hardware. MPF might emulate this in
software for platforms which do not support this. Consult your platform manual if in doubt.

sw_flip_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

If the flipper is enabled this will flip the flipper from software. This will usually have some delay and
jitter so use with care. In almost all cases it is prefered to use an activation_switch which will use
hardware rules internally to flip the flipper.

sw_release_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Disables a flipper from software. Use this together with sw_flip_events.

switch_overwrite:

One or more sub-entries. Each in the format of string : string

One or more sub-entries, each in the format of string : string Overwrites settings on the
activation_switch. See switch_overwrites: for details.

use_eos:

Single value, type: boolean (true/false). Default: false

Controls whether an EOS switch is used to disable the main winding or to switch to lower-power pwm
mode.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

Index of config sections 1631

Mission Pinball Framework Documentation, Version

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

A descriptive name for this device which will show up in the service menu and reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for flippers: None

See the documentation on tags for details.

Related How To guides

∙ Flippers

game:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The game: section of the machine config holds settings related to the game play.

game:

balls_per_game: 3

max_players: 4

Optional settings

The following sections are optional in the game: section of your config. (If you don’t include them, the
default will be used).

Index of config sections 1632

Mission Pinball Framework Documentation, Version

add_player_event:

Single event. The device will add an handler for this event. Defaults to empty.

An event name which will request to add a player. Same as add_player_switch_tag but using an event
instead of a switch tag (see below).

add_player_switch_tag:

Single value, type: string. Default: start

The tag of the switch that’s used to request to add a player to an existing game. (We say “request to
add a player” instead of “add a player” because it’s possible that adding a player is not allowed. For
example, if the machine is set to require credits and there are not enough credits available, or the
game already has the maximum number of players.)

This is the name of the tag in the tags: section of one of your switches.

allow_start_with_ball_in_drain:

Single value, type: boolean (true/false). Default: false

Controls whether it’s possible to start a game when a ball is in a ball device that’s tagged with drain
but not home or trough. (This is needed in some older machines that have non-standard trough/drain
device configurations.

allow_start_with_loose_balls:

Single value, type: boolean (true/false). Default: false

Controls whether it’s possible to start a game when balls are not all in ball devices tagged with home.

balls_per_game:

Single value, type: integer or template (Instructions for entering templates). Default: 3

How many balls the game is. Typically it’s 3 or 5 but it can be anything. MPF doesn’t care.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

end_ball_event:

Single event. The device will add an handler for this event. Default: end_ball

When this event is handled by the game it will end the current ball. This is similar to the last ball
draining. Use with care if there are still balls in play.

Index of config sections 1633

Mission Pinball Framework Documentation, Version

end_game_event:

Single event. The device will add an handler for this event. Default: end_game

When this event is handled by the game it will end the game. This is similar to slam tilt but bonus
mode, match mode etc will still run.

max_players:

Single value, type: integer or template (Instructions for entering templates). Default: 4

Controls the maximum number of players that can play a game.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

start_game_event:

Single event. The device will add an handler for this event. Defaults to empty.

Event to request to start a game. Same as start_game_switch_tag but using an event instead of a
switch tag (see below for details).

start_game_switch_tag:

Single value, type: string. Default: start

The tag of the switch that’s used to request to start a game. (We say “request to start a game” instead
of “start a game” because it’s possible that starting a game is not allowed. For example, if the
machine is set to require credits and there are not enough credits available.)

This is the name of the tag in the tags: section of one of your switches.

wait_for_empty_playfields_on_ball_start:

Single value, type: boolean (true/false). Default: true

Todo: Help us to write it

Related How To guides

∙ Game Logic

gi_player:

Removed in 0.50. Use light_player instead.

Index of config sections 1634

Mission Pinball Framework Documentation, Version

gis:

Warning: As of MPF 0.50, matrix_lights, flashers and leds have been combined into a single
lights configuration. See lights: for details.

You would configure GIs as normal lights with subtype: gi (see your platform documentation for
details about subtype).

Here’s an example from Judge Dredd :

lights:

gi01: # lower backglass

number: G01

subtype: gi

gi02: # mid backglass and rear playfield

number: G02

subtype: gi

gi03: # upper left backglass and slings, variable

number: G03

subtype: gi

gi04: # upper right backglass and Deadworld globe, variable

number: G04

subtype: gi

gi05: # coin slot lights & side cabinet fire buttons

number: G05

subtype: gi

See lights: for details about the lights section.

hardware:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The hardware: section of your machine config file is where you configure the options for the physical
hardware controller boards that MPF will use.

If you intend to use MPF with physical hardware, at a minimum you’ll have a platform: and
driverboards: section in your machine config, like this:

hardware:

platform: fast

driverboards: fast

Device-specific defaults

The following optional settings can be used to set default platforms for a specific class of devices.
Note that virtual and smart_virtual are valid options for all of these, though they are not included in
the lists below. Also note that those lists are not exhaustive.

Index of config sections 1635

Mission Pinball Framework Documentation, Version

Note: The list of platforms is incomplete here. See the MPF compatible control systems / hardware
for details which platforms are supported by MPF.

Optional settings

The following sections are optional in the hardware: section of your config. (If you don’t include them,
the default will be used).

accelerometers:

List of one (or more) values, each is a type: string. Default: default

See DMD Platforms in MPF for supported platforms.

coils:

List of one (or more) values, each is a type: string. Default: default

For instance:

∙ p_roc

∙ p3_roc

∙ fast

∙ opp

∙ apc

∙ snux

Almost all platforms in MPF compatible control systems / hardware are supported here.

dmd:

List of one (or more) values, each is a type: string. Default: default

See DMD Platforms in MPF for supported platforms.

driverboards:

Single value, type: string. Defaults to empty.

Specifies the default type of driver boards you’re using. If you have a home brew machine, this will
probably match your platform. If you’re using an existing machine, then this will be whatever type of
driverboard is installed in the machine.

∙ pdb P-ROC Driver Boards, PD-16, PD-8x8, etc.)

∙ fast FAST IO boards (0804, 1616, 3208, etc.)

∙ opp OPP wing boards

Index of config sections 1636

Mission Pinball Framework Documentation, Version

∙ wpc95 Williams WPC-95

∙ wpc Williams WPC

∙ wpcAlphaNumeric Williams WPC with alphanumeric 14-pin connected segmented display

∙ sternSAM Stern SAM

∙ sternWhitestar Stern Whitestar

hardware_sound_system:

List of one (or more) values, each is a type: string. Default: default

See MPF compatible control systems / hardware for supported platforms.

i2c:

List of one (or more) values, each is a type: string. Default: default

See I2C Platforms in MPF for supported platforms.

lights:

List of one (or more) values, each is a type: string. Default: default

Almost all platforms in MPF compatible control systems / hardware are supported here.

platform:

List of one (or more) values, each is a type: string. Default: virtual

Specifies the default platform that will be used by all devices in the config. We say this is the “default”
platform, because it’s possible to use more than one platform at time. (Maybe you use a P-ROC for
coils and switches and a FadeCandy for RGB LEDs, etc.) See the Mixing-and-Matching hardware
platforms for more details on this.

See MPF compatible control systems / hardware for a complete list.

rgb_dmd:

List of one (or more) values, each is a type: string. Default: default

See DMD Platforms in MPF for supported platforms.

segment_displays:

List of one (or more) values, each is a type: string. Default: default

See Segment Display Platforms in MPF for supported platforms.

Index of config sections 1637

Mission Pinball Framework Documentation, Version

servo_controllers:

List of one (or more) values, each is a type: string. Default: default

See Servo Platforms in MPF for supported platforms.

stepper_controllers:

List of one (or more) values, each is a type: string. Default: default

See Stepper Platforms in MPF for supported platforms.

switches:

List of one (or more) values, each is a type: string. Default: default

Almost all platforms in MPF compatible control systems / hardware are supported here.

Related How To guides

∙ MPF compatible control systems / hardware

hardware_sound_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the hardware_sounds: section of a step.

The hardware_sound_player: section of your config is where you can control external sound modules
(e.g. in LISY).

This is an example:

hardware_sound_systems:

default:

label: Default external sound system

hardware_sound_player:

event_posted_elsewhere1:

2:

action: play

ball_started:

3: play

test_stop: stop

Index of config sections 1638

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the hardware_sound_player: section of your config. (If you don’t
include them, the default will be used).

action:

Single value, type: one of the following options: play, play_file, text_to_speech, set_volume,
increase_volume, decrease_volume, stop. Default: play

play will play a sound. Depending on the hardware this might stop previous sounds. Also loop
behaviour depends on the hardware and might be different per sound.

stop will stop all sounds.

platform_options:

Single value, type: dict. Defaults to empty.

Todo: Help us to write it

sound_system:

Single value, type: string name of a hardware_sound_systems device. Default: default

In case you got multiple hardware_sound platforms you can expliticly select one here.

track:

Single value, type: integer. Default: 1

The track number to play this sound on. What this means depends on your hardware. Usually, there
are one or two tracks.

value:

Single value, type: string. Defaults to empty.

The number of your sound.

Related How To guides

∙ Arduino Pinball Controller

∙ How to use MPF with the LISY platform

Index of config sections 1639

Mission Pinball Framework Documentation, Version

hardware_sound_systems:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The hardware_sound_systems: section of your config is where you configure external sound systems.
For instance, this is used in the LISY platform.

Optional settings

The following sections are optional in the hardware_sound_systems: section of your config. (If you
don’t include them, the default will be used).

platform:

Single value, type: string. Defaults to empty.

Overwrite the default platform.

platform_settings:

Single value, type: dict. Defaults to empty.

Todo: Help us to write it

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1640

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Arduino Pinball Controller

∙ How to use MPF with the LISY platform

high_score:

Config file section

Valid in machine config files NO
Valid in mode config files YES

The high_score: section of your config is where you configure the built-in high score mode. See High
Scores for details.

Required settings

The following sections are required in the high_score: section of your config:

categories:

Ordered list for one (or more) sub-settings. Each in the format of string : list (Instructions for
entering lists)

An ordered map of categories which contain a list of awards. See High Scores for an example.

Optional settings

The following sections are optional in the high_score: section of your config. (If you don’t include
them, the default will be used).

award_slide_display_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 4s

How long should the award slide be displayed?

Index of config sections 1641

Mission Pinball Framework Documentation, Version

defaults:

One or more sub-entries. Each in the format of string : list (Instructions for entering lists)

A map of categories with a list of player/score tuples. See High Scores for an example.

enter_initials_timeout:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 20s

Timeout for the player to enter his/her initials.

reset_high_scores_events:

List of one (or more) events. The device will add handlers for those events. Default:
high_scores_reset,factory_reset

Event to reset high scores. The default is used by the service mode.

reverse_sort:

List of one (or more) values, each is a type: string. Defaults to empty.

A list of categories where the sort should be inverted. Usually the highest score is the best but
sometimes you want the shortest time or least amount of shots to be the best score.

Related How To guides

∙ High Scores

image_pools:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The image_pools: section of your config is where you. . .

Todo: Help us to write it

images:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Index of config sections 1642

Mission Pinball Framework Documentation, Version

The images: section of your config is where you configure non-default parameter values for any image
assets you want to use in your game. Note: You do not have to have an entry for every single image
you want to use, rather, you only need to add individual assets to your config file that have settings
which are different from other assets in that asset’s folder. (This section is part of the MPF media
controller and only available if you’re using MPF-MC for your media controller.)

More information on working with assets is in the Assets section of the documentation.

Each sub-entry in your image: section is the name that MPF will use to refer to that asset. (In other
words it’s how you specify that asset in other areas of your config files.) The asset manager works by
first scanning the file system to build up a list of asset files it finds. Then it looks at the config to see if
there are any additional settings specified for each asset.

For example:

images:

insert_coin:

load: preload

hello_face:

file: hello_face_300.jpg

load: None

So in the example above, if the asset manager found a file called insert_coin.jpg on disk, then it will
also see the insert_coin entry in the config file and know that those two match. (The “match” is just
based on the part of the file name without the extension, so the settings entry for insert_coin: would
match insert_coin.jpg and insert_coin.png. In other words, don’t name two files with the same name
if you want to keep them straight.)

Optional settings

The following sections are optional in the images: section of your config. (If you don’t include them,
the default will be used).

file:

Single value, type: string. Defaults to empty.

Sometimes you might want to name a file one thing on disk but refer to it as another thing in your
game and config files. In this case, you can create an file: setting in an asset entry. (Note the file:
hello_face_300.jpg setting in the example above, and note that it includes the file extension.) In this
example, you would refer to that image asset as hello_face even though the file is hello_face_300.

You might be wondering why this exists? Why not just change the file name to be whatever you want
and/or who cares what the name is? The reason this function exists is because it allows for the
separation of the actual file on disk from the way it’s called in the game. For example, you could use
this to create two sets of assets—one for a traditional DMD and one for a color DMD—and then you
could refer to the asset by its generic name throughout your configs. (In other words, you could swap
out assets for different physical machine types without having to update your display code.) That said,
we expect that 99% of people won’t use this file: setting, which is fine.

frame_skips:

List of one (or more) values, each is a type: images_frame_skips. Defaults to empty.

Index of config sections 1643

Mission Pinball Framework Documentation, Version

Todo: Help us to write it

image_template:

Single value, type: images. Defaults to empty.

Todo: Help us to write it

load:

Single value, type: string. Defaults to empty.

Specifies when this asset should be loaded. (See the Assets documentation for an explanation on
loading.)

∙ preload (The asset is loaded when MPF boots and stays in memory as long as MPF is running.)

∙ mode_start (The asset is loaded when the mode starts and is unloaded when the mode ends. This
option is only valid for asset files that are in mode folders, not machine-wide assets.)

∙ Anything else (or nothing at all) means that the asset it loaded “on demand” when it’s first called
for. (At this point, assets loaded on demand stay in memory forever, but at some point we’ll
change that so they get unloaded on demand too.)

Note that you can configure load: options in the assets: section of your config files. It’s nice to be able
to override those on an asset-by-asset basis. For example, you might configure your assets for a mode
to all load when the mode starts, but you could also create a few entries in your config files with load:
preload for the assets that are needed for the intro show of the mode. That way that show can play
while the other assets are loading in the background. (Of course you could also create a subfolder for
the assets that you want to preload and specific an assets: entry for that folder rather than specifying
entries in your config for specific assets. The choice is up to you.)

Related How To guides

∙ Image Widget

info_lights:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The info_lights: section of a machine config file allows you to configure the “Info Lights” plugin to
automatically set “status” lights based on different things that are happening in the game. This is very
common in EM and older solid state machines, since they use lights to tell the player whose turn it is,
what ball they’re on, etc.

Index of config sections 1644

Mission Pinball Framework Documentation, Version

Here’s an example info_lights: section from a machine configuration file:

info_lights:

match_00:

light: match00

match_10:

light: match10

match_20:

light: match20

match_30:

light: match30

match_40:

light: match40

match_50:

light: match50

match_60:

light: match60

match_70:

light: match70

match_80:

light: match80

match_90:

light: match90

ball_1:

light: bip1

ball_2:

light: bip2

ball_3:

light: bip3

ball_4:

light: bip4

ball_5:

light: bip5

player_1:

light: player1

player_2:

light: player2

tilt:

light: tilt

game_over:

light: gameOver

The way info lights work is pretty simple. There are sub-sections that represent different lights that
may be in your machine, and then under each of them you map them to the name of the light.

Then they pretty much just work automatically.

Note that the the light: entry in each of these refers to a device in the lights: section.

match_XX:

This section is for the match lights, with the “XX” replaced with the number of the match light. In the
example configuration above, the machine has match lights that count up by tens (10, 20, 30. . .)
which is why the match_xx entries here are match_10, match_20, match_30, etc. If your machine
matches by the ones digit, then you’d enter these items as match_1, match_2, etc.

Index of config sections 1645

Mission Pinball Framework Documentation, Version

ball_XX:

This maps the ball-in-play number to the light.

player_XX:

This maps the current player to the number in the light. This plugin turns on each light when a new
player joins a game. So it doesn’t show which player is up, rather, if you have a two-player game then
both the player_1 and player_2 lights are lit. (So how does a player know that it’s his turn? That’s
handled by the score reel lights.)

tilt:

Turns this light on when the machine tilts.

game_over:

Flashes this light when a game is not in progress at a rate of 1/2 sec on, 1/2 sec off.

keyboard:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The keyboard: section of your config is used to configure options for how you map computer keyboard
keys to pinball machine switches and events. This is useful for testing your game from your computer
when you’re not around your physical machine.

You might also want to implement some virtual switches in your machine which can be only used via a
keyboard for debugging.

Options for each key & key combination

Once you enter the key and/or key combination, then you need to create a subsection which defines
what this key or key combination does when it’s hit. There are several options:

Optional settings

The following sections are optional in the keyboard: section of your config. (If you don’t include them,
the default will be used).

Index of config sections 1646

Mission Pinball Framework Documentation, Version

debug:

Single value, type: boolean (true/false). Default: false

Todo: Help us to write it

event:

Single event. This device will be posted by the device. Defaults to empty.

You can specify an event name to be posted when this key is pressed. This is useful for testing when
you want to test some part of your game code based on an event. For example, you could map a
keyboard key to clockwise_orbit_hit event instead of having to hit the left_orbit_enter key quickly
followed by the right_orbit_enter key. Events entered here are transmitted posted by the MPF core
engine process.

invert:

Single value, type: boolean (true/false). Default: false

If True, then this key is inverted, meaning the associated switch is active when you’re not pushing the
key down, and it’s inactive when you’re holding the key.

mc_event:

Single event. This device will be posted by the device. Defaults to empty.

This is similar to the event: entry, except an mc_event is posted as events in the media controller
process, rather than in the MPF process.

params:

One or more sub-entries. Each in the format of string : string

This section contains subsections which are a list of parameters that are posted along with the event
or mc_event specified above. Using the following configuration file snippet as an example:

keyboard:

4:

event: advance_reel_test

params:

reel_name: score_1p_10

direction: 1

This keyboard entry will post the event advance_reel_test when the 4 key is pressed, and it will pass
the parameters reel_name=score_1p_10 and direction=1.

Index of config sections 1647

Mission Pinball Framework Documentation, Version

switch:

Single value, type: string name of a switches device. Defaults to empty.

The switch name of the pinball machine switch you want this key (or key combination) to control.

toggle:

Single value, type: boolean (true/false). Default: false

If True, then the key acts like a “push on / push off” key, where you just have to tap it once to hold the
switch active. This is useful for switches in ball devices, since you don’t want to have to hold down the
keys on your keyboard forever whenever a ball is locked in a device. Default is False. You might want
to create multiple entries for the same switch for different key combinations. For example:

1:

switch: trough1

shift+1:

switch: trough1

toggle: true

In the above code, you can momentarily “tap” the trough1 switch by hitting the 1 key, but if you want
to lock that switch on, then you can push Shift+1.

Related How To guides

∙ Connecting Your Computer Keyboard to MPF Switches

kickbacks:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The kickbacks: section of your machine config is used to define kickback mechanisms which are a
type of autofire coil that kicks the ball back into play, typically located in an outlane.

This is an example:

switches:

s_kickback:

number: 1

coils:

c_kickback:

number: 1

default_pulse_ms: 20ms

kickbacks:

left_kickback:

coil: c_kickback

switch: s_kickback

Index of config sections 1648

Mission Pinball Framework Documentation, Version

Since kickbacks are a type of autofire coil, they have the same settings as autofire_coils:. See that
documentation for a list of all the settings and options.

Required settings

The following sections are required in the kickbacks: section of your config:

coil:

Single value, type: string name of a coils device. Defaults to empty.

The name of the coil you want to fire. (Actually, perhaps we should phrase it as the name of the coil
you want to change the state on, because you can also use these kickback coil rules to cause coils to
stop firing based on a switch change.)

switch:

Single value, type: string name of a switches device. Defaults to empty.

The name of the switch which will trigger the kickback coil. More precisely, this switch is used
together with the coil in the hardware rules which will instruct your pinball hardware to pulse the
coil.

Optional settings

The following sections are optional in the kickbacks: section of your config. (If you don’t include
them, the default will be used).

ball_search_order:

Single value, type: integer. Default: 100

A relative value which controls the order individual devices are pulsed when ball search is running.
Lower numbers are checked first. Set to 0 if you do not want this device to be included in the ball
search. See the Ball Search documentation for details.

coil_overwrite:

Single value, type: coil_overwrites. Defaults to empty.

You can overwrite recycle, pulse_ms, pulse_power or hold_power of the coil for this device.

This is an example:

switches:

s_kickback:

number: 1

coils:

c_kickback:

(continues on next page)

Index of config sections 1649

Mission Pinball Framework Documentation, Version

(continued from previous page)

number: 1

default_pulse_ms: 10ms

kickbacks:

left_kickback:

coil: c_kickback

switch: s_kickback

coil_overwrite:

pulse_ms: 20ms

In this example we increase pulse_ms of the kickback.

coil_pulse_delay:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

This setting will delay the pulse of your coil by a certain milliseconds after your switch has activated.
Please note that this has to be supported in your hardware platform and not all platforms do that.

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_will_end, service_mode_entered

Disables this kickback coil by clearing the hardware rule from the pinball controller hardware.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Enables this kickback coil by writing the hardware rule to the pinball controller hardware.

playfield:

Single value, type: string name of a playfields device. Default: playfield

The name of the playfield that this kickback device is on. The default setting is “playfield”, so you only
have to change this value if you have more than one playfield and you’re managing them separately.

reverse_switch:

Single value, type: boolean (true/false). Default: false

Boolean which controls whether this kickback device fires when the switch is active or inactive. The
default behavior is that the coil is fired when the switch goes to an active state. If you want to reverse
that, so the coil fires when the switch goes to inactive, then set this to False. (This is what you would
use if you have an opto.) Default is False.

Index of config sections 1650

Mission Pinball Framework Documentation, Version

switch_overwrite:

One or more sub-entries. Each in the format of string : string

You can overwrite the debounce setting of your switch in this device.

timeout_disable_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

To prevent machine gunning of your kickback coils you can define a windows timeout_watch_time. If
more than timeout_max_hits hits to your switch (and thus responses by your coil) are seen by MPF it
will disable the hardware rule for timeout_disable_time and reinstall it afterwards.

timeout_max_hits:

Single value, type: integer. Default: 0

To prevent machine gunning of your kickback coils you can define a windows timeout_watch_time. If
more than timeout_max_hits hits to your switch (and thus responses by your coil) are seen by MPF it
will disable the hardware rule for timeout_disable_time and reinstall it afterwards.

timeout_watch_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

To prevent machine gunning of your kickback coils you can define a windows timeout_watch_time. If
more than timeout_max_hits hits to your switch (and thus responses by your coil) are seen by MPF it
will disable the hardware rule for timeout_disable_time and reinstall it afterwards.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1651

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

The plain-English name for this device that will show up in operator menus and trouble reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Special / reserved tags for kickbacks: None

See the documentation on tags for details.

Related How To guides

∙ Kickbacks

∙ autofire_coils:

kivy_config:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The kivy_config: section of your config is where you configure kivy.

You can directly configure kivy here. Usually you don’t need this but in some cases it allows some
additional tweaking (e.g. for embedded workloads). All options are documented in the kivy config
documentation.

This is an example:

kivy_config:

kivy:

desktop: 1

exit_on_escape: true

graphics:

borderless: false

fbo: hardware # hardware, software, force-hardware

fullscreen: false

multisamples: 2

position: auto # auto, custom

show_cursor: true

resizable: true

Related How To guides

∙ Using multiple screens

Index of config sections 1652

https://kivy.org/docs/api-kivy.config.html#available-configuration-tokens
https://kivy.org/docs/api-kivy.config.html#available-configuration-tokens

Mission Pinball Framework Documentation, Version

led_player:

led_player and matrix_light_player were replaced with light_player in MPF 0.50. See lights: for
details.

light_stripes:

Config file section

Valid in machine config files YES
Valid in mode config files NO

A “led_stripe” will create “count” leds for you starting the number at “number_start”. If you need a
prefix or suffix for the number you can use “number_template”. All settings in “led_template” will be
applied to all LEDs. The only difference between led_stripes and light_rings is how the x/y coordinates
are computed.

Here’s an example:

#config_version=5

light_stripes:

stripe1:

number_start: 10

light_template:

tags: test

count: 5

debug: True

stripe2:

number_start: 200

number_template: 7-{}

count: 5

direction: 90

start_x: 10

start_y: 20

distance: 5

debug: True

stripe3:

start_channel: ABC-123

count: 5

direction: 90

start_x: 10

start_y: 20

distance: 5

debug: True

light_template:

type: rgbw

light_rings:

ring1:

number_start: 20

count: 12

radius: 3

(continues on next page)

Index of config sections 1653

Mission Pinball Framework Documentation, Version

(continued from previous page)

start_angle: 90

center_x: 100

center_y: 50

debug: True

neoseg_displays:

neoSeg_0:

start_channel: 0-0-0

size: 8digit

light_template:

type: w

subtype: led

neoSeg_1:

start_channel: 0-0-120

size: 2digit

light_template:

type: w

subtype: led

Required settings

The following sections are required in the light_stripes: section of your config:

count:

Single value, type: integer. Defaults to empty.

The integer value for how many LEDs are in the stripe.

light_template:

Single value, type: lights. Defaults to empty.

This is a list of sub-settings (indented) that are regular settings from the lights: section of your
machine config. Any settings that are valid there are valid here, and they’re applied to all the LEDs in
the stripe.

Optional settings

The following sections are optional in the light_stripes: section of your config. (If you don’t include
them, the default will be used).

direction:

Single value, type: number (will be converted to floating point). Defaults to empty.

The angle (in degrees, 0-360) the this LED stripe is positioned on the playfield. This is used for the
calculation of x/y positions of individual LEDs only.

Index of config sections 1654

Mission Pinball Framework Documentation, Version

distance:

Single value, type: number (will be converted to floating point). Defaults to empty.

The distance between individual LEDs (in relative size to the x/y coordinates of the start_x: and
start_y: positions. This is used for the calculation of x/y positions of individual LEDs only.

number_start:

Single value, type: integer. Default: 0

The integer value for the number for the first LED in the stripe. (MPF assumes that all the LEDs in the
stripe are numbered sequentially.)

number_template:

Single value, type: string. Defaults to empty.

MPF automatically configures the LEDs in a stripe. The first one uses the number_start: value, and
then it counts up from there up through the count: value.

However, many hardware numbers for LEDs are not just vanilla numbers, rather they also include a
board number or channel or something like that. The number_template: is where you specify what that
number value looks like. Just use braces {} for the part you want replaced by a number.

The example config with a number template of 7-{} with a number start of 200 and a count of 5 will
create 5 LEDs with the numbers 7-200, 7-201, 7-202, 7-203, and 7-204.

previous:

Single value, type: string name of a lights device. Defaults to empty.

Todo: Help us to write it

start_channel:

Single value, type: string. Defaults to empty.

Todo: Help us to write it

start_x:

Single value, type: number (will be converted to floating point). Defaults to empty.

The “x” position of the first LED. (This is not used in MPF yet.)

Index of config sections 1655

Mission Pinball Framework Documentation, Version

start_y:

Single value, type: number (will be converted to floating point). Defaults to empty.

The “y” position of the first LED.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Unused.

Related How To guides

Todo: Help us to write it

light_rings:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Index of config sections 1656

Mission Pinball Framework Documentation, Version

A “light_rings” will create “count” lights for you starting the number at “number_start”. If you need a
prefix or suffix for the number you can use “number_template”. All settings in “light_template” will be
applied to all lights. The only difference between light_stripes and light_rings is how the x/y
coordinates are computed.

#config_version=5

light_stripes:

stripe1:

number_start: 10

light_template:

tags: test

count: 5

debug: True

stripe2:

number_start: 200

number_template: 7-{}

count: 5

direction: 90

start_x: 10

start_y: 20

distance: 5

debug: True

stripe3:

start_channel: ABC-123

count: 5

direction: 90

start_x: 10

start_y: 20

distance: 5

debug: True

light_template:

type: rgbw

light_rings:

ring1:

number_start: 20

count: 12

radius: 3

start_angle: 90

center_x: 100

center_y: 50

debug: True

neoseg_displays:

neoSeg_0:

start_channel: 0-0-0

size: 8digit

light_template:

type: w

subtype: led

neoSeg_1:

start_channel: 0-0-120

size: 2digit

light_template:

(continues on next page)

Index of config sections 1657

Mission Pinball Framework Documentation, Version

(continued from previous page)

type: w

subtype: led

Required settings

The following sections are required in the light_rings: section of your config:

count:

Single value, type: integer. Defaults to empty.

The integer value for how many LEDs are in the ring.

light_template:

Single value, type: lights. Defaults to empty.

This is a list of sub-settings (indented) that are regular settings from the lights: section of your
machine config. Any settings that are valid there are valid here, and they’re applied to all the LEDs in
the ring.

Optional settings

The following sections are optional in the light_rings: section of your config. (If you don’t include
them, the default will be used).

center_x:

Single value, type: number (will be converted to floating point). Defaults to empty.

The “x” position of the center of the ring. (This is not used in MPF yet.)

center_y:

Single value, type: number (will be converted to floating point). Defaults to empty.

The “y” position of the center of the ring.

number_start:

Single value, type: integer. Default: 0

The integer value for the number for the first LED in the ring. (MPF assumes that all the LEDs in the
ring are numbered sequentially.)

Index of config sections 1658

Mission Pinball Framework Documentation, Version

number_template:

Single value, type: string. Defaults to empty.

MPF automatically configures the LEDs in a ring. The first one uses the number_start: value, and then
it counts up from there up through the count: value.

However, many hardware numbers for LEDs are not just vanilla numbers, rather they also include a
board number or channel or something like that. The number_template: is where you specify what that
number value looks like. Just use braces {} for the part you want replaced by a number.

The example config with a number template of 7-{} with a number start of 200 and a count of 5 will
create 5 LEDs with the numbers 7-200, 7-201, 7-202, 7-203, and 7-204.

previous:

Single value, type: string name of a lights device. Defaults to empty.

Todo: Help us to write it

radius:

Single value, type: number (will be converted to floating point). Defaults to empty.

The radius of the ring (in relative size to the x/y coordinates of the center_x: and center_y: positions.
This is used for the calculation of x/y positions of individual LEDs only.

start_angle:

Single value, type: number (will be converted to floating point). Default: 0

The angle (in degrees, 0-360) of the first LED in the right. This is used for the calculation of x/y
positions of individual LEDs only.

start_channel:

Single value, type: string. Defaults to empty.

Todo: Help us to write it

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

Index of config sections 1659

Mission Pinball Framework Documentation, Version

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

Todo: Help us to write it

lisy:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The lisy: section of your config is where your lisy platform. See How to use MPF with the LISY
platform for details.

Optional settings

The following sections are optional in the lisy: section of your config. (If you don’t include them, the
default will be used).

Index of config sections 1660

Mission Pinball Framework Documentation, Version

baud:

Single value, type: integer. Defaults to empty.

Baudrate when connecting to LISY using a serial port.

connection:

Single value, type: one of the following options: network, serial. Default: network

Whatever to use a network or serial connection.

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

disable_dtr:

Single value, type: boolean (true/false). Default: true

If set to True MPF will try to prevent your operating system from toggling the DTR line of your serial.
This is needed for APC and some other controllers which would reset when this happens. If in doubt
check the documentation of your controller.

display_flash_duty:

Single value, type: number (will be converted to floating point). Default: 0.5

Todo: Help us to write it

display_flash_frequency:

Single value, type: number (will be converted to floating point). Default: 1.0

How fast should the displays flash? Defaults to once per second or 1Hz.

Index of config sections 1661

Mission Pinball Framework Documentation, Version

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

max_led_batch_size:

Single value, type: integer. Default: 12

How many LEDs can be batched on your controller? This might differ on different controllers. If in
doubt check the documentation of your controller.

network_host:

Single value, type: string. Defaults to empty.

Host to connect when connecting to LISY via network.

network_port:

Single value, type: integer. Defaults to empty.

Port to connect when connecting to LISY via network.

poll_hz:

Single value, type: integer. Default: 100

How fast should MPF poll LISY for switch changes? Defaults to 1000Hz

port:

Single value, type: string. Defaults to empty.

Serial port when connecting to LISY using serial.

send_length_after_command:

Single value, type: boolean (true/false). Default: false

Some controllers require an additional length byte after the command.

Related How To guides

∙ How to use MPF with the LISY platform

∙ Arduino Pinball Controller

Index of config sections 1662

Mission Pinball Framework Documentation, Version

leds:

Config file section

Warning: As of MPF 0.50, matrix_lights, flashers and leds have been combined into a single
lights configuration. See lights: for details.

lights:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The lights: section of your config is where you configure physical lights for your hardware platform.

Note: As of MPF 0.50, all lights have been combined into this single lights configuration. If you are
using 0.33 or earlier, please see matrix_lights: for incandescent bulbs and leds: for LEDs.

Concepts

MPF supports white, single-color or multi-color lights. Traditional GIs are single white. Similar,
single-color red lights are possible (i.e. red inserts). RGBW lights are possible as well. They maintain
an additional white channel for better color reproduction.

To support all those different kinds of lights with a single interface for various hardware generations
MPF abstracts two concepts: Light numbers and channel numbers.

Light Numbers

Configuring the number of a light is often the simplest way. Internally, your hardware platform will turn
this into one or multiple channels (see below) depending on the subtype configured. For instance, if
lights are usually RGB the platform will parse the number into three channels.

This is an example:

lights:

my_led:

number: 7 # might also be 8-7 or 8-1-0 depending on your platform

This is often the easiest way to start and will work in most cases.

Channel Numbers

Channel numbers can be configured in channels and describe the number for a single light channel
each. This channel number is then used when the talking to the hardware. For single-color or white

Index of config sections 1663

Mission Pinball Framework Documentation, Version

light this can be the same as number. However, for some serial LED platforms this might be also number
* 3 or a more complex conversion.

This is an example:

lights:

rainbow_star:

type: rgb

channels:

red:

number: 9-29

green:

number: 9-30

blue:

number: 9-40 # this light is not sequential to the previous

This syntax allows the greatest flexibility but is also the most verbose one.

You can either use channels to arbitrarily map channels to colors or you can use start_channel + type
(color order) to define the first channel and then map colors sequentially to the following channels as
defined in the color order. Instead of start_channel you can also chain lights by configuring the
previous light and let MPF (with help by the hardware platform) figure out the channel number.

This is an example:

lights:

rainbow_star: # this will use red: 9-29, green: 9-30 and blue: 9-31

type: rgb

start_channel: 9-29

rainbow_star2: # this will use red: 9-33, green: 9-32 and blue: 9-34

type: grb # notice the changed order here

previous: rainbow_star

This syntax covers almost all practical cases and is beneficial with serial LEDs as the above channels
syntax is very verbose. It allows the service mode to disable broken LEDs if they were removed from a
serial chain. Numbers will then be recalculated omitting disabled LEDs. The syntax also works for
parallel LEDs and other types of lights.

See the documentation page of your hardware platform for more details about numbers and channels.

Optional settings

The following sections are optional in the lights: section of your config. (If you don’t include them,
the default will be used).

channels:

Single value, type: dict. Defaults to empty.

Instead of a single number address for a light, you can enter channels corresponding to the multi-color
channels of an RGB or RGBW LED. Each channel entry can contain any of the lights parameters
listed on this page, but at least number is required.

Index of config sections 1664

Mission Pinball Framework Documentation, Version

lights:

rainbow_star:

type: rgb

channels:

red:

number: 9-29

green:

number: 9-30

blue:

number: 9-31

Note that a light must have either channels or number defined, but cannot have both. See LEDs for
more details about how to configure channels for different types of LEDs.

color_correction_profile:

Single value, type: string. Defaults to empty.

If provided, a color correction profile will be applied to all color settings this light receives. By order
of operations, the light will be set to the requested color first and then the color correction profile will
be applied on top.

default_on_color:

Single value, type: color (color name, hex, or list of values 0 -255). Default: ffffff

For multi-color LEDs, the color defined here will be used when the light is enabled via “on” (as
opposed to being enabled with a specific color). Not intended for single-color lights.

Color values may be a hex string (e.g. 22FFCC), a list of RGB values (e.g. [50, 128, 206]), or a color
name (e.g. turquoise). MPF knows 140+ standard web color names, and you can define your own
custom colors in the named_colors: section of your config.

fade_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

When this light receives instructions to change color, it can interpolate from its current value to the
new value over a fade time. If no value is provided, the machine default will be used. If this light is
part of a show that defines a fade time, the show’s value will supercede this light’s setting.

number:

Single value, type: string. Defaults to empty.

This is the number of the light which specifies which output the hardware bulb or LED is physically
connected to. The exact format used here will depend on which control system you’re using and how
the light is connected.

See the How to configure “number:” settings guide for details.

Note that a light must have either channels or number defined, but cannot have both.

Index of config sections 1665

Mission Pinball Framework Documentation, Version

platform:

Single value, type: string. Defaults to empty.

Name of the platform this LED is connected to. The default value of None means the default hardware
platform will be used. You only need to change this if you have multiple different hardware platforms
in use and this coil is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

There is a special platform drivers which will reference a driver which has to be configured in the
number setting. It can be used if you got a light which is connected to a driver in your platform. That
might be the case for GIs for example. This is an example for a driver as light:

coils:

light_connected_to_a_driver:

number: 42 # number depends on your platform

allow_enable: true # this will allow 100% enable without pwm

lights:

light_on_a_driver:

number: light_connected_to_a_driver # map this light to a driver

platform: drivers

platform_settings:

Single value, type: dict. Defaults to empty.

Platform-specific light settings. Consult your platform documentation for details.

previous:

Single value, type: string name of a lights device. Defaults to empty.

Instead of specifying the number for each light in a chain you can also use the previous setting. To do
this only specify the number of the first light in the chain and then link all consequent light using the
previous setting:

lights:

led_0:

number: 0

subtype: led

type: rgb

led_1:

previous: led_0

subtype: led

type: rgbw

led_2:

previous: led_1

subtype: led

type: rgbw

MPF will then calculate the number based on the light of the previous light. Make sure MPF knows
how many channel each light has (i.e. by specifying the type parameter). This is not supported in all
platforms but in most of them.

Index of config sections 1666

Mission Pinball Framework Documentation, Version

start_channel:

Single value, type: string. Defaults to empty.

In most platforms MPF will calculate the internal address of a light and how many channels it has
using the number parameter. If you got unusual types of lights (such as RGBW LEDs) you can instead
provide this internal address and the number of channels (i.e. using type). This is an example:

lights:

led_0:

start_channel: 0-0

subtype: led

type: rgbw

Consult the manual of your platform for details.

subtype:

Single value, type: string. Defaults to empty.

If you hardware platform supports multiple types of lights you need to set a subtype to tell your
platform how to address this light (to prevent number collisions). Typical values are led, matrix or gi.
Consult your platform documentation for details.

type:

Single value, type: string. Defaults to empty.

Default value is rgb.

This describes the channel order of an LED. Can be 1 to many channels (if supported by hardware).
Valid channels: r (red), g (green), b (blue), w (white=minimum of red, green and blue), + (always on),
- (always off).

When using serial LEDs (e.g. with FAST or Fadecandy), use rgb for WS2812 and grb for WS2811
LEDs.

x:

Single value, type: number (will be converted to floating point). Defaults to empty.

This is used for display_light_player to determine the position of this light on the playfield and use it as
a huge display.

y:

Single value, type: number (will be converted to floating point). Defaults to empty.

This is used for display_light_player to determine the position of this light on the playfield and use it as
a huge display.

Index of config sections 1667

Mission Pinball Framework Documentation, Version

z:

Single value, type: number (will be converted to floating point). Defaults to empty.

Currently not used anywhere.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

If True, this light will log its configuration and color changes to the debug log.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of the light in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Lights can be referenced by their tags in light_players. Typical tags are gi for all GIs or
playfield_inserts for all inserts on the playfield.

Related How To guides

∙ Lights

light_segment_displays:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Index of config sections 1668

Mission Pinball Framework Documentation, Version

The platform_settings: of your segment_displays section is where you map segment displays to lights
when using the light segment displays platform.

Optional settings

The following sections are optional in the light_segment_displays: section of your config. (If you
don’t include them, the default will be used).

display_flash_duty:

Single value, type: number (will be converted to floating point). Default: 0.5

For 7segment your segments are: a, b, c, d, e, f, g and dp (see: 7-Segment Displays in Wikipedia for
details) For BCD your segments are: x0, x1, x2, x3 and dp (see: Binary Coded Decimal in Wikipedia for
details) For 14segment your segments are: l, m, n, k, j, h, g2, g1, f, e, d, c, b, a and dp (see: 14
Segment Displays in Wikipedia for details) For 16segment your segments are: u, t, s, r, p, n, m, k, h, g,
f, e, d, c, b, a and dp (see: 16 Segment Displays in Wikipedia for details)

dp is an optional decimal point per display.

display_flash_frequency:

Single value, type: number (will be converted to floating point). Default: 1.0

How fast should the displays flash? Defaults to once per second or 1Hz.

Related How To guides

∙ How to Connect Segment Displays as Lights to MPF

∙ Alpha-Numeric / Segment Displays

∙ Segment Display Platforms in MPF

light_settings:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The light_settings: section of your config is where you configure default settings for lights in your
machine.

If you are using LEDs in your machine you probably want to set default_fade_ms to make them look
softer. Otherwise, they will turn on and off very sharply and might look flickery. For instance, Stern
uses a value of about 40ms for LEDs on modern machines:

light_settings:

default_fade_ms: 40

Index of config sections 1669

https://en.wikipedia.org/wiki/Seven-segment_display_character_representations
https://en.wikipedia.org/wiki/Binary-coded_decimal
https://en.wikipedia.org/wiki/Fourteen-segment_display
https://en.wikipedia.org/wiki/Fourteen-segment_display
https://en.wikipedia.org/wiki/Sixteen-segment_display

Mission Pinball Framework Documentation, Version

Depending on your hardware your color might look a bit off by default. Different color channels might
achive different brightnesses and white might look pinkish or blueish for example. You can set a
color_correction_profile to compensate for that:

light_settings:

default_color_correction_profile: correction_profile_less_red

color_correction_profiles:

correction_profile_less_red:

whitepoint: [0.9, 1.0, 1.0]

gamma: 2.5

linear_slope: 1.0

linear_cutoff: 0.0

Human perception is also not linear. Therefore, linear_slope is used to translate perceived brightness
to brightness (you can configure that). If you see flickering at very low brightnesses you can increase
linear_cutoff to compensate for that (see below for details).

You can also define more than one profile and configure them per light in the
color_correction_profile setting. This might be useful if you use different types of lights in your
machine:

light_settings:

default_color_correction_profile: correction_profile_less_red

color_correction_profiles:

correction_profile_less_red:

whitepoint: [0.9, 1.0, 1.0]

gamma: 2.5

linear_slope: 1.0

linear_cutoff: 0.0

correction_profile_less_blue:

whitepoint: [1.0, 1.0, 0.9]

gamma: 2.5

linear_slope: 0.8

linear_cutoff: 0.1

lights:

special_led:

number: 42

color_correction_profile: correction_profile_less_blue

Please note, that some hardware platforms (such as the fadecandy) support color correction in
hardware. If possible, we advice you to use the hardware correction because it gives you more
dynamic range (since they use 16bit values internally).

Optional settings

The following sections are optional in the light_settings: section of your config. (If you don’t include
them, the default will be used).

color_correction_profiles:

One or more sub-entries. Each in the format of string : color_correction_profile

The color_correction_profile: section of your config is where you configure named color correction
profiles which you can then apply to lights. You could create a single profile here which you use for all

Index of config sections 1670

Mission Pinball Framework Documentation, Version

of them, or create different ones for different groups of lights.

default_color_correction_profile:

Single value, type: string. Defaults to empty.

The name of the color correction profile that applies to an light by default if that light doesn’t have a
profile configured for it.

default_fade_ms:

Single value, type: integer. Default: 0

This is the default fade_ms that will be applied to individual lights that don’t have fade_ms settings
configured. If you configure an individual light’s fade_ms, it will override this setting.

Related How To guides

∙ lights:

light_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the lights: section of a step.

The light_player: section of your config is where you can control lights in config or shows. Example
in config:

light_player:

some_event:

led1:

color: red

fade: 200ms

led2:

color: ff0000

fade: 2000ms

shows:

rainbow:

- lights:

(leds): red

- lights:

(leds): orange

- lights:

(continues on next page)

Index of config sections 1671

Mission Pinball Framework Documentation, Version

(continued from previous page)

(leds): yellow

- lights:

(leds): green

- lights:

(leds): blue

- lights:

(leds): purple

Optional settings

The following sections are optional in the light_player: section of your config. (If you don’t include
them, the default will be used).

color:

Single value, type: string. Default: white

Set a color to this light. Color values may be a hex string (e.g. 22FFCC), a list of RGB values (e.g. [50,
128, 206]), a color name (e.g. turquoise), or a brightness value (i.e. AA or 120). MPF knows 140+
standard web color names, and you can define your own custom colors in the named_colors: section of
your config. If you use brightness on an RGB light MPF will use the brightness for every channel. For
instance brigness AA will result in color AAAAAA.

There is a special color stop which will remove the current light entry from the light stack and the
current show will become transparent to underlying shows as if the light has never been used in this
show.

fade:

Single value, type: ms_or_token. Defaults to empty.

Time to fade this light in ms. Use this to achieve smooth transitions between colors.

priority:

Single value, type: int_or_token. Default: 0

Relative priority of this entry in the light stack.

Related How To guides

∙ Light player

logic_blocks:

Logic blocks moved one level up in MPF 0.50. Instead of

Index of config sections 1672

Mission Pinball Framework Documentation, Version

logic_blocks:

counters:

your_counter:

count_events: count_it_up

just use:

counters:

your_counter:

count_events: count_it_up

There are three type of logic blocks:

∙ accruals:

∙ counters:

∙ sequences:

Click each of the links above for details and settings for each type of logic block.

logging:

Config file section

Valid in machine config files YES
Valid in mode config files NO

In the logging section you can configure which how verbose parts of MPFs should log.

logging:

console:

asset_manager: none

ball_controller: none

ball_search: basic

bcp: basic

bcp_client: basic

bcp_interface: basic

bcp_server: basic

clock: none

config_players: none # todo

data_manager: none # todo subclasses

delay_manager: none

device_manager: none

event_manager: none

file_manager: none # todo

logic_blocks: none

machine_controller: basic

mode_controller: basic

placeholder_manager: none

platforms: none # todo

players: basic # todo

plugins: none # todo

score_reel_controller: none

(continues on next page)

Index of config sections 1673

Mission Pinball Framework Documentation, Version

(continued from previous page)

scriptlets: none # todo

service_controller: basic

settings_controller: none

show_controller: none

switch_controller: basic

timers: none

file:

asset_manager: basic

ball_controller: basic

ball_search: basic

bcp: basic

bcp_client: basic

bcp_interface: basic

bcp_server: basic

clock: none

config_players: basic

data_manager: basic

delay_manager: none

device_manager: basic

event_manager: basic

file_manager: basic

logic_blocks: basic

machine_controller: basic

mode_controller: basic

placeholder_manager: basic

platforms: basic

players: full

plugins: basic

score_reel_controller: basic

scriptlets: basic

service_controller: basic

settings_controller: basic

show_controller: basic

switch_controller: full

timers: none

Related How To guides

Todo: Help us to write it

machine:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The machine: section of your config is where you configure defails about the number of balls in your
machine.

Index of config sections 1674

Mission Pinball Framework Documentation, Version

machine:

balls_installed: 6

min_balls: 3

Optional settings

The following sections are optional in the machine: section of your config. (If you don’t include them,
the default will be used).

balls_installed:

Single value, type: integer. Default: 1

The (maximum) number of balls which should be installed in your machine.

min_balls:

Single value, type: integer. Default: 1

The minimum number of balls required to start a game. If less than min_balls are present MPF will
refuse to stat a game.

It’s super annoying if you walk up to a pinball machine on location and can’t start a game because it’s
missing a ball. So this setting lets you specify the minimum number of balls that need to be installed
in order for a game to start. Note that it’s up to you to make sure your game code can handle fewer
balls than you might be expecting.

Related How To guides

∙ How to configure an older style trough with two coils and only one ball switch

machine_vars:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The machine_vars: section of your machine-wide config file lets you specify the initial state of machine
variables that are set when MPF starts up.

Example:

#config_version=5

player_vars:

some_var:

initial_value: 4

some_float:

(continues on next page)

Index of config sections 1675

Mission Pinball Framework Documentation, Version

(continued from previous page)

initial_value: 4

value_type: float

some_string:

initial_value: 4

value_type: str

some_other_string:

initial_value: hello

value_type: str # required for non-ints

machine_vars:

test1:

initial_value: 4

value_type: int

test2:

initial_value: '5'

value_type: str

below is the min config we need to be able to start a game

game:

balls_per_game: 3

coils:

eject_coil1:

number:

eject_coil2:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

playfields:

playfield:

default_source_device: bd_launcher

tags: default

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

(continues on next page)

Index of config sections 1676

Mission Pinball Framework Documentation, Version

(continued from previous page)

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 2s

Required settings

The following sections are required in the machine_vars: section of your config:

initial_value:

Single value, type: string. Defaults to empty.

The initial value of this machine variable that you’re setting. This is set when MPF starts.

Optional settings

The following sections are optional in the machine_vars: section of your config. (If you don’t include
them, the default will be used).

persist:

Single value, type: boolean (true/false). Default: true

True/False value which controls whether this machine variable will be persisted to when MPF shuts
down.

value_type:

Single value, type: one of the following options: str, float, int. Default: int

Select one of the options from this list: int (integer), float, or str (string). The default is “int”, and
there is no intelligence to try to detect which type of value you have, so if you have a floating point
number or a string, you also need to set the value_type.

Related How To guides

∙ Machine Variables

magnets:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Index of config sections 1677

Mission Pinball Framework Documentation, Version

The magnets: section of your machine config is used to define magnet mechanisms from coils and
(optionally) switches. There are settings that control the timing of grabbing, releasing, and “flinging”
the ball.

Example:

Listing 1: /config/config.yaml

#config_version=5

coils:

magnet_coil1:

number:

default_pulse_ms: 100

default_hold_power: 0.375

magnet_coil2:

number:

default_pulse_ms: 100

default_hold_power: 0.375

magnet_coil3:

number:

default_pulse_ms: 100

default_hold_power: 0.375

switches:

grab_switch1:

number:

grab_switch2:

number:

grab_switch3:

number:

magnets:

magnet1:

magnet_coil: magnet_coil1

grab_switch: grab_switch1

enable_events: magnet1_enable

disable_events: magnet1_disable

release_ball_events: magnet1_release

fling_ball_events: magnet1_fling

magnet_ball_save:

magnet_coil: magnet_coil2

grab_switch: grab_switch2

enable_events: magnet_ball_save_enable

disable_events: magnet_magnet_ball_save_grabbed_ball

fling_ball_events: magnet_magnet_ball_save_grabbed_ball

magnet_auto_enable:

magnet_coil: magnet_coil3

grab_switch: grab_switch3

ball_saves:

magnet_save:

balls_to_save: 1

active_time: 5s
(continues on next page)

Index of config sections 1678

/mpf_examples/magnet/config/config.yaml

Mission Pinball Framework Documentation, Version

(continued from previous page)

enable_events: magnet_magnet_ball_save_grabbing_ball

Required settings

The following sections are required in the magnets: section of your config:

magnet_coil:

Single value, type: string name of a coils device. Defaults to empty.

Note that is any of the magnet activation times are longer than 255ms and the magnet pulse power is
100%, then you will need to add allow_enable: true to the coil’s entry in the coils: section of the
machine config.

Optional settings

The following sections are optional in the magnets: section of your config. (If you don’t include them,
the default will be used).

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_will_end, service_mode_entered

These events mean the magnet will no longer try to grab a ball if the grab_switch: is activated.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_started

These events enable the magnet to grab a ball based on the grab_switch: being activated.

fling_ball_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events to trigger flinging a ball.

fling_drop_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 250ms

How long the magnet is deactivated for before the “fling_regrab_time” when it’s flinging a ball.

Index of config sections 1679

Mission Pinball Framework Documentation, Version

fling_regrab_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 50ms

How long the “second” (fling) pulse is for when a magnet is flinging a ball after its dropped it.

grab_ball_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

These events cause the magnet to immediately attempt to grab a ball. The magnet will be activated
for the grab_time:.

grab_switch:

Single value, type: string name of a switches device. Defaults to empty.

The switch which activates grabbing a ball.

grab_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 1.5s

How long the magnet will be energized when attempting to grab a ball.

playfield:

Single value, type: string name of a playfields device. Default: playfield

The playfield on which this magnet is.

release_ball_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

These events cause the magnet to deactivate for the release_time: setting.

release_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 500ms

How long the magnet disables to release a ball.

Index of config sections 1680

Mission Pinball Framework Documentation, Version

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
machine_reset_phase_3, ball_starting

These events release a grabbed ball and disable the magnet.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

A list of tags. Not used for any logic.

Related How To guides

∙ Magnets

matrix_lights:

Warning: As of MPF 0.50, matrix_lights and leds have been combined into a single lights
configuration. See lights: for details.

Index of config sections 1681

Mission Pinball Framework Documentation, Version

mc_custom_code:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The mc_custom_code: section of your config is a list where you register your custom code classes for
MC.

Related How To guides

∙ MPF developer documentation.

mc_scriptlets:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The mc_scriptlets: section of your config is where you list you custom code scriptlets for MC. This
has been deprecated with 0.50+. Use mc_custom_code: instead. Scriptlets still work but will be
removed eventually.

Related How To guides

∙ MPF developer documentation.

mode:

Config file section

Valid in machine config files NO
Valid in mode config files YES

The mode: section of a mode config file is used to specify settings for a that mode.

Note that this mode: section is different than the modes: section. (The modes: section is a
machine-wide setting where you list all the modes that are made available to MPF when it boots up.
The mode: section we’re talking about here goes in a mode-specific config and holds the settings for
that specific mode.)

Let’s take a look at an example mode: section from a multiball mode:

Index of config sections 1682

http://developer.missionpinball.org/en/dev/code/machine_code.html
http://developer.missionpinball.org/en/dev/code/machine_code.html

Mission Pinball Framework Documentation, Version

##! mode: mode1

mode:

start_events: ball_starting

stop_events: timer_mode_timer_complete, shot_right_ramp

priority: 300

Optional settings

The following sections are optional in the mode: section of your config. (If you don’t include them, the
default will be used).

asset_paths:

List of one (or more) values, each is a type: string. Defaults to empty.

Todo: Help us to write it

code:

Single value, type: string. Defaults to empty.

If you want to write some custom Python code for this mode, you can specify the name of your file as
well as the class (a child class of Mode). This entry is completely optional. If you don’t need to write
custom Python code for this mode (i.e. if you can do everything you need to do with config files which
will probably be the case 90% of the time, then you can skip this setting.)

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this mode.

events_when_started:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Events which will be posted when this mode has been started.

events_when_stopped:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Events which will be posted when this mode has been stopped.

Index of config sections 1683

Mission Pinball Framework Documentation, Version

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this mode.

game_mode:

Single value, type: boolean (true/false). Default: true

A mode can only access player state if game_mode is set to True. You can set this to False to allow a
mode to run outside of a game. On example for such a mode is the attract mode. Game modes are
automatically stopped at the end of a game.

path:

Single value, type: string. Defaults to empty.

Todo: Help us to write it

priority:

Single value, type: integer. Default: 100

This is the numeric value that this mode will run at. (Note that this cannot be changed once the mode
is running.) This priority affects two things:

∙ The priority order of the modes which affects the order shots and other “blockable” events are
processed.

∙ The default priority that other things from this mode run at (shows, slides, sounds, etc.).

Our best practices are that you should have a 100-point separation between modes. (i.e. run your base
mode at 100, a game mode at 200, maybe your extra ball awarded mode at 10,000, etc.) The reason
for this is that with big spacing between modes, you still have room to adjust the relative priorities of
things that happen within a mode without the risk of those things affecting other modes.

Warning: Keep your mode priorities between 100 and 1000000. MPF needs some built-in modes
to run above and below your modes, so it has some things that run under 100 and over 1 million.

restart_on_next_ball:

Single value, type: boolean (true/false). Default: false

If you set this to true, a mode that was running when the ball ended that was also configured to stop on
ball end will automatically start for the next ball this player has. This is managed on a per-player basis
via a player variable _restart_modes_on_next_ball which maintains a list of the modes to be restarted.

Index of config sections 1684

Mission Pinball Framework Documentation, Version

start_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause this mode to start.

If the mode is already running when one of the start events is posted, that’s ok. (i.e. It won’t start over
or break.)

For modes that you want to start when the player’s ball starts (like for your base mode, ball save, or
skillshot, you’d enter ball_starting here. For modes that should start when some progress has been
made in the game, enter the name of the event that represents when you want to start the mode. This
could be the event from a shot being made, the resultant event from a logic block being completed,
etc.

start_priority:

Single value, type: integer. Default: 0

Allows you to fine-tune the order that modes are started in.

By default, modes register their start event handlers based on their mode priority, meaning if two
modes are both configured to start on the ball_starting event, the higher-priority one will start first.

This start_priority: setting allows you to specify a relative value that will be added to the mode’s
priority: for the purpose of controlling the start order. (You can specify positive or negative values
here.)

Note that the start_priority: setting only matters when you have multiple modes that are set to start
on the same event.

stop_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause the mode to stop which will remove itself from the list of active
modes. All of the things you configured in this mode’s config file will be unloaded. (i.e. slides and
shows won’t play, scoring and shot events are removed, etc.)

In the skillshot mode from the example above, there are two stop_events:. The first entry is the event
that’s posted when a timer called “mode_timer” is complete. (In this case this is a timed mode, so
when that timer expires, the mode ends.) The second event is when the skillshot is made (the right
ramp) in this case. (This is because once the skillshot is made, you want to remove this mode.)

If a mode is stopped and another one of the stop_events is posted, that’s ok. The mode will remain
stopped.

Index of config sections 1685

Mission Pinball Framework Documentation, Version

stop_on_ball_end:

Single value, type: boolean (true/false). Default: true

The default behavior for modes in MPF is that they’re automatically stopped when the ball ends. Some
modes (like the built-in game and credit modes) need to stay running even when the ball ends, so to
support that you can add stop_on_ball_end: false.

Another use of this option is to retain the mode’s progress towards completion after draining a ball;
allowing the next player to start their ball where the previous player left off in the mode. To enable
this behavior, you can add stop_on_ball_end: false.

However, it is very likely that a mode will be left unfinished (open) after the final ball, causing MPF to
shutdown unexpectedly. You will get an error similar to this:

AssertionError('Mode terra_2 is not supposed to run outside of game.',)

To avoid this unexpected crash of MPF, add game_ending to the stop_events:

##! mode: mode1

mode:

start_events: mode_terra_2_start

stop_events: mode_complete, game_ending

stop_on_ball_end: false

game_mode: false

However, a mode with stop_on_ball_end: False set must be a non game mode (i.e. game_mode: False
is also set). To prevent crashes you cannot use all player functionality (such as accessing player
variable) in this mode.

stop_priority:

Single value, type: integer. Default: 0

Control the order that modes stop.

By default, modes register their stop handlers at the level the mode is operating plus one. (Why +1?
Because if you have one mode set to stop at an event and another mode set to start on the same event,
automatically adding +1 to the stop event handler guarantees that the old mode will stop before the
new mode starts.)

If you add stop priority, it’s relative and added on top of the priority of the mode plus the +1. So if you
have one mode you want to stop before another mode, you can simply add stop_priority: 1 to that
mode, and if other modes don’t have a stop_priority set then they’ll stop after it. (A higher number
means that mode stops first.)

If you have a mode you want to stop last, then don’t enter a stop_priority for it but enter stop_priority:
1 for all the other modes you want to stop first. You can add different stop_priority values for different
modes, and they will all stop in order, highest numeric value to lowest. Note that the stop_priority
setting only matters when you have multiple modes that are set to end on the same stop_event.

use_wait_queue:

Single value, type: boolean (true/false). Default: false

Index of config sections 1686

Mission Pinball Framework Documentation, Version

Specifies whether this mode should “pause” the flow of MPF while this mode is running. This only
works if the mode is started via a “queue” event (something like ball_ending, game_ending, etc.).
When set to true, game flow will be halted as long as this mode is running. Game flow proceeds when
this mode ends.

This is useful for things like bonus modes where you want the mode to finish before the game flow
moves on with the next player’s turn, or modes like match or high score entry where you want those to
finish before the attract mode starts again.

Related How To guides

∙ How to design a game in MPF using Modes

∙ Tutorial step 14: Add your first game mode

∙ Modes

mode_settings:

Config file section

Valid in machine config files NO
Valid in mode config files YES

The mode_settings: section of your config is a generic section that contains settings that you might
want to use in a specific mode. It’s nice because it’s pretty much ignored by the general MPF config
processing, meaning you can put whatever settings you want in here for a specific mode.

In fact, several of the built-in MPF modes make use of the mode_settings: section, including:

∙ End of Ball Bonus mode

Related How To guides

∙ End of Ball Bonus mode

∙ Mode Selection

∙ Carousel

∙ End of Ball Bonus

modes:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The modes: section of your config is where you configure which modes can be loaded in your machine.

This is an example:

Index of config sections 1687

Mission Pinball Framework Documentation, Version

modes:

- my_mode1

- my_mode2

See Modes and How to design a game in MPF using Modes for details about modes.

Related How To guides

∙ How to design a game in MPF using Modes

∙ Tutorial step 14: Add your first game mode

∙ Modes

motors:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The motors: section of your config is where you configure motors with position switches.

MPF supports two types of motor devices:

1. Motor can only move into one direction. The device mechanically changes the direction or moves
in cycles.

2. Motor can move in two directions.

Motors devices are controlled using digital_outputs which can map to either light or driver outputs.

Device which can only move in one direction

This is an example for a motorized drop target bank which is mounted to a camshaft. When the motor
is running it constantly moves up and down. Two position switches are used to detect the current
position.

switches:

s_motorized_drop_target_bank_position_up:

number:

s_motorized_drop_target_bank_position_down:

number:

digital_outputs:

c_motorized_drop_target_bank_run:

number:

type: driver

motors:

motorized_drop_target_bank:

motor_left_output: c_motorized_drop_target_bank_run

position_switches: !!omap

- up: s_motorized_drop_target_bank_position_up

- down: s_motorized_drop_target_bank_position_down

(continues on next page)

Index of config sections 1688

Mission Pinball Framework Documentation, Version

(continued from previous page)

reset_position: down

go_to_position:

move_bank_up: up

move_bank_down: down

Device which can move in two directions

The slimer in Stern Ghostbusters is an example for a motor which can move in two directions. Both
digital outputs are connected to light outputs. Again two position switches are used to detect the
current position. In this setup the first and last switches are also considered as limit switches and the
motor will stop once it hit one of them.

switches:

s_slimer_home:

number: 8-1

s_slimer_away:

number: 8-2

digital_outputs:

c_slimer_motor_forward:

number: 8-3

type: light

c_slimer_motor_backward:

number: 8-4

type: light

motors:

ghostbusters_slimer:

motor_left_output: c_slimer_motor_forward

motor_right_output: c_slimer_motor_backward

position_switches: !!omap

- home: s_slimer_home

- away: s_slimer_away

reset_position: home

go_to_position:

slimer_home: home

slimer_away: away

Another example of such a device would be the claw in Stern Batman DK (or also Stern Batman 66). It
has more position switches but the mechanics are similar:

switches:

s_claw_home:

number:

s_claw_position1:

number:

s_claw_position2:

number:

s_claw_position3:

number:

s_claw_position4:

number:

s_claw_position5:

number:

(continues on next page)

Index of config sections 1689

Mission Pinball Framework Documentation, Version

(continued from previous page)

digital_outputs:

c_claw_forward:

number:

type: driver

c_claw_backward:

number:

type: driver

motors:

batman_claw:

motor_left_output: c_claw_forward

motor_right_output: c_claw_backward

position_switches: !!omap

- home: s_claw_home

- pos1: s_claw_position1

- pos2: s_claw_position2

- pos3: s_claw_position3

- pos4: s_claw_position4

- pos5: s_claw_position5

reset_position: home

go_to_position:

stop_claw: home

go_pos1: pos1

go_pos2: pos2

go_pos3: pos3

go_pos4: pos4

go_pos5: pos5

Required settings

The following sections are required in the motors: section of your config:

position_switches:

Ordered list for one (or more) sub-settings. Each in the format of string : string name of a switches
device

Ordered map of name of the position and the switch which becomes active once this position is
reached.

For example:

position_switches: !!omap

- home: s_claw_home

- pos1: s_claw_position1

- pos2: s_claw_position2

home, pos1 and pos2 are the names of your positions (you can choose them freely). s_claw_home,
s_claw_position1 and s_claw_position2 are the switches to detect the position.

The order is important when the motor can move in two directions. For instance, if the device is at
home and should move to pos1 it will move right. However, if it is at pos2 it will move left.

Index of config sections 1690

Mission Pinball Framework Documentation, Version

The same position logic applies when working with a motor that has a “home” position on the right
instead of the left:

position_switches: !!omap

- pos2: s_claw_position2

- pos1: s_claw_position1

- home: s_claw_home

If it is not at any position and also does not know its previous position it will move left until it reaches
a known position and may then change its direction again (usually this should not happen since it will
move to a known position during reset).

reset_position:

Single value, type: string. Defaults to empty.

The position the device should move to on reset (as defined in position_switches).

Optional settings

The following sections are optional in the motors: section of your config. (If you don’t include them,
the default will be used).

go_to_position:

One or more sub-entries. Each in the format of string : string

A mapping of events to positions. Once an event in the mapping is posted the motor will move to the
corresponding position.

For instance:

go_to_position:

stop_claw: home

go_pos1: pos1

go_pos2: pos2

If you post stop_claw the motor will move to the position called home (as defined in position_switches).

include_in_ball_search:

Single value, type: boolean (true/false). Default: true

Whether the motor should be included in ball search.

motor_left_output:

Single value, type: string name of a digital_outputs device. Defaults to empty.

Digital output to enable to move the motor left. You need to configure at least motor_left_output or
motor_right_output if you motor can only move in one direction or both if it can move in both
directions.

Index of config sections 1691

Mission Pinball Framework Documentation, Version

motor_right_output:

Single value, type: string name of a digital_outputs device. Defaults to empty.

Digital output to enable to move the motor right. You need to configure at least motor_left_output or
motor_right_output if you motor can only move in one direction or both if it can move in both
directions.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
machine_reset_phase_3, ball_starting

Events on which the motor should move to its reset_position. You usually do not have to configure
this.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Motors

Index of config sections 1692

Mission Pinball Framework Documentation, Version

mpf:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The mpf: section of your config is where you configure global MPF settings.

Optional settings

The following sections are optional in the mpf: section of your config. (If you don’t include them, the
default will be used).

allow_invalid_config_sections:

Single value, type: boolean (true/false). Default: false

MPF will not raise a fatal error when on invalid section when you set this to true. This might be useful
when you are developing a new feature and do not want to constantly update config_spec (the file
which describes allowed sections).

auto_create_switch_events:

Single value, type: boolean (true/false). Default: true

MPF will post switch_event_active and switch_event_inactive (see below) when this is enabled.

config_players:

Unknown type. See description below.

A list of config players which will be loaded.

core_modules:

Unknown type. See description below.

A list of core modules which will be loaded.

default_ball_search:

Single value, type: boolean (true/false). Default: false

Default value for whether ball search is enabled or disabled on all playfields (unless you overwrite it
on that playfield).

Index of config sections 1693

Mission Pinball Framework Documentation, Version

default_light_hw_update_hz:

Single value, type: integer. Default: 50

Default light update hz. Can be overwritten per platform.

default_platform_hz:

Single value, type: number (will be converted to floating point). Default: 100

For all non-tickless platforms we poll this often. This usually means how often we will read switches.
Reducing this setting might reduce the amounts of CPU significantly. We recommand to keep this at
least at 50Hz or you will loose switch hits. For smooth game play aim at 100Hz. Everything above that
will mostly only reduce switch latency.

default_pulse_ms:

Single value, type: integer. Default: 10

Default default_pulse_ms for all coils when not overwritten. This will be used when you do not specify
any pulse_ms in your coil.

default_show_sync_ms:

Single value, type: integer. Default: 0

Default sync_mc for all shows when not specified otherwise.

default_timed_enable_ms:

Single value, type: integer. Default: 0

Todo: Help us to write it

device_modules:

Unknown type. See description below.

A list of device modules which will be loaded.

paths:

Unknown type. See description below.

Paths for all additional files loaded in MPF.

Index of config sections 1694

Mission Pinball Framework Documentation, Version

platforms:

Unknown type. See description below.

A list of platforms which will be loaded.

plugins:

Unknown type. See description below.

A list of plugins which will be loaded.

report_crashes:

Single value, type: one of the following options: ask, never, always. Default: ask

Todo: Help us to write it

save_machine_vars_to_disk:

Single value, type: boolean (true/false). Default: true

If set to true MPF will persist machine_vars to disk in a background writer.

switch_event_active:

Single value, type: string. Default: %_active

If auto_create_switch_events is set to true this event will be posted after a switch turned active.

switch_event_inactive:

Single value, type: string. Default: %_inactive

If auto_create_switch_events is set to true this event will be posted after a switch turned inactive.

switch_tag_event:

Single value, type: string. Default: sw_%

This event will be posted for all tags after a switch turned active.

Related How To guides

∙ How to configure LEDs (FAST Pinball)

Index of config sections 1695

Mission Pinball Framework Documentation, Version

mpf-mc:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The mpf-mc: section of your config is where you configure options for the MC itself.

Required Settings

All of these settings are required in the mpf-mc: section. However, MPF-MC includes a default config
file called mcconfig.yaml which includes all these settings with their defaults. So you only need to
add/enter these if you want to change something from the default.

bcp_port:

Single integer value, default is 5050.

This is the TCP port that the MC listens on for incoming BCP connections. If you change this from the

bcp_interface:

String, default is localhost.

The interface to bind for the BCP connection.

fps:

Single integer value, default is 30.

Limit the frames per second to fps. This prevents using excessive CPU for MPF MC.

allow_invalid_config_sections:

Single boolean value, default is True.

Allow sections which are not known to MPF.

multiball_locks:

Config file section

Valid in machine config files NO
Valid in mode config files YES

Index of config sections 1696

Mission Pinball Framework Documentation, Version

The multiball_locks: section of your config is used to configure ball locks which will lock balls for
multiball. Note that if you only want to hold a ball temporarily (like to play a show for an award) and
then release it, use the ball_holds: section instead.

Multiball lock devices are smart. They work with physical ball devices but track the number of balls
locked virtually which is not necessarily the same as the number of balls that are physically contained
in a ball device.

When a ball is locked, it will add a new ball into play from the ball device which is set in
default_source_device of your playfield unless the device that just locked it is full, in which case it will
eject a ball from the full device. The events that control the ball ejections are queue events, so you can
interrupt the delivery of a new ball with the queue_relay_player: (for example, to have a mode
selection screen before returning to play).

Whenever a new ball is locked, the event multiball_lock_<name>_locked_ball is posted with an
argument “total_balls_locked”. When the lock is full, it will post multiball_lock_<name>_full, which
you can use as a start event for a related multiballs: to start multiball. (And since the multiball lock
tracks the “virtual” ball lock count on a per-player basis, this will still work even if another player
previously emptied out the lock. (In that case, the multiball will add any additional balls it needs from
the trough.)

Here’s an example:

ball_devices:

bd_bunker:

eject_coil: c_eject

ball_switches: s_ball1

##! mode: mode1

multiball_locks:

bunker:

balls_to_lock: 3

lock_devices: bd_bunker

Each sub-entry under the multiball_locks: section is the name of the multiball lock (“bunker”) in the
example above. Then each named ball lock has the following settings:

Required settings

The following sections are required in the multiball_locks: section of your config:

balls_to_lock:

Single value, type: integer. Defaults to empty.

The number of balls this ball lock should hold. If one of the associated lock devices receives a ball and
this logical ball lock is full, then the ball device will just release the ball again.

lock_devices:

List of one (or more) values, each is a type: string name of a ball_devices device. Defaults to empty.

A list of one (or more) ball devices that will collect balls which will count towards this lock.

Index of config sections 1697

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the multiball_locks: section of your config. (If you don’t
include them, the default will be used).

balls_to_replace:

Single value, type: integer. Default: -1

By default a multiball lock will immediately replace every ball it locks with a new ball from the default
device (i.e. the trough). With this setting you can instruct the lock to replace only up to a certain
number of locked balls. A value of 0 means the lock will never replace balls, and -1 means it will
always replace balls (default).

This setting is useful for machines that physically lock multiple balls in a lock and replace them from
the trough. When a full lock starts a multiball, for example, you may not want the game to add another
ball from the trough. Usually this setting will be used in tandem with replace-balls-in-play from
multiballs:.

Caution: an improperly configured setting can lead the player to a state where no balls are active on
the playfield and the game becomes stuck. See How to create a multiball with a traditional ball lock
for instructions and examples.

blocking_facility:

Single value, type: string. Defaults to empty.

Todo: Help us to write it

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None (Note that if you add an entry here, it will replace the default. So if you also want the
default value(s) to apply, add them too.)

Event(s) which disable this ball lock, meaning that balls that enter one of the lock devices don’t count
towards the lock. If you want to set up a ball lock that requires the player to “re-light” the lock after
locking a ball, you can set this ball lock’s “ball_locked” event as a disable event for this lock and then
set some other shot that re-enables the lock as an enable event.

empty_lock_devices_on_ball_end:

Single value, type: boolean (true/false). Default: false

Todo: Help us to write it

Index of config sections 1698

Mission Pinball Framework Documentation, Version

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None (Note that if you add an entry here, it will replace the default. So if you also want the
default value(s) to apply, add them too.)

Event(s) which enable this ball lock. If this multiball lock is disabled, then a ball entering one of its
ball devices does not count towards the lock. You can use this in situations where a player has to hit
some other shot to first re-light the lock before a ball can be locked. (In that case you’d use the event
posted by the light lock shot as one of the enable_events here.

locked_ball_counting_strategy:

Single value, type: one of the following options: virtual_only, min_virtual_physical, physical_only,
no_virtual. Default: virtual_only

See the general multiball lock documentation for an explanation of how each of these works.

priority:

Single value, type: integer. Default: 1

Relative priority when claiming balls entering a device. This can be used to give one ball_hold or
multiball_lock preference when claiming balls.

reset_all_counts_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event(s) which reset the locked ball counts for all players.

reset_count_for_current_player_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event(s) which reset the locked ball count for the current player.

source_devices:

List of one (or more) values, each is a type: string name of a ball_devices device. Defaults to empty.

Select the source device to use when replacing balls. By default this will use the device defined in
lock_devices. If this setting is defined and the defined device does not have a ball the lock will fall
back to the default playfield source device.

Index of config sections 1699

Mission Pinball Framework Documentation, Version

source_playfield:

Single value, type: string name of a ball_devices device. Default: playfield

The name of the playfield that feeds balls to this lock. If you only have one playfield (which is most
games), you can leave this setting out. Default is the playfield called playfield.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Multiballs

multiballs:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Index of config sections 1700

Mission Pinball Framework Documentation, Version

The multiballs: section of your config is where you can configure multiball devices. Multiball devices
are “abstract” devices in that they’re more of a concept rather than a physical device on the playfield.
The multiball “device” is used to start multiball. This section can be used in your machine-wide config
files. This section can be used in mode-specific config files.

Here’s an example which contains several different multiball configs. (In the real world, you’d
probably only have one multiball for each mode.)

multiballs:

add_a_ball:

ball_count: 1

ball_count_type: add

shoot_again: 30s

enable_events: mb4_enable

disable_events: mb4_disable

start_events: mb4_start

stop_events: mb4_stop

quick_2_ball:

ball_count: 2

ball_count_type: total

shoot_again: 20s

start_events: mb11_start

ball_locks: bd_lock

release_all_locked_balls:

ball_count: current_player.lock_mb6_locked_balls

ball_count_type: add

shoot_again: 20s

start_events: mb12_start

ball_locks: bd_lock

quick_add_2_ball:

ball_count: 2

ball_count_type: add

shoot_again: 0

start_events: mb6_start

ball_locks: bd_lock

full_ball_save:

ball_count: 2

shoot_again: 30s

hurry_up_time: 10s

grace_period: 5s

add_a_ball_events: add_ball

add_a_ball_shoot_again: 20s

add_a_ball_hurry_up_time: 5s

add_a_ball_grace_period: 10s

start_events: mb20_start

Required settings

The following sections are required in the multiballs: section of your config:

ball_count:

Single value, type: integer or template (Instructions for entering templates). Defaults to empty.

Index of config sections 1701

Mission Pinball Framework Documentation, Version

The number of balls this multiball should eject (and maintain during shoot again period). This is a
template so you can use dynamic values to calculate this during runtime.

Optional settings

The following sections are optional in the multiballs: section of your config. (If you don’t include
them, the default will be used).

add_a_ball_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, will add one ball into play. Posting an event multiple times will add
one ball for each time the event is posted.

This is useful for “add-a-ball” functionality (which you can combine with a counter and/or conditional
events if you want to cap how many total balls can be added into play).

add_a_ball_grace_period:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 0

The “secret” time (in MPF time string format) the ball save is still active after any shows or effects
that are triggered end. This is added onto the add_a_ball_shoot_again.

add_a_ball_hurry_up_time:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 0

The time before the add-a-ball ball save ends (in MPF time string format) that will cause the
multiball_<name>_hurry_up event to be posted. Use this to change the script for the light or trigger
other effect.

add_a_ball_shoot_again:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 5s

Specifies a time period for “shoot again” when an add-a-ball event is posted. This is a sort of
automatic ball save for multiballs. The timer will start when this multiball starts, and any balls that
drain during this time will be re-added into play.

ball_count_type:

Single value, type: one of the following options: add, total. Default: total

Set this to either total or add. Default is total.

Index of config sections 1702

Mission Pinball Framework Documentation, Version

This setting controls the behavior of how the multiball calculates the number of balls it should add
into play. Adjusting this setting is useful when you have multiple (or stacked) multiballs and you want
to control how the combined counts work.

total Means the ball_count: setting will provide a target for the total number of balls that should be
in play when this multiball starts. So if this multiball has a ball_count: 3, and it starts when 2
balls are live on the playfield, then this multiball will only add 1 more ball to bring the total to 3.

add Means that the ball_count: setting will specify the number of balls that are added into play on
top of whatever number of balls are already in play. So if this multiball is set to ball_count: 2
and there are already 2 balls in play, then this multiball will add 2 more balls for a total of 4 balls
live.

ball_locks:

List of one (or more) values, each is a type: string name of a ball_devices device. Defaults to empty.

Use those devices first when ejecting balls to the playfield on multiball start. On start all balls from all
locks will be ejected (maybe more than ball_count). If there are not enough balls in the lock more balls
will be requested to the source_playfield.

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, disable this multiball. When disabled, the other events (like start and
add a ball) do not work. If this multiball is in a mode config, then it will also be disabled when the
mode it’s in stops.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, enable this multiball. Note that enabling a multiball is not the same as
starting it, but the other events (like to start the multiball or, or add a ball, etc.) do not work unless
this multiball is enabled.

Note that if you do not add any enable_events: (which is the default), this multiball will be
automatically enabled when the mode it’s in starts.

grace_period:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 0

The “secret” time (in MPF time string format) the ball save is still active after any shows or effects
that are triggered end. This is added onto the shoot_again.

Index of config sections 1703

Mission Pinball Framework Documentation, Version

hurry_up_time:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 0

The time before the ball save ends (in MPF time string format) that will cause the
multiball_<name>_hurry_up event to be posted. Use this to change the script for the light or trigger
other effect.

replace_balls_in_play:

Single value, type: boolean (true/false). Default: false

This setting controls whether the multiball should include existing balls in play when counting the
number of balls to add to the playfield. Specifically for machines which physically lock multiple balls,
this setting should be used in tandem with balls-to-replace from multiball_locks: to accurately
populate the multiball when it starts.

See How to create a multiball with a traditional ball lock for detailed instructions on using this setting.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
machine_reset_phase_3, ball_starting

Event(s) that reset this multiball, which means they disable it as well as disabling shoot again and
resetting the ball add counts to 0.

shoot_again:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 10s

Specifies a time period for “shoot again” which is a sort of automatic ball save for multiballs. The timer
will start when this multiball starts, and any balls that drain during this time will be re-added into play.

source_playfield:

Single value, type: string name of a ball_devices device. Default: playfield

The name of the playfield (from the playfields: section of your machine config that this multiball will
add balls to. You don’t have to worry about this unless you have multiple playfields that you’re
managing separately (which is rare, usually only in head-to-head type games).

start_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, start the multiball. Note that these events will only have an effect if
this multiball is enabled.

Index of config sections 1704

Mission Pinball Framework Documentation, Version

start_or_add_a_ball_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, will either start the multiball, or, if it’s started, will add another ball.

stop_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events in this list, when posted, stop the multiball. If there are multiball balls on the playfield, there’s
nothing that can be done about that (unless you want to disable the flippers). However stopping the
multiball will cut off the “shoot again” period.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Unused.

Related How To guides

∙ Multiballs

Index of config sections 1705

Mission Pinball Framework Documentation, Version

mypinballs:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The mypinballs: section of your config is where your mypinballs segment display controller. See
MyPinballs Segment Display Controller for details.

Required settings

The following sections are required in the mypinballs: section of your config:

port:

Single value, type: string. Defaults to empty.

Serial port to use.

Optional settings

The following sections are optional in the mypinballs: section of your config. (If you don’t include
them, the default will be used).

baud:

Single value, type: integer. Default: 115200

Baud rate to use on the serial port.

debug:

Single value, type: boolean (true/false). Default: false

Set to true to see more debug output.

Related How To guides

∙ MyPinballs Segment Display Controller

named_colors:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Index of config sections 1706

Mission Pinball Framework Documentation, Version

The named_colors: section of your config is where you define color names that can be used for RGB
lights throughout your machine code. Anywhere in lights: or light_player: where a color can be
specified, named colors can be used.

Your named colors can be an array of R/G/B values or a hex string of hex values (which can also
include a brightness percentage, like all hex color strings).

This is an example:

named_colors:

custom_blue: [24, 65, 226]

troll_green: 4a9b22

troll_green_dark: 4a9b22%50

lights:

troll_target:

number: 10

default_on_color: troll_green

l_jackpot:

number: 20

light_player:

trolls_disabled:

troll_target: troll_green_dark

jackpot_lit:

l_jackpot:

color: custom_blue

fade: 10

Related How To guides

Todo: Help us to write it

open_pixel_control:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The open_pixel_control: section of your config is where you configure a openpixel light controller.
This is usually used together with a fadecandy but can also be used standalone. Usually, you don’t
have to change anything.

Optional settings

The following sections are optional in the open_pixel_control: section of your config. (If you don’t
include them, the default will be used).

Index of config sections 1707

Mission Pinball Framework Documentation, Version

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see more debug log lines.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

host:

Single value, type: string. Default: localhost

Hostname of the openpixel server to connect.

port:

Single value, type: integer. Default: 7890

Port of the openpixel server to connect.

Related How To guides

∙ How to configure a FadeCandy RGB LED Controller

opp:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The opp: section of your config is where you configure your OPP platform. See How to configure Open
Pinball Project (OPP) hardware for MPF for details.

This is an example:

Index of config sections 1708

Mission Pinball Framework Documentation, Version

hardware:

platform: opp

driverboards: gen2

opp:

ports: COM7

Required settings

The following sections are required in the opp: section of your config:

ports:

List of one (or more) values, each is a type: string. Defaults to empty.

Serial ports to use.

Optional settings

The following sections are optional in the opp: section of your config. (If you don’t include them, the
default will be used).

baud:

Single value, type: integer. Default: 115200

Baud rate to use on the serial port.

chains:

One or more sub-entries. Each in the format of string : string

This is an example:

opp:

ports: /dev/ttyOPP0, /dev/ttyOPP1

chains:

0: /dev/ttyOPP0

1: /dev/ttyOPP1

If you switch was number 1-3 before it will be 0-1-3 or 1-1-3 afterwards.

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

Index of config sections 1709

Mission Pinball Framework Documentation, Version

debug:

Single value, type: boolean (true/false). Default: false

Set this to true if you want to see more debug output.

driverboards:

Single value, type: one of the following options: gen2. Default: gen2

Similar to driverboards in the hardware: section. Use this setting if you use multiple playforms (i.e.
FAST and OPP) in one machine.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

incand_update_hz:

Single value, type: integer. Default: 25

The update rate for incandecant bulbs. Do not set this too high or you might saturate the OPP bus.

poll_hz:

Single value, type: integer. Default: 100

How many times per section the OPP hardware is polled for switch changes. Default is 100.

Related How To guides

∙ How to configure Open Pinball Project (OPP) hardware for MPF

opp_coils:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The opp_coils: section of your config is where you configure platform specific settings for OPP coils.

Optional settings

The following sections are optional in the opp_coils: section of your config. (If you don’t include
them, the default will be used).

Index of config sections 1710

Mission Pinball Framework Documentation, Version

recycle_factor:

Single value, type: integer. Default: None

The recycle_factor is used in OPP to determine the cool down time of a coil after a pulse in relation to
default_pulse_ms. For instance, with recycle_factor of 2 and a default_pulse_ms of 20ms the coil will
cool down for at least 40ms after each pulse.

osc:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The osc: section of your config is where you configure the osc platform.

Optional settings

The following sections are optional in the osc: section of your config. (If you don’t include them, the
default will be used).

events_to_send:

List of one (or more) events. The device will add handlers for those events. Defaults to empty.

You can list all events which you want to be forwarded to your OSC remote. This is an example:

hardware:

platform: osc

osc:

remote_ip: 127.0.0.1

remote_port: 8000

events_to_send:

- player_score

- some_non_osc_switch_active

- some_non_osc_switch_inactive

listen_ip:

Single value, type: string. Default: 127.0.0.1

The IP MPF should use to listen for incoming UDP OSC connections. You can also set this to 0.0.0.0 if
you want MPF to listen on all interfaces instead of just on loopback (local connections only).

Index of config sections 1711

Mission Pinball Framework Documentation, Version

listen_port:

Single value, type: integer. Default: 9000

The port MPF shoud use to listen for incoming UDP OSC connections.

remote_ip:

Single value, type: string. Default: 127.0.0.1

The IP address of your remote OSC server. MPF will send all messages to this IP.

remote_port:

Single value, type: integer. Default: 8000

The port of your remote OSC server.

Related How To guides

∙ How to use MPF with OSC Devices or Hardware

p_roc:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The p_roc: section of your config is where you configure hardware specific bits about the P-Roc or
P3-Roc. In most cases you can omit this config and stick with the defaults.

Optional settings

The following sections are optional in the p_roc: section of your config. (If you don’t include them, the
default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

Set this to True if you want to know what is going on under the hood. We will usually ask you to set
this if you experience any hardware related problems and send us your log.

Index of config sections 1712

Mission Pinball Framework Documentation, Version

display_flash_duty:

Single value, type: number (will be converted to floating point). Default: 0.5

Todo: Help us to write it

display_flash_frequency:

Single value, type: number (will be converted to floating point). Default: 1.0

Todo: Help us to write it

dmd_timing_cycles:

List of one (or more) values, each is a type: integer. Defaults to empty.

Only P-Roc (not P3-Roc).

Those values determine the timing to drive the different shades of your DMD. See How to configure
mono/traditional DMD (P-ROC) for details.

dmd_update_interval:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 33ms

Only P-Roc (not P3-Roc).

The update interval of your DMD. Usually you do not have to change this.

driverboards:

Single value, type: one of the following options: wpc, wpcAlphanumeric, wpc95, sternSAM,
sternWhitestar, pdb, custom, None. Defaults to empty.

Similar to driverboards in the hardware: section. Use this setting if you use multiple playforms (i.e.
FAST and P3-Roc) in one machine.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

Index of config sections 1713

Mission Pinball Framework Documentation, Version

lamp_matrix_strobe_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 100ms

Default: 100ms

The column strobe time for your lamp matrix. See How to configure Matrix Lights (P-ROC/P3-ROC)
for details.

pd_led_boards:

One or more sub-entries. Each in the format of integer : pd_led_boards

A map of PD-LED boards with their ID as key and a configuration map as value. This can be used to
configure indivdual features per board.

See Servos on a PD-LED (P-ROC/P3-ROC) , Steppers on a PD-LED (P-ROC/P3-ROC) or How to
configure LEDs on the PD-LED (P-ROC/P3-ROC) for details.

trace_bus:

Single value, type: boolean (true/false). Default: false

Log all calls to libpinproc. This will cause a lot of additional log lines and might considerably slow
down MPF. Use only during debugging.

use_separate_thread:

Single value, type: boolean (true/false). Default: true

Whether MPF should spawn a separate thread to talk to the P/P3-Roc or not. If you set this to False
any IO to the P/P3-Roc will block the game loop which might cause lags unrelated to the hardware.
This has a small overhead but should be enabled in most cases.

use_watchdog:

Single value, type: boolean (true/false). Default: true

Enable or disable the watchdog. Usually you want to keep this enabled.

watchdog_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 1s

Watchdog timeout. The P/P3-Roc will disable all coils when the watchdog expires.

Related How To guides

∙ How to configure Multimorphic (P-ROC & P3-ROC) hardware

Index of config sections 1714

Mission Pinball Framework Documentation, Version

pd_led_boards:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The pd_led_boards: section of your config is where you configure your PD-LED boards connected to
your P-Roc or P3-Roc. See Servos on a PD-LED (P-ROC/P3-ROC) , Steppers on a PD-LED
(P-ROC/P3-ROC) or How to configure LEDs on the PD-LED (P-ROC/P3-ROC) for details.

Optional settings

The following sections are optional in the pd_led_boards: section of your config. (If you don’t include
them, the default will be used).

lpd880x_0_first_address:

Single value, type: integer. Default: 100

First LED address to map to lpd880x_0. This will be the LED number on the PD-LED for your first LED
in the chain. If you set this to 100 it will be the first LED in your chain. 101 will be the second in chain
and so on.

lpd880x_0_last_address:

Single value, type: integer. Default: 249

Last LED address to map to lpd880x_0. This will determine how many LEDs map to your chain. The
more LEDs you have in your chain the lower the update rate will be.

lpd880x_1_first_address:

Single value, type: integer. Default: 250

First LED address to map to lpd880x_1. This will be the LED number on the PD-LED for your first LED
in the chain. If you set this to 100 it will be the first LED in your chain. 101 will be the second in chain
and so on.

lpd880x_1_last_address:

Single value, type: integer. Default: 399

Last LED address to map to lpd880x_1. This will determine how many LEDs map to your chain. The
more LEDs you have in your chain the lower the update rate will be.

Index of config sections 1715

Mission Pinball Framework Documentation, Version

lpd880x_2_first_address:

Single value, type: integer. Default: 400

First LED address to map to lpd880x_2. This will be the LED number on the PD-LED for your first LED
in the chain. If you set this to 100 it will be the first LED in your chain. 101 will be the second in chain
and so on.

lpd880x_2_last_address:

Single value, type: integer. Default: 549

Last LED address to map to lpd880x_2. This will determine how many LEDs map to your chain. The
more LEDs you have in your chain the lower the update rate will be.

max_servo_value:

Single value, type: integer. Default: 250

Max clock cycles in a servo duty cycle. 300 will rougly map to 2ms.

stepper_speed:

Single value, type: integer. Default: 13524

Clock cycles for a stepper half step (at 32MHz). This might need some tuning depending on your
stepper.

use_lpd880x_0:

Single value, type: boolean (Yes/No or True/False). Default: false

Enable the first LPD880x serial LED chain on connector J8 pin 13 (clock) and pin 14 (data). If you
enable this you cannot use LEDs 79 and 80 on the board.

use_lpd880x_1:

Single value, type: boolean (Yes/No or True/False). Default: false

Enable the second LPD880x serial LED chain on connector J8 pin 9 (clock) and pin 12 (data). If you
enable this you cannot use LEDs 77 and 78 on the board.

use_lpd880x_2:

Single value, type: boolean (Yes/No or True/False). Default: false

Enable the third LPD880x serial LED chain on connector J8 pin 7 (clock) and pin 8 (data). If you
enable this you cannot use LEDs 75 and 76 on the board.

Index of config sections 1716

Mission Pinball Framework Documentation, Version

use_servo_0:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 0 on connector J8 pin 2. If you enable this you cannot use LED 72 on the
board.

use_servo_1:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 1 on connector J8 pin 3. If you enable this you cannot use LED 73 on the
board.

use_servo_10:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 10 on connector J8 pin 18. If you enable this you cannot use LED 82 on the
board.

use_servo_11:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 11 on connector J8 pin 19. If you enable this you cannot use LED 83 on the
board.

use_servo_2:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 2 on connector J8 pin 4. If you enable this you cannot use LED 74 on the
board.

use_servo_3:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 3 on connector J8 pin 7. If you enable this you cannot use LED 75 on the
board.

use_servo_4:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 4 on connector J8 pin 8. If you enable this you cannot use LED 76 on the
board.

Index of config sections 1717

Mission Pinball Framework Documentation, Version

use_servo_5:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 5 on connector J8 pin 9. If you enable this you cannot use LED 77 on the
board.

use_servo_6:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 6 on connector J8 pin 12. If you enable this you cannot use LED 78 on the
board.

use_servo_7:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 7 on connector J8 pin 13. If you enable this you cannot use LED 79 on the
board.

use_servo_8:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 8 on connector J8 pin 14. If you enable this you cannot use LED 80 on the
board.

use_servo_9:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable servo 9 on connector J8 pin 17. If you enable this you cannot use LED 81 on the
board.

use_stepper_0:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable stepper 0 on connector J8 pin 12 (sleep), pin 13 (pulse) and pin 14 (direction). If
you enable this you cannot use LEDs 78, 79 and 80 on the board.

use_stepper_1:

Single value, type: boolean (Yes/No or True/False). Default: false

Set to true to enable stepper 1 on connector J8 pin 7 (sleep), pin 8 (pulse) and pin 9 (direction). If you
enable this you cannot use LEDs 75, 76 and 77 on the board.

Index of config sections 1718

Mission Pinball Framework Documentation, Version

use_ws281x_0:

Single value, type: boolean (Yes/No or True/False). Default: false

Enable the first WS281x serial LED chain on connector J8 pin 19. If you enable this you cannot use
LED 83 on the board.

use_ws281x_1:

Single value, type: boolean (Yes/No or True/False). Default: false

Enable the second WS281x serial LED chain on connector J8 pin 18. If you enable this you cannot use
LED 82 on the board.

use_ws281x_2:

Single value, type: boolean (Yes/No or True/False). Default: false

Enable the third WS281x serial LED chain on connector J8 pin 17. If you enable this you cannot use
LED 81 on the board.

ws281x_0_first_address:

Single value, type: integer. Default: 100

First LED address to map to ws281x_0. This will be the LED number on the PD-LED for your first LED
in the chain. If you set this to 100 it will be the first LED in your chain. 101 will be the second in chain
and so on.

ws281x_0_last_address:

Single value, type: integer. Default: 249

Last LED address to map to ws281x_0. This will determine how many LEDs map to your chain. The
more LEDs you have in your chain the lower the update rate will be.

ws281x_1_first_address:

Single value, type: integer. Default: 250

First LED address to map to ws281x_1. This will be the LED number on the PD-LED for your first LED
in the chain. If you set this to 100 it will be the first LED in your chain. 101 will be the second in chain
and so on.

ws281x_1_last_address:

Single value, type: integer. Default: 399

Last LED address to map to ws281x_1. This will determine how many LEDs map to your chain. The
more LEDs you have in your chain the lower the update rate will be.

Index of config sections 1719

Mission Pinball Framework Documentation, Version

ws281x_2_first_address:

Single value, type: integer. Default: 400

First LED address to map to ws281x_2. This will be the LED number on the PD-LED for your first LED
in the chain. If you set this to 100 it will be the first LED in your chain. 101 will be the second in chain
and so on.

ws281x_2_last_address:

Single value, type: integer. Default: 599

Last LED address to map to ws281x_2. This will determine how many LEDs map to your chain. The
more LEDs you have in your chain the lower the update rate will be.

ws281x_end_bit_time:

Single value, type: integer. Default: 40

Clock cycles for the end bit in a WS281x chain (at 32MHz). Usually this does not have to be changed.

ws281x_high_bit_time:

Single value, type: integer. Default: 24

Clock cycles for a high bit in a WS281x chain (at 32MHz). Usually this does not have to be changed.

ws281x_low_bit_time:

Single value, type: integer. Default: 13

Clock cycles for a low bit in a WS281x chain (at 32MHz). Usually this does not have to be changed.

ws281x_reset_bit_time:

Single value, type: integer. Default: 1603

Clock cycles for a reset bit in a WS281x chain (at 32MHz). Usually this does not have to be changed.

pin2dmd:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The pin2dmd: section of your config is where you configure your PIN2DMD RGB DMD display.

Index of config sections 1720

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the pin2dmd: section of your config. (If you don’t include them,
the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

panel:

Single value, type: one of the following options: rgb, rbg. Default: rgb

The order of the LEDs in your panels. If your blue and green appear to be swapped change this.

resolution:

Single value, type: one of the following options: 128x32, 192x64. Default: 128x32

The resolution of your panel. PIN2DMD XL is 192x64 and the standard PIN2DMD is 128x32.

Related How To guides

∙ How to configure a PIN2DMD RGB LED DMD

pkone:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The pkone: section of your machine-wide config is where you configure hardware options that are
specific to the Penny K Pinball PKONE Controller. Note that we have a how to guide which includes all

Index of config sections 1721

Mission Pinball Framework Documentation, Version

the PKONE-specific settings throughout your entire config file, so be sure to read that if you have
Penny K Pinball PKONE hardware.

pkone:

port: com3

Required settings

The following sections are required in the pkone: section of your config:

port:

Single value, type: string. Defaults to empty.

The serial port name your PKONE controller uses.

Optional settings

The following sections are optional in the pkone: section of your config. (If you don’t include them, the
default will be used).

baud:

Single value, type: integer. Default: 115200

Baud rate to use on the serial port.

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

Index of config sections 1722

Mission Pinball Framework Documentation, Version

watchdog:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 1000

The PKONE controller includes a “watchdog” timer. A watchdog is a timer that is continuously
counting down towards zero, and if it ever hits zero, the controller shuts off all the power to the
drivers and turns off all the lights. The idea is that every time MPF runs a game loop (so, 30 times a
second or whatever), MPF tells the FAST controller to reset the watchdog timer. So this timer is
constantly getting reset and never hits zero.

But if MPF crashes or loses communication with the PKONE hardware, then this watchdog timer
won’t be reset. When it hits zero, the PKONE controller will kill the power to the coils and servos and
turn off all lights. This should prevent an MPF crash from burning up a coil or somehow damaging
your hardware in another way.

You can set the watchdog timer to whatever you want (up to 10 seconds). This is essentially the
maximum time a coil could be stuck “on” if MPF crashes. The default is 1 second which is probably
fine for almost everyone, and you don’t have to include this section in your config if you want to use
the default.

Related How To guides

∙ How to configure MPF for Penny K Pinball PKONE hardware

player_vars:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The player_vars: section of your machine-wide config file lets you specify the initial state of player
variables that are set for a player when the game starts.

Example:

#config_version=5

player_vars:

some_var:

initial_value: 4

some_float:

initial_value: 4

value_type: float

some_string:

initial_value: 4

value_type: str

some_other_string:

initial_value: hello

value_type: str # required for non-ints

machine_vars:

(continues on next page)

Index of config sections 1723

Mission Pinball Framework Documentation, Version

(continued from previous page)

test1:

initial_value: 4

value_type: int

test2:

initial_value: '5'

value_type: str

below is the min config we need to be able to start a game

game:

balls_per_game: 3

coils:

eject_coil1:

number:

eject_coil2:

number:

switches:

s_start:

number:

tags: start

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch_launcher:

number:

playfields:

playfield:

default_source_device: bd_launcher

tags: default

ball_devices:

bd_trough:

eject_coil: eject_coil1

ball_switches: s_ball_switch1, s_ball_switch2

debug: true

confirm_eject_type: target

eject_targets: bd_launcher

tags: trough, drain, home

bd_launcher:

eject_coil: eject_coil2

ball_switches: s_ball_switch_launcher

debug: true

confirm_eject_type: target

eject_timeouts: 2s

Required settings

The following sections are required in the player_vars: section of your config:

Index of config sections 1724

Mission Pinball Framework Documentation, Version

initial_value:

Single value, type: string. Defaults to empty.

The initial value of this player variable that you’re setting. This is set when the player is created.

Optional settings

The following sections are optional in the player_vars: section of your config. (If you don’t include
them, the default will be used).

value_type:

Single value, type: one of the following options: str, float, int. Default: int

Select one of the options from this list: int (integer), float, or str (string). The default is “int”, and
there is no intelligence to try to detect which type of value you have, so if you have a floating point
number or a string, you also need to set the value_type.

Related How To guides

∙ Tutorial step 15: Add scoring

∙ Player Variables Reference

∙ Scoring

∙ Player Variables

playfield_transfers:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The playfield_transfers: section of your config is where you configure devices which transfer balls
between playfields.

This is an example:

switches:

s_transfer:

number:

playfield_transfers:

transfer1:

ball_switch: s_transfer

captures_from: playfield1

eject_target: playfield2

transfer2:

transfer_events: transfer_ball

(continues on next page)

Index of config sections 1725

Mission Pinball Framework Documentation, Version

(continued from previous page)

captures_from: playfield1

eject_target: playfield2

playfields:

playfield1:

label: Playfield 1

default_source_device: None

playfield2:

label: Playfield 2

default_source_device: None

Required settings

The following sections are required in the playfield_transfers: section of your config:

captures_from:

Single value, type: string name of a ball_devices device. Defaults to empty.

Source playfield for the transfer.

eject_target:

Single value, type: string name of a ball_devices device. Defaults to empty.

Target playfield for the transfer.

Optional settings

The following sections are optional in the playfield_transfers: section of your config. (If you don’t
include them, the default will be used).

ball_switch:

Single value, type: string name of a switches device. Defaults to empty.

Ball switch which triggers the transfer.

transfer_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, will trigger a ball transfer.

Index of config sections 1726

Mission Pinball Framework Documentation, Version

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see more debug output.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Tags of the device. Not used currently.

Related How To guides

∙ Playfields

playfields:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The playfields: section of your config is where you configure your playfields in your machine. You
can have multiple playfields and MPF will track balls per playfield. One playfield should contain the
tag default so that the game knows which playfield to use.

Required settings

The following sections are required in the playfields: section of your config:

Index of config sections 1727

Mission Pinball Framework Documentation, Version

default_source_device:

Single value, type: string name of a ball_devices device. Defaults to empty.

The source ball device to use to feed balls to this playfield. This source device must be able to eject
directly to the playfield. Usually this is your launcher ball device. If you do not have a launcher use
the trough device.

Optional settings

The following sections are optional in the playfields: section of your config. (If you don’t include
them, the default will be used).

ball_search_block_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
flipper_cradle

Event to block ball search. Used by flipper cradle.

ball_search_disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event to disable ball search.

ball_search_enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Event to enable ball search.

ball_search_failed_action:

Single value, type: string. Default: new_ball

When ball search failed this action is taken. Either new_ball which will eject a new ball from the
default default source device or end_game which will end the game.

ball_search_interval:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 150ms

The delay after each fired coil/searched device.

Index of config sections 1728

Mission Pinball Framework Documentation, Version

ball_search_phase_1_searches:

Single value, type: integer. Default: 3

Ball search will run in multiple phases with increasing intensity. For instance, in phase 1, only ball
devices without a ball will be pulsed. This defines how many time phase 1 is repeated until ball_search
proceeds to phase 2.

ball_search_phase_2_searches:

Single value, type: integer. Default: 3

Ball search will run in multiple phases with increasing intensity. For instance, in phase 2, all ball
devices except the trough will try to dejam. This defines how many time phase 2 is repeated until
ball_search proceeds to phase 3.

ball_search_phase_3_searches:

Single value, type: integer. Default: 4

Ball search will run in multiple phases with increasing intensity. For instance, in phase 3, all ball
devices except the trough pulse their coil. This defines how many time phase 3 is repeated until ball
search gives up.

ball_search_timeout:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 15s

ball_search_timeout configures the time of inactivity which has to pass until ball search starts.

ball_search_unblock_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
flipper_cradle_release

Event to unblock ball search. Used by flipper cradle.

ball_search_wait_after_iteration:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 5s

Extra delay after each iteration.

enable_ball_search:

Single value, type: boolean (true/false). Defaults to empty.

Enable ball_search by default. Use with care during development since coils may hurt you. Should be
enabled in any production machine.

Index of config sections 1729

Mission Pinball Framework Documentation, Version

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Turn on/off debugging.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Label for service menu.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Set tag default to your default playfield. The game will use the default playfield to eject balls.

Related How To guides

∙ Playfields

playlist_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the playlists: section of a step.

The playlist_player: section of your config is where you specify actions to perform on playlists when
MPF events are received. Additional information may be found in the playlist_player documentation.

Examples:

Index of config sections 1730

Mission Pinball Framework Documentation, Version

playlist_player:

play_attract_music:

playlist:

playlist: attract_music

action: play

advance_playlist:

playlist:

action: advance

stop_playlist:

playlist:

action: stop

Basic usage:

playlist_player:

<triggering_event_name>:

<playlist track name>:

action: <action name>

<optional settings>

<triggering_event_name>:

<playlist track name>:

action: <action name>

<optional settings>

Optional settings

The following sections are optional in the playlist_player: section of your config. (If you don’t
include them, the default will be used).

action:

Single value, type: one of the following options: play, stop, advance, set_repeat. Default: play

Todo: Help us to write it

Related How To guides

Todo: Help us to write it

playlists:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Index of config sections 1731

Mission Pinball Framework Documentation, Version

The playlists: section of your config is where you configure non-default parameter values for any
playlist assets you want to use in your game. (This section is part of the MPF media controller and
only available if you’re using MPF-MC for your media controller.)

Here is an example:

SOUNDS::PLAYLIST

playlists:

playlistIntro:

shuffle: false

repeat: false

sounds:

- voiceAnnouncerNewsFlash1

- voiceAnnouncerMessage1

- voiceAnnouncerAliensAttack1

playlistHighScore:

shuffle: true

repeat: true

crossfade_mode: override

crossfade_time: 5s

sounds:

- soundHighScore001

- soundHighScore002

- soundHighScore003

- soundHighScore004

PLAYLIST::PLAYER

playlist_player:

ADDED SURPRISE VOICE DURING ATTRACT MODE

playlistAttention:

trackplaylist:

playlist: playlistIntro

action: play

MUSIC DURING HIGH SCORE ENTRY

high_score_enter_initials:

trackplaylist:

playlist: playlistHighScore

shuffle: true

repeat: true

action: play

mode_attract_started:

trackplaylist:

action: stop

Required settings

The following sections are required in the playlists: section of your config:

Index of config sections 1732

Mission Pinball Framework Documentation, Version

sounds:

List of one (or more) values, each is a type: string. Defaults to empty.

Note: If you want to use a sound that has spaces in its name, the name of the sound must be in
quotes:

playlists:

mode_music:

sounds:

- song_01

- song_02

- "song 03" # example of a sound with a space in its name using quotes

- song_04

Optional settings

The following sections are optional in the playlists: section of your config. (If you don’t include
them, the default will be used).

crossfade_mode:

Single value, type: one of the following options: use_track_setting, override. Default:
use_track_setting

The crossfade_mode: of a playlist determines whether the playlist uses the track crossfade_time
setting or the crossfade_time specified in the playlist. Options for crossfade_mode: are:

∙ use_track_settings - Use the crossfade_time specified in the playlist track.

∙ override - Use the crossfade_time specified in the playlist.

crossfade_time:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to crossfade between sounds in the playlist. This value is ignored
when crossfade_mode: is set to use_track_setting.

events_when_looping:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this playlist loops back to the beginning
while playing. The playlist will only loop if repeat: is set to True. Enter the list in the MPF config list
format. These events are posted exactly as they’re entered.

Index of config sections 1733

Mission Pinball Framework Documentation, Version

events_when_played:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this playlist is played. Enter the list in
the MPF config list format. These events are posted exactly as they’re entered.

events_when_sound_changed:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when a new sound is played while the playlist
is played. Enter the list in the MPF config list format. These events are posted exactly as they’re
entered.

events_when_sound_stopped:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when a playlist sound has finished playing.
Enter the list in the MPF config list format. These events are posted exactly as they’re entered.

events_when_stopped:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this playlist has finished playing. Enter
the list in the MPF config list format. These events are posted exactly as they’re entered.

repeat:

Single value, type: boolean (true/false). Default: false

Flag indicating whether or not the playlist will repeat when all sounds have been played or just stop.

scope:

Single value, type: one of the following options: machine, player. Default: machine

Whatever this playlist should be persisted per player or machine-wide.

shuffle:

Single value, type: boolean (true/false). Default: false

Flag indicating whether or not the playlist will be played in order (shuffle: True or randomized
(shuffle: False) for playback.

Index of config sections 1734

Mission Pinball Framework Documentation, Version

Related How To guides

∙ Playlist player

plugins:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The plugins: section of your config is where you list all plugin classes to load. By default it contains:

∙ info_lights:

∙ switch_player:

∙ auditor:

pololu_maestro:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The pololu_maestro: section of your config is where you configure the serial port that a Pololu
Maestro servo controller is connected to.

When you attach a Pololu Maestro, two serial ports will appear. You want to specific the first (lower
numbered) port here. For example:

pololu_maestro:

port: COM5

Note that there are a few other settings you need to configure in other areas to use a Pololu Maestro
servo controller. See the How To guide for details.

Required settings

The following sections are required in the pololu_maestro: section of your config:

port:

Single value, type: string. Defaults to empty.

The name of the serial port.

Index of config sections 1735

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the pololu_maestro: section of your config. (If you don’t include
them, the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

servo_max:

Single value, type: integer. Default: 9000

Quarter-microseconds to use for the max servo value. The default (9000) translates to 2250
microseconds or 2.25ms.

servo_min:

Single value, type: integer. Default: 3000

Quarter-microseconds to use for the max servo value. The default (3000) translates to 750
microseconds or 0.75ms.

Related How To guides

∙ Pololu Maestro Servo Controller

pololu_tic:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Index of config sections 1736

Mission Pinball Framework Documentation, Version

The pololu_tic: section of your config is where you configure your Pololu Tic Stepper Controller.

See tic_stepper_settings: for platform_settings in your steppers.

Optional settings

The following sections are optional in the pololu_tic: section of your config. (If you don’t include
them, the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

Related How To guides

∙ How to use Pololu Tic in MPF

psus:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The psus: section of your config is where you power supply units. See Voltages and Power in Pinball
Machines for details about voltages in pinball machines and some electric details. Then specify to
which PSU your coils are connected. This is used for power management. In some cases, MPF ,ay
deliberately delay coil pulses to prevent too many coils from firing and drawing to much current from
your PSU. Ball devices and drop target do this by default to ensure more consistent pulses.

Optional settings

The following sections are optional in the psus: section of your config. (If you don’t include them, the
default will be used).

Index of config sections 1737

Mission Pinball Framework Documentation, Version

max_amps:

Single value, type: integer. Defaults to empty.

Maximum ampers which can be provided by this PSU. Currently not used.

release_wait_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 10

Time to wait after a coil pulse.

voltage:

Single value, type: integer. Defaults to empty.

Voltage of your PSU. Only informal.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Currently unused.

Index of config sections 1738

Mission Pinball Framework Documentation, Version

Related How To guides

∙ Power Management in Software

queue_event_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the queue_events: section of a step.

The queue_event_player: section of your config file is similar to the event_player:, except it posts
queue events instead of regular events.

This section is particularly useful with the queue_relay_player:.

Here’s an example:

queue_event_player:

some_event:

queue_event: my_queue

events_when_finished: my_queue_done

In the example above, when the regular event some_event is posted, a new queue event called
my_queue will be posted. After all the handlers for my_queue are done, the event my_queue_done will
be posted. (This could be immediately if none of the handlers blocked it, or it could be awhile if one of
those handlers is doing something else first.)

Required settings

The following sections are required in the queue_event_player: section of your config:

queue_event:

Single event. The device will add an handler for this event. Defaults to empty.

The name of the queue event that will be posted when the parent event is posted. (required)

Optional settings

The following sections are optional in the queue_event_player: section of your config. (If you don’t
include them, the default will be used).

Index of config sections 1739

Mission Pinball Framework Documentation, Version

args:

One or more sub-entries. Each in the format of string : string

A sub-configuration of key:value pairs that will be posted with the event. This setting is optional.

events_when_finished:

Single event. This device will be posted by the device. Defaults to empty.

The event name that will be posted when all the handlers of this queue event are done processing it.
This setting is optional.

Related How To guides

∙ How to Drain All Balls on the Playfield and Serve One Back Without Ending the Current Ball

∙ Queue Event player

queue_relay_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The queue_relay_player lets you “pause” queue event processing until some other event is posted, at
which time the original queue event processing continues.

Here’s an example:

queue_relay_player:

game_ending:

post: start_my_mode

wait_for: my_mode_done

This entry will watch for the game_ending event to be posted. (game_ending is a queue event.) When
it’s posted, the queue relay player will pause the processing of the game_ending event and post a new
event, the start_my_mode in this case.

You can use that new event to do whatever you want, like start some custom mode you want to run at
game end before the machine goes back to the attract mode.

When your mode is done, you would configure it to post my_mode_done (or whatever the wait_for: is
set to, and that will release the queue and progress will continue. If your mode doesn’t need to do
anything, it can simply post the wait_for: event and exit.

Warning: If the wait_for: event is never posted, you will break your game since MPF will wait
forever.

Index of config sections 1740

Mission Pinball Framework Documentation, Version

Note that each entry under queue_event_player: (the game_ending: in the example above) must be for
a queue event. (You can see which events are queue events in the event reference.) You can also use
the queue_event_player: to “convert” a regular event into a queue event.

Required settings

The following sections are required in the queue_relay_player: section of your config:

post:

Single value, type: string. Defaults to empty.

The name of the event to post to trigger your action once the queue event has been posted. (required)

wait_for:

Single value, type: string. Defaults to empty.

The name of the event this queue will wait for to continue. In other words, this is the event you need
to post for the queue event to continue. (required)

Optional settings

The following sections are optional in the queue_relay_player: section of your config. (If you don’t
include them, the default will be used).

args:

One or more sub-entries. Each in the format of string : string

A sub-configuration of key:value pairs that will be posted with the event. This setting is optional.

pass_args:

Single value, type: boolean (true/false). Default: false

If True pass on the arguments from the event in wait_for to the event posted in post.

Related How To guides

∙ Queue Relay player

∙ Mode Selection

∙ Game End Modes

∙ How to Drain All Balls on the Playfield and Serve One Back Without Ending the Current Ball

Index of config sections 1741

Mission Pinball Framework Documentation, Version

random_event_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the random_events: section of a step.

The random_event_player: section of your config is where you can play a random event out of a list
based on an event.

in your global config:

random_event_player:

play_random_event_global:

scope: machine

events:

- event1

- event2

- event3

##! mode: base

in your mode:

random_event_player:

play_random_event:

events:

- event1

- event2

- event3

play_random_event_with_weight:

events:

unlikely_event1: 2

unlikely_event2: 3

likely_event1: 45

likely_event2: 50

play_random_event_with_weight_and_conditional:

events:

event1{mode.field.active}: 25

event2{device.ball_devices.bd_ramp_lock.balls==2}: 25

event3{device.accruals.base_locking_engaged.completed}: 10

event4{device.counters.health.value>9}: 30

event5{current_player.hearts < current_player.hearts_max}: 10

fallback_event: event_posts_if_everything_above_false

Optional settings

The following sections are optional in the random_event_player: section of your config. (If you don’t
include them, the default will be used).

Index of config sections 1742

Mission Pinball Framework Documentation, Version

disable_random:

Single value, type: boolean (true/false). Default: false

Disable random.

events:

Unknown type. See description below.

List the events to choose from. If you use a list all events will be equiprobable. You can also use a dict
with eventname: probablity. See the example above.

You can also use conditional events here.

fallback_event:

Single value, type: string. Defaults to empty.

If all of the events in the random_event_player are conditional and none of them are true, this event
name will be posted instead. If not defined, no event will be posted.

force_all:

Single value, type: boolean (true/false). Default: true

Enforce that all events are posted once before a event is posted a second time.

force_different:

Single value, type: boolean (true/false). Default: true

If set to true it will enforce that the same entry will never appear twice in a row. When setting
force_all to true this will prevent that the last event is the same as the first of the next iteration.

scope:

Single value, type: one of the following options: player, machine. Default: player

The scope of the random selection for force_different and force_all. When setting to player this is
enforced per player and persisted between balls.

Related How To guides

∙ Random event player

∙ Mystery Awards

Index of config sections 1743

Mission Pinball Framework Documentation, Version

raspberry_pi:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The raspberry_pi: section of your config is where you configure your Raspberry Pi running pigpio.
See Raspberry PI (pigpio) for details.

This is an example:

raspberry_pi:

ip: localhost

port: 8888

Required settings

The following sections are required in the raspberry_pi: section of your config:

ip:

Single value, type: string. Defaults to empty.

IP of your Raspberry Pi. MPF will connect to this IP. Hostname does not work here.

Optional settings

The following sections are optional in the raspberry_pi: section of your config. (If you don’t include
them, the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this platform.

Index of config sections 1744

Mission Pinball Framework Documentation, Version

port:

Single value, type: integer. Default: 8888

Port of the pigpio daemon on your Raspberry Pi (in case you change it).

Related How To guides

∙ Raspberry PI (pigpio)

rgb_dmds:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The rgb_dmds: section of your machine config is where you configure the settings for physical RGB
DMDs (dot matrix displays). You only need this section if you have a RGB DMD connected via USB. If
you have a mono DMD, configure that in the dmds: section.

If you want to show a virtual RGB DMD in an on-screen window, you configure that as a display widget
with a dot filter. You don’t need to use this rgb_dmds: section to do that.

Note there are no height and width settings here. The pixel size of your DMD is determined by the
size of the source: display which drives the content for this DMD.

Here’s an example:

displays:

dmd:

width: 128

height: 32

rgb_dmds:

smartmatrix: # name of this DMD which can be whatever you want

hardware_brightness: .5

fps: 25

gamma: 2.5

Note that this section is called rgb_dmds: (plural). Just like “switches” and “coils” and most everything
else in MPF, this is a section that contains all your DMDs. Now since this is a DMD, you probably only
have one, (though MPF can support as many as you want), but it’s important to note that you add a
rgb_dmds: section to your config, then under that you add an entry for a specific DMD (which can be
whatever you want), and then you enter one or more of the following settings:

Optional settings

The following sections are optional in the rgb_dmds: section of your config. (If you don’t include them,
the default will be used).

Index of config sections 1745

Mission Pinball Framework Documentation, Version

brightness:

Single value, type: number (will be converted to floating point). Default: 1.0

Brightness value multiplied in software (as an OpenGL shader in MC). Using hardware_brightness is
preferred if your hardware supports it.

channel_order:

Single value, type: string (case-insensitive). Default: rgb

Channel order of your rgb dmd. Change this if colors are swapped on your hardware. Any order (such
as rgb, grb, brg and so) will work.

fps:

Single value, type: integer. Default: 30

How many frames per second this DMD will be updated. Note that some RGB DMDs cannot handle
the full 30fps, so you might have to dial this back to around 25 or so or else the DMD won’t be able to
keep up and will get behind.

gamma:

Single value, type: number (will be converted to floating point). Default: 2.2

Sets the gamma of the DMD. See Gamma correction in MPF for details.

Note that the default setting of 2.2 will probably be ok, though if your RGB DMD does its own internal
gamma correction, you’ll want to set the gamma to 1.0 (which is effectively disabling it).

Note that gamma is closely related to brightness (below). You’ll probably want to adjust both of them
together.

Important: Gamma setting is important!

We can’t stress enough that setting the gamma for your DMD is important for making it look right. So
click the link above and make the adjustment. It’s a one-time thing.

hardware_brightness:

Single value, type: number or template (will be converted to floating point; Instructions for entering
templates). Default: 1.0

A brightness multiplier for the DMD (because RGB DMDs are crazy bright). Note that brightness is
closely related to gamma (see above). You’ll probably want to adjust both of them together.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

Index of config sections 1746

Mission Pinball Framework Documentation, Version

only_send_changes:

Single value, type: boolean (true/false). Default: false

Specifies whether every frame is sent to the DMD, or only changed frames.

platform:

Single value, type: string. Defaults to empty.

Name of the platform this DMD is connected to. The default value of None means the default hardware
platform will be used. You only need to change this if you have multiple different hardware platforms
in use and this coil is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

source_display:

Single value, type: string. Default: dmd

The name of the display (from the displays: section of your machine config) that is the source for this
physical DMD. Whatever’s on the source display will be displayed on the DMD. If you don’t specify a
source, MPF will automatically use a source display called “dmd”.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

Index of config sections 1747

Mission Pinball Framework Documentation, Version

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used currently.

Related How To guides

∙ DMD Platforms in MPF

∙ Using an RGB full-color LED DMD

rpi_dmd:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The rpi_dmd: section of your config is where you configure a RPi DMD . All settings are directly passed
to the rpi-rgb-led-matrix library. Read their documentation (or the source) if in doubt.

Optional settings

The following sections are optional in the rpi_dmd: section of your config. (If you don’t include them,
the default will be used).

brightness:

Single value, type: integer. Default: 100

Brightness value to use between 0 and 100%.

chain_length:

Single value, type: integer. Default: 1

Number of panels in your chain. Longer chains mean less frames per second.

cols:

Single value, type: integer. Default: 32

How many columns of LEDs does your matrix have?

Index of config sections 1748

https://github.com/hzeller/rpi-rgb-led-matrix

Mission Pinball Framework Documentation, Version

daemon:

Single value, type: boolean (true/false). Default: false

Leave this at False of thing will go wrong.

disable_hardware_pulsing:

Single value, type: boolean (true/false). Default: false

Disable hardware pulsing. Only useful for debugging.

drop_privileges:

Single value, type: boolean (true/false). Default: true

Drop root rights after opening the hardware. It is highly recommended to leave it this way.

gpio_slowdown:

Single value, type: integer. Default: 1

Slow down the GPIOs a bit. Otherwise the RPi might be too fast for your LEDs.

hardware_mapping:

Single value, type: one of the following options: regular, adafruit-hat, adafruit-hat-pwm. Default:
regular

Select which hardware you are using. Consult manual if in doubt.

inverse_colors:

Single value, type: boolean (true/false). Default: false

Inverse colors. You know it if you see it.

led_rgb_sequence:

Single value, type: string. Default: RGB

The color order of your LEDs. You know it if you see that colors are mixed up.

multiplexing:

Single value, type: integer. Default: 0

Select your multiplexing settings. Consult manual.

Index of config sections 1749

Mission Pinball Framework Documentation, Version

parallel:

Single value, type: integer. Default: 1

How many chains to run in parallel?

pixel_mapper_config:

Single value, type: string. Default: ""

Select your pixel mapper. Consult manual.

pwm_bits:

Single value, type: integer. Default: 11

How many bits to use for PWM?

pwm_lsb_nanoseconds:

Single value, type: integer. Default: 130

On-time for your LEDs. Lower means more fps but potential less quality.

row_address_type:

Single value, type: integer. Default: 0

Row address type. Consult manual.

rows:

Single value, type: integer. Default: 32

How many rows of LEDs does your matrix have?

scan_mode:

Single value, type: integer. Default: 0

Scan mode. 0 = progressive; 1 = interlaced. Consult manual.

show_refresh_rate:

Single value, type: boolean (true/false). Default: false

Print refresh rate on terminal.

Index of config sections 1750

Mission Pinball Framework Documentation, Version

Related How To guides

∙ Raspberry PI DMD (rpi-rgb-led-matrix)

score_queue_player:

Config file section

Valid in machine config files NO
Valid in mode config files YES

The score_queue_player: section of your config is where you configure your SS style scoring. This is
an example:

coils:

c_chime_1000:

number:

c_chime_100:

number:

c_chime_10:

number:

score_queues:

score:

chimes: c_chime_1000, c_chime_100, c_chime_10, None

debug: true

##! mode: my_mode

in your mode

score_queue_player:

score_2k:

score: 2000

score_200:

score: 200

Optional settings

The following sections are optional in the score_queue_player: section of your config. (If you don’t
include them, the default will be used).

int:

Single value, type: integer or template (Instructions for entering templates). Defaults to empty.

Score value to add to the queue.

Related How To guides

∙ How to implement solid state game style score queues in MPF

Index of config sections 1751

Mission Pinball Framework Documentation, Version

score_queues:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The score_queues: section of your config is where you configure SS style scoring queues in MPF. This
is an example:

coils:

c_chime_1000:

number:

c_chime_100:

number:

c_chime_10:

number:

score_queues:

score:

chimes: c_chime_1000, c_chime_100, c_chime_10, None

##! mode: my_mode

in your mode

score_queue_player:

score_2k:

score: 2000

score_200:

score: 200

Required settings

The following sections are required in the score_queues: section of your config:

chimes:

List of one (or more) values, each is a type: string name of a coils device. Defaults to empty.

A list of chimes to pulse when adding score via the score queue. Start from the left the right on your
digits. You might use None if a certain digit does not have a chime. Example: c_chime_1000,
c_chime_100, c_chime_10, None

Optional settings

The following sections are optional in the score_queues: section of your config. (If you don’t include
them, the default will be used).

delay:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 200ms

The delay between adding scores (and pulsing a chime).

Index of config sections 1752

Mission Pinball Framework Documentation, Version

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ How to implement solid state game style score queues in MPF

score_reel_groups:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The score_reel_groups: section of your config is where you configure groups of score reels. Every
reel only displays one digits so they have to be grouped to display longer scores. See How to
Configure Score Reels for more details.

Required settings

The following sections are required in the score_reel_groups: section of your config:

Index of config sections 1753

Mission Pinball Framework Documentation, Version

reels:

List of one (or more) values, each is a type: string name of a score_reels device. Defaults to empty.

List the score reels which make up this group. Start with the highest digit. The last entry will be the
right most digit. You may use None if there is no reel for a digit.

Optional settings

The following sections are optional in the score_reel_groups: section of your config. (If you don’t
include them, the default will be used).

chimes:

List of one (or more) values, each is a type: string name of a coils device. Defaults to empty.

List the coils driving the chime which are rung when the reel overflows. Start with the highest digit.
The last entry will be the right most digit. You may use None if there is no chime for a digit.

lights_tag:

Single value, type: string. Defaults to empty.

Lights to turn on when this group is active.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

Index of config sections 1754

Mission Pinball Framework Documentation, Version

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Tag groups with the player which uses it. Add player1 to use this reel for player 1. Use player2 for
player 2 and so on. A reel can be used for more than one player.

Related How To guides

∙ How to Configure Score Reels

score_reels:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The score_reels: section of your config is where you configure your score reels. See How to
Configure Score Reels for more details.

Optional settings

The following sections are optional in the score_reels: section of your config. (If you don’t include
them, the default will be used).

coil_inc:

Single value, type: string name of a coils device. Defaults to empty.

Coil to fire to increment this reel.

hw_confirm_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 20

How long does the switch have to stay active until counted.

limit_hi:

Single value, type: integer. Default: 9

The highest digit on your reel.

limit_lo:

Single value, type: integer. Default: 0

The lowest digit on your reel.

Index of config sections 1755

Mission Pinball Framework Documentation, Version

repeat_pulse_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 200

How long to wait after a pulse before pulsing the coil again.

switch_0:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 0.

switch_1:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 1.

switch_10:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 10.

switch_11:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 11.

switch_12:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 12.

switch_2:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 2.

switch_3:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 3.

Index of config sections 1756

Mission Pinball Framework Documentation, Version

switch_4:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 4.

switch_5:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 5.

switch_6:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 6.

switch_7:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 7.

switch_8:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 8.

switch_9:

Single value, type: string name of a switches device. Defaults to empty.

Switch which indicates that the reel is showing a 9.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set to true to get more debug output in the log.

Index of config sections 1757

Mission Pinball Framework Documentation, Version

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Tags of this reel.

Related How To guides

∙ How to Configure Score Reels

scriptlets:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The scriptlets: section of your config is where you list you custom code scriptlets. This has been
deprecated with 0.50+. Use custom_code: instead. Scriptlets still work but will be removed
eventually.

Related How To guides

∙ MPF developer documentation.

segment_display_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the segment_displays: section of a step.

Index of config sections 1758

http://developer.missionpinball.org/en/dev/code/machine_code.html

Mission Pinball Framework Documentation, Version

The segment_display_player: section of your config is a Config Players which controls
segment_displays:. See Alpha-Numeric / Segment Displays for details.

Optional settings

The following sections are optional in the segment_display_player: section of your config. (If you
don’t include them, the default will be used).

action:

Single value, type: one of the following options: add, remove, flash, no_flash, flash_match, flash_mask,
set_color. Default: add

∙ add - Add a text to the segment_display.

∙ remove - Remove a text from the segment_display by key. If a transition_out: setting is used,
then that transition will be started.

∙ no_flash - Stop flashing this segment display.

∙ flash - Flash this segment display.

∙ flash_match - Flash the last two characters of the segment display.

∙ flash_mask - Use the flash_mask parameter value to determine which characters of the segment
display to flash.

∙ set_color - Set the color(s) of the characters in the segment display (for platforms that support
it).

color:

List of one (or more) values, each is a type: color (color name, hex, or list of values 0 -255). Defaults
to empty.

The color for each character in the display (if the platform supports it). If a single color is supplied, all
characters in the display will be set to that color. See Specifying Colors in Config Files for more
information on specifying colors in config files.

expire:

Single value, type: ms_or_token. Defaults to empty.

Only used with action add. Text will be removed after expire ms.

flash_mask:

Single value, type: string. Defaults to empty.

Only used with the flash_mask action (or with add when the flashing parameter is set to mask.
Determines which characters of the segment display will be flashed. Each character of the flash mask
string represents a character in the display. Character positions with an F character (must be
upper-case) will be flashed while positions containing any other character will not flash. For example,

Index of config sections 1759

Mission Pinball Framework Documentation, Version

in a segment display of length 16, to flash the first 8 characters use a flash_mask parameter value of
FFFFFFFF________. You can use whatever character you wish for the non-flashing character positions.

flashing:

Single value, type: one of the following options: off, all, match, mask, not_set. Default: not_set

∙ off - Stop flashing this segment display.

∙ all - Flash all characters in this segment display.

∙ match - Flash the last two characters of the segment display.

∙ mask - Use the flash_mask parameter value to determine which characters of the segment display
to flash.

Only used with the add action.

key:

Single value, type: string. Defaults to empty.

Key to use with action add and remove to reference a text on the segment display.

priority:

Single value, type: int_or_token. Default: 0

Priority of this text. The segment display will maintain a stack and show the text on top (highest
priority).

text:

Single value, type: string. Defaults to empty.

Text to show. You can use Text Templates.

transition:

Unknown type. See description below.

Note: Be sure the segment_display size parameter has been properly set for the segment display or
the transition effects may not be calculated and displayed properly.

transition_out:

Unknown type. See description below.

Index of config sections 1760

Mission Pinball Framework Documentation, Version

segment_display_player:

jackpot_completed:

display1:

text: JACKPOT

priority: 1000

expire: 2s

transition:

type: push

direction: right

text: " *** "

transition_out:

type: push

direction: right

text: " *** "

There can only be one transition between text entries, so if outgoing text has a transition_out set,
and an incoming text entry has a transition set, then the incoming transition will take precedence.

Related How To guides

∙ Alpha-Numeric / Segment Displays

∙ Segment Display Platforms in MPF

segment_displays:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The segment_displays: section of your config is where you define your segment displays. This can be
7-segment or alphanumeric displays which are typically used in older machines.

Required settings

The following sections are required in the segment_displays: section of your config:

number:

Single value, type: string. Defaults to empty.

The number of the display. The meaning depends on the hardware platform.

Optional settings

The following sections are optional in the segment_displays: section of your config. (If you don’t
include them, the default will be used).

Index of config sections 1761

Mission Pinball Framework Documentation, Version

default_color:

List of one (or more) values, each is a type: color (color name, hex, or list of values 0 -255). Default:
white

Todo: Help us to write it

default_transition_update_hz:

Single value, type: float_or_token. Default: 30

The speed (steps per second) at which text transition effects will be updated in the display.

integrated_commas:

Single value, type: boolean (true/false). Default: false

Determines whether or not the physical segment display has integrated commas in each character
rather than taking up an entire character. When set to true, commas are collapsed with the preceding
character when calculating text transition effects.

integrated_dots:

Single value, type: boolean (true/false). Default: false

Determines whether or not the physical segment display has integrated dots/periods in each character
rather than taking up an entire character. When set to true, dots/periods are collapsed with the
preceding character when calculating text transition effects.

platform:

Single value, type: string. Defaults to empty.

This can be used to overwrite the platform which is defined in the hardware section for
segment_displays.

platform_settings:

Single value, type: dict. Defaults to empty.

Platform specific settings. See your segment platform documentation.

size:

Single value, type: integer. Default: 7

Index of config sections 1762

Mission Pinball Framework Documentation, Version

The number of characters in the segment display. This value should be set to match the number of
characters in your physical hardware (or virtual emulator). It is important to set this number correctly
for the text transition effects.

use_dots_for_commas:

Single value, type: boolean (true/false). Default: false

Todo: Help us to write it

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Alpha-Numeric / Segment Displays

∙ Segment Display Platforms in MPF

Index of config sections 1763

Mission Pinball Framework Documentation, Version

servo_controllers:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The servo_controllers: section of your config is where you configure PCA9685/PCA9635-based I2C
servo controllers. See I2C Servo Controllers for details.

I2C Address

When you configure an I2C servo controller you have to address it on the I2C bus. The default of the
chip is 0x40 which is 64 in decimal. There might be some prefix depending on your I2C interface.

Optional settings

The following sections are optional in the servo_controllers: section of your config. (If you don’t
include them, the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see more debug output.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

platform:

Single value, type: string. Defaults to empty.

Name of the platform this servo controller is connected to. The default value of None means the default
hardware platform will be used. You only need to change this if you have multiple different hardware
platforms in use and this coil is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

Index of config sections 1764

Mission Pinball Framework Documentation, Version

servo_max:

Single value, type: integer. Default: 600

The controller is driving the servo using PWM. servo_max defines thes the upper PWM limit. It will use
a duty cycle of value/4096 at 50Hz.

servo_min:

Single value, type: integer. Default: 150

The controller is driving the servo using PWM. servo_min defines thes the lower PWM limit. It will use
a duty cycle of value/4096 at 50Hz.

Related How To guides

∙ I2C Servo Controllers

servos:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The servos: section of your config is where you specify any servo devices in your machine, as well as
configuring their range of motion and a mapping of events that will cause the servos to move to
certain positions.

Here’s an example servos: section, with two servos defined called servo1 and servo2 :

servos:

servo1:

servo_min: 0.1

servo_max: 0.9

positions:

0.0: servo1_down

0.8: servo1_up

reset_position: 0.5

reset_events: reset_servo1

number: 1

servo2:

positions:

0.2: servo2_left

1.0: servo2_home

reset_position: 1.0

reset_events: reset_servo2

number: 2

Then for each servo in your servos: section, the following settings apply:

Index of config sections 1765

Mission Pinball Framework Documentation, Version

Required settings

The following sections are required in the servos: section of your config:

number:

Single value, type: string. Defaults to empty.

This is the number of the servo which specifies which driver output the servo is physically connected
to. The exact format used here will depend on which control system you’re using and how the servo is
connected.

See the How to configure “number:” settings guide for details.

Optional settings

The following sections are optional in the servos: section of your config. (If you don’t include them,
the default will be used).

acceleration_limit:

Single value, type: number (will be converted to floating point). Default: -1.0

Acceleration limit for your servo. The unit of this value depends on your platform.

ball_search_max:

Single value, type: number (will be converted to floating point). Default: 1.0

The value of the second position that this servo will go to in ball search.

ball_search_min:

Single value, type: number (will be converted to floating point). Default: 0.0

The value of the initial position that this servo will go to in ball search.

First position in ball search

ball_search_wait:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 5s

How long this servo will pause in each position (min and max) before moving to the other position
while ball search is active.

Index of config sections 1766

Mission Pinball Framework Documentation, Version

include_in_ball_search:

Single value, type: boolean (true/false). Default: true

Controls whether this servo is included in ball search.

platform:

Single value, type: string. Defaults to empty.

Name of the platform this servo is connected to. The default value of None means the default hardware
platform will be used. You only need to change this if you have multiple different hardware platforms
in use and this coil is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

platform_settings:

Single value, type: dict. Defaults to empty.

Todo: Help us to write it

positions:

One or more sub-entries. Each in the format of number (will be converted to floating point) : string

This is a sub-section mapping of servo positions to MPF event names. For example:

positions:

0.1: servo1_down

0.9: servo1_up

0.45: servo1_mid

In MPF, servo ranges of motion are represented as numbers between 0.0 and 1.0. So 0.0 puts the
servo at the extreme end of its range on one side as set by the servo_min: discussed below, and 1.0
moves it to the end of motion on the other side as set by the servo_max: as set below. You can use
positions in between with as much precision as your servo controller will allow. (For example, a value
of .4444 will tell the servo to move to 44.44% of the way between its minimum and maximum position.

The values in this positions: list represent MPF events that, when posted, tell this servo to move to a
certain position. So in the example above, when the servo1_up event is posted, this servo will move to
position 0.9 (90% of the way between its min and max).

You can add as many events here as you want, and the same event can be used for multiple servos.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
machine_reset_phase_3, ball_starting, ball_will_end, service_mode_entered

Index of config sections 1767

Mission Pinball Framework Documentation, Version

Default: None

Events in this list, when posted,

Default: machine_reset_phase_3, ball_starting, ball_will_end, service_mode_entered

A list of events, or a list of events with delays, that cause the servo to move to its reset position
(discussed below).

Note that by default, ball_starting is a reset event, so if you don’t want the servo to reset on the start
of each ball, you can override that like this:

reset_events: machine_reset_phase_3, ball_will_end, service_mode_entered

reset_position:

Single value, type: number (will be converted to floating point). Default: 0.5

The position the servo will move to when its reset.

servo_max:

Single value, type: number (will be converted to floating point). Default: 1.0

A numerical value that’s sent to the servo which represents the servo’s max position in relation to the
servo_max: set in the controllers configuration. The actual value for this is normalized to 0.0 to 1.0
here. The controllers will convert it for the corresponding hardware.

Note that the position settings earlier are always 0.0 to 1.0, and the max (and min, discussed below)
are used to calculate what actual values are sent to the servo.

So if you have servo_max: 1.0 and servo_min: 0.5, and then you set the servo position to 0.5, the
actual value sent will be 0.75. That position will be converted to an actual position in the hardware
controller.

servo_min:

Single value, type: number (will be converted to floating point). Default: 0.0

Like servo_max: above, except the minimum lower-end setting for values that are sent to the servo
controller.

speed_limit:

Single value, type: number (will be converted to floating point). Default: -1.0

The maximum speed of this servo. The unit of this value depends on your platform.

stop_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Index of config sections 1768

Mission Pinball Framework Documentation, Version

Todo: Help us to write it

stop_timeout_after_last_move:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

Todo: Help us to write it

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Enables more detailed debug information to be added to the log (when verbose logging is enabled).

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

A friendly name for this servo that will be used in reports and the service menu.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Tags work like tags for any device. Nothing special here.

Related How To guides

∙ Servo Platforms in MPF

∙ Servos

Index of config sections 1769

Mission Pinball Framework Documentation, Version

settings:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The settings: section of your config is where you configure settings which are configurable in service
mode.

This is an example:

settings:

replay_score:

label: Replay Score

values:

500000: "500000 (default)"

1000000: "1000000"

1500000: "1500000"

default: 500000

key_type: int

sort: 100

Required settings

The following sections are required in the settings: section of your config:

default:

Single value, type: string. Defaults to empty.

Default value to use if not changed or on reset. Must be included in values.

label:

Single value, type: string. Defaults to empty.

Label to use in service mode for this setting.

sort:

Single value, type: integer. Defaults to empty.

Sort in service mode.

values:

One or more sub-entries. Each in the format of string : string

Values for this setting in the format value: label. value will be assigned to the machine_var and label
will be shown in service mode.

Index of config sections 1770

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the settings: section of your config. (If you don’t include them,
the default will be used).

key_type:

Single value, type: one of the following options: str, float, int. Default: str

Type of the key. If you want to do math with the variable you need either float or int.

machine_var:

Single value, type: string. Defaults to empty.

Name of the machine variable to use. If this is not set it will use the name of this setting as machine
variable.

settingType:

Single value, type: string. Default: standard

Todo: Help us to write it

Related How To guides

∙ Service Mode

∙ Service Mode

sequences:

Config file section

Valid in machine config files YES
Valid in mode config files YES

See also sequences.

The structure of sequence logic blocks is like this:

sequences:

the_name_of_this_logic_block:

<settings>

some_other_logic_block:

<settings>

a_third_logic_block:

<settings>

Index of config sections 1771

Mission Pinball Framework Documentation, Version

Note that the actual name of the logic block doesn’t really matter. Mainly they’re just used in the logs.

Required settings

The following sections are required in the sequences: section of your config:

events:

List of one (or more) events. The device will add handlers for those events. Defaults to empty.

The events section of a sequence logic block is where you define the events this logic block will watch
for in order to make progress towards completion.

The real power of logic blocks is that you can enter more than one event for each step, and only one of
the of the events of that step has to happen for that step to be complete.

Another way to look at it is that there’s an AND THEN between all the steps. For the Sequence to
complete, you need Step 1 AND THEN Step 2 AND THEN Step 3. But since you can enter more than
one event for each step, you could think of those like OR*s. So you have Step 1 (event1 *OR event2)
AND THEN Step 2 (event3) AND THEN Step 3 (event4 OR event5), like this:

##! mode: mode1

sequences:

my_sequence:

events:

- event1, event2

- event3

- event4, event5

It might seem kind of confusing at first, but you can build this up bit-by-bit and figure them out as you
go along.

You can enter anything you want for your events, whether it’s one of MPF’s built-in events or a
made-up event that another logic block posts when it completes. (This is how you chain multiple logic
blocks together to form complex logic.)

For example:

##! mode: mode1

sequences:

logic_block_1:

events:

- event1

- event2

- event3

- event4

- event5

events_when_complete: logic_block_1_done

logic_block_2:

events:

- event1, event2, event3

- event4

- event5

events_when_complete: logic_block_2_done

Index of config sections 1772

Mission Pinball Framework Documentation, Version

In the example above, there are two logic blocks. The first one just has five steps that need to
complete (in 1-2-3-4-5 exact order since we’re dealing with sequence logic blocks), and each step only
has one event that will mark is as complete.

In the second example, if event 1, 2, or 3 is posted, that will count for step 1, and then both events 4
and 5 need to be posted for steps 2 and 3. (Again, in order, so event 1, 2, or 3 has to be posted before
the logic block will even start looking for event 4.)

So in the second one, you could get event2, event4, then event5 posted, for example, and that will lead
to logic_block_2_done being posted.

Note that you can have two logic blocks with the same events at the same time, and MPF will track
the state of each logic block separately.

Optional settings

The following sections are optional in the sequences: section of your config. (If you don’t include
them, the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Currently unused.

Index of config sections 1773

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the logic_blocks_common: section of your config. (If you don’t
include them, the default will be used).

disable_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will disable this logic block.

A logic block must be enabled to track hits, progress, and to post events.

disable_on_complete:

Single value, type: boolean (true/false). Default: true

True/False (or Yes/No) which controls whether this logic block disables itself once it completes. This
does not reset the current value.

enable_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will enable this logic block.

A logic block must be enabled to track hits, progress, and to post events.

If you don’t have any enable_events listed, then the logic block will automatically be enabled when the
player’s ball starts.

events_when_complete:

List of one (or more) events.

Events that will be posted when this device is completed.

events_when_hit:

List of one (or more) events.

Events that will be posted when this device is hit or advanced.

persist_state:

Single value, type: boolean (true/false). Default: false

Boolean setting (yes/no or true/false) which controls whether this logic block remembers where it was
from ball-to-ball. If False, then this logic block will reset itself whenever a new ball starts. If True,
then this logic block will be saved to the player variable <logic_block_name>_state.

Index of config sections 1774

Mission Pinball Framework Documentation, Version

Note that logic block state is reset on mode end when this is False and, as normal modes stop at the
end of a ball, the state is always maintained on a per-player basis, regardless of what this setting is
configured for.

reset_events:

List of one (or more) device control events (Instructions for entering device control events).

Event(s) that will reset this logic block back to its original value. This has no effect on the
enabled/disabled state of the block.

Note that there are also reset_on_complete: and persist_state: settings which also affect how and
when the logic block is reset.

You can reset a logic block regardless of whether it’s enabled.

reset_on_complete:

Single value, type: boolean (true/false). Default: true

True/False (or Yes/No) which controls whether this logic block resets itself once it completes. This just
resets the current value or progress. It does not change the enabled or disabled state.

Note, disable_on_complete default is true, which may seem like reset isn’t working. For something
like a counter that automatically starts again change disable_on_complete to false.

restart_events:

List of one (or more) device control events (Instructions for entering device control events).

List of one (or more) events which, when posted, will restart this logic block. A restart is a reset, then
an enable, combined into a single action.

start_enabled:

Single value, type: boolean (true/false).

If true this device will start enabled. If false this device will start disabled. If you omit this the device
will start enabled unless you specify enable_events in which case the device will start disabled.

Related How To guides

∙ Sequence Logic Blocks

∙ Integrating Logic_Blocks and Shows

sequence_shots:

Config file section

Index of config sections 1775

Mission Pinball Framework Documentation, Version

Valid in machine config files YES
Valid in mode config files YES

The sequence_shots: section of your config is where you configure switch or event sequences which
should trigger an event.

A sequence_shots is a device with multiple switches to hit, in order, for the sequence_shots to be
registered as being hit/completed. You can optionally specify a time limit for these switches (i.e. the
sequence must be completed within the time limit) with the sequence_timeout: setting.

When the first switch in a sequence is activated, the sequence_shot will start watching for the next
one. When that one is activated, it looks for the next, and so on. Once the last switch is activated, the
shot is considered “hit” and the device posts your_sequence_shot_hit (if your shot is called
your_sequence_shot).

sequence_shots:

left_orbit:

switch_sequence: left_rollover, top_right_opto

sequence_timeout: 3s

weak_right_orbit:

switch_sequence: top_right_opto, top_center_rollover

sequence_timeout: 3s

Notice in the example above that there are two different shots with the same switches, but the order
of the switches is inverted between the two. This is because the left orbit and right orbit shots in this
machine use the same two switches, but the order the switches are activated in dictates which shot
was just made.

Shots in MPF are able to track multiple simultaneous sequences in situations which is nice when
multiple balls are on the playfield. If the first switch in a sequence is hit twice before the sequence
completes, MPF will start tracking two sequences. Then when the next switch is it, it will only
advance one sequence. If the next switch is hit again, it will advance the other sequence. But if the
next switch is never hit a second time, then the second shot will not complete.

Here is an example with events:

sequence_shots:

my_event_based_sequence_shot:

event_sequence:

- event1

- event2

- event3

cancel_events: cancel

delay_event_list:

delay1: 1s

sequence_timeout: 3s

And one with switches:

sequence_shots:

my_switch_based_sequence_shot:

switch_sequence:

- seq2_1

- seq2_2

(continues on next page)

Index of config sections 1776

Mission Pinball Framework Documentation, Version

(continued from previous page)

- seq2_3

cancel_switches: seq2_cancel

delay_switch_list:

seq2_delay: 1s

sequence_timeout: 3s

Optional settings

The following sections are optional in the sequence_shots: section of your config. (If you don’t include
them, the default will be used).

cancel_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Those events will cancel the current sequence. Same as cancel_switches but with events.

cancel_switches:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

A switch (or list of switches) that will cause any in-progress switch sequence tracking to be canceled.
(Think of it like a cancel “abort” switch.) If you enter more than one switch here, any of them being hit
will cause the sequence tracking to reset. If MPF is currently tracking multiple in-process sequences,
a cancel_switch hit will cancel all of them.

delay_event_list:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Events which will temporarily prevent new sequences from starting. Same as delay_switch_list but
with events.

delay_switch_list:

One or more sub-entries. Each in the format of string name of a switches device : time string (ms)
(Instructions for entering time strings)

Switches which will temporarily prevent new sequences from starting. This lets you specify a switch
along with a time value that will prevent this shot from tracking from being hit. In other words, the
shot only counts if the delay_switch was not hit within the time specified.

Index of config sections 1777

Mission Pinball Framework Documentation, Version

event_sequence:

List of one (or more) events. The device will add handlers for those events. Defaults to empty.

A sequence of events which will complete the sequence.

playfield:

Single value, type: string name of a playfields device. Default: playfield

The playfield this sequence is on.

sequence_timeout:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

Timeout starting when the sequence starts (e.g. after the first switch was hit). This is the time limit
the switches in the switch_sequence: section have to be activated in, from start to finish, in order for
the sequence to be hit/completed. You can enter values with “s” or “ms” after the number, like 200ms
or 3s. If you just enter a number then the system assumes you mean seconds. If you do not enter a
time, or you enter a value of 0, then there is no timeout (i.e. the player could literally take multiple
minutes between switch activations and the shot would count.)

switch_sequence:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

A sequence of switches which will complete the sequence.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1778

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Sequence Shots

∙ Loops / Orbits / Ramps

shot_control_events:

Config file section

Valid in machine config files NO
Valid in mode config files NO

Shot can contain control_events: which can move the shot to a specific state.

Required settings

The following sections are required in the shot_control_events: section of your config:

events:

One or more values, type: string. Use commas to separate multiple values.

A list of one or more events, which triggers the move of the shot to a specified state.

state:

Single value, type: int.

The integer that is provided for the state the shot should move to when the event is posted. States are
indexed at 0, which means the first state is 0, second state is 1, etc.

Optional settings

The following sections are optional in the shot_control_events: section of your config. (If you don’t
include them, the default will be used).

Index of config sections 1779

Mission Pinball Framework Documentation, Version

force:

Single value, type: boolean (true/false). Default: true

If set to true, the state of shot will be modified even if the shot is disabled. If set to false, this will be
ignored unless the shot is currently enabled when the event is posted.

force_show:

Single value, type: boolean (true/false). Default: false

IF set to true, the show associated with this shot state will be played, even if the shot is already in that
state.

Related How To Guides

∙ shots:

shot_groups:

Config file section

Valid in machine config files NO
Valid in mode config files YES

You can group shots together via the shot_groups: section of your config file.

For example:

##! mode: mode1

shot_groups:

upper_lanes:

shots: lane_l, lane_a, lane_n, lane_e

rotate_left_events: sw_left_flipper

rotate_right_events: sw_right_flipper

reset_events: upper_lanes_default_lit_complete

enable_events: ball_started

disable_events: ball_ending

Creating a shot group has several advantages, including:

∙ You can add “rotation” events which shift the states of all the shots in the group to the left or
right, like with flipper-controlled lane change or situations where the slingshots shift which lanes
are lit.

∙ Any time the state of a member shot in a group changes, MPF will check to see what all the other
shots’ states are. If they are all the same, it will post a “complete” event (in the form of
<shot_group_name>_<active_profile_name>_<profile_state_name>_complete) which you can
use to trigger scores based on complete, light shows, shot group resets, etc.

∙ Any time a member shot is hit, MPF will post an event (in the form of
<shot_group_name>_<profile_name_of_shot_that_was_hit>_<profile_state_name_of_shot_that_was_hit>_hit).

Index of config sections 1780

Mission Pinball Framework Documentation, Version

You can use this to tie scoring, sounds, or logic blocks to any shot being hit in a group, which can
be easier than creating entries for each individual shot.

∙ Any time a member shot is hit, MPF will post an event (in the form of
<shot_group_name>_<profile_name_of_shot_that_was_hit>_hit)

∙ Any time a member shot is hit, MPF will post an event (in the form of <shot_group_name>_hit)

At first all these events might seem confusing, but really they all exist to give you the most flexibility
when looking to trigger different things based on shots that are part of a shot group being hit. For
example, if a shot called left_lane is a member of a shot group called lanes with a profile called skill
and a profile state lit is hit, the following six(!) events will be posted:

∙ lanes_skill_lit_hit

∙ lanes_skill_hit

∙ lanes_hit

∙ left_lane_skill_lit_hit

∙ left_lane_skill_hit

∙ left_lane_hit

This lets you dial-in on the amount of precision you need when you’re tying game logic to shots and
shot groups.

Optional settings

The following sections are optional in the shot_groups: section of your config. (If you don’t include
them, the default will be used).

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

A list of one or more events that will disable all the shots in this shot group. This can be a simple list of
events or a time-delayed list. If you do not specify any disable_events, then MPF will automatically
create disable_events based on the list in the config_validator: shot_groups: disable_events: section of
your machine-wide config. (By default that’s ball_ended.)

disable_rotation_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

A list of one or more events that will disable rotation, meaning the states of the shots in this group will
not be rotated if one of the rotate_left_events, rotate_right_events, or rotate_events is posted. This can
be a simple list of events or a time-delayed list.

Index of config sections 1781

Mission Pinball Framework Documentation, Version

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

A list of one or more events that will enable all of the individual shots in this shot group. (The shot
group itself has no enabled/disabled state except for rotation.) This can be a simple list of events or a
time-delayed list. If a shot in the group is not enabled, then it will not post hit events but it will still
rotate its profile state when the shot group rotates.

The presence or absence of this value will not affect whether individual shots in the group can be
enabled via their own enable_events settings. An individual shot can always be enabled/disabled
regardless of the group state, although a subsequent group enable/disable events will also affect that
individual shot.

enable_rotation_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

A list of one or more events that will allow the states of the shots in this group to be rotated (based on
the rotate_left_events, rotate_right_events, or rotate_events as described above). This can be a simple
list of events or a time-delayed list. If rotation is not enabled, rotation events being posted will have no
effect. (Rotation is enabled by default.)

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

A list of one or more events that will reset all the shots in this shot group. This can be a simple list of
events or a time-delayed list. Resetting a shot group means that every shot in the group jumps back to
the first state in whatever shot profile is active at that time.

restart_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

A list of one or more events that will restart all the shots in this shot group. A restart is the same as
calling reset and enable, so restarting a shot group will jump every shot in the group to the first state
of that shot’s profile and immediately enable all the shots.

rotate_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Same as rotate_right_events:.

Index of config sections 1782

Mission Pinball Framework Documentation, Version

rotate_left_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

This list of events that, when posted, will rotate the current state of each shot to the shot to its left.
The state of left-most (i.e. first entry) in your shots: list will rotate over to the right-most shot. These
states are based on whatever shot profile is active at that time.

rotate_right_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

This list of events that, when posted, will rotate the current lit and unlit shot states to the right. This
can be a simple list of events or a time-delayed list. The state of right-most (i.e. last entry) in your
shots: list will rotate over to the left-most shot.

shots:

List of one (or more) values, each is a type: string name of a shots device. Defaults to empty.

The list of shots (from the shots: section of your config file) that make up this shot group. Order is
important here if you want to implement shot rotation events. Individual shots can belong to more
than group at the same time, which is useful in a lot of different situations. For example, you might
have three banks of three standup targets each, and you can create shot groups for each bank with
events that will be triggered when the individual bank is complete, and then you can create a fourth
shot group with all nine targets in it which could post different events when all nine targets have been
hit.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to add lots of logging information about this shot to the debug log. This is helpful
when you’re trying to troubleshoot problems with this shot. Default is False.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1783

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

The plain-English name for this device that will show up in operator menus and trouble reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

A list of one or more tags that apply to this device. Tags allow you to access groups of devices by tag
name.

Related How To guides

∙ Grouping Shots for lane change, rotation, etc.

∙ Skill Shot

∙ Sequence Shots

shot_profiles:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The shot_profiles: section of your config is where you configure the settings for various shot profiles
that you can then apply to your shots.

Here’s an example:

##! mode: mode1

shot_profiles:

my_default_profile:

states:

- name: unlit

show: "off"

- name: lit

show: "on"

<name>:

This is the name of the shot profile, which is how you’ll refer to it elsewhere in your config files when
you apply it to shots. The sample shot_profiles: section of the config file above contains a profile
named “default” (which is actually included in the system-wide mpfconfig.yaml file).

Index of config sections 1784

Mission Pinball Framework Documentation, Version

advance_on_hit:

Single value, type: boolean (Yes/No or True/False). Default: True

This setting controls whether the active shot profile advances to its next state when the shot is hit.
The default is true, but you can set this to false if you want to manually advance the shot some other
way. (If this is false, you can still advance the shot with advance_events, for example.)

block:

Single value, type: boolean (Yes/No or True/False). Default: false

Lets you control whether hits to this shot are propagated down to lower priority modes. The default
value is true if you don’t specify this, meaning that blocking is enabled

If you have block: true in a shot profile, then hits to that shot when that profile is applied only are
registered in the highest mode where that shot is enabled. If you set block: false, then when a shot is
hit in one mode it will also look down to lower priority modes where that shot is enabled. If that lower
priority mode has a different profile applied then it will also register a hit event based on that profile.
This will continue until it reaches a level with block: true or until it reaches the end of the mode list.

This is better explained with an example.

Imagine you have four lanes at the top of your machine which you use in your base mode in a normal
lane-change fashion. (Lanes are unlit by default, hit a lane and they light, complete all four lanes for
an award.) Now imagine you also use those lanes for a skillshot where one of the lanes is flashing and
you try to hit it while the skillshot is enabled. In this case, you’d have different shot profiles for each
mode, perhaps the default profile in your base mode (with unlit->lit states) and a skillshot profile in
your skill shot mode (with flashing->complete states).

By default, if the player hits the a lane when the skill shot mode is running, the skillshot profile is the
active profile so it’s the shot that gets the hit. But then when the skill shot mode ends, the lane the
player just hit is not lit, since that shot profile was not active when it was hit. (In other words, the
skillshot blocked the hit event.) So if you add block: false to your skillshot shot profile, then when
the shot is hit when the skill shot mode is running, it will receive the hit and advance the shot from
flashing to complete. Then the lower base mode will also get the shot, and it will advance its state
from unlit to lit. The lights for the shot will only reflect the skillshot lights since it’s the higher priority,
however, you will get yourshot_skillshot_flashing_hit and yourshot_default_unlit_hit events since both
the hits registered because you set the skillshot profile not to block the hit.

loop:

Single value, type: boolean (Yes/No or True/False). Default: False

Controls whether the states of this profile “loop” when they reach the end. If true, then the shot being
hit when the profile is in the last state causes the profile to “loop” around back to the first state. This
is useful if you want to create a “toggle” shot where you could create a profile with two steps (lit and
unlit) and then set loop to be true. (If you have more than two steps in the shot profile, then the
looping will go from the last one back to the first one.) The default is false, meaning when the profile
reaches its last state, it will just stay there even if it’s hit again.

Index of config sections 1785

Mission Pinball Framework Documentation, Version

player_variable:

Single value, type: string. Default: None

This is a profile setting that lets you specify the name of the player variable that will be used to track
the status of this shot when this profile is applied. If you don’t specify the name of a player variable, it
will automatically use <shot_name>_<profile_name> as the player variable.

rotation_pattern:

List of one (or more) values, each is a type: string. Default: R

This setting lets you specify a custom rotation pattern that’s used when an event from this profile’s
rotation_events: section is posted. You enter it as a list of Ls and Rs, for example:

##! mode: mode1

shot_profiles:

my_default_profile:

states:

- name: unlit

show: "off"

- name: red

show: led_color

show_tokens:

color: red

- name: blue

show: "flash"

show_tokens:

color: blue

rotation_pattern: L, L, L, L, R, R, R, R

In the above example, the first four times a rotation_event is posted, this shot group will rotate to the
left, then the next four to the right, then the next four to the left, etc. The pattern will loop. This is
how you could specify a single lit target that “sweeps” back and forth across a group of five targets,
for example. This only impacts rotation_events, not rotate_left_events and rotate_right_events since
those events imply a direction.

show:

Single value, type: string. Default: None

The name of the show associated with this shot profile. Note that you can specify a single show which
applies to the entire shot profile (here), or you can specify a different show for each step/state (in the
states: section, covered below.

If you specify a show here, then the show will not auto play, and instead will advance to the next step
with each step/state advancement of the shot. This is useful for simple things like turning a light on or
off. For more complex scenarios, you can set a full show per step/state below.

show_when_disabled:

Single value, type: boolean (Yes/No or True/False). Default: False

Index of config sections 1786

Mission Pinball Framework Documentation, Version

Controls whether the lights or LEDs for shots which have this profile applied will be active when this
shot is disabled. By default this is true, so if the shot profile associated with this shot has the light
turning on, then when you disable the shot the light will stay on. Set it to false if you want the lights
or LEDs to turn off when the shot is disabled. (Note that even when this is false, the lights or LEDs
can still be controlled by other light scripts, light shows, manual commands, etc.)

state_names_to_not_rotate:

List of one (or more) values, each is a type: string. Default: None

This works like state_names_to_rotate, except it’s the opposite where you can enter the names of
states to not rotate. You don’t need to use both—the options are here just for convenience.

state_names_to_rotate:

List of one (or more) values, each is a type: string. Default: None

This is a list of state names that will be used to determine which shots in a shot group will be rotated.
By default, all states are included. But this can be nice if you only want to rotate a subset of the states.
For example, if you have a shot group with a bunch of lights that represent modes, you might have a
shot profile with states called unlit, active (flashing), and complete (lit). You’d use these shots (and
their lights) to track the game modes you’ve completed, so at any time, you’d have a bunch of unlit
shots representing modes you haven’t completed yet, solidly lit shots for modes you’ve completed, and
a single flashing shot representing the mode that will be started next. Then in your game if you
wanted to rotate among the incomplete targets, you would set your shot profile so it only rotated those
state names, like this

states:

The states: section contains the following nested sub-settings

Under each shot profile name, a setting called states: lets you specify various properties for the target
in different states. You can configure multiple states in the order that you want them to be stepped
through. (You use a dash, then a space, then a setting to indicate that items should be a list. The
following sections explain the settings for each state:

name:

Single value, type: string.

This is the name of the step. In other words, it’s what “state” the shot is in when this profile step is
active.

loops:

Single value, type: integer. Default: -1

Loops setting from the show player, controls how many times the show loops (-1 is unlimited).

Index of config sections 1787

Mission Pinball Framework Documentation, Version

manual_advance:

Single value, type: boolean (Yes/No or True/False). Default: False

If True, the show does not automatically advance to the next step.

priority:

Single value, type: integer. Default: 0

The priority shift of the show that’s played.

show:

Single value, type: string. Default: None

The name of the show that will be played when a shot with this profile applied is in this step (or state).

show_tokens:

One or more sub-entries, each in the format of type: str:str. Default: None

Show tokens for the show.

speed:

Single value, type: number (will be converted to floating point). Default: 1

Playback speed of the show.

start_step:

Single value, type: integer. Default: 1

The step number the show will start on.

sync_ms:

Single value, type: integer. Default: None

The sync_ms value of the show.

shots:

Config file section

Valid in machine config files NO
Valid in mode config files YES

Index of config sections 1788

Mission Pinball Framework Documentation, Version

The shots: section of your config file is where you define the shots in your machine. A shot is a switch,
a series of switches that have to be hit in order, or an event or series of events.

Shots are used for things like standup targets, rollover lanes, drop targets, ramps, loops, orbits, etc.

Each shot can have a shot profile applied to it which defines what happens when its hit. For example
the shot profile might specify that the shot starts unlit, then when it’s hit it becomes complete. Or a
shot profile might specify that it’s flashing slowly, and each hit makes it flash faster and faster until it’s
been hit enough times, etc.

You can specify different shot profile on a per-mode basis, meaning a shot can have one behavior in
the base mode and then take on another behavior when a higher-priority mode is started. The
tracking of various states of the shot profiles is maintained on a per-mode basis.

You can group multiple shots together into shot groups for group-level functionality like posting
events when all the shots in a group in the same state (lit, unlit, complete, etc.) and for rotating the
states of shots to the left or right based on certain events happening (slingshot hits, flipper button
pushes, etc.). A shot can be a member of multiple groups at the same time.

Here’s a sample shots: section from a config file:

##! mode: mode1

shots:

lane_l:

switch: lane_l

show_tokens:

light: lane_l

lane_a:

switch: lane_a

show_tokens:

light: lane_a

lane_n:

switch: lane_n

show_tokens:

light: lane_n

lane_e:

switch: lane_e

show_tokens:

light: lane_e

upper_standup:

switch: upper_standup

show_tokens:

leds: led_17, led_19

Create one entry in your shots: section for each shot in your machine. Don’t worry about grouping
shots here. (That’s done in the shot_groups: section.) The shot name can be whatever you want, and it
will be the name for this shot which is used throughout your machine. Remember that everything with
at least one switch and a “state” is a shot, so standups, rollovers, inlane/outlines, ramps, loops. . . You
will have lots of shots in your game.

Each shot in your shots: section can have the following config options set:

Optional settings

The following sections are optional in the shots: section of your config. (If you don’t include them, the
default will be used).

Index of config sections 1789

Mission Pinball Framework Documentation, Version

advance_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause this shot to be advanced to its next state in the active shot
profile. If the shot is on the last state, then it will roll over if the shot profile is configured to loop,
otherwise it will do nothing. Advance_events are similar to hit_events, except advance_events are
more “stealthy” in that they only advance the state (and update the lights or LEDs). They do not post
hit events and therefore do not trigger scoring or other events related to a shot hit. They are useful if
you need to move a shot to a starting state (like selecting a shot to be active for skill shot).

control_events:

List of one (or more) values, each is a type: shot_control_events. Defaults to empty.

Control events to change the state of this shot. This supports jumping to state to a value that is
specified. This is a 0 index, so the first state is 0.

For instance in the following example set_state_one will set the state to 1, which is the second state:

shots:

shot_with_control_events:

control_events:

- events: set_state_one

state: 1

delay_switch:

One or more sub-entries. Each in the format of string name of a switches device : time string (ms)
(Instructions for entering time strings)

A dictionary of switches and times which prevent hits for a certain time. You can use this if you got
another lane feeding into your shot and you want to prevent it from hitting this shot. Use this with
care as it might cause issues during multiball.

This is an example:

##! mode: mode1

shots:

my_shot:

switch: s_my_shot

delay_switch:

s_other_lane: 2s

In this example an activation of s_other_lane will prevent the shot from being hit for two seconds.

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Index of config sections 1790

Mission Pinball Framework Documentation, Version

Default: None

Events in this list, when posted, disable this shot. If a shot is disabled, then hits to it have no effect.
(e.g. The shot will remain in whatever state it’s in.)

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, enable this shot. If a shot is not enabled, then hits to it have no effect.
(e.g. The shot will remain in whatever state it’s in.)

hit_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause this shot to be “hit”. This is effectively the same thing as if the
ball activated the switch associated with this shot, (or that the entire switch sequence has been
completed), except it comes in via an event instead of from a switch activity.

mark_playfield_active:

Single value, type: boolean (true/false). Default: true

Todo: Help us to write it

persist_enable:

Single value, type: boolean (true/false). Default: true

Whether this shot should persist its enable state in a player variable. If set to True this will also persist
the state into the next ball of the same player.

playfield:

Single value, type: string name of a playfields device. Default: playfield

On which playfield is this shot? This is only relevant when you have multiple playfields. It is used
mostly for ball search.

Index of config sections 1791

Mission Pinball Framework Documentation, Version

profile:

Single value, type: string name of a shot_profiles device. Default: default

The name of the shot profile that will be applied to this shot.

∙ If you’re editing a machine-wide config file , then the profile name specified here will be the
default profile for that shot any time a mode-specific config doesn’t override it. (If you don’t
specify a profile name, MPF will assign the shot profile called “default”.)

∙ If you’re in a mode configuration file , then this profile entry is the name of the shot profile that
will be applied only when this mode is active. (i.e. it’s applied when the mode starts and it’s
removed when the mode ends.) Like other mode-specific settings, shot profiles take on the
priorities of the modes they’re in, so if you have a profile from a mode at priority 200 and
another from priority 300, the profile from the priority 300 mode will be applied. If that mode
stops, then the shot will get the profile from the priority 200 mode.

Shots can have (and track) multiple profiles at the same time (up to one profile per mode). Only the
show from the highest-priority profile will play though.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, reset this shot. Resetting a shot means that it jumps back to the first
state in whatever shot profile is active at that time.

restart_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, restart this shot. Restarting a shot is equivalent to resetting and then
enabling the shot, done with a single event.

show_tokens:

One or more sub-entries. Each in the format of string : template_str

A subsection containing key-value pairs that are passed to the show that’s run when this shot is in a
certain state.

For example, consider the following shot config:

##! mode: mode1

shot_profiles:

flash:

states:

- name: unlit

(continues on next page)

Index of config sections 1792

Mission Pinball Framework Documentation, Version

(continued from previous page)

show: "off"

- name: lit

show: "flash"

shots:

shot1:

switch: switch1

profile: flash

show_tokens:

leds: led1

The shot above has a show token called leds which is set to led1. This means that when a show
associated with this shot is played, if that show contains placeholder tokens for (leds), they will be
dynamically replaced with the value of led1 when that show is played by this shot.

The purpose of show tokens is so you can create resuable shows that you could apply to any shot.

For example, imagine if you wanted to create a shot to flash an LED between red and off. It might look
like this:

show to flash an LED

shows:

flash_light:

- time: 0

lights:

(leds): red

- time: 1

lights:

(leds): off

Assuming the “flash” profile (as defined in the profile: flash in the above shot) was configured for
the state that show was in, when the shot entered that state, it would replace the (leds): section of
the show with led1.

More information about show tokens

start_enabled:

Single value, type: boolean (true/false). Defaults to empty.

Whether the shot starts as enabled (if you set this to True) or as disabled (if you set this to False). If
you do not set this, MPF will check if there are enable_events. The shot will start disabled in that case
or enabled otherwise.

switch:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

The name of the switch (or a list of switches) for this shot. You can use multiple switches if the shot
happens to have multiple switches, though this is rare. (Maybe there are two standups on the sides of
a ramp that you always want to be the same so you just create them as one logical shot?)

Do not enter multiple switches here for different shots, like for a bank of rollover lanes. In that case
you would set up each shot as its own shot here and then group them via shot_groups:.

Index of config sections 1793

Mission Pinball Framework Documentation, Version

Also do not enter multiple switches if you want the shot to be complete when all the switches are hit.
(That’s what the switch_sequence: setting is for.) Entering multiple switches here is just in case you
have a shot where you want any of the switches being hit to count as that shot being hit.

switches:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

This setting is the same as the switch: setting above. You can technically enter a single switch or a
list of switches in either the switch: setting or the switches: setting, but we include both since it was
confusing to be able to enter multiple switches for a singlular “switch” setting and vice versa.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to add lots of logging information about this shot to the debug log. This is helpful
when you’re trying to troubleshoot problems with this shot.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

The plain-English name for this device that will show up in operator menus and trouble reports.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

A list of one or more tags that apply to this device. Tags allow you to access groups of devices by tag
name.

Related How To guides

∙ Shots

Index of config sections 1794

Mission Pinball Framework Documentation, Version

show_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the shows: section of a step.

The show_player: section of your config is where you start, stop, pause, (etc.) shows.

Here is an example:

show_player:

some_event: your_show_name

some_other_event: another_show

In the example above, when the event some_event is posted, the show called your_show_name will be
played (started). When the event some_other_event is posted, the show called another_show will be
played.

See Show player for details.

Optional settings

The following sections are optional in the show_player: section of your config. (If you don’t include
them, the default will be used).

action:

Single value, type: one of the following options: play, stop, pause, resume, advance, step_back,
update, queue. Default: play

play Starts playing the show. This is the default action which will happen if you don’t include an
action: setting.

stop Stops the show. Removes and “undoes” anything the show did, and posts the show stop events.

pause Pauses the show by holding it at the current step. Posts the show pause events.

resume Resumes a previously paused show.

advance Manually advances a show to the next step. Posts the show advance events.

step_back Manually moves the show back to the previous step. Posts the show step_back events.

update Not yet implemented. In the future it will be used to change a setting of a running show, like
changing the playback speed.

Index of config sections 1795

Mission Pinball Framework Documentation, Version

block_queue:

Single value, type: boolean (true/false). Default: false

You can use block_queue: yes if you want the show to block a queue event until the show is done.
Note that you can only use this if the event that starts the show is a queue event .

For example, the mode stopping events are queue events. So take a look at the following config:

show_player:

mode_my_mode_stopping:

show_1:

block_queue: true

In the example above, when the mode called my_mode posts its stopping event, show_1 will start
playing. However because this show is set to block the queue event, the mode stopping event will not
finish until the show finishes. In other words, the mode will not fully stop, and the
mode_my_mode_stopped event will not be posted until the show ends.

If you didn’t use the block_queue setting, then the show would start and then stop right away since
the mode would end and be over (and shows started in modes are stopped when those modes end).

If you used this setting, make sure that you don’t have loops: -1, or a duration: -1 as the final step
of the show, since those will mean the show will never end, and then the queue event will never be
unblocked, and your machine will hang.

events_when_advanced:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show has been manually advanced to the next step.

events_when_completed:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show has completed, meaning it ran through to the last step and
ended naturally.

Note that if a show loops, these events are not posted when the loop happens. (You can use the
events_when_looped for that.) However if a show is set to loop a specific number of times and then
ends, these events will be posted at the end.

Note that if you want an event to post whenever the show stops, even if it didn’t make it all the way to
the end, you can use events_when_stopped.

events_when_looped:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show has looped (meaning it reached the end and is jumping
back to the first step).

Index of config sections 1796

Mission Pinball Framework Documentation, Version

events_when_paused:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show has been paused.

events_when_played:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show is played (started).

events_when_resumed:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show is resumed from a pause.

events_when_stepped_back:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show has been manually stepped back to the previous step.

events_when_stopped:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show has been stopped. Note that these events are posted
anytime the show has been stopped, regardless of whether it made it to the end and stopped on its
own, or whether it was stopped randomly where it was.

events_when_updated:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

Event(s) that will be posted when this show has been updated. Note that the show “update” function
has not been implemented yet, so this setting is more of a placeholder at the moment.

show_config:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The show_config: section of your config is where you configure a show to play within a device.

See show_player for more details about the settings.

Index of config sections 1797

Mission Pinball Framework Documentation, Version

Required settings

The following sections are required in the show_config: section of your config:

show:

Single value, type: string.

The show to play.

Optional settings

The following sections are optional in the show_config: section of your config. (If you don’t include
them, the default will be used).

loops:

Single value, type: integer. Default: -1

How often should the show loop? -1 means forever.

manual_advance:

Single value, type: boolean (Yes/No or True/False).

Whatever, the show should advance manually only.

priority:

Single value, type: integer. Default: 0

Priority for this show. This is usually added to the mode priority if the device is defined within a mode.

show_tokens:

One or more sub-entries, each in the format of string : string Dict of show tokens to pass to the show.

speed:

Single value, type: number (will be converted to floating point). Default: 1

Speed multiplier for this show.

start_step:

Single value, type: integer. Default: 1

First step to play.

Index of config sections 1798

Mission Pinball Framework Documentation, Version

sync_ms:

Single value, type: integer.

See the Synchronizing multiple shows documentation for details.

key:

Single value, type: string. Defaults to empty.

Used to set a unique identifier you can set when playing a show which can then be used later to
identify a show you want to perform an action on.

loops:

Single value, type: int_or_token. Default: -1

Controls the looping / repeating of the show. The default if you don’t include this setting is loops: -1
means that the show will repeat indefinitely until it’s stopped.

If you just want a show to play once and then stop, use loops: 0.

Since this setting is the number of times it loops, the value will be one less than the number of times
the show will play. (e.g. loops: 1 means the show will loop once which means it will play through
twice.)

Note that if a show only has one step, loops will be set to 0, regardless of the actual loops setting.

manual_advance:

Single value, type: boolean (true/false). Default: false

If you set this to yes/true, then the show will not auto-advance based on time. Instead you will have to
manually advance the show step-by-step with additional show_player entries with action: advance
entries.

This can be useful if you want to have some kind of slow progress based on a series of events instead
of a show that auto plays.

For example:

show_player:

some_event:

show_1:

manual_advance: true

some_advance_event:

show_1:

action: advance

In the example above, the event some_event will start show_1, but that show will stay on its first step
since it’s set to manually advance. Then each time the event some_advance_event is posted, show_1
will advance to its next step.

Index of config sections 1799

Mission Pinball Framework Documentation, Version

priority:

Single value, type: int_or_token. Default: 0

Adjusts the priority of the show that’s played.

By default, shows play at the priority of the mode where the show_player entry is. So this setting
merely adjusts the show’s priority up or down. For example, if you have a mode running at priority
300, and a show in a show_player with the setting priority: 10, then that show will run at priority
310. Priorities can also be negative.

The show’s priority affects the priority of everything it does. Sounds, slides, LEDs, etc.

show:

Single value, type: string. Defaults to empty.

Todo: Help us to write it

show_queue:

Single value, type: string name of a show_queues device. Defaults to empty.

Todo: Help us to write it

show_tokens:

One or more sub-entries. Each in the format of string : template_str

Allows you to specify show token values that will be used to replace the show tokens in the show when
it’s played.

Read what show tokens are here.

For example:

show_player:

some_event:

show1:

show_tokens:

led: right_inlane

In the example above, the show called “show1” will be played, but the show token called “led” in the
show will be replaced at runtime with the value “right_inlane”.

speed:

Single value, type: float_or_token. Default: 1

Index of config sections 1800

Mission Pinball Framework Documentation, Version

Controls the playback speed of the show. The default value of 1 means the show plays back at 1x
speed. (In other words, it plays at the actual speed each step is configured for. In this case you don’t
actually need to include the setting.)

If you want to play the show at 2x the speed, use speed: 2. If you want to play it at half speed, use
speed: .5. Etc.

start_running:

Single value, type: boolean or template (true/false; Instructions for entering templates). Default:
True

Whether the show starts running immediately when it is played.

By default, calling play on a show begins at the starting step and advances through the steps
according to the show config. If start_running is false, the show will play the starting step and
immediately pause. You can begin playing the show by calling show_player with action: resume.

start_step:

Single value, type: integer or template (Instructions for entering templates). Default: 1

Which step the show starts on when it’s played.

Note that you can use a dynamic value for this setting.

sync_ms:

Single value, type: int_or_token. Defaults to empty.

Sets the sync_ms value of this show which will delay the start to a certain millisecond multiple to
ensure that multiple shows started at different times all play in sync with each other.

See the Synchronizing multiple shows documentation for details.

Related How To guides

Todo: Help us to write it

show_pools:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The show_pools: section of your config is where you configure a pool of shows. When used one of the
shows is selected from the pool based on a configurable pattern called type.

This is an example:

Index of config sections 1801

Mission Pinball Framework Documentation, Version

show_pools:

group1:

shows:

- show1

- show2

- show3

type: random

Required settings

The following sections are required in the show_pools: section of your config:

shows:

List of one (or more) values, each is a type: string name of a shows device. Defaults to empty.

A list of shows which are part of the show pool

Optional settings

The following sections are optional in the show_pools: section of your config. (If you don’t include
them, the default will be used).

type:

Single value, type: one of the following options: random, sequence, random_force_next,
random_force_all. Default: sequence

How the next show is selected. See Assets for details.

Related How To guides

∙ Assets

∙ Shows

shows:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The shows: section of your config is where you define shows in your config. See Shows in files versus
shows in configs for details. Furthermore, you can also define shows in separate files.

Index of config sections 1802

Mission Pinball Framework Documentation, Version

Related How To guides

∙ Shows

∙ Tutorial step 16: Create an attract mode display show

slide_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES
Valid in shows YES

The slide_player: section of your config is where you configure slides to be shown (or removed)
based on events being posted.

This is an example:

slide_player:

event1: slide1

event2: slide2

event3: slide3

See Slide player for details.

Optional settings

The following sections are optional in the slide_player: section of your config. (If you don’t include
them, the default will be used).

action:

Single value, type: one of the following options: play, remove. Default: play

play Makes the slide active. Note that the actual slide shown on a display will be whichever active
slide has the highest priority, so depending on what other slides are active, this action might not
technically show the slide.

Also note that if a transition is specified (either in the slide definition or the transition: section
here, then than transition will be used when showing this slide.

remove Removes the slide from the list of active slides. If this slide is the highest priority slide that’s
currently showing, then the next-highest priority slide will be shown in its place.

If a transition_out: setting is used, then that transition will be used here.

For example, to remove slide1 when the event remove_slide_1 is posted:

slide_player:

remove_slide_1: # event name

slide1: # slide name

action: remove

Index of config sections 1803

Mission Pinball Framework Documentation, Version

You can also specify a transition for the removal, like this:

slide_player:

remove_slide_1: # event name

slide1: # slide name

action: remove

transition: fade

background_color:

Single value, type: color (color name, hex, or list of values 0 -255). Default: 000000ff

Todo: Help us to write it

expire:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

Specifies that this slide should automatically be removed after the time has passed. When it’s
removed, whichever slide is the next-highest priority will be shown.

The expiration timer starts immediately, so if the slide you’re displaying here doesn’t end up being
shown because it’s not the highest-priority slide, the timer is still running in the background, and the
slide will still be removed when the timer expires.

If a transition_out: is specified, it will be applied when the slide expires:

slides:

base:

widgets:

- type: text

text: BASE SLIDE

color: ff0000

font_size: 100

expire_slide:

widgets:

- type: text

text: EXPIRE 5s

color: purple

y: 66%

expire: 5s

transition_out:

type: wipe

duration: 5s

slide_player:

mc_reset_complete.1: expire_slide

mc_reset_complete.2: base

force:

Single value, type: boolean (true/false). Default: false

Index of config sections 1804

Mission Pinball Framework Documentation, Version

Forces this slide to be shown, even if it’s not the highest priority. Note that if you add or remove a slide
and the priority list is recalculated, whichever slide is the highest priority will be shown. This force:
option is sort of a one-time thing. Really you should use priorities to control which slides are shown.

priority:

Single value, type: int_or_token. Defaults to empty.

An adjustment to the priority of the slide that will be shown.

In MPF, all slides have a priority. Only one slide is show on a display at a time, and the slide with the
highest priority is automatically shown. If that slide is removed, the next-highest priority slide is
shown.

If you have a slide_player: section in a mode-based config file, then slides shown will automatically
have the priority of the mode. (slide_player: sections from your machine-wide config file use priority
0.) However you can adjust the priority of a slide (up or down) by adding a priority: setting with a
positive or negative value.

If a slide is being shown as part of a show, the slide will have the priority set to whatever the priority
of the show is (which itself is also the priority of the mode unless you adjust it)

show:

Single value, type: boolean (true/false). Default: true

Specifies whether this slide should be shown. (It will only be shown if it’s the highest priority slide for
that display.) If you set show: false, then the slide will be created and added to the display’s
collection of slides, but it won’t be shown.

Note that if you add or remove a slide and the priority list is recalculated, whichever slide is the
highest priority will be shown. This show: option is sort of a one-time thing. Really you should use
priorities to control which slides are shown.

slide:

Single value, type: string. Defaults to empty.

You can specify the slide name here (instead of as key for the complete player). There are reasons to
use this but you won’t need it in most cases.

target:

Single value, type: string. Defaults to empty.

Specifies the display target this slide will be shown on. If you do not specify a target, then the slide
will be shown on the default display.

In MPF, display targets are the names of the displays themselves. However there is also a slide_frame
widget (literally a widget which you add to a slide which holds other slides, kind of line
picture-in-picture). When you add a slide_frame to a slide, you give it a name, and that name is added
to the list of valid targets.

Index of config sections 1805

Mission Pinball Framework Documentation, Version

So really the target: here is either the name of a display, or the name of a slide_frmae where you
want this slide to be displayed.

tokens:

One or more sub-entries. Each in the format of string : string

Todo: Help us to write it

transition:

Unknown type. See description below.

Note that you can also configure a transition when the slide is defined in the slides: section of your
config if you want to use the same transition every time for a slide and don’t want to always have to
define it here.

If you specify a transition in both places, the transition in the slide_player or show will take
precedence.

transition_out:

Unknown type. See description below.

Note that you can add a transition out to the slide player when a slide is shown, and it will be
“attached” to the slide and used when that slide is removed (either with the slide player or when a
new slide is created with a higher priority than it).

slides:

base:

widgets:

- type: text

text: BASE SLIDE

color: ff0000

font_size: 100

top_slide:

widgets:

- type: text

text: TOP SLIDE

color: purple

y: 66%

slide_player:

mc_reset_complete.1: top_slide

mc_reset_complete.2: base

mc_reset_complete.3:

top_slide:

action: remove

transition:

type: fade

duration: 3s

Index of config sections 1806

Mission Pinball Framework Documentation, Version

Or you can specify a transition out when you remove the slide (with action: remove).

There can only be one transition between slides, so if an outgoing slide has a transition out set, and an
incoming slide has a transition set, then the incoming transition will take precedence.

widgets:

Unknown type. See description below.

Todo: Help us to write it

Related How To guides

Todo: Help us to write it

slides:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The slides: section of your config is where you pre-define “named” slides that you can then use later
in shows and the slide_player section of a config file. See the How to Show a Slide on a Display guide
for details on this. You can test slides and widgets interactively using Interactive MC (iMC) .

Slide names are universal throughout MPF, so if you create two slides with the same name—even in
different modes—one of them will overwrite the other and things will be confusing, so don’t do that.

See the How to create slides documentation for full details on how to create slides. (You should
definitely “learn” about slides there. The settings here are mostly used for reference later.)

There are several different ways you can enter slides. In all cases, you’ll have a slides: section of
your config, and then under that, you’ll have sub-entries which are slide names. But what is entered
under each slide name varies.

Option 1: Slide with a widget

If you want to define a slide that only has a single widget, you can just add the widget’s properties
under the slide name. In the example below, we’re defining two slides, one called my_slide_1 and the
other called my_slide_2, and they each only have a single widget.

slides:

my_slide_1:

type: text

text: THIS IS MY SLIDE

my_slide_2:

(continues on next page)

Index of config sections 1807

Mission Pinball Framework Documentation, Version

(continued from previous page)

type: text

text: THIS IS ANOTHER SLIDE

color: lime

font_size: 25

Option 2: List of widgets

Of course many slides you’ll define will have more than one widget. To add multiple widgets to a slide,
just enter them like you entered a single widget, but use a dash (and a space) to dictate where a new
widget starts, like this:

slides:

my_slide_1:

- type: text

text: THIS IS MY SLIDE

- type: image

image: johnny_5

my_slide_2:

- type: text

text: THIS IS ANOTHER SLIDE

- type: text

y: 20%

text: IT HAS MORE THAN 1 WIDGET

- type: ellipse

color: red

width: 200

height: 100

Option 3: Widgets under “widgets:” section

In addition to widgets, slides have other options (as described below), and sometimes you might want
to define a slide that has widgets and slide settings. To do that, you need to move your widgets
definition into a sub-section called “widgets:”, and then you can add the other slide settings under the
slide along with the widgets.

Here’s an example. Note that the slide with multiple widgets is using the dash in the widgets: section
to separate the individual widgets.

slides:

my_slide_1:

background_color: red

widgets:

type: text

text: THIS IS MY SLIDE

my_slide_2:

widgets:

- type: text

text: THIS IS ANOTHER SLIDE

- type: text

y: 20%

text: IT HAS MORE THAN 1 WIDGET

(continues on next page)

Index of config sections 1808

Mission Pinball Framework Documentation, Version

(continued from previous page)

- type: ellipse

color: red

width: 200

height: 100

expire: 2s

transition:

type: move_in

direction: right

You can mix-and-match the three options for entering widgets as needed within the same slides:
section of your config.

Creating a blank slide

If you want to create a blank slide (perhaps an empty canvas that you’ll populate via the widget player
later?), then you need to tell the slides: section that you have an empty list. In YAML, that’s done with
a [and] next to each other (which is confusing because it looks like a rectangle, but it’s not, like this:
[].

You can use this format to create a blank slide with no options:

slides:

my_blank_slide: []

Or you can use it to create a blank slide with options, but no widgets, like this:

slides:

my_blank_slide:

background_color: red

widgets: []

Settings

The following sections provide additional options for your slide which you can use if you move the
widgets into their own widgets: section. If you just include the widgets as top-level entries (like
Options 1 and 2 above), then the default values for each of these settings below will be used.

background_color:

Single value, type: color (color name, hex, or list of values 0 -255). Default: 000000ff

The background color of the slide. Details on how to enter color values are here.

debug:

Single value, type: boolean (true/false). Default: false

Set to true/yes if you want to add addition debug information about this slide to the log. (Note this
requires a verbose log to see.)

Index of config sections 1809

Mission Pinball Framework Documentation, Version

expire:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

Sets an expiration time which will automatically remove this slide. If it’s showing when it’s removed,
the next-highest priority active slide will be shown in its place.

Note that you can also configure expiration when the slide is shown (in either a show or via the
slide_player), so you don’t need to define an expire setting as part of the slide definition unless you
want that expire time to be used every time the slide is shown.

If you specify an expire time in both places, the expire time in the slide_player or show will take
precedence.

opacity:

Single value, type: number (will be converted to floating point). Default: 1.0

Sets the overall opacity of the slide. A value of 1.0 is fully opaque. A value of .5 means the slide is 50%
transparent, and a value of 0 means the slide will be invisible and you’ll probably be confused about
why it’s not showing up.

transition_out:

Unknown type. See description below.

Todo: Help us to write it

Note that you can also configure a transition when the slide is shown (in either a show or via the
slide_player), so you don’t need to define a transition as part of the slide definition unless you want
that transition to be used every time the slide is shown.

If you specify a transition in both places, the transition in the slide_player or show will take
precedence.

Related How To guides

Todo: Help us to write it

spinners:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Spinner devices provide accruals for switches that are hit in rapid succession, and post events based
on timeouts after switch hits.

Index of config sections 1810

Mission Pinball Framework Documentation, Version

spinners:

basic_spinner:

switch: s_orbit_spinner

active_ms: 500

dual_spinner:

switches: s_top_loop_left, s_top_loop_right

labels: left, right

active_ms: 1200

idle_ms: 2400

A spinner becomes “active” when a switch: or switches: is hit, and remains active as long as switch
hits continue. The time specified by active_ms: determines how long the spinner will wait after the
last hit before it is no longer active.

If an idle_ms: time is specified, the spinner will move from “active” to “inactive” for that duration,
before finally settling on “idle”. If a switch is hit while idle, the spinner will become active again. If no
idle_ms: time is specified, the spinner will go directly from active to idle.

The basic flow:

1. Spinner sits in idle state

2. A spinner switch is hit

i. The spinner becomes “active” and sets a timeout for active_ms: duration

ii. The spinner posts spinner_<name>_active event

iii. The spinner posts spinner_<name>_hit event

3. Additional switch hits occur

i. The spinner resets the timeout for another active_ms: duration

ii. The spinner posts a spinner_<name>_hit event for each hit

4. Switch hits stop and the active delay timer expires

i. The spinner switches to “inactive” state

ii. The spinner posts spinner_<name>_inactive event

iii. (Optional) If idle_ms: is defined, the spinner sets a timeout for idle_ms duration

5. (Optional) No switch hits occur and the idle delay timer expires

i. The spinner posts spinner_<name>_idle event

ii. The spinner switches to “idle” state

Optional settings

The following sections are optional in the spinners: section of your config. (If you don’t include them,
the default will be used).

active_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 1000ms

Index of config sections 1811

Mission Pinball Framework Documentation, Version

How long the spinner should stay active after the last switch hit. The hit count resets each time the
spinner becomes active, so this value determines when one group of spins ends and the next begins.

disable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, disable this spinner. If a spinner is disabled, then hits to it have no
effect.

enable_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, enable this spinner. If a spinner is not enabled, then hits to it have no
effect.

idle_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

How long the spinner should stay inactive before going idle. This time is counted after the active_ms:
has expired, and is useful for displaying slides or widgets for a while after switch hits stop.

labels:

List of one (or more) values, each is a type: string. Defaults to empty.

A list of labels to apply to the switches in the spinner. If used, the number of labels should equal the
number of switches.

When a spinner switch is hit and labels: are defined, additional events will be posted with
spinner_<name>_<label>_active and spinner_<name>_<label>_hit. This allows the game to trigger
different behavior based on which spinner switch is hit first or spins more times.

playfield:

Single value, type: string name of a playfields device. Default: playfield

The name of the playfield that this spinner is on. The default setting is “playfield”, so you only have to
change this value if you have more than one playfield and you’re managing them separately.

Index of config sections 1812

Mission Pinball Framework Documentation, Version

reset_when_inactive:

Single value, type: boolean (true/false). Default: true

When true, the spinners hit count will reset when the spinner goes inactive (after the active_ms:
expires).

When false, the spinner’s hit count will reset when the spinner goes idle (after the idle_ms: expires)

This value has no effect if idle_ms: is not set.

switch:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

The name of the switch (or a list of switches) for this spinner. You can use multiple switches if the
playfield has a series of spinners that work together (for example at both ends of a horseshoe loop).

switches:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

This setting is the same as the switch: setting above. You can technically enter a single switch or a
list of switches in either the switch: setting or the switches: setting, but we include both since it was
confusing to be able to enter multiple switches for a singlular “switch” setting and vice versa.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

See the documentation on the debug setting for details.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

Index of config sections 1813

Mission Pinball Framework Documentation, Version

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Todo: Help us to write it

Related How To guides

Todo: Help us to write it

smart_virtual:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The smart_virtual: section of your config is where you configure the smart virtual platform.

Optional settings

The following sections are optional in the smart_virtual: section of your config. (If you don’t include
them, the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

File level for the console log for this platform.

simulate_manual_plunger:

Single value, type: boolean (true/false). Default: false

When simulate_manual_plunger is set to True the smart_virtual platform will automatically plunge
balls in devices with mechanical eject after simulate_manual_plunger_timeout ms.

Index of config sections 1814

Mission Pinball Framework Documentation, Version

simulate_manual_plunger_timeout:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 10s

When simulate_manual_plunger is set to True the smart_virtual platform will automatically plunge
balls in devices with mechanical eject after simulate_manual_plunger_timeout ms.

Related How To guides

∙ The “Smart Virtual” Platform

smartmatrix:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The smartmatrix: section of your config is where you configure RGB DMD devices.

This is an example:

#config_version=5

hardware:

rgb_dmd: smartmatrix

smartmatrix:

my_smartmatrix:

port: com4

baud: 4000000

displays:

dmd:

width: 128

height: 32

rgb_dmds:

my_smartmatrix:

hardware_brightness: .5

Required settings

The following sections are required in the smartmatrix: section of your config:

baud:

Single value, type: integer. Defaults to empty.

Baud rate of your serial port. Depends on the smartmatrix firmware.

Index of config sections 1815

Mission Pinball Framework Documentation, Version

port:

Single value, type: string. Defaults to empty.

Name of the serial port of your smartmatrix device. This will be comX on Windows. On Linux and Mac
it depends on the usb-serial chip (usually /dev/ttyUSBX on linux or /dev/tty.usbmodemYYY on Mac).

Optional settings

The following sections are optional in the smartmatrix: section of your config. (If you don’t include
them, the default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Todo: Help us to write it

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Todo: Help us to write it

old_cookie:

Single value, type: boolean (true/false). Default: false

Set to true to use the old cookie. Will use the new cookie by default.

Related How To guides

∙ How to configure a “SmartMatrix” RGB LED DMD

snux:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The snux: section of your config is where you configure the snux platform.

This is an example:

Index of config sections 1816

Mission Pinball Framework Documentation, Version

hardware:

platform: virtual # use your platform here

driverboards: wpc

coils: snux

switches: snux

system11:

ac_relay_delay_ms: 75

ac_relay_driver: c_ac_relay

snux:

diag_led_driver: c_diag_led_driver

coils:

c_diag_led_driver:

number: c24

default_hold_power: 1.0

c_flipper_enable_driver:

number: c23

default_hold_power: 1.0

c_ac_relay:

number: c25

default_hold_power: 1.0

c_side_a1:

number: c11a

c_side_a2:

number: c12a

default_hold_power: 0.5

c_side_c1:

number: c11c

c_side_c2:

number: c12c

default_hold_power: 0.5

c_flipper_left_main:

number: FLLM

c_flipper_left_hold:

number: FLLH

allow_enable: true

switches:

s_flipper_left:

number: sf01

s_test:

number: s77

flippers:

f_test_single:

main_coil: c_flipper_left_main

hold_coil: c_flipper_left_hold

activation_switch: s_flipper_left

Required settings

The following sections are required in the snux: section of your config:

Index of config sections 1817

Mission Pinball Framework Documentation, Version

diag_led_driver:

Single value, type: string name of a coils device. Defaults to empty.

The coil to use to drive the diag LED on the snux board. This is usually driver 23 on the Snux board.

Optional settings

The following sections are optional in the snux: section of your config. (If you don’t include them, the
default will be used).

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

Related How To guides

WPC Platform to connect to the SNUX board .

sound_ducking:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The ducking: setting in your sounds: section of your config is where you configure ducking settings
for a sound.

Required settings

The following sections are required in the sound_ducking: section of your config:

target:

List of one (or more) events.

The list of track names to apply the ducking to when the sound is played. This most commonly
contains the name of the track that music is played on.

Index of config sections 1818

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the sound_ducking: section of your config. (If you don’t include
them, the default will be used).

attack:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 10ms

The duration of the period over which the ducking starts until it reaches its maximum attenuation
(attack stage). This value is specified as a time string.

attenuation:

Single value, type: gain setting (-inf, db, or float between 0.0 and 1.0). Default: 1.0

The attenuation (gain) to apply to the target track while ducking. attenuation: controls how quiet to
make the target track while the sound is playing.

delay:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The duration to delay after the sound starts playing before ducking starts. This value is specified as a
time string.

release:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 10ms

The duration of the period over which the ducking goes from its maximum attenuation until the
ducking ends (release stage). This value is specified as a time string.

release_point:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The point relative to the end of the sound at which to start the returning the attenuation back to
normal (release stage). A value of 0.5 seconds means to begin to release the ducking 0.5 seconds prior
to the end of the sound. This value is specified as a time string.

Related How To guides

∙ Ducking

Index of config sections 1819

Mission Pinball Framework Documentation, Version

sound_loop_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES
Valid in shows YES

Note: This section can also be used in a show file in the sound_loops: section of a step.

The sound_loop_player: section of your config is where you specify actions to perform on sound loop
sets when MPF events are received.

Examples:

sound_loop_player:

play_basic_beat:

loops:

action: play

sound_loop_set: basic_beat

timing: loop_end

add_hi_hats:

loops:

action: play_layer

layer: 1

timing: loop_end

stop_hi_hats:

loops:

action: stop_looping_layer

layer: 1

add_snare:

loops:

action: play_layer

fade_in: 2s

layer: 2

timing: now

add_claps:

loops:

action: play_layer

layer: 3

timing: loop_end

Additional information may be found in the sound_player documentation.

Express configuration

The sound_loop_player does not support an express configuration.

Required settings

The following sections are required in the sound_loop_player: section of your config:

Index of config sections 1820

Mission Pinball Framework Documentation, Version

track:

Single value, type: string.

This is the name of the track on which to perform the specified action. This must be an existing sound
loop track. (You configure tracks and track names in the sound_system: section of your machine
config files.)

Optional settings

The following sections are optional in the sound_loop_player: section of your config. (If you don’t
include them, the default will be used).

action:

Single value, type: one of the following options: play, stop.

The action: setting controls what action will be performed on the specified sound loop set. The other
settings for each action vary (additional details may be found below). Options for action: are:

∙ play - The specified sound loop set will be played. Additional settings control whether the
playback will begin immediately or after the currently playing loop set reaches the end of the
master sound. Will cross-fade with the currently playing sound loop set if a fade_in setting is
used.

∙ stop - The currently playing sound loop set will be stopped. Will fade out before stopping if a
fade_out setting is used.

∙ stop_looping - Looping will be cancelled for the currently playing sound loop set (the sound loop
set will continue to play to the end of the current loop).

∙ play_layer - Plays the sound on the specified layer in the currently playing loop set. Additional
settings control whether the layer will begin immediately or will wait until after the currently
playing loop set reaches the end of the sound. Will fade in if a fade_in setting is used.

∙ stop_layer - Stops the sound on the specified layer in the currently playing loop set. Will fade
out before stopping if a fade_out setting is used.

∙ stop_looping - Looping will be cancelled for the sound on the specified layer in the currently
playing sound loop set (the sound on the layer will continue to play to the end of the current
loop).

Settings for play action:

Only the sound_loop_set: setting is required for the play action.

sound_loop_set:

Single value, type: string.

This is the name of the sound_loop_set asset used to perform the specified action. This must be the
name an existing sound_loop_set specified in the sound_loop_sets: section of your machine config
files. This setting is required for the play action.

Index of config sections 1821

Mission Pinball Framework Documentation, Version

timing:

Single value, type: one of the following options: now, loop_end, next_beat_interval,
next_time_interval. Default: loop_end

The timing: setting determines when the specified sound loop set should be played. If the sound loop
track is not currently playing any sound, this value is ignored and the sound loop is played
immediately. Options for timing: are:

∙ now - Play the specified sound loop set immediately, even if another sound loop is currently
playing. If the fade_in: parameter has a non-zero value, the sound loops will be cross-faded over
the fade_in: time interval.

∙ loop_end - Play the specified sound loop set as soon as the currently playing sound loop reaches
the end of the loop. This will be a gapless switch. The fade_in: setting is ignored when loop_end
is used.

∙ next_beat_interval - Switch to the specified sound loop set on a beat interval of the currently
playing sound loop. In order for this to work well the tempo: setting must be accurately set in all
sound_loop_set assets. This setting works in conjunction with the interval: setting to determine
the next beat interval to use when switching sound loops. For example, a setting of 1 indicates
the switch can occur on any beat while a setting of 4 indicates the sound loops may only be
switched every 4 beats (counted from the beginning of the currently playing sound loop set).
This is useful to ensure sound loop sets are switched only at musically useful times.

∙ next_time_interval - Switch to the specified sound loop set on a time interval of the currently
playing sound loop. This setting works in conjunction with the interval: setting to determine
the next time interval to use when switching sound loops. For example, a setting of 1 indicates
the switch can occur on any second boundary while a setting of 2.5 indicates the sound loops
may only be switched every 2.5 seconds (counted from the beginning of the currently playing
sound loop set).

interval:

Single value, type: float. Default: 1

Used in conjunction with the timing: next_beat_interval and timing: next_time_interval setting
values, this setting determines the next beat or time interval to use when switching sound loop sets.

synchronize:

Single value, type: boolean (Yes/No or True/False). Default: False

Indicates whether or not the sound loop will be synchronized in time with the currently playing sound
loop. This setting only applies when using the timing: now setting value. It most useful to smoothly
cross-fade between different variations of the same sound loop.

volume:

Single value, type: gain setting (Instructions for entering gain values) -inf, db, or float between 0.0
and 1.0. Default: None (Uses the volume setting of the sound_loop_set asset specified in the
sound_loop_set: setting.

Index of config sections 1822

Mission Pinball Framework Documentation, Version

The volume of the specified sound loop master sound (overrides the setting in the sound asset
section). This value only controls the master sound and not any layers defined in the sound loop set.
As with all volume parameters in MPF, this item can be represented as a number between 0.0 and 1.0
(1.0 is max volume, 0.0 is off, 0.9 is 90%, etc.) It also can be represented as a decibel string from -inf
to 0.0 db (ex: -3.0 db).

fade_in:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade in the sound loop set when it is played (when cross-fading
between sound loops).

fade_out:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade out the sound loop set when it is stopped. This value is not
applied when the sound stops on its own by reaching the end of the sound. It only comes into play
when the sound is actively stopped by an event. A fade out sounds much more professional than an
abrupt cutoff of a sound.

start_at:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The position in the sound loop file (in seconds) to start playback of the sound loop when it is played.
When the sound loop is looped it will loop back to the beginning of the sound file.

events_when_played:

List of one (or more) values, each is a type: string. Default: use_sound_loop_setting

A list of one or more names of events that MPF will post when this sound loop set is played. Enter the
list in the MPF config list format. These events are posted exactly as they’re entered. When set to
use_sound_loop_setting, the events_when_played: setting value specified in the sound loop set will be
used.

events_when_stopped:

List of one (or more) values, each is a type: string. Default: use_sound_loop_setting

A list of one or more names of events that MPF will post when this sound loop set stops playing. Enter
the list in the MPF config list format. These events are posted exactly as they’re entered. When set to
use_sound_loop_setting, the events_when_stopped: setting value specified in the sound loop set will be
used.

Index of config sections 1823

Mission Pinball Framework Documentation, Version

events_when_looping:

List of one (or more) values, each is a type: string. Default: use_sound_loop_setting

A list of one or more names of events that MPF will post when this sound loop set loops back to the
beginning while playing. Enter the list in the MPF config list format. These events are posted exactly
as they’re entered. When set to use_sound_loop_setting, the looping: setting value specified in the
sound loop set will be used.

Settings for stop action:

No settings are required for the stop action.

fade_out:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade out the sound loop set when it is stopped. This value is not
applied when the sound stops on its own by reaching the end of the sound. It only comes into play
when the sound is actively stopped by an event. A fade out sounds much more professional than an
abrupt cutoff of a sound.

Settings for stop_looping action:

There are no settings available for the stop_looping action.

Settings for jump_to action:

The time: setting is required for the jump_to action.

time:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The position in the sound loop file (in seconds) to immediately jump to during playback of the current
sound loop. When the sound loop reaches the end of the sound, it will loop back to the beginning of
the sound file.

Settings for play_layer action:

The layer: setting is required for the play_layer action. This action has no effect if there is no sound
loop set currently playing on the specified track.

layer:

Single value, type: integer.

An integer value that specifies which layer number of the currently playing sound loop set should be
played. Layers are numbered beginning with 1.

Index of config sections 1824

Mission Pinball Framework Documentation, Version

timing:

Single value, type: one of the following options: now, loop_end. Default: loop_end

The timing: setting determines when the specified layer should be played. Layers are always played
in synchronized time with the master sound in the currently playing sound loop set. Options for
timing: are:

∙ now - Play the specified layer immediately. If the fade_in: parameter has a non-zero value, the
layer will faded in over the fade_in: time interval.

∙ loop_end - Play the specified layer as soon as the currently playing sound loop reaches the end of
the loop. If the fade_in: parameter has a non-zero value, the layer will faded in over the
fade_in: time interval.

volume:

Single value, type: gain setting (Instructions for entering gain values) -inf, db, or float between 0.0
and 1.0. Default: None (uses the volume setting of the sound asset specified in the layer sound:
setting.

The volume of the specified layer sound (overrides the setting in the sound asset section). As with all
volume parameters in MPF, this item can be represented as a number between 0.0 and 1.0 (1.0 is max
volume, 0.0 is off, 0.9 is 90%, etc.) It also can be represented as a decibel string from -inf to 0.0 db
(ex: -3.0 db).

fade_in:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade in the sound loop set layer when it is played.

Settings for stop_layer action:

The layer: setting is required for the stop_layer action. This action has no effect if there is no sound
loop set currently playing on the specified track or if the specified layer is not currently playing.

layer:

Single value, type: integer.

An integer value that specifies which layer number of the currently playing sound loop set should be
stopped. Layers are numbered beginning with 1.

fade_out:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade out the sound loop set layer when it is stopped.

Index of config sections 1825

Mission Pinball Framework Documentation, Version

Settings for stop_looping_layer action:

The layer: setting is required for the stop_looping_layer action. This action has no effect if there is no
sound loop set currently playing on the specified track or if the specified layer is not currently playing.

layer:

Single value, type: integer.

An integer value that specifies which layer number of the currently playing sound loop set should be
stopped when the sound loop set master sound reaches the end. Layers are numbered beginning with
1.

sound_loop_sets:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The sound_loop_sets: section of your config is where you pre-define “named” sound loop sets for
playback in a sound loop audio track using sound_loop_player section of a config file.

Sound loop sets are special groupings of existing sound assets (See the sounds: reference page for
more details on sound assets.)

Example 1: Simple Sound Loop Set

If you want to define a sound loop set that is made up of only a single sound, you can just add the
sound name to the sound loop set. In the example below, we’re defining a sound loop set called
basic_beat that references the sound asset named kick. This is the simplest sound loop set definition
you can have. The volume of the kick sound will be taken from the sound asset definition.

sound_loop_sets:

basic_beat:

sound: kick

Option 2: Sound Loop Set With Multiple Layers

When specifying multiple layers use a dash (and a space) to dictate where a new layer starts, like this:

sound_loop_sets:

basic_beat:

sound: kick

volume: 0.5

tempo: 130.0

layers:

- sound: hihat

volume: 0.7

(continues on next page)

Index of config sections 1826

Mission Pinball Framework Documentation, Version

(continued from previous page)

initial_state: stop

- sound: snare

volume: 0.6

initial_state: stop

- sound: clap

volume: 0.45

initial_state: stop

events_when_played: basic_beat_played

events_when_stopped: basic_beat_stopped

events_when_looping: basic_beat_looped

fade_out: 1s

basic_beat2:

sound: kick2

volume: 0.5

tempo: 130.0

layers:

- sound: hihat

volume: 0.7

- sound: snare

volume: 0.6

- sound: clap

volume: 0.4

initial_state: stop

- sound: bass_synth

volume: 0.5

initial_state: play

fade_out: 1s

Required settings

The following sections are required for each named sound loop set in your config:

sound:

Single value, type: string.

The name of the sound asset that will be used as the master sound in the sound loop set. This must
refer to an existing sound asset or an error will be thrown during initialization. The sound asset also
must be stored in memory (and not streaming). Do not include the sound file extension here, only the
sound asset name.

Optional settings

The following sections are optional in the sound_loop_sets: section of your config. (If you don’t
include them, the default will be used).

volume:

Single value, type: gain setting (Instructions for entering gain values) -inf, db, or float between 0.0
and 1.0. Default: Uses the volume setting of the sound asset specified in the sound: setting.

Index of config sections 1827

Mission Pinball Framework Documentation, Version

The volume of the specified sound (overrides the setting in the sound asset section). This value only
controls the master sound and not any layers defined in the sound loop set. As with all volume
parameters in MPF, this item can be represented as a number between 0.0 and 1.0 (1.0 is max volume,
0.0 is off, 0.9 is 90%, etc.) It also can be represented as a decibel string from -inf to 0.0 db (ex: -3.0
db).

events_when_played:

List of one (or more) values, each is a type: string. Default: None

A list of one or more names of events that MPF will post when this sound loop set is played. Enter the
list in the MPF config list format. These events are posted exactly as they’re entered.

events_when_stopped:

List of one (or more) values, each is a type: string. Default: None

A list of one or more names of events that MPF will post when this sound loop set stops playing. Enter
the list in the MPF config list format. These events are posted exactly as they’re entered.

events_when_looping:

List of one (or more) values, each is a type: string. Default: None

A list of one or more names of events that MPF will post when this sound loop set loops back to the
beginning while playing. Enter the list in the MPF config list format. These events are posted exactly
as they’re entered.

fade_in:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade in the sound loop set when it is played.

fade_out:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade out the sound loop set when it is stopped. This value is not
applied when the sound stops on its own by reaching the end of the sound. It only comes into play
when the sound is actively stopped by an event. A fade out sounds much more professional than an
abrupt cutoff of a sound.

tempo:

Single value, type: float. Default: 60.0

The tempo of the sound loop set, expressed in beats per minute. This setting is used to calculate the
timing of beat intervals when switching between sound loops. This setting only needed when using the
timing: next_beat_interval setting in the (sound_loop_player).

Index of config sections 1828

Mission Pinball Framework Documentation, Version

layers:

The layers: section controls the additional sound layers for the sound loop set. It contains the
following nested sub-settings:

Required settings

The following sections are required in the layers: section of your config:

sound:

Single value, type: string.

The name of the sound asset that will be used in the sound loop set layer. This must refer to an existing
sound asset or an error will be thrown during initialization. The sound asset also must be stored in
memory (and not streaming). Do not include the sound file extension here, only the sound asset name.

Optional settings

The following sections are optional in the layers: section of your config. (If you don’t include them,
the default will be used).

volume:

Single value, type: gain setting (Instructions for entering gain values) -inf, db, or float between 0.0
and 1.0. Default: Uses the volume setting of the sound asset specified in the layer sound: setting.

The volume of the specified sound in the layer (overrides the setting in the sound asset section). As
with all volume parameters in MPF, this item can be represented as a number between 0.0 and 1.0
(1.0 is max volume, 0.0 is off, 0.9 is 90%, etc.) It also can be represented as a decibel string from -inf
to 0.0 db (ex: -3.0 db).

initial_state:

Single value, type: one of the following options: play, stop. Default: play

The initial_state: of a sound loop set layer determines the initial play state for the layer when the
sound loop set is played. Options for initial_state: are:

∙ play - The layer will be played whenever the sound loop set begins playback.

∙ stop - The layer will be stopped whenever the sound loop set begins playback.

sound_marker:

Config file section

Valid in machine config files NO
Valid in mode config files NO

Index of config sections 1829

Mission Pinball Framework Documentation, Version

The markers: setting in your sounds: section of your config is where you configure markers which
trigger events at certain points in playback.

Required settings

The following sections are required in the sound_marker: section of your config:

events:

List of one (or more) events.

A list of one or more names of events that MPF will post when this marker is reached during sound
playback. Enter the list in the MPF config list format. These events are posted exactly as they’re
entered.

time:

Single value, type: time string (secs) (Instructions for entering time strings).

The marker time (in seconds) relative to the beginning of the sound file.

Related How To guides

∙ Sounds, Music & Audio

sound_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the sounds: section of a step.

The sound_player: section of your config is where you specify actions to perform on sounds when MPF
events are received.

This is an example:

sound_player:

mode_attract_started:

song_01:

action: play

loops: -1

mode_attract_stopped:

song_01:

action: stop

slingshot_hit:

(continues on next page)

Index of config sections 1830

Mission Pinball Framework Documentation, Version

(continued from previous page)

zap:

block: true # "blocks" this event from being passed to sound player sections in lower-priority␣

→˓modes

Additional information may be found in the sound_player documentation.

Express configuration

When referencing sounds in the sound player, there is an alternative syntax to specify a sound when
you don’t wish to provide any additional settings. This shortcut notation is known as the “express
configuration” and for the sound player it is simply the name of the sound asset. It can be used in both
configuration files and show steps. In the config file example above, play_sound_slingshot:
slingshot_01 is an example using the express configuration (sound name only).

Sound behavior upon mode (or show) stop

When the mode or show stops that contains a sound_player, all sounds started in that mode or show
will continue to play and stop automatically when they reach their end. Sounds that are looping will
have their looping stopped so the sound will no longer continue to loop and will stop when they reach
their end. Sounds that are pending playback and are queued will be canceled (removed from the
queue) and will not be played. If you need a sound to be stopped immediately when a mode or show
ends, you will need to add an entry in the sound_player to trigger a stop action based on the mode or
show stop event.

Optional settings

The following sections are optional in the sound_player: section of your config. (If you don’t include
them, the default will be used).

about_to_finish_time:

Single value, type: time string (secs) (Instructions for entering time strings). Default: -1

Todo: Help us to write it

action:

Single value, type: one of the following options: play, stop, stop_looping, load, unload. Default: play

The action: setting controls what action will be performed on the specified sound. Options for
action: are:

∙ play - The specified sound will be played. Any optional parameter values will override the
sound’s settings.

Index of config sections 1831

Mission Pinball Framework Documentation, Version

∙ stop - All currently playing and queued instances of the specified sound will stopped/canceled.
Any optional parameter values will be ignored as the stop action takes no parameters. There is
currently no way to stop specific instances of a particular sound while leaving others playing, but
that is on the list to be implemented in a future version.

∙ stop_looping - Looping will be canceled for all currently playing instances of the specified sound
(the sound will continue to play to the end of the current loop). In addition, any queued instances
of the sound awaiting playback will be removed/canceled.

∙ load - Loads the specified sound or sound pool from its source file into memory to prepare it to
be played. The request is ignored if the sound is already loaded.

∙ unload - Unloads the specified sound or sound pool from memory. All instances of the sound or
sound pool will be immediately stopped. The request is ignored if the sound is not currently
loaded.

block:

Single value, type: boolean (true/false). Default: false

When set to true, the triggering event is blocked from being passed to other sound_player sections in
lower priority modes. This is useful if you have a switch in a base mode that plays a sound (like a jet
bumper), but then in a special mode (like super jets) you want that switch to play a different sound but
you don’t also want the base mode to play the sound configured there (we don’t want two
simultaneous sounds for the jet bumper, just one).

##! mode: mode1

sound_player:

sw_jet_bumper_active:

super_jet_bumper_sound:

block: true

There is also a shorthand way (express config format):

##! mode: mode1

sound_player:

sw_jet_bumper_active: super_jet_bumper_sound|block

delay:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

When the triggering event occurs, delay for a certain amount of time before playing the sound.

events_when_about_to_finish:

List of one (or more) events. Those will be posted by the device. Default: use_sound_setting

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

Index of config sections 1832

Mission Pinball Framework Documentation, Version

events_when_looping:

List of one (or more) events. Those will be posted by the device. Default: use_sound_setting

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

events_when_played:

List of one (or more) events. Those will be posted by the device. Default: use_sound_setting

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

events_when_stopped:

List of one (or more) events. Those will be posted by the device. Default: use_sound_setting

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

fade_in:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

fade_out:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

key:

Single value, type: string. Default: use_sound_setting

Used to reference this sound entry when stopping/pausing/resuming it.

loops:

Single value, type: int_or_token. Defaults to empty.

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

Index of config sections 1833

Mission Pinball Framework Documentation, Version

max_queue_time:

Single value, type: time string (secs) (Instructions for entering time strings). Default: -1

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

mode_end_action:

Single value, type: one of the following options: stop, stop_looping, use_sound_setting. Default:
use_sound_setting

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

pan:

Single value, type: float_or_token. Defaults to empty.

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

priority:

Single value, type: int_or_token. Defaults to empty.

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

start_at:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

track:

Single value, type: string. Defaults to empty.

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

volume:

Single value, type: gain setting (-inf, db, or float between 0.0 and 1.0). Defaults to empty.

Please refer to the sounds: documentation for details about this setting as it just overwrites the
setting in your sound.

Index of config sections 1834

Mission Pinball Framework Documentation, Version

Related How To guides

∙ Sounds, Music & Audio

sound_pools:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The sound_pools: section of your config is where you specify pools (or groupings) of sound assets in
your machine.

Creating a sounds pool allows you to reference a group of sound variations as if it were a single sound.
A sound pool name may be used anywhere a sound asset name may appear. Pools can be used for
random differences in a sound (such as slight variations of a slingshot sound) or for an ordered
sequence of sounds that will repeat. Another common use for sound pools is to play a random callout
from a defined list when triggered. (Sound pools are part of the MPF media controller and only
available if you’re using MPF-MC for your media controller.)

Here’s an example of a typical sound_pool configuration.

sound_pools:

drain_callout:

type: random_force_all

track: voice

sounds:

- drain_01

- drain_02

- drain_03

- drain_04

slingshot:

load: preload

type: random

track: sfx

sounds:

- slingshot_01|5

- slingshot_02|3

- slingshot_03|2

target_completion:

load: on_demand

type: sequence

track: sfx

sounds:

- target_completion_01

- target_completion_02

- target_completion_03

To create a sound pool, add a sub entry to the sound_pools: section of your config which will be the
name of that sound pool. The name must be unique among all sound pools and sound assets. In the
above example drain_callout:, slingshot: and target_completion: are each a sound pool name. Then
create one or more of the following settings for each sound pool:

Index of config sections 1835

Mission Pinball Framework Documentation, Version

Required settings

The following sections are required for each named sound pool in your config:

sounds:

The sounds: section contains an indented list of existing sound assets (one per line) that will be
contained in the sound pool. It is suggested you use block sequence notation for this list (begin each
line with a dash followed by a space - ``). Optionally, a number may be appended to the sound
asset name delimited by a pipe (``|) character. This optional number controls the relative weighting
for random item selection, or the number of times to play the sound before moving to the next sound
in the pool with a sequence pool. If no weight value is provided, a default value of 1 will be applied. In
the example above, the slingshot: random sound pool contains relative weighting values. The weights
sum to 10 for the three sounds so the slingshot_01 sound has a probability of being randomly selected
of 5 out of 10 (50%), slingshot_02 3/10 (30%), and slingshot_03 2/10 (20%).

Note: If you want to use a sound that has spaces in its name, the name of the sound must be in
quotes:

sound_pools:

drain_callout:

type: random_force_all

track: voice

sounds:

- drain_01

- drain_02

- "drain 03" # example of a sound with a space in its name using quotes

- drain_04

track:

Single value, type: string. Default: None

This is the name of the track this sound pool will play on. (You configure tracks and track names in the
sound_system: section of your machine config files.)

Optional settings

The following sections are optional for each named sound pool in your config. (If you don’t include
them, the default will be used).

load:

Single value, type: one of the following options: preload, on_demand. Default: on_demand

This controls the timing of when the sound assets in the sound pool will be loaded into memory (see
the documentation on (Managing Assets for an explanation of what loading is). Options for load: are:

∙ preload - The asset is loaded when MPF boots and stays in memory as long as MPF is running.

Index of config sections 1836

Mission Pinball Framework Documentation, Version

∙ on_demand - The asset is loaded “on demand” when it’s first called for. At this point, assets loaded
on demand stay in memory forever, but at some point we’ll change that so they can be unloaded
on demand too.

type:

Single value, type: one of the following options: sequence, random, random_force_next,
random_force_all. Default: sequence

The type: of sound pool dictates how the next sound in the pool will be selected when the sound pool
is referenced for playback. Options for type: are:

∙ sequence - Sounds are selected in the order in which they appear in the sounds: section. An
optional number/weight appended after each sound controls how many times the sound will be
played before the next one in the list is selected. The sequence of sounds will repeat once all
sounds have been played.

∙ random - Sounds are randomly selected from the list of sounds in the sounds: section of the sound
pool. The probability of selecting each sound in the list can be controlled by an optional numeric
weight value appended after each sound. This weight value is relative to all other sounds in the
list.

∙ random_force_next - Sounds are randomly selected from the list of sounds in the sounds: section
of the sound pool. This sound pool type ensures that the next sound selected will not be the same
as the previously selected sound (no back-to-back repeats of a single sound). The probability of
selecting each sound in the list can be controlled by an optional numeric weight value appended
after each sound. This weight value is relative to all other sounds in the list.

∙ random_force_all - Sounds are randomly selected from the list of sounds in the sounds: section
of the sound pool. This sound pool type ensures that all sounds in the list will be played once
before any sound will be repeated. The probability of selecting each sound in the list can be
controlled by an optional numeric weight value appended after each sound. This weight value is
relative to all other sounds in the list.

simultaneous_limit:

Single value, type: integer. Default: None

The numeric value indicating the maximum number of instances of this sound pool that may be played
at the same time (up to the limit of the track). Once the maximum number of instances has been
reached, the stealing_method setting determines the how additional requests to play the sound pool
will be managed. This setting is useful for sounds that can be triggered in rapid succession (such as
spinners and pop bumpers). Setting a limit will ensure a reasonable number of instances will be
played simultaneously and not overwhelm the audio mix. The default value of None indicates no limits
will be placed on the number of instances of the sound pool that may be played at once up to the limit
of the track.

Note: The sounds contained in a sound pool can also have their own simultaneous_limit setting
which can lead to some unexpected behavior when interacting with the simultaneous_limit setting in
the sound pool.

Index of config sections 1837

Mission Pinball Framework Documentation, Version

stealing_method:

Single value, type: one of the following options: oldest, newest, skip. Default: oldest

The stealing_method: of a sound pool determines the behavior of additional requests to play the sound
pool once the number of simultaneous instances of the sound has reached its simultaneous_limit limit.
This setting is ignored when simultaneous_limit is set to None. Options for stealing_method: are:

∙ oldest - Steal/stop the oldest playing instance of the sound and replace it with a new instance
(essentially restarts the oldest playing instance).

∙ newest - Steal/stop the newest playing instance of the sound and replace it with a new instance
(essentially restarts the newest playing instance).

∙ skip - Do not steal/stop any currently running instances of the sound. Simply skip playback of
the newly requested instance.

sound_system_tracks:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The tracks: settings in your sound_system: section of your config is where you configure which tracks
exist in your machine.

Optional settings

The following sections are optional in the sound_system_tracks: section of your config. (If you don’t
include them, the default will be used).

crossfade_time:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

Time to crossfade between to songs on your playlist.

The settings is specific to playlist audio tracks. It will ignored in other track types.

ducking:

Single value, type: sound_ducking.

Default ducking settings for this track. Those can be overwritten per sound. See ducking for details.

events_when_paused:

List of one (or more) events.

Index of config sections 1838

Mission Pinball Framework Documentation, Version

A list of one or more names of events that MPF will post when the track is paused. Enter the list in the
MPF config list format. These events are posted exactly as they’re entered.

events_when_played:

List of one (or more) events.

A list of one or more names of events that MPF will post when the track is played or resumed after
being stopped/paused. Enter the list in the MPF config list format. These events are posted exactly as
they’re entered.

events_when_resumed:

List of one (or more) events.

A list of one or more names of events that MPF will post when the track is resumed. Enter the list in
the MPF config list format. These events are posted exactly as they’re entered.

events_when_stopped:

List of one (or more) events.

A list of one or more names of events that MPF will post when the track is stopped. Enter the list in
the MPF config list format. These events are posted exactly as they’re entered.

max_layers:

Single value, type: integer. Default: 8

Maximum number of layers in your loop which can play in parallel.

The settings is specific to sound_loop audio tracks. It will ignored in other track types.

simultaneous_sounds:

Single value, type: integer. Default: 8

This sets the maximum number of simultaneous sounds that can be played on this track. The example
config file above shows the music and voice tracks with a max of 1 simultaneous sound playing, since
if you have two music clips or voice callouts playing at the same time, it will sound like gibberish. A
sound effects track, on the other hand, can probably have a few sounds playing at once. Note that MPF
gives you detailed control over what happens if a new sound wants to play when the max simultaneous
sounds are already playing on that track. Should the new sound break in and stop an existing sound?
Should it wait until the existing sound is done? How long should it wait? You can control all this on a
per sound basis (see the :doc:~sounds: </config/sounds>~ documentation for more information).

The settings is specific to standard audio tracks. It will ignored in other track types.

Index of config sections 1839

Mission Pinball Framework Documentation, Version

type:

Single value, type: one of the following options: standard, sound_loop, playlist. Default: standard

The track type: setting determines what type of audio track will be used. For more detailed

volume:

Single value, type: gain setting (-inf, db, or float between 0.0 and 1.0). Default: 0.5

This is the volume setting for this track (how loud will it be), as either a value between 0.0 and 1.0 or a
decibel value between -inf and 0.0 db. Note that each track’s volume will be combined with the overall
system volume. So if your MPF master volume is set to 0.8 (80%) and you have a track set to 0.5
(50%), sounds on that track will play at 40% overall volume (50% of 80%).

Related How To guides

∙ Sounds, Music & Audio

sound_system:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The sound_system: section of your machine config controls the general settings for the machine’s
sound system. (This section is part of the MPF media controller and only available if you’re using
MPF-MC for your media controller.)

Here’s an example of a typical sound configuration.

machine_vars:

master_volume:

initial_value: 0.8

sound_system:

buffer: 1024

channels: 1

enabled: true

frequency: 44100

tracks:

music:

type: standard

simultaneous_sounds: 1

volume: 0.5

voice:

type: standard

simultaneous_sounds: 1

volume: 0.7

sfx:

(continues on next page)

Index of config sections 1840

Mission Pinball Framework Documentation, Version

(continued from previous page)

type: standard

simultaneous_sounds: 8

volume: 0.4

Required settings

The following sections are required in the sound_system: section of your config:

tracks:

One or more sub-entries. Each in the format of string : sound_system_tracks

Every sound that’s played in MPF is played on a track. If you are familiar with an audio mixer a track
can be thought of as a mixer channel. Each track can have it’s own settings, and you can set volume
on a per-track basis. You can have up to 8 audio tracks in your MPF machine. The example above
shows three tracks, called music, voice, and sfx. The idea (in case it isn’t obvious) is that you play all
your music clips on the music track, voice callouts on the voice track, and the sound effects on the sfx
track. To create a track, add a sub entry to the tracks: section which will be the name of that track.
(So again, music:, voice: and sfx: in the example.)

Optional settings

The following sections are optional in the sound_system: section of your config. (If you don’t include
them, the default will be used).

buffer:

Single value, type: integer. Default: 2048

This is the size of your sound buffer. It must be a power of 2. The exact value you should use may take
some trial-and-error. A bigger buffer means that there’s less chance of skipping and dropout (lower
CPU usage), but it also means that sounds can take longer to play since the buffer has to fill first.
Some limited power platform have to run with a buffer of 4096 or 8192 or 16384, others at 512 or
256. So just play with it and see what works for you.

channels:

Single value, type: integer. Default: 1

The number of channels the sound system will support. 1 for mono, 2 for stereo. You’re probably
thinking, “aww man, I need stereo sound!” But almost no pinball machines do this since the speakers
in the backbox are 2 feet apart and they’re 4 feet away from the player’s ears. (Maybe if you’re going
to use headphones or put tweeters in the front of the machine?) Again, if you have a
resource-constrained system, then go for mono and make sure all your sound files are mono. If not,
meh, go ahead and use stereo.

Index of config sections 1841

Mission Pinball Framework Documentation, Version

enabled:

Single value, type: boolean (true/false). Default: true

Indicates whether or not the sound system will be enabled in your machine.

frequency:

Single value, type: integer. Default: 44100

How many sound samples per second you want. 44100 is so-called “CD quality” audio, though with
the sound systems in most pinball machines, if you cut it in half (to 22050) it still sounds virtually the
same. If you’re running on a resource-constrained host computer, you should make sure all your sound
files are encoded at the same rate so MPF doesn’t waste time re-encoding them on the fly. Smaller
values mean smaller sound files, less memory consumption, and less CPU processing. So if you’re on a
resource constrained host computer, think about 22050 instead of 44100. (But be sure to resample all
your sound files to match.)

master_volume:

Unknown type. See description below.

DEPRECATED! Will removed in future MPF versions.

Master volume has been moved to the machine variable master_volume. You can use the following
snippet:

machine_vars:

master_volume:

initial_value: 0.8

Note that this only controls the volume of the MPF app, not the host OS’es system volume. So you still
need to make sure that the host OS is not on mute and that the volume is turned up.

Related How To guides

∙ Sounds, Music & Audio

sounds:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The sounds: section of your config is where you configure non-default parameter values for any sound
assets you want to use in your game. Note: You do not have to have an entry for every single sound
you want to use, rather, you only need to add individual assets to your config file that have settings
which different from other assets in that asset’s folder. (This section is part of the MPF media
controller and only available if you’re using MPF-MC for your media controller.)

Index of config sections 1842

Mission Pinball Framework Documentation, Version

MPF-MC currently supports 16-bit Wave (.wav), Ogg Vorbis (.ogg), and FLAC (.flac) files.

Here’s an example:

sounds:

extra_ball:

file: extra_ball_12753.wav

events_when_stopped: extra_ball_callout_finished

streaming: false

track: voice

volume: 0.5

priority: 50

max_queue_time: None

ducking:

target: music

delay: 0

attack: 0.3 sec

attenuation: -18db

release_point: 2.0 sec

release: 1.0 sec

slingshot_01:

volume: 0.5

max_queue_time: 0

Optional settings

The following sections are optional in the sounds: section of your config. (If you don’t include them,
the default will be used).

about_to_finish_time:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

The point relative to the end of the sound at which to post the events_when_about_to_finish event(s).
A value of 0.5 seconds means to post the event(s) prior to the end of the sound. When set to None, no
events will be posted. If the value of this setting is greater than the duration of the sound, the event(s)
will be posted as soon as the sound begins playback. This value is specified as a time string.

ducking:

Single value, type: sound_ducking. Defaults to empty.

The ducking: section controls ducking for the sound.

events_when_about_to_finish:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this sound is about to finish playing.
The exact timing of this event is determined by the about_to_finish_time setting for this sound. Enter
the list in the MPF config list format. These events are posted exactly as they’re entered.

Index of config sections 1843

Mission Pinball Framework Documentation, Version

events_when_looping:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this sound loops back to the beginning
while playing. Enter the list in the MPF config list format. These events are posted exactly as they’re
entered.

events_when_played:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this sound is played. Enter the list in
the MPF config list format. These events are posted exactly as they’re entered.

events_when_stopped:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this sound stops playing. Enter the list
in the MPF config list format. These events are posted exactly as they’re entered. These events can be
useful to trigger some action when a callout has finished playing.

fade_in:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade in the sound when it is played.

fade_out:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The number of seconds over which to fade out the sound when it is stopped. This value is not applied
when the sound stops on its own by reaching the end of the sound (will likely be added in a future
version). At the moment it only comes into play when the sound is actively stopped by an event.

file:

Single value, type: string. Defaults to empty.

Sometimes you might want to name a file one thing on disk but refer to it as another thing in your
game and config files. In this case, you can create an file: setting in an asset entry. (Note the file:
extra_ball_12753.wav setting in the example above, and note that it includes the file extension.) In
this example, you would refer to that image asset as extra_ball even though the file is
extra_ball_12753. You might be wondering why this exists? Why not just change the file name to be
whatever you want and/or who cares what the name is? The reason this function exists is because it
allows for the separation of the actual file on disk from the way it’s called in the game. For example,
you could use this to create two sets of assets—one for a traditional DMD and one for a color
DMD—and then you could refer to the asset by its generic name throughout your configs. (In other

Index of config sections 1844

Mission Pinball Framework Documentation, Version

words, you could swap out assets for different physical machine types without having to update your
display code.) That said, we expect that 99% of people won’t use this file: setting, which is fine.

key:

Single value, type: string. Defaults to empty.

Todo: Help us to write it

loop_end_at:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

The position in the sound file (in seconds) at which to start looping and return to the start of the loop
as determined by the loop_start_at: setting. By default (None) the sound will loop when it reaches
the end of the sound. This setting only applies to sounds loaded in memory and played on a standard
audio track (not to any streaming sound or sound played on any other track type).

loop_start_at:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The position in the sound file (in seconds) to start playback of the sound after it is looped. By default
when the sound is looped it will loop back to the beginning of the sound file. Setting this value to
something other than zero is particularly useful when you have a music sound that has an introduction
section and want it to loop back to a verse and not the intro. This setting works in correlation with
loop_end_at: and only applies to sounds loaded in memory and played on a standard audio track (not
to any streaming sound or sound played on any other track type). Be sure to use many decimal places
in your times as precision is important when it comes to loop points. If you hear pops and clicks at the
loop points, you may need to slightly adjust your start and end loop times to alleviate them.

loops:

Single value, type: integer. Default: 0

An integer value that controls the looping behavior of this sound. A value of 0 indicates the sound will
not loop when reaching the end (also known as a “one-shot”). A value of -1 indicates the sound should
loop infinitely until it is stopped. A value greater than 0 specifies the number of times the sound
should loop back to the beginning while playing. Note that this value is not the total number of times
the sound is played, but the number of times it should play again after the first time through.

markers:

List of one (or more) values, each is a type: sound_marker. Defaults to empty.

The markers: section establishes a list of markers and their associated events at specific times in the
sound. When a marker is reached during playback, the associated events will be posted. Markers are
useful for synchronizing various actions with specific points in a sound. A typical use might be to send

Index of config sections 1845

Mission Pinball Framework Documentation, Version

an ‘almost_finished_playing’ event a short time before a sound finishes playback or establish various
checkpoints in a sound that could be used to restart a sound at that point on the user’s next turn
(using mode code).

Here’s a simple example utilizing markers:

sounds:

long_sound_1:

volume: 0.8

markers:

- time: 2.534 sec

events: send_this_event, also_this_event

- time: 6.712 sec

events: almost_finished_playing

max_queue_time:

Single value, type: time string (secs) (Instructions for entering time strings). Defaults to empty.

Specifies the maximum time this sound can be queued before it’s played. If the time between when
this sound is requested and when MPF can actually play it is longer than this queue time, then the
request is discarded and the sound doesn’t play. This only comes into play if this sound is requested
but the track it’s playing on is at its simultaneous_sounds limit. Then if this sound doesn’t have a high
enough priority to kill any of the existing sounds, it will be queued to play later. Some sounds (like
voice callouts) might be ok to queue, but other sounds (like sound effects for when you hit a pop
bumper or slingshot) might only make sense if they’re played right away, so in those cases you might
want to use a short (or no) queue time. The default setting is “None” which means this sound will have
no queue limit and will always play eventually.

mode_end_action:

Single value, type: one of the following options: stop, stop_looping. Default: stop_looping

The mode_end_action: setting determines what action to take when the mode that initiates the
playback of the sound ends. Options for mode_end_action: are:

∙ stop - All currently playing and queued instances of the specified sound started by the mode will
be stopped/canceled. If the fade_out parameter has a non-zero value, the sound will fade out
over the specified number of seconds.

∙ stop_looping - Looping will be canceled for all currently playing instances of the specified sound
started by the mode (the sound will continue to play to the end of the current loop). In addition,
any queued instances of the sound awaiting playback will be removed/canceled.

pan:

Single value, type: number (will be converted to floating point). Default: 0

Pan the audio to the left or right channel. Currently, broken due to a bug. Let us know if you need this.

Index of config sections 1846

Mission Pinball Framework Documentation, Version

priority:

Single value, type: integer. Default: 0

The numeric value indicating the priority or importance of this sound. Sounds with higher priority
values will preempt other sounds with lower priorities that are playing when a track has reached the
maximum number of simultaneous sounds it is configured to play. If the track is busy and the
priorities of all sounds currently playing greater than or equal to this sound, the sound will be queued
for playback and will have to wait to be played.

simultaneous_limit:

Single value, type: integer. Defaults to empty.

The numeric value indicating the maximum number of instances of this sound that may be played at
the same time (up to the limit of the track). Once the maximum number of instances has been
reached, the stealing_method setting determines the how additional requests to play the sound will be
managed. This setting is useful for sounds that can be triggered in rapid succession (such as spinners
and pop bumpers). Setting a limit will ensure a reasonable number of instances will be played
simultaneously and not overwhelm the audio mix. The default value of None indicates no limits will be
placed on the number of instances of the sound that may be played at once up to the limit of the track.
The value of this setting is ignored when the streaming setting has a value of False.

start_at:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0

The position in the sound file (in seconds) to start playback of the sound when it is played. When the
sound is looped it will loop back to the beginning of the sound file.

stealing_method:

Single value, type: one of the following options: skip, oldest, newest. Default: oldest

The stealing_method: of a sound determines the behavior of additional requests to play the sound
once the number of simultaneous instances of the sound has reached its simultaneous_limit limit.
This setting is ignored when simultaneous_limit is set to None. Options for stealing_method: are:

∙ oldest - Steal/stop the oldest playing instance of the sound and replace it with a new instance
(essentially restarts the oldest playing instance).

∙ newest - Steal/stop the newest playing instance of the sound and replace it with a new instance
(essentially restarts the newest playing instance).

∙ skip - Do not steal/stop any currently running instances of the sound. Simply skip playback of
the newly requested instance.

streaming:

Single value, type: boolean (true/false). Default: false

Index of config sections 1847

Mission Pinball Framework Documentation, Version

Indicates whether or not the sound sound will be streamed (rather than stored in memory). Streaming
sounds are limited to a single instance of the sound playing at a time. Multiple different streaming
sounds may be played simultaneously, just not more than a single instance of a particular sound.
When streaming is set to True, the simultaneous_limit setting is ignored and a value of 1 is used.

track:

Single value, type: string. Defaults to empty.

This is the name of the track this sound will play on. (You configure tracks and track names in the
sound_system: section of your machine config files.)

volume:

Single value, type: gain setting (-inf, db, or float between 0.0 and 1.0). Default: 0.5

The volume of this sound. This value is factored into the track and overall MPF volumes. It’s used to
“balance” your sounds if you have one particular sound that’s too loud or too quiet. As with all volume
parameters in MPF, this item can be represented as a number between 0.0 and 1.0 (1.0 is max volume,
0.0 is off, 0.9 is 90%, etc.) It also can be represented as a decibel string from -inf to 0.0 db (ex: -3.0
db).

Related How To guides

∙ Sounds, Music & Audio

spi_bit_bang:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The spi_bit_bang: section of your config is where you configure the How to use SPI Bit Bang in MPF
platform.

Required settings

The following sections are required in the spi_bit_bang: section of your config:

clock_pin:

Single value, type: string name of a digital_outputs device. Defaults to empty.

This output is used to clock the SPI chip.

Index of config sections 1848

Mission Pinball Framework Documentation, Version

cs_pin:

Single value, type: string name of a digital_outputs device. Defaults to empty.

This output is used to chip select the SPI chip. It usually also triggers the parallel read of the chip.

miso_pin:

Single value, type: string name of a switches device. Defaults to empty.

This input is read serially to determine the state of your inputs.

Optional settings

The following sections are optional in the spi_bit_bang: section of your config. (If you don’t include
them, the default will be used).

bit_time:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 50ms

How long should the platform wait until reading the miso_pin. Depending on your platform it might
need a while to settle. Especially if your platform is connected via USB. If your inputs are local (i.e. on
a RPi) this might be very short compared.

clock_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 1ms

How long should the clock pulse be? 1ms is the lower limit for most platforms and more than long
enough for any chip so this should be good.

debug:

Single value, type: boolean (true/false). Default: false

Set to true to get more debug output.

inputs:

Single value, type: integer. Default: 8

How many inputs should the platform read? Reading less inputs will result in faster updates.

Related How To guides

∙ How to use SPI Bit Bang in MPF

∙ Using the Stern Spike Trough

Index of config sections 1849

Mission Pinball Framework Documentation, Version

spike:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The spike: section of your machine-wide config is where you configure hardware options that are
specific to the SPIKE interface when you’re using MPF with a Stern SPIKE machine. Note that we
have a how to guide which includes all the SPIKE-specific settings throughout your entire config file,
so be sure to read that if you have a SPIKE machine.

hardware:

platform: spike

spike:

port: /dev/ttyUSB0

baud: 115200

runtime_baud: 3000000

flow_control: true

debug: false

nodes: 0, 1, 8, 9, 10, 11

Required settings

The following sections are required in the spike: section of your config:

baud:

Single value, type: integer. Defaults to empty.

This needs to match the value from Step 3 in the MPF SPIKE bridge instructions.

nodes:

List of one (or more) values, each is a type: integer. Defaults to empty.

Configure the nodes from your manual. Note that there should always be a node 0 and 1.

port:

Single value, type: string. Defaults to empty.

on the RPi.

Optional settings

The following sections are optional in the spike: section of your config. (If you don’t include them, the
default will be used).

Index of config sections 1850

Mission Pinball Framework Documentation, Version

bridge_debug:

Single value, type: boolean (true/false). Default: false

Set to True if you want to debug your MPF Spike bridge.

bridge_debug_log:

Single value, type: string. Default: /mnt/spike.log

Path on your Spike system where the bridge logs to if bridge_debug is True. Needs to be writable and
sufficiently large. A USB stick mounted to /mnt/ will work fine.

bridge_path:

Single value, type: string. Default: /bin/bridge

Path of your bridge.

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level to console.

debug:

Single value, type: boolean (true/false). Default: false

Set to true for troubleshooting to print more details in the log.

default_debounce_close:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 4

Default debounce close time.

default_debounce_open:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 4

Default debounce open time.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level to file.

Index of config sections 1851

Mission Pinball Framework Documentation, Version

flow_control:

Single value, type: boolean (true/false). Default: false

Set to True to enable serial RTS/CTS flow control between MPF and the Spike bridge. May help
improve responsiveness and reduce latency when streaming display data to the DMD. Default is False.

max_led_batch_size:

Single value, type: integer. Default: 6

Maximum number of leds to batch. This seems to differ between machines. 3 seems to be safe
everywhere.

node_config:

One or more sub-entries. Each in the format of integer : spike_node

A list of your nodes with their config each. This is entirely optional but may improve performance.

oc_time:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 100

Some time related to over current. We believe this is the time over which spike averages the value.

periodically_query_nodes:

Single value, type: boolean (true/false). Default: false

Whether to periodically query nodes. The spike game does this but we do not use the values so it is
probably save to disable this. Related to over current detection.

poll_hz:

Single value, type: integer. Default: 1000

Numeric value of how many times per second MPF will poll the SPIKE system to check for switch
changes. Default is 1000.

response_time:

Single value, type: integer. Default: 837

A parameter send to the spike bus driver. We believe this is some kind of bus timeout. No need to
change it.

Index of config sections 1852

Mission Pinball Framework Documentation, Version

runtime_baud:

Single value, type: integer. Default: 921600

Baud rate to use during runtime.

spike_version:

Single value, type: one of the following options: 1, 2. Default: 1

The spike version you are using.

use_send_key:

Single value, type: boolean (true/false). Default: false

Send some magic commands like Spike does. Not needed as far as we know.

verify_checksums_on_readback:

Single value, type: boolean (true/false). Default: true

Whether to verify checksums on readback from commands. This should be always on unless you are
debugging something.

wait_times:

One or more sub-entries. Each in the format of integer : integer

A list of commands and their corresponding wait times on the bus. Ususally, you do not have to change
this.

Related How To guides

∙ How to use MPF with Stern SPIKE / SPIKE 2 machines

spike_node:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The node_config: section of your config is where you configure your node boards in your spike:
section.

Index of config sections 1853

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the spike_node: section of your config. (If you don’t include
them, the default will be used).

coil_priorities:

List of one (or more) values, each is a type: integer.

A list of coils ordered by priority. This list is send to the hardware to priorize coils when multiple
hardware rules active. The exact logic is unknown.

num_inputs:

Single value, type: integer.

Number of inputs on that node board.

num_leds:

Single value, type: integer.

Number of LEDs on that node board.

Related How To guides

∙ How to use MPF with Stern SPIKE / SPIKE 2 machines

state_machines:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The state_machines: section of your config is where you configure generic state machines.

Settings in Machine Config Files

If the state_machines: section is placed in a config file, it will retain its state across games. When the
game is started, the value is initialized, and it will retain in its state until the game is turned off. So to
reset this, a transition would need to happen upon game end.

Settings in Mode Config Files

If the state_machines: section is placed in a mode file, it will retain its state across balls, but will be
reset to its base mode for each game. It is player specific, and will retain the correct value fo each
player in a given game.

Index of config sections 1854

Mission Pinball Framework Documentation, Version

Required settings

The following sections are required in the state_machines: section of your config:

states:

One or more sub-entries. Each in the format of string : state_machine_states

List all of your states here, with their applicable settings. Go to state_machine_states to see a full list
of all settings under states:. For example:

##! mode: my_mode

state_machines:

my_state:

states:

start:

label: Start state

step1:

label:

show_when_active:

show: on

show_tokens: None

events_when_started: step1_start

events_when_stopped: step1_stop

step2:

label: Step 2

transitions:

The first state must be start: or MPF will throw errors when trying to initialize this value (you can
change this using starting_state setting). All other states can be any string as defined by the user.

transitions:

List of one (or more) values, each is a type: state_machine_transitions. Defaults to empty.

These move from any state to another state, including backward or back to the first step, when a given
event is posted.

List all your transitions here (we start with the same steps as above):

##! mode: my_mode

state_machines:

my_state:

states:

start:

label: Start state

step1:

label:

show_when_active:

show: on

show_tokens: None

events_when_started: step1_start

events_when_stopped: step1_stop

(continues on next page)

Index of config sections 1855

Mission Pinball Framework Documentation, Version

(continued from previous page)

step2:

label: Step2

transitions:

- source: start

target: step1

events: state_machine_proceed

- source: step1

target: step2

events: state_machine_proceed2

events_when_transitioning: going_to_step2

- source: step2

target: start

events: state_machine_proceed3

- source: step1, step2

target: start

events: state_machine_reset

Optional settings

The following sections are optional in the state_machines: section of your config. (If you don’t include
them, the default will be used).

persist_state:

Single value, type: boolean (true/false). Default: false

If set to true MPF will restore the state of a logic_block on mode restart.

starting_state:

Single value, type: string. Default: start

The start state of your state machine.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

Index of config sections 1856

Mission Pinball Framework Documentation, Version

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

state_machine_transitions:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The state_machine_transitions: section of your config is where you configure the transitions of your
state machine.

Transitions will only be available if the state machine is in one of the states listed in source. In that
case the machine will transition to the state listed in target. See state machines for details.

Required settings

The following sections are required in the state_machine_transitions: section of your config:

events:

List of one (or more) events.

If the state machine is in one of the states listed in source this event will transition the machine to the
state listed in target.

source:

List of one (or more) values, each is a type: string.

Transitions will only be available if the state machine is in one of the states listed in source.

Index of config sections 1857

Mission Pinball Framework Documentation, Version

target:

Single value, type: string.

The machine will transition to this state if it is in a state listed in source and one of the events is
posted.

Optional settings

The following sections are optional in the state_machine_transitions: section of your config. (If you
don’t include them, the default will be used).

events_when_transitioning:

List of one (or more) events.

This event will be posted when the transition is triggered.

Related How To guides

∙ State Machine Logic Block

state_machine_states:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The state_machine_states: section of your config is where you configure the states of your state
machine.

See state machines for details.

Optional settings

The following sections are optional in the state_machine_states: section of your config. (If you don’t
include them, the default will be used).

events_when_started:

List of one (or more) events.

The event will be posted when the state machine enters this state. This is the entry action for this
state in your finite state machine.

Index of config sections 1858

Mission Pinball Framework Documentation, Version

events_when_stopped:

List of one (or more) events.

The event will be posted when the state machine leaves this state. This is the exit action for this state
in your finite state machine.

label:

Single value, type: string.

The full name/description of this state.

show_when_active:

Single value, type: show_config.

A show which is played when the state machine is in this state. This is kind of an entry action as you
could use events_when_started and a show_player: to achieve the same. It is meant as a helper
because it is common to play one show per step.

Related How To guides

∙ State Machine Logic Block

Related How To guides

∙ State Machine Logic Block

∙ Skill Shot

steppers:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The steppers: section of your config is where you configure steppers.

This is an example:

main config

p_roc:

use_separate_thread: true

pd_led_boards:

6:

use_stepper_0: true

stepper_speed: 1352400000 # Determine empiricall. Increasing slows pulsesrate

(continues on next page)

Index of config sections 1859

Mission Pinball Framework Documentation, Version

(continued from previous page)

switches:

s_stepper_home:

number: 4/0/5

steppers:

ramp_diverter:

number: 6-0

homing_mode: switch

homing_switch: s_stepper_home

homing_direction: clockwise

pos_min: 0 # Default. (Neg values are behind home)

pos_max: 100 # Default

reset_events: machine_reset_phase_3, ball_starting, ball_will_end

reset_position: 0 # Default

debug: true

named_positions:

2: move_to_2

25: move_to_25

45: move_to_45

##! mode: base

base mode

timers:

test_diverter:

start_value: 0

end_value: 6

start_running: true

restart_on_complete: true

event_player:

timer_test_diverter_tick{device.timers.test_diverter.ticks==1}: move_to_2

timer_test_diverter_tick{device.timers.test_diverter.ticks==3}: move_to_25

timer_test_diverter_tick{device.timers.test_diverter.ticks==5}: move_to_45

Required settings

The following sections are required in the steppers: section of your config:

number:

Single value, type: string. Defaults to empty.

This is the number of the stepper which specifies which stepper the it is physically connected to. The
exact format used here will depend on which control system you’re using and how the stepper is
connected.

See the How to configure “number:” settings guide for details.

Optional settings

The following sections are optional in the steppers: section of your config. (If you don’t include them,
the default will be used).

Index of config sections 1860

Mission Pinball Framework Documentation, Version

ball_search_max:

Single value, type: integer. Default: 1

The maximum position to use during ball search for this stepper. During ball search the stepper will
move between ball_search_min and ball_search_max.

ball_search_min:

Single value, type: integer. Default: 0

The minimum position to use during ball search for this stepper. During ball search the stepper will
move between ball_search_min and ball_search_max.

ball_search_wait:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 5s

How long should the stepper wait after moving to ball_search_min before moving to ball_search_max.

homing_direction:

Single value, type: one of the following options: clockwise, counterclockwise. Default: clockwise

In which direction should the stepper move to reach the home position?

homing_mode:

Single value, type: one of the following options: hardware, switch. Default: hardware

Some controllers support hardware homing which should be preferred. However, you can also define a
homing_switch which will be used to determine whether the stepper is at the home position.

homing_switch:

Single value, type: string name of a switches device. Defaults to empty.

Switch to check if the stepper is at the home position when homing_mode is set to switch.

include_in_ball_search:

Single value, type: boolean (true/false). Default: true

Set to true to enable ball search on this stepper.

Index of config sections 1861

Mission Pinball Framework Documentation, Version

named_positions:

One or more sub-entries. Each in the format of number (will be converted to floating point) : string

This is a sub-section mapping of stepper positions to MPF event names. For example:

named_positions:

0: move_home

999: move_to_999

-500: move_to_-500 # Negative positions are behind home

The values in this named_positions: list represent MPF events that, when posted, tell this stepper to
move to a certain position. So in the example above, when the move_to_999 event is posted, this
stepper will move to position 999.

platform:

Single value, type: string. Defaults to empty.

Name of the platform this stepper is connected to. The default value of None means the default
hardware platform will be used. You only need to change this if you have multiple different hardware
platforms in use and this stepper is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

platform_settings:

Single value, type: dict. Defaults to empty.

Platform specific stepper settings for this stepper. Check the documentation of your platform for
details.

pos_max:

Single value, type: integer. Default: 1000

Maximum possible position.

pos_min:

Single value, type: integer. Default: 0

Minimum possible position. Negative values are left of the home position.

reset_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
machine_reset_phase_3, ball_starting, ball_will_end, service_mode_entered

Events to reset the position of the stepper.

Index of config sections 1862

Mission Pinball Framework Documentation, Version

reset_position:

Single value, type: integer. Default: 0

Reset position for this stepper. Usually this is the home position.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used currently.

Related How To guides

∙ Stepper Motors

step_stick_stepper_settings:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The step_stick_stepper_settings: section of your config is where you configure the Stepstick
hardware platform.

Index of config sections 1863

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the step_stick_stepper_settings: section of your config. (If you
don’t include them, the default will be used).

high_time:

Single value, type: time string (secs) (Instructions for entering time strings) . Default: 20ms

How long should the digital output be held to high during a step pulse? This time depends on the
latency/jitter of your output and the speed your stepper can be moved. Usually the jitter of your
output is the limiting factor.

low_time:

Single value, type: time string (secs) (Instructions for entering time strings) . Default: 20ms

How long should the digital output be held to low after a step pulse? This time depends on the
latency/jitter of your output and the speed your stepper can be moved. Usually the jitter of your
output is the limiting factor.

switch_overwrites:

Config file section

Valid in machine config files NO
Valid in mode config files NO

Some devices offer a switch_overwrites: setting where you can overwrite settings of a switch used in
that devices. This is commonly used in flippers: and autofire_coils:.

Optional settings

The following sections are optional in the switch_overwrites: section of your config. (If you don’t
include them, the default will be used).

debounce:

Single value, type: one of the following options: quick, normal, None. Default: None

Overwrite the debounce setting on a coil. See debounce in switches: for details.

switch_player:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Index of config sections 1864

Mission Pinball Framework Documentation, Version

The switch_player: section of your config is where you can replay a series of switches for testing
purposes. Also have a look at the MPF monitor for interactive testing purposes.

This is an example:

#config_version=5

switches:

s_test1:

number:

x: 0.4

y: 0.5

z: 0

s_test2:

number:

x: 0.6

y: 0.7

s_test3:

number:

plugins: switch_player

switch_player:

start_event: test_start

steps:

- time: 100ms

switch: s_test1

action: activate

- time: 600ms

switch: s_test3

action: hit

- time: 100ms

switch: s_test1

action: deactivate

- time: 1s

switch: s_test2

action: activate

- time: 1s

switch: s_test3

action: hit

- time: 100ms

switch: s_test2

action: deactivate

- time: 1s

switch: s_test3

action: hit

Optional settings

The following sections are optional in the switch_player: section of your config. (If you don’t include
them, the default will be used).

start_event:

Single event. The device will add an handler for this event. Default: machine_reset_phase_3

Event to trigger the start of the switch player.

Index of config sections 1865

Mission Pinball Framework Documentation, Version

steps:

Unknown type. See description below.

The steps of the switch_player. See the example above.

Related How To guides

∙ plugins:

switches:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The switches: section of the config files is used to map switch names to controller board inputs. You
can map both direct and matrix switches. Here’s an example section:

switches:

flipper_lwr_eos:

number: SF1

flipper_lwr:

number: SF6

fire_r:

number: S12

tags: plunger

start:

number: S13

tags: start

plumbbob:

number: S14

tags: tilt

outlane_l:

number: S16

tags: playfield_active

debounce: normal

inlane_l:

number: S17

tags: playfield_active

debounce: quick

trough1:

number: S81

type: 'NC'

shooter_lane:

number: S82

events_when_activated: ball_in

events_when_deactivated: ball_out

Each subsection of switches: is a switch name, which is how you refer to the switch in your game
code. A fully working example for the Cobra board can be found in OPP Switches, that example might

Index of config sections 1866

Mission Pinball Framework Documentation, Version

be as well helpful when using other hardware to understand what events are being fired when using a
switch.

When configuring switches, then there are several parameters for each switch:

Required settings

The following sections are required in the switches: section of your config:

number:

Single value, type: string. Defaults to empty.

This is the number of the switch which specifies which switch input the switch is physically connected
to. The exact format used here will depend on which control system you’re using and how the switch
is connected.

Note: In a virtual environment with keyboard: section you don’t have to fill in a switch number. With a
keyboard section the switch is activated by a defined keyboards key.

See the How to configure “number:” settings guide for details.

Optional settings

The following sections are optional in the switches: section of your config. (If you don’t include them,
the default will be used).

debounce:

Single value, type: one of the following options: auto, quick, normal. Default: auto

The debounce setting to use in hardware. quick means very low to no debounce (could also be named
“off”). normal implies debounce “on” and should be used in most cases. The exact timings of those
settings depend on your hardware platform. (quick usually is 0-1ms, normal is 1-4ms).

The main purpose of this is to reduce the number of events/amount of communication from the
hardware. For targets and swiches in debounce normal should be good in almost all cases.

However, in some cases, you want to disable debounce (e.g. use quick) when using hardware rules
such as pop bumpers or sling shots. auto will use normal if no hardware rules are configured or quick
when rules are configured. Therefore, you usually can leave this at auto.

Switch debouncing is somewhat different from debouncing in other domains since the switch has to be
active for the whole period of debouncing (at least during sampling). It could also be referred as
“minimum activation time” (as one discipline of debouncing). If you want to make sure that the switch
does not activate again within a certain period have a look at ignore_window_ms (another discipline of
debouncing). If you want to control the fire rate of your coil have a look at the recycle setting
(configurable in some platforms).

See Debouncing in Pinball Machines for details.

Index of config sections 1867

Mission Pinball Framework Documentation, Version

events_when_activated:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this switch goes active. These events
are posted exactly as they’re entered, in addition to the events that are posted based on the switch’s
tags. See as well the tags section below. In addition, an event will be posted based on the switch
name, <switch name>_active.

The events will only be visible in the mpf monitor if they are consumed by something, e.g.
light_player or if debug:true is defined for them. They will be posted regardless of the debug setting,
it is only a question of visibility in the mpf monitor.

events_when_deactivated:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this switch goes inactive. These events
are posted exactly as they’re entered, in addition to the events that are posted based on the switch’s
tags. See as well the tags section below. In addition, an event will be posted based on the switch
name, <switch name>_inactive.

The events will only be visible in the mpf monitor if they are consumed by something, e.g.
light_player or if debug:true is defined for them. They will be posted regardless of the debug setting,
it is only a question of visibility in the mpf monitor.

ignore_window_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

Specifies a duration of time during which additional switch activations will be ignored.

For example, if you set ignore_window_ms: 100, then a switch is activated once, then again 50ms later,
the second activation will be ignored. The timer is set based on the last switch hit that activated the
switch, so if another switch hit came in 105ms after the first (which would be 55ms after the second),
it will also count.

platform:

Single value, type: string. Defaults to empty.

Name of the platform this switch is connected to. The default value of None means the default
hardware platform will be used. You only need to change this if you have multiple different hardware
platforms in use and this switch is not connected to the default platform.

See the Mixing-and-Matching hardware platforms guide for details.

platform_settings:

Single value, type: dict. Defaults to empty.

Dict of platform specific settings. See your platform documentation about this.

Index of config sections 1868

Mission Pinball Framework Documentation, Version

type:

Single value, type: one of the following options: NC, NO. Default: NO

You can add NC as a type (like type: NC) to indicate that this switch is a normally closed switch, i.e. it’s
closed when it’s inactive and open when it’s active. This is mostly used for optos.

Switches which are type NC are automatically inverted by the Switch Controller. In other words an
NC switch is still “active” when it’s being activated, but the Switch Controller knows that activation
actually occurs when the switch opens, rather than closes. Setting the type to NC here means that you
never have to worry about this inversion anywhere else in your game code.

x:

Single value, type: number (will be converted to floating point). Defaults to empty.

X Position of this switch on the playfield. Currently unused.

y:

Single value, type: number (will be converted to floating point). Defaults to empty.

Y Position of this switch on the playfield. Currently unused.

z:

Single value, type: number (will be converted to floating point). Defaults to empty.

Z Position of this switch on the playfield. Currently unused.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to get additional debug output. You need to set this flag to see event you have defined
for this switch in mpf monitor.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1869

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

Name of this switch in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

You can add tags to switches to logically group them in your game code to make it easier to do things.
(Like “if all the switches tagged with droptarget_bank1 are active, then do something.”) Tags are also
used to create MPF events which are automatically posted with an sw_ prefix, by tag, when a switch is
activated. For example, if you have a switch tagged with “hello”, then every time that switch is
activated, it will post the event sw_hello. If you have a switch tagged with “hello” and “yo”, then every
time that switch is activated it will post the events sw_hello and sw_yo. MPF also makes use of several
tags on its own.

In addition, events will be posted based on the switch name, <switch name>_active and <switch
name>_inactive.

The events will only be visible in the mpf monitor if they are consumed by something, e.g.
light_player or if debug:true is defined for them. They will be posted regardless of the debug setting,
it is only a question of visibility in the mpf monitor.

Special-purpose tags for switches include:

∙ playfield_active - This tag should be used for all switches on the playfield that indicate a ball is
loose on the playfield. This tag is used by the playfield to know that balls are on it. Note that if
you have more than one playfield, the tag name is (playfield_name)_active, so if you have a
playfield called “upper playfield”, you’d tag the switches on that playfield with
“upper_playfield_active”.

∙ start - Let’s MPF know that this switch is used to start a game. (Note that in MPF, the game
start process is kicked off when this switch is released, not pressed, which allows the “time held
down” to be sent to MPF to perform alternate game start actions.)

Related How To guides

∙ Switches

∙ How to configure opto switches

∙ Mechanical Switches

system11:

Config file section

Valid in machine config files YES
Valid in mode config files NO

Index of config sections 1870

Mission Pinball Framework Documentation, Version

The system11: section of your config is where your system11 machine. This is usually used together
with the snux platform or apc platform.

Required settings

The following sections are required in the system11: section of your config:

ac_relay_driver:

Single value, type: string name of a coils device. Defaults to empty.

The driver to use to drive the AC relay which switches between A and C side drivers.

Optional settings

The following sections are optional in the system11: section of your config. (If you don’t include them,
the default will be used).

ac_relay_debounce_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 0

Todo: Help us to write it

ac_relay_delay_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 75ms

Delay when switching between A and C side.

ac_relay_switch:

Single value, type: string name of a switches device. Defaults to empty.

Todo: Help us to write it

console_log:

Single value, type: one of the following options: none, basic, full. Default: none

Log level for the console log for this platform.

Index of config sections 1871

Mission Pinball Framework Documentation, Version

debug:

Single value, type: boolean (true/false). Default: false

Todo: Help us to write it

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this platform.

platform:

Single value, type: string. Defaults to empty.

Upstream platform for hardware. System 11 is a virtual platform which drives coils on another
underlying platform which can be configured here.

prefer_a_side_event:

Single event. The device will add an handler for this event. Default: game_ended

Event to trigger A-side preference. This is triggered at game end by default to reduce stress on the
AC-relay during attract.

prefer_c_side_event:

Single event. The device will add an handler for this event. Default: game_will_start

Event to trigger C-side preference. This is triggered at game start by default to increase response
times.

queue_c_side_while_preferred:

Single value, type: boolean (true/false). Default: true

Todo: Help us to write it

Related How To guides

∙ Snux System 11 Driver Board

∙ Arduino Pinball Controller

Index of config sections 1872

Mission Pinball Framework Documentation, Version

text_strings:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The text_strings: section of your config is where you define text strings which can be used in slides
or widgets.

This is an example:

text_strings:

greeting: HELLO PLAYER. THIS IS YOUR BALL (ball)

slides:

slides_with_text:

- type: text

text: $greeting

Related How To guides

∙ Text Widget

text_ui:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The text_ui: section of your config is where you configure the Text UI that appears in the console
while MPF is running.

The Text UI displays information about the machine and game: switch states, active modes, variable
values, and game information. By default, it displays all machine variables and player variables.

Depending on the complexity of your game and the mode you’re working on, you may not want the
Text UI to display every variable. In that case, you can use the text_ui: section to specify which
player and machine variables you want to see.

Optional settings

The following sections are optional in the text_ui: section of your config. (If you don’t include them,
the default will be used).

machine_vars:

List of one (or more) values, each is a type: string. Defaults to empty.

Index of config sections 1873

Mission Pinball Framework Documentation, Version

A list of all of the machine variables to display and update in the Text UI. If the list is empty, no
machine variables will be displayed.

If the machine_vars: setting is not included in your config, all machine variables will be displayed.

player_vars:

List of one (or more) values, each is a type: string. Defaults to empty.

A list of all of the player variables to display and update in the Text UI.

While a game is active, MPF will always show three player variables: player number, ball number, and
player score. If the player_vars: setting is provided, the variable names listed will also be shown in
the Text UI.

If the player_vars: setting is not included in your config, all player variables will be displayed.

Related How To guides

Todo: Help us to write it

tic_stepper_settings:

Config file section

Valid in machine config files NO
Valid in mode config files NO

If you use the Pololu Tic Stepper Controller you can use the following settings in platform_settings of
your steppers.

Optional settings

The following sections are optional in the tic_stepper_settings: section of your config. (If you don’t
include them, the default will be used).

current_limit:

Single value, type: integer. Default: 192

Todo: Help us to write it

Index of config sections 1874

Mission Pinball Framework Documentation, Version

max_acceleration:

Single value, type: integer. Default: 40000

Todo: Help us to write it

max_deceleration:

Single value, type: integer. Default: 40000

Todo: Help us to write it

max_speed:

Single value, type: integer. Default: 2000000

Todo: Help us to write it

poll_ms:

Single value, type: time string (ms) (Instructions for entering time strings). Default: 100ms

How often should MPF poll the state of your steppers? This is used to check for completion of
movements. There should be no need to modify this.

starting_speed:

Single value, type: integer. Default: 0

Todo: Help us to write it

step_mode:

Single value, type: integer. Default: 1

Todo: Help us to write it

Related How To guides

∙ How to use Pololu Tic in MPF

Index of config sections 1875

Mission Pinball Framework Documentation, Version

tilt:

Config file section

Valid in machine config files NO
Valid in mode config files YES

The tilt: section of your config is where you configure a tilt mode.

Optional settings

The following sections are optional in the tilt: section of your config. (If you don’t include them, the
default will be used).

multiple_hit_window:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 300ms

Window in which hits are ignored after a tilt hit.

reset_warnings_events:

List of one (or more) device control events (Instructions for entering device control events). Default:
ball_will_end

Default: ball_will_end

These events, when posted, will cause the warnings_to_tilt: to be reset to zero.

settle_time:

Single value, type: time string (ms) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 5s

Time to wait after the machine is tilted before a new ball can be started. This prevents that a player
can tilt his ball and the first ball of the next player.

slam_tilt_switch_tag:

Single value, type: string. Default: slam_tilt

Switch tags which will cause a slam tilt.

Index of config sections 1876

Mission Pinball Framework Documentation, Version

tilt_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause a tilt to occur which will end the current ball in progress with
no end of ball bonus. You usually want to use tilt_warning_events because this one will instantly tilt
the machine on the first event.

tilt_slam_tilt_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause a slam_tilt event to be posted. The slam tilt typically ends the
current game and also clears all credits from the machine.

tilt_switch_tag:

Single value, type: string. Default: tilt

Switch tag for switches which cause the machine to tilt (without prior warnigns). You want to use the
tag configured in tilt_warning_switch_tag in most cases.

tilt_warning_events:

List of one (or more) device control events (Instructions for entering device control events). Defaults
to empty.

Default: None

Events in this list, when posted, cause a tilt warning to occur. They will post the tilt_warning event,
and if the warnings_to_tilt: limit is hit, will also cause the tilt event.

tilt_warning_switch_tag:

Single value, type: string. Default: tilt_warning

Switch tags for switches which cause a tilt warning.

tilt_warnings_player_var:

Single value, type: string. Default: tilt_warnings

Player var to use to store tilt warnings.

Index of config sections 1877

Mission Pinball Framework Documentation, Version

warnings_to_tilt:

Single value, type: integer or template (Instructions for entering templates). Default: 3

Number of warnings until the machine tilts.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

Related How To guides

∙ Tilt

timed_switches:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Specifies timed switches which are used to post events when a switch is active for a continuous
amount of time.

Here’s an example. This example is actually built-in to MPF via the MPF default config file, so if you
want to use these flipper cradle events, you don’t have to enter them yourself as they’re already there.

timed_switches:

flipper_cradle:

switch_tags: left_flipper, right_flipper

time: 3s

events_when_active: flipper_cradle

events_when_released: flipper_cradle_release

Like other devices in MPF, the format is:

timed_switches:

name_of_your_timed_switch:

<settings>

some_other_timed_switch:

<settings>

Required settings

The following sections are required in the timed_switches: section of your config:

time:

Single value, type: time string (ms) (Instructions for entering time strings). Defaults to empty.

How long a switch must be continuously active before the events_when_active are posted.

Index of config sections 1878

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the timed_switches: section of your config. (If you don’t include
them, the default will be used).

events_when_active:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

If you don’t enter any events here, an event will automatically be posted in the format
<name_of_this_timed_switch>_active. In other words, in the example at the top of this page, the timed
switch entry is called “flipper_cradle”, so the automatically-created event would be called
flipper_cradle_active, but since that config has an events_when_active: flipper_cradle entry, then
the event will just be flipper_cradle.

events_when_released:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

If you’ve defined multiple switches and two switches go active, the release event will not be posted
until all the switches are released.

state:

Single value, type: one of the following options: active, inactive. Default: active

Controls whether the events_when_active: are posted when the switch is active for the time: amount,
or whether it’s flipped and the events are posted when the switch is inactive for the time amount.

switch_tags:

List of one (or more) values, each is a type: string. Defaults to empty.

A list of switch tags (or a single tag) that will be used to set which switches are used with these timed
switch settings. Each switch with these tags will be added.

switches:

List of one (or more) values, each is a type: string name of a switches device. Defaults to empty.

A list of switches (or a single switch) that will be used for these timed switch settings. Note that you
can use switch_tags: instead of switches:.

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

Index of config sections 1879

Mission Pinball Framework Documentation, Version

debug:

Single value, type: boolean (true/false). Default: false

Set this to true to see additional debug output. This might impact the performance of MPF.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Timed Switches

timers:

Config file section

Valid in machine config files NO
Valid in mode config files YES

The timers: section of your config is where configure timers that can “tick” up or down. Timers post
events with each tick which you can use to update slides, etc. You can set the start and stop values of
the timers, as well as how fast they tick, how much they change per tick, and other settings.

The settings structure of timers is like this:

timers:

timer_name:

<settings>

some_other_timer_with_a_different_name:

<settings>

a_third_timer:

<settings>

Index of config sections 1880

Mission Pinball Framework Documentation, Version

Here’s an example timers: section from the “Money Bags” mode in Brooks ‘n Dunn which contains
two timers:

##! mode: mode1

timers:

mb_intro_timer:

start_value: 3

end_value: 0

direction: down

control_events:

- action: start

event: mode_money_bags_started

money_bags_timer:

start_value: 15

end_value: 0

direction: down

tick_interval: 1.25s

control_events:

- action: start

event: timer_mb_intro_timer_complete

- action: add

event: money_bags_advertise_flashing_hit

value: 5

- action: stop

event: logicblock_money_bags_counter_complete

In the example above, an intro timer which runs for 3 seconds is started by the event
mode_money_bags_started (which means this timer starts when the mode starts). A second timer (the
“money_bags_timer”) starts when the intro timer is complete. It starts with a value of 15 and counts
down to 0 (but at a count interval of 1.25 seconds so it’s a bit slower than real time. It will also get
reset back to 15 each time a flashing shot is hit.

Here’s another example of timers from Demo Man’s skillshot mode:

##! mode: mode1

timers:

mode_timer:

start_value: 3

end_value: 0

direction: down

tick_interval: 1s

control_events:

- event: balldevice_playfield_ball_enter

action: start

start_running: false

target_rotator:

start_running: true

tick_interval: 1s

The skillshot mode starts when the ball is waiting to be plunged. The timer called “mode_timer” in the
example above starts when the ball enters the playfield and runs for 3 seconds. If it runs all the way
down, the skill shot mode will stop (meaning the player missed the skillshot).

A second timer doesn’t have any count values associated with it, rather it just “ticks” once a second.
That tick event is used to rotate the lit skillshot.

See timer_control_events: for more details about all the actions available in a timer.

Index of config sections 1881

Mission Pinball Framework Documentation, Version

Optional settings

The following sections are optional in the timers: section of your config. (If you don’t include them,
the default will be used).

bcp:

Single value, type: boolean (true/false). Default: false

Controls whether the various timer events (count, start, stop, complete, etc.) are sent to the MPF-MC
via BCP.

control_events:

List of one (or more) values, each is a type: timer_control_events. Defaults to empty.

Timer control events is where you specify what happens to this timer when other events are posted.
See timer_control_events: for more details.

direction:

Single value, type: one of the following options: up, down. Default: up

Controls which direction this timer runs in. Options are up or down.

end_value:

Single value, type: integer or template (Instructions for entering templates). Defaults to empty.

Specifies what the final value for this timer will be. When the timer value equals or exceeds this (for
timers counting up), or when it equals or is lower than this (for timers counting down), the
timer_<name>_complete event is posted and the timer is stopped. (If the restart_on_complete:
setting is true, then the timer is also reset back to its start_value: and started again.)

Note that you can use a dynamic value for this setting.

max_value:

Single value, type: integer. Defaults to empty.

The maximum value this timer can be. If you try to add value above this, the timer’s value will be reset
to this value.

restart_on_complete:

Single value, type: boolean (true/false). Default: false

Controls what should happen when this timer completes. If you have restart_on_complete: true, then
this timer will reset back to the start_value and start again after it completes.

Index of config sections 1882

Mission Pinball Framework Documentation, Version

start_running:

Single value, type: boolean (true/false). Default: false

Controls whether this timer starts running (“started”), or whether it needs to be started with one of
the start control events.

start_value:

Single value, type: integer or template (Instructions for entering templates). Default: 0

The initial value of the timer. When a timer is restarted, this is the value it will always start from. If
you ever need to change the value, you can use a jump control action to set it to whatever value you
want. See timer_control_events: for more details.

Note that you can use a dynamic value for this setting.

tick_interval:

Single value, type: time string (secs) or template (Instructions for entering time strings and
Instructions for entering templates). Default: 1s

A time value for how fast each tick is. The default is 1 second, but quite often “pinball time” is slower
than real world time, and a countdown timer will actually tick a speed that’s slower than 1 second per
tick. (So in that case, you might set tick_interval: 1.25s or something like that. You can also set this
really short if you want a hurry up, maybe every 100ms removed 77,000 worth of points or something.

Also note that you can use dynamic values here if you want to do math or use settings to make this
configurable.

timer_control_events:

Config file section

Valid in machine config files NO
Valid in mode config files NO

The timer_control_events: section of your config is where you configure control events for your timer.

They’re entered as a list (with dashes) under the control_events: section. All control events have an
event: and action: setting. (When the “event” is posted, the “action” is taken. Some actions require
an additional value: setting. For example, for the “add” action which adds time, you need to to specify
how much time you want to add. But other actions, like “start” or “stop” don’t need values.

Here’s an example of control events in action:

##! mode: mode1

timers:

my_timer:

direction: down

start_value: 10

tick_interval: 125s

(continues on next page)

Index of config sections 1883

Mission Pinball Framework Documentation, Version

(continued from previous page)

control_events:

- event: start_my_timer

action: start

- event: reset_my_timer

action: reset

- event: add_5_secs

action: add

value: 5

In the example above, when the event start_my_timer is posted, the timer called “my_timer” will start
running. When the event add_5_secs is posted, 5 seconds will be added to whatever the current value
of “my_timer” is, etc.

Required settings

The following sections are required in the timer_control_events: section of your config:

action:

Single value, type: one of the following options: add, subtract, jump, start, stop, reset, restart, pause,
set_tick_interval, change_tick_interval, reset_tick_interval.

Take a look at the various types of actions you can perform on timers with control events:

add Adds the time (specified in the value: setting) to the timer. If the value would be higher than the
timer’s max_value: setting, then the value is set to the max value. Posts the
timer_<name>_time_added event.

This action does not change the timer’s running state.

The timer is checked for done after the value has been added. (So, for example, if you have a
timer that’s set to count up, and the timer finishes at 10, and the timer is currently at 6, and you
add value of 5, then the timer will be complete.

subtract Subtracts time (specified in the value: setting) from the timer. Posts the
timer_<name>_time_subtracted event and checks to see if the timer is complete.

jump “Jumps” the timer to a specific new value (specified in the value: setting) and checks to see if
the timer is complete.

start Starts the timer if it’s not running. Does nothing if the timer is already running. Posts the
timer_<name>_started event.

stop Stops the timer and posts the timer_<name>_stopped event. Removes any outstanding “pause”
delays.

reset Changes the timers current value back to the start_value:. Nothing else is touched, so if the
timer is running, it stays running, etc.

restart Acts as a combination of reset, then start.

pause Pauses the timer for a given value: time (in seconds). Note that the timer pause value is real
world seconds and does not take the timers tick interval into consideration. If the pause value is
0, the timer is paused indefinitely. Posts the timer_<name>_paused event.

Index of config sections 1884

Mission Pinball Framework Documentation, Version

set_tick_interval Sets the tick interval to a new value (specified in the value: setting).

change_tick_interval Changes the tick interval by multiplying the current tick interval by the new
one specified in the value: setting. In other words, if you want to make the tick interval 10%
faster, than set this to value: 1.1. If you want to make it 50% slower, set this to value: 0.5, etc.

reset_tick_interval (added in MPF 0.33)

Resets the timer’s tick interval back to the original from the tick_interval: setting.

event:

Single value, type: string.

The event which will trigger this value.

Optional settings

The following sections are optional in the timer_control_events: section of your config. (If you don’t
include them, the default will be used).

value:

Single value, type: number or template (will be converted to floating point; Instructions for entering
templates).

The value for this action. Not all actions require a value (i.e. start and stop do not). You can use
placeholders here to calculate it during runtime.

Related How To guides

∙ Timers

console_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the console log for this device.

debug:

Single value, type: boolean (true/false). Default: false

If true/yes, adds additional logging information to the verbose log for this timer.

file_log:

Single value, type: one of the following options: none, basic, full. Default: basic

Log level for the file log for this device.

Index of config sections 1885

Mission Pinball Framework Documentation, Version

label:

Single value, type: string. Default: %

Name of this device in service mode.

tags:

List of one (or more) values, each is a type: string. Defaults to empty.

Not used.

Related How To guides

∙ Timers

track_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the tracks: section of a step.

The track_player: section of your config is where you specify actions to perform on audio tracks when
MPF events are received. Tracks can be stopped, paused, or played with an optional fade time. The
volume of a track can also be changed with an optional fade time. Finally, all sounds currently playing
on a track can be stopped (again with an optional fade out time). (This player is part of the MPF media
controller and only available if you’re using MPF-MC for your media controller.)

This is an example:

track_player:

pause_music_track:

music:

action: pause

fade: 1 sec

resume_music_track:

music:

action: play

stop_sounds_on_all_tracks:

__all__:

action: stop_all_sounds

fade: 0.5 sec

See the config player for more information on config players.

Index of config sections 1886

Mission Pinball Framework Documentation, Version

Express configuration

There is no express (one line) configuration for the track player. You must specify the action setting
every time.

Required settings

The following sections are required in the track_player: section of your config:

action:

Single value, type: one of the following options: play, stop, pause, set_volume, stop_all_sounds.
Defaults to empty.

The action: setting controls what action will be performed on the specified track. Options for action:
are:

∙ play - The specified track will be played after it has been stopped or paused.

∙ stop - The track is stopped (with an optional fade out time). All sound processing on the track is
stopped and the track is cleared. All playing and queued sounds are canceled. All sound events
on the track are ignored/discarded while the track is stopped.

∙ pause - The track is paused (with an optional fade out time). All sound processing on the track is
paused. The track will pick-up where it left off when played/resumed. All sound events on the
track are ignored/discarded while the track is paused.

∙ set_volume - Set a new volume level for the track (with an optional timed fade from the current
volume level).

∙ stop_all_sounds - Stops all sounds currently playing on the track (with optional fade out time)
and cancels any pending sounds in the track sound queue. The fade_out setting for any playing
sounds will be ignored. The track will continue to process new sound events.

Optional settings

The following sections are optional in the track_player: section of your config. (If you don’t include
them, the default will be used).

fade:

Single value, type: time string (secs) (Instructions for entering time strings). Default: 0.1sec

The number of seconds over which to fade the specified track action. Applies to all track player
actions.

volume:

Single value, type: gain setting (-inf, db, or float between 0.0 and 1.0). Defaults to empty.

The new volume setting for the track. As with all volume parameters in MPF, this item can be
represented as a number between 0.0 and 1.0 (1.0 is max volume, 0.0 is off, 0.9 is 90%, etc.) It also

Index of config sections 1887

Mission Pinball Framework Documentation, Version

can be represented as a decibel string from -inf to 0.0 db (ex: -3.0 db). This setting only applies to the
set_volume action and will be ignored for all others.

Related How To guides

∙ Track player

∙ Sound & Audio Tips & Tricks

trinamics_steprocker:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The trinamics_steprocker: section of your config is where you configure the trinamics steprocker
platform.

Required settings

The following sections are required in the trinamics_steprocker: section of your config:

port:

Single value, type: string. Defaults to empty.

Serial port to use to connect to the steprocker.

Related How To guides

∙ Trinamic’s StepRocker

twitch_client:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The twitch_client: section of your config is where you configure the built-in Twitch chat monitor.

Before using this plugin you must install the irc library with pip3 install irc

twitch_client:

user: TwitchBotAccount

password: oauth:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

channel: ChatChannel

Index of config sections 1888

Mission Pinball Framework Documentation, Version

machine_vars:

twitch_user:

initial_value: 'TwitchBotAccount'

value_type: str

twitch_password:

initial_value: 'oauth:xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx'

value_type: str

twitch_channel:

initial_value: 'ChatChannel'

value_type: str

twitch_client:

user_var: twitch_user

password_var: twitch_password

channel_var: twitch_channel

DO NOT CHECK YOUR PASSWORD INTO SOURCE CONTROL. If you use a service like Github you
should not check in your password. If this is stored publicly then someone could log in as you on
Twitch.

Optional settings

The following sections are optional in the twitch_client: section of your config. (If you don’t include
them, the default will be used).

channel:

Single value, type: string. Defaults to empty.

The channel on Twitch which will be monitored for messages.

channel_var:

Single value, type: string. Defaults to empty.

his is the machine variable name that contains the channel on Twitch which will be monitored for
messages.

password:

Single value, type: string. Defaults to empty.

This is a Twitch OAuth token, not the actual password of the user. You can generate this token at
https://twitchapps.com/tmi/

password_var:

Single value, type: string. Defaults to empty.

Index of config sections 1889

https://twitchapps.com/tmi/

Mission Pinball Framework Documentation, Version

This is the machine variable name that contains the password to use when connecting to Twitch, This
is a Twitch OAuth token, not the actual password of the user. You can generate this token at
https://twitchapps.com/tmi/

When you run mpf -b it may show your token in the machine variables portion of the window. Be
careful what you share on stream.

user:

Single value, type: string. Defaults to empty.

This is the user that will connect to Twitch. You may want to create a separate bot account on Twitch
to use for this purpose.

user_var:

Single value, type: string. Defaults to empty.

This is the machine variable name that contains the user that will connect to Twitch. You may want to
create a separate bot account on Twitch to use for this purpose.

Related How To guides

Todo: Help us to write it

variable_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The variable_player: section of your mode config lets you add, subtract, or replace player variables
based on events that are posted.

At the most basic level, you can use this to add to a player’s score (which is technically adding value to
the player variable called score), but in reality you can affect any player or machine variable.

Here’s an example:

##! mode: mode1

variable_player:

target_1_hit:

score: 1000 # adds 1000 to the player's "score" variable

ramp_1_hit:

score: 10000 # adds 10,000 to the player's "score" variable

ramps: 1 # adds 1 to the player's "ramps" variable

ramp_1_timeout:

ramps:

(continues on next page)

Index of config sections 1890

https://twitchapps.com/tmi/

Mission Pinball Framework Documentation, Version

(continued from previous page)

int: 0 # sets the player's "ramps" variable to 0.

action: set # means that this event will "set" (or reset) the variable to the value, rather␣

→˓than add to it

ramp_2_hit:

score:

int: 25000 * current_player.ramps # multiplies the value of the current player's "ramps"␣

→˓variable by 25,000 and adds the result to the player's "score" variable

block: true # "blocks" this event from being passed to variable player sections from lower-

→˓priority modes

counter_treasure_value_complete:

treasure_name:

string: RUBY # Sets the player's "treasure_name" variable to a string called "RUBY"

See Variable player for details.

Settings

Like many sections of MPF configs, the variable_player: section format is generically setup like this:

variable_player:

some_event:

<settings>

some_other_event:

<settings>

another_event:

<settings>

The following settings can be used with each event section listed in your variable_player section:

Example

You can include any player variable under an event to add numeric value to that variable. (If the
variable doesn’t exist, it will set the player variable to that.) For example:

##! mode: mode1

variable_player:

some_event:

score: 1000

aliens: 1

bonus: 10

The above config will add 1000 to the “score” player variable, 1 to the “aliens” player variable, and 20
to the “bonus” player variable when the event called some_event is posted. Note that you don’t even
need to include a “score” if you just want to add to other player vars.

Note that you can use a dynamic value for this setting too, which means you can pull in values from
other player variables, device states, etc. and do math on them.

Optional settings

The following sections are optional in the variable_player: section of your config. (If you don’t
include them, the default will be used).

Index of config sections 1891

Mission Pinball Framework Documentation, Version

action:

Single value, type: one of the following options: add, set, add_machine, set_machine. Default: add

By default, the variable player entries will be added to the existing value of a player variable. If you
want to replace or reset the value of the player var, you can add action: set to the entry. However to
do this, you have to indent that setting under the player var name, and then specify the value in the
“int:” section. For example, if you want the example from the above section to reset the aliens player
variable to 1 instead of adding 1 to the current value, it would look like this:

##! mode: mode1

variable_player:

some_event:

score: 1000

aliens: # the player var you want to reset

int: 1 # the integer value you're resetting this player var to

action: set # means you're resetting it, rather than adding to it

bonus: 10

Starting in MPF 0.33, you can also add and set machine variables, by specifying action: add_machine
or action: set_machine. In these cases the machine variable is specified just like the player variable
in the “set” example above.

block:

Single value, type: boolean (true/false). Default: false

This is useful if you have a shot in a base mode that scores 500 points, but then in some timed mode
you want that shot to be 5,000 points but you don’t also want the base mode to score the 500 points on
top of the 5,000 from the higher mode.

Note that when you use block, you also have to include the int:, float:, or string: setting indented.
For example:

##! mode: mode1

variable_player:

ramp_1_hit:

score:

int: 5000

block: true

There is also a shorthand way:

##! mode: mode1

variable_player:

ramp_1_hit:

score: 5000|block

float:

Single value, type: number or template (will be converted to floating point; Instructions for entering
templates). Defaults to empty.

Index of config sections 1892

Mission Pinball Framework Documentation, Version

Adds or sets a player or machine variable to the specified float value. The int: setting takes priority
over the float: setting so if both are present only the int: will be used. You can use placeholders
which evalute to float as well.

int:

Single value, type: integer or template (Instructions for entering templates). Defaults to empty.

Adds or sets a player or machine variable to the specified integer value (this is the most common use
of the variable_player). The int: setting takes priority over the float: setting so if both are present
only the int: will be used. You can use placeholders which evalute to int as well.

player:

Single value, type: integer. Defaults to empty.

##! mode: mode1

variable_player:

add_score_to_player_2:

score:

int: 1000

player: 2

If the player: setting is not used, then this variable_player entry will default to the current player.

string:

Single value, type: template_str. Defaults to empty.

Here’s an example from Brooks ‘n Dunn where there is a player variable (set via a counter) which
tracks the player’s current album value. We use the variable_player section tied to the events posted
when the player variable changes and conditional events to set the current name of the album value,
like this:

##! mode: mode1

variable_player:

player_album_value{value==1}:

album_name:

string: SILVER

player_album_value{value==2}:

album_name:

string: GOLD

player_album_value{value==3}:

album_name:

string: PLATINUM

player_album_value{value==4}:

album_name:

string: DOUBLE PLATINUM

player_album_value{value==5}:

album_name:

string: QUINTUPLE PLATINUM

player_album_value{value>5}:

(continues on next page)

Index of config sections 1893

Mission Pinball Framework Documentation, Version

(continued from previous page)

album_name:

string: OFF THE CHARTS!

The above config lets us always have a player var called “album_name” we can use in slides and
widgets which matches the value of the album, and it’s automatically updated whenever the player var
“album_value” changes.

Related How To guides

∙ Variable player

∙ Scoring

∙ Tutorial step 15: Add scoring

∙ Persisting the State of a Logic Block in a Player Variable

video_pools:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The video_pools: section of your config is where you. . .

Todo: Help us to write it

videos:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The videos: section of your config is where you configure non-default parameter values for any video
assets you want to use in your game. Note: You do not have to have an entry for every single video
you want to use, rather, you only need to add individual assets to your config file that have settings
which different from other assets in that asset’s folder. (This section is part of the MPF media
controller and only available if you’re using MPF-MC for your media controller.)

More information on working with assets is in the Assets section of the documentation.

Each sub-entry in your videos: section is the name that MPF will use to refer to that asset. (In other
words it’s how you specify that asset in other areas of your config files.) The asset manager works by
first scanning the file system to build up a list of asset files it finds. Then it looks at the config to see if
there are any additional settings specified for each asset.

For example:

Index of config sections 1894

Mission Pinball Framework Documentation, Version

videos:

intro_video:

width: 100

height: 70

file: mpf_video_small.mpg

So in the example above, if the asset manager found a file called mpf_video_small.mpg on disk, then it
will also see the intro_video entry in the config file and know that those two match. (The “match” is
just based on the part of the file name without the extension, so the settings entry for intro_video:
would match mpf_video_small.mpg and mpf_video_small.m4v. In other words, don’t name two files with
the same name if you want to keep them straight.)

Optional settings

The following sections are optional in the videos: section of your config. (If you don’t include them,
the default will be used).

events_when_played:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this video is played. Enter the list in the
MPF config list format. These events are posted exactly as they’re entered.

events_when_stopped:

List of one (or more) events. Those will be posted by the device. Defaults to empty.

A list of one or more names of events that MPF will post when this video stops playing. Enter the list
in the MPF config list format. These events are posted exactly as they’re entered. These events can be
useful to trigger some action when a video has finished playing (like remove a slide).

file:

Single value, type: string. Defaults to empty.

Sometimes you might want to name a file one thing on disk but refer to it as another thing in your
game and config files. In this case, you can create an file: setting in an asset entry. (Note the file:
hello_face_300.jpg setting in the example above, and note that it includes the file extension.) In this
example, you would refer to that image asset as hello_face even though the file is hello_face_300.

You might be wondering why this exists? Why not just change the file name to be whatever you want
and/or who cares what the name is? The reason this function exists is because it allows for the
separation of the actual file on disk from the way it’s called in the game. For example, you could use
this to create two sets of assets—one for a traditional DMD and one for a color DMD—and then you
could refer to the asset by its generic name throughout your configs. (In other words, you could swap
out assets for different physical machine types without having to update your display code.) That said,
we expect that 99% of people won’t use this file: setting, which is fine.

Index of config sections 1895

Mission Pinball Framework Documentation, Version

height:

Single value, type: number (can be integer or floating point). Defaults to empty.

The height of this video, in pixels.

load:

Single value, type: string. Default: preload

Videos are always streamed from disk (rather than preloaded into memory), so this setting has no
effect with video assets.

priority:

Single value, type: integer. Default: 0

Loading priority of this asset.

width:

Single value, type: number (can be integer or floating point). Defaults to empty.

The width of this video, in pixels.

Related How To guides

Todo: Help us to write it

virtual_platform_start_active_switches:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The virtual_platform_start_active_switches: section of your config is where you define all switches
which should start as active when running your machine with the virtual or smart_virtual platform
(e.g. when running mpf -X).

This is an example:

switches:

s_ball_switch1:

number:

s_ball_switch2:

number:

(continues on next page)

Index of config sections 1896

Mission Pinball Framework Documentation, Version

(continued from previous page)

s_ball_switch3:

number:

Start with two (virtual) balls

virtual_platform_start_active_switches:

- s_ball_switch1

- s_ball_switch2

Related How To guides

∙ Using MPF without physical hardware

∙ Troughs / Ball Drains

virtual_segment_display_connector:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The virtual_segment_display_connector: section of your config is where you configure the connector
that establishes the link between segment displays and the virtual segment display emulator widgets
in the MPF-MC.

virtual_segment_display_connector:

segment_displays: display1

Optional settings

The following sections are optional in the virtual_segment_display_connector: section of your config.
(If you don’t include them, the default will be used).

bcp_connection:

Single value, type: string. Default: local_display

The name of the BCP connection the MPF-MC is connected to. Normally this does not need to be
modified as the default value should be correct.

debug:

Single value, type: boolean (true/false). Default: false

Todo: Help us to write it

Index of config sections 1897

Mission Pinball Framework Documentation, Version

segment_displays:

List of one (or more) values, each is a type: string name of a segment_displays device. Defaults to
empty.

A list of one or more segment display names which is used to specify which segment displays should
be activated in the connector to send the appropriate information to the MPF-MC.

Related How To guides

Todo: Help us to write it

widget_player:

Config file section

Valid in machine config files YES
Valid in mode config files YES

Note: This section can also be used in a show file in the widgets: section of a step.

The widget_player: section of your config is where you configure widgets to be added to, removed
from, or updated on slides (or parent frames) based on based on events being posted.

This is an example:

widget_player:

some_event:

widget_1:

slide: slide_2

It will add widget_1 to slide_2.

See Widget player for details.

Settings

The following sections can be added under the the a particular widget’s settings widget_player:
section of your config. (If you don’t include any of them, the default will be used).

So again, the format in a config file would be:

#config_version=5

widget_player:

some_event:

name_of_your_widget:

<list of settings below go here>

(continues on next page)

Index of config sections 1898

Mission Pinball Framework Documentation, Version

(continued from previous page)

some_other_event:

name_of_a_different_widget:

<list of settings below go here>

And the format in a show file would be:

#show_version=5

- duration: 1s

widgets:

name_of_your_widget:

<list of settings below go here>

name_of_a_different_widget:

<list of settings below go here>

Here are the settings you can use:

Optional settings

The following sections are optional in the widget_player: section of your config. (If you don’t include
them, the default will be used).

action:

Single value, type: one of the following options: add, remove, update. Default: add

add The widget or widget group is added to the slide or display target.

remove The widget or widget group is removed from the slide or display target.

update One or more of the widget or widget group’s properties is updated.

key:

Single value, type: string. Defaults to empty.

Used to uniquely identify a widget. With “add” actions, this sets the key name, and with “remove” or
“update” actions, the key is used to identify which widget should be removed or updated.

Note that more than one widget (across displays and across slides) can have the same key, and if you
remove a widget based on a key, it will remove all the widgets with that key. (In fact this is how MPF
works internally to remove all widgets that were created by a mode when that mode ends.)

See the Widget Keys guide for details.

slide:

Single value, type: string. Defaults to empty.

The name of the slide you want to add this widget to. If this is not specified, then the widget will be
added to whichever slide is currently active on the default display.

Index of config sections 1899

Mission Pinball Framework Documentation, Version

target:

Single value, type: string. Defaults to empty.

The name of the display or slide frame this widget will be added to. When this setting is used, the
widget is not added to a slide, rather, it’s added “on top” of the slide (to the parent display or slide
frame). See the Widget layers, z-order, & parent frames guide for details.

Note that the target: and slide: setting are fundamentally not compatible with each other. If you
used both, the target: setting will be used and the slide: value will be ignored.

widget_settings:

Unknown type. See description below.

widget_player:

trigger_event:

my_widget:

widget_settings:

z: 1

Related How To guides

∙ Widget player

widget_styles:

Config file section

Valid in machine config files YES
Valid in mode config files YES

The widget_styles: section of your config is where you configure styles for your widgets.

Default styles for widget types

You can define defaults for certain widget types. A widget will use the style (name)_default if no other
style is specified. For instance, a default style for all text widgets would look like:

widget_styles:

text_default:

font_size: 21

color: red

Specifying widget styles

You can also specify re-usable styles and apply them to widgets. In the following example, the text
“HELLO” will render at font size 100:

Index of config sections 1900

Mission Pinball Framework Documentation, Version

widget_styles:

big_style:

font_size: 100

slides:

slide1:

- type: text

text: HELLO

style: big_style

You can supply multiple styles to a single widget, and they will be applied in the order given.

widget_styles:

warning_text:

font_size: 12

color: yellow

bottom_left:

anchor_x: left

anchor_y: bottom

x: 5

y: 5

hurryup:

color: red

widgets:

timer_runout:

- type: text

text: Hurry!

style: warning_text, bottom_left, hurryup

In the above example, the text “Hurry!” will be anchored in the lower-left of the display and rendered
at size 12 and color red. Notice that the color from the hurryup style overwrites the color from
warning_text style, because of the order the styles are listed in the widget.

The config reference below is incomplete. You can use all settings of your widget.

Optional settings

The following sections are optional in the widget_styles: section of your config. (If you don’t include
them, the default will be used).

color:

Single value, type: color (color name, hex, or list of values 0 -255). Default: ffffffff

The color of the widget.

Related How To guides

∙ Working with Fonts

widgets:

Config file section

Index of config sections 1901

Mission Pinball Framework Documentation, Version

Valid in machine config files YES
Valid in mode config files YES

The widgets: section of your config is where you pre-define “named” widgets that you can then use
later in shows and the widget_player section of a config file. See the Widgets guide for details. You
can test slides and widgets interactively using Interactive MC (iMC) .

Since there are many different types of widgets in MPF, it doesn’t make sense to list all the widget
type and all the options here. Instead check out the Widgets documentation which has all the details,
including config file reference for different types of widgets.

window:

Config file section

Valid in machine config files YES
Valid in mode config files NO

The window: section of your config is where you configure the properties of the main on-screen
window which is created by MPF-MC.

window:

width: 800

height: 600

title: Mission Pinball Framework

resizable: true

borderless: true

fullscreen: false

exit_on_escape: true

source_display: window

effects:

- type: dmd

Note: If you do not add a window: section to your machine config, MPF will create a window at the
default size of 800x600.

Optional settings

The following sections are optional in the window: section of your config. (If you don’t include them,
the default will be used).

borderless:

Single value, type: boolean (true/false). Default: false

Controls whether the pop-up window has a border (the “frame”) around it.

Index of config sections 1902

Mission Pinball Framework Documentation, Version

effects:

Unknown type. See description below.

An optional list of effects to apply to the window contents. These effects perform image processing to
the source image and can be used to get an old school “DMD look” or “color DMD look” to your
window as well as other special effects. For more information on effects, please review the effects
documentation.

exit_on_escape:

Single value, type: boolean (true/false). Default: true

Controls whether the MPF MC shuts down when the Esc key is pressed.

fullscreen:

Single value, type: boolean (true/false). Default: false

Controls whether the pop-up window should be a full screen window (if the value is “true”) or whether
it should be a regular window.

height:

Single value, type: integer. Default: 600

The initial height of the popup window, specified in pixels.

icon:

Single value, type: string. Defaults to empty.

The icon for the window which will be shown in the title bar.

left:

Single value, type: integer. Defaults to empty.

Used to position a non-fullscreen window in a precise location on the screen. (This is useful if you’re
using an LCD display in your machine and your backbox has a smaller opening than the size of the
screen. In that case you need to make sure the pop-up window always shows up in the proper
location.)

The left: value specifies how many pixels the left edge of the window will be offset from the left edge
of the screen. (See the top: setting to control the vertical placement.)

Index of config sections 1903

Mission Pinball Framework Documentation, Version

maxfps:

Single value, type: integer. Default: 60

Sets the maximum frames-per-second that the window is updated. Setting a lower value can potential
save CPU / GPU usage.

minimum_height:

Single value, type: integer. Default: 0

If you have a resizable window, this specifies the minimum height the window can be resized to.

minimum_width:

Single value, type: integer. Default: 0

If you have a resizable window, this specifies the minimum width the window can be resized to.

no_window:

Single value, type: boolean (true/false). Default: false

Controls whether the pop up window is used.

resizable:

Single value, type: boolean (true/false). Default: true

Specifies whether the pop-up window can be resized (by dragging an edge with the mouse). If your
window is full screen, then this setting will have no effect.

show_cursor:

Single value, type: boolean (true/false). Default: true

Specifies whether the mouse cursor should be drawn when the pointer is moved over the window. If
you set this to False/No, then when you drag the pointer over the window, the pointer will disappear.

source_display:

Single value, type: string. Default: window

The name of the MPF display that will be used for the source content for the pop-up window.

Index of config sections 1904

Mission Pinball Framework Documentation, Version

title:

Single value, type: string. Default: Mission Pinball Framework

The text that’s shown in the window title bar (assuming your window is not full screen and not
borderless).

top:

Single value, type: integer. Defaults to empty.

Used to position the pop up window in a fixed position when MPF MC starts.

See the setting left: for details.

width:

Single value, type: integer. Default: 800

The initial width of the popup window, specified in pixels.

Related How To guides

∙ Using an LCD for a display

∙ Using multiple screens

∙ How to give your on-screen window the DMD “dot look”

Index of config sections 1905

CHAPTER26

Events

The concept of events is one of the most important concepts in MPF. MPF is an event-driven
framework, and just about everything is either posting and event or responding to an event that was
posted.

There are several important concepts about events in MPF that you should understand:

Events Overview

Video about events in MPF:

https://youtu.be/G3UbVP8gFU0

It’s easiest to understand the concept of events by going through some examples.

For example, you might have a variable_player: entry in your config which watches for an event
called target1_hit, and when it sees it, it adds 1000 points to the player’s score, like this:

##! mode: base

variable_player:

target1_hit:

score: 1000

What’s really happening behind the scenes here is MPF’s variable_player system tells the event
system, “Hey, if you see an event called target1_hit, let me know about it.” (This is called “registering
a handler”, because the variable_player system is registering with the event since that it can handle
that event.)

Then later on, the switch for target 1 gets activated, and the shot controller posts the event called
target1_hit. The Event Manager says, “Hey, I remember the variable_player system wanted to know
about that”, so it tells the variable_player system that target1_hit was just posted and the
variable_player system can wake up and deal with it (adding the points, in this case).

So really there are two parts to the events system:

1906

https://youtu.be/G3UbVP8gFU0

Mission Pinball Framework Documentation, Version

∙ Things that generate (post) events.

∙ Things that take action on (handle) events.

Let’s look at each of these.

Things that generate (post) events

There are hundreds of different things that post events in MPF (for all sorts of reasons). Just to pick
some random examples of things that post events:

∙ A switch is hit

∙ A player variable changes

∙ A timer expires

∙ A mode stops or starts

∙ A new slide is shown on the display

∙ A ball drains

∙ A ball enters a ball device

∙ A new player’s turn starts

∙ etc.

We actually have a giant list of all the events that are posted by everything in MPF. This is called the
event_reference. (It’s also linked from the “Reference” section in the menu on the left of every page in
the docs website since it’s so important.)

As you read through the rest of the documentation for various aspects of MPF, you’ll see settings for
things like events_when_XX: with the “XX” being some state.

For example, logic blocks have a setting called events_when_hit: where you can enter the name of an
event. (In that case the name can be whatever you want, like events_when_hit: mpf_is_awesome, and
then when that logic block is hit, it will post the event mpf_is_awesome, and any other components
that are registered for that event will see it and take their respective action.

This means that while the event reference is useful because it shows all the built-in events, your
machine will have lots of other events not on that list that you define.

Things that take action on (handle) events

The flip side of things that post events is things that taken action on (or “handle”) events. These are
the things that watch for certain event names, and then when they see them, they take action.

Some random examples:

∙ The game mode will look for ball_drain events which it will handle by ending the current player’s
ball.

∙ The variable_player system might look for a shot hit event to add points to the player’s score.

∙ A jackpot mode might look for a ramp made event to play a show which will flash some lights and
display a jackpot slide.

Events Overview 1907

Mission Pinball Framework Documentation, Version

∙ A mode might look for the event which comes from shooting a ball into a ball lock to start a
multiball mode.

∙ etc.

As you’ll see as you read through the MPF documentation, there are two main ways (plus a lot of little
ways) to make things happen when certain events are posted:

In the various config players (slide_player, light_player, show_player, etc.), you create entries based
on event names.

For example, in a config file:

slide_player:

mpf_is_awesome: my_slide

The above config will show the slide called “my_slide” on the display when the event mpf_is_awesome
is posted. Of course this could be any event, including one from the Events Reference list or a custom
event like we discussed above.

Also, a lot of things in MPF have XX_events: settings, (the “XX” will be some word) which is where you
can event event names that cause that action to happen. For example, you may have a drop target
configured like this:

drop_targets:

my_drop_target:

switch: s_drop_target_1

reset_coil: c_drop_target_reset

reset_events: mpf_is_awesome

In this case, when the event mpf_is_awesome is posted, that will cause that drop target to reset.
Again, this is just one random example of the literally hundreds of things that can take action on
events, and these events could be from the master events list or your own custom events.

The Event Manager

One of MPF’s internal core components is called the Event Manager. The event manager keeps track
of the hundreds of handlers that have registered for different events, and it’s what other components
contact when they want to post and event.

When an event is posted, the event manager contacts the handlers to let them know that they need to
take action on their event.

Luckily the complexity of the event manager is hidden from you—all you have to know is that events
are posted and handlers can act on them.

Finally, here are a few more random thoughts about events in MPF:

∙ There are lots and lots of events in MPF. Sometimes they come really fast—a dozen or more in a
few milliseconds.

∙ Not every event will have a handler registered. If something posts an event and nothing is
registered to handle it, so be it!

∙ Multiple handlers can be registered for the same event. In this case the event manager just
notifies the handlers one-by-one.

Events Overview 1908

Mission Pinball Framework Documentation, Version

∙ Event handlers are constantly added and removed throughout the lifecycle of a game. (For
example, when a mode starts, all sorts of handlers are registered to watch for things that mode
needs, and when the mode ends, those handlers are removed.)

∙ Event names are not case sensitive. (They’re technically all converted to lowercase internally.)

Conditional Events

So far we’ve talked about how events are just strings of text, for example:

∙ ball_started

∙ game_ending

∙ shot1_hit

∙ mode_jackpot_starting

∙ etc.

However, it’s possible for events to have key/value parameters attached to them.

For example, when the “ball_started” event is posted, it has two parameters attached to it: “ball”
(which is the number of the ball that’s started), and “player” which is the number of the player whose
ball just started.

This means that the “ball_started” event isn’t just MPF saying, “Hey, a ball just started”, rather, it’s
more like MPF saying, “Hey, a ball just started for player 2, ball 3.”. You can also see that in your mpf
log:

INFO : EventManager : Event: ======'ball_started'====== Args={'player': 2, 'ball': 3}

By the way, in case you’re wondering how we know that the ball_started event has those parameters
(or even that ball_started is an event), they’re all in the event reference guide, and the entry for
ball_started lists the parameters it has along with an explanation of what those mean.

In addition to parameters in your event you can also reference most devices in your machine. For
instance, you might want to start a mode after a counter reached a certain value. You can reference
any placeholder variable in a condtion and also apply arbitrary logic/conditions to them.

Using keyword arguments in your config files

What’s really cool about event parameters is that you can use them in your config files when you enter
things that take action on events.

For example, here’s a section of a config file that would show a slide called “lets_go” when the
ball_started event was posted:

slide_player:

ball_started: lets_go

ball_ended:

lets_go:

action: remove

The example above will show that slide any time that the ball_started event was posted, regardless of
what the values of the parameters are.

Conditional Events 1909

Mission Pinball Framework Documentation, Version

However, you can enter the event name in your config file a bit differently so that the action only takes
place if that event is posted AND if the parameters have certain values.

For example:

slide_player:

ball_started{ball==1}: first_ball_intro

ball_ended:

first_ball_intro:

action: remove

In the above example, the slide “first_ball_intro” will only be posted when the ball_started AND when
the value of ball is 1. (Since this entry doesn’t mention “player”, then this action would happen when
ball 1 is started for any player.)

Of course you can use multiple entries with different values, like this:

slide_player:

ball_started{ball==1}: first_ball_intro

ball_started{ball>1}: lets_go

ball_ended:

first_ball_intro:

action: remove

lets_go:

action: remove

In this case, when the ball_started event is posted for Ball 1, the “first_ball_intro” slide will be shown.
And if it’s posted with a ball after Ball 1, the “lets_go” slide will be posted.

You can also combine things here using and or or. For example:

slide_player:

ball_started{ball==1 or ball==3}: special_slide

Now the “special_slide” will be shown for either ball 1 or ball 3.

You can also combine with “and”, for example:

slide_player:

ball_started{ball==3 and player==1}: special_slide

Now the “special_slide” will only show when the ball_started event is posted for player 1, ball 3 (but
not player 2, ball 3, etc.).

Feeling crazy yet?

In addition to keyword arguments from events), you can also use current_player. to access player
variables, players[x] to access player variables from any player (x is the player index), machine. to
access machine variables, game. game attributes, and settings. to access operator settings.

slide_player:

ball_started{current_player.score > 1000000}: you_rule

ball_started{current_player.score < 10000 and ball == 3}: you_stink

The above config will show the slide “you_rule” any time the ball_started event is posted and the
player’s score is more than 1 million. It will also show the slide “you_stink” if ball 3 is starting and the
player has less than 10,000 points.

Conditional Events 1910

Mission Pinball Framework Documentation, Version

But wait, there’s more!

You can also use standard math operators (+, -, *, /, //, etc.) to evaluate whether the action should
take place:

slide_player:

ball_started{ball > 1 and current_player.score < ((ball - 1) * 10000)}: uh_oh

This will post the slide “uh_oh” if the player is starting a ball after Ball 1 and their score is less than an
average of 10k points per ball. (Notice that you can also use parentheses to control the order of
operation stuff you learned in school.)

Most likely you wouldn’t get that complex, but it’s nice to know that you can if you want. :)

You can also reference devices in your machine. The syntax for that is
device.DEVICE_TYPE.DEVICE_NAME.PLACEHOLDER. For instance, to reference the value of a counter called
your_mode_counter you would use device.counters.your_mode_counter.value. In the following example
we show a slide when the value of the counter is above 5 in ball 3

slide_player:

ball_started{ball == 3 and device.counters.your_mode_counter.value > 5}: nearly_did_all_modes

You can use all placeholder variables.

Subscribed config players

Sometimes you want to play a show, display a slide or enable a light when certain condition hold true
and remove/disable it when the condition no longer holds. This would usually require two config
player entries with two different events to add and remove the show (or light). However, MPF
supports subscriptions in config players for certain (not all) variables.

This is an example:

light_player:

"{machine.test_machine_var == 23}":

led4: red

"{current_player.test_player_var == 42}":

led5: red

If will turn led4 to red once the machine variable test_machine_var becomes 23 and turns led4 back to
off once test_machine_var becomes something else. Same for led5 and player variable
test_player_var.

Comparisons

∙ == equal

∙ != not equal

∙ > greater than

∙ >= greater than or equal to

∙ < less than

∙ <= less than or equal to

Conditional Events 1911

Mission Pinball Framework Documentation, Version

Operators

∙ + add

∙ - subtract (or negative if there’s no space after it)

∙ * multiply

∙ / divide

∙ ^ power (exponent)

∙ % modulus

∙ ^= bit xor

∙ not

∙ and

∙ or

Handler Priorities

When you have some code you want to register to be a handler for an event, you can optionally specify
a priority. (Priority is just an integer value.) The default priority for events is 1. If you want a
guarantee that a certain event handler will fire last, then register that handler with a priority that’s
lower than any other handler for that event. And if you want to guarantee that a handler fires first,
register it with a higher priority. (In this case, “higher” and “lower” are literal. A handler with a
priority of 500 will be called before a handler of 100.)

The actual integer values of the priorities are arbitrary. They’re called one-by-one, one after the other,
in order from highest to lowest. Whether your priorities are 3, 2, and 1, or 1000, 100 and 0, or 1000,
999, 998, and 1 makes no difference.

MPF automatically registers event handlers from modes with the priority of that mode, meaning
high-priority modes get access to an event before lower-priority modes. (This is useful since it gives
higher-priority modes a chance to “block” events from lower-priority modes.)

See Device Control Events on how to use event handlers in devices.

Types of events

There are several different types of events in MPF, including:

∙ Basic

∙ Queue

You can find the details of how to use each of these events by reading through the API documentation
for the event manager, but here’s a quick overview.

Video about events in MPF:

https://youtu.be/G3UbVP8gFU0

Handler Priorities 1912

https://youtu.be/G3UbVP8gFU0

Mission Pinball Framework Documentation, Version

Basic Events

The basic event is a simple event with a name (and possibly keyword argument pairs) that is posted.

The event manager will call the registered handlers one-by-one in the order of their priority (from
when they registered).

Queue Events

Queue events are similar to basic events, except that the event won’t actually finish until all the
handlers say it’s ok to do so.

The game_ending event is an example of a queue event. When the game is over, game_ending is
posted, and when that’s done, game_ended is posted and the attract mode starts again. However
there are several modes that might want to “block” the completion of game_ending until they can do
whatever they need to do. For example, if match is enabled, it will want to block game_ending until it
can run the match animation. If a player has achieved a high score, the high score mode will want to
block game ending, etc.

You can create your own queue events with the queue_event_player: and queue_relay_player: config
file sections.

Note for Programmers

If you’re a programmer and familiar with Python, you’ll notice in the source code that there are more
types of events than just basic and queue events. The basic and queue events are the only ones that
are exposed via config files, but you’ll notice there are boolean and relay events, and that there are
asynchronous versions of all events too. See the API reference for details.

Event Reference

Here’s a list of all the “built in” events that are included in MPF and the MPF MC. Of course your own
machine could include custom events that aren’t on the list here.

Every event in MPF is just a string of text. You’ll see that in many cases, the actual event that’s posted
has a slight variation of the event text, typically incorporating something about which mechanism or
logic device posted the event.

For example, the switch event called (name)_active will replace the “(name)” part of the event text
with the actual switch name. So the when a switch called s_left_slingshot is activated, it will posted
an event called switch_s_left_slingshot_active.

achievement_(name)_changed_state

MPF Event

Achievement (name) changed state.

Valid states are: disabled, enabled, started, completed, stopped

This is only posted once per state. Its also posted on restart on the next ball to restore state.

Event Reference 1913

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

restore true if this is reposted to restore state

selected Whatever this achievement is selected currently

state Current state

Event is posted by achievements:

achievement_(name)_state_(state)

MPF Event

Achievement (name) changed to state (state).

Valid states are: disabled, enabled, started, completed, stopped

This is only posted once per state. Its also posted on restart on the next ball to restore state and when
selection changes.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

restore true if this is reposted to restore state

selected Whatever this achievement is selected currently

state Current state

Event is posted by achievements:

asset_loading_complete

MPF Event

Posted when the asset manager has loaded all the assets in its queue.

Note that this event does NOT necessarily mean that all asset loading is complete. Rather is just
means that the asset manager has loaded everything in its queue.

For example, when the MPF-MC boots, it will load the assets it is configured to load on start. However,
if the MPF MC is started but MPF is not, then the MPF MC will load its assets and then post this
asset_loading_complete event when it’s done. Then when MPF is started and connects, MPF will need
to load its own assets, which means the MPF MC will post more loading_assets and then a final
asset_loading_complete event a second time for the MPF-based assets.

This event does not have any keyword arguments

Event Reference 1914

Mission Pinball Framework Documentation, Version

ball_drain

MPF Event

A ball (or balls) has just drained. (More specifically, ball(s) have entered a ball device tagged with
“drain”.)

This is a relay event.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that have just drained. Any balls remaining after the relay will be
processed as newly-drained balls.

device The ball device object that received the ball(s)

ball_ended

MPF Event

The ball has ended.

Note that this does not necessarily mean that the next player’s turn will start, as this player may have
an extra ball which means they’ll shoot again.

This event does not have any keyword arguments

ball_ending

MPF Event

The ball is ending. This is a queue event and the ball won’t actually end until the queue is cleared.

This event is posted just after ball_will_end

This event does not have any keyword arguments

ball_hold_(name)_balls_released

MPF Event

The ball hold device (name) has just released a ball(s).

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls_released The number of balls that were just released.

Event is posted by ball_holds:

Event Reference 1915

Mission Pinball Framework Documentation, Version

ball_hold_(name)_full

MPF Event

The ball hold device (name) is now full.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls currently held in this device.

Event is posted by ball_holds:

ball_hold_(name)_held_ball

MPF Event

The ball hold device (name) has just held additional ball(s).

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls_held The number of new balls just held.

total_balls_held The current total number of balls this device has held.

Event is posted by ball_holds:

ball_save_(name)_disabled

MPF Event

The ball save called (name) has just been disabled.

This event does not have any keyword arguments

Event is posted by ball_saves:

ball_save_(name)_enabled

MPF Event

The ball save called (name) has just been enabled.

This event does not have any keyword arguments

Event is posted by ball_saves:

Event Reference 1916

Mission Pinball Framework Documentation, Version

ball_save_(name)_grace_period

MPF Event

The ball save called (name) has just entered its grace period time.

This event does not have any keyword arguments

Event is posted by ball_saves:

ball_save_(name)_hurry_up

MPF Event

The ball save called (name) has just entered its hurry up mode.

This event does not have any keyword arguments

Event is posted by ball_saves:

ball_save_(name)_saving_ball

MPF Event

The ball save called (name) has just saved one (or more) balls.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls this ball saver is saving.

early_save True if this is an early ball save.

Event is posted by ball_saves:

ball_save_(name)_timer_start

MPF Event

The ball save called (name) has just start its countdown timer.

This event does not have any keyword arguments

Event is posted by ball_saves:

ball_save_(name)_add_a_ball_timer_start

MPF Event

The multiball add a ball ball save called (name) has just start its countdown timer.

This event does not have any keyword arguments

Event is posted by multiballs:

Event Reference 1917

Mission Pinball Framework Documentation, Version

ball_save_(name)_timer_start

MPF Event

The multiball ball save called (name) has just start its countdown timer.

This event does not have any keyword arguments

Event is posted by multiballs:

ball_search_failed

MPF Event

The ball search process has failed to locate a missing or stuck ball and has given up. This event will be
posted immediately after the ball_search_stopped event.

This event does not have any keyword arguments

ball_search_phase_(num)

MPF Event

The ball search phase (num) has started.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

iteration Current iteration of phase (num)

ball_search_prevents_game_start

MPF Event

A game start has been requested, but the ball search process is running and thus the game start has
been blocked. This is a good event to use for a slide player to inform the player that the machine is
looking for a missing ball.

This event does not have any keyword arguments

ball_search_started

MPF Event

The ball search process has been begun.

This event does not have any keyword arguments

Event Reference 1918

Mission Pinball Framework Documentation, Version

ball_search_stopped

MPF Event

The ball search process has been disabled. This event is posted any time ball search stops, regardless
of whether it found a ball or gave up. (If the ball search failed to find the ball, it will also post the
ball_search_failed event.)

This event does not have any keyword arguments

ball_start_target

MPF Event

Posted when a new ball starts and is ready to be physically ejected to the playfield.

This is a relay event.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

target The name of the ball_device target where the ball will be ejected to. Can be modified by a
relay event handler to change the target before the ball is ejected.

ball_started

MPF Event

A new ball has started.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ball The ball number

balls_remaining The number of balls left in the game (not including this one)

is_extra_ball True if this ball is an extra ball (default False)

player The player number

ball_starting

MPF Event

A ball is starting. This is a queue event, so the ball won’t actually start until the queue is cleared.

Event Reference 1919

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ball The ball number

balls_remaining The number of balls left in the game (not including this one)

is_extra_ball True if this ball is an extra ball (default False)

player The player number

ball_will_end

MPF Event

The ball is about to end. This event is posted just before ball_ending.

This event does not have any keyword arguments

ball_will_start

MPF Event

The ball is about to start. This event is posted just before ball_starting.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ball The ball number

balls_remaining The number of balls left in the game (not including this one)

is_extra_ball True if this ball is an extra ball (default False)

player The player number

balldevice_(name)_ball_count_changed

MPF Event

The ball count for device (name) just changed.

This event may also be called without a change in some circumstances.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of new balls in this device.

Event is posted by ball_devices:

Event Reference 1920

Mission Pinball Framework Documentation, Version

balldevice_(name)_ball_eject_attempt

MPF Event

The ball device called “name” is attempting to eject a ball (or balls). This is a queue event. The eject
will not actually be attempted until the queue is cleared.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that are to be ejected.

mechanical_eject Boolean as to whether this is a mechanical eject.

num_attempts How many eject attempts have been tried so far.

source The source device that will be ejecting the balls.

target The target ball device that will receive these balls.

Event is posted by ball_devices:

balldevice_(name)_ball_eject_failed

MPF Event

A ball (or balls) has failed to eject from the device (name).

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that failed to eject.

num_attempts How many attemps have been made to eject this ball (or balls).

retry Boolean as to whether this eject will be retried.

target The target device that was supposed to receive the ejected balls.

Event is posted by ball_devices:

balldevice_(name)_ball_eject_success

MPF Event

One or more balls has successfully ejected from the device (name).

Event Reference 1921

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that have successfully ejected.

target The target device that has received (or will be receiving) the ejected ball(s).

Event is posted by ball_devices:

balldevice_(name)_ball_enter

MPF Event

A ball (or balls) have just entered the ball device called “name”.

Note that this is a relay event based on the “unclaimed_balls” arg. Any unclaimed balls in the relay
will be processed as new balls entering this device.

Please be aware that we did not add those balls to balls or available_balls of the device during this
event.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

device A reference to the ball device object that is posting this event.

unclaimed_balls The number of balls that have not yet been claimed.

Event is posted by ball_devices:

balldevice_(name)_ball_entered

MPF Event

A ball (or balls) have just entered the ball device called “name”.

The ball was also added to balls and available_balls of the device.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

device A reference to the ball device object that is posting this event.

new_balls The number of new balls that have not been claimed (by locks or similar).

Event is posted by ball_devices:

Event Reference 1922

Mission Pinball Framework Documentation, Version

balldevice_(name)_ball_missing

MPF Event

The device (name) is missing a ball. Note this event is posted in addition to the generic
balldevice_ball_missing event.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that are missing

Event is posted by ball_devices:

balldevice_(name)_broken

MPF Event

The ball device called “name” is broken and will no longer operate.

This event does not have any keyword arguments

Event is posted by ball_devices:

balldevice_(name)_ejecting_ball

MPF Event

The ball device called “name” is ejecting a ball right now.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that are to be ejected.

mechanical_eject Boolean as to whether this is a mechanical eject.

num_attempts How many eject attempts have been tried so far.

source The source device that will be ejecting the balls.

target The target ball device that will receive these balls.

Event is posted by ball_devices:

balldevice_ball_missing

MPF Event

A ball is missing from a device.

Event Reference 1923

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that are missing

name Name of device which lost the ball

Event is posted by ball_devices:

balldevice_balls_available

MPF Event

A device has balls available to be ejected.

This event does not have any keyword arguments

Event is posted by ball_devices:

balldevice_captured_from_(captures_from)

MPF Event

A ball device has just captured a ball from the device called (captures_from)

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that were captured.

Event is posted by ball_devices:

balls_in_play

MPF Event

The number of balls in play has just changed, and there is at least 1 ball in play.

Note that the number of balls in play is not necessarily the same as the number of balls loose on the
playfield. For example, if the player shoots a lock and is watching a cut scene, there is still one ball in
play even though there are no balls on the playfield.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of ball(s) in play.

Event Reference 1924

Mission Pinball Framework Documentation, Version

bcp_clients_connected

MPF Event

All BCP outgoing BCP connections have been made.

This event does not have any keyword arguments

bcp_connection_attempt

MPF Event

MPF is attempting to make a BCP connection.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

host The host name MPF is attempting to connect to.

name The name of the connection.

port The TCP port MPF is attempting to connect to

bonus_multiplier

MPF Event

Posted after “bonus_subtotal” and used to trigger the bonus multiplier screen. If the bonus multiplier
is 1, then this event is skipped.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

multiplier The numeric value of the bonus multiplier.

bonus_start

MPF Event

The end-of-ball bonus is starting. You can use this event in your slide player to trigger the bonus intro
slide. If the game has tilted, this event will not be posted.

This event does not have any keyword arguments

Event Reference 1925

Mission Pinball Framework Documentation, Version

bonus_subtotal

MPF Event

Posted by the bonus mode after all the individual bonus entries have been posted and processed.

This event is typically posted just before the bonus multiplier screen, so if the bonus multiplier is 1,
then this event will be skipped.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

score The score of the bonus (so far)

cancel_ball_search

MPF Event

This event will cancel all running ball searches and mark the balls as lost. This is only a handler so all
you have to do is to post the event.

This event does not have any keyword arguments

clear

MPF Event

Posted to cause config players to clear whatever they’re running based on the key passed. Typically
posted when a show or mode ends.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

key string name of the configs to clear

client_connected

MPF-MC Event

Posted on the MPF-MC only when a BCP client has connected.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

address The IP address of the client that connected.

port The port the client connected on.

Event Reference 1926

Mission Pinball Framework Documentation, Version

client_disconnected

MPF-MC Event

Posted on the MPF-MC only (e.g. not in MPF) when the BCP client disconnects. This event is also
posted when the MPF-MC starts before a client is connected.

This is useful for triggering a slide notifying of the disconnect.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

host The hostname or IP address that the socket is listening on.

port The port that the socket is listening on.

collecting_balls

MPF Event

Posted by the ball controller when it starts the collecting balls process.

This event does not have any keyword arguments

collecting_balls_complete

MPF Event

Posted by the ball controller when it has finished the collecting balls process.

This event does not have any keyword arguments

(name)_both

MPF Event

Combo switch (name) changed to state both.

A switch from group 1 and group 2 are both active at the same time, having been pressed within the
max_offset_time: and being active for at least the hold_time:.

This event does not have any keyword arguments

Event is posted by combo_switches:

The event name can be changed by using the “events_when_both:” attribute.

(name)_inactive

MPF Event

Combo switch (name) changed to state inactive.

Both switches are inactive.

Event Reference 1927

Mission Pinball Framework Documentation, Version

This event does not have any keyword arguments

Event is posted by combo_switches:

The event name can be changed by using the “events_when_inactive:” attribute.

(name)_one

MPF Event

Combo switch (name) changed to state one.

Either switch 1 or switch 2 has been released for at least the release_time: but the other switch is
still active.

This event does not have any keyword arguments

Event is posted by combo_switches:

The event name can be changed by using the “events_when_one:” attribute.

(name)_switches_1

MPF Event

Combo switch (name) changed to state switches_1.

Only switches_1 is active. max_offset_time has passed and this hit cannot become both later on. Only
emited when max_offset_time: is defined.

This event does not have any keyword arguments

Event is posted by combo_switches:

The event name can be changed by using the “events_when_switches_1:” attribute.

(name)_switches_2

MPF Event

Combo switch (name) changed to state switches_2.

Only switches_2 is active. max_offset_time has passed and this hit cannot become both later on. Only
emited when max_offset_time: is defined.

This event does not have any keyword arguments

Event is posted by combo_switches:

The event name can be changed by using the “events_when_switches_2:” attribute.

credits_added

MPF Event

Credits (or partial credits) have just been added to the machine.

This event does not have any keyword arguments

Event Reference 1928

Mission Pinball Framework Documentation, Version

display_(name)_initialized

MPF-MC Event

The display called (name) has been initialized. This event is generated in the MC, so it won’t be sent to
MPF if the MC is started up and ready first.

This event is part of the MPF-MC boot process and is not particularly useful for game developers. If
you want to show a “boot” slide as early as possible, use the mc_ready event.

This event does not have any keyword arguments

Event is posted by displays:

display_(name)_ready

MPF-MC Event

The display target called (name) is now ready and available to show slides. This event is useful with
display widgets where you want to add a display to an existing slide which shows some content, but
you need to make sure the display exists before showing a slide. So if you have a display called
“overlay”, then you can add it to a slide however you want, and when it’s added, the event
“display_overlay_ready” will be posted, and then you can use that event in your slide_player to trigger
the first slide you want to show. Note that this event is posted by MPF-MC and will not exist on the
MPF side. So you can use this event for slide_player, widget_player, etc., but not to start shows or
other things controlled by MPF.

This event does not have any keyword arguments

Event is posted by displays:

displays_initialized

MPF-MC Event

Posted as soon as MPF MC displays have been initialized.

Note that this event is used as part of the internal MPF-MC startup process. In some cases it will be
posted before the slide_player is ready, meaning that you CANNOT use this event to post slides or
play sounds.

Instead, use the mc_ready event, which is posted as early as possible once the slide player and sound
players are setup.

Note that this event is generated by the media controller and does not exist on the MPF side of things.

Also note that if you’re using a media controller other than the MPF-MC (such as the Unity 3D
backbox controller), then this event won’t exist.

This event does not have any keyword arguments

diverter_(name)_activating

MPF Event

The diverter called (name) is activating itself, which means it’s physically pulsing or holding the coil to
move.

Event Reference 1929

Mission Pinball Framework Documentation, Version

This event does not have any keyword arguments

Event is posted by diverters:

diverter_(name)_deactivating

MPF Event

The diverter called (name) is deativating itself.

This event does not have any keyword arguments

Event is posted by diverters:

diverter_(name)_disabling

MPF Event

The diverter called (name) is disabling itself. Note that if this diverter has activation_switches:
configured, it will not physically deactivate now, instead deactivating based on switch hits and timing.
Otherwise this diverter will deactivate immediately.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

auto Boolean which indicates whether this diverter disabled itself automatically for the purpose of
routing balls to their proper location(s).

Event is posted by diverters:

diverter_(name)_enabling

MPF Event

The diverter called (name) is enabling itself. Note that if this diverter has activation_switches:
configured, it will not physically activate until one of those switches is hit. Otherwise this diverter will
activate immediately.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

auto Boolean which indicates whether this diverter enabled itself automatically for the purpose of
routing balls to their proper location(s).

Event is posted by diverters:

Event Reference 1930

Mission Pinball Framework Documentation, Version

drop_target_bank_(name)_down

MPF Event

Every drop target in the drop target bank called (name) is now in the “down” state. This event is only
posted once, when all the drop targets are down.

This event does not have any keyword arguments

Event is posted by drop_target_banks:

drop_target_bank_(name)_mixed

MPF Event

The drop targets in the drop target bank (name) are in a “mixed” state, meaning that they’re not all
down or not all up. This event is posted every time a member drop target changes but the overall bank
is not not complete.

This event does not have any keyword arguments

Event is posted by drop_target_banks:

drop_target_bank_(name)_up

MPF Event

Every drop target in the drop target bank called (name) is now in the “up” state. This event is only
posted once, when all the drop targets are up.

This event does not have any keyword arguments

Event is posted by drop_target_banks:

drop_target_(name)_down

MPF Event

The drop target with the (name) has just changed to the “down” state.

This event does not have any keyword arguments

Event is posted by drop_targets:

drop_target_(name)_up

MPF Event

The drop target (name) has just changed to the “up” state.

This event does not have any keyword arguments

Event is posted by drop_targets:

Event Reference 1931

Mission Pinball Framework Documentation, Version

enabling_credit_play

MPF Event

The game is no longer on free play. Credits are required to start a game. This event is also posted on
MPF boot if the credits mode is enabled and the game is not set to free play.

This event does not have any keyword arguments

enabling_free_play

MPF Event

Credits are no longer required to start a game. This event is also posted on MPF boot if the credits
mode is enabled and the game is set to free play.

This event does not have any keyword arguments

extra_ball_award_disabled

MPF Event

The award for an extra ball has just been disabled.

This event does not have any keyword arguments

Event is posted by extra_balls:

extra_ball_awarded

MPF Event

An extra ball has just been awarded.

This event does not have any keyword arguments

Event is posted by extra_balls:

extra_ball_(name)_award_disabled

MPF Event

The award for the extra ball called (name) has just been disabled.

This event does not have any keyword arguments

Event is posted by extra_balls:

extra_ball_(name)_awarded

MPF Event

The extra ball called (name) has just been awarded.

This event does not have any keyword arguments

Event Reference 1932

Mission Pinball Framework Documentation, Version

Event is posted by extra_balls:

extra_ball_(name)_lit

MPF Event

The extra ball called (name) has just been lit.

This event does not have any keyword arguments

Event is posted by extra_balls:

extra_ball_group_(name)_award_disabled

MPF Event

Posted when you have the global extra ball settings set to not enable extra balls but where an extra
ball would have been awarded. This is a good alternative event to use to score points or whatever else
you want to give the player when extra balls are disabled.

This event does not have any keyword arguments

Event is posted by extra_ball_groups:

extra_ball_group_(name)_awarded

MPF Event

An extra ball from this group was just awarded. This is a good event to use to trigger award shows,
sounds, etc.

This event does not have any keyword arguments

Event is posted by extra_ball_groups:

extra_ball_group_(name)_lit

MPF Event

An extra ball was just lit. This is a good event to use to start your extra ball lit mode, to turn on an
extra ball light, to play the “get that extra ball” sound, etc.

Note that this event is posted if an extra ball is lit during play and also when a player’s turn starts if
they have a lit extra ball.

See also the extra_ball_(name)_lit for a similar event that is only posted when an extra ball is lit
during play, and not if the player starts their turn with the extra ball lit.

This event does not have any keyword arguments

Event is posted by extra_ball_groups:

Event Reference 1933

Mission Pinball Framework Documentation, Version

extra_ball_group_(name)_lit_awarded

MPF Event

This even is posted when an extra ball is lit during play. It is NOT posted when a player’s turn starts if
they have a lit extra ball from their previous turn. Therefore this event is a good event to use for your
award slides and shows when a player lights the extra ball, because you don’t want to use
extra_ball_group_(name)_lit because that is also posted when the player’s turn starts and you don’t
want the award show to play again when they’re starting their turn.

This event does not have any keyword arguments

Event is posted by extra_ball_groups:

extra_ball_group_(name)_unlit

MPF Event

No more lit extra balls are available for this extra ball group. This is a good event to use as a stop
event for your extra ball lit mode or whatever you’re using to indicate to the player that an extra ball
is available.

This event does not have any keyword arguments

Event is posted by extra_ball_groups:

flipper_cancel

MPF Event

Posted when both flipper buttons are hit at the same time, useful as a “cancel” event for shows, the
bonus mode, etc.

Note that in order for this event to work, you have to add left_flipper as a tag to the switch for your
left flipper, and right_flipper to your right flipper.

See combo_switches: for details.

This event does not have any keyword arguments

flipper_cradle

MPF Event

Posted when one of the flipper buttons has been active for 3 seconds.

Note that in order for this event to work, you have to add left_flipper as a tag to the switch for your
left flipper, and right_flipper to your right flipper.

See timed_switches: for details.

This event does not have any keyword arguments

Event Reference 1934

Mission Pinball Framework Documentation, Version

flipper_cradle_release

MPF Event

Posted when one of the flipper buttons that has previously been active for more than 3 seconds has
been released.

If the player pushes in one flipper button for more than 3 seconds, and then the second one and holds
it in for more than 3 seconds, this event won’t be posted until both buttons have been released.

Note that in order for this event to work, you have to add left_flipper as a tag to the switch for your
left flipper, and right_flipper to your right flipper.

See timed_switches: for details.

This event does not have any keyword arguments

game_ended

MPF Event

The game has ended.

This event does not have any keyword arguments

game_ending

MPF Event

The game is in the process of ending. This is a queue event, and the game won’t actually end until the
queue is cleared.

This event does not have any keyword arguments

game_start

MPF Event

Starts game while bypassing the many systems which have to “approve” the start. (Are the balls in the
right places, are there enough credits, etc.) Use of this method is not recommended but may be useful
in testing code. Instead, use the request_to_start_game event.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

buttons A list of switches tagged with player that were held in when the start button was released.
This is used for “alternate” game starts (e.g. hold the right flipper and press start for
tournament mode, etc.)

hold_time The time, in seconds, that the start button was held in to start the game. This can be used
to start alternate games via a “long press” of the start button.

Event Reference 1935

Mission Pinball Framework Documentation, Version

game_started

MPF Event

A new game has started.

This event does not have any keyword arguments

game_starting

MPF Event

A game is in the process of starting. This is a queue event, and the game won’t actually start until the
queue is cleared.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

game A reference to the game mode object.

game_will_end

MPF Event

The game is about to end. This event is posted just before game_ending.

This event does not have any keyword arguments

game_will_start

MPF Event

The game is about to start. This event is posted just before game_starting.

This event does not have any keyword arguments

init_done

MPF Event

Posted when the initial (one-time / boot) init phase is done. In other words, once this is posted, MPF is
booted and ready to go.

This event does not have any keyword arguments

init_phase_1

MPF Event

Posted during the initial boot up of MPF.

This event does not have any keyword arguments

Event Reference 1936

Mission Pinball Framework Documentation, Version

init_phase_2

MPF Event

Posted during the initial boot up of MPF.

This event does not have any keyword arguments

init_phase_3

MPF Event

Posted during the initial boot up of MPF.

This event does not have any keyword arguments

init_phase_4

MPF Event

Posted during the initial boot up of MPF.

This event does not have any keyword arguments

init_phase_5

MPF Event

Posted during the initial boot up of MPF.

This event does not have any keyword arguments

kickback_(name)_fired

MPF Event

Kickback fired a ball.

This event does not have any keyword arguments

Event is posted by kickbacks:

loading_assets

MPF Event

Posted when the number of assets waiting to be loaded changes.

Note that once all the assets are loaded, all the values below are reset to zero.

Event Reference 1937

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

loaded The number of assets that have been loaded so far.

percent The numerical percent completion of the assets loaded, express in the range of 0 to 100.

remaining The number of assets that are remaining to be loaded.

total The total number of assets that need to be loaded. This is equal to the sum of the loaded and
remaining values below. It also includes assets that MPF is loading itself as well as any assets
that have been reported from remotely connected BCP hosts (e.g. the media controller).

logicblock_(name)_complete

MPF Event

The logic block called “name” has just been completed.

Note that this is the default completion event for logic blocks, but this can be changed in a logic
block’s “events_when_complete:” setting, so this might not be the actual event that’s posted for all
logic blocks in your machine.

This event does not have any keyword arguments

Event is posted by counters:

Event is posted by accruals:

Event is posted by sequences:

logicblock_(name)_hit

MPF Event

The logic block “name” was just hit.

Note that this is the default hit event for logic blocks, but this can be changed in a logic block’s
“events_when_hit:” setting, so this might not be the actual event that’s posted for all logic blocks in
your machine.

This event does not have any keyword arguments

Event is posted by counters:

Event is posted by accruals:

Event is posted by sequences:

logicblock_(name)_updated

MPF Event

The logic block called “name” has changed.

This might happen when the block advanced, it was resetted or restored.

Event Reference 1938

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

enabled Whatever this block is enabled or not.

value The current value of this block.

Event is posted by counters:

Event is posted by accruals:

Event is posted by sequences:

machine_reset_phase_1

MPF Event

The first phase of resetting the machine.

These events are posted when MPF boots (after the init_phase events are posted), and they’re also
posted subsequently when the machine is reset (after existing the service mode, for example).

This is a queue event. The machine reset phase 1 will not be complete until the queue is cleared.

This event does not have any keyword arguments

machine_reset_phase_2

MPF Event

The second phase of resetting the machine.

These events are posted when MPF boots (after the init_phase events are posted), and they’re also
posted subsequently when the machine is reset (after existing the service mode, for example).

This is a queue event. The machine reset phase 2 will not be complete until the queue is cleared.

This event does not have any keyword arguments

machine_reset_phase_3

MPF Event

The third phase of resetting the machine.

These events are posted when MPF boots (after the init_phase events are posted), and they’re also
posted subsequently when the machine is reset (after exiting the service mode, for example).

This is a queue event. The machine reset phase 3 will not be complete until the queue is cleared.

This event does not have any keyword arguments

Event Reference 1939

Mission Pinball Framework Documentation, Version

machine_var_(name)

MPF Event

Posted when a machine variable is added or changes value. (Machine variables are like player
variables, except they’re maintained machine-wide instead of per-player or per-game.)

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

change If the machine variable just changed, this will be the amount of the change. If it’s not possible
to determine a numeric change (for example, if this machine variable is a list), then this change
value will be set to the boolean True.

prev_value The previous value of this machine variable, e.g. what it was before the current value.

value The new value of this machine variable.

Event is posted by machine_vars:

magnet_(name)_flinged_ball

MPF Event

The magnet called (name) has just flinged a ball.

This event does not have any keyword arguments

Event is posted by magnets:

magnet_(name)_flinging_ball

MPF Event

The magnet called (name) is flinging a ball by disabling and enabling the magnet again for a short
time.

This event does not have any keyword arguments

Event is posted by magnets:

magnet_(name)_grabbed_ball

MPF Event

The magnet called (name) has completed grabbing the ball. Note that the magnet doesn’t actually
“know” whether it successfully grabbed a ball or not, so this even is saying that it things it did. to).

This event does not have any keyword arguments

Event is posted by magnets:

Event Reference 1940

Mission Pinball Framework Documentation, Version

magnet_(name)_grabbing_ball

MPF Event

The magnet called (name) is attempting to grab a ball.

This event does not have any keyword arguments

Event is posted by magnets:

magnet_(name)_released_ball

MPF Event

The magnet called (name) has just released a ball.

This event does not have any keyword arguments

Event is posted by magnets:

magnet_(name)_releasing_ball

MPF Event

The magnet called (name) is in the process of releasing a ball.

This event does not have any keyword arguments

Event is posted by magnets:

master_volume_decrease

MPF Event

Decrease the master volume of the audio system.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

volume New volume as float between 0.0 an 1.0

master_volume_increase

MPF Event

Increase the master volume of the audio system.

Event Reference 1941

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

volume New volume as float between 0.0 an 1.0

match_has_match

MPF Event

At least one player has a match.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

match_number0 Match number for player 0

match_number1 Match number for player 1

match_numberX Match number for player X (up to max players)

winner_number Winner number

winners Number of winners (always more than 0 here)

match_no_match

MPF Event

All players missed the match number.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

match_number0 Match number for player 0

match_number1 Match number for player 1

match_numberX Match number for player X (up to max players)

winner_number Winner number

winners Number of winners (always 0 here)

max_credits_reached

MPF Event

Credits have just been added to the machine, but the configured maximum number of credits has been
reached.

Event Reference 1942

Mission Pinball Framework Documentation, Version

This event does not have any keyword arguments

mc_ready

MPF-MC Event

Posted when the MPF-MC is available to start showing slides and playing sounds.

Note that this event does not mean the MC is done loading. Instead it’s posted at the earliest possible
moment that the core MC components are available, meaning you can trigger “boot” slides from this
event (which could in turn be used to show asset loading status, boot progress, etc.)

If you want to show slides that require images or video loaded from disk, use the event “init_done”
instead which is posted once all the assets set to “preload” have been loaded.

This event does not have any keyword arguments

mc_reset_complete

MPF-MC Event

Posted on the MPF-MC only (e.g. not in MPF). This event is posted when the MPF-MC reset process is
complete.

This event does not have any keyword arguments

mc_reset_phase_1

MPF-MC Event

Posted on the MPF-MC only (e.g. not in MPF). This event is used internally as part of the MPF-MC
reset process.

This event does not have any keyword arguments

mc_reset_phase_2

MPF-MC Event

Posted on the MPF-MC only (e.g. not in MPF). This event is used internally as part of the MPF-MC
reset process.

This event does not have any keyword arguments

mc_reset_phase_3

MPF-MC Event

Posted on the MPF-MC only (e.g. not in MPF). This event is used internally as part of the MPF-MC
reset process.

This event does not have any keyword arguments

Event Reference 1943

Mission Pinball Framework Documentation, Version

mode_(name)_started

MPF Event

Posted when a mode has started. The “name” part is replaced with the actual name of the mode, so
the actual event posted is something like mode_attract_started, mode_base_started, etc.

This is posted after the “mode_(name)_starting” event.

This event does not have any keyword arguments

mode_(name)_starting

MPF Event

The mode called “name” is starting.

This is a queue event. The mode will not fully start until the queue is cleared.

This event does not have any keyword arguments

mode_(name)_stopped

MPF Event

Posted when a mode has stopped. The “name” part is replaced with the actual name of the mode, so
the actual event posted is something like mode_attract_stopped, mode_base_stopped, etc.

This event does not have any keyword arguments

mode_(name)_stopping

MPF Event

The mode called “name” is stopping. This is a queue event. The mode won’t actually stop until the
queue is cleared.

This event does not have any keyword arguments

mode_(name)_will_start

MPF Event

Posted when a mode is about to start. The “name” part is replaced with the actual name of the mode,
so the actual event posted is something like mode_attract_will_start, mode_base_will_start, etc.

This is posted before the “mode_(name)_starting” event.

This event does not have any keyword arguments

Event Reference 1944

Mission Pinball Framework Documentation, Version

mode_(name)_will_stop

MPF Event

Posted when a mode is about to stop. The “name” part is replaced with the actual name of the mode,
so the actual event posted is something like mode_attract_will_stop, mode_base_will_stop, etc.

This is posted immediately before the “mode_(name)_stopping” event.

This event does not have any keyword arguments

motor_(name)_reached_(position)

MPF Event

A motor device called (name) reached position (position) (device)

This event does not have any keyword arguments

Event is posted by motors:

multi_player_ball_started

MPF Event

A new ball has started, and this is a multiplayer game.

This event does not have any keyword arguments

multiball_lock_(name)_full

MPF Event

The multiball lock device (name) is now full.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls currently locked in this device.

Event is posted by multiball_locks:

multiball_lock_(name)_locked_ball

MPF Event

The multiball lock device (name) has just locked one additional ball.

Event Reference 1945

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

total_balls_locked The current total number of balls this device has locked.

Event is posted by multiball_locks:

multiball_(name)_ended

MPF Event

The multiball called (name) has just ended.

This event does not have any keyword arguments

Event is posted by multiballs:

multiball_(name)_grace_period

MPF Event

The multiball ball save called (name) has just entered its grace period time.

This event does not have any keyword arguments

Event is posted by multiballs:

multiball_(name)_hurry_up

MPF Event

The multiball ball save called (name) has just entered its hurry up mode.

This event does not have any keyword arguments

Event is posted by multiballs:

multiball_(name)_lost_ball

MPF Event

The multiball called (name) has lost a ball after ball save expired.

This event does not have any keyword arguments

Event is posted by multiballs:

multiball_(name)_shoot_again

MPF Event

A ball has drained during the multiball called (name) while the ball save timer for that multiball was
running, so a ball (or balls) will be saved and re-added into play.

Event Reference 1946

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that are being saved.

Event is posted by multiballs:

multiball_(name)_shoot_again_ended

MPF Event

Shoot again for multiball (name) has ended.

This event does not have any keyword arguments

Event is posted by multiballs:

multiball_(name)_started

MPF Event

The multiball called (name) has just started.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls in this multiball

Event is posted by multiballs:

multiplayer_game

MPF Event

A second player has just been added to this game, meaning this is now a multiplayer game.

This event is typically used to switch the score display from the single player layout to the multiplayer
layout.

This event does not have any keyword arguments

(name)_timeout

MPF Event

The logic block called “name” has just timeouted.

Timeouts are disabled by default but you can set logic_block_timeout to enable them. They will run
from start of your logic block until it is stopped.

This event does not have any keyword arguments

Event Reference 1947

Mission Pinball Framework Documentation, Version

Event is posted by counters:

Event is posted by accruals:

Event is posted by sequences:

not_enough_credits

MPF Event

A player has pushed the start button, but the game is not set to free play and there are not enough
credits to start a game or add a player.

This event does not have any keyword arguments

player_add_request

MPF Event

Posted to request that an additional player be added to this game. Any registered handler can deny
the player add request by returning False to this event.

This event does not have any keyword arguments

player_added

MPF Event

A new player was just added to this game

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

num The number of the player that was just added. (e.g. Player 1 will have num=1, Player 4 will have
num=4, etc.)

player A reference to the instance of the Player() object.

player_adding

MPF Event

A new player is in the process of being added to this game. This is a queue event, and the player won’t
actually be finished adding until the queue is cleared.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

number The player number

Event Reference 1948

Mission Pinball Framework Documentation, Version

player The player object for the player being added

player_(name)

MPF Event

Posted when simpler types of player variables are added or change value.

The actual event has (var_name) replaced with the name of the player variable that changed. Some
examples:

∙ player_score

∙ player_shot_upper_lit_hit

Lots of things are stored in player variables, so there’s no way to build a complete list of what all the
options are here. Elsewhere in the documentation, if you see something that says it’s stored in a
player variable, that means you’ll get this event when that player variable is created or is changed.

Note that this event is only posted for simpler types of player variables, including player variables that
are integers, floating point numbers, or strings. More complex player variables (lists, dicts, etc.) do
not get this event posted.

This event is posted for a single player variable changing, meaning if multiple player variables change
at the same time, multiple events will be posted, one for each change.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

change If the player variable just changed, this will be the amount of the change. If it’s not possible to
determine a numeric change (for example, if this player variable is a string), then this change
value will be set to the boolean True.

kwargs Additional keyword arguments to include in the event args.

player_num The player number this variable just changed for, starting with 1. (e.g. Player 1 will have
player_num=1, Player 4 will have player_num=4, etc.)

prev_value The previous value of this player variable, e.g. what it was before the current value.

value The new value of this player variable.

Event is posted by player_vars:

player_turn_ended

MPF Event

The current player’s turn has ended. This event is only posted when this player’s turn is totally over. If
the player gets an extra ball and shoots again, this event is not posted until after all their extra balls
and it’s no longer their turn.

Event Reference 1949

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

number The player number

player The player object whose turn is ending.

player_turn_ending

MPF Event

The current player’s turn is ending. This is a queue event, and the player’s turn won’t actually end
until the queue is cleared.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

number The player number

player The player object whose turn is ending.

player_turn_started

MPF Event

A new player’s turn started. This event is only posted after the start of a new player’s turn. If that
player gets an extra ball and shoots again, this event is not posted a second time.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

number The player number

player The player object whose turn is starting.

player_turn_starting

MPF Event

The player’s turn is in the process of starting. This is a queue event, and the player’s turn won’t
actually start until the queue is cleared.

Event Reference 1950

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

number The player number

player The player object whose turn is starting.

player_turn_will_end

MPF Event

The player’s turn is about to end. This event is only posted when this player’s turn is totally over. If
the player gets an extra ball and shoots again, this event is not posted until after all their extra balls
and it’s no longer their turn.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

number The player number

player The player object whose turn is over.

player_turn_will_start

MPF Event

A new player’s turn will start. This event is only posted before the start of a new player’s turn. If that
player gets an extra ball and shoots again, this event is not posted a second time.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

number The player number

player The player object whose turn is starting.

player_will_add

MPF Event

A new player will be added to this game. This event is sent immediately prior to the player_adding
event.

Event Reference 1951

Mission Pinball Framework Documentation, Version

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

number The new player number that will be added

(name)_active

MPF Event

The playfield called (name) is now active, meaning there’s at least one loose ball on it.

This event does not have any keyword arguments

Event is posted by playfields:

(name)_ball_count_change

MPF Event

The playfield with the name (name) has changed the number of balls that are live.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The current number of balls on the playfield.

change The change in balls from the last count.

Event is posted by playfields:

playfield_transfer_(playfield_transfer)_ball_transferred

MPF Event

The playfield_transfer called (playfield_transfer) transferred a ball from playfield (source) to playfield
(target).

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

source The source playfield.

target The target playfield.

Event is posted by playfield_transfers:

Event Reference 1952

Mission Pinball Framework Documentation, Version

reel_(name)_advanced

MPF Event

The reel (name) advanced to the next position.

This event does not have any keyword arguments

Event is posted by score_reels:

request_to_start_game

MPF Event

This event is posted when to start a game. This is a boolean event. Any handler can return False and
the game will not be started. Otherwise when this event is done, a new game is started.

Posting this event is the only way to start a game in MPF, since many systems have to “approve” the
start. (Are the balls in the right places, are there enough credits, etc.)

This event does not have any keyword arguments

reset_complete

MPF Event

The machine reset process is complete

This event does not have any keyword arguments

(name)_hit

MPF Event

The sequence_shot called (name) was just completed.

This event does not have any keyword arguments

Event is posted by sequence_shots:

(name)_complete

MPF Event

All the member shots in the shot group called (name) are in the same state.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

state name of the common state of all shots.

Event is posted by shot_groups:

Event Reference 1953

Mission Pinball Framework Documentation, Version

(name)_hit

MPF Event

A member shots in the shot group called (name) has been hit.

This event does not have any keyword arguments

Event is posted by shot_groups:

(name)_(state)_complete

MPF Event

All the member shots in the shot group called (name) are in the same state named (state).

This event does not have any keyword arguments

Event is posted by shot_groups:

(name)_(state)_hit

MPF Event

A member shot with state (state) in the shot group (name) has been hit.

This event does not have any keyword arguments

Event is posted by shot_groups:

(name)_hit

MPF Event

The shot called (name) was just hit.

Note that there are four events posted when a shot is hit, each with variants of the shot name, profile,
and current state, allowing you to key in on the specific granularity you need.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

profile The name of the profile that was active when hit.

state The name of the state the profile was in when it was hit

Event is posted by shots:

Event Reference 1954

Mission Pinball Framework Documentation, Version

(name)_(profile)_hit

MPF Event

The shot called (name) was just hit with the profile (profile) active.

Note that there are four events posted when a shot is hit, each with variants of the shot name, profile,
and current state, allowing you to key in on the specific granularity you need.

Also remember that shots can have more than one active profile at a time (typically each associated
with a mode), so a single hit to this shot might result in this event being posted multiple times with
different (profile) values.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

profile The name of the profile that was active when hit.

state The name of the state the profile was in when it was hit

Event is posted by shots:

(name)_(profile)_(state)_hit

MPF Event

The shot called (name) was just hit with the profile (profile) active in the state (state).

Note that there are four events posted when a shot is hit, each with variants of the shot name, profile,
and current state, allowing you to key in on the specific granularity you need.

Also remember that shots can have more than one active profile at a time (typically each associated
with a mode), so a single hit to this shot might result in this event being posted multiple times with
different (profile) and (state) values.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

profile The name of the profile that was active when hit.

state The name of the state the profile was in when it was hit

Event is posted by shots:

(name)_(state)_hit

MPF Event

The shot called (name) was just hit while in the profile (state).

Note that there are four events posted when a shot is hit, each with variants of the shot name, profile,
and current state, allowing you to key in on the specific granularity you need.

Event Reference 1955

Mission Pinball Framework Documentation, Version

Also remember that shots can have more than one active profile at a time (typically each associated
with a mode), so a single hit to this shot might result in this event being posted multiple times with
different (profile) and (state) values.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

profile The name of the profile that was active when hit.

state The name of the state the profile was in when it was hit

Event is posted by shots:

shutdown

MPF Event

Posted when the machine is shutting down to give all modules a chance to shut down gracefully.

This event does not have any keyword arguments

single_player_ball_started

MPF Event

A new ball has started, and this is a single player game.

This event does not have any keyword arguments

slam_tilt

MPF Event

A slam tilt has just occurred.

This event does not have any keyword arguments

slide_(name)_active

MPF-MC Event

A slide called (name) has just become active, meaning that it’s now showing as the current slide. This
is useful for things like the widget_player where you want to target a widget for a specific slide, but
you can only do so if that slide exists. Slide names do not take into account what display they’re
playing on, so be sure to create machine-wide unique names when you’re naming your slides.

This event does not have any keyword arguments

Event is posted by slides:

Event Reference 1956

Mission Pinball Framework Documentation, Version

slide_(name)_created

MPF-MC Event

A slide called (name) has just been created.

This means that this slide now exists, but it’s not necessarily the active (showing) slide, depending on
the priorities of the other slides and/or what else is going on.

This is useful for things like the widget_player where you want to target a widget for a specific slide,
but you can only do so if that slide exists.

Slide names do not take into account what display or slide frame they’re playing on, so be sure to
create machine-wide unique names when you’re naming your slides.

This event does not have any keyword arguments

Event is posted by slides:

slide_(name)_removed

MPF-MC Event

A slide called (name) has just been removed.

This event is posted whenever a slide is removed, regardless of whether or not that slide was active
(showing).

Note that even though this event is called “removed”, it’s actually posted as part of the removal
process. (e.g. there are still some clean-up things that happen afterwards.)

Slide names do not take into account what display or slide frame they’re playing on, so be sure to
create machine-wide unique names when you’re naming your slides.

This event does not have any keyword arguments

Event is posted by slides:

spinner_(name)_active

MPF Event

The idle spinner (name) was just hit and became active.

This event will post whenever a spinner switch is hit and the spinner is not already active.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

label The label of the switch that triggered the activation

Event is posted by spinners:

Event Reference 1957

Mission Pinball Framework Documentation, Version

spinner_(name)_hit

MPF Event

The spinner (name) was just hit.

This event will post whenever a spinner switch is hit.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

hits The number of switch hits the spinner has had since it became active

label The label of the switch that was hit

Event is posted by spinners:

spinner_(name)_idle

MPF Event

The spinner (name) is now idle

This event will post whenever a spinner has not received hits and its idle_ms has timed out. If no
idle_ms is defined, this event will not post.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

hits The number of switch hits the spinner had while it was active

Event is posted by spinners:

spinner_(name)_inactive

MPF Event

The spinner (name) is no longer receiving hits

This event will post whenever a spinner has not received hits and its active_ms has timed out.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

hits The number of switch hits the spinner had while it was active

Event is posted by spinners:

Event Reference 1958

Mission Pinball Framework Documentation, Version

spinner_(name)_(label)_active

MPF Event

The idle spinner (name) was just hit and became active.

This event will post whenever a spinner switch is hit and the spinner is not already active, but only if
labels are defined for the spinner.

This event does not have any keyword arguments

Event is posted by spinners:

spinner_(name)_(label)_hit

MPF Event

The spinner (name) was just hit on the switch labelled (label).

This event will post whenever a spinner switch is hit and labels are defined for the spinner

This event does not have any keyword arguments

Event is posted by spinners:

sw_(name)_active

MPF Event

The playfield called (name) was active, though a ball was just removed from it.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

balls The number of balls that were just removed from this playfield.

Event is posted by playfields:

sw_(tag)

MPF Event

Posted when a switch with this tag becomes active. Note that this will only be posted if there is an
event handler for it or if debug is set to True on this switch for performance reasons.

This event does not have any keyword arguments

Event is posted by switches:

Event Reference 1959

Mission Pinball Framework Documentation, Version

sw_(tag)_active

MPF Event

Posted when a switch with this tag becomes active. Note that this will only be posted if there is an
event handler for it or if debug is set to True on this switch for performance reasons.

This event does not have any keyword arguments

Event is posted by switches:

sw_(tag)_inactive

MPF Event

Posted when a switch with this tag becomes inactive. Note that this will only be posted if there is an
event handler for it or if debug is set to True on this switch for performance reasons.

This event does not have any keyword arguments

Event is posted by switches:

(name)_active

MPF Event

Posted when this switch becomes active. Note that this will only be posted if there is an event handler
for it or if debug is set to True on this switch for performance reasons.

This event does not have any keyword arguments

Event is posted by switches:

(name)_inactive

MPF Event

Posted when this switch becomes inactive. Note that this will only be posted if there is an event
handler for it or if debug is set to True on this switch for performance reasons.

This event does not have any keyword arguments

Event is posted by switches:

switch_(name)_active

MPF-MC Event

Posted on MPF-MC only (e.g. not in MPF) when the MC receives a BCP “switch” active command.
Useful for video modes and graphical menu navigation. Note that this is not posted for every switch
all the time, rather, only for switches that have been configured to send events to BCP.

This event does not have any keyword arguments

Event is posted by switches:

Event Reference 1960

Mission Pinball Framework Documentation, Version

switch_(name)_inactive

MPF-MC Event

Posted on MPF-MC only (e.g. not in MPF) when the MC receives a BCP “switch” inactive command.
Useful for video modes and graphical menu navigation. Note that this is not posted for every switch
all the time, rather, only for switches that have been configured to send events to BCP.

This event does not have any keyword arguments

Event is posted by switches:

text_input_(key)_abort

MPF-MC Event

This event is posted by a text_input display widget when the entering process was aborted.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

text A string of the characters that were entered so far.

text_input_(key)_complete

MPF-MC Event

This event is posted by a text_input display widget when the entered text is finalized.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

text A string of the final characters that were entered.

tilt

MPF Event

The player has tilted.

This event does not have any keyword arguments

tilt_clear

MPF Event

Posted after a tilt, when the settling time has passed after the last tilt switch hit. This is used to hold
the next ball start until the plumb bob has settled to prevent tilt throughs.

Event Reference 1961

Mission Pinball Framework Documentation, Version

This event does not have any keyword arguments

tilt_warning

MPF Event

A tilt warning just happened.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

warnings The total number of warnings so far.

warnings_remaining The remaining number of warnings until a tilt.

tilt_warning_(number)

MPF Event

A tilt warning just happened. The number of this tilt warning is in the event name in the (number).

This event does not have any keyword arguments

(name)_active

MPF Event

Posted when one of the switches buttons has been active for time.

This event does not have any keyword arguments

Event is posted by timed_switches:

The event name can be changed by using the “events_when_active:” attribute.

(name)_released

MPF Event

Posted when one of the switches that has previously been active for more than time has been released.

This event does not have any keyword arguments

Event is posted by timed_switches:

The event name can be changed by using the “events_when_released:” attribute.

Event Reference 1962

Mission Pinball Framework Documentation, Version

timer_(name)_complete

MPF Event

The timer named (name) has completed.

Note that this timer may reset and start again after this event is posted, depending on its settings.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ticks The current tick number this timer is at.

ticks_remaining The number of ticks in this timer remaining.

Event is posted by timers:

timer_(name)_paused

MPF Event

The timer named (name) has paused.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ticks The current tick number this timer is at.

ticks_remaining The number of ticks in this timer remaining.

Event is posted by timers:

timer_(name)_started

MPF Event

The timer named (name) has just started.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ticks The current tick number this timer is at.

ticks_remaining The number of ticks in this timer remaining.

Event is posted by timers:

Event Reference 1963

Mission Pinball Framework Documentation, Version

timer_(name)_stopped

MPF Event

The timer named (name) has stopped.

This event is posted any time the timer stops, whether it stops because it ended or because it was
stopped early by some other event.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ticks The current tick number this timer is at.

ticks_remaining The number of ticks in this timer remaining.

Event is posted by timers:

timer_(name)_tick

MPF Event

The timer named (name) has just counted down (or up, depending on its settings).

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ticks The new tick number this timer is at.

ticks_remaining The new number of ticks in this timer remaining.

Event is posted by timers:

timer_(name)_time_added

MPF Event

The timer named (name) has just had time added to it.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ticks The new tick number this timer is at.

ticks_added How many ticks were just added.

ticks_remaining The new number of ticks in this timer remaining.

Event is posted by timers:

Event Reference 1964

Mission Pinball Framework Documentation, Version

timer_(name)_time_subtracted

MPF Event

The timer named (name) just had some ticks removed.

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

ticks The new current tick number this timer is at.

ticks_remaining The new number of ticks in this timer remaining.

ticks_subtracted How many ticks were just subtracted from this timer. (This number will be positive,
indicating the ticks subtracted.)

Event is posted by timers:

twitch_bit_donation

MPF Event

A chat user has donated bits on Twitch

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

bits The number of bits donated

message Chat message text

user The chat user name who subscribed

twitch_chat_message

MPF Event

A chat message was received via Twitch

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

line_1 Split line 1

line_2 Split line 2

line_3 Split line 3

line_4 Split line 4

Event Reference 1965

Mission Pinball Framework Documentation, Version

line_5 Split line 5

line_6 Split line 6

line_count The number of lines that the text splitter produced

message Full chat message text

user The chat user name who subscribed

twitch_command

MPF Event

A user typed a line that begins with ! or ?

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

command The text after the ! or ?

user The chat user who executed the command

twitch_raid

MPF Event

Another Twitch user has raided your channel

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

raid_count The count of viewers in the raid

raid_user The user who raided

twitch_subscription

MPF Event

A chat user has subscribed or resubscribed on Twitch

Keyword arguments

(See the Conditional Events guide for details for how to create entries in your config file that only
respond to certain combinations of the arguments below.)

gift True if this sub was gifted by another user

message Chat message text

Event Reference 1966

Mission Pinball Framework Documentation, Version

months The number of months that the user has been a subscriber

sub_plan The subscription tier (Prime, 1000, 2000, 3000)

sub_plan_name The streamer specific name for the sub tier

sub_recipient The user who is subscribing

subscriber_message The message the user typed when subscribing

user The chat user name who paid for the subscription

unexpected_ball_on_(name)

MPF Event

The playfield named (name) just had a switch hit, meaning a ball is on it, but that ball was not
expected.

This event does not have any keyword arguments

Event is posted by playfields:

Device Indexes

achievement

See: achievements:

∙ achievement_(name)_changed_state

∙ achievement_(name)_state_(state)

ball_device

See: ball_devices:

∙ balldevice_(name)_ball_count_changed

∙ balldevice_(name)_ball_eject_attempt

∙ balldevice_(name)_ball_eject_failed

∙ balldevice_(name)_ejecting_ball

∙ balldevice_(name)_ball_eject_success

∙ balldevice_(name)_broken

∙ balldevice_captured_from_(captures_from)

∙ balldevice_(name)_ball_enter

∙ balldevice_(name)_ball_entered

∙ balldevice_(name)_ball_missing

∙ balldevice_ball_missing

∙ balldevice_balls_available

Device Indexes 1967

Mission Pinball Framework Documentation, Version

ball_hold

See: ball_holds:

∙ ball_hold_(name)_held_ball

∙ ball_hold_(name)_full

∙ ball_hold_(name)_balls_released

ball_save

See: ball_saves:

∙ ball_save_(name)_enabled

∙ ball_save_(name)_disabled

∙ ball_save_(name)_timer_start

∙ ball_save_(name)_hurry_up

∙ ball_save_(name)_grace_period

∙ ball_save_(name)_saving_ball

combo_switch

See: combo_switches:

∙ (name)_one

∙ (name)_both

∙ (name)_inactive

∙ (name)_switches_1

∙ (name)_switches_2

display

See: displays:

∙ display_(name)_initialized

∙ display_(name)_ready

diverter

See: diverters:

∙ diverter_(name)_enabling

∙ diverter_(name)_disabling

∙ diverter_(name)_activating

∙ diverter_(name)_deactivating

Device Indexes 1968

Mission Pinball Framework Documentation, Version

drop_target_bank

See: drop_target_banks:

∙ drop_target_bank_(name)_down

∙ drop_target_bank_(name)_up

∙ drop_target_bank_(name)_mixed

drop_target

See: drop_targets:

∙ drop_target_(name)_down

∙ drop_target_(name)_up

extra_ball_group

See: extra_ball_groups:

∙ extra_ball_group_(name)_awarded

∙ extra_ball_group_(name)_lit

∙ extra_ball_group_(name)_unlit

∙ extra_ball_group_(name)_award_disabled

∙ extra_ball_group_(name)_lit_awarded

extra_ball

See: extra_balls:

∙ extra_ball_award_disabled

∙ extra_ball_(name)_award_disabled

∙ extra_ball_(name)_lit

∙ extra_ball_(name)_awarded

∙ extra_ball_awarded

kickback

See: kickbacks:

∙ kickback_(name)_fired

machine_var

See: machine_vars:

∙ machine_var_(name)

Device Indexes 1969

Mission Pinball Framework Documentation, Version

magnet

See: magnets:

∙ magnet_(name)_grabbing_ball

∙ magnet_(name)_grabbed_ball

∙ magnet_(name)_releasing_ball

∙ magnet_(name)_released_ball

∙ magnet_(name)_flinging_ball

∙ magnet_(name)_flinged_ball

motor

See: motors:

∙ motor_(name)_reached_(position)

multiball_lock

See: multiball_locks:

∙ multiball_lock_(name)_locked_ball

∙ multiball_lock_(name)_full

multiball

See: multiballs:

∙ multiball_(name)_started

∙ ball_save_(name)_timer_start

∙ multiball_(name)_hurry_up

∙ multiball_(name)_grace_period

∙ multiball_(name)_shoot_again

∙ multiball_(name)_lost_ball

∙ multiball_(name)_shoot_again_ended

∙ ball_save_(name)_add_a_ball_timer_start

∙ multiball_(name)_ended

player_var

See: player_vars:

∙ player_(name)

Device Indexes 1970

Mission Pinball Framework Documentation, Version

playfield_transfer

See: playfield_transfers:

∙ playfield_transfer_(playfield_transfer)_ball_transferred

playfield

See: playfields:

∙ (name)_ball_count_change

∙ (name)_active

∙ sw_(name)_active

∙ unexpected_ball_on_(name)

score_reel

See: score_reels:

∙ reel_(name)_advanced

sequence_shot

See: sequence_shots:

∙ (name)_hit

shot_group

See: shot_groups:

∙ (name)_complete

∙ (name)_(state)_complete

∙ (name)_hit

∙ (name)_(state)_hit

shot

See: shots:

∙ (name)_hit

∙ (name)_(profile)_hit

∙ (name)_(profile)_(state)_hit

∙ (name)_(state)_hit

Device Indexes 1971

Mission Pinball Framework Documentation, Version

slide

See: slides:

∙ slide_(name)_created

∙ slide_(name)_removed

∙ slide_(name)_active

spinner

See: spinners:

∙ spinner_(name)_hit

∙ spinner_(name)_inactive

∙ spinner_(name)_idle

∙ spinner_(name)_active

∙ spinner_(name)_(label)_hit

∙ spinner_(name)_(label)_active

switch

See: switches:

∙ (name)_active

∙ (name)_inactive

∙ sw_(tag)

∙ sw_(tag)_active

∙ sw_(tag)_inactive

∙ switch_(name)_active

∙ switch_(name)_inactive

timed_switch

See: timed_switches:

∙ (name)_active

∙ (name)_released

timer

See: timers:

∙ timer_(name)_started

∙ timer_(name)_stopped

Device Indexes 1972

Mission Pinball Framework Documentation, Version

∙ timer_(name)_paused

∙ timer_(name)_complete

∙ timer_(name)_time_added

∙ timer_(name)_time_subtracted

∙ timer_(name)_tick

Device Indexes 1973

CHAPTER27

Game Variables

Game variables allow you to query specifics while a game is in play.

Like player and machine variables, you can use the game variables in your config files and can be
particularly useful for conditional arguments.

max_players

MPF Game variable

The maximum players currently allowed at one time.

num_players

MPF Game variable

The number of players currently playing.

balls_per_game

MPF Game variable

The number of balls per player, per game. This is usually 3 or 5.

balls_in_play

MPF Game variable

1974

Mission Pinball Framework Documentation, Version

The current number of balls in play.

tilted

MPF Game variable

A boolean variable that will return ‘True’ if the game has been tilted.

slam_tilted

MPF Game variable

A boolean variable that will return ‘True’ if the game has been slam tilted.

tilted 1975

CHAPTER28

Machine Variables

MPF uses the concept of machine variables to track dynamically- created variables that apply on a
machine-wide basis. Machine variables are similar in concept to player variables, except machine
variables are machine-wide instead of per-player. Examples of things that are stored in machine
variables include:

∙ The number of credits on the machine (if you’re using the credits mode and not set to free play)

∙ The scores of the last game played (which are typically shown in the attract mode display loop)

∙ The names and scores of the high scores (which are also shown in the attract mode display loop
and in the “status” screen when a player holds a flipper button in during a game).

Machine variables can be set to persist, meaning they are saved to disk and available to MPF the next
time it boots up. (For example, if you first turn on a pinball machine, it will still show the scores of the
last game played in the attract mode.) These machine variables are stored in the
<your_machine_folder>/data/machine_vars.yaml file. Machine variables that are saved to disk can
optionally be written with an expiration time which means they’re cleared out if MPF boots after the
time has passed. (For example, the number of credits on the machine might only persist for a few
hours.)

Like player variables, you can use machine variables in your config files, particularly in text display
widgets, to show things on your display.

If you want to use a machine variable in a slide player you can access it similarly to normal variables,
you need to use the syntax (machine|my_var_name) where my_var_name obviously has to be replaced
with your variable name.

Video about player and machine variables:

https://youtu.be/PUxEsNUGXPY

You can create your own machine variables in your configs. There are also several machine variables
that are automatically created. Here’s a list of the machine variables that are “built in” and available
for use in your configs:

1976

https://youtu.be/PUxEsNUGXPY

Mission Pinball Framework Documentation, Version

credit_units

MPF machine variable

How many credit units are on the machine. Note that credit units are not useful for display purposes
since they represent the number of credits in a ration related to the lowest common denominator of
the partial credit fraction. See the related credits_string and credits_value machine variables for
more useful formats.

credits_denominator

MPF machine variable

The denominator portion of the total credits on the machine. For example, if the machine has 4 1/2
credits, this value is “2”.

credits_numerator

MPF machine variable

The numerator portion of the total credits on the machine. For example, if the machine has 4 1/2
credits, this value is “1”.

credits_string

MPF machine variable

Holds a displayable string which shows how many credits are on the machine. For example,
“CREDITS: 1”. If the machine is set to free play, the value of this string will be “FREE PLAY”.

You can change the format and value of this string in the credits: section of the machine config file.

credits_value

MPF machine variable

The human readable string form which shows the number value of how many credits are on the
machine, including whole and fractional credits, for example “1” or “2 1/2” or “3 3/4”.

If you want the full string with the word “CREDITS” in it, use the “credits_string” machine variable.

credits_whole_num

MPF machine variable

The whole number portion of the total credits on the machine. For example, if the machine has 3 1/2
credits, this value is “3”.

credit_units 1977

Mission Pinball Framework Documentation, Version

fast_(x)_firmware

MPF machine variable

Holds the version number of the firmware for the processor on the FAST Pinball controller that’s
connected. The “x” is replaced with either “dmd”, “net”, or “rgb”, one for each processor that’s
attached.

fast_(x)_model

MPF machine variable

Holds the model number of the board for the processor on the FAST Pinball controller that’s
connected. The “x” is replaced with either “dmd”, “net”, or “rgb”, one for each processor that’s
attached.

(high_score_category)(position)_label

MPF machine variable

The “label” of the high score for that specific score category and position. For example, score1_label
holds the label for the #1 position of the “score” player variable (which might be “GRAND
CHAMPION”).

(high_score_category)(position)_name

MPF machine variable

Holds the player’s name (or initials) for the high score for that category and position.

(high_score_category)(position)_value

MPF machine variable

Holds the numeric value for the high score for that category and position.

lisy_api_version

MPF machine variable

LISY API version.

fast_(x)_firmware 1978

Mission Pinball Framework Documentation, Version

lisy_hardware

MPF machine variable

Connected LISY hardware (I.e. LISY1, LISY80 or APC).

lisy_version

MPF machine variable

LISY version.

mc_extended_version

MPF machine variable

Extended version of MC. This is set after MC got connected. Contains BCP and show version numbers.

mc_version

MPF machine variable

Version of MC. This is set after MC got connected.

mpf_extended_version

MPF machine variable

Extended version string for MPF. Contains show and bcp version as well.

mpf_version

MPF machine variable

Full version string for MPF.

p_roc_hardware_version

MPF machine variable

Holds the hardware version number of the P-ROC or P3-ROC controller that’s attached to MPF.

lisy_hardware 1979

Mission Pinball Framework Documentation, Version

p_roc_revision

MPF machine variable

Holds the firmware revision number of the P-ROC or P3-ROC controller that’s attached to MPF.

p_roc_version

MPF machine variable

Holds the firmware version number of the P-ROC or P3-ROC controller that’s attached to MPF.

pkone_firmware

MPF machine variable

Holds the version number of the firmware for the Penny K Pinball PKONE controller that’s connected.

pkone_hardware

MPF machine variable

Holds the model name and hardware revision number of the Penny K Pinball PKONE controller board
that’s connected.

platform

MPF machine variable

A single string identifying the underlying platform with as much useful information as possible.

platform_machine

MPF machine variable

Architecture of your machine (32bit/64bit).

platform_release

MPF machine variable

Release of your operating system.

p_roc_revision 1980

Mission Pinball Framework Documentation, Version

platform_system

MPF machine variable

Your system (Linux/Windows/Mac).

platform_version

MPF machine variable

Version of your operating system.

player(x)_score

MPF machine variable

Holds the numeric value of a player’s score from the last game. The “x” is the player number, so this
actual machine variable is player1_score or player2_score.

Since these are machine variables, they are maintained even after a game is over. Therefore you can
use these machine variables in your attract mode display show to show the scores of the last game
that was played.

These machine variables are updated at the end of the game, and they persist on disk so they are
restored the next time MPF starts up.

python_version

MPF machine variable

Python version.

Related Events

∙ machine_var_(name)

platform_system 1981

CHAPTER29

Player Variables Reference

Here’s a list of all the different “built in” player variables that MPF uses.

You can use these in your config files to trigger game logic or to display as text on your display.

Video about player and machine variables:

https://youtu.be/PUxEsNUGXPY

Note that you can also create your own player variables in your configs, and most likely your machine
will have several orders of magnitude more player variables than this list here.

That said, here’s a list of the “built in” player variables and how they work:

index

MPF player variable

The index of this player, starting with 0. For example, Player 1 has an index of 0, Player 2 has an index
of 1, etc.

If you want to get the player number, use the “number” player variable instead.

ball

MPF player variable

The ball number for this player. If a player gets an extra ball, this number won’t change when they
start the extra ball.

1982

https://youtu.be/PUxEsNUGXPY

Mission Pinball Framework Documentation, Version

extra_ball_(name)_awarded

MPF player variable

The number of times this extra ball has been awarded to the player in this game. Note that the default
max is one (meaning that each extra ball can be awarded once per game), so this value will only be 0
or 1 unless you change the max setting for this extra ball.

extra_balls

MPF player variable

The number of remaining extra balls which the player will be awarded after draining his current ball.

config_section: counters, accruals, sequences <logic_block_state config_section: counters, accruals,
sequences>

(mode)_(timer)_tick <mode_timer_tick> number <number> random_(x).(y) <random_x.y>
restart_modes_on_next_ball <restart_modes_on_next_ball> score <score>

Related Events

∙ player_(name)

extra_ball_(name)_awarded 1983

CHAPTER30

Log and Error Descriptions

CFE-coils-1: Driver must have a number

Related Config File Sections
coils:

This error occurs when MPF loads a coil which is has an empty number or misses a number entry.
Unfortunately, hardware needs a switch number to address your coil and it cannot continue without a
number.

Examples

Physical Coils

This is how a coil should look:

coils:

your_coil:

number: 1

The actual number depends on your hardware platform. See the How to configure “number:” settings
guide for details.

Virtual Coils

Sometimes you did not wire up a coil but you know that you will need it later. This is a problem for
your physical hardware controller but you can tell MPF to use the virtual hardware platform for one
particular coil:

1984

Mission Pinball Framework Documentation, Version

coils:

your_virtual_coil:

number:

platform: virtual

In this case the number can be empty.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ Coils (Solenoids)

CFE-ConfigValidator-1: Section not valid outside of game modes

This error occurs when MPF needs to reference player variables in a device but you defined the device
in a non-game mode (i.e. with game_mode: false) such as the attract mode. Game modes will always
end when the game ends. Non-game modes can run all the time but they should not access player
variables as they do not exist outside of a game. Certain devices enforce the latter.

Examples

For instance, a counter can store its state in a player variable which is only possible in a game mode:

##! mode: my_game_mode

mode:

start_events: ball_started

stop_events: ball_stopped

game_mode: true # this is the default

counters:

counter_per_player:

count_events: count_up

persist_state: true

CFE-ConfigValidator-1: Section not valid outside of game modes 1985

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

However, if you set persist_state: False in your counter it can also be used outside of a mode:

##! mode: attract

mode:

game_mode: false

counters:

counter_outside_of_a_game:

count_events: count_up

persist_state: false

Those settings are described in the config reference of your device.

Common Pitfalls

Variable_Players

Variable player will by default use player variables. However, if you use action: add_machine or
action: set_machine you can also use it to add/set machine variables which work in non-game modes.

Attract Mode

Attract mode only runs outside of a game so you cannot reference player here. However, you can use
machine variables

Match Mode and High Score Mode

Those modes run at game end and are technically no longer game modes. Therefore, you cannot
reference a player here. You might want to put your stuff into a custom mode which run at ball end
(but not game end) instead (i.e. the bonus mode). Alternatively, you might want to use machine
variables instead of player variables.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

CFE-ConfigValidator-1: Section not valid outside of game modes 1986

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Related How To guides

∙ Logic Blocks

∙ config reference

CFE-ConfigValidator-2: Your config contains a value for the setting, but this
is not a valid setting name

This error occurs when MPF does not know a setting you specified in a device.

Examples

For instance, a switch knows certain settings:

switches:

s_flipper_left:

number: 1

label: My Left Flipper Switch Example

tags: some_custom_tag

You can see which settings are allowed in the config reference of your device.

Common Pitfalls

Typos

The most common source for this kind of error are typos. Check the name of your referenced device
with the setting. Casing matters here (i.e. upper/lower case). Using an IDE with the MPF language
server can help here.

Mixing Devices

Maybe you accidentially copied config attributes from a different type of devices? Double check if you
refered to the documentation of the correct device. If you find incorrect documentation please tell us
in the forum.

Incorrect Indent

With nested configs (i.e. slide_player or widget_player) you might have used an option which should
be indented one level further or one level less. This can sometimes be a bit tricky. Using an IDE with
the MPF language server can help here.

Running Config from a different MPF Version

Sometimes MPF config specifications change. Check if your MPF version fits the config. If in doubt
check the config reference for your device.

CFE-ConfigValidator-2: Your config contains a value for the setting, but this is not a valid setting name1987

Mission Pinball Framework Documentation, Version

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ config reference

CFE-ConfigValidator-4: Invalid Validator in config spec

This error occurs when MPF does not understand the config specification for a device. Unless you
created custom config specs in a mode, (external) platform or custom device, this is certainly a bug in
MPF. Please report this in our forum in that case!

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ config reference

CFE-ConfigValidator-4: Invalid Validator in config spec 1988

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

CFE-ConfigValidator-6: Device not found in section in your config

This error occurs when MPF does not find a device which is referenced by one of your settings in your
config.

Examples

For instance, a flipper device references a switch and a coil:

switches:

s_flipper_left:

number:

coils:

c_flipper_left:

number:

flippers:

left_flipper:

main_coil: c_flipper_left

activation_switch: s_flipper_left

You can see to which type of device a setting references in the config reference of your device. For
this instance, check the flipper config reference and you will find that main_coil references a coil and
activation_switch references a switch .

Common Pitfalls

Typos

The most common source for this kind of error are typos. Check the name of your referenced device
with the setting. Casing matters here (i.e. upper/lower case). Using an IDE with the MPF language
server can help here.

Copy and Paste

We all do this and there is nothing wrong with copying configs from the docs. Almost all examples in
the docs are tested and should not give this kind of error. However, sometimes we hide certain devices
in the docs (i.e. switches and coils which are referenced by an examplary flipper device as above).
This is done to improve readability but when copying those examples you might get this error.
Nevertheless, you can click “Click to show full config” below all examples to see the full tested
example which is tested to work in the MPF version corresponding to the docs.

Running Config from a different MPF Version

Sometimes MPF config specifications change. Check if your MPF version fits the config. If in doubt
check the config reference for your device.

CFE-ConfigValidator-6: Device not found in section in your config 1989

Mission Pinball Framework Documentation, Version

Referencing a different type of device

If you reference a different device MPF won’t find it and show this error. Check the config reference
of your device to see which device is expected or setup your IDE with the MPF language server.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ config reference

CFE-ConfigValidator-9: Required setting is missing from section in your
config

This error occurs when MPF does not find a required setting in one of your config sections.

Examples

For instance, every switch has to have a number in MPF:

switches:

s_ball_switch1:

number: 1

You can see which settings are required in the config reference of your device. For this instance,
check the switch config reference and you will find that only number is a required setting.

Common Pitfalls

Omitting one of the required settings

If you omit on of the required settings you will see this error. To this this browse to the config
reference of your device and add all the required settings. Alternatively, you could use your IDE with
the MPF language server to auto-complete all required settings.

CFE-ConfigValidator-9: Required setting is missing from section in your config 1990

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ config reference

CFE-ConfigValidator-12: Item is not a dict

This error occurs when MPF expects a dictionary in a config setting but found something else.

Examples

For instance, show_tokens in a show_player has to be a dictionary:

show_player:

some_event:

your_show_name:

show_tokens:

dict_key1: "dict_value1"

dict_key2: "dict_value2"

You can see which settings are dicts in the config reference of your device.

Common Pitfalls

Using a List instead of a Dict

This is a list in yaml:

your_setting:

- item1_in_list

- item2_in_list

This is a dictionary:

CFE-ConfigValidator-12: Item is not a dict 1991

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

your_setting:

key1_in_dict: value1_in_dict

key2_in_dict: value2_in_dict

This is a list of dictionaries (used in shows for example):

your_setting:

- key1_in_dict_in_list1: value1_in_dict_in_list1

- key1_in_dict_in_list2: value1_in_dict_in_list2

key2_in_dict_in_list2: value2_in_dict_in_list2

Incorrect Indent

With nested configs (i.e. show_player, slide_player or widget_player) you might have used an option
which should be indented one level further or one level less. This can sometimes be a bit tricky. Using
an IDE with the MPF language server can help here.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ config reference

CFE-ConfigValidator-13: Cannot convert value to boolean

This error occurs when MPF expects a boolean value (i.e. true or false) for a config setting but got a
value of a different type.

Examples

For instance, the debug setting for a switch is a boolean:

CFE-ConfigValidator-13: Cannot convert value to boolean 1992

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

switches:

s_flipper_left:

number: 1

debug: true # we want all the details about this switch in the logs

You can see which settings are boolean in the config reference of your device.

Common Pitfalls

Widget Animations Repeat

In MPF versions before 0.53 repeat in widgets has been an integer which has been converted to
boolean internally. A lot of examples (and the tutorial) contained repeat: -1. You need to change this
to repeat: false to fix this error.

Using Quotes

If you use debug: "false" (with quotes around false) MPF will not recognize false as a boolean but
as a string. Remove the quotes to fix this.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ config reference

CFE-DeviceManager-3: Device does not have a valid config. Expected a
dictionary.

This error occurs when MPF expects a dictionary in a config of a device but found something else.

CFE-DeviceManager-3: Device does not have a valid config. Expected a dictionary. 1993

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Examples

For instance, the settings of a switch are a dictionary (switches -> s_flipper_left).

switches:

s_flipper_left:

number: 1

label: My Left Flipper

Common Pitfalls

Forgetting the Device Name

This error usually occurs when you omit the device name. For example if you omit s_flipper_left this
would look like this:

BROKEN CONFIG

switches:

number: 1

label: My Left Flipper

Here MPF would see two switches with the names number and label. Each of them has an invalid
config (just a single value but not a dictionary).

YAML Formatting Issues

See CFE-ConfigValidator-12: Item is not a dict for more general common pitfalls.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ CFE-ConfigValidator-12: Item is not a dict

∙ config reference

CFE-DeviceManager-3: Device does not have a valid config. Expected a dictionary. 1994

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

CFE-show-1: Show does not appear to be a valid show config

Related Config File Sections
shows:

This error occurs when MPF loads a show which is not a list of steps. There are two ways to add
shows to your machine: either as file or inside your config. Both can happen inside a mode or
machine-wide inside your global config folder.

Examples

File Shows

This is how a file show should look:

##! show: flash_red

#show_version=5

- duration: 1

lights:

led1: red

- duration: 1

lights:

led1: off

Please note that there can be only one show per dedicated show file as MPF uses the filename as show
name. See Creating standalone show files for details.

Config Shows

This is how a show inside your config should look:

shows:

flash_red:

- duration: 1

lights:

led1: red

- duration: 1

lights:

led1: off

See Shows in files versus shows in configs for details.

Common Pitfalls

Multiple shows inside one file show

This is NOT valid as file show:

CFE-show-1: Show does not appear to be a valid show config 1995

Mission Pinball Framework Documentation, Version

INVALID FILE SHOW

flash_red:

- duration: 1

[...]

flash_blue:

- duration: 1

[...]

Instead you have to create two files flash_red.yaml and flash_blue.yaml.

Missing hyphen for your step

You might have missed the hyphon in front of your first step (or in front of all steps):

INVALID FILE SHOW

#show_version=5

duration: 1 # note the missing dash here

lights:

led1: red

The same can happen in config shows:

INVALID CONFIG SHOW

shows:

flash_red:

duration: 1 # hyphen missing here

lights:

led1: red

This often happens with one step shows. See above for working examples.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ Shows

CFE-show-1: Show does not appear to be a valid show config 1996

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

CFE-Smart_Virtual_Platform-1: Switch used in vir-
tual_platform_start_active_switches was not found in switches section

Related Config File Sections
switches:
virtual_platform_start_active_switches:

This error occurs when you use a switch in virtual_platform_start_active_switches which is not
defined in your switches section.

Examples

This is how it should look:

switches:

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

Two switches should be active at start

virtual_platform_start_active_switches:

- s_ball_switch1

- s_ball_switch2

Alternatively, this could be a comma separated list:

switches:

s_ball_switch1:

number:

s_ball_switch2:

number:

s_ball_switch3:

number:

Two switches should be active at start

virtual_platform_start_active_switches: s_ball_switch1, s_ball_switch2

Common Pitfalls

Using spaces instead of commas

In MPF versions before 0.54 you could also use spaces instead of commas. Even though this syntax
was never officially supported in lists it still was supported code. This was also used in previous
versions of the documentation and the tutorial.

INVALID SYNTAX

virtual_platform_start_active_switches: s_ball_switch1 s_ball_switch2 # note the space instead of a␣

→˓comma

CFE-Smart_Virtual_Platform-1: Switch used in virtual_platform_start_active_switches was not found in
switches section

1997

Mission Pinball Framework Documentation, Version

To fix this turn it into one of the two syntaxes above. See How to add lists to config files for details.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ virtual_platform_start_active_switches:

∙ How to add lists to config files

CFE-Virtual_Platform-1: Switch used in virtual_platform_start_active_switches
was not found in switches section

See CFE-Smart_Virtual_Platform-1: Switch used in virtual_platform_start_active_switches was not
found in switches section which is exactly the same error.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

CFE-Virtual_Platform-1: Switch used in virtual_platform_start_active_switches was not found in switches
section

1998

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Log-SwitchController-1: Received duplicate switch state for switch

Related Config File Sections
switches:

MPF expects to get only state changes from platforms. That is part of the platform interface contract.
This warning indicates that the contract is violated (i.e. because MPF got a switch close but the switch
has been closed before). This might indicate bugs in the platform firmware, our platform interface or
the communication in between.

MPF handles this gracefully so there is no need to worry. It will just ignore the second hit and carry on.

There are conditions where you will see this. Our smart virtual platform will sometimes trigger this.
Those are kind of bugs. Usually harmless but we will fix them if you report them.

Additionally, you can trigger those warnings if you use more than source of switch states at once for
the same switch. That could be any two of a hardware platform, MPF monitor or keyboard mappings.

Lastly, the P-Roc is known for sending switches twice when using debounced switches. This has to do
with its internal state machine and is usually harmless.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

RE-MPF-MC_BCP_Server-1: Failed to bindBCPSocket to localhost onport
5050

See RE-MPF_BCP_Server-1: Failed to bind BCP Socket to 127.0.0.1 on port 5051 which is exactly the
same error.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

Log-SwitchController-1: Received duplicate switch state for switch 1999

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

RE-MPF_BCP_Server-1: Failed to bind BCP Socket to 127.0.0.1 on port
5051

Related Config File Sections
bcp:

This error occurs when MPF cannot bind the port 5051 for incoming BCP connections. The same error
can occur in MC when it cannot bind port 5050.

Common Pitfalls

Another Application is Running on that Port

Yahoo Messager uses 5050 and some Symantec application uses 5051. However, there might be other
applications such a IIS which can also use those ports. Stop those applications or change the port in
the bcp config section.

Firewalls and Antivirus Protection Soltions

Some firewalls might prevent MPF from binding ports. Also antivirus or threat protection software
might do that. Try if disabling those help. If it helps see if you can add an exception for MPF.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

RE-MPF_BCP_Server-1: Failed to bind BCP Socket to 127.0.0.1 on port 5051 2000

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Related How To guides

∙ bcp:

RE-P-Roc-1 - Known Firmware Bug in P/P3-Roc

Related Config File Sections
p_roc:

This error occurs when you try to use pulse_power on drivers on the P3-Roc with firmware 2.14 or
earlier and enable a rule with hold.

This can be solved by either removing pulse_power from the coil in question or by upgrading the
firmware. Firmware can be obtained from the Multimorphic Member Area.

See How to update the Firmware of the P-Roc or P3-Roc for details about the upgrade process.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ How to configure Multimorphic (P-ROC & P3-ROC) hardware

∙ Troubleshooting P-Roc/P3-Roc

∙ How to update the Firmware of the P-Roc or P3-Roc

RE-P-Roc-2 - Communication with P/P3-Roc broke down

Related Config File Sections
p_roc:

In your log you will probably find a line such as:

RE-P-Roc-1 - Known Firmware Bug in P/P3-Roc 2001

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

OSError: Error in WriteData: wrote 0 of 8 bytes

This error occurs when pinproc (the library MPF uses to talk to the P/P3-Roc) reports an error while
talking to the P/P3-Roc via USB. This is most likely a bad cable or a power supply issue. See
Troubleshooting P-Roc/P3-Roc for potential causes and solutions.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ Troubleshooting P-Roc/P3-Roc

∙ Wiring and Connectors in Pinball Machines

∙ Voltages and Power

RE-P-Roc-3 - Failed to Import Pinproc

Related Config File Sections
p_roc:

This error occurs when MPF cannot load the pinproc library. See Troubleshooting P-Roc/P3-Roc for
potential causes and solutions.

Need more help troubleshooting?

Have a look at our Troubleshooting section. It might give you some hints for certain classes of
problems.

What if this did not fix your problem?

Please tell us about your error in the MPF Users Google Group and we might be able to update this
page afterwards. Or even better: You help us to update it afterwards.

RE-P-Roc-3 - Failed to Import Pinproc 2002

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

Is something missing here? Do you have a helpful hint for others experiencing this error?

Please create a Pull Request and add it . Alternatively, please tell us in the MPF Users Google Group.

Related How To guides

∙ Troubleshooting P-Roc/P3-Roc

∙ How to use install drivers for the P-ROC / P3-ROC

RE-P-Roc-3 - Failed to Import Pinproc 2003

https://groups.google.com/forum/#!forum/mpf-users

CHAPTER31

Developer Documentation

We talk a lot about how you don’t have to be an experienced software developer to use MPF. However,
if you are an experienced developer, there are a few ways you can leverage your coding knowledge:

∙ You can add custom code to your machine for parts of your game where you’d rather write “real”
code versus using config files.

∙ You can add custom code to handle unique and one-off hardware.

∙ You can write Python-based unit tests to test your machine.

∙ You can extend MPF to add features or to support new types of hardware.

Instructions for all of this, as well as an API reference, is available at the MPF Developer
Documentation website:

http://developer.missionpinball.org

2004

http://developer.missionpinball.org

CHAPTER32

About the MPF Documentation

If you’d like to help write or improve this documentation (even if it’s a simple typo correction), see the
Contributing to the MPF documentation guide for details.

MPF documentation authors

This MPF documentation was written by:

∙ Brian Madden (brian@missionpinball.org)

∙ Gabe Knuth (gabe@missionpinball.org)

∙ Quinn Capen (qcapen@gmail.com)

∙ Isaac Csandl (isaac.csandl@me.com)

∙ Jeremy Edwards (pinman2020@gmail.com)

∙ Jan Kantert (jan-mission-pinball@kantert.net)

∙ Ryan Richardson

∙ Anythony Winkle

∙ Dan Howard

∙ Mike O’Rourke

∙ Chris Benn

∙ Tim Wendt

∙ Travis Martin (travisbmartin@gmail.com)

∙ Coleman O Martin (colemanomartin@hotmail.com)

∙ Kevin Lee Drum (kevinleedrum@gmail.com)

2005

mailto:brian@missionpinball.org
mailto:gabe@missionpinball.org
mailto:qcapen@gmail.com
mailto:isaac.csandl@me.com
mailto:pinman2020@gmail.com
mailto:jan-mission-pinball@kantert.net
mailto:travisbmartin@gmail.com
mailto:colemanomartin@hotmail.com
mailto:kevinleedrum@gmail.com

Mission Pinball Framework Documentation, Version

∙ Aaron Matthies

∙ Jimmy Lipham

∙ Kyle Nahas

∙ Thomas Fulenwider (cobra18t)

∙ Brandon Hill (bghill.dev@gmail.com)

∙ Dave Ensminger

∙ Matt Kemp (matt@blz.co)

∙ Charles Duncan (nullbuilds)

Want to help with the docs? See our Contributing to MPF’s Documentation page for details. It’s easy!

MPF license & copyright

The Mission Pinball Framework code and all documentation is licensed in a way that basically means
you can do whatever you want with it. The only real caveat is that you use it at your own risk, and we
don’t provide any warranties.

The code is licensed under the MIT license, and the documentation is licensed via Creative Commons
Attribution 4.0 International (CC BY 4.0).

It a nutshell, you can use MPF and the docs however you want. You can use MPF in a commercial
product. You can make changes to it, and you don’t have to share the changes back with the
community if you don’t want to. You can make derivative works, sell it, build a business on it, etc. Go
nuts!

At the end of the day, we created MPF because we want to see more pinball in the world, so we didn’t
put any restrictions on what you can do with it because we don’t want anyone to hesitate jumping into
the amazing world of pinball!

Help us to write it

Congratulations you found an opportunity to improve the documentation! If you are up to it write a
few sentences, add an example or an image. Any help is welcome and don’t be afraid we will review
your change so you cannot accidentally break anything. Still interested? Then proceed to our guide on
How to contribute to MPF Docs.

MPF license & copyright 2006

mailto:bghill.dev@gmail.com
mailto:matt@blz.co
https://opensource.org/licenses/MIT
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

CHAPTER33

MPF FAQ

FAQ: General

Why does this project exist?

The Mission Pinball Framework was started in 2014 by Brian Madden and Gabe Knuth. Both of them
had dreamed of building their own pinball machines for years, and in 2013, they discovered the P-ROC
and the wonderful community of home brew pinball builders and hackers.

The P-ROC pinball control system works with an open source project called pyprocgame which is a
Python-based game framework. Pyprocgame is great, but it’s pretty basic. (It’s more of a pinball
development environment versus a complete framework.) One of the challenges we saw was that
people kept on having to “reinvent the wheel” with each game they built. After reading forum posts
about “How do you write code for a trough?” about ten times, we thought, “Why isn’t there a
framework that just ‘does that’ for you?”

Pyprocgame also requires everything to be written in Python code, and we found that a lot of people
who wanted to build their own pinball machines weren’t software developers. So we thought it would
be cool to create a framework where the majority of the “programming” could be done with text-based
configuration files.

So in June 2014, we decided to start building the Mission Pinball Framework.

Around the same time, FAST Pinball came onto the market to offer an alternative control system to the
P-ROC and P3-ROC. At that we thought, “Great, let’s make the Mission Pinball Framework so that’s
it’s hardware-independent and can work with the FAST Pinball or P-ROC systems (plus any other
future systems that came out).

Isn’t using config files limiting?

Finding the balance between “config files” and “real programming” is an age-old battle. We have a
guide called Config files versus “real” programming which explains this in more detail, including our

2007

Mission Pinball Framework Documentation, Version

perspective on it and why we decided to make config files the focus on MPF.

Can I mix “real” code in with MPF config files?

Yes! See developer.missionpinball.org for details and examples.

Where does the name come from?

Brian lived in San Francisco’s “Mission” neighborhood when MPF was first created. There are a lot of
“Mission” things here, Mission Bowling, Mission Coffee, Mission Ice Cream. . . So we thought
“Mission Pinball” had a great ring to it!

What pinball hardware does MPF work with?

The complete hardware compatibility list is here.

Who’s behind this?

Even though MPF was started by Brian Madden and Gabe Knuth, our team has grown to involve lots
of people. See the AUTHORS file in the MPF package for the latest list.

Is MPF stable?

MPF is open source software that is not yet at a 1.0 release. However we’ve been working on it since
2014, and several complete pinball machines have been built using it.

Furthermore, when we find crashes, we fix them. If you look at the list of commits (code additions,
changes, and fixes that we check in) on GitHub, you’ll see that we’re busy with dozens of commits per
week!

Is MPF beta? When will v1 be released?

MPF is open source and continuously developed. We’re currently say, “Yes, it’s beta” since we are not
yet at a 1.0 release. However we release new versions every few months and don’t expect that to
change anytime soon.

We do expect to get to a 1.0 release at some point, but we don’t have a specific time-frame for that.
The important thing is to look at the code commit history and to notice that MPF is being very actively
developed!

How can I download the documentation and read it offline?

Click the “Read the Docs” link in the lower-left corner of any page of the MPF documentation on
docs.missionpinball.org for links to PDF, HTML, and Epub versions of the documentation.

FAQ: General 2008

http://developer.missionpinball.org
https://github.com/missionpinball/mpf/blob/dev/AUTHORS
https://github.com/missionpinball/mpf/commits/dev
https://github.com/missionpinball/mpf/blob/dev/AUTHORS

Mission Pinball Framework Documentation, Version

What other options are there besides MPF?

While we think MPF is awesome, our main goal is to see more pinball in the world! Since all of us are
working on MPF in our spare time (and not being paid for it), we won’t be offended if you don’t use
MPF. Just please create more pinball!

At this time, if you don’t want to use MPF, there are a few other options:

∙ pyprocgame (P-ROC/P3-ROC only; website defunct)

∙ PyProcGameHD+SkeletonGame (P-ROC/P3-ROC only, adds HD graphics and more to pyprogame)

∙ Open Pinball Project framework (Open Pinball Project hardware only)

∙ Rampant Slug Framework (P-ROC/P3-ROC only; website defunct)

∙ FreeWPC (WPC hardware only, lets you write new code in C, burn it to ROMS, and run it on
original WPC hardware)

FAQ: Installation

How do I get started?

Start with the Start Here link in the menu on the left. That will explain an overview of how MPF works
and then lead you through the features, the tutorial, and so on.

What are the prerequisites?

If you just want to start playing with MPF, you do not need a physical pinball machine. In fact we have
a graphical tool (the MPF Monitor) which simulates a real pinball machine, so you can probably build
an entire game without having an actual pinball machine.

If you want to use a real pinball machine (or build a real machine), you need to pick a pinball control
system. (We have a list of supported control systems here.) If you want to get started as cheaply as
possible, the Open Pinball Project hardware is open source which you can build yourself. You can
probably build all the hardware you need for under $100.

What computer hardware do I need?

MPF supports Windows, Mac, and Linux, so pretty much any computer is fine. Most people do their
development of MPF on whatever computer they use in their daily lives, then when they’re getting
close to done with their machine, they install a dedicated computer (or even a Raspberry Pi) in their
machine to run MPF.

What Python version can I use with MPF?

Your need Python 3.5 or 3.6. Python 3.4 is end of life and will no longer be supported. Python 3.7 and
newer are not yet supported. We walk you through getting Python installed in our installation
documentation.

FAQ: Installation 2009

http://mjocean.github.io/PyProcGameHD-SkeletonGame/
https://openpinballproject.wordpress.com/
https://github.com/bcd/freewpc
https://github.com/missionpinball/mpf-monitor

Mission Pinball Framework Documentation, Version

Should I use the stable version or development version?

We recommend that people use the latest “stable” (or “release”) version of MPF unless you need
specific features from the “dev” (next) version.

The current “stable” version of MPF is listed on the top of the MPF Users home page on Google
Groups.

Where do I find information on older versions of MPF?

If you want information about an older version (0.30 and newer), click the “Read the Docs” link in the
lower-left corner of any page on docs.missionpinball.org and select the version you want to read about.

You can install older versions of MPF with pip, like this:

pip install mpf-mc==0.31

Documentation for versions of MPF prior to 0.30 is available in this post

FAQ: Building your game

Where do I get help building my machine?

If you’re looking for information about physically building your machine, check out the
PinballMakers.com website.

I want to do something that’s not in MPF. Now what?

Awesome!

First, you can check out the list of new features that we’re tracking.

∙ MPF New Features

∙ MPF-MC New Features

∙ MPF Monitor New Features

If you see your feature there, you can click on it and then click the “Subscribe” button to receive email
notifications of progress or when it’s been added.

You can also read our MPF Road Map, Vision & Future for an idea of our longer-term plans for MPF.

If you still don’t see your idea, of you’d like to talk about it or ask questions, feel free to post a
message to the MPF Users Google Group <https://groups.google.com/forum/#!forum/mpf-users>.

FAQ: Getting help

Where can I go for help?

If you’re stuck with something, feel free to post a message to the MPF Users Google Group.

FAQ: Building your game 2010

https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!msg/mpf-users/7I-phnq9rOs/
http://pinballmakers.com
https://github.com/missionpinball/mpf/issues?q=is%3Aissue+is%3Aopen+label%3A%22new+feature%22
https://github.com/missionpinball/mpf-mc/issues?q=is%3Aissue+is%3Aopen+label%3A%22new+feature%22
https://github.com/missionpinball/mpf-monitor/issues?q=is%3Aissue+is%3Aopen+label%3A%22new+feature%22
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

I think I’ve found a bug. Now what?

Again, post it to the MPF Users Google Group.

I want MPF to work with a new piece of hardware

Awesome! We’ve designed MPF to be platform-independent, meaning that the core MPF software
doesn’t talk to hardware directly. Instead we have “platform interfaces” for different types of
hardware.

The easiest way to understand how these work is to look through the code for the existing platform
interfaces. This code is in the platforms folder in MPF.

As always, if you have questions, please post them to the MPF Users Google Group and we’ll go from
there!

FAQ: Getting help 2011

https://groups.google.com/forum/#!forum/mpf-users
https://github.com/missionpinball/mpf/tree/dev/mpf/platforms
https://groups.google.com/forum/#!forum/mpf-users

CHAPTER34

Glossary of MPF terms

Here’s a list of terms you might come across in MPF. Note that this is not an exhaustive list of
everything, rather, these are terms we use in MPF that might not be obvious.

display A logical target which holds slides. Displays are abstract–purely logical. You use the machine
config to map logical displays to the physical on-screen window or a DMD.

machine folder The folder which holds your machine config files.

player variable A named value that is stored on a per-player basis, such as the current ball number
or score.

watch dog A feature of a hardware control system that ensures you don’t blow anything up if MPF
crashes. Essentially it’s a timer which runs on the hardware (typically set to a short amount of
time, like 1 second) that has to be “pinged” by MPF constantly to reset the timer. If the timer
runs out before its pinged, then the hardware system will shut off all power to its devices. In
normal operation, MPF pings the watchdog constantly, but if MPF crashes or shuts down
ungracefully, then the watchdog pings stop, the hardware timer expires, and the hardware
controller shuts off all the power to the connected devices.

widget A thing that is put on a display. There are different types of widgets, such as text, images,
videos, shapes, etc.

2012

CHAPTER35

Contributing to MPF

Want to add a feature? A missing event somewhere? Wrote a new device which might be useful for
other users? Fixed a bug? Added some small missing piece?

We’d love to take your contribution upstream!

Found a bug which you can reproduce? Fill an issue:

∙ MPF Issues on github. Use this for game and platform related bugs

∙ MPF-MC Issues on github. Use this for media controller bugs such as problems with slides,
widgets or audio.

If you want to discuss a feature or bug (or if you are unsure). Visit our forum:
https://github.com/orgs/missionpinball/discussions

Install MPF in development mode

To make changes to MPF you need to install it in developer/editable mode:

1. Fork the mpf repo on GitHub. Do this by clicking on the Fork button in the top right corner.

2. Clone your fork of the mpf repo to your local machine. Determine the folder where you want this
to reside. Consider using a different folder than where your personal MPF code resides. Then
run the following command: (git clone https://github.com/YOUR_GITHUB_HANDLE/mpf/)

3. Install the MPF dependencies if you haven’t installed mpf before. On linux you can run our mpf
dependency installer. On other platforms check the installation instructions instructions.

4. Navigate to your cloned repository and run: pip3 install mpf-mc --pre to install MPF in
editable mode.

2013

https://github.com/missionpinball/mpf/issues
https://github.com/missionpinball/mpf-mc/issues
https://github.com/orgs/missionpinball/discussions
https://github.com/missionpinball/mpf/
https://raw.githubusercontent.com/missionpinball/mpf-debian-installer/dev/install-mpf-dependencies
https://raw.githubusercontent.com/missionpinball/mpf-debian-installer/dev/install-mpf-dependencies

Mission Pinball Framework Documentation, Version

Install MPF-MC in development mode

If you want to make changes to MPF-MC (Media Controller) you will need to install it in
developer/editable mode:

1. Fork the mpf-mc repo on GitHub. Do this by clicking on the Fork button in the top right corner.

2. Clone your fork of the mpf-mc repo to your local machine (git clone
https://github.com/YOUR_GITHUB_HANDLE/mpf-mc/).

3. Install the MPF-MC dependencies if you haven’t installed mpf-mc before. On linux you can run
our mpf mc dependency installer. On other platforms check the installation instructions
instructions.

4. Navigate to your cloned repository and run:pip3 install -e . to install MPF-MC in editable
mode

To work on both the MPF and the MPF-MC complete both sets of instructions. Make sure you don’t
install the

After cloning and installing the dependencies for the desired project follow these steps.

1. Switch your repository to the branch corresponding to the version you want to work with. This
should be dev in most cases or the current release for smaller bug fixed. Do what works best for
you. We can help to forward or backport your changes.

2. From your MPF folder that is connected with git, create a local branch to work on (git checkout
-b your_feature_name).

3. Make your changes.

4. Add your name to the AUTHORS file.

5. If possible add an unit test. We can help with that and a first Pull Request without a test is
definitely fine.

6. Run python3 -m unittest discover -s mpf.tests and check that all tests still pass.

To check that all tests will still pass for mpf-mc run python3 -m unittest discover -s
mpfmc.tests.

If you get an error message that Python was not found, try running the following command:
python -m unittest discover -s mpfmc.tests. This is the same basic command, but runs on
python instead of python3.

7. Commit your changes (git commit -a)

8. In the git commit screen type your title on line 1. Leave a blank line, and then type out a
description of what is included in this commit. Once you are done typing your commit notes,
press escape. This will bring your cursor to the bottom of this panel. From there type (‘’:wq”)
and press Enter. This will complete your commit notes.

9. Push your changes to your github (git push origin your_feature_name).

10. Open up your Fork on github and create and submit your pull request to merge from your local
back to MPF.

We recommend you to use a decent IDE because it makes life easier. Most of the MPF developers use
PyCharm but other IDEs will work as well.

Install MPF-MC in development mode 2014

https://github.com/missionpinball/mpf-mc/
https://raw.githubusercontent.com/missionpinball/mpf-debian-installer/dev/install-mc-dependencies

Mission Pinball Framework Documentation, Version

Getting started with an open issue

We maintain a list of issues which are self-contained and good to solve on their own without too much
interaction with core code. We label those as help wanted (although they do not have to be easy, just
self-containted). If you want to work on one of them (or any other issue) comment on the issue or
write in the forum and we will assist you along the way.

Getting started with an open issue 2015

https://github.com/missionpinball/mpf/labels/help%20wanted

CHAPTER36

Contributing to MPF’s Documentation

Want to help make these docs better! Great! We’d love any help, whether it’s as small as correcting a
typo, adding to a section that isn’t clear, adding your own How To guide, or whatever else you want to
change.

Video about contributing to the documentation:

https://youtu.be/jj8uM25B_yY

If you got any questions please ask in the MPF Users Google Group. We are happy to help you with
any contribution.

To make a quick change to an existing page

Quick changes to existing pages can be done right on the web!

To do that:

1. Browse to the page you want to update, and click the “Edit on GitHub” link in the upper right
corner of the page.

2. Click the pencil icon in the upper-right corner of the page’s text. (If this is grayed out, that
means you need to create a GitHub account and/or login.) This will create a fork of mpf-docs in
your GitHub account.

3. Make your change, and click the “Propose file change”. This will create a pull request. Type a
name describing your change, and click “Create pull request”.

4. Details and screen shots of this entire process are here.

2016

https://youtu.be/jj8uM25B_yY
https://groups.google.com/forum/#!forum/mpf-users
https://help.github.com/articles/editing-files-in-another-user-s-repository/

Mission Pinball Framework Documentation, Version

To make a suggestion for a new doc (or to point out an error)

Even if you don’t feel comfortable actually changing or editing docs, you can still tell us about an error
in the documentation or suggest new documentation that we should add. To do this:

1. Go to the “Issues” page of the mpf-docs repository on GitHub.

2. Create a GitHub account if you don’t have one, and/or login.

3. Click the “New Issue” button and describe what you’d like us to fix or add!

How does the layout work?

The documentation uses reStructuredText (rst). You can read about possible elements in the rst
documentation.

Some excerpts from the documentation above:

A bulleted list of items:

* element 1

* element 2

Looks like:

∙ element 1

∙ element 2

Highlighted yaml:

.. code-block:: yaml

element:

subelement: value

Looks like:

element:

subelement: value

To clone the mpf-docs repo locally to make bigger changes

If you want to make bigger changes to the docs, or if you want to download the mpf-docs repo so you
can work on it offline, do the following:

1. Clone the mpf-docs repo from GitHub.

2. Switch to the branch corresponding to the version of the docs you want to work with (usually dev
or latest).

3. Makes your changes.

4. Add your name to the /about/authors.rst doc.

To make a suggestion for a new doc (or to point out an error) 2017

https://github.com/missionpinball/mpf-docs/issues
http://www.sphinx-doc.org/en/stable/rest.html
http://www.sphinx-doc.org/en/stable/rest.html
https://github.com/missionpinball/mpf-docs/

Mission Pinball Framework Documentation, Version

5. To test the docs locally, you’ll need sphinx and sphinx_bootstrap_theme, both of which you can
install via pip.

6. Run make html to ensure everything builds properly without any additional warnings from
whatever docs you added or changed. (The built docs will be in the _build/html folder. You can
open index.html in your local browser to preview your changes.)

7. Submit your pull request

To clone the mpf-docs repo locally to make bigger changes 2018

https://help.github.com/articles/creating-a-pull-request-from-a-fork/

CHAPTER37

MPF Versions

MPF is a work-in-progress. New versions are released every so often. You can find your MPF version
by running mpf –version from the command line.

If you’re looking for a specific version of the documentation to match the older version of MPF you’re
using, look in the “Assets” link at the bottom of the release notes for any version in the MPF releases
page on GitHub.

User Documentation for Older MPF Versions

If you’re looking for the documentation for an older version of MPF, you can find it here. Each link
below contains the docs in several formats, including PDF, text, and HTML zip bundles of the
documentation for that version.

∙ MPF v0.33 Docs

∙ MPF v0.50 Docs

∙ MPF v0.51 Docs

∙ MPF v0.52 Docs

∙ MPF v0.53 Docs

∙ MPF v0.54 Docs

∙ MPF v0.55 Docs

∙ MPF v0.56 Docs

Understanding MPF version numbering

This page explains:

2019

https://github.com/missionpinball/mpf/releases
https://github.com/missionpinball/mpf/releases
https://archive.org/details/mission-pinball-framework-html-docs-v-0.33
https://archive.org/details/mission-pinball-framework-html-docs-v-0.50
https://archive.org/details/mission-pinball-framework-html-docs-v-0.51
https://archive.org/details/mission-pinball-framework-html-docs-v-0.52
https://archive.org/details/mission-pinball-framework-html-docs-v-0.53
https://archive.org/details/mission-pinball-framework-html-docs-v-0.54
https://archive.org/details/mission-pinball-framework-docs-v-0.55
https://archive.org/details/mission-pinball-framework-docs-v-0.56

Mission Pinball Framework Documentation, Version

∙ How version numbering works in MPF, and

∙ How the MPF documentation versions map to the MPF versions.

MPF is under constant development. The core developers typically spend a combined 40 hours a week
working on MPF with multiple fixes and enhancements made every day. You can see the stream of
code “commits” on GitHub, here for MPF and here for MPF-MC. (Actually we work on the docs a lot
too, check out the latest updates here.)

Anyway, we release a new version of MPF about every 6 months. (See the full release history here).

MPF version numbering follows a standard called semantic versioning which uses a
“MAJOR.MINOR.PATCH” version number format. For example, the version number 0.31.8 is major
version 0, minor version 31, and patch number 8.

Note: Version numbers in MPF are numbers separated by dots which are not mathematical decimals.
In other words, MPF 0.30 is “zero point thirty”, which is not the same as “0.3” which is “zero point
three”. Also, 0.30 is 27 versions newer than 0.3.

All the MAJOR versions of MPF start with “0” because we have not yet released a 1.0 version yet.

MPF features and configuration files can change between MINOR versions. For example, there were
significant changes between versions 0.21 and 0.30.

The PATCH versions are bug fixes only which do not have functional or config file changes. So 0.30.0,
0.30.1, and 0.30.11 are all the same in terms of documentation and features. (Also 0.30.11 is ten
patches newer than 0.30.1.)

You can see which version of MPF you have by adding a --version option to whatever command you
use to launch MPF. For example:

mpf --version

Since MPF is actually two projects (MPF and MPF-MC), all of this version stuff applies to both of
them. (Typically you’ll use the same MAJOR.MINOR versions of both, but the PATCH number might be
different. For example, the latest MPF version might be 0.31.11 while the latest MPF-MC version
could be 0.31.8. That’s fine.)

You can see which versions are the latest released versions at any time by visiting the MPF Users
Google Group where we list the latest versions in the header of the page.

Documentation Versions

Since MPF versions are constantly changing, we’re also constantly adding and improving the
documentation.

Generally speaking, each documentation set covers multiple MPF versions. You can see the current
version(s) of MPF the documentation you’re reading is for by looking for the version numbers in the
blue box in the upper left corner under the Mission Pinball logo of any page on the documentation site.

If you’d like to access documentation for an older version of MPF, you can click the “Read the Docs”
link in the lower left corner of any page.

If you look in the URL for a page, you’ll see the version(s) of MPF that page is for. Note that there’s a
special version of the docs called “latest” which always points to the latest version of the docs. (That
way you can safely link to a page and know that in the future it will always be the most recent version.)

Understanding MPF version numbering 2020

https://github.com/missionpinball/mpf/commits/dev
https://github.com/missionpinball/mpf-mc/commits/dev
https://github.com/missionpinball/mpf-docs/commits/latest
http://semver.org/
https://groups.google.com/forum/#!forum/mpf-users
https://groups.google.com/forum/#!forum/mpf-users

Mission Pinball Framework Documentation, Version

MPF Release Notes

Here’s the history of the various release versions and changes of the Mission Pinball Framework.
(Patch releases and bug fixes are not included in this list.)

0.56 (and newer)

Release notes have moved to the MPF releases page on GitHub.

Note you can also click the “Assets” section at the end of the notes for each release to download the
PDF or HTML versions of the documentation for that specific release.

0.55

Released: June 25, 2021

Video about some of the changes in 0.55:

https://youtu.be/2rYxmdr3ZMU

Video about release creation:

https://youtu.be/EilOwZV94_8

Breaking changes in config

∙ Removed Python 3.5 support

∙ Added Python 3.8 and 3.9 support (default in Ubuntu 20.04)

New Features

∙ Flashing Segment Displays in P-Roc

∙ Segment Display Match Flashing

∙ Visual Pinball Engine (VPE) Support

∙ New argument “remaining” in counts

∙ Initial support for auto-generating wire harnesses

∙ Tilt improvements

∙ New hardware: Initial PKONE support

∙ Improved config validation

∙ More Service Mode Features

∙ Open Pinball Project 2.1 Firwmare (for Cobrapin)

∙ State Machines in non-game modes

∙ EOS repulse in software

∙ Better EOS support in FAST and P/P3-Roc

MPF Release Notes 2021

https://github.com/missionpinball/mpf/releases
https://youtu.be/2rYxmdr3ZMU
https://youtu.be/EilOwZV94_8

Mission Pinball Framework Documentation, Version

∙ Ball search only starts at boot when there is at least one ball

∙ Allow updating speed and manual_advance of shows

∙ Power management for enable on coils

∙ Production bundles for config in production machines

∙ RGB segment displays

∙ New hardware: FAST segment displays

∙ Segment displays emulator

∙ Animations for segment displays

∙ New command: “mpf hardware benchmark”

∙ Improved servo support

∙ Support switches in Pololu Tic

∙ Add more subscriptions and placeholders

∙ New spinner device

∙ New crash reporter

∙ More and better segment mappings

∙ Better drop target event behaviour

New Config Options

∙ New delay setting for all config players to delay execution

∙ New option enabled for displays

∙ New option max_hold_duration for coils to prevent burning your coils by accident

∙ Persist_frame on images

∙ logic_block_timeout for all logic blocks (counters, accruals and sequences)

∙ Added block in sound_player

∙ New option stop_timeout_after_last_move in servos

Bug Fixes

∙ Fixed color bugs during fading

∙ Fix P-Roc driver_pulsed_patter

∙ Fix bug where initial count of playfield has been wrong

∙ Ball lock fixes when physical lock has been full

∙ Highscore mode fix

∙ Fixed bug on ball tracking during eject with plunger

∙ Fixed crash on multiple returning balls in the trough

∙ Fixed crash in bonus

MPF Release Notes 2022

Mission Pinball Framework Documentation, Version

∙ Fixed crashes in service mode

∙ Fix timer on step_back and advance in shows

∙ Fix ball search behavior for diverters

∙ Fixed bitmap font bugs

0.54

Released: November 7, 2020

This release contains incremental improvements and a lot of bugfixes. We identified a few potential
upgrade issues:

∙ Deprecated ball_locks device has been removed. Use multiball_locks or ball_holds instead.

∙ Space-separated lists have been removed. Use comma-separated lists or yaml lists instead (with
or without spaces). MPF sticks to YAML conventions here and allows all kinds of legal YAML lists
(which does not include space-separated lists).

∙ Deprecate playfield_active tags on shots. Those tags are only required for switches which are
not part of shots or devices (so almost none). MPF will complain and you might have to remove
the tag in that case.

∙ MPF will complain on event handlers with the same name as a switch. This should not happen in
practice and has been done to catch typical user error (i.e. using the event s_my_switch instead
of s_my_switch_active).

∙ Diagnostics menu (switch, coil, light) is now a sub-menu in service mode.

MPF, MPF-MC, MPF-LS and MPF-Monitor

New Features

∙ Deduplicate asyncio code - jab

∙ Support more Pin2DMD hardware options - jab

∙ Do not flush in pypinproc - jab

∙ Do not call flush on write_data in pypinproc to speed up LEDs on PD-LED - jab

∙ Better default logging for ball devices - jab

∙ Support event args in show_tokens - jab

∙ Log virtual time in unit tests - jab

∙ New “mpf format” command to format configs - jab

∙ Refactor hardware fades for performance - jab

∙ Driverboards per platform to support FAST and P-Roc in parallel in one machine - jab

∙ Crash asset loader thread on exception - jab

∙ Validate widgets and targets in slide_player - jab

∙ Validate slides in widget_player - jab

∙ Refactor pypinproc to use PRWriteDataUnbuffered - jab

MPF Release Notes 2023

https://github.com/missionpinball/mpf/pull/1488
https://github.com/missionpinball/mpf/pull/1491
https://github.com/missionpinball/pypinproc/commit/b631d57265e35ea32618677cae79c8ad1e0d1ffc
https://github.com/missionpinball/libpinproc/commit/5bb2146d3e655515c08e41d184f2a6bcce4667d4
https://github.com/missionpinball/mpf/commit/22efb222f7b09a7dbd2d77590d444790d324b04e
https://github.com/missionpinball/mpf/pull/1492
https://github.com/missionpinball/mpf/commit/5e3c61527607c863193410567385e78657e2755f
https://github.com/missionpinball/mpf/pull/1499
https://github.com/missionpinball/mpf/pull/1489
https://github.com/missionpinball/mpf/commit/3372fdfcfa57029fcc2803090151e829066f7af9
https://github.com/missionpinball/mpf-mc/commit/c3d3116846bfc20ba16e53df10a6bfba1360b6dc
https://github.com/missionpinball/mpf-mc/commit/d269acd57a2ee09f65c53c83c674cfa345e00c9a
https://github.com/missionpinball/mpf-mc/commit/c458b9e6baa66a9d5aae2298f8fb0a7a81877dda
https://github.com/missionpinball/pypinproc/commit/a34a26a39a93ca50da92f795f60fa157b5979c2c

Mission Pinball Framework Documentation, Version

∙ Refactor libpinproc to use PRWriteDataUnbuffered - jab

∙ Util cleanup - jab

∙ Turn off incands at start for OPP - jab

∙ Remove space separated lists - jab

∙ Support delayed pulses in autofires and kickbacks and implement it for OPP - jab

∙ Refactor config loading - jab

∙ Support serial LEDs in OPP on new boards - jab

∙ Enable dot priority syntax everywhere - jab

∙ Remove dash syntax for control events - jab

∙ Unity config spec loading for mpf and mc - jab

∙ Remove ball locks as they have been replaced by multiball_locks and ball_holds - jab

∙ Dynamic value for keep_multiplier in bonus mode - seanirby

∙ Batch commands for PD-LED - jab

∙ Inputs on Neopixel wings in OPP - jab

∙ Add mpf build production_bundle - jab

∙ Log config load times - jab

∙ Interface for binary data storage (instead of yaml) for high scores and audits - jab

∙ Test software update in service mode - jab

∙ Fix asset loading in overloaded modes - jab

∙ Remove space separated lists in MC - jab

∙ Refactor Config Loading in MC - jab

∙ Build MC on Python 3.5 to 3.7 - jab

∙ Support Production Config Bundles in MC - jab

∙ Better error messages for incorrectly formatted shows - jab

∙ Retry connect to LISY/APC serial - jab

∙ Validate shows in achievements - jab

∙ Improve smart_virtual errors - jab

∙ Improve error when a required setting is missing - jab

∙ Improve generic validator errors - jab

∙ Support switches in OSC platform - jab

∙ Implement events in OSC platform - jab

∙ Support BCD, 14-segment and 16-segment displays as segment_display - jab

∙ Improve empty device collection error - jab

∙ Validate playfield_active tags on shot switches - jab (breaking change - you have to remove those
tags)

MPF Release Notes 2024

https://github.com/missionpinball/libpinproc/commit/031109f5ecabca594ee934423d4183b82b147f27
https://github.com/missionpinball/mpf/commit/96b628496d0ff7d01b1c0a36cbefc81931d849dc
https://github.com/missionpinball/mpf/commit/e0e711d1a7c525474aa12e09a98a86bd043895cc
https://github.com/missionpinball/mpf/pull/1505
https://github.com/missionpinball/mpf/pull/1507
https://github.com/missionpinball/mpf/pull/1506
https://github.com/missionpinball/mpf/pull/1508
https://github.com/missionpinball/mpf/commit/9fda4065f8084781c47f65c61a47ba0d9fd8ddef
https://github.com/missionpinball/mpf/commit/27833c715a22f2a9f430b5d18db7161a1b2895f4
https://github.com/missionpinball/mpf/commit/c9802a7f65da2e7184c67eefad3f3a05b0f1cc5a
https://github.com/missionpinball/mpf/commit/ab45e683e9b434cde420b001236051587cec7fe3
https://github.com/missionpinball/mpf/pull/1510
https://github.com/missionpinball/mpf/commit/9b08f849ad88e1f6d810a54235dc2da5696961a0
https://github.com/missionpinball/mpf/commit/65615b2d36b0741d6f029e47ea28e89bdd208446
https://github.com/missionpinball/mpf/commit/2a91b5f436c9e3c745eb6127f056b40e5f3aad1e
https://github.com/missionpinball/mpf/commit/81e9750f4ea0c0b2c5fb42ee4cb59cdf7d97f84e
https://github.com/missionpinball/mpf/commit/32221dcb6b108fb8f655950aa8c88a8f6fa26769
https://github.com/missionpinball/mpf-mc/commit/cce63720ef5c09140b427cff156721f459deb260
https://github.com/missionpinball/mpf-mc/commit/d0095cb6825a783cecbe91513ea0c7e22879ece8
https://github.com/missionpinball/mpf-mc/pull/396
https://github.com/missionpinball/mpf-mc/pull/398
https://github.com/missionpinball/mpf-mc/commit/1843582c154bc5db0a7ada04a0c0508d8013b519
https://github.com/missionpinball/mpf-mc/commit/f55b7ee8a7247654858b5d90e0f33896730bae58
https://github.com/missionpinball/mpf/commit/6c4878cfa4fc3b56c3eb68e04137a881b259a450
https://github.com/missionpinball/mpf/commit/b5549ca2084734abc47c310ae3965106160e7129
https://github.com/missionpinball/mpf/commit/e89e71d18968f6f744c633b9ceb261a46d03bd42
https://github.com/missionpinball/mpf/commit/cfb5467351f7ad2880a6560f8828a08ef67169af
https://github.com/missionpinball/mpf/commit/4d95608d06091909c0fbbf9f1da2c40659756958
https://github.com/missionpinball/mpf/commit/27d337f67adaac2a15d7d6409770c11507aab4fd
https://github.com/missionpinball/mpf/commit/723de4b177de3fb9ff2fc2768108668a555c25df
https://github.com/missionpinball/mpf/commit/c19b087764592b7d342ec4d49bb792c359f8a49c
https://github.com/missionpinball/mpf/commit/22827621831d34dc9397ebdc0898602d8f698b73
https://github.com/missionpinball/mpf/commit/5a6ae34d4763bcb3e4bbc82f764f9f3787bcb677
https://github.com/missionpinball/mpf/commit/2a6615cf80bb8c09ec2823816db4d115d63eb2d5

Mission Pinball Framework Documentation, Version

∙ Point users to our fork of apigpio (called apigpio-mpf) - jab

∙ Validate platforms and prevent configuring features which do not exist on platform - jab

∙ Runtime errors with documentation links - jab

∙ Add glow effect and 2 - seanirby (see blog post about glow effect)

∙ Add font for 14-segment displays similar to Williams System 11 displays - seanirby

∙ Pin all dependencies - jab

∙ Commandline config generator - F4b1-

∙ Add end_ball and end_game events to game - jab

∙ Prevent true and false in placeholder (use True and False) - jab

∙ Expose more P/P3-Roc errors - jab

∙ mpf hardware scan for LISY - jab

∙ Refactor driver lights to properly encapsulate internals - jab

∙ Parallel device initialisation - jab

∙ Implement chained lights - jab (see separate blog post)

∙ Add spread spectrum modulation (SSM) PWM for fast coil for low-noise hold - jab

∙ Improve error message on failed template evaluation - jab

∙ Add debug output to state_machines - jab

∙ Better config validator error paths - jab

∙ Support new templates syntax for all template_str - jab

∙ Add subscriptions in variable_player - jab

∙ Pass timestamps from platform for switch changes - jab

∙ Refactor hot switch path for performance, 2, 3, 4 - jab

∙ Add sound_loop_start_at/end_at and implement them in MC - qcapen

∙ Allow multiple entrance_switches - jab

∙ Prevent event handler with the same name as switches (to catch common beginner mistakes) -
jab (breaking change in theory but unlikely for real machines)

∙ Performance improvements - jab

∙ Add show_queues to serialize shows - jab

∙ Support pinproc in Python 3.7 and 3.8 on Windows - qcapen

∙ Recompiled pinproc for Python 3.5 and 3.6 on Windows to include recent improvements - qcapen

∙ Improve memory leak finder - jab

∙ Add debug button in iMC - jab

∙ Load named_colors in mc and test them - jab

∙ Require ffpyplayer for all platforms as it seems to solve video issues - jab

∙ Better type hints in mpf-ls - jab

MPF Release Notes 2025

https://github.com/missionpinball/mpf/commit/bd05b7531568a7e6213a6b5e5583d05f37760038
https://github.com/missionpinball/mpf/commit/938a678c216390794ac20ae2bfd2f470d29a0761
https://github.com/missionpinball/mpf/commit/8132de4f18ffcc03c5ae32eca5e181727d2f6d37
https://github.com/missionpinball/mpf/pull/1513
https://github.com/missionpinball/mpf-mc/pull/400
https://github.com/missionpinball/mpf-mc/pull/399
https://github.com/missionpinball/mpf/commit/07d49d17945e6b307f853ea583b1ca1401918772
https://github.com/missionpinball/mpf/pull/1514
https://github.com/missionpinball/mpf/commit/8f23cc83814bf39e4f8e8ae2daed050ab370b8b3
https://github.com/missionpinball/mpf/commit/90ac1dee0fcb76c1eea9880fea2563a2437311c1
https://github.com/missionpinball/mpf/commit/8a8348ed66c3c112e767d96edb312cf0f838bcce
https://github.com/missionpinball/mpf/commit/81f64ca9fea2b53f9cb87ae4e90a8c3aa4aba816
https://github.com/missionpinball/mpf/commit/8c9b9bdc7960d9bd45aa92a76d69e5ba105084eb
https://github.com/missionpinball/mpf/commit/6fc6b4a8a512d23d8cc840477181a531f975e152
https://github.com/missionpinball/mpf/commit/ae3e322fd25b275abe1f8500c1bc742b6990b655
https://github.com/missionpinball/mpf/commit/1b7f608a56fd902d6d4cb95edd6d9383c0d8e94c
https://github.com/missionpinball/mpf/commit/feb86c8dc5ed3696da82b27f848a123acd4af5c2
https://github.com/missionpinball/mpf/commit/fe1fc1c4c469dfb5ae239355df0cb02574a1d589
https://github.com/missionpinball/mpf/commit/6ddc1b731789e437eb776f6ad8899bb650fe8231
https://github.com/missionpinball/mpf/commit/ddb54c91c82cd67ab6d77ae03adbd23d5ba85756
https://github.com/missionpinball/mpf/commit/eda7286918008b67d2b077a66365ced2971fba4d
https://github.com/missionpinball/mpf/commit/2273b27c371a859c531595839cc6ddfe4fca4dec
https://github.com/missionpinball/mpf/commit/bd6dc68194e909886ff1c180e346e11874645f4c
https://github.com/missionpinball/mpf/commit/90feacf79b3db24335205d6cc6e6ef5f8141161c
https://github.com/missionpinball/mpf/commit/7d256ad27acd97430caec4791ca22517852b1b81
https://github.com/missionpinball/mpf/commit/8ae14a17cd5b06589efc94a5ec5d83da0276d5ec
https://github.com/missionpinball/mpf/pull/1517
https://github.com/missionpinball/mpf-mc/pull/403
https://github.com/missionpinball/mpf/commit/376ddf05118bf4f24c033390f50b25b25c7d06c0
https://github.com/missionpinball/mpf/commit/87b61e04f26e8f683b99a0f5263cce27a3888f3d
https://github.com/missionpinball/mpf/commit/f023ce2c8ac1d55337c3d64455c0ff1fe120518d
https://github.com/missionpinball/mpf/commit/ab192b62a398cbba3443bcca25a5ad323a1ec083
https://github.com/missionpinball/mpf/pull/1520
https://github.com/missionpinball/mpf/pull/1522
https://github.com/missionpinball/mpf-mc/commit/e95f33e7e7d734142e29efd9b2777cc32aaed25d
https://github.com/missionpinball/mpf-mc/commit/aa3d54809cbc449cc3f7781057a39bd5c4ace46f
https://github.com/missionpinball/mpf-mc/commit/1d4d87aaaf6c0594e833e307c4d3851dab9ee759
https://github.com/missionpinball/mpf-mc/commit/694f356d3d926457423d80ad75ea585e2d18414e
https://github.com/missionpinball/mpf-ls/commit/a8c496120b0e176fb5f5db4f313adda756facc57

Mission Pinball Framework Documentation, Version

∙ Autocomplete events and go to definition for events - jab

∙ Support more events in mpf-ls - jab

∙ Install latest kivy in debian installer - jab

∙ Better error handling in debian installer - jab

∙ Add source_devices to multiball_locks - jab

∙ Select pulse_ms based on ball count during eject - jab

∙ Add start_running option to shows - avanwinkle

∙ Support pulse_power in P/P3-Roc where possible - jab

∙ Better log output for P/P3-Roc - jab

∙ Always log OPP chain serial - jab

∙ Support GPIO inputs on P3-Roc - jab

∙ Faster and better light batching - jab

∙ Support Neopixel Wings on OPP - jab

∙ Prevent fades to the previous color - jab

∙ Deterministic fades - jab

∙ Allow platforms to set batch granularity for fades - jab

∙ Improve ball counters - jab

∙ Python 3.8 compatibility (only MPF not MC because of kivy) - jab

∙ Support Repulse on EOS in MPF (only supported in Spike so far) - jab

∙ Event to reset high scores - jab

∙ Event to reset audits - jab

∙ Event to reset earnings records - jab

∙ Event to reset credits - jab

∙ More modern service mode - jab

∙ Add twitch bot support - Mark Seiden

∙ Improve twitch bot - Mark Seiden

∙ Add advance_random_events to accruals - jab

∙ Show a nice error when communication with P/P3-Roc breaks down - jab

∙ Support more than 256 lights in LISY API > 10 - jab

∙ Extend motor device - jab

∙ Add shop jump - avanwinkle

∙ Add settle_time_ms to entrance switch counter to prevent ejecting thin air - jab

∙ First version of VPE platform (not finished yet) - jab

∙ Test and build on Ubuntu 20.04 - jab

∙ Support conditional events and fallback for random_event_player - avanwinkle

MPF Release Notes 2026

https://github.com/missionpinball/mpf-ls/commit/eec997a618dd5573d1e7f7b4a0a42abff944cd95
https://github.com/missionpinball/mpf-ls/commit/c9413e669d0da64076d08f43a078dbb83fc8f8f6
https://github.com/missionpinball/mpf-debian-installer/commit/cfd0b5acce2091ea5e0fccd815bb82863d0a19e9
https://github.com/missionpinball/mpf-debian-installer/commit/3409ea6c191d13b3bec0ef606971441a80c496d2
https://github.com/missionpinball/mpf/commit/20f35f692d2cb7b7d02bf4ab8c5a0c92fd6be08f
https://github.com/missionpinball/mpf/pull/1525
https://github.com/missionpinball/mpf/pull/1524
https://github.com/missionpinball/mpf/commit/d08885983bbbfd23e92ae9061d44651481801ac6
https://github.com/missionpinball/mpf/commit/1c6df104f222be640934d01a7e9cefaa282d26db
https://github.com/missionpinball/mpf/commit/c32220ea0139d62ccbd3fa10b9d4519cb4cf6ec7
https://github.com/missionpinball/mpf/commit/a07e4a26863c85fc8cbe82a6ae6f6581bff5e314
https://github.com/missionpinball/mpf/commit/e4c7355544ddc04fb5364fc9f53af14dde3c6ca1
https://github.com/missionpinball/mpf/commit/de1b6f24b7543e945fe1fad65dc627c07e302e36
https://github.com/missionpinball/mpf/commit/80d2c9247634248c4995fab4e281ab43c5228c75
https://github.com/missionpinball/mpf/commit/d5bf5923be7d45d4b6594ac72ca556c19cf7b9fe
https://github.com/missionpinball/mpf/commit/9418baeada0912060644d4c9dc5c61125f027da0
https://github.com/missionpinball/mpf/pull/1527
https://github.com/missionpinball/mpf/commit/264b0dc9e25b74526a7521facefd74f5eb60b338
https://github.com/missionpinball/mpf/commit/64b60e0777d7ff3b03a44bd86d97d1036903ff88
https://github.com/missionpinball/mpf/commit/b89543732f6d051234dcf99eb8e0a014ac2e74c2
https://github.com/missionpinball/mpf/commit/5a07acaa3fac8330f1ef60d27d200350c585e34c
https://github.com/missionpinball/mpf/commit/cdfe1b5076bae28b5ba776b2d4754e73b69227a2
https://github.com/missionpinball/mpf/commit/52453e29fb064c0509d19503f62b7b5dea56d52d
https://github.com/missionpinball/mpf/commit/2c689a7e0fe04c47f60aa65a5bae42b3b3d36322
https://github.com/missionpinball/mpf/pull/1530
https://github.com/missionpinball/mpf/pull/1531
https://github.com/missionpinball/mpf/commit/10f55b2ca93e1ed2bc9c4c547651d48c45bca97d
https://github.com/missionpinball/mpf/commit/f01f9da7595db4440135d0c77c581951b4fc0da6
https://github.com/missionpinball/mpf/commit/4f9c04d357db47e586d051e8823e1d31f65f2059
https://github.com/missionpinball/mpf/commit/2bcd15d42148e62bcc9d048e502b24f80a2ed48b
https://github.com/missionpinball/mpf/pull/1532
https://github.com/missionpinball/mpf/commit/78d5790f7c37b1c96844c002a918463cada3246d
https://github.com/missionpinball/mpf/commit/c1742f36ef714c7783250313b8bb51644f34d2f4
https://github.com/missionpinball/mpf/pull/1534
https://github.com/missionpinball/mpf/pull/1536

Mission Pinball Framework Documentation, Version

∙ Python 3.8 support in MPF-MC (except kivy) - qcapen

∙ Faster image loading in sequences - jab

∙ Add block events to text_input and use them in carousel - avanwinkle

∙ Nicer errors in MC - avanwinkle

∙ Expose switch config in pypinproc - jab

∙ Support loading light shapes from MPF Monitor in showcreator - markinc

∙ Add Mac build for showcreator - markinc

∙ Improve logging in MPF Spike Bridge - jab

∙ Extend MPF Monitor with a lot of new features - kylenahas

∙ Monitor performance improvements - kylenahas

∙ More monitor perf improvements - jab

∙ Add config arg to MPF Monitor - avanwinkle

Bug fixes & code improvements

∙ Fix fast shutdown bug when an error occured - jab

∙ Prevent crashes from empty platform configs - jab

∙ Fix crash in some MC players - jab

∙ Fix multiple subscriptions in show_player - jab

∙ Fix new fades in VPX - Wolfmarsh

∙ Add test for VPX platform - jab

∙ Fix multiple subscriptions in light_player - jab

∙ Fix gamma test slide - jherrm

∙ Add test for gamma_test_slide - jab

∙ Do not crash test when sound system is not loaded - jab

∙ Test and fix end_bonus_event - jab

∙ Only validate widgets when using the add action - jab

∙ Fix master volume bug - qcapen

∙ Fix asset loading when overloading a mode fixes bug 1366 - jab

∙ Detect missing curly backets in conditional events fix bug 1497 - jab

∙ Prevent adding player during high score of a one ball game - seanirby

∙ Fix config spec for hardware section - jab

∙ Fix servos on PD-LED with new libpinproc and add a test - jab

∙ Fix subscriptions in logic blocks - jab

∙ Fix broken subscriptions during player change - jab

∙ Disable Mac Wheels as they caused install issues - jab

MPF Release Notes 2027

https://github.com/missionpinball/mpf-mc/commit/10bed3e964f9ad2d44b8d481e10e95609584feae
https://github.com/missionpinball/mpf-mc/commit/4d866b929caf59efe7a87a8814fa05fa144e8937
https://github.com/missionpinball/mpf-mc/pull/406
https://github.com/missionpinball/mpf-mc/pull/408
https://github.com/missionpinball/pypinproc/pull/6
https://github.com/missionpinball/showcreator/commit/06f712161b77ae34f1095ad9bc5ecf173a187267
https://github.com/missionpinball/showcreator/commit/4c411ef810a36f6e5a2c207b0cb6cdc891b5b72b
https://github.com/missionpinball/mpf-spike/commit/e4fa12564954672f83fe9c4ba4299c54c0c26e9e
https://github.com/missionpinball/mpf-monitor/pull/29
https://github.com/missionpinball/mpf-monitor/commit/2ad4b836cb483e5b4b8e74a395b0a913a8647867
https://github.com/missionpinball/mpf-monitor/commit/26fe7e016b5232bfa0856b27cc3df93ced5f5a50
https://github.com/missionpinball/mpf-monitor/pull/32
https://github.com/missionpinball/mpf/commit/26f434888fa6a283ff1cbb98a6432bbb2844e7de
https://github.com/missionpinball/mpf/commit/37a4f433f3dc659db505104abda6644453d5a279
https://github.com/missionpinball/mpf/commit/377fab44fe9b158a208f6f508b60dbddebcad621
https://github.com/missionpinball/mpf/pull/1498
https://github.com/missionpinball/mpf/commit/ad71f381ce8a0e65f28958e51cf8a8b38a6154fb
https://github.com/missionpinball/mpf/commit/c4ecc0bdf23a14bef207234b29053818aac15c7d
https://github.com/missionpinball/mpf/pull/1500
https://github.com/missionpinball/mpf-mc/pull/395
https://github.com/missionpinball/mpf-mc/commit/d15a5de4f27124d4b879b24ff94932060a85b3c7
https://github.com/missionpinball/mpf-mc/commit/9c0889ea6a3a864d941028b2894f385538082c58
https://github.com/missionpinball/mpf/commit/70ec82cbaf2080bfb4270fe15fde51fe36f38db1
https://github.com/missionpinball/mpf-mc/commit/9fb8f9a8cf2bfc1df43e626511ee0cb9fdb1d2fa
https://github.com/missionpinball/mpf-mc/commit/834ef2f22c8ef0ffb46cefa62c2db7069681949f
https://github.com/missionpinball/mpf/commit/56fc2580a1356f1640cb8ea321bcb6c7224d19b1
https://github.com/missionpinball/mpf/issues/1366
https://github.com/missionpinball/mpf/commit/82fc767ae10079dad062be75f30a91661254a3ee
https://github.com/missionpinball/mpf/issues/1497
https://github.com/missionpinball/mpf/pull/1509
https://github.com/missionpinball/mpf/commit/03349317fb331129bf8a12a0830938475ebd86f6
https://github.com/missionpinball/mpf/commit/f417215b90236b3f0f3970e4d00a41e80a595b75
https://github.com/missionpinball/mpf/commit/1fe2ef21cb28731ba35cb16817be54fd962ab70d
https://github.com/missionpinball/mpf/commit/794a8b875bd486dba8aa380377de9795fea4088e
https://github.com/missionpinball/mpf/commit/9b795c9db594f4ef7426e75023fcde110547fc76
https://github.com/missionpinball/mpf-mc/commit/921323f0ec0c149b1e670077e9a11607502f38f1

Mission Pinball Framework Documentation, Version

∙ Fix crash in smart_virtual with entrance_switches - jab

∙ Fix achievement_group auto_select with allow_selection_change_while_disabled - jab

∙ Fix BCP encoding crash - seanirby

∙ Remove lower-casing of colors because it breaks placeholders - jab

∙ Fix crash in variable_player - seanirby

∙ Fix non-connected switches for P3-Roc - seanirby

∙ Fix initial switch state for RPi platform - jab

∙ Fix OSC crashes with complex event parameters - jab

∙ Fix ball count in multiball_lock full event with physical_only strategy

∙ Do not poll OPP boards without switches - jab

∙ Fix input mask for OPP Neopixel wings - jab

∙ Allow duration for wipe transition - jab

∙ Fix crash when not specifying keep_multiplier in bonus entry - jab

∙ Fix random argument order in OSC events - jab

∙ Fix crash in drop_target - jab

∙ Respect switch and coils defaults for autofire rules - jab

∙ Fix init race in steppers - jab

∙ Fix number crash in FAST - jab

∙ Fix late crash during shutdown - jab

∙ Fix crash in digital_outputs with FAST platform settings - jab

∙ Consistent fade_out for display_light_player - jab

∙ Fix bash export in installer - jab

∙ Fix crash when a ball is lost (because of the next bug) - jab

∙ Prevent ball skipping when target is not a ball device - jab

∙ Consistent jam switch handling in ball counter - jab

∙ Prevent incorrect playfield activation by drop_target_bank resets - jab

∙ Fix light ordering for fades - jab

∙ Fix config parsing for developers.missionpinball.org - jab

∙ Use the correct commands for the correct Spike Firmare (Spike System 1 vs System 2) - jab

∙ Correct Active Mode Updates to MPF Monitor - jab

∙ Fix config validation issues with System 11 - jab

∙ Fix potential crash - jab

∙ Always configure both banks of all PD-16s on P/P3-Roc to prevent polarity issues and stuck on
coil on the hardware - jab

∙ Fix sound loop bug - qcapen

MPF Release Notes 2028

https://github.com/missionpinball/mpf/commit/61be48c2889ef40f238c4baac8c9ab17275424f5
https://github.com/missionpinball/mpf/commit/763c829053795e81874c41dbe4e235718597a295
https://github.com/missionpinball/mpf/pull/1512
https://github.com/missionpinball/mpf/commit/d7b10f004326314ac0c8d635c3f148a740bda417
https://github.com/missionpinball/mpf/pull/1515
https://github.com/missionpinball/mpf/pull/1516
https://github.com/missionpinball/mpf/commit/ddbf3b90503403c1238b13f8ab9d64331fd55405
https://github.com/missionpinball/mpf/commit/2ed0c1cfef573fc82155289e1501bf72f3b66603
https://github.com/missionpinball/mpf/commit/a790768a73dacda5d47af7382ef4bd7fdff6f7fa
https://github.com/missionpinball/mpf/commit/4f197927f6001631fc48b703936e7e5bd903f7d5
https://github.com/missionpinball/mpf/commit/4469b2df68b6153a8df321689dc949fd04340dd9
https://github.com/missionpinball/mpf/commit/8eabe07550ebde53a0647c20676f5053c6e9270f
https://github.com/missionpinball/mpf/commit/884bb51826affdd1555df0d22b8f892c1b6bff2b
https://github.com/missionpinball/mpf/commit/260ed2c0d539fd9c3fcce625c3359b47042775b0
https://github.com/missionpinball/mpf/commit/4a3cbc40c82ac60b10fb2cc904fdac70f047779e
https://github.com/missionpinball/mpf/commit/48d237acde07923ba31450733652cbd4c316e5da
https://github.com/missionpinball/mpf/commit/452f47b387ed49a270aa0302520a968cf1a1e64a
https://github.com/missionpinball/mpf/commit/a57ca11a58c2836c8d18c3582c0cea467e96e5ea
https://github.com/missionpinball/mpf/commit/6b5e481336dc5dbf770aa8891484b89ee2dac282
https://github.com/missionpinball/mpf/commit/382ec82098ef63a10e7fe5c50b5e9561de847db7
https://github.com/missionpinball/mpf-mc/commit/3cd123ccff7b30c082e1b757851cb74e3919da02
https://github.com/missionpinball/mpf-debian-installer/commit/601adce3b28d987de7363c0bc34bb71c911454ca
https://github.com/missionpinball/mpf/commit/e249fde9c05b8f3b85549154ddbc14387e8a977b
https://github.com/missionpinball/mpf/commit/e0fd2a8e73cf15bab859baa58e281df33a2acd1d
https://github.com/missionpinball/mpf/commit/54557df2a8b36cfae22823b5d09b8da19ab3f61c
https://github.com/missionpinball/mpf/commit/e361a9f55275af2d276cd0bb854f043794d7e9da
https://github.com/missionpinball/mpf/commit/921df14f5a76f47064fb359ed3f4274ee4157199
https://github.com/missionpinball/mpf/commit/19fcb85b89942b1fbc9d361ca77097c6ee403671
https://github.com/missionpinball/mpf/commit/61568f61ff478600adde707cfd775c1ba13e2cbd
https://github.com/missionpinball/mpf/commit/8721af79f4a5fdbe150889b9f16dd8ea7b842453
https://github.com/missionpinball/mpf/commit/7b3896967eb185a460e74796ac5fc95d42f89b6a
https://github.com/missionpinball/mpf/commit/ed647d6627e77b842daad6359b5665523a418daa
https://github.com/missionpinball/mpf/commit/867e4109e43a5317d6d7ec488cec627537aa7945
https://github.com/missionpinball/mpf/commit/867e4109e43a5317d6d7ec488cec627537aa7945
https://github.com/missionpinball/mpf-mc/commit/dafc8c0517c9af2eaa78fb652b17577b496d4552

Mission Pinball Framework Documentation, Version

∙ Fix loop bug when stealing/replacing a playing sound with a higher priority sound - qcapen

∙ Fix animations when two slides animate the same image - jab

∙ Do not crash on empty config collections - jab

∙ Fix animations in slides in shows - jab

∙ Prevent crash in sound_player with placeholders - jab

∙ Expose video control events to MPF - jab

∙ Fix crashes in image pool and regression test them - jab

∙ Fix Spike 2 Init Sequence - jab

∙ Fix incorrect active modes in MPF Monitor - jab

∙ Prevent crash in Monitor - jab

MPF Documentation

∙ Release notes to 0.53 - jab

∙ Extend fadecandy documentation - jab

∙ Document Pin2DMD - jab

∙ Faster docs generation - jab

∙ Remove stuff from roadmap which has been implemented - jab

∙ Link to our libpinproc fork - jab

∙ Add link to VS Redistributables for pypinproc on Windows - jab

∙ Fix DMD font style names - kevwilde

∙ Support assets in doc tests - jab

∙ Support virtual platform in doc test cases - jab

∙ Document common problems with Numlock when using keyboard in MPF - jab

∙ Example for multiball without physical lock - jab

∙ Reformat all examples for good copy and paste experience - jab

∙ Extend PD-LED FET documentation and drawing - colemanomartin

∙ Test and fix mc examples, more and more - jab

∙ Test all slides in the tutorial - jab

∙ Improve PD-LED documentation - seanirby

∙ Fix typo - driskel

∙ Fix settings name - enteryourinitials

∙ Update docs for driverboards per platform - jab

∙ Test and fix DMD style names in examples - jab

∙ Test and fix all kinds of slightly broken examples - jab

∙ Test and fix animation examples - jab

MPF Release Notes 2029

https://github.com/missionpinball/mpf-mc/commit/02e85e00e3adddeb08b482618ae9fbad1f0d5072
https://github.com/missionpinball/mpf-mc/commit/ef02a5aaf793620b5ea1fdcce8282ef54ba4d923
https://github.com/missionpinball/mpf-mc/commit/24f19f6485760eb9f1af56e97d7f0cd5ca7f8dd9
https://github.com/missionpinball/mpf-mc/commit/37479c026d56bf079663676e3b3330ca5f70c914
https://github.com/missionpinball/mpf-mc/commit/d7b214f0f440c8227e1b9f31ec07c52b34844059
https://github.com/missionpinball/mpf-mc/commit/37371a09565e83c2cba2456edf5eff5fc2deadfd
https://github.com/missionpinball/mpf-mc/commit/685fbd74caa2c215f029b0f02a3f11325940b599
https://github.com/missionpinball/mpf-spike/commit/88b592129202258e6aa338ec2e854217656bce3c
https://github.com/missionpinball/mpf-monitor/commit/463ac293f2930658a36ee41d84af213b879541e7
https://github.com/missionpinball/mpf-monitor/commit/ef9954c922d4f175d00624d1314d5ae8a9b83dcc
https://github.com/missionpinball/mpf-docs/commit/b415e0b6abe3a7201b79cf07fca71a8e0dfa5d42
https://github.com/missionpinball/mpf-docs/commit/9d6f5fa1c5a523f6c34acbafc20f43d9cf05bddd
https://github.com/missionpinball/mpf-docs/commit/4aa03a2f74e414034658cc750bd82b91884bc5cf
https://github.com/missionpinball/mpf-docs/commit/7ea6b86420275967efbde1ad73f13c717fbf7fc7
https://github.com/missionpinball/mpf-docs/commit/ef4a5ad2cd7cc0a8043a4c78cb44ff67373c4326
https://github.com/missionpinball/mpf-docs/commit/066e3bdf6925569059f2315b5db0e10242c2da93
https://github.com/missionpinball/mpf-docs/commit/7f28db099f01d2b0d6451a0f4f7ef028a3299d65
https://github.com/missionpinball/mpf-docs/pull/273
https://github.com/missionpinball/mpf/commit/3aa48cbb120a43a4f2146ecc84965f8ba30d1be6
https://github.com/missionpinball/mpf/commit/07084c697831a082edb861b8d0e9f78e517bd713
https://github.com/missionpinball/mpf-docs/commit/11c059708b7f0ea10f35c9377480469d9fea8247
https://github.com/missionpinball/mpf-docs/commit/cd91947067fac439480e4218bd06f3716a31fe7f
https://github.com/missionpinball/mpf-docs/pull/274
https://github.com/missionpinball/mpf-docs/pull/275
https://github.com/missionpinball/mpf-docs/commit/16c977d1bb491a87772700a8f4ab3cef70925bae
https://github.com/missionpinball/mpf-docs/commit/2b5c508dab2d26185f8a3e4706a0a9a8109ab42b
https://github.com/missionpinball/mpf-docs/commit/9992d9cdb9b806ff44285d9de0a9e47172b39655
https://github.com/missionpinball/mpf-docs/commit/94103178f53c7bb9bcb52c3efd8bcfbb31adb8f4
https://github.com/missionpinball/mpf-docs/commit/abf83cf4a82d70b523a160b9044da10094c0ace9
https://github.com/missionpinball/mpf-docs/pull/277
https://github.com/missionpinball/mpf-docs/pull/276
https://github.com/missionpinball/mpf-docs/pull/278
https://github.com/missionpinball/mpf-docs/commit/90536596cf3c123a462e046a5d17af332754ff39
https://github.com/missionpinball/mpf-docs/commit/b518aafac200b76e3e08ce0eed542921f346d858
https://github.com/missionpinball/mpf-docs/commit/784e2bd9fa2ca09784533e79654caea11806eb34
https://github.com/missionpinball/mpf-docs/commit/a3e880ab5ca5d52bfe9a99e8bcb0d17f9c5f5191

Mission Pinball Framework Documentation, Version

∙ Test and fix widget examples, more and more - jab

∙ Test and fix slide examples and more - jab

∙ Test and fix display examples - jab

∙ Test remaining mc examples - jab

∙ Add dual_wound_coil example for diverters - SwizzleFish

∙ Document solution for common Windows install problem - AdrianD72

∙ Add mystery award example - aaronmatthies

∙ Fix broken links and references to ball_locks - aaronmatthies

∙ Link to APC video - jab

∙ Remove old-syntax list examples from docs - jab

∙ Use commas to separate lists - jab

∙ Dual-coil diverters - jab

∙ Add generic part numbers - jab

∙ Document Motors - jab

∙ Document Shakers - jab

∙ Add Pop Bumper Images - aaronmatthies

∙ Add example how to end a game by long-pressing start - jab

∙ Describe PSU magic - jab

∙ How to fix drop target reset issues - jab

∙ Document Pololu Tic - jab

∙ Reference placeholders in bonus mode - seanirby

∙ Keyboard tutorial - jab

∙ Integrating Logic Blocks and Lights - jab

∙ Tutorial on Counter and Slide integration - jab

∙ Update all config references: OPP, Pin2DMD and P-Roc and many more - jab

∙ How to drain all balls and keep the ball live, 2 - mwiz

∙ Improve achievments documentation - atummons

∙ Fix event annotations - jab

∙ Remove old section about shot reuse - seanirby

∙ Update config references for all kinds of devices, 5, 6, 7 - jab

∙ Document color_correction_profiles - jab

∙ Notes about style for text sizes - jab

∙ Update tutorial - jab

∙ Update motors - jab

∙ Render nice 404 with helpful links jab

MPF Release Notes 2030

https://github.com/missionpinball/mpf-docs/commit/74323c7bad7a962900cd422d41ed6f860c6db92e
https://github.com/missionpinball/mpf-docs/commit/6813770613ac5b528a6e368fe884604b4ab2992e
https://github.com/missionpinball/mpf-docs/commit/8a35363399e1bdfb63ea6310246799e7dbd0fc0f
https://github.com/missionpinball/mpf-docs/commit/6d03831c3afb829a649c78c3cde99e5b449579b7
https://github.com/missionpinball/mpf-docs/commit/90532067b40f8f39004cff98c36b340b9e0640b4
https://github.com/missionpinball/mpf-docs/commit/2a07d6b4eac213be57c17e3f6254851d7e497cec
https://github.com/missionpinball/mpf-docs/commit/bb20f9af918cfb194491da01d5502b666278f847
https://github.com/missionpinball/mpf-docs/pull/279
https://github.com/missionpinball/mpf-docs/pull/280
https://github.com/missionpinball/mpf-docs/pull/281
https://github.com/missionpinball/mpf-docs/pull/282
https://github.com/missionpinball/mpf-docs/commit/96a68dc656008059977956371dd20969aac68f9f
https://github.com/missionpinball/mpf-docs/commit/27a111e0c861a0923c7a6f2d6d87962488960f9b
https://github.com/missionpinball/mpf-docs/commit/78eef6b67375dfb14ec8e130aa20be155f7f4c11
https://github.com/missionpinball/mpf-docs/commit/faba0261923d6aadf2fbaa5aca8d07c1556dd769
https://github.com/missionpinball/mpf-docs/commit/c0a8eabd0df380c7e3cd0bd12883c64bf72e389e
https://github.com/missionpinball/mpf-docs/commit/eaf74ead18f712c403d4223bbf46ab8110713375
https://github.com/missionpinball/mpf-docs/commit/3cbe8dc9192f2f042133a0123b779c3fa87d34c6
https://github.com/missionpinball/mpf-docs/commit/12cd1357114906631d696a5cf15688ad3a5e47bf
https://github.com/missionpinball/mpf-docs/commit/ce58da4473499bf9ec3134ef3cd67b72e7fd95c4
https://github.com/missionpinball/mpf-docs/commit/5db12ab87ea6dc8191db137ae76cbfcd6e10898b
https://github.com/missionpinball/mpf-docs/commit/f8786db15c04701679d1dbe432c2a6868ac34770
https://github.com/missionpinball/mpf-docs/commit/277814e78bc4deddb73edf35bd2617e926c0849e
https://github.com/missionpinball/mpf-docs/pull/286
https://github.com/missionpinball/mpf-docs/commit/9ac2ef49331529d4846aeaa284bf957e3d3a65c0
https://github.com/missionpinball/mpf-docs/commit/ab322dd528e459ac4d9ca94920c1e0e7cab2e8e1
https://github.com/missionpinball/mpf-docs/commit/5ac152d2d1c82e9306808890b018f6434b8f7604
https://github.com/missionpinball/mpf-docs/commit/01bbf59eaffbb8ca69b01b18b1b75e2d79e30cbc
https://github.com/missionpinball/mpf-docs/commit/707c36c24623f64a60bce2b73d15c854577c066a
https://github.com/missionpinball/mpf-docs/pull/288/files
https://github.com/missionpinball/mpf-docs/pull/287
https://github.com/missionpinball/mpf-docs/pull/289
https://github.com/missionpinball/mpf/commit/80e7ec1984fc2b5c9cd762be32b4e74bf36c1835
https://github.com/missionpinball/mpf-docs/pull/290
https://github.com/missionpinball/mpf-docs/commit/e8e5c40c1af34ea518f11550dd084d740a1eb82b
https://github.com/missionpinball/mpf-docs/commit/9aa4558166cff0b6a35f6547c63d5a20f08c9283
https://github.com/missionpinball/mpf-docs/commit/7155cac0347765cef5e8784b2eb79042b5ad252e
https://github.com/missionpinball/mpf-docs/commit/c8a32cc84b14babbb000566e3bf01f3306dea3fd
https://github.com/missionpinball/mpf-docs/commit/c8a32cc84b14babbb000566e3bf01f3306dea3fd
https://github.com/missionpinball/mpf-docs/commit/ce7798640f4eb6cfec279e3050d9f533a9b05c1e
https://github.com/missionpinball/mpf-docs/commit/1706dfb31f4e64d4455147938d6a8c2abcca3fc6
https://github.com/missionpinball/mpf-docs/commit/8625354fc1ac3d8a9155bb8e1eee49dd744d040f
https://github.com/missionpinball/mpf-docs/commit/90e3327576f34b8bf73f8baff9a059db43f01e28
https://github.com/missionpinball/mpf-docs/commit/0a534fa84f3b21cc82ecddd7bbc108407fdadf91
https://github.com/missionpinball/mpf-docs/commit/cb9d3d3b4479c67c00dfe5d16e34234ae4fa877d
https://github.com/missionpinball/mpf-docs/commit/85ac5343b2437c9932e28ec54dca4fc6c5c3e003
https://github.com/missionpinball/mpf-docs/commit/07a12b2716be26f10ae3c6385696b51a0a4dae3f
https://github.com/missionpinball/mpf-docs/commit/0dce069119fd11c902a7bad03532c08861ba9435

Mission Pinball Framework Documentation, Version

∙ Links to list of documented error messages - jab

∙ Document show format errors - jab

∙ More errors and document MPF language server - jab

∙ Update BCP reference - jab

∙ Update multiball_locks reference - jab

∙ Update steprocker reference - jab

∙ Update achievements reference - jab

∙ Update widget_style reference - jab

∙ Improve state_machine - atummons

∙ Document common errors - jab

∙ Update videos reference - jab

∙ Add VPX to tutorial - jab

∙ Document OSC platform - jab

∙ Update variable_player reference - jab

∙ Update snux reference - jab

∙ Update player_vars and shot_groups reference - jab

∙ Document light_segment_display - jab

∙ Document WS2812 specifics and similar chips - jab

∙ Document CFE-ConfigValidator-4 - jab

∙ Document CFE-ConfigValidator-2 - jab

∙ Document CFE-ConfigValidator-1 - jab

∙ Update logic_blocks reference - jab

∙ Document CFE-ConfigValidator-12 - jab

∙ Document CFE-ConfigValidator-13 - jab

∙ Document CFE-DeviceManager-3 - jab

∙ Document mpf build production_bundle - jab

∙ Update track_player reference - jab

∙ Update sounds reference - jab

∙ Improve ball_device reference - chris20-20

∙ Improve switches reference and more - chris20-20

∙ Fix typo and more typos - chris20-20

∙ Update sound_system reference - jab

∙ Update sound_player reference - jab

∙ Document defaults in references - jab

∙ Add links to tutorial and more links - chris20-20

MPF Release Notes 2031

https://github.com/missionpinball/mpf-docs/commit/4fddb09fb46a50b8847a7bb3647b657147dbdda2
https://github.com/missionpinball/mpf-docs/commit/b9e8d0b1c2bd1e7566e1e6d66cf33cc8988387ce
https://github.com/missionpinball/mpf-docs/commit/ce5e86fa45f9a5c4be641851f2c9a8e8e881c1c2
https://github.com/missionpinball/mpf-docs/commit/3e03044076b6c9b5665717aeb1c2650a7c76d638
https://github.com/missionpinball/mpf-docs/commit/d3fa3a96a1da32225f8615f87c52a6fb900dfa5b
https://github.com/missionpinball/mpf-docs/commit/c69968ad8ce7b45e2aa548ac9bff830e91be0699
https://github.com/missionpinball/mpf-docs/commit/06e815f4811fa32b5a5ffc3bc697f17f0f08f143
https://github.com/missionpinball/mpf-docs/commit/1adbe6704718da38d4ea3f6f332a8b7e6213a2a3
https://github.com/missionpinball/mpf-docs/pull/294
https://github.com/missionpinball/mpf-docs/commit/66fd33e45fc92d689e5bc298644a24ec565d9df0
https://github.com/missionpinball/mpf-docs/commit/0535c6cdfed11bb7065290b568cffd62d4ac5ff3
https://github.com/missionpinball/mpf-docs/commit/8236830f4ffbf78a3de3c5d31c1d5c2c20aabb2f
https://github.com/missionpinball/mpf-docs/commit/b6a07513813cadb1ad41c1fb3f1932eff8dc3be8
https://github.com/missionpinball/mpf-docs/commit/b84c3a9741964b5058db3a03ed29b0a8a65eee8b
https://github.com/missionpinball/mpf-docs/commit/d851f6a7c2affc7368c92cc973027df5de4536f1
https://github.com/missionpinball/mpf-docs/commit/91491002281c022fea07559f697a4f5ebc7f5862
https://github.com/missionpinball/mpf-docs/commit/86a1ba2c3f55ba078b731874f842bb85e7509071
https://github.com/missionpinball/mpf-docs/commit/849abf2bad063a77a145d764612fc54ce4556c75
https://github.com/missionpinball/mpf-docs/commit/fd45c5d77b824b7ca55552adeea339ee9862fb9b
https://github.com/missionpinball/mpf-docs/commit/a1c6626ff7d9faaa50c14a9f2d1004f8512b7661
https://github.com/missionpinball/mpf-docs/commit/b74df3e9783e1ac6c6bfc60d3d540ab651307a75
https://github.com/missionpinball/mpf-docs/commit/5cf6dfb01ab5864486813b9506eaf0acaa856f98
https://github.com/missionpinball/mpf-docs/commit/dba88e701f89e607574f66cf6d9d0c60ed417a43
https://github.com/missionpinball/mpf-docs/commit/843a3403a59bc5a1b014f27edde6f76e9cf141c2
https://github.com/missionpinball/mpf-docs/commit/cf6dd39964234a0e8c891e1eb472c69d1ec29360
https://github.com/missionpinball/mpf-docs/commit/2efd2868252f28ed4223be866031164d2bbf4f62
https://github.com/missionpinball/mpf-docs/commit/efe48f82220478f4048fca44151480d95097d218
https://github.com/missionpinball/mpf-docs/commit/5c95e1c6305569499d82f9601bc549b527eb6f70
https://github.com/missionpinball/mpf-docs/commit/d1364fabdd3342dadb03807e22f22c370e7ff026
https://github.com/missionpinball/mpf-docs/pull/297
https://github.com/missionpinball/mpf-docs/pull/298
https://github.com/missionpinball/mpf-docs/pull/303
https://github.com/missionpinball/mpf-docs/pull/299
https://github.com/missionpinball/mpf-docs/pull/300
https://github.com/missionpinball/mpf-docs/commit/e5c01cf4c54739c6507f34beb046b5cb36eb01fe
https://github.com/missionpinball/mpf-docs/commit/73cc7b15b0d6c664c21757a300dab61825e36fdb
https://github.com/missionpinball/mpf-docs/commit/e617856fa8c17724adc0badf25455004dfdd0325
https://github.com/missionpinball/mpf-docs/pull/301
https://github.com/missionpinball/mpf-docs/pull/304

Mission Pinball Framework Documentation, Version

∙ Improve tutorial - chris20-20

∙ Improve coil_player documentation - chris20-20

∙ Fix LCD width and height - chris20-20

∙ Document MC errors - jab

∙ Fix link in docs - F4b1-

∙ Document glow effect - seanirby

∙ Improve event reference - jab

∙ Add physical building section - jab

∙ Improve common ground warning - jab

∙ Add common issues section for Multimorphic - jab

∙ Playfield layout considerations from Jimmy - jab (content from Compy)

∙ More on common ground from Gerry Stellenberg - jab (content from Gerry)

∙ Update instructions to build docs locally - seanirby

∙ More playfield layout and images - Compy

∙ Example on how to end a game properly using events - jab

∙ More details and considerations on coils - jab

∙ Properly document MPF language server - jab

∙ Clarify that a RPi is not a pinball controller without further hardware - jab

∙ Related links for all driver howtos - jab

∙ Bring back Indy Lane tutorial from old website - jab (based on content from Brian)

∙ Warn about current Python 3.8 issues - BENETNATH

∙ Fix typo in udevadm command - BENETNATH

∙ General hardware troubleshooting guide - jab

∙ mpf hardware scan example for the P-Roc - jab

∙ Document common P/P3-Roc issues - jab

∙ Link troubleshooting section from more places - jab

∙ Troubleshooting guide for FAST hardware - jab

∙ Correct addressing section for P3-Roc - Coleman

∙ More hardware troubleshooting for P3-Roc boards and cables - Coleman

∙ Document new game events - jab

∙ Document -t command line option - jab

∙ Troubleshooting guide for OPP hardware - jab

∙ Troubleshooting guide for LISY/APC - jab

∙ How to ask questions in the forum for hardware issues - jab

∙ Example for transition_out - jab

MPF Release Notes 2032

https://github.com/missionpinball/mpf-docs/pull/306
https://github.com/missionpinball/mpf-docs/pull/305/files
https://github.com/missionpinball/mpf-docs/pull/302
https://github.com/missionpinball/mpf-docs/commit/fad78e9a7ed972f45d84187878f03816c30e35c6
https://github.com/missionpinball/mpf-docs/pull/307
https://github.com/missionpinball/mpf-docs/pull/308
https://github.com/missionpinball/mpf-docs/commit/7efc50933e2a514f7edfd4992f6f465dbc96ea44
https://github.com/missionpinball/mpf-docs/commit/f12f61b43e83d2a09a83df0a6afa9e0a4e284383
https://github.com/missionpinball/mpf-docs/commit/2c7b553086f6010e2458d160f4467af2097c72cc
https://github.com/missionpinball/mpf-docs/commit/c7541a0362b128eab57db0215e6dc78fb517a34c
https://github.com/missionpinball/mpf-docs/commit/29debb562cade432b8c2645faf58fa5ac21f48de
https://github.com/missionpinball/mpf-docs/commit/5f7f3a8ebe0938f9799253dfda2ad24f56e594d8
https://github.com/missionpinball/mpf-docs/pull/309
https://github.com/missionpinball/mpf-docs/pull/310
https://github.com/missionpinball/mpf-docs/commit/e1118faf9782d17d18d56eee690f8de5ad736892
https://github.com/missionpinball/mpf-docs/commit/69d7c26fe34da2aa1a89123f1af3c15afde71a8d
https://github.com/missionpinball/mpf-docs/commit/781fe031c81c4e2ffa1fdbbb51bbc64e4fcdb73f
https://github.com/missionpinball/mpf-docs/commit/d60220ad1775e0c210fa527152eca2b4af197523
https://github.com/missionpinball/mpf-docs/commit/5af7347edf393f85f2fb858f1a98fb741a6d90f9
https://github.com/missionpinball/mpf-docs/commit/75a89dffb711ba5e0588fe2527ff273eed13662d
https://github.com/missionpinball/mpf-docs/pull/311
https://github.com/missionpinball/mpf-docs/commit/0085b87b46cbeeeaf998b90da0a23d1cef7c4c89
https://github.com/missionpinball/mpf-docs/commit/47ab01fe091d662b04f0e8bfb341366c9baec2df
https://github.com/missionpinball/mpf-docs/commit/c62eb279a826c900b5ed44a42adcd831da9e2e25
https://github.com/missionpinball/mpf-docs/commit/1e812fb2287a052e786abe88b9a7e2e13350ad8b
https://github.com/missionpinball/mpf-docs/commit/e4d95a008c069a88a55ea589c7c0e32ea13d0f98
https://github.com/missionpinball/mpf-docs/commit/59ed857d8a658c1994e157367b799d8347cd6e81
https://github.com/missionpinball/mpf-docs/commit/db72b53bc013574e616b649b22a93a54ba2f6097
https://github.com/missionpinball/mpf-docs/commit/1c89200cd2548c8803c594bfec41ce19bc6916c0
https://github.com/missionpinball/mpf-docs/commit/4cc8ca2a127093122c3e9a091fadac74c929c495
https://github.com/missionpinball/mpf-docs/commit/6884351229021394417fb6b950b6415e26289796
https://github.com/missionpinball/mpf-docs/commit/dc8e949889684f2ce554a142969baad813e2798f
https://github.com/missionpinball/mpf-docs/commit/96bd19335df689de0d77751eb40a7f28df2feae6
https://github.com/missionpinball/mpf-docs/commit/6e68c0293cea7ec79599e51ad46838205aab7240
https://github.com/missionpinball/mpf-docs/commit/e493284001175f083b44ed6e0856830de1f70997

Mission Pinball Framework Documentation, Version

∙ Better widget examples - public-profile

∙ CSSC instructions on Linux - jab (content from Scott Danesi)

∙ More OPP troubleshooting - jab

∙ Document default_pulse_power/default_hold_power limitations in P3-Roc - seanirby

∙ Troubleshooting for Fadecandy - jab

∙ Pin2DMD troubleshooting - jab

∙ Suggest firmware updates for P/P3-Roc and FAST - jab

∙ Extend high voltage warning - jab

∙ Document default recycle times in P/P3-Roc - jab (content from Gerry)

∙ Document debounce and recycle behaviour of autofire_coils - jab

∙ Document chained lights and numbers vs channels for all platforms - jab (see separate blog post)

∙ Coil troubleshooting - jab

∙ FAST on Linux troubleshooting - jab

∙ Document debounce and recycle behaviour of flippers - jab

∙ Notes on RGB and colored inserts - jab

∙ How to install Debian with MPF in VirtualBox - kylenahas

∙ Example for state_machines with placeholders - jab

∙ Document start_loop_at/end_loop_at on sounds - qcapen

∙ Document rotation animations - Coleman

∙ Readd tutorial to mpf-examples and test it - jab

∙ Fix sound references in demo_man - kylenahas

∙ Add monitor image and config to demo_man - kylenahas

∙ How to wire coils and scoops - jab

∙ Magnet example - jab

∙ How to debug MPF Spike Bridge - jab

∙ Add Physical Building Section - Nate

∙ Add Stern Magnet Board - jab

∙ Document start_running in shows (with examples) - avanwinkle

∙ How to capture spike net bus - jab

∙ How to replace FETs on FAST hardware - jab

∙ Dedicated Magnet Driver boards - jab

∙ Fix typos - bghill

∙ Update Windows Install Instruction for Multimorphic - qcapen

∙ Add part numbers - bghill

∙ Fix snux docs and more - jab

MPF Release Notes 2033

https://github.com/missionpinball/mpf-docs/pull/313
https://github.com/missionpinball/mpf-docs/commit/d3cd70c0c3818a8ee136d2b637c9b0e3f6060daa
https://github.com/missionpinball/mpf-docs/commit/79075f21d10ab0cc9453aeb657246d65bf86a9fd
https://github.com/missionpinball/mpf-docs/pull/314
https://github.com/missionpinball/mpf-docs/commit/ed8fc28b2a644b0925c401e8ae425b32bdbcdf01
https://github.com/missionpinball/mpf-docs/commit/a61dcd5b8f2c16b85a4340742ef766c9ea7c0e14
https://github.com/missionpinball/mpf-docs/commit/9860a1e8b1c5b40973481106d7e38dbb50ab0cbc
https://github.com/missionpinball/mpf-docs/commit/36f273d95e901a08953075bf5bbbd02adbd1b41c
https://github.com/missionpinball/mpf-docs/commit/01cd9121b24fadb64db8279b87a8180bdd440cbf
https://github.com/missionpinball/mpf-docs/commit/5ec5dddd0568d7499d0d375559d1e34d9d511a3d
https://github.com/missionpinball/mpf-docs/commit/41830b39151215596dfea4d47e4951a59471c2f4
https://github.com/missionpinball/mpf-docs/commit/d82f9446908dd03bdc104560edf999890ae5da55
https://github.com/missionpinball/mpf-docs/commit/089c7e4bd685f0dcb1c85c521ce276c57ae2c333
https://github.com/missionpinball/mpf-docs/commit/2279e39b4dca6b22cb7ae9f0858d264c4fac6c7d
https://github.com/missionpinball/mpf-docs/commit/568eff4d6b8c3eb0749166286068c0294e34a095
https://github.com/missionpinball/mpf-docs/commit/29468c7171445f8397e4a213a9b19139308950ed
https://github.com/missionpinball/mpf-docs/pull/316
https://github.com/missionpinball/mpf-docs/commit/7a1277620ed86cd3ccb6b6efebb5334b791bace8
https://github.com/missionpinball/mpf-docs/pull/317
https://github.com/missionpinball/mpf-docs/pull/318
https://github.com/missionpinball/mpf-examples/commit/17ea0c323640c0d3de55017cf3c46dbf0c8a2a8b
https://github.com/missionpinball/mpf-examples/pull/13
https://github.com/missionpinball/mpf-examples/pull/14
https://github.com/missionpinball/mpf-docs/commit/f4cbfdee80daa2584b17537550e8080b200df895
https://github.com/missionpinball/mpf-docs/commit/5f4e518ab9e746a8973414c05528cb6d9d5cacc0
https://github.com/missionpinball/mpf-docs/commit/a8caf3be0663ec1d6b81a3c2ea13f700932ba3f4
https://github.com/missionpinball/mpf-docs/commit/d359cb24a19252331fe6f925fbe59cc9fce0603e
https://github.com/missionpinball/mpf-docs/commit/70f1b75c76e3c148aaf4187a19780b6afd1f2b86
https://github.com/missionpinball/mpf-docs/pull/321
https://github.com/missionpinball/mpf-docs/commit/687d532d59e67f524e013d660bff92f9c0c194c2
https://github.com/missionpinball/mpf-docs/commit/856a22769334392d4a7fc4b6e61332fa33bc231e
https://github.com/missionpinball/mpf-docs/commit/078aba3da5f8bc2ef98af53c892541433f80fa13
https://github.com/missionpinball/mpf-docs/pull/322
https://github.com/missionpinball/mpf-docs/commit/7165f0d25ce7a823b91c1aa03c8b30285d23b581
https://github.com/missionpinball/mpf-docs/pull/324
https://github.com/missionpinball/mpf-docs/commit/825b0d46573318fe633a56543c7cf1fc6efcacb3
https://github.com/missionpinball/mpf-docs/commit/ea8092edb2bab3dacc6b47c53d325d96eb08094a

Mission Pinball Framework Documentation, Version

∙ Remarks on referencing slides in a show from outside - jab

∙ Document twitch bot - Mark Seiden

∙ Add details about keys and widgets - atummons

∙ Enhance twitch docs - Mark Seiden

∙ Document known P/P3-Roc errors - jab

∙ Link correct demo man from docs - jab

∙ Document common demo man issues - jab

∙ Document advance_random_events - jab

∙ Document reset_audit_events - jab

∙ Document repulse on EOS for flippers - jab

∙ Document reset_high_score_events - jab

∙ Document light chaining with previous and start_channel - jab

∙ Document source_device in multiball_locks - jab

∙ Update Motor documentation - Lance-o-nator

∙ Improve tutorial - flamtime

∙ Add driver troubleshooting - jab

∙ Document P/P3-Roc runtime errors - jab

∙ P/P3-Roc Firmware Upgrade section - jab

∙ Document CobraPin platform - cobra18t

∙ Fix reset_when_complete in docs - avanwinkle

∙ Document carousel block_events - avanwinkle

∙ Document more common errors - jab

∙ More breakout boards - jab

∙ Ubuntu 20.04 install instructions - jab

∙ Add missing config references for release - avanwinkle

∙ Renamed end_loop_at and start_loop_at to loop_end_at and loop_start_at - qcapen

0.53

Released: January 11, 2020

This is a 0.52 maintenance release with cleanups and some refactorings. We identified a few potential
upgrade issues:

∙ We fixed validation of animations. You might get a validation error with repeat: -1. Change it to
repeat: false. See the change in the docs.

∙ We changed active_time of ball_save from ms to secs. In case you did not use a unit here this
might change the time. Details.

∙ Machine variables changed if you accessed them from code (but not via config).

MPF Release Notes 2034

https://github.com/missionpinball/mpf-docs/commit/68ae1aa90c2b1051a588ff6b0f64fc4512357866
https://github.com/missionpinball/mpf-docs/pull/326
https://github.com/missionpinball/mpf-docs/pull/327
https://github.com/missionpinball/mpf-docs/pull/328
https://github.com/missionpinball/mpf-docs/commit/ceefc644aff087902459fc9ed2b0b5b255c2443b
https://github.com/missionpinball/mpf-docs/commit/53adb1560264d2cce3a451b0d4c6d847f90bd8c3
https://github.com/missionpinball/mpf-docs/commit/f976589627ea4250372442893569338dff4a5e43
https://github.com/missionpinball/mpf-docs/commit/41b6e18f177c931c0ec0f3c6c365e1ae2cdebc45
https://github.com/missionpinball/mpf-docs/commit/969a7aff38ddc66b06d2226649f6ac09490cb3b5
https://github.com/missionpinball/mpf-docs/commit/fda9e5110eceb77beea9699769f71a34f6842d52
https://github.com/missionpinball/mpf-docs/commit/75663630de715bd76b0e00e82d51bbce727dc792
https://github.com/missionpinball/mpf-docs/commit/120fdb7380f2a9443927fb3d180193f41739da94
https://github.com/missionpinball/mpf-docs/commit/656139882a753ce6293ab6bc0fd0981b2e1e1dc6
https://github.com/missionpinball/mpf-docs/pull/330
https://github.com/missionpinball/mpf-docs/pull/331
https://github.com/missionpinball/mpf-docs/commit/ce47545593cd1fb313254b305cd1311cc496425f
https://github.com/missionpinball/mpf-docs/commit/8fb185fb35a3dbdcd42bc7c369a63671f8137a62
https://github.com/missionpinball/mpf-docs/commit/79323b28ed2a6b4dc558c44468bbdd2bb58bbb62
https://github.com/missionpinball/mpf-docs/pull/335
https://github.com/missionpinball/mpf-docs/pull/338
https://github.com/missionpinball/mpf-docs/pull/337
https://github.com/missionpinball/mpf-docs/commit/17e2d6f929458e0ec88d2aef5c74c90b1ca9cc6f
https://github.com/missionpinball/mpf-docs/commit/fdef70e5717982717ac2fd0147c42cfe762af84e
https://github.com/missionpinball/mpf-docs/commit/1172899a058fb728ccd68acadd11362274eeb087
https://github.com/missionpinball/mpf-docs/pull/339
https://github.com/missionpinball/mpf-docs/commit/2ec8a3b7c33ace4ec92023e3c10423663a410bcc
https://github.com/missionpinball/mpf-docs/commit/6a141ec4434a0904d92f05bcbce1fe345513c018
https://github.com/missionpinball/mpf/pull/1463
https://github.com/missionpinball/mpf/pull/1394

Mission Pinball Framework Documentation, Version

∙ Achievement state changed if you accessed it from code (but not via config or placeholders).

MPF and MPF-MC

New Features

∙ Support segment displays connected to normal light of a platform - jab

∙ Batch LED updates for PD-LED and P/P3-Roc to prevent bus overflows - jab

∙ Make separate thread configurable in P/P3-Roc and reduce IPC overhead - jab

∙ Highlight settings in service mode - avanwinkle

∙ Spike-MPF bridge in Rust - jab

∙ Use new Spike-MPF bridge in MPF - jab

∙ Use a better default for max_servo_value on PD-LEDs - jab

∙ Allow reverse sorted highscore categories - yensho

∙ Light batching in Spike for better light sync - jab based on request by Dave

∙ Read ticks_per_second per node for Spike - jab

∙ Reliable speed/flow control in Spike - jab

∙ Initial Spike 2 support for the mpf-spike bridge - jab

∙ Limit light batch size in Spike to prevent bus desync - jab

∙ Ignore duplicate handler warnings during init - avanwinkle

∙ Add support for steppers in Spike - jab

∙ Support Spike 2 backlight - jab

∙ Support Spike 1 and Spike 2 backlight in bridge - jab

∙ Servo and Steppers as Diverters - jab

∙ Separate event handlers and code to catch incorrect arguments in custom code - jab

∙ Auto launch when machine is tilted - jab based on question from Philip D

∙ Show player and machine variables in the Text UI - woosle1234

∙ Allow dynamic values in timer control events - avanwinkle based on report by wilder

∙ Reduce default batch size for Spike LEDs - jab based on tests by Dave

∙ Custom events_when_added and events_when_removed for widgets [2] - qcapen based on
feature request by cfbenn

∙ Better cache invalidation of config_spec cache - jab

∙ Refactor Text UI to prevent text clutter - jab

∙ Allow user to disable ball search in a ball device - dziedada

∙ Better signal handlers and shutdown logging during crashes - jab to fix some exit issues

∙ Improve show and lights performance - jab

∙ Refactor DelayManager - jab

MPF Release Notes 2035

https://github.com/missionpinball/mpf/pull/1429
https://github.com/missionpinball/mpf/pull/1305
https://github.com/missionpinball/mpf/pull/1310
https://github.com/missionpinball/mpf/pull/1311
https://github.com/missionpinball/mpf/pull/1309
https://github.com/missionpinball/mpf-spike/commit/529ac6d7d047ef8d74ce2e4555a910a4ddf190c5
https://github.com/missionpinball/mpf/commit/089f7e48008ab0e82d3d8712ef812ea636975933
https://github.com/missionpinball/mpf/commit/9fbbd9bbe1367566e5defda0a2914f75db1635d2
https://github.com/missionpinball/mpf/pull/1296
https://github.com/missionpinball/mpf/pull/1313
https://groups.google.com/forum/#!topic/mpf-users/WHRLH0lGZL0
https://groups.google.com/forum/#!topic/mpf-users/WHRLH0lGZL0
https://github.com/missionpinball/mpf/pull/1314
https://github.com/missionpinball/mpf-spike/commit/e234336f504c40a5050220e00b5baa049d659819
https://github.com/missionpinball/mpf/commit/f64d46689235bb1e4d5abaa63de6d5cf39a4c661
https://github.com/missionpinball/mpf/pull/1316
https://github.com/missionpinball/mpf/pull/1317
https://github.com/missionpinball/mpf/commit/3bd30788613c687674d4e3c8bbace77691e0d1f5
https://github.com/missionpinball/mpf-spike/commit/9ee733992c127050cb31fe79d8ab0f8d89871467
https://github.com/missionpinball/mpf/pull/1321
https://github.com/missionpinball/mpf/pull/1327
https://github.com/missionpinball/mpf/pull/1330
https://groups.google.com/forum/#!topic/mpf-users/rjDghM-2XXk
https://github.com/missionpinball/mpf/pull/1328
https://github.com/missionpinball/mpf/pull/1337
https://github.com/missionpinball/mpf/commit/e3ad5dded06c820db2ec38cbccdc3ed8f683480a
https://github.com/missionpinball/mpf-mc/pull/372
https://github.com/missionpinball/mpf/pull/1338
https://github.com/missionpinball/mpf/issues/1332
https://github.com/missionpinball/mpf/commit/d806ceecb0a53e61d3726471008611b229fb4fd7
https://github.com/missionpinball/mpf/pull/1339
https://github.com/missionpinball/mpf/pull/1341
https://github.com/missionpinball/mpf/pull/1347
https://groups.google.com/forum/#!topic/mpf-users/98apwhX_rMo
https://github.com/missionpinball/mpf/pull/1346
https://github.com/missionpinball/mpf/pull/1344

Mission Pinball Framework Documentation, Version

∙ Exit MPF when the FAST Nano reboots/crashes during a game - jab

∙ Add a setting for free play to service mode when credits mode is loaded - jab based on request by
Greg

∙ Allow newer FAST firmware versions - jab based on problems with Firmware 1.05 by Brian Cox

∙ Support inverted switches and non-numeric drivers in Virtual Pinball - mfuegemann

∙ Extend README and add hardware rules to VPX Bridge and Test- mfuegemann

∙ Placeholders in credits mode - jab

∙ Placeholders in tilt mode - jab

∙ RGB LEDs and flashers in Virtal Pinball - mfuegemann

∙ Update asciimatics - jab

∙ Add –vpx commandline option to mpf and mc- jab

∙ Add VPX demo table with MPF config - mfuegemann

∙ Placeholders for StateMachine devices - jab

∙ Initial support for the Arduino Pinball Platform - jab, bontango and blackknight

∙ More debug in FAST platform and longer wait times - jab to support more FAST firmwares

∙ Generic System 11 A/C Relay handling (for APC and Snux) - jab

∙ Improve duplicate event handler message - jab as it caused confusion for Sepp

∙ Better error message when number is empty - jab based on report by Sepp

∙ Placeholders in show_tokens in show_player - jab to allow dynamic values in all widgets

∙ More useful and accurate validation errors in dicts - jab

∙ Add links to the docs to warnings and errors - jab

∙ Improve fake game in tests to handle multiball drains - jab

∙ Remove Windows Python 3.4 build of MPF-MC - qcapen

∙ Improve sound_loop_player design - qcapen

∙ Python 3.7 support for Windows in MPF-MC - qcapen

∙ Add placeholder conditions for items in carousel mode - avanwinkle

∙ Add control events to counters - dziedada

∙ Support for the APC platform - jab, bontango and blackknight

∙ Validate switch numbers in LISY/APC - jab

∙ Set DTS to low on connect for APC and clear serial after reset - jab

∙ Modern lights for LISY/APC - jab

∙ Refactor sound loop - qcapen

∙ Allow tokens for widgets in shows - jab based on request from Sean-Paul

∙ Don’t activate diverter if activate_event present - GabeKnuth

∙ Add enabled and rotation_enabled to placeholders for shots/shot_groups - jab based on request
from Mike

MPF Release Notes 2036

https://github.com/missionpinball/mpf/pull/1343
https://github.com/missionpinball/mpf/pull/1354
https://groups.google.com/forum/#!topic/mpf-users/Q18AvoEaVRw
https://groups.google.com/forum/#!topic/mpf-users/Q18AvoEaVRw
https://github.com/missionpinball/mpf/pull/1356
https://github.com/missionpinball/mpf/pull/1360
https://github.com/missionpinball/mpf-vpcom-bridge/pull/1
https://github.com/missionpinball/mpf-vpcom-bridge/pull/2
https://github.com/missionpinball/mpf/pull/1357
https://github.com/missionpinball/mpf/pull/1358
https://github.com/missionpinball/mpf/pull/1363
https://github.com/missionpinball/mpf/pull/1362
https://github.com/missionpinball/mpf/pull/1364
https://github.com/missionpinball/mpf-mc/pull/373
https://github.com/missionpinball/mpf-vpcom-bridge/pull/3
https://github.com/missionpinball/mpf/pull/1365
https://github.com/missionpinball/mpf/commit/0021aa4c80c3f5c4db02c7ed0e797f0f2419340e
https://github.com/missionpinball/mpf/commit/c79a36b312d33c5cc546e4d9637f51ccef3ddcaf
https://github.com/missionpinball/mpf/commit/e031cb047dcecaaeb9eb37fc11422ea657e2ed71
https://github.com/missionpinball/mpf/pull/1370
https://github.com/missionpinball/mpf/commit/bebf593f97b068f07b3af69e93f48b3c8e595974
https://groups.google.com/forum/#!topic/mpf-users/epVKlaU9Yo8
https://github.com/missionpinball/mpf/pull/1376
https://groups.google.com/forum/#!msg/mpf-users/oHsUeEJr2yI/Y1hg21iNBAAJ
https://github.com/missionpinball/mpf/pull/1379
https://groups.google.com/forum/#!topic/mpf-users/lUd6Z2lU_eo
https://github.com/missionpinball/mpf/commit/240c4f9faabd58b8e96b3509b9a7d28ad0fc13fc
https://github.com/missionpinball/mpf/pull/1380
https://github.com/missionpinball/mpf/commit/458927fca909510ef5df643e6947a886862a2aa9
https://github.com/missionpinball/mpf-mc/commit/ad6e0fdb5bcd4bdad142b1ac563696f61b60733d
https://github.com/missionpinball/mpf-mc/pull/374
https://github.com/missionpinball/mpf-mc/commit/4dda4261fe527fec829e9e3e3488af8e407a7daf
https://github.com/missionpinball/mpf/pull/1381
https://github.com/missionpinball/mpf/pull/1342
https://github.com/missionpinball/mpf/issues/1345
https://github.com/missionpinball/mpf/commit/b39bc2759eb83bb1160ca0b3a70247ddeb4aa7a9
https://github.com/missionpinball/mpf/commit/43f0585fcc75535435085189ec1f66128c308db5
https://github.com/missionpinball/mpf/commit/4f1198fd3302ebd1fe8aefa2455056975ac1d065
https://github.com/missionpinball/mpf/commit/39642c7b3540005e8a4f775805302a8e4dadb484
https://github.com/missionpinball/mpf-mc/pull/374
https://github.com/missionpinball/mpf/commit/4782dde5fca0f57603d0c82d221a1947887a6cd6
https://groups.google.com/forum/#!topic/mpf-users/lUd6Z2lU_eo
https://github.com/missionpinball/mpf/pull/1386
https://github.com/missionpinball/mpf/pull/1387
https://groups.google.com/forum/#!topic/mpf-users/_EBF2tkfabI
https://groups.google.com/forum/#!topic/mpf-users/_EBF2tkfabI

Mission Pinball Framework Documentation, Version

∙ Throws Error when attempting to define more than one default display - GranolaDaniel

∙ Update unity-bcp-server to latest version - qcapen

∙ Segment display support for APC - jab

∙ Add token to slide_player to pass variables and MC - jab based on request in the forum by Greg

∙ Increased light update throughput - jab

∙ Add express syntax for sound_player - jab

∙ Refactor machine variables - pmansukhani

∙ Tune shows and events - jab

∙ Setup improvements and wheels for OSX - qcapen

∙ Nicer errors on syntax errors in conditions - jab

∙ Improve debug log of early messages in OPP - jab

∙ Option to send length bytes in LISY protocol - jab

∙ Better error message on invalid displays in LISY - jab

∙ Load modes from subfolders - pmansukhani

∙ Move code out of the hot path for light updates - jab

∙ Reserve all show_player options in show_tokens to prevent indent mistakes - jab based on bug
report by Alex

∙ Improve linter and remove previously undetected unused imports - jab

∙ Better debug output for LISY platform - jab

∙ Fix segment display mapping for APC - jab

∙ Configuration setting for player_vars and machine_vars to show in text ui - avanwinkle

∙ Better command logging for the P/P3-Roc - jab

∙ Support daisy chaining in the Pololu Maestro - jab

∙ Expose P-Roc hardware version as machine variable - jab

∙ Placeholders for shoot_again in multiball - pmansukhani

∙ Support show_tokens with placeholders in shot_profiles - jab

∙ Regression Test for Diverters (for a bug which was fixed during refactoring) - jab

∙ Expose MPF and MC version in MPF-MC on connect - jab

∙ Support pulse power in P/P3-Roc - jab

∙ Add Scaffolding CLI to MPF - jab

∙ Optimized Service Mode for LCDs - jab

∙ Suggestions on config typos - jab

∙ Copy light positions in scaffolding CLI from monitor to MPF for display_light_player - jab

∙ Add start_enabled to achievements and refactor code - jab

∙ Add unselect_events to achievements and more cleanup - jab

MPF Release Notes 2037

https://github.com/missionpinball/mpf-mc/pull/376
https://github.com/missionpinball/unity-bcp-server/commit/61a827fcf6136bd9237678f6b9ccebecc8356737
https://github.com/missionpinball/mpf/pull/1388
https://github.com/missionpinball/mpf/pull/1389
https://github.com/missionpinball/mpf-mc/pull/377
https://groups.google.com/forum/#!topic/mpf-users/ln2y_qxGRg4
https://github.com/missionpinball/mpf/pull/1390
https://github.com/missionpinball/mpf-mc/pull/378
https://github.com/missionpinball/mpf/pull/1394
https://github.com/missionpinball/mpf/pull/1392
https://github.com/missionpinball/mpf-mc/pull/379
https://github.com/missionpinball/mpf/commit/5ce27ba9d7c2392d47fd1598790a89fdd43d9063
https://github.com/missionpinball/mpf/commit/9262983dd8b207aa5ae546cd6d9e7672b1b9d64c
https://github.com/missionpinball/mpf/commit/e61c548efd3f2bfdc3af70338f4016f1ceab28ea
https://github.com/missionpinball/mpf/commit/2bbc750cfc27df04b83f57680fe27003484b1ef1
https://github.com/missionpinball/mpf/pull/1396
https://github.com/missionpinball/mpf/pull/1397
https://github.com/missionpinball/mpf/pull/1399
https://groups.google.com/forum/#!topic/mpf-users/J0UBP81ppfg
https://groups.google.com/forum/#!topic/mpf-users/J0UBP81ppfg
https://github.com/missionpinball/mpf/pull/1400
https://github.com/missionpinball/mpf/commit/b28c83fdcf860a3da90e3791d6ae82e1211db1b2
https://github.com/missionpinball/mpf/commit/d8232883fc614177b188bc33f6794bc1fb72ce81
https://github.com/missionpinball/mpf/pull/1406
https://github.com/missionpinball/mpf/commit/163e769fa63bc745ffecce1497458942339212e6
https://github.com/missionpinball/mpf/pull/1410
https://github.com/missionpinball/mpf/commit/7be95d1cc79dfee12d44ff25b0972444121ff6bc
https://github.com/missionpinball/mpf/pull/1404
https://github.com/missionpinball/mpf/pull/1414
https://github.com/missionpinball/mpf/commit/4a9251b819e470b2072dbf634e26d1b4c1e5daec
https://github.com/missionpinball/mpf-mc/commit/732cf02e5aefedbba4e9af72d7c0c7f1aa8b93a5
https://github.com/missionpinball/mpf/pull/1418
https://github.com/missionpinball/mpf/pull/1419
https://github.com/missionpinball/mpf/commit/6e09beca89f18f718402f3780cd42fb624b3d948
https://github.com/missionpinball/mpf/pull/1424
https://github.com/missionpinball/mpf/pull/1423
https://github.com/missionpinball/mpf/pull/1426
https://github.com/missionpinball/mpf/pull/1429

Mission Pinball Framework Documentation, Version

∙ More achievement refactoring - jab

∙ Refactored test cases - jab

∙ Drop Python 3.4 support - jab

∙ Turn device collections into native dicts - jab

∙ Led_color default show now supports all default show_tokens - jab

∙ Log asset loading times for tuning - jab

∙ Show shot state in MPF-monitor - jab

∙ Validate transitions in state_machines - jab

∙ Improve config parsing/validation - jab

∙ Nicer errors and suggestions in shows - jab

∙ Improve install and dependency manangement for Max and Linux - jab

∙ Improve build and install on Windows - jab

∙ Lazy loading for zipped image sequences to speed up game startup - jab

∙ New experimental language server support for IDEs - jab

∙ Generic high score mode which works for DMD and LCD, 2 - jab

∙ Improve correctness, speed and error messages of config validation - jab

∙ Option to ignore checksum errors in Spike - jab

∙ Support new input command for Spike FW 0.49+ - jab

∙ Implement over current detection for Spike - jab

∙ Arbitrary start state for state_machines - avanwinkle

∙ Configurable debounce times and FW 0.49+ for Spike - jab

∙ Coil priorities in hw rules for Spike FW 0.49+ - densminger and jab

∙ Placeholders in ball save active_time - avanwinkle

∙ Autodetect FAST ports - avanwinkle

∙ Improve robustness of LISY protocol - jab

∙ Emacs instructions - seanirby

∙ Support goto definition and hover + mode support - jab

∙ Basic diagnostics - jab

∙ Improve placeholder performance by evaluating them only when needed - jab

∙ Update ruamel.yaml to improve the install experience on Windows - jab

∙ Benchmark and tune/cache placeholder parsing - jab

∙ Priorities in ball_holds and ball_locks - avanwinkle

∙ Batch light for PD-LED - jab

∙ Benchmark and tune event performance - jab

∙ Extend combo_switches to include the triggering switch in the event - avanwinkle

MPF Release Notes 2038

https://github.com/missionpinball/mpf/pull/1431
https://github.com/missionpinball/mpf/pull/1432
https://github.com/missionpinball/mpf/pull/1433
https://github.com/missionpinball/mpf/pull/1435
https://github.com/missionpinball/mpf/pull/1441
https://github.com/missionpinball/mpf/pull/1442
https://github.com/missionpinball/mpf/pull/1446
https://github.com/missionpinball/mpf/pull/1445
https://github.com/missionpinball/mpf/pull/1452
https://github.com/missionpinball/mpf/pull/1453
https://github.com/missionpinball/mpf-mc/pull/387
https://github.com/missionpinball/mpf-mc/pull/388
https://github.com/missionpinball/mpf-mc/pull/389
https://github.com/missionpinball/mpf-ls/
https://github.com/missionpinball/mpf/pull/1447
https://github.com/missionpinball/mpf-mc/commit/efb6bfe5e58826e6545998a0ae9d7108e51ca1e3
https://github.com/missionpinball/mpf/pull/1455
https://github.com/missionpinball/mpf/pull/1456
https://github.com/missionpinball/mpf/pull/1457
https://github.com/missionpinball/mpf/commit/f8da2cf9b063a342f9ca15c7d84090f853a3465c
https://github.com/missionpinball/mpf/pull/1458
https://github.com/missionpinball/mpf/pull/1460
https://github.com/missionpinball/mpf/pull/1462
https://github.com/missionpinball/mpf/pull/1463
https://github.com/missionpinball/mpf/pull/1464
https://github.com/missionpinball/mpf/pull/1466
https://github.com/missionpinball/mpf-ls/pull/6
https://github.com/missionpinball/mpf-ls/pull/7
https://github.com/missionpinball/mpf-ls/pull/8
https://github.com/missionpinball/mpf/pull/1469
https://github.com/missionpinball/mpf/pull/1476
https://github.com/missionpinball/mpf/pull/1478
https://github.com/missionpinball/mpf/pull/1479
https://github.com/missionpinball/mpf/pull/1481
https://github.com/missionpinball/mpf/pull/1483
https://github.com/missionpinball/mpf/pull/1480

Mission Pinball Framework Documentation, Version

∙ Initial Pin2DMD support (not yet working) - jab

∙ Option to ignore FAST RGB CPU crashes - avanwinkle

∙ Tracing for libpinproc calls - jab

∙ Software update via Service mode - jab

∙ Add tests for accrual restarts - jab

Bug fixes & code improvements

∙ Fix some yaml parsing errors - jab

∙ Fix error with Python 3.7 - avanwinkle

∙ Fix driver stuck on in rules in P/P3-Roc - jab

∙ Do not crash in service cli when playing invalid shows - jab

∙ Fix crash in debug message for duplicate priorities - jab based on report from Dave

∙ Fix crash after config error - jab based on report by Wilder

∙ Properly use priority in widget_player when the slide is not active and becomes active later -
avanwinkle

∙ Do not crash when failing to read stepper position in Spike - jab

∙ Allow carousel mode during attract - avanwinkle

∙ Do not start highscore mode without a game - jab based on report by wilder

∙ Properly save window positions in MPF Monitor - jab based on report by Greg

∙ Lock with physical_only strategy would never be full and count is off by one - jab based on report
by Coleman

∙ Do not keep ball in outhole after tilt - jab based on report by Matt

∙ Fix crash in bonus mode with uvloop - jab based on report by Matt

∙ Prevent shutdown glitches in FAST - jab with the help of Dave

∙ Prevent crash during early errors in P-Roc - jab based on report by Coleman

∙ Preserve curly brakets in string_to_list - avanwinkle

∙ Fix bug preventing access to settings in custom code - avanwinkle

∙ Properly implement disable_random event in random_event_player - avanwinkle

∙ Fix enable attribute for placeholders in devices - avanwinkle

∙ Fix regression in multiball counting - avanwinkle

∙ Fix sound_loop_player bugs - qcapen

∙ Fix Mac build - qcapen

∙ Fix Kivy recursion erros in Kivy 1.11 - qcapen

∙ Fix events_when_xxx on sounds and 2 - qcapen and jab based on report by Greg

∙ Fix parsing regression in OPP with matrix input cards and more - jab

MPF Release Notes 2039

https://github.com/missionpinball/mpf/pull/1484
https://github.com/missionpinball/mpf/pull/1482
https://github.com/missionpinball/mpf/commit/9c7f3af27d4bdb91a67d80f6f0b43550d4607a3b
https://github.com/missionpinball/mpf/pull/1487
https://github.com/missionpinball/mpf/pull/1470
https://github.com/missionpinball/mpf/pull/1303
https://github.com/missionpinball/mpf-mc/pull/370
https://github.com/missionpinball/mpf/pull/1308
https://github.com/missionpinball/mpf/pull/1312
https://github.com/missionpinball/mpf/commit/7a3dad3ef3366b33f4fa77e45abfa54026faa76c
https://github.com/missionpinball/mpf/commit/4613cfe3b0c3d8199eaaf633f3626c228714faab
https://github.com/missionpinball/mpf-mc/pull/371
https://github.com/missionpinball/mpf/pull/1323
https://github.com/missionpinball/mpf/pull/1325
https://github.com/missionpinball/mpf/pull/1331
https://github.com/missionpinball/mpf-monitor/commit/79bb049101b62bf846c4451ac462b0d0a4a7acaf
https://groups.google.com/forum/#!topic/mpf-users/JXB5Pv26Ces
https://github.com/missionpinball/mpf/pull/1350
https://groups.google.com/forum/#!topic/mpf-users/SVCfuA5jll8
https://groups.google.com/forum/#!topic/mpf-users/SVCfuA5jll8
https://github.com/missionpinball/mpf/pull/1351
https://groups.google.com/forum/#!topic/mpf-users/0FTPmHuB734
https://github.com/missionpinball/mpf/pull/1352
https://groups.google.com/forum/#!topic/mpf-users/OwL2cT3lGq4
https://github.com/missionpinball/mpf/commit/90acd6c60da1c0b4a4922edbeaca247228a54d41
https://github.com/missionpinball/mpf/commit/95ac7c6eb8cd60712fa1c3cad557fcd9ffaa529a
https://github.com/missionpinball/mpf/pull/1361
https://github.com/missionpinball/mpf/pull/1369
https://github.com/missionpinball/mpf/pull/1374
https://github.com/missionpinball/mpf/pull/1372
https://github.com/missionpinball/mpf/pull/1377
https://github.com/missionpinball/mpf-mc/commit/f14b5214246188e3cd61d9eef2193f17ff9548e5
https://github.com/missionpinball/mpf-mc/commit/2bd209465b6b599f2ae937892e909cf1470fd5fd
https://github.com/missionpinball/mpf-mc/commit/2fb90742c458d45be17388b0932d29569ba472c3
https://github.com/missionpinball/mpf-mc/pull/378
https://github.com/missionpinball/mpf/pull/1393
https://groups.google.com/forum/#!topic/mpf-users/B8PF2WqFpYo
https://github.com/missionpinball/mpf/commit/42d893f93f95c87f54c8c2ec7aed07de02533740
https://github.com/missionpinball/mpf/commit/de7dc636ee23007c36a4f3df6a0cd3d25cca9b6f

Mission Pinball Framework Documentation, Version

∙ Fix sound about to finish notification bug - qcapen

∙ Fixes for latest Spike Firmware and bridge - jab

∙ Always send a multiple of three LEDs to the Fadecandy to fix RGBW - jab based on bug report by
Cadrion

∙ Fix polarity issue on P-Roc with WPC hardware - jab

∙ LISY command fixes in protocol v0.9 and 2 - jab

∙ Fix image unload crash in MC - avanwinkle

∙ Fix inverted condition on show player conditions - avanwinkle

∙ Prevent false positive duplicate numbers in virtual platform - jab

∙ Prevent crash in Text UI - jab

∙ Scaffolding from any path (just like other commands) - jab

∙ Set default enable/disable_event for magnets - jab

∙ Bring back state_names_to_not_rotate in shot_profiles - jab to fix bug reported by Greg

∙ Prevent false positive duplicate events handlers - jab based on report from Greg

∙ Fix crash in show player - jab

∙ Fix config validation - kevinleedrum

∙ Fix reenabling of achievement_groups - jab

∙ Improve error urls - jab

∙ Fix call to libpinproc for pulse_power - jab

∙ Do not crash on headless display_light_player - jab

∙ Fix setting number of LEDs per node in Spike FW 0.49+ - densminger and jab

∙ High score mode should run before match mode - jab

∙ Prevent crash in text ui on unknown switch event - jab

∙ Also advance score reels for non-active players - jab

∙ Consider OPP firmware version per chain instead of globally - jab

∙ Fix sequence_shots with a single switch and delay - jab

∙ Fix crash in score reels - jab

∙ Prevent crash in variable player when adding a variable for a non-exising player - jab

∙ Prevent duplicate BCP messages which could trigger duplicate sounds or widgets - jab

MPF Documentation

∙ Extend Multimorphic PowerEntry board documentation - colemanomartin

∙ Center Post Ball Save Example - mwiz

∙ Part numbers for trough opto boards - jab

∙ Image for Center Post - swizzlefish

MPF Release Notes 2040

https://github.com/missionpinball/mpf-mc/commit/3b4df51a9ed5776456d6b2c9e7e7a6e42d60f76e
https://github.com/missionpinball/mpf/commit/f235b9a70f8d81d38e4e77c0571690aef7bd35b0
https://github.com/missionpinball/mpf-spike/commit/dde2bd367e7dcbdc84e5e7433e900dee4f652810
https://github.com/missionpinball/mpf/commit/bae40db64e1496506f44596d24b58dbe85241b09
https://groups.google.com/forum/#!topic/mpf-users/inJzJVlWVWU
https://groups.google.com/forum/#!topic/mpf-users/inJzJVlWVWU
https://github.com/missionpinball/mpf/commit/2aafe828656d09921e959f4c2f0208ac70f6a23e
https://github.com/missionpinball/mpf/commit/3bf547d0bf18005b56a1387b73cae013cd9d8774
https://github.com/missionpinball/mpf/commit/3058fc6c599ca2db8cd088520327493160480752
https://github.com/missionpinball/mpf-mc/pull/384
https://github.com/missionpinball/mpf/pull/1407
https://github.com/missionpinball/mpf/pull/1409
https://github.com/missionpinball/mpf/commit/b121d1e91245e99a88ef68463a67dfcb9f8a154a
https://github.com/missionpinball/mpf/pull/1421
https://github.com/missionpinball/mpf/pull/1422
https://github.com/missionpinball/mpf/pull/1430
https://groups.google.com/forum/#!searchin/mpf-users/state_names_to_not_rotate%7Csort:date/mpf-users/kpFWgW2QgBM/3_Q0CIIfDAAJ
https://github.com/missionpinball/mpf/pull/1436
https://groups.google.com/forum/#!topic/mpf-users/bLnPsXiBrTI
https://github.com/missionpinball/mpf/pull/1440
https://github.com/missionpinball/mpf/pull/1448
https://github.com/missionpinball/mpf/pull/1443
https://github.com/missionpinball/mpf/pull/1444
https://github.com/missionpinball/mpf/commit/f32606bf8722fe501190be4ff3619924970821c1
https://github.com/missionpinball/mpf-mc/commit/04c1963bbdc17e63d92598de1b5caf37506059fc
https://github.com/missionpinball/mpf/pull/1461
https://github.com/missionpinball/mpf/pull/1467
https://github.com/missionpinball/mpf/pull/1468
https://github.com/missionpinball/mpf/pull/1471
https://github.com/missionpinball/mpf/pull/1474
https://github.com/missionpinball/mpf/pull/1473
https://github.com/missionpinball/mpf/pull/1475
https://github.com/missionpinball/mpf/pull/1477
https://github.com/missionpinball/mpf/pull/1485
https://github.com/missionpinball/mpf-docs/pull/203
https://github.com/missionpinball/mpf-docs/commit/aaef1046b6d3f4443fa21e61decb333aa91d4605
https://github.com/missionpinball/mpf-docs/commit/f4f66e49a6946a9e24ae1636d3f7d6a5faa961bc
https://github.com/missionpinball/mpf-docs/commit/908995a8e7a0e941dd461dfbc1c1bfbabc5d0f81

Mission Pinball Framework Documentation, Version

∙ Improve game mode example - gregsealby

∙ Fix typos, fix2 - densminger

∙ Extend documentation for multiple screens - jab based on question by Haggis and solution by
Snux

∙ Fix tutorial step 18 - jab based on question by Pablo

∙ Document new Spike bridge - jab

∙ Document steppers and add images - colemanomartin

∙ Image an image of a servo - colemanomartin

∙ Better stepper example code - colemanomartin

∙ Details about PD-LED servo fine tuning - colemanomartin

∙ Clarify monitorable servo properties - colemanomartin

∙ Document showcreator - jab

∙ Fix typo - cfbenn

∙ Docs for named_colors and example for dynamic widgets - avanwinkle based on request by Philip

∙ Better examples for sequence_shots - colemanomartin

∙ More text for the showcreator - jab

∙ Light_player examples - jab

∙ How to use shows in shows - jab

∙ Windows install error and fix - jab based on error from Jordan

∙ Document common logic block questions - jab based on question in forum from iizi

∙ Document servos and steppers as diverters - jab based on question in forum

∙ Document parameters of extra ball events - avanwinkle

∙ Document start_game_event and add_player_event - jab

∙ Add warnings about common ground to all coils - jab

∙ More tags vs tokens in shows - jab

∙ How to embed high score in attract mode - jab based on example by Greg

∙ How to display a timer on a slide - jab based on example from Coleman

∙ Common pitfall with accruals - colemanomartin

∙ Enable of StepStick needs to be low not high - colemanomartin

∙ Add Multimorphic part numbers for breakout boards and LEDs - jab

∙ Document breakout boards for switches - jab

∙ More homebrew part numbers - jab

∙ Thermal considerations about resistors on Optos - colemanomartin

∙ Document rotation on widgets - colemanomartin based on question in forum

∙ Update notes on rotation of widgets - colemanomartin

MPF Release Notes 2041

https://github.com/missionpinball/mpf-docs/pull/204
https://github.com/missionpinball/mpf-docs/pull/205
https://github.com/missionpinball/mpf-docs/pull/206
https://github.com/missionpinball/mpf-docs/commit/793d1652c308bb7dfce2daaa5f7774db9071394b
https://groups.google.com/forum/#!topic/mpf-users/vs62guaHNE4
https://groups.google.com/forum/#!topic/mpf-users/vs62guaHNE4
https://github.com/missionpinball/mpf-docs/commit/05aa704487a1117a14c3ff201809081f5a67a9fa
https://groups.google.com/forum/#!topic/mpf-users/czoLprd5pL8
https://github.com/missionpinball/mpf-docs/commit/6be23912212478beaa35356226ef86d37cd2cf49
https://github.com/missionpinball/mpf-docs/pull/208
https://github.com/missionpinball/mpf-docs/commit/4da3b0a4ca6a0910d2ed89065d61411f92a91f90
https://github.com/missionpinball/mpf-docs/pull/211
https://github.com/missionpinball/mpf-docs/pull/210
https://github.com/missionpinball/mpf-docs/pull/209
https://github.com/missionpinball/mpf-docs/commit/29f7312c4efff3ace0ed4d77f9ec255e18aa166f
https://github.com/missionpinball/mpf-docs/pull/212
https://github.com/missionpinball/mpf-docs/pull/213
https://groups.google.com/forum/#!topic/mpf-users/_WCjW4_9Hic
https://github.com/missionpinball/mpf-docs/pull/214
https://github.com/missionpinball/mpf-docs/commit/7a3aeb1c30ea19474b9815e55ada5e287572086f
https://github.com/missionpinball/mpf-docs/commit/639dbe2276e9404d4307d497ff7a065795050dbe
https://github.com/missionpinball/mpf-docs/commit/70b2d0498a1c121e8d0f7b4f0fe2885630505ab0
https://github.com/missionpinball/mpf-docs/commit/2d855b79ba24ef8492e20020d7f6dac861a50b34
https://github.com/missionpinball/mpf-docs/commit/03f60656b795a775e538ea97a693960e4bcaae0b
https://groups.google.com/forum/#!topic/mpf-users/X5HYU60gjoc
https://github.com/missionpinball/mpf-docs/commit/17651d0902b1a09d6d9ff91b890b851518cc2ad3
https://groups.google.com/forum/#!topic/mpf-users/YZlYmkEzAkw
https://github.com/missionpinball/mpf/pull/1322
https://github.com/missionpinball/mpf-docs/commit/49b4bd34e1a8d675115c99bac1a05c9054921928
https://github.com/missionpinball/mpf-docs/commit/13efc1612aff5308239972383b7403bede0f8f3a
https://github.com/missionpinball/mpf-docs/commit/3441c61471772745c299389481ff7d03945e5872
https://github.com/missionpinball/mpf-docs/commit/aa7fb941fbd39ab9d10c66735f4bb5de7493a94a
https://groups.google.com/forum/#!topic/mpf-users/TGp86erLGKc
https://github.com/missionpinball/mpf-docs/commit/5f9b640d36af055051adf15dba0ea2a0735f1dcd
https://github.com/missionpinball/mpf-docs/pull/215
https://github.com/missionpinball/mpf-docs/pull/207
https://github.com/missionpinball/mpf-docs/commit/3482321d29872d1555399d345e2cc9e5c62f08c7
https://github.com/missionpinball/mpf-docs/commit/7a6afed328a0ebfbe61bdafcd4cc5d7a9f51edef
https://github.com/missionpinball/mpf-docs/commit/49b398350341a8f781cbcf1e96647f8684c34cc8
https://github.com/missionpinball/mpf-docs/pull/216
https://github.com/missionpinball/mpf-docs/pull/218
https://groups.google.com/forum/#!topic/mpf-users/v2uAIPbz8nA
https://github.com/missionpinball/mpf-docs/pull/217

Mission Pinball Framework Documentation, Version

∙ Document custom widget events - qcapen

∙ How to configure tilt and change tilt slides - jab based on example/question in the forum

∙ Stern Spike Steppers - jab

∙ More examples for delaying game/ball ending - jab based on question by Coleman

∙ DIP 6 and Servos on the PD-LED - colemanomartin

∙ How to add a slam_tilt slide - jab based on suggestion in forum

∙ How to use sequence_shots in shot_groups - jab based on example by Greg

∙ Document shot_profiles - jab based on question by Jordy

∙ How to use virtual env on Mac with Kivy - driskel

∙ Improve dynamic values example - MarkInc666

∙ How to add credits settings to service mode - jab

∙ How to add tilt settings to service mode - jab

∙ Document placeholders for StateMachine devices - jab

∙ Document state machine configs - jab

∙ Add more config links and document timer transitions - jab

∙ Fixes in the tutorial and more - ironspider

∙ Document LISY protocol - jab

∙ Update example links - GabeKnuth

∙ Fix Mac install instructions - GabeKnuth

∙ Typos, Bad English and more - ironspider

∙ Rotation is counter-clock wise not clockwise - colemanomartin

∙ Document game variables - cfbenn

∙ Improve tutorial and fix typos - soraxxo

∙ Log mesage reference section - jab

∙ Add score slide to tutorial step 17 - Coleman

∙ Fix instructions on how to install a specific MPF version 2 - mfulleratlassian

∙ Improved and test multiball example - jab based on question by Sepp

∙ Fix typos - nhardt

∙ Document wire-to-wire connectors - ironspider

∙ Add wiresheet for 7-segment displays with mypinballs controller - unRARed

∙ When Two Drop Targets Are Hit Simultaneously How Do I Keep Two Sounds From Playing -
qcapen

∙ Typos, 2, 3 - ironspider

∙ Notes on Mac install - bowilliams

∙ Remind users about venv when installing pypinproc - bowilliams

MPF Release Notes 2042

https://github.com/missionpinball/mpf-docs/commit/497a4f53cf174bb2814680a1ded7875194ca9d0a
https://github.com/missionpinball/mpf-docs/commit/ec47267b2ace174480f7e90dc6875bafcc863203
https://groups.google.com/forum/#!topic/mpf-users/iHZxy9_eHPk
https://github.com/missionpinball/mpf-docs/commit/3aa75dc6c3bc47b5b56d32ee89f18b900b135e68
https://github.com/missionpinball/mpf-docs/commit/5477f6f2313507aa0f992bc56cffa7a60f1eec81
https://groups.google.com/forum/#!topic/mpf-users/3FZqX4w_ROM
https://github.com/missionpinball/mpf-docs/pull/220
https://github.com/missionpinball/mpf-docs/commit/817a3cbca08b1b9f9fd5284f11ebf0ade2d8d5ee
https://groups.google.com/forum/#!topic/mpf-users/iHZxy9_eHPk
https://github.com/missionpinball/mpf-docs/commit/6916cab9dd1650d6ae7749adb70c4947432721c9
https://groups.google.com/forum/#!topic/mpf-users/FUephO5O-TE
https://github.com/missionpinball/mpf-docs/commit/b228792be0f2244ea316b8ce5e5d2fa11e780bdf
https://groups.google.com/forum/#!topic/mpf-users/UQHGAJ-hips
https://github.com/missionpinball/mpf/pull/1355
https://github.com/missionpinball/mpf-docs/pull/223
https://github.com/missionpinball/mpf-docs/commit/744f29f861a243d9e6c95a9d81aa56fa7f32feec
https://github.com/missionpinball/mpf-docs/commit/8e05a161cfc21141a1e961f2a65ad8fa5b214d4c
https://github.com/missionpinball/mpf-docs/pull/224
https://github.com/missionpinball/mpf-docs/commit/aadea2392c08c0d79ee96a8bc23b4d6639f6ae5e
https://github.com/missionpinball/mpf-docs/commit/e797a5fc8457d521bfd4263908a0c226171ff2f7
https://github.com/missionpinball/mpf-docs/pull/227
https://github.com/missionpinball/mpf-docs/pull/228
https://github.com/missionpinball/mpf-docs/commit/cbb65ff49253befb1fb116d8d72d2f67a945f090
https://github.com/missionpinball/mpf-docs/commit/8e0f5334f6df40733810c2627e71fc0db063808b
https://github.com/missionpinball/mpf-docs/commit/8016c8daf9c83ba2dafcde5ffef1244a02219a69
https://github.com/missionpinball/mpf-docs/pull/232
https://github.com/missionpinball/mpf-docs/pull/230
https://github.com/missionpinball/mpf-docs/pull/229
https://github.com/missionpinball/mpf-docs/pull/231
https://github.com/missionpinball/mpf-docs/pull/233
https://github.com/missionpinball/mpf-docs/pull/235
https://github.com/missionpinball/mpf-docs/pull/236
https://github.com/missionpinball/mpf-docs/commit/30258abce59ea1d810827fdcc178938073394f26
https://github.com/missionpinball/mpf-docs/pull/237
https://github.com/missionpinball/mpf-docs/pull/238
https://github.com/missionpinball/mpf-docs/pull/239
https://github.com/missionpinball/mpf-docs/commit/c5fef8549bd30a2287fe6ef4fb6a31bf4205e27b
https://groups.google.com/forum/#!topic/mpf-users/bn-U8Q91K0U
https://github.com/missionpinball/mpf-docs/pull/240
https://github.com/missionpinball/mpf-docs/pull/242
https://github.com/missionpinball/mpf-docs/pull/241
https://github.com/missionpinball/mpf-docs/commit/7909751f5f0b09727e0c68e8b561d76b3e4e4ef3
https://github.com/missionpinball/mpf-docs/pull/243
https://github.com/missionpinball/mpf-docs/pull/244
https://github.com/missionpinball/mpf-docs/pull/245
https://github.com/missionpinball/mpf-docs/pull/246
https://github.com/missionpinball/mpf-docs/pull/248

Mission Pinball Framework Documentation, Version

∙ Document modes in subfolders - pmansukhani

∙ Wording improvments, grammar fixes, typos, more typos, more grammar, simple past, proper
count - ironspider (a lot of fixes)

∙ More precise description - ironspider

∙ Add modern Stern Opto Trough - ironspider

∙ Fix segment_displays in shows - snux

∙ Document LISY35 flipper enable - jab based on question by Dave

∙ Document local outputs on the P-Roc when using PDB boards - jab

∙ Update LISY procotol - jab

∙ Add LISY35 to WPC section - jab

∙ Document machine variables and more - jab

∙ Add images for coils, buttons, flasher, up-down-ramps and diverters - kevinleedrum

∙ Improve skill shot documentation - jab

∙ Improve service mode documentation - jab

∙ Document text_ui section - avanwinkle

∙ Fix typos and grammar - catrinaisahuman

∙ Fix typo in path - arthurlutz

∙ Added flipper image - tpilewicz

∙ Documentation (integration) tests with MC to make sure examples always work - jab

∙ Integration test for shots and widgets - jab

∙ Remove Python 3.4 references from docs - cfbenn

∙ Upgrade instructions for old to new kivy version - jab

∙ Document numlock keyboard issue - mwiz

∙ Document common problems with OPP on Ubuntu - jab

∙ Extend APC documentation - jab

∙ Document how to install MPF Spike bridge with FW 0.49+ - densminger

∙ Improve OPP docs - jab

∙ APC documentation - jab

∙ Document how to use newer Spike 1 firmwares with MPF - densminger

∙ Typo - jab

∙ Show config tests in docs - jab

∙ Example for other player scoring - jab

MPF Release Notes 2043

https://github.com/missionpinball/mpf-docs/pull/249
https://github.com/missionpinball/mpf-docs/pull/250
https://github.com/missionpinball/mpf-docs/pull/253
https://github.com/missionpinball/mpf-docs/pull/254
https://github.com/missionpinball/mpf-docs/pull/255
https://github.com/missionpinball/mpf-docs/pull/256
https://github.com/missionpinball/mpf-docs/pull/257
https://github.com/missionpinball/mpf-docs/pull/259
https://github.com/missionpinball/mpf-docs/pull/259
https://github.com/missionpinball/mpf-docs/pull/258
https://github.com/missionpinball/mpf-docs/pull/251
https://github.com/missionpinball/mpf-docs/pull/252
https://github.com/missionpinball/mpf-docs/commit/8472924c3d19eca3079e62ac24f32db865cca31d
https://groups.google.com/forum/#!topic/mpf-users/bHj-Tvh2KhY
https://github.com/missionpinball/mpf-docs/commit/e3e83bc19ebb6ffa314560c3d05a7cd2dad63e3b
https://github.com/missionpinball/mpf-docs/commit/8ff96dd5ece1e8112079f814b645d3a56691adca
https://github.com/missionpinball/mpf-docs/commit/865bd788752b4f2f56c9695d4d49c6901ae37e69
https://github.com/missionpinball/mpf/commit/a433f72cee16101f37b66f81dcb5c944888a7571
https://github.com/missionpinball/mpf-docs/commit/dcb0364e4cfa409567c3e3315f432d774e9cbf4a
https://github.com/missionpinball/mpf-docs/pull/261
https://github.com/missionpinball/mpf-docs/commit/6a93a3d8b08028418911ad485b50f07cffc4952a
https://github.com/missionpinball/mpf-docs/commit/ce3373e970bb5c7461ebceb1375bb804041c2031
https://github.com/missionpinball/mpf-docs/pull/260
https://github.com/missionpinball/mpf-docs/pull/264
https://github.com/missionpinball/mpf-docs/pull/266
https://github.com/missionpinball/mpf-docs/pull/265
https://github.com/missionpinball/mpf-docs/pull/267
https://github.com/missionpinball/mpf-docs/pull/269
https://github.com/missionpinball/mpf-docs/commit/9e952c2d55c7b20880fe7016b9ed9756b39b0519
https://github.com/missionpinball/mpf-docs/pull/268
https://github.com/missionpinball/mpf-docs/commit/14736abf223f252d41b9bdaf65826afbbf92740d
https://github.com/missionpinball/mpf-docs/pull/271
https://github.com/missionpinball/mpf-docs/commit/2e0bdf0fcb4641a6d3fc08fb2503dec2da0e29f5
https://github.com/missionpinball/mpf-docs/commit/f70701129cdee00a36e65e07afd875205ce9bb11
https://github.com/missionpinball/mpf-docs/pull/270
https://github.com/missionpinball/mpf-docs/commit/2e0bdf0fcb4641a6d3fc08fb2503dec2da0e29f5
https://github.com/missionpinball/mpf-docs/commit/f70701129cdee00a36e65e07afd875205ce9bb11
https://github.com/missionpinball/mpf-docs/pull/270
https://github.com/missionpinball/mpf-docs/commit/8a16696104fad7d1de030ea04788bbc62f8c8ee9
https://github.com/missionpinball/mpf-docs/commit/4bb13cbf915ff687a780b6477c453c95035b2c8a
https://github.com/missionpinball/mpf-docs/commit/987de22b1fa4db47bf3a1b2c273983ae4b3311af

Mission Pinball Framework Documentation, Version

0.52

Released: February 02, 2019

This is a 0.51 maintenance release with cleanups and some refactorings. There should not be any
breaking changes but a lot of bug fixes.

MPF

New Features

∙ OSC platform to control external lights - jab based on request in forum

∙ Validate variables in variable_player - jab based on config in example

∙ Placeholders for shots and shot_groups - jab based on question from mike wiz

∙ Better error messages for placeholders - jab

∙ Show proper error when fadecandy server is not running - jab based on request from Brian Cox

∙ Nicer output on startup errors - jab

∙ Show shutdown reason on exit of MPF - jab

∙ Show import error for pinproc - jab

∙ Upstream Raspberry Pi DMD support - jab based on external platform from Michael Betz

∙ Support for Spike Trough via SPI Bit Bang - jab

∙ Move libpinproc to a separate thread - jab

∙ Score Queues for SS style scoring - jab based on request in forum

∙ Check for OPP firmware mismatch on start - jab based on bug report in forum

∙ Evaluate placeholders from service cli - jab

∙ Improve USB latency for I2C in pypinproc - jab based on suggestion by rosh

∙ Only enable AC relay by default during the game. Keep it off in attract - snux

∙ Ball Routing device to route balls to certain devices - jab

∙ Support for the Pololu Tic stepper controller - wolfmarsh

∙ Update Smartmatrix Teensy Code Example for New Cookie - aaronmatthies and eli

∙ Placeholders in event_player based on event parameters - avanwinkle

∙ Update ruamel yaml parser - jab

∙ Use newer cython to support Python 3.7 - jab

∙ Add Python 3.7 support to MPF - jab

Bug fixes & code improvements

∙ Fix audio problems - jab (based on 0.50 fix)

∙ Fix name clashes between multiple anonymous slides - jab based on bug report by pinballpeople

MPF Release Notes 2044

https://github.com/missionpinball/mpf/pull/1260
https://groups.google.com/forum/#!topic/mpf-users/8JZbb_X__Rc
https://github.com/missionpinball/mpf/pull/1261
https://groups.google.com/forum/#!topic/mpf-users/v4b75FEQU70
https://github.com/missionpinball/mpf/pull/1262
https://groups.google.com/forum/#!topic/mpf-users/_EBF2tkfabI
https://github.com/missionpinball/mpf/commit/418b210e0e2bf847dcd66dbec5950d277828080c
https://github.com/missionpinball/mpf/pull/1263
https://github.com/missionpinball/mpf/commit/55f449407d832e0bfa6f3403c19a3572ea621ee2
https://github.com/missionpinball/mpf/pull/1265
https://github.com/missionpinball/mpf/pull/1267
https://github.com/missionpinball/mpf/pull/1269
https://github.com/yetifrisstlama/Fan-Tas-Tic-platform
https://github.com/missionpinball/mpf/pull/1270
https://github.com/missionpinball/mpf/pull/1195
https://github.com/missionpinball/mpf/pull/1273
https://groups.google.com/forum/#!topic/mpf-users/4Ecj6xtveHo
https://github.com/missionpinball/mpf/pull/1276
https://groups.google.com/forum/#!topic/mpf-users/umg2ZmDElog
https://github.com/missionpinball/mpf/pull/1277
https://github.com/missionpinball/pypinproc/pull/5
https://github.com/missionpinball/mpf/pull/1289
https://github.com/missionpinball/mpf/pull/1291
https://github.com/missionpinball/mpf/pull/1293
https://github.com/missionpinball/mpf/pull/1295
https://github.com/missionpinball/mpf/pull/1297
https://github.com/missionpinball/mpf/pull/1298
https://github.com/missionpinball/mpf-debian-installer/commit/532d8757c078ef568b6a9d3473a1db63d35e84ef
https://github.com/missionpinball/mpf/pull/1300
https://github.com/missionpinball/mpf-mc/commit/7751cef626cae7fe0eeba2c4138f7ab6bb7d8982
https://github.com/missionpinball/mpf-mc/commit/e9d7f3aac92489ba8f987807aad5584938d77891#diff-b1084838e78cf0dc54bddd5026e1f747
https://github.com/missionpinball/mpf-mc/pull/359

Mission Pinball Framework Documentation, Version

∙ Properly support external platforms in MC - jab based on report by TheLegoMoviePinball

∙ Honour -a and -A option when loading config_spec in MPF and MC - jab based on report by
TheLegoMoviePinball

∙ Honour slide parameter in inactive slides - avanwinkle

∙ Fix iMC startup crash - jab based on report by snux

∙ Remove use_sound_setting from default options - avanwinkle

MPF-MC

New Features

∙ Add a segment display font - jab based on example from BorgDog

∙ Conditionals on add_to_slide animations - avanwinkle

Bug fixes & code improvements

∙ Fix audio problems - jab (based on 0.50 fix)

∙ Fix name clashes between multiple anonymous slides - jab based on bug report by pinballpeople

∙ Properly support external platforms in MC - jab based on report by TheLegoMoviePinball

∙ Honour -a and -A option when loading config_spec in MPF and MC - jab based on report by
TheLegoMoviePinball

∙ Honour slide parameter in inactive slides - avanwinkle

∙ Fix iMC startup crash - jab based on report by snux

∙ Remove use_sound_setting from default options - avanwinkle

MPF Documentation

∙ How to change the size of switches and light in the MPF monitor - jab based on questions from
Jack Danger and Dan

∙ Document StepStick stepper drivers in MPF - jab based on request from Tom

∙ How to show virtual segment displays in MC - jab based on example from BorgDog

∙ How to use multiple displays - jab based on question in forum by Chris B and Snux

∙ Credits mode tutorial - jab based on old tutorial

∙ Tutorial on debugging memory leaks - jab based on question from Brian Cox

∙ Document RPi DMD platform - jab

∙ How to subscribe variables in config players - jab based on question

∙ Documenting the snux platform - snux

∙ How to use a Stern Spike Trough in other platforms than Stern Spike - jab

∙ How to use Solid State Style Score Queues - jab based on request in forum

MPF Release Notes 2045

https://github.com/missionpinball/mpf-mc/pull/361
https://groups.google.com/forum/#!topic/mpf-users/okl8PjXrlWI
https://github.com/missionpinball/mpf/pull/1280
https://github.com/missionpinball/mpf-mc/pull/362
https://groups.google.com/forum/#!topic/mpf-users/okl8PjXrlWI
https://groups.google.com/forum/#!topic/mpf-users/okl8PjXrlWI
https://github.com/missionpinball/mpf-mc/pull/363
https://github.com/missionpinball/mpf-mc/pull/364
https://groups.google.com/forum/#!topic/mpf-users/YLrh6RKlx0s
https://github.com/missionpinball/mpf-mc/pull/367
https://github.com/missionpinball/mpf-mc/commit/0dadad10eeaf01188e92016c90006ebb8b5b5933
https://groups.google.com/forum/#!topic/mpf-users/1wzjCo5pL0U
https://github.com/missionpinball/mpf-mc/pull/357
https://github.com/missionpinball/mpf-mc/commit/7751cef626cae7fe0eeba2c4138f7ab6bb7d8982
https://github.com/missionpinball/mpf-mc/commit/e9d7f3aac92489ba8f987807aad5584938d77891#diff-b1084838e78cf0dc54bddd5026e1f747
https://github.com/missionpinball/mpf-mc/pull/359
https://github.com/missionpinball/mpf-mc/pull/361
https://groups.google.com/forum/#!topic/mpf-users/okl8PjXrlWI
https://github.com/missionpinball/mpf/pull/1280
https://github.com/missionpinball/mpf-mc/pull/362
https://groups.google.com/forum/#!topic/mpf-users/okl8PjXrlWI
https://groups.google.com/forum/#!topic/mpf-users/okl8PjXrlWI
https://github.com/missionpinball/mpf-mc/pull/363
https://github.com/missionpinball/mpf-mc/pull/364
https://groups.google.com/forum/#!topic/mpf-users/YLrh6RKlx0s
https://github.com/missionpinball/mpf-mc/pull/367
https://github.com/missionpinball/mpf-docs/commit/78bcd64254da3710423d5791ce6a067857c9c348
https://github.com/missionpinball/mpf-docs/commit/5f6b117f9e0cdae26514dc0e4d5846b83277a9e8
https://groups.google.com/forum/#!topic/mpf-users/ZgssCKBzvnA
https://github.com/missionpinball/mpf-docs/commit/bda3bb1c11dbe3ea63c5d151299ab81f6c9ea7be
https://groups.google.com/forum/#!topic/mpf-users/1wzjCo5pL0U
https://github.com/missionpinball/mpf-docs/commit/a608639b21ff9cd62692fc12c7b05b8dc1ff5ee5
https://groups.google.com/forum/#!topic/mpf-users/2kjoLF_q9KA
https://github.com/missionpinball/mpf-docs/commit/2df9021bd09fae9b6023ff9113c344ced45f5a22
https://github.com/missionpinball/mpf-docs/commit/e49caefff47f8b1af3642f946c1cc4d4c43f3a74
https://github.com/missionpinball/mpf-docs/commit/d075be91f5592ead66469227186b0495b32d975d
https://github.com/missionpinball/mpf-docs/commit/b3c95c884cc2e622a6c017421216bb8ab4fa85c5
https://groups.google.com/forum/#!topic/mpf-users/nLnz5rM3Uus
https://github.com/missionpinball/mpf-docs/pull/193
https://github.com/missionpinball/mpf-docs/commit/e285f58d46253262f54d10ab7837a835ad3cd608
https://github.com/missionpinball/mpf-docs/commit/e1bd78aa1e2b4b13de609134f141e1fea44d69a6
https://groups.google.com/forum/#!topic/mpf-users/4Ecj6xtveHo

Mission Pinball Framework Documentation, Version

∙ Document event handler priorities - jab

∙ How to use multiple locks in a multiball - jab

∙ Monitorable properties for shots and shot_groups - jab based on question by snux

∙ Document recycle settings for more platforms - jab based on question by Cole M

∙ Explain logic and modes in MPF - colemanomartin

∙ Notes on case-sensitivity - colemanomartin

∙ Explain A and C side preference in System11/Snux - snux

∙ Fix typos - travisbmartin

∙ Document monitorable properties and event in logic blocks - jab

∙ Example for conditionals in log - jab

∙ Update Smartmatrix documentation for new cookie - aaronmatthies

∙ Document start/launcher/tournament buttons - jab

∙ Document part numbers and voltages for bulbs, flashers, GIs and popbumpers and LEDs - jab

∙ Up-Down ramps - jab

∙ Updated Mac Install Instructions - avanwinkle

∙ Image for WS2812 LEDs - kylenahas

0.51

Released: November 24, 2018

This is a 0.50 maintenance release with cleanups and some refactorings. Breaking changes in
common features are minimal but some minor changes might be required in some cases (e.g. we
removed some defunctional options). It comes with lots of performance improvements and new
settings for production machines.

MPF

New Features

∙ Configurable match number - jab

∙ Support I2C on the RPi via pigpio - jab

∙ Improve event order - jab

∙ Refactor accelerometers - jab (breaking change)

∙ Support burst IRs and local inputs/outputs on the P3-Roc - jab

∙ Validate P-Roc direct input numbers - jab

∙ Rename scriptlets to custom_code - jab

∙ Add json logging - muffler-aus

∙ Improve startup performance - jab

MPF Release Notes 2046

https://github.com/missionpinball/mpf-docs/commit/b2b8e270d0dfb9b862190b60fa8e744e8e524905
https://github.com/missionpinball/mpf-docs/commit/6ddb559e013c5a187dba99d293d2df88a74bf223
https://github.com/missionpinball/mpf/pull/1287
https://github.com/missionpinball/mpf-docs/commit/f2b1833153fb391d6316ed8afb18761eaa580854
https://groups.google.com/forum/#!topic/mpf-users/cVnmhJIN1tM
https://github.com/missionpinball/mpf-docs/commit/cec753171700165814d0853684e6ac9c6357df76
https://groups.google.com/forum/#!topic/mpf-users/qGVVwTbYnrA
https://github.com/missionpinball/mpf-docs/pull/197
https://github.com/missionpinball/mpf-docs/pull/195
https://github.com/missionpinball/mpf-docs/pull/194
https://github.com/missionpinball/mpf-docs/pull/196
https://github.com/missionpinball/mpf-docs/commit/7a03143a5ebf571f6092ebf4b28a7b7282420584
https://github.com/missionpinball/mpf-docs/commit/34e8403e29d3292d82ff768bac95c400f16191c4
https://github.com/missionpinball/mpf-docs/pull/198
https://github.com/missionpinball/mpf-docs/commit/1073eb379d827037f094123d73d4180ab433d8e3
https://github.com/missionpinball/mpf-docs/commit/59c62c471e8c9237b33bfa424f192eb332d8d500
https://github.com/missionpinball/mpf-docs/commit/ddfa77cfbfd6fa37ecf2b36f911d4220f84a9d8f
https://github.com/missionpinball/mpf-docs/commit/24bbc32b25a75580d9407a12676d12cd14af9136
https://github.com/missionpinball/mpf-docs/commit/79166be8691b92e2c8f3a77c0f76ce299ad56759
https://github.com/missionpinball/mpf-docs/pull/200
https://github.com/missionpinball/mpf-docs/pull/199
https://github.com/missionpinball/mpf/pull/1150
https://github.com/missionpinball/mpf/pull/1159
https://github.com/missionpinball/mpf/pull/1160
https://github.com/missionpinball/mpf/issues/1155
https://github.com/missionpinball/mpf/pull/1167
https://github.com/missionpinball/mpf/pull/1172
https://github.com/missionpinball/mpf/pull/1148
https://github.com/missionpinball/mpf/pull/1178
https://github.com/missionpinball/mpf/pull/1179

Mission Pinball Framework Documentation, Version

∙ Allow lists of flashers - avanwinkle

∙ Prevent spaces in event handlers - avanwinkle (breaking change)

∙ Allow float in timers - jab

∙ Major performance improvements for switch handlers - jab

∙ Major performance improvements in lights and shows - jab

∙ Add option to disable sound output - avanwinkle

∙ Support multiple I2C servo controllers - jab (breaking change)

∙ Improve performance without logging - jab

∙ Add support for P3-Roc burst optos - jab

∙ Allow users to disable ball search rounds - jab

∙ Define alignment for segment displays - jab

∙ Add restart_events to shots and shot groups - avanwinkle

∙ Add placeholder support to event_player - avanwinkle

∙ Prevent warnings during init and batch incandescant update for OPP - jab

∙ Improve FAST behaviour during MPF init - jab

∙ Entrance switch ignore window - avanwinkle

∙ Improved README.md for the MPF project - austinbgill

∙ Prevent bad switch config for drop_targets, shots and autofires - jab

∙ Validate that ball_count for multiballs is the right range - jab based on question from Alex

∙ Allow variable_players outside game modes for machine variables - jab

∙ Only reset drop target banks if a target is down - jab based on request from Mark M

∙ Add support for flipper tapping for OPP - jab and Hugh based on forums discussion

∙ Serial LEDs support for PD-LED - jab with help from gstellenberg

∙ Only send lamp updates when lamps change in LISY - jab

∙ mpf test can now parse example/tests from rst files - jab

∙ sw_flip_events and sw_release_events for flipper to flip from software - jab based on request from
Philip D

∙ Add event handlers to start game and add players - jab based on request from Cole M

∙ Add new mode_will_start hook for custom code - Lamoraldus based on discussion in forum

∙ Support external platforms via entry_points - jab

∙ Refresh Smartmatrix DMDs periodically - jab

∙ Support Servos on PD-LED - jab with help from gstellenberg (announcement)

∙ Support Steppers on PD-LED/New stepper device interface - jab with help from gstellenberg

∙ Support config specs for external platforms via entry_points - jab

MPF Release Notes 2047

https://github.com/missionpinball/mpf/pull/1183
https://github.com/missionpinball/mpf/pull/1191
https://github.com/missionpinball/mpf/issues/1187
https://github.com/missionpinball/mpf/pull/1196
https://github.com/missionpinball/mpf/commit/9148c8ebc568706d1c30ef2a64710993c05d2aec
https://github.com/missionpinball/mpf/pull/1199
https://github.com/missionpinball/mpf/pull/1206
https://github.com/missionpinball/mpf/commit/b870147b3031f4ab5cea90911269013b8d86f3ac
https://github.com/missionpinball/mpf/commit/c98832f4e175a4cc2d1de0c546a3b9d65432aedb
https://github.com/missionpinball/mpf/commit/2ded24ac3076c877a53ed575205fe124378888e0
https://github.com/missionpinball/mpf/issues/1201
https://github.com/missionpinball/mpf/pull/1213
https://github.com/missionpinball/mpf/pull/1212
https://github.com/missionpinball/mpf/pull/1220
https://github.com/missionpinball/mpf/pull/1221
https://github.com/missionpinball/mpf/pull/1216
https://github.com/missionpinball/mpf/pull/1219
https://github.com/missionpinball/mpf/pull/1227
https://github.com/missionpinball/mpf/pull/1229
https://groups.google.com/forum/#!topic/mpf-users/jQTwpofBysA
https://github.com/missionpinball/mpf/pull/1231
https://github.com/missionpinball/mpf/pull/1236
https://groups.google.com/forum/#!topic/mpf-users/kHq3dM1PMyo
https://github.com/missionpinball/mpf/pull/1238
https://groups.google.com/forum/#!topic/mpf-users/pKfmv_lmuDc
https://github.com/missionpinball/mpf/pull/1239
https://github.com/missionpinball/mpf/commit/a4cd700c488f9290bd4a62cb198d188d75c30da2
https://github.com/missionpinball/mpf/commit/89f05214e22bce03b7bcb2047600a11f338053ab
https://github.com/missionpinball/mpf/commit/9a1e6c0f41ccf53645d02804dd0f66eb387a1ee8
https://groups.google.com/forum/#!topic/mpf-users/76BQAtIfsZc
https://groups.google.com/forum/#!topic/mpf-users/76BQAtIfsZc
https://github.com/missionpinball/mpf/pull/1244
https://groups.google.com/forum/#!topic/mpf-users/vuUJMdSI2_A
https://github.com/missionpinball/mpf/pull/1247
https://groups.google.com/forum/#!topic/mpf-users/D0W3pacTGUg
https://github.com/missionpinball/mpf/pull/1248
https://github.com/missionpinball/mpf/pull/1250
https://github.com/missionpinball/mpf/pull/1253
https://www.multimorphic.com/news/servo-and-stepper-motor-control-in-pd-led-v3/
https://github.com/missionpinball/mpf/pull/1255
https://github.com/missionpinball/mpf/pull/1252

Mission Pinball Framework Documentation, Version

Bug fixes & code improvements

∙ Prevent crash on empty machine vars in MC - jab

∙ Sync shows with sync_ms on stop - jab

∙ Fix pulse on drop target reset - jab

∙ Prevent flicker on show replace - jab

∙ Fix logging verbosity - avanwinkle

∙ Fix placeholder crash - jab

∙ Restore diverter state after ball search - jab

∙ Fix debug flag in P-Roc and P3-Roc - jab

∙ Prevent achivements from enabling after restoring state - avanwinkle

∙ Fix ms vs sec in timer pause - avanwinkle

∙ Fix mode events when starting/stopping mode from BCP - jab based on report by Travis Martin

∙ Fix display_light_player crash when used in mode - jab

∙ Fix crash in BCP with MPF Monitor - jab based on report from alex

∙ Fix pulse calculation error in Stern Spike - jab

∙ Actually use poll_hz in lisy section - jab

∙ Prevent broken flipper rules when using multiple flipper devices in FAST/OPP - jab

∙ Prevent lags in LISY - jab

MPF-MC

New Features

∙ Disable multi touch - qcapen

∙ Add json logging to MC - mfulleratlassian

∙ Improve startup performance - jab

∙ Add animations based on event parameters - jab

∙ Add option to disable sound output - avanwinkle

∙ Rename mc_scriptlets to mc_custom_code - jab

∙ Support other channel orders than RGB for all RGB DMDs - jab based on request from Cadrion

∙ Update kivy to version 1.10.1 - jab

∙ Support multiple (stacked) style values for widgets - avanwinkle

∙ Better error when showing images too early - jab based on question from Brian C

∙ Allow widget styles to set z values - avanwinkle

∙ Update kivy dependencies - jab

∙ Reusing named widgets - avanwinkle

MPF Release Notes 2048

https://github.com/missionpinball/mpf/pull/1151
https://github.com/missionpinball/mpf/pull/1169
https://github.com/missionpinball/mpf/issues/1176
https://github.com/missionpinball/mpf/pull/1175
https://github.com/missionpinball/mpf/pull/1197
https://github.com/missionpinball/mpf/issues/1202
https://github.com/missionpinball/mpf/pull/1209
https://github.com/missionpinball/mpf/commit/015fc4d8508ffadf9324100a5d9280dd4e781b49
https://github.com/missionpinball/mpf/pull/1211
https://github.com/missionpinball/mpf/pull/1214
https://github.com/missionpinball/mpf/issues/1215
https://groups.google.com/forum/#!topic/mpf-users/u48fOP3TIx0
https://github.com/missionpinball/mpf/pull/1224
https://github.com/missionpinball/mpf/pull/1226
https://groups.google.com/forum/#!topic/mpf-users/4anGZjhW7i4
https://github.com/missionpinball/mpf/commit/09f236a40b462cc7e3ea5b7043831b0b8ff1badf
https://github.com/missionpinball/mpf/pull/1240
https://github.com/missionpinball/mpf/commit/16b1a5dc5fd4d3f25764f27e9a0043e1c99f4144
https://github.com/missionpinball/mpf/pull/1249
https://github.com/missionpinball/mpf-mc/commit/f4c19ea3ddb8a3d76351f4c7555abb35f5dae722
https://github.com/missionpinball/mpf-mc/pull/335
https://github.com/missionpinball/mpf-mc/pull/337
https://github.com/missionpinball/mpf-mc/commit/fc60d636409ed50ba2e8f9c03695b7b01c45d09d
https://github.com/missionpinball/mpf-mc/pull/340
https://github.com/missionpinball/mpf-mc/pull/347
https://github.com/missionpinball/mpf-mc/issues/345
https://groups.google.com/forum/#!topic/mpf-users/1EtJxmAZiow
https://github.com/missionpinball/mpf-mc/pull/346
https://github.com/missionpinball/mpf-mc/pull/349
https://github.com/missionpinball/mpf-mc/pull/350
https://groups.google.com/forum/#!topic/mpf-users/iMivocg70BQ
https://github.com/missionpinball/mpf-mc/pull/351
https://github.com/missionpinball/mpf-mc/pull/354
https://github.com/missionpinball/mpf-mc/pull/353

Mission Pinball Framework Documentation, Version

Bug fixes & code improvements

∙ Properly update text widgets on text change - MarkInc666

∙ Fix crash on empty machine var - jab

∙ Reset animation on remove of image - jab

∙ Fix iMC crash - jab

∙ Fix widget leaks - jab

∙ Fix playlist crash - qcapen

∙ Fix that you cannot edit the last highscore character - jab

∙ Prevent multiple text handlers/Improve performance - avanwinkle

∙ Fix depreation warnings in kivy scale - avanwinkle

∙ Fix iMC initialisation - avanwinkle

MPF-Monitor

New Features

∙ Add config option for device size in monitor - jab

∙ Improve monitor performance - jab

Bug fixes & code improvements

∙ Fix bcp crashes - jab

∙ Obey machine path - John

MPF Documentation

∙ Document state_machines - jab

∙ Document hardware_sound_player for older machines - jab

∙ Document bitmap_fonts - qcapen

∙ Document motors and digital_outputs - jab

∙ Document SPIKE DMDs - jab

∙ Example for logic blocks - jab

∙ Add documentation on game design - jab

∙ Update I2C accelerometer documentation - jab

∙ Add mode examples - jab

∙ Improved windows install instructions for the monitor - sliderpoint

∙ Document burst IR and direct inputs/ouputs on the P3-Roc - jab

∙ Fix smartmatrix documentation - driskel

MPF Release Notes 2049

https://github.com/missionpinball/mpf-mc/pull/326
https://github.com/missionpinball/mpf-mc/pull/328
https://github.com/missionpinball/mpf-mc/pull/332
https://github.com/missionpinball/mpf-mc/commit/947ba86af2a9ea148a33674a60ee5f2184527948
https://github.com/missionpinball/mpf-mc/commit/5ce7e23579718892b09405bcca3ebb41be31ca8d
https://github.com/missionpinball/mpf-mc/commit/a3dadfc1bf0e7cce7ef80c86561e86ba0492aee9
https://github.com/missionpinball/mpf-mc/issues/338
https://github.com/missionpinball/mpf-mc/pull/342
https://github.com/missionpinball/mpf-mc/pull/343
https://github.com/missionpinball/mpf-mc/pull/352
https://github.com/missionpinball/mpf-monitor/commit/a348117131ae93904ef8c265eb4253b225876a8e
https://github.com/missionpinball/mpf-monitor/commit/6e70bf76462a0bb21a4d272a5a4057aa3b67d3c9
https://github.com/missionpinball/mpf-monitor/commit/436133dfbef1f8d67d4845f101bab2bc536bc6b6
https://github.com/missionpinball/mpf-monitor/pull/18
https://github.com/missionpinball/mpf-docs/commit/d42223c9d1c1c1c96dd6b2770ec6b9515e88db26
https://github.com/missionpinball/mpf-docs/commit/6c7a3773b820162211bae1e9f84cf7ddb70c07fe
https://github.com/missionpinball/mpf-docs/commit/32266404b229aa6079d265a37b08880ae0147bc1
https://github.com/missionpinball/mpf-docs/commit/12fb5c757881b7e90c4a59721023f56e9a96cfb6
https://github.com/missionpinball/mpf-docs/commit/59222b3524cefab73ae5283edaef9295e2ff41ef
https://github.com/missionpinball/mpf-docs/commit/7770a5b66e5c5a0dff88c546f26133fa3a7a8f58
https://github.com/missionpinball/mpf-docs/commit/3c755828ac89c2e658255fe6676b29491bee51b0
https://github.com/missionpinball/mpf-docs/commit/aeb6cc6d8946fb1b2e665594571405e05bae9426
https://github.com/missionpinball/mpf-docs/commit/bdbe69e10327358b0699721bf809c2d16a547445
https://github.com/missionpinball/mpf-docs/commit/cb5ec4c2b8f4970706e871cb66471397799d5592
https://github.com/missionpinball/mpf-docs/commit/1089bda9177ff54526c0888caaceb16d3b1439ad
https://github.com/missionpinball/mpf-docs/pull/154

Mission Pinball Framework Documentation, Version

∙ Document tilt mode - jab

∙ Document conditionals and placeholders - jab

∙ Document multipliers in scoring - jab

∙ Document color correction - jab

∙ Document spinners - jab

∙ Document shows on ball start/end - jab

∙ Document bonus mode - jab

∙ Howto on ball save on ball start - jab

∙ Document high score mode - jab

∙ Document MPF service cli - jab

∙ Document credits mode - jab

∙ Document common machine types - jab

∙ Document LISY - jab

∙ Document common modes in MPF - jab

∙ Add RPi debug notes on sound/video - matirwin

∙ Document match mode - jab

∙ How to use udev to ensure persistent devices on linux - jab

∙ Document text placeholders - jab

∙ Add examples for animations based on player vars - jab

∙ Add light examples - jab

∙ Clarify monitorable properties - avanwinkle

∙ Added a guide on mode layering - avanwinkle

∙ Document how to run MPF in production - jab

∙ Improve light_strips, ball_holds, image_widgets, widget_styles, switch_player,
drop_target_banks, drop_targets, logic_blocks, coil_player, counters, switches, ball_devices,
PSUs, coils, smart_virtual_platforms, multi_balls, light_rings and more - jab

∙ Document volatages in pinball machines - jab

∙ Documentation about EMC/EMI and common ground - jab

∙ Document FAST power filter board - jab

∙ Document Multimorphic power entry board - jab

∙ Document servo sequences - jab

∙ Images for targets and FAST and Multimorphic, drop_targets and optos, switches, spinners and
magnets, vari-targets - with help from the fast slack

∙ Add part numbers for optos and switches - jab

∙ Add common PSU part numbers - jab

∙ Document uninstall - colemanomartin

MPF Release Notes 2050

https://github.com/missionpinball/mpf-docs/commit/05401391f8c33a22366f7b3a18b506c5bf65c08e
https://github.com/missionpinball/mpf-docs/commit/273322ef0f8e08b1f52d73bba15a2a2c384ebecf
https://github.com/missionpinball/mpf-docs/commit/4b57f15a11c77a941490ef3e56cf8f1b4c27a991
https://github.com/missionpinball/mpf-docs/commit/d0c5c3408f1d26e86185e73dc1360ad1be1e9cfa
https://github.com/missionpinball/mpf-docs/commit/889fb39e75e8ff69d541169a2bd29bf9b22b3763
https://github.com/missionpinball/mpf-docs/commit/6525fd67f43d7f73c21193905dba3155d553498c
https://github.com/missionpinball/mpf-docs/commit/6a431f184e7104550790edcc7cfde7a68f9deb8a
https://github.com/missionpinball/mpf-docs/commit/4100fb8f2a46c68bae6ca75f2100fd04c17c326d
https://github.com/missionpinball/mpf-docs/commit/c4b7fa497f35857eaf638532e26411ab38096d7c
https://github.com/missionpinball/mpf-docs/commit/98572da7c502302248042cb34178cc9537e5beb0
https://github.com/missionpinball/mpf-docs/commit/3a3c06f3f8e9331ce147f351575817058db5a2fa
https://github.com/missionpinball/mpf-docs/commit/98deb6d540a92ff793a9ab7632b30ed1b02ba82e
https://github.com/missionpinball/mpf-docs/commit/9176ba41c3ff9bc881e1297cc050de6cb889dd0b
https://github.com/missionpinball/mpf-docs/commit/94cacad09ed830c22122538549543671fd5cd217
https://github.com/missionpinball/mpf-docs/commit/7e63be2b75572e453096f89ea182e907f0091bba
https://github.com/missionpinball/mpf-docs/pull/155
https://github.com/missionpinball/mpf-docs/commit/bee6d74ab69827eda548ad3a881fc06b2c0d1603
https://github.com/missionpinball/mpf-docs/commit/f5e15e224786fd7cfdc95c40b69ade0f97893ec8
https://github.com/missionpinball/mpf-docs/commit/0bca0610df3f8b6ae17d7a52fc1ef1a3c015baf3
https://github.com/missionpinball/mpf-docs/commit/357ac2fbb8f581c4cdbb9076637067efdc9618d0
https://github.com/missionpinball/mpf-docs/commit/6585b62fdcf4032a7e6b19ec59992ce71e4dc5eb
https://github.com/missionpinball/mpf-docs/pull/159
https://github.com/missionpinball/mpf-docs/pull/161
https://github.com/missionpinball/mpf-docs/commit/d44450ed89509f4cf6e92e86f5efe0e6350a9cbf
https://github.com/missionpinball/mpf-docs/commit/2a8028faca8a9a8193b5ff7adf5e8619b9cb5355
https://github.com/missionpinball/mpf-docs/commit/edb91230b88616c3380f29dab31bbff2e9996eb4
https://github.com/missionpinball/mpf-docs/commit/892051e8a7a10fe5a334be49b2319a4729ee262d
https://github.com/missionpinball/mpf-docs/commit/539c2bdeb947fabf2c6bea3574925f9d5d9e573c
https://github.com/missionpinball/mpf-docs/commit/9b35a8849e1dc2a5f8b613eb57ca7bbd2984b1e9
https://github.com/missionpinball/mpf-docs/commit/10901bfbeb3e8b982aa4c3b406f783c8fbf08d10
https://github.com/missionpinball/mpf-docs/commit/1a2f2b83daafa402d1efe99e7eb920c591f524f4
https://github.com/missionpinball/mpf-docs/commit/1522debd55ccab6492670d5943dc6e4b4aa3bc97
https://github.com/missionpinball/mpf-docs/commit/fe54283f9b651934e54071d846d1a08014772757
https://github.com/missionpinball/mpf-docs/commit/d292c016bc0b9205815b5898245c0aca1a35583a
https://github.com/missionpinball/mpf-docs/commit/c6234540fddaf0cfe36ac10a7f0b701a0e6f9a76
https://github.com/missionpinball/mpf-docs/commit/2099814c58b1b3d0f5f8a3d401a3d67e71bd2da2
https://github.com/missionpinball/mpf-docs/commit/e928ea5803faf6300b675e16ad1d60b05f0b27f9
https://github.com/missionpinball/mpf-docs/commit/fadd5fbec22d372b32488b00389cabebc229af75
https://github.com/missionpinball/mpf-docs/commit/065235cb3b45164d29c74e6db25567232c546fc2
https://github.com/missionpinball/mpf-docs/commit/7586913dea15b574c4d8536f13073a53d623e407
https://github.com/missionpinball/mpf-docs/commit/36b9df88ec31ec7f510bd21d3bde67e17df34e94
https://github.com/missionpinball/mpf-docs/commit/44a6b57b4a372408eedbf6636d57a5f34366ecee
https://github.com/missionpinball/mpf-docs/commit/970f51c50496d6870836cb3a06c89e381fd4ef5b
https://github.com/missionpinball/mpf-docs/commit/531977dc4254e24916025bfc6cd17c82a8526510
https://github.com/missionpinball/mpf-docs/commit/e794a3a31bd69c91a9c56231de60ef3e84d7db49
https://github.com/missionpinball/mpf-docs/commit/9e40e42b6763a9188a880a308bed2446c934d60f
https://github.com/missionpinball/mpf-docs/commit/08c4d51beb16ddc2efcc7e0b2b72bf6e51b57c93
https://github.com/missionpinball/mpf-docs/commit/3b4cb68e5959270026008244caa52387fd27d2ab
https://github.com/missionpinball/mpf-docs/commit/54bb1ec5c56349d3bed89d7ce3017fa019460d76
https://github.com/missionpinball/mpf-docs/commit/6385cc1f6c81e8728d0ddc084b8a5629e5b357a8
https://github.com/missionpinball/mpf-docs/commit/6192c7e9aecefa6adad948d7d13e39c6946fe63b
https://github.com/missionpinball/mpf-docs/commit/6192c7e9aecefa6adad948d7d13e39c6946fe63b
https://github.com/missionpinball/mpf-docs/commit/5b4eee25b464ac71ce9527b6553b28504700b3bb
https://github.com/missionpinball/mpf-docs/commit/73dd80bd24a4f1b15a2b7b53df87e5dd8e41711e
https://github.com/missionpinball/mpf-docs/commit/d759882df0a083382bc8d77a5c78dff1702359bf
https://github.com/missionpinball/mpf-docs/pull/168

Mission Pinball Framework Documentation, Version

∙ Document how to cancel a show using flipper_cancel events - mwiz

∙ Document wiring and voltages - jab

∙ Mode corrections - mwseiden

∙ Document electrical details of optos - jab

∙ Update shot group profiles documentation - avanwinkle

∙ Document how to use player variables with counters - mwseiden

∙ Document appliance classes and common ground - jab

∙ Added examples for PD-LED - jab

∙ Document appliance classes and common ground - jab

∙ Added examples for PD-LED - jab

∙ Improved bonus mode documentation - avanwinkle

∙ Document ball and game end mode blocking - jab inspired by Lynn

∙ Extra ball based on score example - jab based on example from Lynn

∙ How to use high score mode in EMs - jab based on example from Lynn

∙ Document RGB DMD channel_order parameter - jab

∙ Added example of game mode which increases multiplier when lanes are complete -
travisbmartin

∙ No longer claim Python 3.4 support - it is EOL - jab

∙ Document PC power on/off - jab

∙ Typos, Typos - travisbmartin

∙ Improve skill shot example to prevent race condition and add timeout - jab based on question
from mike wiz

∙ Document scoring based on logic blocks - jab based on question from alex

∙ Describe how to debug crashes with GDB - jab

∙ How to tune eject_timeouts in ball devices - jab

∙ Understanding tags in MPF - cfbenn

∙ Example for using MC with multiple screens - jab based on example from Brian
Cox/cfbenn/qcapen

∙ Document how to use machine and player variables from code - jab

∙ Document multiple styles for widgets - avanwinkle

∙ Document how to use start button for mode selection without added new players - jab based on
example provided by alex

∙ Document which hardware rules are used in MPF - jab based on discussion in the forum

∙ Document Molex KK part numbers for connectors - jab

∙ Document how to maintain a stable high voltage rail - jab based on suggestion by Hugh in
discussion

∙ Common events and example for shots - jab based on question from Alex

MPF Release Notes 2051

https://github.com/missionpinball/mpf-docs/commit/acb6c6ba2efaaba8b5a93e71f229772f8b6c96a9
https://github.com/missionpinball/mpf-docs/commit/a7a70a8b3c454f725edb5773fceadf77659f2584
https://github.com/missionpinball/mpf-docs/pull/169
https://github.com/missionpinball/mpf-docs/commit/7c06de742a730449b9d82e32a864b9fcfa3684d2
https://github.com/missionpinball/mpf-docs/pull/171
https://github.com/missionpinball/mpf-docs/pull/172
https://github.com/missionpinball/mpf-docs/commit/44c15465db97108d93fad1637c43a3778afdd4aa
https://github.com/missionpinball/mpf-docs/commit/a57ddb305abf8b4738e355143be1222d6c763b6b
https://github.com/missionpinball/mpf-docs/commit/44c15465db97108d93fad1637c43a3778afdd4aa
https://github.com/missionpinball/mpf-docs/commit/a57ddb305abf8b4738e355143be1222d6c763b6b
https://github.com/missionpinball/mpf-docs/pull/173
https://github.com/missionpinball/mpf-docs/commit/fd7112356a26413abe27a0e0cb3980f586f3a6c9
https://github.com/missionpinball/mpf-docs/commit/2d8e6b7d073f6904564896ca485b3f3c69951027
https://groups.google.com/forum/#!topic/mpf-users/cOQKDQIIu-g
https://github.com/missionpinball/mpf-docs/commit/318541ee4349776e5fb4660fcd44b29104f1a842
https://groups.google.com/forum/#!topic/mpf-users/cOQKDQIIu-g
https://github.com/missionpinball/mpf-docs/commit/a21bcae7b7be032c918a987fdb32cda8ee2a567e
https://github.com/missionpinball/mpf-docs/pull/176
https://github.com/missionpinball/mpf-docs/commit/1639e5b62f221b6a525b3ca39da6b68dd2d88752
https://github.com/missionpinball/mpf-docs/commit/8bb7de3ce54153c8e7afbc3fdb992b13bb000409
https://github.com/missionpinball/mpf-docs/pull/177
https://github.com/missionpinball/mpf-docs/pull/178
https://github.com/missionpinball/mpf-docs/commit/063dd00c2b9f0db50b099528e3f2d948c7e40f28
https://groups.google.com/forum/#!topic/mpf-users/Fxuh95wxmjY
https://groups.google.com/forum/#!topic/mpf-users/Fxuh95wxmjY
https://github.com/missionpinball/mpf-docs/commit/a843d366bed107544aebf2198f80f07a501adb5b
https://groups.google.com/forum/#!topic/mpf-users/3mShvjtjfPU
https://github.com/missionpinball/mpf-docs/commit/27a7c31b524f2a1890c97e6dbc86e08811e31e38
https://github.com/missionpinball/mpf-docs/commit/ec7477e5a9c3e03adf24473599c2c2909db0a75a
https://github.com/missionpinball/mpf-docs/pull/179
https://github.com/missionpinball/mpf-docs/commit/2d62878bc2a04d699e81fd12fad77d1ad4b13a52
https://github.com/missionpinball/mpf/pull/1232
https://github.com/missionpinball/mpf-docs/pull/180
https://github.com/missionpinball/mpf-docs/commit/946426c043a34af7cccd48027fa06fa658799019
https://groups.google.com/forum/#!topic/mpf-users/e3emzNIxZp0
https://github.com/missionpinball/mpf-docs/commit/d9d95dd66795e2301731eacbc7e1bb7932374f99
https://groups.google.com/forum/#!topic/mpf-users/pKfmv_lmuDc
https://github.com/missionpinball/mpf-docs/commit/4214b32a82f9b4115a6ce831c57ce315fc536578
https://github.com/missionpinball/mpf-docs/commit/c1eada55c0c52b009a18b2d5d14431d4d6fce6d6
https://groups.google.com/forum/#!topic/mpf-users/7-E62qVTkGA
https://groups.google.com/forum/#!topic/mpf-users/7-E62qVTkGA
https://github.com/missionpinball/mpf-docs/commit/2a9a918f6469f9b7b34d08348184fc4925ede93b
https://groups.google.com/forum/#!topic/mpf-users/-BUnwqkcIBE

Mission Pinball Framework Documentation, Version

∙ Autogenerated event lists for events - jab

∙ Initial documentation for sequence_shots - jab

∙ Fixed typos - travisbmartin

∙ Weak flippers mode - jab based question by Brian C and Philip D

∙ Document how to use widgets from code - cloudjor

∙ Extend event documentation for game_start - colemanomartin

∙ Doctor Who carousel example - travisbmartin

∙ Document sw_flip_events and sw_release_events - jab

∙ Example game mode with multiple shots which need to be active a the same time - jab and
improvements by coleman based on question by Cole M

∙ Cookbook/tutorial for a super jets mode - travisbmartin

∙ Document how to send data from MPF to MPF-MC in custom code - cloudjor

∙ Added a minimal OSC plugin - jab

∙ Fix typos and links - zach27

∙ Notes on using multiple playfields - jab based on discussion in forum

∙ Animating a progress bar - based on discussion in forum

∙ Adding a picture of a drop target bank - coleman

∙ Fix typos - travisbmartin

∙ Update stepper documentation - jab

∙ Document PD-LED steppers, servos and serial LEDs - jab

Others

New Features

∙ Experimental external Philips Hue platform - jab based on code from Philip D

0.50

Released: April 23, 2018

MPF

New Features

∙ Consolidated LEDs, matrix lights, GI, and flashers into a single “light” device. Much cleaner, less
code, and unified features across all light types.

∙ Added RGBA color support (RGB colors plus an alpha channel)

∙ Hardware fade support for all light (fade-in and fade-out).

∙ Added segmented displays support

MPF Release Notes 2052

https://github.com/missionpinball/mpf-docs/commit/08bcd6ae2f11ef4f762976d041338f654c2fe33c
https://github.com/missionpinball/mpf-docs/commit/c5fe46c93b3f27bd588d305cf194ddbe201d808c
https://github.com/missionpinball/mpf-docs/pull/181
https://github.com/missionpinball/mpf-docs/commit/e13d593671e9e523f78e964ee655a00cae9dad34
https://groups.google.com/forum/#!topic/mpf-users/51HrIM0IQrI
https://github.com/missionpinball/mpf/pull/1243
https://github.com/missionpinball/mpf/pull/1242
https://github.com/missionpinball/mpf-docs/pull/183
https://github.com/missionpinball/mpf-docs/commit/96f0fc5158a5e12d21dffdb12760d64ed3f2b069
https://github.com/missionpinball/mpf-docs/commit/d6cf7fb5b43844a0425837bb677f473055f213b2
https://github.com/missionpinball/mpf-docs/pull/184
https://groups.google.com/forum/#!topic/mpf-users/QnJ_1Hkd-Mk
https://github.com/missionpinball/mpf-docs/pull/185
https://github.com/missionpinball/mpf/pull/1245
https://github.com/missionpinball/mpf/pull/1200
https://github.com/missionpinball/mpf-docs/pull/187
https://github.com/missionpinball/mpf-docs/commit/ddcc16252cc783a4aab42c5f372085349914e10f
https://groups.google.com/forum/#!topic/mpf-users/tnmvTI9J_O8
https://github.com/missionpinball/mpf-docs/commit/b272f836598d13562f41f99007f27f13278a0f9d
https://groups.google.com/forum/#!topic/mpf-users/n2Shn9wDfUc
https://github.com/missionpinball/mpf-docs/commit/38e8e8bba4ffaead3c6c0e5a1f88300c570aa312
https://github.com/missionpinball/mpf-docs/pull/188
https://github.com/missionpinball/mpf-docs/commit/6f588482e0fe51a112052a16c1cd2a587d35e7c5
https://github.com/missionpinball/mpf-docs/commit/324a5cfc77061a6756f99d8a62b0ad1148aa843c
https://github.com/missionpinball/mpf-hue-platform
https://groups.google.com/forum/#!topic/mpf-users/e5dv9j71BUE

Mission Pinball Framework Documentation, Version

∙ Added LISY hardware platform support (for Gottlieb System 1 and System 80 machines)

∙ Added MyPinballs 7 segment display support

∙ Added P-Roc alphanumeric displays support

∙ Added Raspberry Pi as a platform (remote via ethernet or local using pigpio)

∙ Added stepper motor device

∙ Added motor device (with position and/or end switches)

∙ Added Trinamics Steprocker platform

∙ Added SPIKE DMD support

∙ Support for FAST RGB DMD support

∙ Added digital output support (either mapped as drivers or lights)

∙ Added native I2C support on linux (via SMBus)

∙ Added NXP MMA8451 accelerometer support (via I2C)

∙ Support fuzz testing (to find crashes in a machine without playing it)

∙ Added PSU support to manage maximum power usage. Coil pulses can specify a maximum delay
which is used to reorder pulses (used by ball devices, score reels and drop targets).

∙ Improved and broke out game lifecycle events (will start, starting, started, etc.) for game, ball,
and turn starts and stops.

∙ Made many more settings “templatable”

∙ Logging to syslog

∙ Cleaned up and simplified shots

∙ Added Text UI

∙ Added replay credits

∙ Added developer documentation website (developer.missionpinball.org)

∙ Added support for custom named colors

∙ Added pluggable ejectors and ball counters in ball devices

∙ Added “mpf service” command to spawn a service cli (similar to service mode or SPIKE game cli)

∙ Added “mpf hardware scan” to enumerate all hardware platforms

∙ Added “mpf hardware update_firmware” to send firmware updates to all hardware platforms

Bug fixes & code improvements

∙ Support for Python 3.5 and 3.6 on Windows (including P-ROC libraries)

∙ Much more type checking

∙ Improved logic around how playfields are marked active

∙ Improved how device monitors work

∙ Improved and added config template values

MPF Release Notes 2053

Mission Pinball Framework Documentation, Version

∙ Improved multiball locks

∙ Improved machine variable internals

∙ Improved ball tracking

∙ Improved ball handling in ball devices

∙ Improved Stern SPIKE platform

∙ Refactored mode device loading, config validation, and config player loading

∙ Renamed “scoring” to “variable_player”

∙ Improved high score mode

∙ More robust score reels

∙ Performance improvements for fadecandy LED updates

∙ Performance improvements for smartmatrix devices (separate sender thread)

MPF-MC

New Features

∙ Major display refactoring

∙ Bitmap fonts

∙ Relative animation values

∙ Added widget rotation & scale animations

∙ Animation values respect initial anchor points

∙ Simplified, consolidated, & unified DMD, color DMD, and slide frame widgets into displays and
display widgets

∙ New ‘sound_loop’ audio track type optimized for live looping music control driven by events.
This specialized audio track type can synchronize playback of multiple looping sounds
simultaneously in layers and provides gapless switching to a new set of loops. It is designed to
build music that dynamically changes based on events in your game. Only supports in-memory
sounds (no streaming).

∙ New ‘sound_loop_set’ asset type. A sound_loop_set is an asset used to play sounds in a
sound_loop track that is basically a grouping of one or more sound assets. The sounds in a loop
set are arranged in layers. The master layer contains the sound that establishes the length of the
entire loop set. Whenever the sound in the master layer loops, all other sounds in the
sound_loop_set will also loop back to the beginning.

∙ New ‘sound_loop_player’ config_player. The sound_loop_player is a config player that is used to
control the playback of sound_loop_sets in a sound_loop audio track. The track_player can also
be used with a sound_loop track to control volume and playback state.

∙ New ‘playlist’ audio track type is designed to provide a comprehensive set of music playing
capabilities that include named playlists, playback mode (sequence, random, etc.), cross-fades
between sounds/songs/playlists, and more.

∙ New ‘playlist’ asset type. A playlist is an asset used to group and play sound assets on a playlist
track. A playlist is basically an ordered group of sounds/songs typically used to playback music.

MPF Release Notes 2054

Mission Pinball Framework Documentation, Version

∙ New ‘playlist_player’ config player. The playlist_player is a config player that is used to control
the playback of playlists (and their component sounds) in a playlist track. The track_player can
also be used with a playlist track to control volume and playback state.

∙ New sound ‘about_to_finish’ events (configurable for each sound). These post events at a
specified time before the sound ends.

∙ New display_light_player to use your playfield lights as display in MC. Also supports
transparency to overlay a graphic/animation above your light shows.

Bug fixes & code improvements

∙ Support for Python 3.5 and 3.6 on Windows

∙ Significant performance improvements

∙ Fixed many leaks (especially widgets)

∙ Animation steps can be run simultaneously

∙ Bail out when a video codec is missing

∙ Refactored the entire audio engine code (broke audio_interface.pyx into many different files,
individual source files for each track type and base class, eliminated .pxi files and established
use of .pxd files)

∙ Switched back to SDL_Mixer for main audio playback, mixing, and in-memory sound asset
loading functions (provide more reliable and faster loading of .ogg and .flac files)

∙ Allow unlimited sound asset event markers (previously only allowed a fixed number)

MPF-Monitor

New Features

∙ Device list shows all monitorable attributes

Bug fixes & code improvements

∙ Improved performance of light updates/Smooth light shows

0.33

Released: April 10, 2017

MPF

New Features

∙ “Ball hold” device (Temporarily hold a ball while something else is happening)

∙ “Multiball lock” device (Track ball locks towards multiball, including virtual locks, across balls
and players)

MPF Release Notes 2055

Mission Pinball Framework Documentation, Version

∙ Multiball “add a ball” feature

∙ Added support for Stern SPIKE platform

∙ Revamped logging

∙ Additional achievements control events

∙ BCP ports & interfaces are now configurable

∙ Drop target “keep up” feature (PWMs reset coil to “lock” target up)

∙ “Async” events (Events that wait for all handlers to finish before continuing)

∙ Additional multiball events

∙ More functions for people building games to use to write tests

∙ Built-in modes with code can have their code overloaded

∙ Added score reels to the smart virtual platform

∙ Allow machine variables to be set via BCP

∙ Allow setting default high scores

∙ Add “early save” events to ball saves

∙ Add all monitorable device properties to conditional events

∙ Use placeholders in mode timer start & end values

∙ More options for bonus (hurry ups, skip slides with 0 value, placeholders for score calculations,
etc.)

∙ Improved ball search

∙ OPP - support for firmware 2.0 and dual wound coils

∙ MC scriptlets for video modes and code on the MC side

∙ Support for conditional events

∙ Template variables which are evaluated during runtime and can use placeholders (timers,
logic_blocks, tilt, scoring, bonus_mode, and more)

∙ Early ball save

∙ Advanced bonus_mode

∙ TimedSwitch device - built-in event for flipper cradling and releasing

∙ Asynchronous logging - This is especially important on windows because logging previously
slowed down the game. However, also important in production when under high I/O load or with
slow discs.

∙ Timers work outside of the game now

∙ New “mpf diagnosis” command

∙ Scoring to machine variables

∙ Scoring for other players

∙ Weights in random_event_player

∙ Unlimited delay in ball_save to allow video modes or mode selection

MPF Release Notes 2056

Mission Pinball Framework Documentation, Version

∙ Added Machine vars for all kinds of versions

∙ Drop Target keep up support

∙ Multiball add a ball support

∙ New multiball_lock device which handles virtual saves for multiplayer game

∙ Allow BCP to bind on all IPs

Bug fixes & code improvements

∙ A lot of miscellaneous bug fixes

∙ Exiting service mode always put the machine back on free play

∙ Fixed a ball lock crash

∙ File loader will not try to load temp files

∙ Manual plunger in smart virtual platform now works properly

∙ Refactored ball devices to allow for different types of ball counters & be more robust for
unexpected ball situations and different types of eject failures

∙ Made achievements and achievement groups smarter and more robust (also backported to 0.32)

∙ Improved log messages for BCP encoding errors

∙ “Hz” setting is gone (since MPF is now tickless)

∙ Active eject process trackers are canceled on shutdown

∙ Randomizer now works with a single element

∙ Fixed a bunch of small things that caused crashes

∙ Changed default on-screen DMD pixel settings

∙ Removed OSC plug-in since it hasn’t worked in over a year and no one uses it

∙ Better errors on invalid configs

∙ Catching a lot more config problems

∙ Improved ball search. Drop Target reset no longer resets ball search

∙ Better start/stop procedures for modes. no more event races

∙ Improved extra ball

∙ Better yaml parsing for unescaped strings

∙ Performance improvements through better fast paths and offloading of logging from the
synchronous path

∙ BCP version 1.1 with synchronisation during reset

∙ Improved handling of ball devices with entrance_switch

∙ Force UTF-8 for configs on windows

∙ Better errors when loading assets

MPF Release Notes 2057

Mission Pinball Framework Documentation, Version

MPF-MC

New Features

∙ Added a camera widget (live video)

∙ Allow placeholders and settings

∙ Added keyboard debugging

∙ Added warnings if window size & display size aspect ratios are not the same

∙ MPF-MC now checks to make sure the MPF version it’s talking to is compatible

∙ Change the default display size to 800x600 if a displays: section is not in the config

∙ Re-vamped Mac installation procedure. It’s now a “real” install and does not use MPF.app
anymore.

∙ Added a “volume” machine variable

∙ Added Interactive Media Controller (iMC)

∙ Added “anchor_y: baseline” option for text widgets

∙ Added gamma setting for physical DMDs

∙ Added new relative animation target values

Bug fixes & code improvements

∙ Improved sound asset loading speed (uses SDL_Mixer for loading to memory rather than
GStreamer)

∙ Sound assets can be loaded while videos are playing

∙ Sound assets can be located in sub-folders as many levels deep as desired (not just a single level)

∙ Fixed points widget

∙ Improvements to automated testing on Travis

∙ widget_player positioning fixed

∙ Better error messages for malformed slide configs

∙ Prevent crash in text widget when empty and back is selected

∙ Changes to support BCP 1.1

0.32

Released: Dec 1, 2016

MPF

∙ Improved achievements and added achievement groups.

∙ Added relay events and relay queues

∙ Improved smart virtual platform

MPF Release Notes 2058

Mission Pinball Framework Documentation, Version

∙ Improved support for System 11 and Gottlieb System 3 style troughs (including using the ball
drain as a ball storage location to get one additional ball capacity with no hardware changes).

∙ Verify that duplicate sections don’t exist in config files

∙ Check that event handlers are properly formatted before they’re registered

∙ Added conditional events (handlers that only fire if certain conditions are met)

∙ You can set starting values for player variables

∙ Fixed the physical mono DMD and physical RGB (color) DMD

∙ Added multiball lost event

∙ Allow devices to have inline config specs

∙ Added shots with events

∙ Better OPP platform parsing

∙ Fixed & improved the high score mode

∙ Improved service mode

∙ Added options for “random” events (force next, force all, save per-player, etc.)

∙ Added events to the BCP monitor (meaning they can be viewed in the MPF Monitor app)

∙ Added -f command line option to force all assets to load on boot for testing purposes

∙ Added scoring options (add, replace, block)

∙ Use color “on” for LED default colors

∙ Allow multiple config player entries to fire from the same event

∙ Ensure that events created by the MC are sent to MPF

∙ Added machine vars for P-ROC and FAST hardware revisions

∙ Added combo switches (for “flipper cancel”, two-button skill shots, etc.)

∙ Lots of little bug fixes. . .

MPF-MC

∙ Fixed the widget z-order layering bug (this has been backported to 0.31). Widget orders are now
higher value z: settings are on top of lower value ones.

∙ Negative z: values are no longer used to target parent slide frames. Instead, target: (name) is
used.

∙ Cleaned up debug logging so BCP frames are not included in it by default

∙ Events that are natively posted in the MC are now sent to MPF

∙ Fixed a bug to ensure that the slide_active event is only posted once per frame

∙ Fixed a bug that prevented slide frames from being animated

∙ Fixed a bug where videos were not stopping

∙ Allow the same slide to be used on multiple displays

MPF Release Notes 2059

Mission Pinball Framework Documentation, Version

∙ Switch to GStreamer instead of SDL_Mixer for loading and streaming sounds. (SDL2 still used
for all sound output.)

∙ Sound file streaming is now supported from any track (streamed from disk instead of preloaded
into memory)

∙ New “track_player” config controls sounds at the track-level (fade, volume, play, pause, stop,
etc.)

∙ Custom loading & unloading events at the individual sound level.

∙ Lots of little bug fixes. . .

0.31

Released: Sept 19, 2016

MPF

∙ MPF is now “tickless”, meaning everything runs faster, but with less overhead

∙ Improved flow control for FAST hardware serial communication

∙ Improved BCP communications

∙ Improved serial communications for all devices which use serial

∙ Additional options for ball saves

∙ Removed many threads which makes everything simpler and faster under the hood

∙ Improved “virtual” and “smart virtual” platforms

∙ Prevent broken data files from crashing MPF

∙ Added a basic service mode (this is just a start, much more to come)

∙ Detect balls that jump between playfields

∙ Prevent duplicate rules being written to P-ROC and P3-ROC controllers

∙ Allow mode config files to be broken into multiple files

∙ Allow multiple multiball modes to run at once and add options for how it tracks them

∙ Allow ball locks to wait for a ball to drain before releasing their locked balls

∙ Added the ability to use matrix lamps/LEDs at individual channels for RGB LEDs

∙ Re-added high score mode (Which was in 0.21 and removed in 0.30)

∙ OPP platform improvements

∙ Improved error messages for config file errors

∙ Improved the way the “mpf both” command works on all platforms

∙ Added ability to step backwards in shows

∙ Refactored and improved show player

∙ Added ball search for servos

∙ Added default colors to RGB LEDs

MPF Release Notes 2060

Mission Pinball Framework Documentation, Version

∙ Added support for nested shows

∙ Added the “LED Group” device (am easily-configured strip of LEDs which can be strobed, pulsed,
etc.)

∙ Added kickback mechanisms

∙ Added magnets

∙ Added blocking show queues

∙ Many bug fixes. . .

MPF-MC

∙ Audio library improvements (sound fading, markers, start position, instance limiting, ducking
improvements)

∙ Allow widget events based on when slides are shown, hidden, etc.

∙ Improved error if you try to target a widget to an invalid slide

∙ Added default DMD fonts

∙ Many bug fixes. . .

0.30

Released: July 15, 2016

∙ Python 3 required

∙ Mac OS X support

∙ The Media Controller is now a separate package from MPF

∙ The MPF-MC has been completely rewritten from scratch (based on Kivy, SDL2, OpenGL, and
Gstreamer)

∙ GPU is used for graphics

∙ Brand-new audio interface specifically written for pinball audio, which includes advanced feature
like ducking, attack, attenuation, etc.

∙ Proper Python package installers, and inclusion in PyPI so install can be done via pip.

∙ System-wide mpf launcher utility with pluggable commands

∙ New MPF clock module replaces the old timing and timers

∙ All shows are driven by MPF

∙ Show content is “played” by the standard config_players

∙ Playlists become shows

∙ “Tocks” are gone, shows now operate on real-world time

∙ Light scripts are gone, replaced by placeholder “tokens” in shows

∙ Named colors

∙ Hardware accelerated LED fades

MPF Release Notes 2061

Mission Pinball Framework Documentation, Version

∙ Asset Pools

∙ Ball Search

∙ Accelerometer-based tilts

∙ Servo support

∙ Text string support

∙ Player achievements

0.21

Released: Dec 1, 2015

∙ SmartMatrix “real” RGB LED Color DMD support.

∙ System 11 support.

∙ High Score mode.

∙ Credits mode.

∙ Tilt mode.

∙ Smart virtual platform. (This is the new default platform.)

∙ New display elements: Character Picker and Entered Characters.

∙ Devices can be created and changed per mode.

∙ Machine variables.

∙ Untracked player variables.

∙ Central config processor, data manager, file manager, and file interfaces. This paves the way for
config files in formats other than YAML.

∙ Added support for combo manual/auto plungers.

∙ Events for ball collection process.

∙ Driver-enabled devices.

∙ External light shows, controllable via BCP. (Thanks Quinn Capen!)

∙ Created a starter game machine config template you can use for your own machines.

∙ Started adding unit tests. (We’re at the very beginning of this, but we have full coverage of the
ball device, the event manager, and the tutorial configuration files.)

∙ Rewritten driver/coil device interface.

∙ Rewritten ball device and ball controller code. (Thanks Jan Kantert!)

∙ Rewritten score controller.

∙ Rewritten display & slides modules.

∙ Many improvements and features added to ball saves.

∙ Python 2.7 is now required. (Previous releases would also run on Python 2.6)

∙ Logic blocks can now persist between balls

MPF Release Notes 2062

Mission Pinball Framework Documentation, Version

∙ Fixed & enhanced the asset loading process.

∙ Many improvements and features added to modes and the mode controller

∙ Multiple config files can be chained together at the command line

∙ Improved text display element.

∙ Improved event manager and event dispatch queue

∙ Moved all utility functions to their own class.

0.20

Sept 14, 2015

∙ The targets and shots modules have been combined into a single module called shots.

∙ The new shots module adds several new features, including:

∙ Shots can be members of more than one shot group, and added and removed dynamically.

∙ Sequence shots can track more than one simultaneous sequences. (e.g. two balls going into
an orbit at essentially the same time will now count as two shots made.)

∙ Shots are mode-aware and will automatically enable or disable themselves based on modes
starting and stopping.

∙ Modes now work outside of a game.

∙ “Machine modes” have been removed. Attract and game machine modes are now regular
modes.

∙ This makes it easier to have always-running modes (volume control, coin door open, coin &
credit tracking).

∙ This makes it possible to configure custom branching of mode-flow logic. (i.e. long-press the
start button to load a different game mode, etc.)

∙ Significant performance improvements for both starting MPF and starting a game:

∙ Reading the initial states of switches on a P-ROC is significantly faster.

∙ The auditor now waits a few seconds before writing its audit file, and it does it as a separate
thread. Previously this was slowing down the game start and player rotation events.

∙ The way modules that need to track “all” the switches (like the auditor and OSC) was
changed and now it doesn’t bog things down.

∙ A device manager now manages all devices. (This will enable future GUI apps to easily be able to
browse the device tree.)

∙ Devices can be “hot added” and removed while MPF is running. This includes automatic support
to add and remove devices per mode.

∙ All device configuration is specified and validated via a central configuration service. This has
several advantages:

∙ The config files are now validated as they’re loaded. For example, if there a device has a
settings entry for “switches”, MPF will now validate that the strings you enter in the are
actual switch names. It will give you a smart error if not.

MPF Release Notes 2063

Mission Pinball Framework Documentation, Version

∙ This paves the way for supporting config files in formats other than YAML. (JSON, XML, INI,
etc.)

∙ This led to the removal of about 500 lines of code since all the config processing was done
manually in each module before.

∙ The config processing is more efficient and less-error prone since it’s not written from
scratch for each module.

∙ There’s now a master list (in mpfconfig.yaml) of all config settings for all device types.

∙ The config processor and validator can run as a service to support the back-end business
logic behind future GUI tools which could be used to build machines.

∙ If you’re configuration has an unrecognized setting, the config validator will load the config
file migrator to tell you what the updated name is for the section it doesn’t recognized.

∙ Shot rotation has been improved:

∙ You can now specify the states of shots you’d like to include or exclude. (i.e. only rotate
between incomplete shots.)

∙ You can specify custom rotation patterns (i.e. a “sweep” back-and- forth instead of a simple
left or right rotation)

∙ A ball lock device was added to make it easy to specify ball locks.

∙ A multiball device was added.

∙ A simple ball save device was added.

∙ Created a “random_event_player” that lets you trigger random events based on another event
being posted.

∙ Centralized debugging

∙ Drop targets and drop target banks have been simplified and separated from shots.

∙ The states of switches tagged with ‘player’ will be passed to the game start mode, allowing
branching based on which combinations of switches were held in when the start button was
pressed. (The amount of time the start button was held in for is also sent.)

∙ Official support for multiple playfields via config files

∙ Added x, y, and z positions to lights and leds

∙ Exposed wait queue events to mode configs, allowing code-less creation of modes that can hook
into game flow (bonus, etc.)

0.19

Released: August 6, 2015

∙ Completely rewritten target and drop target device module, including:

∙ Per-player state tracking for targets

∙ Target “profiles” that control how targets behave, completely integrated with the mode
system

∙ Light show “sync_ms” which allows new light shows to sync up with existing running shows.

∙ Timed switch events can be set up via the config files.

MPF Release Notes 2064

Mission Pinball Framework Documentation, Version

∙ Added “recycle_time” to switches. (Switches can be configured to not report multiple events
until a cool-down time has passed.)

∙ Created an events_player module

∙ Player variables in slides automatically update themselves when they change. (No more need to
find an event to tie the slide to in order for it to update!)

∙ Device control events exposed via the config files

∙ Automatic control of GI

∙ Activation and deactivation events can be automatically created for every switch.

∙ Allow multiple playfield objects to be created at once (for head-to- head pinball)

∙ Added support for FAST Pinball’s new WPC controller

∙ Added a Linuxshell script to launch mc.py and mpf.py

∙ Created the config file migration tool

∙ Added per-timer debug loggers

∙ Standardization of many non-standard config file naming conventions

∙ Color logging to LEDs

∙ Added P3-ROC switch test tool

∙ Added reset to mode timer action list

∙ Added restart feature to mode timers

∙ Flipper Device: Add debug logging to rules

∙ FAST:Added minimum firmware version checking for IO boards

∙ Added “restart” method to logic blocks

∙ Text display element min_digits

∙ Allow system modules to be replaced and subclassed

∙ Added configurable event names for switch tag events

∙ Added callback kwargs to switch handlers

∙ Added light and LED reset on machine mode start

∙ Added default machine and mode delay managers

0.18

Released: June 2, 2015

∙ FadeCandy and Open Pixel Control (OPC) support. This means you can use a FadeCandy or other
OPC devices to control the LEDs in your machine.

∙ Rewritten FAST platform interface. It’s now “driverless,” meaning you no longer need to
download and compile drivers to make it work.

∙ Added support to allow multiple hardware platforms to be used at once. (e.g. LEDs can be from a
FadeCandy while coils are from a P-ROC.) You can even use multiple different platform interfaces
for the same types of devices at once (e.g. some LEDs are FadeCandy and others are FAST).

MPF Release Notes 2065

Mission Pinball Framework Documentation, Version

∙ Added support for GI and flashers to light shows

∙ Added activation and deactivation events to switches

∙ Added support for sounds in media shows

∙ Added per-sound volume control

∙ Added support for P-ROC / P3-ROC non-debounced switches

∙ Exceptions and bugs that causeMPF to crash are now captured in the log file. (This will be great
for troubleshooting since you can just send your log. No more needing to capture a screenshot of
the crash.)

∙ If a child thread crashes, MPF will also crash. (Previously child threads were crashing but people
didn’t know it, so things were breaking but it was hard to tell why.)

∙ MPF can now be used without switches or coils defined. (Makes getting started even easier.)

∙ “Preload” assets loading process is tracked as MPF boots, allowing display to show a countdown
of the asset loading process

∙ Added restart_on_complete to mode timers

∙ Smarter handling of player-controlled eject requests while existing eject requests are in progress

∙ eject_all() returns True if it was able to eject any balls

∙ Playfield “add ball” requests are queued if there’s a current player eject request in progress

∙ Created a smarter asset loading process

∙ The attract mode start is held until all the “preload” assets are loaded

∙ Updated how the game controller tracks balls in play

0.17

Released: May 4, 2015

∙ Broke MPF into two pieces: The MPF core engine and the MPF media player

∙ Added support for the Backbox Control Protocol (BCP)

∙ Added device-specific debugging for LEDs.

∙ Added version control to config files.

∙ Added volume control.

∙ Switches that you want to start active when using virtual hardware are now added to the virtual
platform start active switches: section instead of being a property of the keyboard: entry.

∙ Converted several former plugins to system modules, including shots, scoring, bcp, and logic
blocks.

∙ General performance improvements. (Running MPF on my machine used to take about 50%
CPU. Now it’s down to 15%.)

MPF Release Notes 2066

Mission Pinball Framework Documentation, Version

0.16

Released: April 9, 2015

∙ Added slide “expire” time settings to the Slide Player.

∙ Added Demo Man as the sample game code.

∙ Added start_time configuration parameter for music in the StreamTrack

∙ Added the SocketEvents plugin

∙ Created the LightScripts and LightPlayer functionality.

∙ Change light script “time” to “tocks”

∙ Created a centralized config processing module

0.15

Released: March 9, 2015

∙ Added support for game modes.

∙ Converted several existing modules to be mode-specific, including:

∙ LogicBlocks

∙ SoundPlayer

∙ SlidePlayer

∙ ShowPlayer

∙ Scoring

∙ Shots

∙ Created an Asset Manager and converted the images, animations, sound, and show modules to
use it instead of each handling their own assets.

∙ Created an asset loader which creates a background thread to load each type of asset.

∙ Added an AssetDefaults section to the asset loader to specify per- folder asset settings

∙ Created a universal player variable system

∙ Added movie support (for playing MPEG videos on the LCD and DMD). They’re available as a
standard display element type which means they can be positioned, layered as backgrounds, etc.

∙ Created a generic ModeTimers class that can be used for timed modes and goals. (With variable
count rates, support for counting up and down, multiple actions which can start, stop, pause, and
add time, etc.)

∙ Changed logic blocks so they maintain all their states and progress on a per-user basis.

∙ Added a “double zero” text filter. (Used to show zero-value scores as “00” instead of “0”.)

∙ Updated the display code so that it doesn’t show a slide until all that slides assets have been
loaded.

∙ Renamed the “sphinx” folder to “docs”.

∙ Broke the three phases of machine initialization into 5 phases.

MPF Release Notes 2067

Mission Pinball Framework Documentation, Version

∙ Created the mode timer

∙ Renamed the “HitCounter” logic block to “Counter” and updated it to be more flexible so it can
track general player-specific counts (both up and down), for example, total shots made, combos,
progress towards goals, etc.

∙ Changed window section of config so it uses the slide builder.

∙ Added the ability to control lights and LEDs by tag name in shows.

∙ Modified the switch controller so events from undefined switches simply log a warning rather
than raises an exception and halting MPF.

0.14

Released: February 9, 2015

∙ Completely rewritten ball controller.

∙ Completely rewritten ball device code.

∙ Major updates to the diverter device code.

∙ Creation of a new playfield module that’s responsible for managing the playfield and any balls
loose on it.

∙ Completely rewrote the “player eject” logic. (This is what happens when the game needs to wait
for the player to push a button to eject a ball from a device.)

∙ The ball search code was moved from the game controller to the playfield device module.

∙ Different types of events were broken out into their own methods. For example, to post a
boolean event, instead of calling event.post(type=’boolean’), you now use event.post_boolean().
There are similar new methods for other event types, like post_relay() and post_queue().

∙ Added a debug option for ball devices which enables extra debug logging for problem devices.

∙ Tilt status was removed from the machine controller. (It was inappropriate there. Tilt is a
game-specific thing, not a machine- specific thing.)

∙ Virtual Platform: default NC switch states fixed

0.13

Released: January 16, 2015

∙ Major update to the sound system, including:

∙ Support for multiple sound tracks (“voice”, “sfx”, “music”, etc.), each with their own
channels, settings, volume, etc.

∙ Using background threads to automatically load sound files from disk in the background
without slowing down the main game loop.

∙ Support for streaming sounds from disk versus preloading the entire sounds in memory.

∙ Support for sound priorities and queues, so sounds can pre-empt other sounds if they have a
higher priority.

∙ System-wide volume control with settable steps.

MPF Release Notes 2068

Mission Pinball Framework Documentation, Version

∙ Support for the v1.0 update of FAST Pinball’s libfastpinball library. (Basically we updated the
FAST platform interface to support their latest firmware and drivers)

∙ Support for flashers. (Previously flashers were just driven like any other driver. Now they are
their own device with their own flasher- specific settings.)

∙ Game Controller: Changed the player rotate routine to be driven from the game_started event so
the player object isn’t actually set up until the game has finished being set up.

∙ Pygame: Moved the Pygame event loop to the machine controller and out of the window
manager. This lets us use Pygame events even if we don’t have an on screen window. (This is
needed for the sound system.)

∙ Display: Moved the SlideBuilder instantiation earlier in the boot process so it’s available to other
modules who want to use it when they’re starting up. This will let us get the “loading” screen up
earlier in the boot process.

∙ Switch Controller: Added a method to dump the initial active states of switches to the log. This is
needed for our automated log playback utility so it can set the initial switches properly.

∙ Ball Devices: fixed a typo on the cancel ball request event

0.12

Released: December 31, 2014

∙ Added full display and DMD support, with support for physical DMDs, on screen virtual DMDs,
color DMDs, and high res LCD displays.

∙ Added transitions which flip between display slides with cool effects.

∙ Added decorators which are used to “decorate” display elements (make them blink, etc.)

∙ Added display support to shows so that shows can now combine display and lighting effects

∙ Added a Slide Builder which can assemble slides from text, image, animation, and shapes from
shows and the config files.

∙ Added a SlidePlayer config setting which can show slides based on MPF events

∙ Modified the Virtual DMD display element so that it can render on screen DMDs that look more
like real pixelated DMDs

∙ Added a font manager that lets you define font names and specify default settings (sizes,
antialias, color, etc.)

∙ Added TrueType font support

∙ Added support for stand image types to be displayed on the DMD

∙ Added .dmd file type support for images and animations

∙ Addedthe OSC Sender tool

∙ Added the Font Tester tool

∙ Added the multi-language module which can replace text strings with alternate versions for
multi-language environments and other (e.g. “family-friendly”) text replacements

∙ Improved the diverter devices so they have knowledge of what ball devices and diverters are
upstream and downstream, allowing them to automatically activate and deactivate based on
where balls need to go.

MPF Release Notes 2069

Mission Pinball Framework Documentation, Version

∙ Improved the ball device class so ball devices are smarter about how they interact with target
devices. (e.g. a ball device will automatically eject a ball if its target device wants a ball.)

∙ Added support for the P3-ROC

∙ Added many more events

∙ Modified displays so they can each have independent refresh rates

0.11

Released: December 1, 2014

∙ Created a Display Controller module which is responsible for handling all interactions with all
types of displays, including DMD, LCD, alphanumeric, 7-segment, etc.

∙ Created a DMD display module which controls both physical DMDs as well as on screen
representations of physical DMDs

∙ Created a Window Manager, a centralized module which manages the on screen window,
including full screen and resizable support

∙ P-ROC platform interface: Built the DMD control code

∙ FAST platform interface: Built the DMD control code

∙ Switched from Pyglet to Pygame

∙ Created a Sound Controller

∙ Created a Game Sounds plug-in that lets you control which sounds are played and looped based
on MPF events

∙ Added PD-LED support

∙ Added support for P3-ROC SW-16 switch boards

∙ Switch Controller: Added verify_switches() method which verifies that switches are in the
hardware state that MPF expects.

∙ Switch Controller: Adding logging so it can track when duplicate switch events were received

∙ LEDs: added on() and off() methods and “default color” support

∙ Ball Device: created _ball_added_to_feeder() and made it so the device watches for a ball
entering and will request it if it needs it.

∙ Changed the command line options so you don’t have to specify the .yaml extension for your
configuration file

∙ Changed the command line options so you (optionally) don’t have to specify the “machine_files”
folder location

∙ Created default machine_files folder location settings in the config file

∙ Added support for absolute or relative paths in the command line options

∙ Added support for X/Y coordinates to LEDs and Lights for future light show mapping
awesomeness.

∙ Created an early, early version of the Playfield Lights display interface which lets you “play”
Pygame shows on your playfield lights

MPF Release Notes 2070

Mission Pinball Framework Documentation, Version

∙ Added system default font support

∙ Added a player number parameter to the player_add_success event

∙ Added a default MPF background image for the on screen window

∙ Added many more default settings to the system default mpfconfig.yaml file

∙ Virtual platform interface: Updated it so that it works when hardware DMDs are specified in the
config files

0.10

Released: October 25, 2014

∙ Added enable_events, disable_events, and reset_events to devices.

∙ Removed the First Flips plug-in. (Since the thing above replaces it)

∙ Added support for network switches and drivers for FAST Pinball controllers.

∙ Added support for multiple USB connections to FAST Pinball controllers to separate main
controller traffic from RGB LED traffic.

∙ Changed default debounce on and off times to 20ms for FAST Pinball controllers.

∙ Individual targets hit in target groups will now post events

∙ Changed the default show priority to 1 so it will restore lights that weren’t set with a priority by
default

∙ Driver: Added a power parameter to driver.pulse()

∙ Score Reel: Added resync events to individual reels

∙ Score Reel: Changed repeat_pulse_ms config setting to repeat_pulse_time.

∙ Score Reel: Changed hw_confirm_ms config setting to hw_confirm_time.

∙ Changed default pulse time for all coils to 10ms

∙ Coils: (Fast): Added separate debounce_on and debounce_off settings

∙ Info Lights: Forced game_over light to off when game starts

∙ LEDs: Added force parameter to the off() method

0.9

Released: October 7, 2014

∙ Added a “Logic Blocks” plug-in which lets game programmers build flowchart-like game logic
with the config files. No Python programming required!

∙ Created a “First Flips” plug-in which you can use to get your machine flipping as fast as possible.
(This was written as part of our Step-by-Step Tutorial for getting started with MPF.)

∙ Added Tilt and Slam Tilt support. (This is built via our Logic Blocks, so they’re very advanced,
supporting grouping multiple quick hits as a single hit, settling time (to make sure the plumb
bob is not still swinging when the next ball is started, etc.).

∙ Added Extra Ball / Shoot Again support

MPF Release Notes 2071

Mission Pinball Framework Documentation, Version

∙ Created OSC interfaces for /audits

∙ MAJOR rewrite to the ball controller and ball device modules

∙ Created a non-instrumented optimized software loop which is as lean as possible if you’re
running your game on a slow computer. (I’m looking at you Raspberry Pi!) Note: other single
board computers are fine, like the BeagleBone Black or the ODOID, but man the Pi is slow.

∙ Added the ability to pull “data” from MPF via the OSC interface, so we can put player scores,
ball in player, etc. on an iPhone, iPad, or Android device.

∙ Added an OSC audit interface so you can view audit data via your mobile device.

∙ Created an “Info Lights” plug-in which turns on or off lights automatically based on things that
happen in the game. (Which player is up, current ball, tilt, game over, etc.) This is typically used
in EM games, but of course the plug-in can be used wherever you need it.

∙ Finished the code for our Big Shot EM-to-SS conversion. This is included as a sample game in
MPF, so you can see our config files and

∙ Logic Blocks which can be helpful when creating your own game.

∙ Fixed up drop targets to support the new lit/unlit scheme

∙ Added support for default states to targets and target groups (stand ups, rollovers, drop targets,
etc.), including events that are posted when they are hit while lit or unlit, and the ability to light
or unlight them via events

∙ Added Start Button press parameters which are automatically sent to the game when the start
button is pressed. This is for things like how long the button was held and what other buttons
where active at the time. (Start * Right Flipper, etc.)

∙ Added a “pre-load check) to plug-ins that allows them to test whether they’re able to run before
they load and only load if everything checks out. (This means that a plug-in will no longer crash
if a required Python module is missing.)

∙ Added ‘no_audit’ tag support. (If you add ‘no_audit’ as a tag to a switch, then the Auditor will not
include that switch in the audit logs.)

∙ Created Action Events for shutting down the machine and added shutdown tag support (so you
can cleanly shut down the machine simply by posting and event or pressing a button which is
tagged with “shutdown”)

∙ Added performance data logging to the machine run loop (so it now tracks the percentage of
time spent doing MPF tasks, hardware tasks, and idle).

∙ Added a reload() method to Shows which causes that show to reload itself from disk. This is nice
for testing shows since you can reload them without having to restart the machine each time.

∙ Added support for null steps in shows (literally a step that performs no action). This makes it
easier to get timing right for music shows.

∙ Added the ability to force a light or LED to move to a given state, regardless of its current
priority or cache.

∙ Added a method to test whether a device is valid. This will be used for our config file validator

∙ Added option for restart on long start button press

∙ Added option to allow game start with loose balls

MPF Release Notes 2072

Mission Pinball Framework Documentation, Version

∙ Score reels maintain a valid status, allowing other modules to know whether the score reels are
showing the right data or not.

∙ Score reels now post an event when they’re resyncing, allowing other modules to act on it. (For
example the score reel controller uses this to turn off the lights for a score reel while it’s
resyncing.)

∙ Added option to remove all handlers for an event regardless of what their registered **kwargs
are.

∙ Added mpf command line options for verbose to console and optimized loops. (Now we can
support different logging levels to the console and log file, meaning you can configure it so you
only see important things on the console but you can see everything in the log file.)

∙ Added light on/off action events

∙ Added action events and methods to award the extra ball

∙ Created ball device disable_auto_eject() and enable_auto_eject() methods. This is how we handle
player-controlled ejects (like when a ball starts or they’re launching a ball out of a cannon).

∙ Changed scoring from “shots” to “events”

∙ Changed the hardware rules for clearing a rule so it disables any drivers that were currently
active from that rule

∙ Updated are_balls_gathered() so that if you pass it a tag which doesn’t exist, it always returns
True

∙ Added management of switch handlers to machine modes so they can be automatically removed

∙ Changed switch handlers so they process delays from new handlers that are added

∙ Removed “standup” target device type (it was redundant with “target”)

∙ Moved auditor, scoring, and shots out of system and into plugins

0.8

Released: September 15, 2015

∙ Platform support for FAST Pinball hardware

∙ RGB LED support, including settings colors and fades

∙ Created target and target group device drivers for drop targets, standups, and rollovers
(including events on complete, lit shot rotation, etc.)

∙ Created an OSC interface to view & control your pinball machine from OSC client software
running on a phone or tablet

∙ Changed our “light controller” to a “show controller” and added support for things other than
lights (like coils and events). So now a show can be a coordinated series of lights, RGB LEDs, coil
firings, and events.

∙ Created an “event triggers” plugin which lets you configure series of switches that trigger
events, including custom timings, decays, and resets. (We use this for our titlt functionality but
it’s useful in other ways too.)

∙ Created the auditor module

∙ Created an intelligent diverter device driver (with hardware switch trigger integration)

MPF Release Notes 2073

Mission Pinball Framework Documentation, Version

∙ Created GI device drivers

∙ Created a system-wide MPF ‘defaults’ configuration file

∙ Created templates for new machines, new scriptlets, and new plugins

∙ Modified the on screen window to become a “real” LCD display plugin.

∙ Renamed “hacklets” to “scriptlets”

∙ Created a scriptlet parent class to make them even easier to use

∙ Broke the hardware module into “platforms” and “devices”

∙ Major rewrite of how the machine controller loads system modules and devices

∙ Shows now auto load

∙ Added the ability to attach handlers to lights so you can receive notifications of light status
changes

∙ Reworked the EM score reel update process to simplify and streamline it

0.7

Released: September 4, 2014

∙ Support for lights and light shows.

∙ An on-screen display of game metrics like score, player, and ball number.

∙ A “hacklet” extension architecture which lets you add python code to finish up the “last 10%” of
your game that you can’t control via the machine configuration files.

∙ A formal plug-in architecture which allows easy creation and modification of plug-ins that will
survive core MPF framework updates.

∙ Cleaned up the machine flow and made that controllable via the config files

∙ Changed the -x command line option so it doesn’t use fakepinproc, got rid of the p_roc methods
that detected fakepinproc. (Now even with the P-ROC platform it will use our virtual platform
interface when no physical hardware is present. This means you don’t need pyprocgame to use
fakepinproc.

∙ Changed the command line options to break out machine root from config files

∙ Moved command line options to their own python dictionary

∙ Changed time.clock() back to time.time() since clock was not real world which affected the light
shows

∙ Created new events to capture start and stop of machine flow modes

∙ Added light support to P-ROC platform interface

∙ Reorganized the machine files into machine-specific subfolders

∙ Created an int_to_pwm() static method in Timing

MPF Release Notes 2074

Mission Pinball Framework Documentation, Version

0.6

Released: August 19, 2014

∙ Addition of a Shot Controller, allowing you to configure and group switches which become shots
in the machine. (Read more about the concept of shots in our blog post from last week.)

∙ Addition of a Scoring Controller, allowing you to map score values to shots (and general scoring
support for the machine).

∙ Addition of the Score Reel Controller, Score Reel devices, and Score Reel Group devices for
mechanical score reels in EM-style machines. (Details here.)Switched entire framework timing
over to real time system clock times (time.clock()) instead of ticks (for delays, tasks, switch
waits, etc.)

∙ Changed ball controller that if it counts more balls than it thought it had, it will invoke
ball_found()

∙ Changed the switch controller so it will ignore new switch events if they come in with the
current status the switch already is

∙ The switch controller will ignore repeat switch events from the hardware if they are the same
state that the switch was in before

∙ Added chime support for EM-style machines

∙ Changed game_start event to a queue

∙ Change game_start event name to game_starting (some of these entries might seem trivial, but I
also use this list to track the changes I need to make to the documentation)

∙ Created a queue for adding new tasks so our set won’t change while iterating

0.5

Released: August 5, 2014

∙ Created a single device parent class that’s used for all devices.

∙ Rewrote and cleaned up devices. Now coils, switches, and lights are all devices, as are the more
complex ones.

∙ Added “events” to the keyboard interface. This means you can use the keyboard to post MPF
events (along with parameters).

∙ Separated out ball live confirmation and valid playfield

∙ Built a bunch of valid playfield methods

∙ Changed ball_add_live_request from direct calls to events so they’d be slotted in properly

∙ Broke valid playfield out into its own module

∙ Made the ball device “entrance” switch work

∙ Built a quick “coil test” mode

∙ Added kwargs to event handlers (meaning you can register a handler with kwargs)

∙ Figured out how to handle the “first time” counts of ball devices

MPF Release Notes 2075

Mission Pinball Framework Documentation, Version

∙ Added checks to attract mode to make sure all balls are home, and to the ball controller to
prevent game start if all balls are not home

∙ Changed ejects to events. (So if you want to request that a device ejects a ball, you post an event
rather than calling the device)

∙ Changed the balldevice_name_eject_request to be the event you use to call it, rather than the
notification of the eject attempt.

∙ Created a get_status() method for ball devices

∙ Created a gather_balls() method and wrote the code that will send all the balls home before a
game can be started.

∙ Updated stage_ball() code so it didn’t ask for another ball if there was already an eject in
progress

∙ Moved detection of how balls fall back in out of devices and into the events that watch for the
entrance

∙ Create player and event based ejects. (This is a system to allow players or events to eject balls
from ball devices. Useful for cannons like in STTNG.)

∙ Got stealth and auto eject out of the ball device code since they shouldn’t care about that.

∙ Rewrote a lot of the ball device stuff.

∙ Added a manual eject capability for devices without eject coils

∙ Moved around some things between the ball controller and ball devices so that everything lives
where it ‘makes sense’

∙ Added method to check whether an event has any handlers registered for it.

∙ Ball devices now post events based on tags when balls enter them

∙ Ball devices can now eject their ball if no event is registered. This will prevent balls from getting
“stuck” in unconfigured devices and will make prototyping on new machines faster.

∙ Changed event logging to show “friendly” names of handlers

∙ Converted flippers to use a config dictionary instead of variables

∙ Cleaned up the eject confirmation and valid playfield functionality

∙ Added a remove_switch_handler method to the switch controller

0.4

Released: July 25, 2014

∙ MAJOR rewrite of how the hardware platform modules interact with the framework’s hardware
module and how hardware is configured in general. It’s way simpler and cleaner now. :)

∙ Created a parent class for Devices

∙ Cleaned up the way hardware objects use their parent class

∙ Fixed the ball controller so it doesn’t get confused on the initial count after machine start up.

∙ Cleaned up switch processing and added a logical parameter so we only have to do all the
conversion for NC or NO in one place

MPF Release Notes 2076

Mission Pinball Framework Documentation, Version

∙ Renamed the none interface to virtual. Rewrote it with the new platform interface way of
working.

∙ Added support for holdPatter in coils

∙ Change add_live() to use tags instead of the plunger device

∙ Made it so many things, like ball search, autofires, etc. would not crash the machine if they
weren’t there.

0.3

Released: July 16, 2014

∙ Changed the way config files are loaded by making Config a normal section of any config file
instead of using a special initial configuration file that did nothing but point to additional files.
Details here.

∙ Created a virtualhardware platform for virtual / software only testing that does not require
P-ROC or FAST drivers.

0.2

Released: July 11, 2014

∙ Added docstring documentation

∙ Added /sphinx folder and got the sphinx html docs included

∙ Created the first version of the documentation

0.1

Released: June 27, 2014

∙ Command line parameters to select real or fake (simulated) controller hardware.

∙ Command line parameters to select logging level

∙ Command line parameters to select the location of the initial config file

∙ Reads an initial config file which is a list of additional config files

∙ Processes those config files in order to build a config dictionary

∙ All platform-specific hardware code is isolated into its own module. Config files specify which
platform is used. All game code is 100%interchangeable between platforms.

∙ Game loop runs with configurable loop rate. System timer tick event is raised every tick.

∙ Periodic and one-time use timers can be setup

∙ Switches, Coils, Lamps, and LEDs are read in and configured from the config files

∙ Switch events are read from the hardware

∙ Driver commands can be sent to the hardware

∙ Autofire drivers are automatically configured from the config files. They can be enabled,
disabled, and reconfigured as needed.

MPF Release Notes 2077

Mission Pinball Framework Documentation, Version

∙ Flippers are automatically configured based on config files. They can use EOS or not, and be
based on two coils (main/hold) or one coil with pulse+pwm. Multiple coils can be connected to
the same switch, and vice-versa.

∙ The computer keyboard can be used to simulate switch presses. Key map configuration
information is stored in the config dictionary. It supports momentary, toggle (push on / push off),
and inverted (key press = open) key modes. Also supports combo key mapping (Shift, Ctrl, etc.)

∙ A switch controller receives all notifications of debounced hardware switch events.

∙ Can specify timed switch modes that trigger certain methods. (i.e. do blah() when switch_1 is
active for 500ms.)

∙ Event manager handles system events, including registering handlers, priorities, aborting
events, and maintaining a queue.

MPF Road Map, Vision & Future

To set the stage for our vision for the future of MPF, we’d like to start by saying that we love
“traditional” pinball where you hit knock a physical ball into real targets.

While there’s lots of talk about alternate concepts like Pinball 2000 and the Multimorphic P^3 (which
replaces the bottom 2/3rds of the playfield with an LCD), our vision is focused on traditional-style
pinball machines.

That said, we believe there is quite a bit of room for innovation even within the boundaries of classic
pinball. For example:

Internet-connected pinball machines that report their own outages & problems

One of the problems with pinball on location today is that the machines often break. Unfortunately
since most of these machines are owned by route operators, if a pinball machine in a bar breaks then
the bartender just turns it off and the route operator has no idea that it’s not earning. So if the
operator is stopping by once a week to check on a machine, it might break an hour after he leaves and
then be dark (and not earning) for the next 6 1/2 days until he comes back again.

We believe that pinball machines should be able to use the internet to report their current status. The
operator should be able to log into a web portal to see all his machines and to view the current status.
He should get text messages or iOS alerts with details of the “credit dot.”

Furthermore, the ultimate indicator of whether a machine is working or not is whether it’s earning. If
a pinball machine only earns $20 a week, it’s literally not worth an operator’s time to drive to the
location to check on it. So if he can see a report that the machine is earning as expected, he wouldn’t
have to waste his time and gas driving around to all his locations to check on his machines.

We can also be proactive when machines are turned off. The operator ought to be able to configure a
schedule which basically says, “This machine should be powered on from noon until 2am every day,”
so if the cloud service ever loses connectivity with a machine during those hours, it can notify the
operator (and maybe the location owner) that the machine is offline when it should be on, and the
operator can make a phone call to see if the machine is ok before heading out. (And, if the machine is
not ok, the operator can know that he’s going out to the location for a reason.)

Of course their are plenty of times when a machine is powered on with no credit dot, but where the
machine might still not be playable. (Maybe there’s a stuck ball or a broken rubber.) In those cases we

MPF Road Map, Vision & Future 2078

http://www.multimorphic.com/index.php/p3-pinball-platform

Mission Pinball Framework Documentation, Version

can go back to the earnings reports. If a machine is typically earning 5 dollars per day but half a day
goes by without any money inserted, the machine can alert the operator that there’s a problem.

Dynamic Pricing

Another cool thing about an internet-connected pinball machine is that operator settings can be
centrally “pushed” to the machine. If a bar is rented out for a private party, the bar tender ought to be
able to fire up an app on his or her smart phone to instantly set all the machines to free play. Or
maybe there’s an automatic schedule. “Wednesday night is free pinball,” or “All pinball is free from
4-7pm.” The operator ought to be able to set up a schedule and the machines should be able to change
their pricing automatically based on the time of day.

We could even imagine “demand pricing,” where the price is automatically adjusted up or down based
on demand for a particular machine.

Player “Log in” for notification of high scores being beat

We love the idea of players being able to “log in” to a machine, most likely by “tapping in” to the
machine with their Bluetooth or NFC-enabled smart phone. (This idea is not new of course.
Pyprocgame creator Adam Preble blogged about this in 2014, and Dutch Pinball’s Bride of Pin*Bot 2.0
and Big Lebowski have “Player Profiles” features.)

Regardless of how it’s implemented, we love the idea of a particular player being able to login to a
machine, since there are several cool things this could enable, including:

∙ Notification of high scores being beat. How cool would it be if you could get a text message or
iOS notification when you lost your high score spot on your favorite machine?

∙ Accomplishments tracking. I would love to know what my high score was on different machines,
or for a mobile app to tell me, “That’s the most combos you’ve ever completed in Attack from
Mars.”

∙ Player preference settings. Most pinball machine settings are geared towards operators
(number of balls per game, difficulty, etc.), but modern machines have plenty of options that
don’t matter to operators that hard core players are very passionate about. A pinball machine’s
app should allow players to set their own white balance for RGB LEDs (cool versus warm white),
or the overall brightness of the LEDs, or even whether the LEDs “pop” on-and-off instantly or
gently fade up and down like traditional incandescent bulbs. Players should be able set these
preferences on their own or save their to their profile which they can have applied to whatever
machine they walk up to.

All of this could be done on a per-player basis, with the machine taking on a different look and feel as
each player steps up. Players could even set their color preferences with RGB LEDs in the apron
lighting to indicate which player is up.

Mobile phone companion apps

We’ve already demonstrated a feature of the Mission Pinball Framework where we use an iPhone app
as a “second screen” for a pinball machine. We can imagine players being able to customize their iOS
app to show whatever data they want—score, ball, shots lit, etc.—which they can then set on the glass
near the flippers. The machine could also send all DMD information and animations to that device and
the player wouldn’t have to take their eyes off the flipper area.

MPF Road Map, Vision & Future 2079

http://adampreble.net/blog/2014/02/ibeacon-at-the-arcade/
https://www.youtube.com/watch?v=0HouBZHx2uQ

Mission Pinball Framework Documentation, Version

The mobile app could have a “helper” mode where it knows exactly what’s going on in the game and
can tell you want to shoot for—kind of like if you had a world-class player standing over your shoulder
and telling you want to do.

The mobile app could also let you know when it’s your turn (in case you walked away from the
machine), or when a certain machine you’re waiting in line for is free. (Maybe you even pay for and
“reserve” your place in line from your phone?)

It could also let you see all sorts of statistics for your game when while another player is playing (balls
locks, goals remaining, etc.).

You’d also be able to collect very detailed metrics and analytics about your games. (Average time to
hit a hurry-up, average ball time, number of shots, etc.) That could also be shared in a web-based
dashboard and player ranking system.

Mobile phone audio integration

One of the things that stinks about playing pinball in a loud bar is that you can’t hear the machines.
Some machines have headphone jacks, but that’s a separate piece of hardware.

What if you could pair your phone to the machine, and then the machine could stream its audio to your
phone which you could listen to via headphones? You could even allow multiple people standing
around to connect their audio to the same machine?

Another option is if you pair your phone with a machine, you could play a playlist from your phone
instead of the machine’s music. The pinball machine could still add the voice call outs and sound
effects, but just with your music. (This could be done via headphones or even through the pinball
machine’s speakers.)

The machine could even have a mobile app which lists all the various music cues (waiting to plunge,
base mode background, wizard mode background, etc.) and you could map those to individual tracks
from your phone. Then whenever you walk up to a machine, you get your own custom music! (This
could integrate with a cloud-based music service like Spotify or Apple Music and be configurable via
the web so you get your own music any time you play that machine.)

Mobile phone “waiting player” actions

Traditional multi-player pinball machines alternate between players, with the non-playing players just
watching the current player that’s up. The games themselves are very much about the “player versus
the machine” more so than the “player versus player.”

But what if the waiting player could use their phone to mess with the current player who’s up? Maybe
they have buttons that could temporarily shut off the flippers, or pop up drop targets which block
shots, or release extra balls into play, or turn off all the lights. . .

These could be things that are granted to each player (you get one of each per game), or they could be
earned by players for accomplishing certain achievements during the game.

Social media integration

Like it or not, people love posting random stupid things to social media, and their latest
accomplishments on some pinball machine in a bar fit nicely into that. We can imagine a pinball

MPF Road Map, Vision & Future 2080

Mission Pinball Framework Documentation, Version

machine tweeting high scores and jackpots made, perhaps even with a tiny camera in the top of the
backbox which sends photos winning (and losing) moments to the players.

Most locations that have pinball machines also have social media accounts, and they struggle with
ways to get their customers to “connect” with them. An internet-connected pinball machine could be
part of that. Maybe they give players a free game (which they can redeem by tapping in with their
phone) if the player lets the pinball machine tweet a photo of them winning.

“Offline” goals

An internet and social media connected pinball machine can also keep the relationship with the player
going even when they’re not at the machine. Maybe a player has to play a Facebook game or engage
with a brand to “unlock” certain features of the game. Or maybe that’s reversed, where people who
play massive online games have to seek out a real world pinball machine to unlock certain goals in
their online game.

Promos & advertising

We briefly mentioned the concept that locations could change their machines’ pricing around special
events and for happy hours. But why stop there? What if an advertiser, desperate to reach the
18-to-35 year old male, could buy their potential customers a free round of pinball? Imagine that tied
to location services with the pinball players’ app. You walk by a bar and your phone buzzes and it says
“Lexus would like to buy you a free pinball game if you walk into this bar in the next 10 minutes.” (Of
course this is something that the bar could do too. Come in now and get a free game of pinball with
every pint you buy.)

We could also imagine in-game advertising, maybe between balls or even integrated within the game.
(Maybe a game has multiple pricing tiers, with the 25-cent game add supported while the 75-cent
game remains “pure.”)

Pinball only costs 75 cents or a dollar to play, and there are many types of advertising today where the
advertisers pay far more than a dollar per impression. A pinball ad network could charge the
advertiser one dollar per game, and the location and operator would make the same money they
always did, the ad network could take their cut, and there would still be enough left over to increase
the revenue a pinball machine could generate overall.

In-app purchases for game credits and power-ups

Even in 2014, we notice a lot of our friends saying, “I don’t have any quarters,” as an excuse not to
play pinball. What if you could buy credits via an in-app purchase? There could be options for credits
that expire, credits that are only good for one machine or one bar, bulk pricing discounts, and even
credits that never expire. You could even structure it like a public transit card where a player’s credits
are automatically topped up when the balance gets low.

This could be used for much more than just credits. Players could buy options like extra balls, longer
ball saves, tilt forgiveness, and other in-game goals all from their phones. The machines could keep
track of which games used which options (important for keeping fair high scores), and the additional
revenue could be shared with the location and operators.

MPF Road Map, Vision & Future 2081

Mission Pinball Framework Documentation, Version

Buh-bye four-button service menus!

It probably goes without saying that the four-button tap-tap-tap-tap-tap-tap-enter-tap-tap-tap service
menu is going to be history. Every pinball machine moving forward should have a mobile app for
operators that lets them configure settings and few reports and audits in an easy-to-use interface on
the mobile device.

Even if they’re not sitting at their machine, operators should be able to connect to a website to see all
their machines, view Google Analytics-style earnings reports, remotely update software, push out
configuration settings, and manage all aspects of the machine. Leaning down behind a coin door to
configure things is almost laughable for a new machine in today’s world!

Advanced tournament options

One of the problems with tournaments today is that if a machine malfunctions, it can break the
current game in progress which isn’t really fair to the current players.

What if the machine could maintain a sort of “transaction log” of everything that happened, so if a
machine malfunctions, the tournament operator could hit a button to pause the machine, reset the ball
or fix the problem, roll back the errant entries, and resume the game?

You’d also be able to integrate the actual machine scores and players with the tournament system.
Super Selfie Leagues could automatically post scores and notify players when their scores have been
beat or when they move down on the leaderboard.

Accelerometer integration

Modern machines with accelerometers can use them to track g-forces as well as to know the precise
angle (in 3 axes) of the machine.

This means that the machine could notify the operator if the machine was not level. And when you
were leveling the machine, it should show you that level on the display, or even read it out with
text-to-speech as you were underneath the machine adjusting the legs.

The machine could also record the playfield angle for high scores (especially those posted online,
maybe along with tilt sensitivity and outlane settings) to start to get a more universal baseline to high
scores. (Though it still wouldn’t be perfect due to wear, playfield wax, etc.)

The machine would also know if someone was lifting up the front of the machine (even slightly), which
could make for some funny callouts. Maybe the points start draining until the player sets the machine
down again.

You could even have a machine that can apply scoring multipliers based on the angle. (And maybe
even have a machine where you can set the angle and scoring on your own?) Imagine “My high score
on Ghostbusters is 200M at 6.5 degrees, but only 25M at 7 degrees.”

More ideas from Jon Norris

Since we first wrote down our vision, someone let us know that pinball designer Jon Norris wrote
about a bunch of ideas for innovation in classic pinball too. You can see his ideas at norrispinball.com.
(Some are in the blog and some are in the “Re-Inventing” section of his site.)

Lots of cool stuff there too!

MPF Road Map, Vision & Future 2082

http://www.norrispinball.com

Mission Pinball Framework Documentation, Version

The future is bright!

One of the things we love most about pinball is that it’s a real, physical thing. Traditional arcade
games have lost much of their earnings power because everyone has a PS4 and 60” tv at home. But
most people don’t have pinball machines at home. And even though there are pinball apps for every
device out there (which we LOVE, by the way), it just doesn’t compare to actually banging a metal ball
around with some mechanical levers.

Maybe it goes without saying, but we consider everything on this page to be our “to do” list for the
Mission Pinball Framework.

The best part is that the Mission Pinball Framework is highly modular, so if you think some (or all) of
these ideas are stupid, that’s fine with us! You can pick-and-choose the parts of MPF that you like and
throw out the rest.

Finally, we understand that a lot (ok, everything) we talked about here only applies to new pinball
machines moving forward. But what about the hundreds of thousands of existing machines which are
already in the world based on 20-year old technology? We have some ideas for them too. . . stay tuned!

Happy pinballing!

Late 2016 Update

We originally wrote this vision when we started MPF back in 2014 (though it’s been updated since
then). In late 2016, Jersey Jack Pinball announced Dialed In!, a machine that has some of the features
we wrote about in our vision. At Expo, someone asked us if we were upset that Jersey Jack “ripped us
off”. Our answer is quite the opposite. We’re thrilled! We love these ideas and love that they’re
making their way into pinball. (And frankly we hope that Stern and everyone else does these too.)

Everything about Mission Pinball is open and available for sharing, use, and ripping off. Take our
ideas. Take our code. Copy our docs. We love it all!

MPF release checklist

What to do to make a MPF release?

∙ Update MPF Release Notes (mpf-docs repository dev branch)

∙ Create draft blog post in missionpinball-website repository (in _draft folder)

∙ Create a.bb.x branch (e.g. 0.50.x) and push it based on dev

∙ mpf repository

∙ mpf-mc repository

∙ mpf-monitor repository

∙ mpf-examples repository

∙ mpf-debian-installer repository

∙ Create a.bb branch (e.g. 0.50) and push it based on latest branch in mpf-docs repository

∙ Add a.bb to versions on readthedocs and wait until it finished building

∙ Remove a.bb from redirects in readthedocs

MPF release checklist 2083

http://www.jerseyjackpinball.com/games/#dice

Mission Pinball Framework Documentation, Version

∙ Add a.bb + 1 to redirects in readthedocs

∙ Increase version to a.bb.0 on a.bb.x branch

∙ mpf repository

∙ mpf-mc repository

∙ mpf-monitor repository

∙ Set version to a.bb.x in mpf-mc repository in appveyor.yml

∙ Wait until all builds pass

∙ Increase version to a.bb.0-dev0 (bb + 1 or a + 1) on dev branch

∙ mpf repository

∙ mpf-mc repository

∙ mpf-monitor repository

∙ Update latest branch on mpf-docs

∙ Remove branch protection

∙ Set current_branch to a.bb.x in conf.py

∙ Set branch in .travis.yml to a.bb.x

∙ Remove --pre from install notes

∙ Update linux installer references to a.bb.x instead of dev

∙ Push dev branch to latest (hard push)

∙ Re-add branch protection

∙ Update dev branch on mpf-docs

∙ Update version to next release in conf.py

∙ Protect branches

∙ a.bb.x on mpf repository

∙ a.bb.x on mpf-mc repository

∙ a.bb.x on mpf-monitor repository

∙ a.bb.x on mpf-examples repository

∙ a.bb on mpf-docs repository

∙ a.bb.x on mpf-debian-installer repository

∙ Publish release post on forum

∙ Increase version in forum header

∙ Publish release post on pinside

∙ Publish release post on slack

∙ Delete pre releases on pypi

∙ mpf

∙ mpf-mc

MPF release checklist 2084

Mission Pinball Framework Documentation, Version

∙ mpf-monitor

∙ Tag Release on github

∙ mpf

∙ mpf-mc

MPF release checklist 2085

Index

D
device, 995
display, 2012

M
machine folder, 2012

P
player variable, 2012

W
watch dog, 2012
widget, 2012

2086

	MPF Overview
	MPF complete feature list
	The MPF “Media Controller”
	Understanding MPF config files
	Config files versus “real” programming

	Compatible Pinball Machines
	Controlling a custom “home brew” machine with MPF
	Controlling an existing machine with MPF

	Downloading & Installing MPF (2023 Version)
	Installing MPF on Mac
	Installing MPF 0.56 on Windows
	Installing MPF on Linux

	How to start MPF and run your game
	The quick version
	Starting the MPF game engine and media controller together
	Starting the MPF media controller
	Starting the MPF game engine
	Specifying command-line options
	Understanding how this works
	Specifying BCP ports

	MPF Tutorial
	Tutorial step 1: Installing MPF on your computer
	Tutorial step 2: Create your machine folder
	Tutorial step 3: Get flipping!
	Tutorial step 4: Adjust your flipper power
	Tutorial step 5: Add a display
	Tutorial step 6: Add keyboard control
	Tutorial step 7: Add your trough
	Tutorial step 8: Add your plunger lane
	Tutorial step 9. Add the start button
	Tutorial step 10: Run a real game
	Tutorial step 11: Add the rest of your coils and switches
	Tutorial step 12: Add the rest of your ball devices
	Tutorial step 13: Add slingshots, pop bumpers, and other “autofire” devices
	Tutorial step 14: Add your first game mode
	Tutorial step 15: Add scoring
	Tutorial step 16: Create an attract mode display show
	Tutorial step 17: Add lights (or LEDs)
	Tutorial step 18: Add your first shot
	Tutorial step 19: Testing your machine
	Tutorial step 20: Next steps

	MPF compatible control systems / hardware
	List of supported control systems & hardware
	Configuration Guides
	Browse Platforms by Capabilities

	Pinball Mechanisms
	Accelerometers
	Autofire Coils
	Ball Devices
	Coils (Solenoids)
	Diverters
	Flippers
	Kickbacks
	Lights
	Loops / Orbits / Ramps
	Magnets
	Motors
	Playfields
	Plungers & Ball Launch Devices
	Pop Bumpers
	How to Configure Score Reels
	Scoops / Vertical up Kickers (VUKs) / Saucer holes
	Servos
	Shakers
	Slingshots
	Spinners
	Stepper Motors
	Switches
	Targets
	Tilt Bob
	Troughs / Ball Drains

	Game Logic
	Achievements
	Ball Holds
	Ball Locks
	Ball Saves
	Ball Search
	Ball Start and End Behaviour
	Ball Tracking
	End of Ball Bonus
	Coins & Credits
	Combo Switches (“flipper cancel”, etc.)
	Extra Balls
	High Scores
	Logic Blocks
	Match Mode
	Modes
	Multiballs
	Player Variables
	Replays
	Timed Switches
	Timers
	Service Mode
	Shots
	Skill Shot
	Video Modes
	Scoring
	Tilt

	How to design a game in MPF using Modes
	Mode Selection and Game Startup
	Game Mode
	Wizard Modes
	Ball End Modes
	Game End Modes
	Other modes
	Layering Modes Example

	Displays, DMDs, & Graphics
	Related Events

	Sounds, Music & Audio
	MPF Sound & Audio Technical Overview
	Ducking
	Tracks
	How to setup sound for your machine
	Sound & Audio Tips & Tricks
	How to play a sound with variations

	Shows
	Show configuration format
	What can you put in shows?
	Creating standalone show files
	Shows in files versus shows in configs
	Referencing Slides/Widgets in Shows
	Using “tokens” for run-time variable replacement in shows
	Starting & stopping shows
	Synchronizing multiple shows
	Playing Shows in a Show

	Assets
	Creating “pools” of assets
	Bitmap Fonts (asset type)
	Images (asset type)
	Shows (asset type)
	Sounds (asset type)
	Videos (asset type)

	Config Players
	Standalone Config Player
	Config Player in a Show

	Machine Management
	Auditor
	Service Mode
	Operator Settings

	Tools
	MPF Monitor
	“Interactive” MC (or “iMC”)
	Service Cli
	Build Production Configs
	Lightshow Creator
	Language Server in Your IDE
	MPF format
	MPF test
	MPF test
	Machine Fuzzer
	Hardware Debugger
	Future Tools

	Testing your machine
	Finalizing your machine
	Tuning Software for Production
	Choosing a computer to run MPF
	Choosing an OS for your final machine
	Controlling your machine & computer power on / power off
	Enabling & fine-tuning ball search
	Fine-tuning ball device timing
	Fine-tuning switches

	Flowcharts
	MPF Boot Up / Start Up Sequence
	Game Start Sequence
	Ball Start Sequence
	Mode Start Sequence
	Mode Stop Sequence
	Ball End Sequence

	Troubleshooting
	Step 1: Diagnosing Your Issue
	Step 2: Prepare a Report and Ask in the Forum
	Relevant Configuration
	Attach a Log with debug and verbose logging
	Prepare the Error Message
	Tell Us How to Reproduce Your Problem
	Ask In the Forum
	Consider Improving the Documentation
	More Howtos

	How To Build Physical Pinball Machines
	What Should You Consider When Planning a Playfield Layout?
	Planning Layout with CAD

	Example Configuration Files
	accelerometer (example config files)
	achievement (example config files)
	animated_images (example config files)
	animation (example config files)
	apc (example config files)
	asset_manager (example config files)
	assets_and_image (example config files)
	audio (example config files)
	auditor (example config files)
	autofire (example config files)
	ball_controller (example config files)
	ball_device (example config files)
	ball_holds (example config files)
	ball_routing (example config files)
	ball_save (example config files)
	ball_search (example config files)
	bcp (example config files)
	bitmap_fonts (example config files)
	blinkenlight (example config files)
	blocking_events (example config files)
	bonus (example config files)
	bonus_additional_events (example config files)
	bonus_dynamic_keep_multiplier (example config files)
	bonus_no_keep_multiplier (example config files)
	carousel (example config files)
	coil_player (example config files)
	color (example config files)
	combo_switches (example config files)
	config_errors (example config files)
	config_interface (example config files)
	config_loader (example config files)
	config_players (example config files)
	config_processor (example config files)
	counters (example config files)
	credits (example config files)
	custom_code (example config files)
	data_manager (example config files)
	device (example config files)
	device_collection (example config files)
	digital_output (example config files)
	digital_score_reels (example config files)
	display (example config files)
	diverter (example config files)
	dmd (example config files)
	drop_targets (example config files)
	event_manager (example config files)
	event_players (example config files)
	extra_ball (example config files)
	fast (example config files)
	flippers (example config files)
	fonts (example config files)
	game (example config files)
	head2head (example config files)
	high_score (example config files)
	high_score_reverse (example config files)
	i2c_servo_controller (example config files)
	info_lights (example config files)
	keyboard (example config files)
	kickback (example config files)
	light (example config files)
	light_player (example config files)
	light_segment_displays (example config files)
	lisy (example config files)
	logic_blocks (example config files)
	machine_vars (example config files)
	magnet (example config files)
	match_mode (example config files)
	mma8451 (example config files)
	mode_tests (example config files)
	modes (example config files)
	motor (example config files)
	mpf_plugin_config_player_validation (example config files)
	mpftestcase (example config files)
	multiball (example config files)
	multiball_locks (example config files)
	mypinballs (example config files)
	null (example config files)
	openpixel (example config files)
	opp (example config files)
	osc (example config files)
	p3_roc (example config files)
	p_roc (example config files)
	pkone (example config files)
	platform (example config files)
	player_vars (example config files)
	playfield (example config files)
	playfield_transfer (example config files)
	plugin_config_player (example config files)
	pololu_maestro (example config files)
	pololu_tic (example config files)
	randomizer (example config files)
	rpi (example config files)
	rpi_dmd (example config files)
	score_queue (example config files)
	score_reels (example config files)
	scriptlet (example config files)
	segment_display (example config files)
	segment_display_widget (example config files)
	sequence_shot (example config files)
	service_mode (example config files)
	servo (example config files)
	settings (example config files)
	shapes (example config files)
	shots (example config files)
	shows (example config files)
	slide (example config files)
	slide_player (example config files)
	smart_matrix (example config files)
	smart_virtual_platform (example config files)
	smbus2 (example config files)
	snux (example config files)
	spi_bit_bang (example config files)
	spike (example config files)
	spinners (example config files)
	state_machine (example config files)
	step_stick (example config files)
	stepper (example config files)
	switch_controller (example config files)
	switch_player (example config files)
	text (example config files)
	text_input (example config files)
	tilt (example config files)
	tilt_defaults (example config files)
	timed_switches (example config files)
	timer (example config files)
	transitions (example config files)
	trinamics_steprocker (example config files)
	twitch_client (example config files)
	utils (example config files)
	variable_player (example config files)
	video (example config files)
	virtual_pinball (example config files)
	virtual_segment_display_connector (example config files)
	vpe (example config files)
	vpx (example config files)
	widget_styles (example config files)
	widgets (example config files)

	Example Machine Projects you can learn from
	The mpf-examples project
	State Fair Pinball
	Brooks ‘n Dunn
	Mass Effect 2

	The MPF Cookbook
	Recipe: The Addams Family Mansion Awards
	Recipe: Attack From Mars Super Jets
	Recipe: Rollover Lanes (with Lane Change)
	Recipe: GADGET Targets from Stern Batman ‘66
	Recipe: Modifying the game mode - Dual launch devices
	Recipe: Sequential Drop Target Banks
	Recipe: Skillshot (with Lane Change)
	Recipe: Skillshot (with Auto-Rotate)

	Config file reference
	Instructions
	Index of config sections

	Events
	Events Overview
	Conditional Events
	Handler Priorities
	Types of events
	Event Reference
	Device Indexes

	Game Variables
	max_players
	num_players
	balls_per_game
	balls_in_play
	tilted
	slam_tilted

	Machine Variables
	credit_units
	credits_denominator
	credits_numerator
	credits_string
	credits_value
	credits_whole_num
	fast_(x)_firmware
	fast_(x)_model
	(high_score_category)(position)_label
	(high_score_category)(position)_name
	(high_score_category)(position)_value
	lisy_api_version
	lisy_hardware
	lisy_version
	mc_extended_version
	mc_version
	mpf_extended_version
	mpf_version
	p_roc_hardware_version
	p_roc_revision
	p_roc_version
	pkone_firmware
	pkone_hardware
	platform
	platform_machine
	platform_release
	platform_system
	platform_version
	player(x)_score
	python_version
	Related Events

	Player Variables Reference
	index
	ball
	extra_ball_(name)_awarded
	extra_balls
	Related Events

	Log and Error Descriptions
	CFE-coils-1: Driver must have a number
	CFE-ConfigValidator-1: Section not valid outside of game modes
	CFE-ConfigValidator-2: Your config contains a value for the setting, but this is not a valid setting name
	CFE-ConfigValidator-4: Invalid Validator in config spec
	CFE-ConfigValidator-6: Device not found in section in your config
	CFE-ConfigValidator-9: Required setting is missing from section in your config
	CFE-ConfigValidator-12: Item is not a dict
	CFE-ConfigValidator-13: Cannot convert value to boolean
	CFE-DeviceManager-3: Device does not have a valid config. Expected a dictionary.
	CFE-show-1: Show does not appear to be a valid show config
	CFE-Smart_Virtual_Platform-1: Switch used in virtual_platform_start_active_switches was not found in switches section
	CFE-Virtual_Platform-1: Switch used in virtual_platform_start_active_switches was not found in switches section
	Log-SwitchController-1: Received duplicate switch state for switch
	RE-MPF-MC_BCP_Server-1: Failed to bind BCP Socket to localhost on port 5050
	RE-MPF_BCP_Server-1: Failed to bind BCP Socket to 127.0.0.1 on port 5051
	RE-P-Roc-1 - Known Firmware Bug in P/P3-Roc
	RE-P-Roc-2 - Communication with P/P3-Roc broke down
	RE-P-Roc-3 - Failed to Import Pinproc

	Developer Documentation
	About the MPF Documentation
	MPF documentation authors
	MPF license & copyright
	Help us to write it

	MPF FAQ
	FAQ: General
	FAQ: Installation
	FAQ: Building your game
	FAQ: Getting help

	Glossary of MPF terms
	Contributing to MPF
	Install MPF in development mode
	Install MPF-MC in development mode
	Getting started with an open issue

	Contributing to MPF’s Documentation
	To make a quick change to an existing page
	To make a suggestion for a new doc (or to point out an error)
	How does the layout work?
	To clone the mpf-docs repo locally to make bigger changes

	MPF Versions
	User Documentation for Older MPF Versions
	Understanding MPF version numbering
	MPF Release Notes
	MPF Road Map, Vision & Future
	MPF release checklist

