

Mozillians

Mozillians.org [https://wiki.mozilla.org/Mozillians] is the community phonebook for Mozilla. The instructions here are written for developers. If you’re a user, visit the site for more information.

This application is built on top of Playdoh [https://github.com/mozilla/playdoh].

Contents:

	Installation
	Docker Installation
	Dependencies

	Building mozillians

	Running mozillians

	VirtualEnv Installation
	Dependencies

	MySQL setup

	Running Mozillians

	Testing
	Testing Mozillians Code

	Test Coverage

	Test Cases for NDA renewal feature

	Invitation System
	Inviting en-masse

	How to Contribute
	Git workflow

	Templates
	display_context

	get_context

	is_callable

	Server architecture

	Pushing to production

	What to work on

	Mozillians API
	Using API Data
	API v2

	MySQL DB Anonymization

	Internationalization
	Installation

	Working on internationalization

	Managing Strings
	Update Pontoon

	Linting translations

	Updating Production Translations

	Basket integration
	How does it work?
	HTTP API calls

	Mozillians.org newsletters

	Implementation architecture

	Newsletter policies

	Administrative actions

	Deployment details

Indices and tables

	Index

	Module Index

	Search Page

Installation

	Docker Installation

	VirtualEnv Installation

Docker Installation

Mozillians development environment can be installed using docker. This way we run Mozillians and all it’s dependencies as docker containers. Here [https://www.docker.com/whatisdocker/] you can find more info about what docker is.

Dependencies

	You need to install docker in your system. The installation guide [https://docs.docker.com/installation/#installation] covers many operating systems but for now we only support Linux and Mac OS X. Version required: 1.3.1 or newer.

	We are using an orchestration tool for docker called docker-compose [https://docs.docker.com/compose/] that helps us automate the procedure of initiating our docker containers required for development. Installation instructions can be found in Compose’s documentation [https://docs.docker.com/compose/install/]. Version required: 1.0.1 or newer.

Running Docker on Mac

Here are some notes regarding running Docker on Mac.

	Docker cannot run natively on Mac because it is based on a Linux kernel specific feature called LXC.

	When running docker in Mac via boot2docker you are running a lightweight Linux VM in Virtualbox that hosts the docker daemon and the LXC containers.

	We are running docker client in our host system that connects to the docker daemon inside boot2docker VM.

	We are using docker’s volume sharing feature in order to share the source code with the Mozillians container. This is not directly supported in Mac. As a workaround boot2docker implements this feature by sharing the folder with Virtualbox first.

	The extra layer that we are adding using Virtualbox might cause some performance issues. This is a trade-off for having an easily reproducible stack without installing everything manually.

More information regarding boot2docker can be found in the documentation [https://docs.docker.com/installation/mac/].

Here are some extra steps in order to run Mozillians on Mac:

	Make sure boot2docker is initialized:

$ boot2docker init

	Make sure boot2docker VM is up and running:

$ boot2docker up

	Export DOCKER_HOST variables using the following command:

$ $(boot2docker shellinit)

Note

You need to make sure to run $(boot2docker shellinit) in each new shell you are using, or export it globally in order not to repeat this step every time you are working on mozillians.

Building mozillians

	Fork the main Mozillians repository [https://github.com/mozilla/mozillians].

	Clone your fork to your local machine:

$ git clone git@github.com:YOUR_USERNAME/mozillians.git mozillians
(lots of output - be patient...)
$ cd mozillians

	Configure your local Mozillians installation:

$ cp mozillians/env-dist mozillians/.env

	Start MySQL and ElasticSearch containers:

$ docker-compose up -d db es

	Update the product details:

$ docker-compose run web python manage.py update_product_details -f

	Create the database tables and run the migrations:

$ docker-compose run web python manage.py migrate --noinput

	Import cities_light details:

$ docker-compose run web python manage.py cities_light

	Load the timezone tables to MySQL:

$ docker-compose run db /bin/bash
shell> mysql_tzinfo_to_sql /usr/share/zoneinfo/ | mysql -uroot -proot -h mozillians_db_1 mysql

	Create a superuser:

$ docker-compose run web python manage.py createsuperuser

	Give permissions to the user:

$ docker-compose run web ./scripts/su.sh

	Run mozillians:

docker-compose up

	Load http://127.0.0.1:8000 or (for Mac users only) <IP>:8000 where <IP> is the one returned by boot2docker ip command.

	Sign in with persona to create your profile.

	Stop the server with Ctrl^C.

Note

In case this command doesn’t work, you can run ./scripts/su.sh inside the container. In order to get shell access please run docker-compose run web /bin/bash.
To login to mozillians.org for dev purposes please visit http://127.0.0.1:8000/admin and login with the credentials issued in the previous step. The signin button doesn’t work locally.

Running mozillians

	Run Mozillians:

$ docker-compose up
(lots of output - be patient...)

	Develop!

VirtualEnv Installation

Note

Installing Mozillians might be daunting. Ask for help using IRC in
#commtools on irc.mozilla.org. Ping giorgos, nemo-yiannis or tasos,
they will be happy to help.

Dependencies

Prerequisites: You’ll need python2.7, python2.7-dev, virtualenv, pip,
a C compiler (for building some of the Python packages, like the DB interface),
mysqlclient and mysql-dev (or the equivalent on your system), a MySQL server, gettext [http://playdoh.readthedocs.org/en/latest/userguide/l10n.html#requirements],
git, and lessc. Also, since we use elasticsearch, you will need a JAVA runtime environment.

There are almost certainly other requirements that
we’re so used to having installed we’ve forgotten we have them, so don’t be shy
about asking on IRC for help if you run into unexpected errors.

You will want a *nix box, ideally the latest versions of Debian or Ubuntu
since that’s what most of the core developers are using and it’s most likely
to work.

If you’re on Ubuntu or Debian, you might start with:

$ sudo apt-get install build-essential git-core \
python2.7 python2.7-dev python-virtualenv python-pip \
gettext libjpeg-turbo8-dev \
mysql-client mysql-server libmysqlclient-dev default-jre \
libxslt2.1 libxslt1-dev libjpeg-dev zlib1g-dev libpng12-dev

Then install node [http://nodejs.org/] and lessc [http://lesscss.org/#using-less-installation] (you only need node for lessc).

nodejs is not packaged for every distribution so we will not get into details
as that would require different instructions for every distribution.
You might want to take a look at nodejs github wiki [https://github.com/joyent/node/wiki/installing-node.js-via-package-manager].
Just bare in mind that lessc must be installed after nodejs, since you have
to use npm, the package manager of nodejs.

Note

Make sure your node version node -v is greater than v0.6.12 or there
will be issues installing less.

When you want to start contributing…

	Fork the main Mozillians repository [https://github.com/mozilla/mozillians/fork] (https://github.com/mozilla/mozillians) on GitHub.

	Clone your fork to your local machine:

$ git clone git@github.com:YOUR_USERNAME/mozillians.git mozillians
(lots of output - be patient...)
$ cd mozillians

	Create your python virtual environment:

$ virtualenv venv

	Activate your python virtual environment:

$ source venv/bin/activate
(venv) $

Note

When you activate your python virtual environment, ‘venv’
(virtual environment’s root directory name) will be prepended
to your PS1.

	Install development requirements:

(venv)$ python ./scripts/pipstrap.py
(venv)$ pip install --require-hashes --no-deps -r requirements/dev.txt
(lots more output - be patient again...)
(venv) $

Note

Since you are using a virtual environment, all the python
packages you will install while the environment is active
will be available only within this environment. Your system’s
python libraries will remain intact.

Note

Mac OS X users may see a problem when pip installs PIL. To correct that,
install freetype, then do:

sudo ln -s /opt/local/include/freetype2 /opt/local/include/freetype

Once complete, re-run the pip install step to finish the installation.

	Configure your local mozillians installation:

(venv)$ cp mozillians/env-dist mozillians/.env

The provided configuration uses a MySQL database named mozillians and
accesses it locally using the user mozillians.

	Download ElasticSearch:

(venv)$ wget https://download.elasticsearch.org/elasticsearch/elasticsearch/elasticsearch-2.4.5.tar.gz
(venv)$ tar zxf elasticsearch-2.4.5.tar.gz

and run:

(venv)$./elasticsearch-2.4.5/bin/elasticsearch -d

This will run the elasticsearch instance in the background.

MySQL setup

Setting up a MySQL user and database for development:

	Install the MySQL server. Many Linux distributions provide an installable
package. If your OS does not, you can find downloadable install packages
on the MySQL site [http://dev.mysql.com/downloads/mysql/].

	Start the mysql client program as the mysql root user:

$ mysql -u root -p
Enter password:
mysql>

	Create a mozillians user:

mysql> create user 'mozillians'@'localhost';

	Create a mozillians database:

mysql> create database mozillians character set utf8;

	Give the mozillians user access to the mozillians database:

mysql> GRANT ALL PRIVILEGES ON mozillians.* TO "mozillians"@"localhost";
mysql> EXIT
Bye
$

	Install timezone info tables in mysql:

(venv)$ mysql_tzinfo_to_sql /usr/share/zoneinfo/ | mysql -uroot -p mysql

Running Mozillians

	Update product details:

(venv)$./manage.py update_product_details -f

	Apply migrations:

(venv)$./manage.py migrate

	Create user:

	Run server:

./manage.py runserver 127.0.0.1:8000

	Load http://127.0.0.1:8000 and sign in with Persona, then create your profile.

	Stop the server with Ctrl^C.

	Vouch your account and convert it to superuser:

./scripts/su.sh

	Develop!

Now you can start contributing to Mozillians.

	When you’re done:

When you are done with your coding session, do not forget to kill
the elasticsearch process and deactivate your virtual python
environment by running:

(venv)$ deactivate
$

	Next time:

Next time, before starting you will need to activate your environment by typing:

$. $VIRTUAL_ENV/bin/activate

and start elasticsearch server again:

(venv)$./elasticsearch-2.4.5/bin/elasticsearch -d

Have fun!

Testing

Testing Mozillians Code

	To run mozillians.org tests:

$./manage.py test

	If you need a fresh test database:

$ FORCE_DB=1 ./manage.py test

	To run all tests in a class:

$./manage.py test mozillians.users.tests.test_models:UserProfileTests

	If you want to run a single test:

$./manage.py test mozillians.users.tests.test_models:UserProfileTests.test_get_attribute_with_public_level

to run only test_get_attribute_with_public_level test from the UserProfileTests class in the mozillians/users/tests/test_models.py test file.

Test Coverage

You can combine nose testing with the coverage module to get the
code coverage of the tests. To get a coverage report for the ‘users’
package run:

$ coverage run --omit='*migrations*' manage.py test --noinput
$ coverage xml --omit='*migrations*' $(find mozillians -name '*.py')

Then visit htmlcov/index.html to get the coverage results.

Test Cases for NDA renewal feature

	Verify that the inviter, who is also a group curator is able to renew a user membership 2 weeks before it expires

	
	Preconditions:

	
	Create a closed group with terms in mozillians.org

	Set the membership to expire after several days (>14)

	Login as group curator and invite a mozillian to the closed group

	Login as the mozillian who was invited by curator and accept the invitation to the group and the terms

	The mozillian becomes a group member

	Steps:

	
	Verify that the group member will receive an email notification 2 weeks before their membership expires

	Verify that the inviter will receive an email notification 2 weeks before user’s membership expires

	Login to mozillians.org as the inviter (and also group curator)

	Navigate to group’s page

	Select “Renewals” option in filter dropdown, then click Filter button

	Click “Confirm Request” for user’s membership renewal request

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Expected:

	The user continues to be a member of the group, as the membership was renewed by inviter

	Verify that a group curator is able to renew a user membership 2 weeks before it expires, if the inviter is no longer a curator

	
	Preconditions:

	
	Create a reviewed group with terms

	Set the membership to expire after several days (>14)

	Login as group curator and invite a mozillian to the closed group

	Login as the mozillian who was invited by curator and accept the invitation to the group and the terms

	The mozillian becomes a group member

	Add a new curator to the group and remove the initial curator (who is also the inviter) from the group curators list

	Steps:

	
	Verify that the group member will receive an email notification 2 weeks before their membership expires

	Verify that the group curator will receive an email notification 2 weeks before user’s membership expires

	Verify that the inviter will not receive an email notification 2 weeks before user’s membership expires, as he/she is not a group curator anymore

	Login to mozillians.org as the group curator

	Navigate to group’s page

	Select “Renewals” option in filter dropdown, then click Filter button

	Click “Confirm Request” for user’s membership renewal request

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Expected:

	The user continues to be a member of the group, as the membership was renewed by curator

	Verify the status of a user whose membership to an open group without terms reached expiration date

	
	Preconditions:

	
	Create an open group

	Set the membership to expire after several days (>14)

	Have a user who joined the group

	Steps:

	
	Login to mozillians.org as the curator of the open group, when the membership reached the expiration date

	Navigate to group page

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is no longer displayed in Group members section (it was removed)

	Expected:

	The user is not a group member.
The user will receive an email “Removed from Mozillians group “X””

	Verify the status of a user whose membership to a reviewed group without terms reached expiration date

	
	Preconditions:

	
	Create a reviewed group with no terms

	Set the membership to expire after several days (>14)

	Have a user added to the group

	Steps:

	
	Verify that the user will receive an email notification when the membership reached the expiration date (“Status changed for Mozillians group “X””)

	Login to mozillians.org as the curator of the reviewed group, when the membership reached the expiration date

	Navigate to group page

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is no longer displayed in Group members section

	Select “Pending Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Click “Confirm Request” for that user

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Expected:

	After step 8: The user should receive an email saying “Accepted to Mozillians group “X””
After step 10: The user is a member of the group again

	Verify the status of a user whose membership to a reviewed group with terms reached expiration date

	
	Preconditions:

	
	Create a reviewed group with terms

	Set the membership to expire after several days (>14)

	Have a user added to the group

	Steps:

	
	Verify that the user will receive an email notification when the membership reached the expiration date (“Status changed for Mozillians group “X””)

	Login to mozillians.org as the curator of the reviewed group, when the membership reached the expiration date

	Navigate to group page

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is no longer displayed in Group members section

	Select “Pending Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Click “Confirm Request” for that user

	Select “Pending Terms” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Expected:

	After step 8: The user should receive an email saying “Accepted to Mozillians group “X””
After step 10: If the user accepts the terms, he/she will be member of the group again

	Verify the status of a user whose membership to a closed group without terms reached expiration date

	
	Preconditions:

	
	Create a closed group with no terms.

	Set the membership to expire after several days (>14).

	Have a user added to the group.

	Steps:

	
	Verify that the user will receive an email notification when the membership reached the expiration date (“Status changed for Mozillians group “X””)

	Login to mozillians.org as the curator of the reviewed group, when the membership reached the expiration date

	Navigate to group page

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is no longer displayed in Group members section

	Select “Pending Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Click “Confirm Request” for that user

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Expected:

	After step 8: The user should receive an email saying “Accepted to Mozillians group “X””
After step 10: The user is a member of the group again

	Verify the status of a user whose membership to a closed group with terms reached expiration date

	
	Preconditions:

	
	Create a closed group with terms

	Set the membership to expire after several days (>14)

	Have a user added to the group

	Steps:

	
	Verify that the user will receive an email notification when the membership reached the expiration date (“Status changed for Mozillians group “X””)

	Login to mozillians.org as the curator of the closed group, when the membership reached the expiration date

	Navigate to group page

	Select “Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is no longer displayed in Group members section

	Select “Pending Members” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Click “Confirm Request” for that user

	Select “Pending Terms” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is displayed in Group members section

	Expected:

	After step 8: The user should receive an email saying “Accepted to Mozillians group “X””
After step 10: If the user accepts the terms, he/she will be member of the group again

	Verify the status of a user whose request to join a group (with membership set to expire) was never accepted by the curator

	
	Precondition:

	
	Create a reviewed group with no terms

	Set the membership to expire in a few days

	Have a user who submitted a request to join the group

	Steps:

	
	Login to mozillians.org as the curator of the group, when the membership reached the expiration date

	Navigate to group page

	Select “All” option in filter dropdown, then click Filter button

	Verify that the user added in precondition is not displayed in Group members section (the user was removed)

	Expected:

	The user is not a member of the group
The user will receive an email “Removed from Mozillians group “X””

Invitation System

Mozillians has an inivitation system that let’s vouched users invite others to
join Mozillians. These users who join are automatically vouched.

Inviting en-masse

Let’s say you have a large list of contributors to invite to your phonebook,
well we thought of that.

You can format a file (myfriends.txt) with one email address per line:

bob@thebobcats.com
juno@reactor.org
diane@hunters.org

And feed it on the admin node like so:

./manage.py cron invite myfriends.txt

And voila! Invitations will be mailed to your friends.

This creates one Invite and sets the
receiver to ZUUL. This also sends an
invitation email to each recipient.

How to Contribute

Thank you for your interest in contributing to Mozillians! There are always bugs to file; bugs to fix in code; improvements to be made to the documentation; and more.

The below instructions are for software developers who want to work on Mozillians code.

Git workflow

When you want to start contributing, you should follow the installation instructions, then…

	(Optional) Set your cloned fork to track upstream changes (changes to the main repository), then fetch and merge changes from the upstream branch:

$ git remote add --track master upstream git://github.com/mozilla/mozillians
$ git fetch upstream
$ git merge upstream/master

	Set up a branch for a particular set of changes and switch to it:

$ git branch my_branch
$ git checkout my_branch

	Commit changes to the code!

	Code!

	Lint the code:

$ flake8 mozillians

and fix any errors.

	Run the tests:

$./manage.py test

and make sure that all tests pass.

Learn more about testing.

	Commit changes to the code!

	When you’re done, figure out how many commits you’ve made:

$ git log

	Squash all those commits into a single commit that has a good git commit message [http://tbaggery.com/2008/04/19/a-note-about-git-commit-messages.html]. (Example assumes you made 4 commits):

$ git rebase -i HEAD~4

	Use the interactive editor that pops up to pick/squash your commits:

pick 01d1239 [fix bug 893291] Make it go to 11
squash 32as32p added the library and made some minor changes
squash 30ame3z build the template
squash 91pcla8 ugh fix a semicolon bug in that last commit

	Push your changes to your fork:

$ git push origin my_branch

	Issue a pull request [https://github.com/YOUR_USERNAME/mozillians/pull/new/master] on GitHub

	Wait to hear from one of the core developers

If you’re asked to change your commit message, you can amend the message and force commit:

$ git commit --amend
$ git push -f origin my_branch

If you need more Git expertise, a good resource is the Git book [http://git-scm.com/book].

Templates

Mozillians.org uses Jinja [http://jinja.pocoo.org/docs/] templates, which
are similar to Django templates but have some differences.

Some helpers are available in all Jinja templates in Mozillians.org.

display_context

Return a marked-up chunk of content containing the items
in the template context, if settings.DEBUG is True.
Otherwise returns an empty string.

By default, callables are omitted. Pass include_callables=True
to include them.

The format of the result is:

<dl class="jinja-context">
 <dt>key</dt><dd>value</dd>
 <dt>key</dt><dd>value</dd>
 ...
</dl>

repr is applied to the values to format them.

Example usage:

{{ display_context() }}

{{ display_context(include_callables=True) }}

get_context

Provide access to the Jinja Context object in case
you want to do more complicated things with it. Typically,
display_context() is easier to use.

If settings.DEBUG is not True, returns an empty dictionary.

Example usage:

{% set context=get_context() %}
{% for k, v in context|dictsort %}
 {% if not is_callable(v) %}
 {{ k }}: {{ v }}

 {% endif %}
{% endfor %}

is_callable

Return True if thing is callable.

See get_context() for example usage.

Server architecture

Stage

	URL: https://web-mozillians-staging.production.paas.mozilla.community/

	Deploy: Manual (Chief)

Production

	URL: http://www.mozillians.org/

	Deploy: Manual (Chief)

You can check the currently deployed git commit by checking https://www.mozillians.org/media/revision.txt.

Pushing to production

In 2013 Mozillians code is released on Thursdays, after QA and developers agree that code is ready to push to production. The list of code scheduled for any particular release is here: https://wiki.mozilla.org/Mozillians#Releases

What to work on

Mozillians development follows a schedule [https://wiki.mozilla.org/Mozillians#Schedule] and a roadmap [https://wiki.mozilla.org/Mozillians/RoadMap] managed by the Mozillians product and development team [https://wiki.mozilla.org/Mozillians#Team]. Bugs that the team has committed to work on are generally given a target milestone and are assigned to a developer. Other bugs are fair game; but they’re not all aligned with the product’s current evolution. So if you are not familiar with the project and its roadmap, you may want to find one of the core team in IRC and ask before working on a particular bug.

	All outstanding bugs [https://bugzilla.mozilla.org/buglist.cgi?product=Participation%20Infrastructure;component=Phonebook;resolution=---;list_id=5645789]

	Good first bugs [https://bugzilla.mozilla.org/buglist.cgi?list_id=5667806;classification=Other;status_whiteboard_type=allwordssubstr;query_format=advanced;status_whiteboard=mentor;bug_status=NEW;component=Phonebook;product=Participation%20Infrastructure]

	Submit a bug [https://bugzilla.mozilla.org/enter_bug.cgi?product=Participation%20Infrastructure&component=Phonebook&status_whiteboard=&target_milestone=---&version=other]

Mozillians API

The Mozillians.org API is a REST API that provides detailed information about users and groups in Mozillians.org. This document explains how to use the Mozillians.org API to enhance your application.

Note

All endpoints of the API require authentication. Users can restrict visibility of their personal data by editing their profiles.

Using API Data

The Mozillians.org API exposes personal data about people who have created profiles on Mozillians.org and who have chosen to expose that data to Mozilla’s community or corporation sites. Applications that consume Mozillians.org API data must protect all data retrieved from the Mozillians.org API as specified by Mozilla’s websites privacy policy [http://www.mozilla.org/en-US/privacy/policies/websites/]. Furthermore, they must follow these guidelines:

	Do not store copies of Mozillians.org data. If your application requires data served by the Mozillians.org API, it should request that data from the API, and should not make durable/permanent local copies of data retrieved from the API. Any exception to this rule requires a data safety review.

	Do not expose Mozillians.org data to an audience it was not intended for. Mozillians.org data is visible, by default, to vouched members of Mozillians.org. Your application must not expose it to a wider audience unless specifically allowed by per-field privacy level or following a data safety review.

	Respect per-field privacy levels. Certain fields retrieved from the Mozillians.org API may be subject to user-configured privacy levels. These privacy levels may be less restrictive than the default (“public”) or more restrictive (“privileged”). In future releases of the API, a particular field’s privacy level may accompany the field in the API response. Your application must respect and enforce any privacy level present in an API response.

If you believe an application is misusing Mozillians.org API data, please file a bug [https://bugzilla.mozilla.org/enter_bug.cgi?product=Participation%20Infrastructure&component=Phonebook].

	API v2
	Getting an API Key

	Privacy

	Authentication

	API Methods

API v2

Getting an API Key

With API v2 we created a dedicated API management page for all API needs. You can review, create and delete your API v2 keys by accessing this page.

	Visit your edit profile page [https://mozillians.org/user/edit/].

	Navigate to Services > Developers > Manage API keys or click here [https://mozillians.org/apikeys].

By default, vouched users are able to automatically get an API key with a PUBLIC access level. In order to get a key with elevated permissions
you’ll have to file a bug [https://bugzilla.mozilla.org/enter_bug.cgi?product=Participation%20Infrastructure&component=API%20Requests].

Privacy

API v2 is designed with users privacy in mind first. Each API key has a privacy level assigned to it. In order for the API consumer to access a user/group/skill detail,
the key’s privacy level should be greater or equal to the fields privacy value. Else the field value in the response is empty.

Authentication

API consumers should either provide the api key as a get parameter api-key or as an HTTP header X-API-KEY.

API Methods

	Users
	Endpoint

	Parameters

	Return Codes

	Examples

	Groups
	Endpoint

	Parameters

	Return Codes

	Examples

	Skills
	Endpoint

	Parameters

	Return Codes

	Examples

Users

The users method of the Mozillians API returns user profile information.

Endpoint

https://mozillians.org/api/v2/users/

Parameters

	api-key

	Required string - The application’s API key

	is_vouched

	Optional string (True/False) - Return only vouched/unvouched users

	username

	Optional string - Return user with matching username

	full_name

	Optional string - Return user with matching full name

	ircname

	Optional string - Return user with matching ircname

	email

	Optional string - Return user with matching primary/alternate email

	country

	Optional string - Return users with matching country

	region

	Optional string - Return users with matching region

	city

	Optional string - Return users with matching city

	page

	Optional integer - Return results contained in specific page

	language

	Optional string - Return users speaking language matching language code

	group

	Optional string - Return users who are members of given group name

	skill

	Optional string - Return users with skill matching skill name

Return Codes

	Code

	Description

	200:

	OK Success!

	403:

	Wrong api-key or api-key not activated OR application not authorized

Examples

Filter user by email address:

Request:

/api/v2/users/?api-key=12345&email=test@example.com

Response:

{
 "count": 1,
 "next": null,
 "previous": null,
 "results": [
 {
 "username": "test@example.com",
 "is_vouched": true,
 "_url": "https://mozillians.org/api/v2/users/1111/"
 }
]
}

Get details for a user:

Request:

/api/v2/users/1111?api-key=12345

Response:

{
 "username": "test@example.com",
 "full_name": {
 "value": "Test Example",
 "privacy": "Public"
 },
 "email": {
 "value": "test@example.com",
 "privacy": "Mozillians"
 },
 "alternate_emails": [
 {
 "email": "test2@example.com",
 "privacy": "Mozillians"
 }
],
 "bio": {
 "html": "<p>Bio test</p>",
 "value": "Bio test",
 "privacy": "Public"
 },
 "photo": {
 "privacy": "Public",
 "150x150": "https://mozillians.org/media/uploads/sorl-cache/00/f7/00f760770a0bed60d936ee377788888.jpg",
 "500x500": "https://mozillians.org/media/uploads/sorl-cache/00/f7/00f760770a0bed60d936ee377788888.jpg",
 "value": "https://mozillians.org/media/uploads/sorl-cache/00/f7/00f760770a0bed60d936ee377788888.jpg",
 "300x300": "https://mozillians.org/media/uploads/sorl-cache/00/f7/00f760770a0bed60d936ee377788888.jpg"
 },
 "ircname": {
 "value": "testexample",
 "privacy": "Public"
 },
 "date_mozillian": {
 "value": "2012-11-01",
 "privacy": "Public"
 },
 "timezone": {
 "utc_offset": 180,
 "value": "Europe/Athens",
 "privacy": "Public"
 },
 "title": {
 "value": "",
 "privacy": "Public"
 },
 "story_link": {
 "value": "",
 "privacy": "Public"
 },
 "languages": {
 "value": [
 {
 "code": "el",
 "english": "Greek",
 "native": "Ελληνικά"
 },
 {
 "code": "en",
 "english": "English",
 "native": "English"
 }
],
 "privacy": "Public"
 },
 "external_accounts": [],
 "websites": [],
 "tshirt": {
 "privacy": "Privileged",
 "value": 9,
 "english": "Straight-cut Large"
 },
 "is_public": true,
 "is_vouched": true,
 "_url": "/api/v2/users/1111/",
 "url": "https://mozillians.org/en-US/u/testexample/",
 "city": {
 "value": "Buenos Aires",
 "privacy": "Public"
 },
 "region": {
 "value": "Ciudad de Buenos Aires",
 "privacy": "Public"
 },
 "country": {
 "code": "ar",
 "value": "Argentina",
 "privacy": "Public"
 }
}

Filter API responses:

By country:

/api/v2/users/?api-key=12345&country=Greece

By ircname:

/api/v2/users/?api-key=12345&ircname=mr_amazing

Groups

The groups method of the Mozillians API returns information about groups.

Endpoint

https://mozillians.org/api/v2/groups/

Parameters

	api-key

	Required string - The application’s API key

	name

	Optional string - Return results matching the given name

Available filters icontains - Return results containing the given name

Example: /api/v2/groups?api-key=12345name__icontains=foo

	curator

	Optional integer - Return results matching given mozillians id

	functional_area

	Optional True/False - Return results containing only groups that are functional areas

	members_can_leave

	Optional True/False - Return results containing groups with members_can_leave policy

	accepting_new_members

	Optional True/False - Return results containing only groups with accepting_new_members policy

	page

	Optional integer - Return results contained in specific page

Return Codes

	Code

	Description

	200:

	OK Success!

	403:

	Wrong api-key or api-key not activated OR application not authorized

Examples

Get groups:

Request:

/api/v2/groups?api-key=12345

Response:

{
 "count": 1628,
 "next": "https://mozillians.org/api/v2/groups/?page=2",
 "previous": null,
 "results": [
 {
 "id": 262,
 "url": "https://mozillians.org/en-US/group/airmozilla/",
 "name": "air mozilla",
 "member_count": 17,
 "_url": "https://mozillians.org/api/v2/groups/262/"
 },
 {
 "id": 12520,
 "url": "https://mozillians.org/en-US/group/air-mozilla-contributors/",
 "name": "air mozilla contributors",
 "member_count": 11,
 "_url": "https://mozillians.org/api/v2/groups/12520/"
 },
 {
 "id": 11427,
 "url": "https://mozillians.org/en-US/group/alumni/",
 "name": "alumni",
 "member_count": 34,
 "_url": "https://mozillians.org/api/v2/groups/11427/"
 },
 {
 "id": 12400,
 "url": "https://mozillians.org/en-US/group/amara/",
 "name": "amara",
 "member_count": 1,
 "_url": "https://mozillians.org/api/v2/groups/12400/"
 }
]
 }

Get details for group having id 509:

/api/v2/groups/509/?api-key=12345

Skills

The skills method of the Mozillians API returns information about skills.

Endpoint

https://mozillians.org/api/v2/skills/

Parameters

	api-key

	Required string - The application’s API key

	page

	Optional integer - Return results contained in specific page

	name

	Optional string - Return results matching the given name

Available filters icontains - Return results containing the given name

Example: /api/v2/skills?api-key=12345name__icontains=foo

Return Codes

	Code

	Description

	200:

	OK Success!

	403:

	Wrong api-key or api-key not activated OR application not authorized

Examples

Get skills:

Request:

/api/v2/skills?api-key=12345

Response:

{
 "count": 7011,
 "next": "https://mozillians.org/api/v2/skills/?page=2",
 "previous": null,
 "results": [
 {
 "id": 6124,
 "url": "https://mozillians.org/en-US/skill/nodejs-3/",
 "name": ".nodejs",
 "member_count": 10,
 "_url": "https://mozillians.org/api/v2/skills/6124/"
 },
 {
 "id": 6162,
 "url": "https://mozillians.org/en-US/skill/php-3/",
 "name": ".php",
 "member_count": 91,
 "_url": "https://mozillians.org/api/v2/skills/6162/"
 },
 {
 "id": 5295,
 "url": "https://mozillians.org/en-US/skill/project-management-marketing-fundamentals-logistic/",
 "name": ".project management .marketing fundamentals .logis",
 "member_count": 28,
 "_url": "https://mozillians.org/api/v2/skills/5295/"
 },
 {
 "id": 5415,
 "url": "https://mozillians.org/en-US/skill/0654598641/",
 "name": "0654598641",
 "member_count": 1,
 "_url": "https://mozillians.org/api/v2/skills/5415/"
 }
]
}

Get details for skill having id 509:

/api/v2/skills/509/?api-key=12345

MySQL DB Anonymization

Mozillians uses the production database for testing on stage and dev.
We provide a script to anonymize a database to remove some
personal information for stage, and all personal information for dev.

	Using the script:

$ cd scripts/mysql-anonymize
$ python anonymize.py anonymize_dev.yml > anon.sql
$ mysql < anon.sql

Note

Make sure your database is named mozillians. If it isn’t, you can change
the name in the .yml file you are using, it’s clearly noted on the second line
of each of the .yml configuration files.

Internationalization

How to help with internationalization of Mozillians.org.

Installation

The message files used for translation are not in the same repository as
the code, so if you are going to work on internationalization of
Mozillians, you’ll need to do a little more installation work.

	Install git client

	Clone the messages files repository under locale like this:

git clone https://github.com/mozilla-l10n/mozillians-l10n.git locale

Note

The directory in the git repository is named locales but it has to
be checked out to a local directory named locale.

Working on internationalization

Having checked out the message files, you should be able to use the following
instructions for Mozillians.org internationalization.

	For strings in python code we are using
django’s l10n functionality [https://docs.djangoproject.com/en/1.8/topics/i18n/translation/#standard-translation].

	For strings in jinja2 templates we are using Puente [https://puente.readthedocs.io/].

Managing Strings

Note

This section is for mozillians.org core developers. Other
Mozillians do not have to do any of the following to contribute
to mozillians.org.

Update Pontoon

When we commit new strings or we alter already existing strings in our
codebase we need to perform a string merge to update Pontoon.
Pontoon [https://pontoon.mozilla.org/projects/mozillians/] is the
tool localizers use to translate mozillians.org strings.

Steps to follow to perform a string merge:

	Update your local git repository:

cd locale
git checkout master
git pull origin master

	String extract and merge:

./manage.py extract
./manage.py merge

	Check the diff to make sure things look normal:

cd locale
git status
git diff

Note

Make sure things look normal. Changes in libraries
(e.g. tower) can break things, like remove half of the
strings.

	Lint translations. See Linting translations.

	Commit to git repository:

git commit -a -m "Mozillians string merge"

	Push changes to master branch:

git push origin master

	Optionally update production. See Updating Production Translations.

Linting translations

Sometimes translations have coding errors. Fortunately there is tool
called dennis [https://github.com/willkg/dennis] which will find
all the errors.

	Make sure you have dennis:

pip install dennis

	Run dennis linter:

dennis-cmd lint locale

	If dennis returns no errors or warnings your job is
done. Otherwise continue reading.

	Visit each file that dennis reports and locate the problematic translation:

	Sometimes translations with variables are missing special
characters. This can be easily fixed and you can do
it. Here’s an example:

Here is the original, English string:

msgid "Sorry, we cannot find any mozillians with skill %(name)s"

and a incomplete Spanish translation:

msgstr "Discúlpanos, pero no encontramos ningún mozillero en %(name)"

The Spanish translation is missing a final s right after
%(name). The missing character is part of the variable
definition and without it the template engine cannot parse
the template.

We fix the incomplete translation by adding the missing
character.

	If the translation needs attention from the translator we
add fuzzy flag to the translation. This way we don’t
delete the broken translation but we instruct the template
engine not to use it.

For example for this translation:

#: mozillians/templates/groups/skill.html:31
msgid "Sorry, we cannot find any mozillians with skill %(name)s"
msgstr "Something is wrong here"

we add a line like this:

#: mozillians/templates/groups/skill.html:31
#, fuzzy
msgid "Sorry, we cannot find any mozillians with skill %(name)s"
msgstr "Something is wrong here"

Updating Production Translations

Production server https://mozillians.org checks out translations from
the production branch instead of master.

	Make sure that the translations in master have no errors. See Linting translations

Warning

Translations with errors can bring (pages of the) website
down. The template engine will fail to parse the strings and
a 500 error will be returned to users. It is really important
that translations copied to production are correct.

	Checkout production branch if you don’t have it already:

cd locale
git fetch origin
git checkout production

	Merge current master into production:

git merge master

	Verify that everything looks good:

git status
git diff

	Commit merge to production branch:

git commit -a -m "Update mozillians production strings."

	Push new strings to production branch:

git push origin production

	Production will get the new translations on next push.

Basket integration

In order to facilitate mass emailing and subscribing to Mozilla newsletters,
Mozillians.org is integrated with Basket [https://basket.readthedocs.io/].

How does it work?

HTTP API calls

Basket exposes an HTTP API that allows consumers to interact with Mozilla’s newsletters.
Specifically we are using basket-client [https://github.com/mozilla/basket-client]
a Python implementation that makes it easier to integrate with django apps.

The Basket endpoints that Mozillians.org is using are the following:

	Lookup user [https://basket.readthedocs.io/newsletter_api.html#news-lookup-user]

	Retrieve user information based on their email

	Subscribe user [https://basket.readthedocs.io/newsletter_api.html#news-subscribe]

	Subscribe user to the defined newsletters

	Unsubscribe user [https://basket.readthedocs.io/newsletter_api.html#news-unsubscribe]

	Unsubscribe user from the defined newsletters

Mozillians.org newsletters

In Mozillians.org we maintain 2 newsletters

	mozilla-phone for all our vouched users

	mozillians-nda for all the members of the NDA group

Implementation architecture

In order to avoid blocking the user HTTP request/response cycle we are heavily using
celery to make all the Basket API interactions asynchronous. That means that all Basket API calls
are being done in the background and not necessarily in the exact time that an action
triggered the API call.

Note

All Basket API related code is behind waffle [https://waffle.readthedocs.io/en/v0.11/]
switches. That means that in order to enable Basket integration, BASKET_SWITCH_ENABLED
should be enabled. Same way you can disable all Basket API calls by disabling this switch.

Our celery tasks are implemented as chains [http://docs.celeryproject.org/en/latest/userguide/canvas.html#chains]
of subtasks. This way we can easily re-use generic chunks of code and abort the chain of tasks in case something
goes wrong. Here are our task definitions.

	subscribe_user_to_basket(instance_id, newsletters=[])

	Lookup user in Basket

	Based on the lookup results subscribe user to newsletters defined

	unsubscribe_from_basket_task(email, newsletters=[])

	Lookup user in Basket

	Based on the lookup results unsubscribe user from newsletters defined

	update_email_in_basket(old_email, new_email)

	Lookup user’s old email in Basket

	Based on the lookup results unsubscribe old email from all the mozillians.org newsletters that user is subscribed

	Subscribe new email to the newsletters defined above

Newsletter policies

When a Mozillian:

	becomes a member of the NDA group, we trigger a subscription to mozillians-nda.

	leaves the NDA group, we trigger an unsubscription from mozillians-nda.

	become vouched, we trigger a subscription to mozilla-phone.

	changes their primary email, we trigger an email change in basket.

Administrative actions

In order to allow Mozillians.org admins manage basket subscriptions we expose the following tasks
as admin actions:

	subscribe_user_to_basket

	unsubscribe_from_basket_task

Note

There is no logic implemented behind these admin actions. That means that admins are explicitly
allowed to subscribe/unsubscribe mozillians even when policies are not met.

Deployment details

All three Mozillians.org environments (dev/stage/prod) are Basket enabled. For development purposes,
mozillians-dev and mozillians-stage are pointing to a sandboxed basket instance (basket-dev).

Index

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Mozillians

 		
 Installation

 		
 Docker Installation

 		
 Dependencies

 		
 Building mozillians

 		
 Running mozillians

 		
 VirtualEnv Installation

 		
 Dependencies

 		
 MySQL setup

 		
 Running Mozillians

 		
 Testing

 		
 Testing Mozillians Code

 		
 Test Coverage

 		
 Test Cases for NDA renewal feature

 		
 Invitation System

 		
 Inviting en-masse

 		
 How to Contribute

 		
 Git workflow

 		
 Templates

 		
 display_context

 		
 get_context

 		
 is_callable

 		
 Server architecture

 		
 Pushing to production

 		
 What to work on

 		
 Mozillians API

 		
 Using API Data

 		
 API v2

 		
 MySQL DB Anonymization

 		
 Internationalization

 		
 Installation

 		
 Working on internationalization

 		
 Managing Strings

 		
 Update Pontoon

 		
 Linting translations

 		
 Updating Production Translations

 		
 Basket integration

 		
 How does it work?

 		
 HTTP API calls

 		
 Mozillians.org newsletters

 		
 Implementation architecture

 		
 Newsletter policies

 		
 Administrative actions

 		
 Deployment details

_static/up.png

