

Welcome to mozilla-django-oidc’s documentation!

Contents:

	Installation
	Quick start

	Additional optional configuration

	Settings

	XHR (AJAX) Usage

	DRF (Django REST Framework) integration

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Credits
	Development Lead

	Contributors

	History
	1.1.2 (2018-08-24)

	1.1.1 (2018-08-09)

	1.1.0 (2018-08-02)

	1.0.0 (2018-05-09)

	0.6.0 (2018-03-27)

	0.5.0 (2018-01-10)

	0.4.2 (2017-11-29)

	0.4.1 (2017-10-25)

	0.4.0 (2017-10-24)

	0.3.2 (2017-10-03)

	0.3.1 (2017-06-15)

	0.3.0 (2017-06-13)

	0.2.0 (2017-06-07)

	0.1.0 (2016-10-12)

Installation

At the command line:

$ pip install mozilla-django-oidc

Quick start

After installation, you’ll need to do some things to get your site using
mozilla-django-oidc.

Requirements

This library supports Python 2.7 and 3.3+ on OSX and Linux.

Acquire a client id and client secret

Before you can configure your application, you need to set up a client with an
OpenID Connect provider (OP).

You’ll need to set up a different client for every environment you have for
your site. For example, if your site has a -dev, -stage, and -prod environments,
each of those has a different hostname and thus you need to set up a separate
client for each one.

You need to provide your OpenID Connect provider (OP) the callback url for your
site. The URL path for the callback url is /oidc/callback/.

Here are examples of callback urls:

	http://127.0.0.1:8000/oidc/callback/ – for local development

	https://myapp-dev.example.com/oidc/callback/ – -dev environment for myapp

	https://myapp.herokuapps.com/oidc/callback/ – my app running on Heroku

The OpenID Connect provider (OP) will then give you the following:

	a client id (OIDC_RP_CLIENT_ID)

	a client secret (OIDC_RP_CLIENT_SECRET)

You’ll need these values for settings.

Choose the appropriate algorithm

Depending on your OpenID Connect provider (OP) you might need to change the
default signing algorithm from HS256 to RS256 by settings the
OIDC_RP_SIGN_ALGO value accordingly.

For RS256 algorithm to work, you need to set either the OP signing key or
the OP JWKS Endpoint.

The corresponding settings values are:

OIDC_RP_IDP_SIGN_KEY = "<OP signing key in PEM or DER format>"
OIDC_OP_JWKS_ENDPOINT = "<URL of the OIDC OP jwks endpoint>"

If both specified, the key takes precedence.

Add settings to settings.py

Start by making the following changes to your settings.py file.

Add 'mozilla_django_oidc' to INSTALLED_APPS
INSTALLED_APPS = (
 # ...
 'django.contrib.auth',
 'mozilla_django_oidc', # Load after auth
 # ...
)

Add 'mozilla_django_oidc' authentication backend
AUTHENTICATION_BACKENDS = (
 'mozilla_django_oidc.auth.OIDCAuthenticationBackend',
 # ...
)

You also need to configure some OpenID Connect related settings too.

These values come from your OpenID Connect provider (OP).

OIDC_RP_CLIENT_ID = os.environ['OIDC_RP_CLIENT_ID']
OIDC_RP_CLIENT_SECRET = os.environ['OIDC_RP_CLIENT_SECRET']

Warning

The OpenID Connect provider (OP) provided client id and secret are secret
values.

DON’T check them into version control–pull them in from the environment.

If you ever accidentally check them into version control, contact your OpenID
Connect provider (OP) as soon as you can, disable that set of client id and
secret, and generate a new set.

These values are specific to your OpenID Connect provider (OP)–consult their
documentation for the appropriate values.

OIDC_OP_AUTHORIZATION_ENDPOINT = "<URL of the OIDC OP authorization endpoint>"
OIDC_OP_TOKEN_ENDPOINT = "<URL of the OIDC OP token endpoint>"
OIDC_OP_USER_ENDPOINT = "<URL of the OIDC OP userinfo endpoint>"

Warning

Don’t use Django’s cookie-based sessions because they might open you up to
replay attacks.

You can find more info about cookie-based sessions [https://docs.djangoproject.com/en/1.11/topics/http/sessions/#using-cookie-based-sessions] in Django’s documentation.

These values relate to your site.

LOGIN_REDIRECT_URL = "<URL path to redirect to after login>"
LOGOUT_REDIRECT_URL = "<URL path to redirect to after logout>"

Add routing to urls.py

Next, edit your urls.py and add the following:

urlpatterns = patterns(
 # ...
 url(r'^oidc/', include('mozilla_django_oidc.urls')),
 # ...
)

Add login link to templates

Then you need to add the login link to your templates. The view name is
oidc_authentication_init.

Django templates example:

<html>
 <body>
 {% if user.is_authenticated %}
 <p>Current user: {{ user.email }}</p>
 {% else %}
 Login
 {% endif %}
 </body>
</html>

Jinja2 templates example:

<html>
 <body>
 {% if user.is_authenticated() %}
 <p>Current user: {{ user.email }}</p>
 {% else %}
 Login
 {% endif %}
 </body>
</html>

Additional optional configuration

Validate ID tokens by renewing them

Users log into your site by authenticating with an OIDC provider. While the user
is doing things on your site, it’s possible that the account that the user used
to authenticate with the OIDC provider was disabled. A classic example of this
is when a user quits his/her job and their LDAP account is disabled.

However, even if that account was disabled, the user’s account and session on
your site will continue. In this way, a user can quit his/her job, lose access to
his/her corporate account, but continue to use your website.

To handle this scenario, your website needs to know if the user’s id token with
the OIDC provider is still valid. You need to use the
mozilla_django_oidc.middleware.SessionRefresh middleware.

To add it to your site, put it in the settings:

MIDDLEWARE_CLASSES = [
 # middleware involving session and authentication must come first
 # ...
 'mozilla_django_oidc.middleware.SessionRefresh',
 # ...
]

The mozilla_django_oidc.middleware.SessionRefresh middleware will
check to see if the user’s id token has expired and if so, redirect to the OIDC
provider’s authentication endpoint for a silent re-auth. That will redirect back
to the page the user was going to.

The length of time it takes for an id token to expire is set in
settings.OIDC_RENEW_ID_TOKEN_EXPIRY_SECONDS which defaults to 15 minutes.

Connecting OIDC user identities to Django users

By default, mozilla-django-oidc looks up a Django user matching the email field
to the email address returned in the user info data from the OIDC provider.

This means that no two users in the Django user table can have the same email
address. Since the email field is not unique, it’s possible that this can
happen. Especially if you allow users to change their email address. If it ever
happens, then the users in question won’t be able to authenticate.

If you want different behavior, subclass the
mozilla_django_oidc.auth.OIDCAuthenticationBackend class and
override the filter_users_by_claims method.

For example, let’s say we store the email address in a Profile table
in a field that’s marked unique so multiple users can’t have the same
email address. Then we could do this:

from mozilla_django_oidc.auth import OIDCAuthenticationBackend

class MyOIDCAB(OIDCAuthenticationBackend):
 def filter_users_by_claims(self, claims):
 email = claims.get('email')
 if not email:
 return self.UserModel.objects.none()

 try:
 profile = Profile.objects.get(email=email)
 return profile.user

 except Profile.DoesNotExist:
 return self.UserModel.objects.none()

Then you’d use the Python dotted path to that class in the
settings.AUTHENTICATION_BACKENDS instead of
mozilla_django_oidc.auth.OIDCAuthenticationBackend.

Creating Django users

Generating usernames

If a user logs into your site and doesn’t already have an account, by default,
mozilla-django-oidc will create a new Django user account. It will create the
User instance filling in the username (hash of the email address) and email
fields.

If you want something different, set settings.OIDC_USERNAME_ALGO to a Python
dotted path to the function you want to use.

The function takes in an email address as a text (Python 2 unicode or Python 3
string) and returns a text (Python 2 unicode or Python 3 string).

Here’s an example function for Python 3 and Django 1.11 that doesn’t convert
the email address at all:

import unicodedata

def generate_username(email):
 # Using Python 3 and Django 1.11, usernames can contain alphanumeric
 # (ascii and unicode), _, @, +, . and - characters. So we normalize
 # it and slice at 150 characters.
 return unicodedata.normalize('NFKC', email)[:150]

See also

	Django 1.8 username:

	https://docs.djangoproject.com/en/1.8/ref/contrib/auth/#django.contrib.auth.models.User.username

	Django 1.11 username:

	https://docs.djangoproject.com/en/1.11/ref/contrib/auth/#django.contrib.auth.models.User.username

	Django 2.0 username:

	https://docs.djangoproject.com/en/2.0/ref/contrib/auth/#django.contrib.auth.models.User.username

Changing how Django users are created

If your website needs to do other bookkeeping things when a new User record
is created, then you should subclass the
mozilla_django_oidc.auth.OIDCAuthenticationBackend class and
override the create_user method, and optionally, the update_user method.

For example, let’s say you want to populate the User instance with other
data from the claims:

from mozilla_django_oidc.auth import OIDCAuthenticationBackend
from myapp.models import Profile

class MyOIDCAB(OIDCAuthenticationBackend):
 def create_user(self, claims):
 user = super(MyOIDCAB, self).create_user(claims)

 user.first_name = claims.get('given_name', '')
 user.last_name = claims.get('family_name', '')
 user.save()

 return user

 def update_user(self, user, claims):
 user.first_name = claims.get('given_name', '')
 user.last_name = claims.get('family_name', '')
 user.save()

 return user

Then you’d use the Python dotted path to that class in the
settings.AUTHENTICATION_BACKENDS instead of
mozilla_django_oidc.auth.OIDCAuthenticationBackend.

See also

https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Preventing mozilla-django-oidc from creating new Django users

If you don’t want mozilla-django-oidc to create Django users, you can add this
setting:

OIDC_CREATE_USER = False

You might want to do this if you want to control user creation because your
system requires additional process to allow people to use it.

Advanced user verification based on their claims

In case you need to check additional values in the user’s claims to decide
if the authentication should happen at all (included creating new users
if OIDC_CREATE_USER is True), then you should subclass the
mozilla_django_oidc.auth.OIDCAuthenticationBackend class and
override the verify_claims method. It should return either True or
False to either continue or stop the whole authentication process.

class MyOIDCAB(OIDCAuthenticationBackend):
 def verify_claims(self, claims):
 verified = super(MyOIDCAB, self).verify_claims(claims)
 is_admin = 'admin' in claims.get('group', [])
 return verified and is_admin

See also

https://openid.net/specs/openid-connect-core-1_0.html#StandardClaims

Log user out of the OpenID Connect provider

When a user logs out, by default, mozilla-django-oidc will end the current
Django session. However, the user may still have an active session with the
OpenID Connect provider, in which case, the user would likely not be prompted
to log back in.

Some OpenID Connect providers support a custom (not part of OIDC spec) mechanism
to end the provider’s session. We can build a function for
OIDC_OP_LOGOUT_URL_METHOD that will redirect the user to the provider after
mozilla-django-oidc ends the Django session.

def provider_logout(request):
 # See your provider's documentation for details on if and how this is
 # supported
 redirect_url = 'https://myprovider.com/logout'
 return redirect_url

The request.build_absolute_uri can be used if the provider requires
a return-to location.

Troubleshooting

mozilla-django-oidc logs using the mozilla_django_oidc logger. Enable that
logger in settings to see logging messages to help you debug:

LOGGING = {
 ...
 'loggers': {
 'mozilla_django_oidc': {
 'handlers': ['console'],
 'level': 'DEBUG'
 },
 ...
}

Make sure to use the appropriate handler for your app.

Settings

This document describes the Django settings that can be used to customize the configuration
of mozilla-django-oidc.

	
OIDC_OP_AUTHORIZATION_ENDPOINT

	
	Default

	No default

URL of your OpenID Connect provider authorization endpoint.

	
OIDC_OP_TOKEN_ENDPOINT

	
	Default

	No default

URL of your OpenID Connect provider token endpoint

	
OIDC_OP_USER_ENDPOINT

	
	Default

	No default

URL of your OpenID Connect provider userinfo endpoint

	
OIDC_RP_CLIENT_ID

	
	Default

	No default

OpenID Connect client ID provided by your OP

	
OIDC_RP_CLIENT_SECRET

	
	Default

	No default

OpenID Connect client secret provided by your OP

	
OIDC_VERIFY_JWT

	
	Default

	True

Controls whether the OpenID Connect client verifies the signature of the JWT tokens

	
OIDC_USE_NONCE

	
	Default

	True

Controls whether the OpenID Connect client uses nonce verification

	
OIDC_VERIFY_SSL

	
	Default

	True

Controls whether the OpenID Connect client verifies the SSL certificate of the OP responses

	
OIDC_EXEMPT_URLS

	
	Default

	[]

This is a list of absolute url paths or Django view names. This plus the
mozilla-django-oidc urls are exempted from the session renewal by the
SessionRefresh middleware.

	
OIDC_CREATE_USER

	
	Default

	True

Enables or disables automatic user creation during authentication

	
OIDC_STATE_SIZE

	
	Default

	32

Sets the length of the random string used for OpenID Connect state verification

	
OIDC_NONCE_SIZE

	
	Default

	32

Sets the length of the random string used for OpenID Connect nonce verification

	
OIDC_REDIRECT_FIELD_NAME

	
	Default

	next

Sets the GET parameter that is being used to define the redirect URL after succesful authentication

	
OIDC_CALLBACK_CLASS

	
	Default

	mozilla_django_oidc.views.OIDCAuthenticationCallbackView

Allows you to substitute a custom class-based view to be used as OpenID Connect
callback URL.

Note

When using a custom callback view, it is generally a good idea to subclass the
default OIDCAuthenticationCallbackView and override the methods you want to change.

	
OIDC_AUTHENTICATE_CLASS

	
	Default

	mozilla_django_oidc.views.OIDCAuthenticationRequestView

Allows you to substitute a custom class-based view to be used as OpenID Connect
authenticate URL.

Note

When using a custom authenticate view, it is generally a good idea to subclass the
default OIDCAuthenticationRequestView and override the methods you want to change.

	
OIDC_RP_SCOPES

	
	Default

	openid email

The OpenID Connect scopes to request during login.

	
OIDC_STORE_ACCESS_TOKEN

	
	Default

	False

Controls whether the OpenID Connect client stores the OIDC access_token in the user session.
The session key used to store the data is oidc_access_token.

By default we want to store as few credentials as possible so this feature defaults to False
and it’s use is discouraged.

Warning

This feature stores authentication information in the session. If used in combination with Django’s
cookie-based session backend, those tokens will be visible in the browser’s cookie store.

	
OIDC_STORE_ID_TOKEN

	
	Default

	False

Controls whether the OpenID Connect client stores the OIDC id_token in the user session.
The session key used to store the data is oidc_id_token.

	
OIDC_AUTH_REQUEST_EXTRA_PARAMS

	
	Default

	{}

Additional parameters to include in the initial authorization request.

	
OIDC_RP_SIGN_ALGO

	
	Default

	HS256

Sets the algorithm the IdP uses to sign ID tokens.

	
OIDC_RP_IDP_SIGN_KEY

	
	Default

	None

Sets the key the IdP uses to sign ID tokens in the case of an RSA sign algorithm.
Should be the signing key in PEM or DER format.

	
LOGIN_REDIRECT_URL

	
	Default

	/accounts/profile

Path to redirect to on successful login. If you don’t specify this, the
default Django value will be used.

See also

https://docs.djangoproject.com/en/1.11/ref/settings/#login-redirect-url

	
LOGIN_REDIRECT_URL_FAILURE

	
	Default

	/

Path to redirect to on an unsuccessful login attempt.

	
LOGOUT_REDIRECT_URL

	
	Default

	/ (Django <= 1.9) None (Django 1.10+)

After the logout view has logged the user out, it redirects to this url path.

See also

https://docs.djangoproject.com/en/1.11/ref/settings/#logout-redirect-url

	
OIDC_OP_LOGOUT_URL_METHOD

	
	Default

	'' (will use LOGOUT_REDIRECT_URL)

Function path that returns a URL to redirect the user to after
auth.logout() is called.

Changed in version 0.7.0: The function must now take a request parameter.

	
OIDC_AUTHENTICATION_CALLBACK_URL

	
	Default

	oidc_authentication_callback

URL pattern name for OIDCAuthenticationCallbackView. Will be passed to reverse.
The pattern can also include namespace in order to resolve included urls.

See also

https://docs.djangoproject.com/en/2.0/topics/http/urls/#url-namespaces

	
OIDC_ALLOW_UNSECURED_JWT

	
	Default

	False

Controls whether the authentication backend is going to allow unsecured JWT tokens (tokens with header {"alg":"none"}).
This needs to be set to True if OP is returning unsecured JWT tokens and RP wants to accept them.

See also

https://tools.ietf.org/html/rfc7519#section-6

XHR (AJAX) Usage

If you do configure the middleware that intercepts requests and potentially
forces a refresh to refresh your session, this gets tricky with XHR requests.
Usually XHR requests (with libraries like fetch or jQuery.ajax)
follow redirects by default (which is most likely a good thing). The problem
is that it can’t redirect back to the OP when it’s time to refresh your
session. So for XHR requests, some special handling is required by you.

// DON'T DO THIS!

fetch('/server/api/get/stuff', {credentials: 'same-origin'})
.then(response => {
 response.json()
 .then(stuff => {
 doSomethingWith(stuff);
 })
});

The problem with the above code is that it’s wrong to assume the XHR
response is going to be application/json if the server’s middleware
insisted you need to refresh your session.

Instead watch out for a 403 Forbidden response when, in conjunction,
there is a header called refresh_url. Like this:

// This assumes the /server/api/* requests are intercepted by the
// mozilla-django-oidc refresh middleware.

fetch('/server/api/get/stuff', {credentials: 'same-origin'})
.then(response => {
 if (response.status === 403 && response.headers.get("refresh_url")) {
 // Perhaps do something fancier than alert()
 alert("You have to refresh your authentication.")
 // Redirect the user out of this application.
 document.location.href = response.headers.get("refresh_url");
 } else {
 response.json()
 .then(stuff => {
 doSomethingWith(stuff);
 })
 }
});

Note

The refresh middleware only applies to GET requests.

You don’t have to use document.location.href to redirect immediately
inside the client-side application. Perhaps you can other things like
updating the DOM to say that the user has to refresh their authentication
and provide a regular link.

DRF (Django REST Framework) integration

If you want DRF to authenticate users based on an OAuth access token provided in
the Authorization header, you can use the DRF-specific authentication class
which ships with the package.

Add this to your settings:

REST_FRAMEWORK = {
 'DEFAULT_AUTHENTICATION_CLASSES': [
 'mozilla_django_oidc.contrib.drf.OIDCAuthentication',
 # other authentication classes, if needed
],
}

Note that this only takes care of authenticating against an access token, and
provides no options to create or renew tokens.

If you’ve created a custom Django OIDCAuthenticationBackend and added that
to your AUTHENTICATION_BACKENDS, the DRF class should be smart enough to
figure that out. Alternatively, you can manually set the OIDC backend to use:

OIDC_DRF_AUTH_BACKEND = 'mozilla_django_oidc.OIDCAuthenticationBackend'

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/mozilla/mozilla-django-oidc/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug”
is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature”
is open to whoever wants to implement it.

Write Documentation

mozilla-django-oidc could always use more documentation, whether as part of the
official mozilla-django-oidc docs, in docstrings, or even on the web in blog posts,
articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/mozilla/mozilla-django-oidc/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up mozilla-django-oidc for local development.

	Fork the mozilla-django-oidc repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/mozilla-django-oidc.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv mozilla-django-oidc
$ cd mozilla-django-oidc/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the
tests, including testing other Python versions with tox:

$ flake8 mozilla_django_oidc tests
$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv.

	Make sure you update HISTORY.rst with your changes in the following categories

	Backwards-incompatible changes

	Features

	Bugs

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check
https://travis-ci.org/mozilla/mozilla-django-oidc/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

We use tox to run tests:

$ tox

To run a specific environment, use the -e argument:

$ tox -e py27-django18

You can also run the tests in a virtual environment without tox:

$ DJANGO_SETTINGS_MODULE=tests.settings django-admin.py test

You can specify test modules to run rather than the whole suite:

$ DJANGO_SETTINGS_MODULE=tests.settings django-admin.py test tests.test_views

Credits

Development Lead

	Tasos Katsoulas <akatsoulas@mozilla.com>

	John Giannelos <jgiannelos@mozilla.com>

Contributors

	Will Kahn-Greene (@willkg [https://github.com/willkg])

	Peter Bengtsson (@peterbe [https://github.com/peterbe])

	Jannis Leidel (@jezdez [https://github.com/jezdez])

	Jonathan Claudius (@claudijd [https://github.com/claudijd])

	Patrick Uiterwijk (@puiterwijk [https://github.com/puiterwijk])

	Dustin J. Mitchell (@djmitche [https://github.com/djmitche])

	Giorgos Logiotatidis (@glogiotatidis [https://github.com/glogiotatidis])

	Olle Jonsson (@olleolleolle [https://github.com/olleolleolle])

	@GermanoGuerrini [https://github.com/GermanoGuerrini]

	John Paulett (@johnpaulett [https://github.com/johnpaulett])

	Andreas Lutro (@anlutro [https://github.com/anlutro])

	@Algogator [https://github.com/Algogator]

	Rob Hudson (@robhudson [https://github.com/robhudson])

	Garand Tyson (@SirTyson [https://github.com/SirTyson])

	Justin Azoff (@JustinAzoff [https://github.com/JustinAzoff])

History

1.1.2 (2018-08-24)

	Fix JWKS handling when OP returns multiple keys
Thanks `@JustinAzoff`_

1.1.1 (2018-08-09)

	Fix is_safe_url on Django 2.1

	Fix signature in authenticate method to be compatible with Django 2.1

	Remove legacy code for unsupported Django < 1.11
Thanks `@SirTyson`_

1.1.0 (2018-08-02)

	Installation doc fixes
Thanks `@mklan`_

	Drop support for unsupported Django 1.8 and Python 3.3.

	Refactor authentication backend to make it easier to extend
Required by DRF support feature.

	Add DRF support
Thanks @anlutro [https://github.com/anlutro]

	Improve local docker environment setup

	Add flag to allow using unsecured tokens

	Allow using JWK with optional alg
Thanks `@Algogator`_

1.0.0 (2018-05-09)

	Add OIDC_AUTHENTICATION_CALLBACK_URL as a new configuration parameter

	Fail earlier when JWS algorithm does not OIDC_RP_SIGN_ALGO.
Thanks @anlutro [https://github.com/anlutro]

	RS256 verification through settings.OIDC_OP_JWKS_ENDPOINT
Thanks @GermanoGuerrini [https://github.com/GermanoGuerrini]

	Refactor OIDCAuthenticationBackend so that token retrieval methods can be overridden in a subclass when you need to.

Backwards-incompatible changes:

	OIDC_OP_LOGOUT_URL_METHOD takes a request parameter now.

	Changed name of RefreshIDToken middleware to SessionRefresh.

0.6.0 (2018-03-27)

	Add e2e tests and automation

	Add caching for exempt URLs

	Fix logout when session refresh fails

0.5.0 (2018-01-10)

	Add Django 2.0 support

	Fix tox configuration

Backwards-incompatible changes:

	Drop Django 1.10 support

0.4.2 (2017-11-29)

	Fix OIDC_USERNAME_ALGO to actually load dotted import path of callback.

	Add verify_claims method for advanced authentication checks

0.4.1 (2017-10-25)

	Send bytes to josepy. Fixes python3 support.

0.4.0 (2017-10-24)

Security issues:

	High: Replace python-jose with josepy and use pyca/cryptography instead of pycrypto (CVE-2013-7459).

Backwards-incompatible changes:

	OIDC_RP_IDP_SIGN_KEY no longer uses the JWK json as dict but PEM or DER keys instead.

0.3.2 (2017-10-03)

Features:

	Implement RS256 verification
Thanks @puiterwijk [https://github.com/puiterwijk]

Bugs:

	Use settings.OIDC_VERIFY_SSL also when validating the token.
Thanks @GermanoGuerrini [https://github.com/GermanoGuerrini]

	Make OpenID Connect scope configurable.
Thanks @puiterwijk [https://github.com/puiterwijk]

	Add path host injection unit-test (#171)

	Revisit OIDC_STORE_{ACCESS,ID}_TOKEN config entries

	Allow configuration of additional auth parameters

0.3.1 (2017-06-15)

Security issues:

	Medium: Sanitize next url for authentication view

0.3.0 (2017-06-13)

Security issues:

	Low: Logout using POST not GET (#126)

Backwards-incompatible changes:

	The settings.SITE_URL is no longer used. Instead the absolute URL is
derived from the request’s get_host().

	Only log out by HTTP POST allowed.

Bugs:

	Test suite maintenance (#108, #109, #142)

0.2.0 (2017-06-07)

Backwards-incompatible changes:

	Drop support for Django 1.9 (#130)

If you’re using Django 1.9, you should update Django first.

	Move middleware to mozilla_django_oidc.middleware and
change it to use authentication endpoint with prompt=none (#94)

You’ll need to update your MIDDLEWARE_CLASSES/MIDDLEWARE
setting accordingly.

	Remove legacy base64 handling of OIDC secret. Now RP secret
should be plaintext.

Features:

	Add support for Django 1.11 and Python 3.6 (#85)

	Update middleware to work with Django 1.10+ (#90)

	Documentation updates

	Rework test infrastructure so it’s tox-based (#100)

Bugs:

	always decode verified token before json.load() (#116)

	always redirect to logout_url even when logged out (#121)

	Change email matching to be case-insensitive (#102)

	Allow combining OIDCAuthenticationBackend with other backends (#87)

	fix is_authenticated usage for Django 1.10+ (#125)

0.1.0 (2016-10-12)

	First release on PyPI.

Index

 L
 | O

L

 	
 	LOGIN_REDIRECT_URL

 	
 	LOGIN_REDIRECT_URL_FAILURE

 	LOGOUT_REDIRECT_URL

O

 	
 	OIDC_ALLOW_UNSECURED_JWT

 	OIDC_AUTH_REQUEST_EXTRA_PARAMS

 	OIDC_AUTHENTICATE_CLASS

 	OIDC_AUTHENTICATION_CALLBACK_URL

 	OIDC_CALLBACK_CLASS

 	OIDC_CREATE_USER

 	OIDC_EXEMPT_URLS

 	OIDC_NONCE_SIZE

 	OIDC_OP_AUTHORIZATION_ENDPOINT

 	OIDC_OP_LOGOUT_URL_METHOD

 	OIDC_OP_TOKEN_ENDPOINT

 	OIDC_OP_USER_ENDPOINT

 	
 	OIDC_REDIRECT_FIELD_NAME

 	OIDC_RP_CLIENT_ID

 	OIDC_RP_CLIENT_SECRET

 	OIDC_RP_IDP_SIGN_KEY

 	OIDC_RP_SCOPES

 	OIDC_RP_SIGN_ALGO

 	OIDC_STATE_SIZE

 	OIDC_STORE_ACCESS_TOKEN

 	OIDC_STORE_ID_TOKEN

 	OIDC_USE_NONCE

 	OIDC_VERIFY_JWT

 	OIDC_VERIFY_SSL

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to mozilla-django-oidc’s documentation!

 		
 Installation

 		
 Quick start

 		
 Requirements

 		
 Acquire a client id and client secret

 		
 Choose the appropriate algorithm

 		
 Add settings to settings.py

 		
 Add routing to urls.py

 		
 Add login link to templates

 		
 Additional optional configuration

 		
 Validate ID tokens by renewing them

 		
 Connecting OIDC user identities to Django users

 		
 Creating Django users

 		
 Troubleshooting

 		
 Settings

 		
 XHR (AJAX) Usage

 		
 DRF (Django REST Framework) integration

 		
 Contributing

 		
 Types of Contributions

 		
 Report Bugs

 		
 Fix Bugs

 		
 Implement Features

 		
 Write Documentation

 		
 Submit Feedback

 		
 Get Started!

 		
 Pull Request Guidelines

 		
 Tips

 		
 Credits

 		
 Development Lead

 		
 Contributors

 		
 History

 		
 1.1.2 (2018-08-24)

 		
 1.1.1 (2018-08-09)

 		
 1.1.0 (2018-08-02)

 		
 1.0.0 (2018-05-09)

 		
 0.6.0 (2018-03-27)

 		
 0.5.0 (2018-01-10)

 		
 0.4.2 (2017-11-29)

 		
 0.4.1 (2017-10-25)

 		
 0.4.0 (2017-10-24)

 		
 0.3.2 (2017-10-03)

 		
 0.3.1 (2017-06-15)

 		
 0.3.0 (2017-06-13)

 		
 0.2.0 (2017-06-07)

 		
 0.1.0 (2016-10-12)

_static/up-pressed.png

_static/up.png

