
MozDef Documentation

Mozilla

Oct 07, 2019

Contents

1 Overview 1
1.1 What? . 1
1.2 Why? . 1
1.3 Goals . 1
1.4 Architecture . 2
1.5 Status . 3
1.6 Roadmap . 3

2 Introduction 5
2.1 Concept of operations . 5

3 Demo Instance 7

4 Installation 9
4.1 Build and run MozDef . 9
4.2 Run tests . 9
4.3 Manual Installation for Yum or Apt based distros . 10
4.4 Web and Workers nodes . 10

5 Alert Development Guide 19
5.1 How to start developing your new alert . 19
5.2 How to run tests on your alert . 19
5.3 Background on concepts . 20
5.4 Example first alert . 20
5.5 Scheduling your alert . 21
5.6 How to run the alert in the docker containers . 21
5.7 How to get the alert in a release of MozDef? . 22
5.8 Customizing the alert summary . 22
5.9 Questions? . 23
5.10 Resources . 23

6 Mozdef_util Library 25
6.1 Connecting to Elasticsearch . 25
6.2 Creating/Updating Documents . 25
6.3 Searching for documents . 27
6.4 Match/Query Classes . 29

i

7 Screenshots 33
7.1 Health and Status . 33
7.2 Alerts . 34
7.3 Incident Handling . 35
7.4 d3 visualizations . 36
7.5 Geo location of Attackers . 37
7.6 3D interactive Attacker visualization . 37
7.7 3D interactive Attack visualization via Landmass . 38

8 Usage 39
8.1 Web Interface . 39
8.2 Sending logs to MozDef . 39
8.3 JSON format . 42
8.4 Simple test . 44
8.5 Writing alerts . 44

9 MozDef for AWS 47
9.1 Feedback . 47
9.2 Dependencies . 47
9.3 Supported Regions . 48
9.4 Architecture . 48
9.5 Deployment Process . 49
9.6 Troubleshooting . 49
9.7 Using MozDef . 50
9.8 AWS re:invent 2018 SEC403 Presentation . 50

10 Advanced Settings 51
10.1 Conf files . 51

11 Code 53
11.1 Plugins . 53
11.2 Actions . 56

12 Continuous Integration and Continuous Deployment 57
12.1 Overview . 57
12.2 Travis CI . 57
12.3 AWS CodeBuild . 58

13 References 61

14 Contributors 63

15 Indices and tables 65

16 License 67

17 Contact 69

ii

CHAPTER 1

Overview

1.1 What?

It’s easiest to describe The Mozilla Defense Platform (MozDef) as a set of micro-services you can use as an open
source Security Information and Event Management (SIEM) overlay on top of Elasticsearch.

1.2 Why?

The inspiration for MozDef comes from the large arsenal of tools available to attackers. Open source suites like
metasploit, armitage, lair, dradis and others are readily available to help attackers coordinate, share intelligence and
finely tune their attacks in real time.

Open source options for defenders are usually limited to wikis, ticketing systems and manual tracking databases
attached to the end of a commercial SIEM.

The Mozilla Defense Platform (MozDef) seeks to automate the security incident handling process and facilitate the
real-time activities of incident handlers.

1.3 Goals

1.3.1 High level

• Provide a platform for use by defenders to rapidly discover and respond to security incidents

• Automate interfaces to other systems like firewalls, cloud protections and anything that has an API

• Provide metrics for security events and incidents

• Facilitate real-time collaboration amongst incident handlers

• Facilitate repeatable, predictable processes for incident handling

1

MozDef Documentation

• Go beyond traditional SIEM systems in automating incident handling, information sharing, workflow, metrics
and response automation

1.3.2 Technical

• Offer micro services that make up an Open Source Security Information and Event Management (SIEM)

• Scalable, should be able to handle thousands of events per second, provide fast searching, alerting, correlation
and handle interactions between teams of incident handlers

MozDef aims to provide traditional SIEM functionality including:

• Accepting events/logs from a variety of systems.

• Storing events/logs.

• Facilitating searches.

• Facilitating alerting.

• Facilitating log management (archiving,restoration).

It is non-traditional in that it:

• Accepts only JSON input.

• Provides you open access to your data.

• Integrates with a variety of log shippers including logstash, beaver, nxlog, syslog-ng and any shipper that can
send JSON to either rabbit-mq or an HTTP(s) endpoint.

• Provides easy integration to Cloud-based data sources such as CloudTrail or GuardDuty.

• Provides easy python plugins to manipulate your data in transit.

• Provides extensive plug-in opportunities to customize your event enrichment stream, your alert workflow, etc.

• Provides realtime access to teams of incident responders to allow each other to see their work simultaneously.

1.4 Architecture

MozDef is based on open source technologies including:

• Nginx (http(s)-based log input)

• RabbitMQ (message queue and amqp(s)-based log input)

• uWSGI (supervisory control of python-based workers)

• bottle.py (simple python interface for web request handling)

• Elasticsearch (scalable indexing and searching of JSON documents)

• Meteor (responsive framework for Node.js enabling real-time data sharing)

• MongoDB (scalable data store, tightly integrated to Meteor)

• VERIS from verizon (open source taxonomy of security incident categorizations)

• d3 (javascript library for data driven documents)

• dc.js (javascript wrapper for d3 providing common charts, graphs)

• three.js (javascript library for 3d visualizations)

2 Chapter 1. Overview

MozDef Documentation

• Firefox (a snappy little web browser)

1.4.1 Frontend processing

Frontend processing for MozDef consists of receiving an event/log (in json) over HTTP(S), AMQP(S), or SQS doing
data transformation including normalization, adding metadata, etc. and pushing the data to Elasticsearch.

Internally MozDef uses RabbitMQ to queue events that are still to be processed. The diagram below shows the
interactions between the python scripts (controlled by uWSGI), the RabbitMQ exchanges and Elasticsearch indices.

1.5 Status

MozDef has been in production at Mozilla since 2014 where we are using it to process over 300 million events per
day.

1.6 Roadmap

Initial Release:

• Facilitate replacing base SIEM functionality including log input, event management, search, alerts, basic corre-
lations

• Enhance the incident workflow UI to enable realtime collaboration

1.5. Status 3

MozDef Documentation

• Enable basic plug-ins to the event input stream for meta data, additional parsing, categorization and basic ma-
chine learning

• Support as many common event/log shippers as possible with repeatable recipes

• Base integration into Mozilla’s defense mechanisms for automation

• 3D visualizations of threat actors

• Fine tuning of interactions between meteor, mongo, dc.js

Recently implemented:

• Support for OIDC authentication/authorization

• Docker containers for each service

• Updates to support recent (breaking) versions of Elasticsearch

Future (join us!):

• Correlation through machine learning, AI

• Enhanced search for alerts, events, attackers within the MozDef UI

• Integration into common defense mechanisms used outside Mozilla

4 Chapter 1. Overview

CHAPTER 2

Introduction

2.1 Concept of operations

2.1.1 Event Management

From an event management point of view MozDef relies on Elastic Search for:

• event storage

• event archiving

• event indexing

• event searching

This means if you use MozDef for your log management you can use the features of Elastic Search to store millions
of events, archive them to Amazon if needed, index the fields of your events, and search them using highly capable
interfaces like Kibana.

MozDef differs from other log management solutions that use Elastic Search in that it does not allow your log shippers
direct contact with Elastic Search itself. In order to provide advanced functionality like event correlation, aggregation
and machine learning, MozDef inserts itself as a shim between your log shippers (rsyslog, syslog-ng, beaver, nxlog,
heka, logstash) and Elastic Search. This means your log shippers interact with MozDef directly and MozDef handles
translating their events as they make they’re way to Elastic Search.

2.1.2 Event Pipeline

The logical flow of events is:

+-----------+ +--------------+
| MozDef +--------------+ |

+----------+ | FrontEnd | Elastic |
| shipper +-------+-----------+ | Search |
++++++++++++ | cluster |

(continues on next page)

5

MozDef Documentation

(continued from previous page)

++++++++++++ | |
| shipper +-------+-----------+ | |
+----------+ | MozDef +--------------+ |

| FrontEnd | |
+-----------+ | |

+--------------+

Choose a shipper (logstash, nxlog, beaver, heka, rsyslog, etc) that can send JSON over http(s). MozDef uses nginx
to provide http(s) endpoints that accept JSON posted over http. Each front end contains a Rabbit-MQ message queue
server that accepts the event and sends it for further processing.

You can have as many front ends, shippers and cluster members as you with in any geographic organization that makes
sense for your topology. Each front end runs a series of python workers hosted by uwsgi that perform:

• event normalization (i.e. translating between shippers to a common taxonomy of event data types and fields)

• event enrichment

• simple regex-based alerting

• machine learning on the real-time event stream

2.1.3 Event Enrichment

To facilitate event correlation, MozDef allows you to write plugins to populate your event data with consistent meta-
data customized for your environment. Through simple python plug-ins this allows you to accomplish a variety of
event-related tasks like:

• further parse your events into more details

• geoIP tag your events

• correct fields not properly handled by log shippers

• tag all events involving key staff

• tag all events involving previous attackers or hits on a watchlist

• tap into your event stream for ancilary systems

• maintain ‘last-seen’ lists for assets, employees, attackers

2.1.4 Event Correlation/Alerting

Correlation/Alerting is currently handled as a series of queries run periodically against the Elastic Search engine.
This allows MozDef to make full use of the lucene query engine to group events together into summary alerts and to
correlate across any data source accessible to python.

2.1.5 Incident Handling

From an incident handling point of view MozDef offers the realtime responsiveness of Meteor in a web interface. This
allows teams of incident responders the ability to see each others actions in realtime, no matter their physical location.

6 Chapter 2. Introduction

CHAPTER 3

Demo Instance

Mozilla used to maintain a demo instance of MozDef, however it’s currently offline. Best bet for demo is to clone
the repo and use the docker containers to stand up a local instance for yourself. There are some scripts in the https:
//github.com/mozilla/MozDef/tree/master/examples/demo folder to send sample events into a local docker instance
that will generate alerts, attackers, etc and give you a feel for the flow.

First; set up your docker environment with some tweaks to avoid some common pitfalls:

1) Allocate it at least 4GB of memory

2) Use the aufs filesystem driver (to avoid issues unpacking tar files on overlayfs)

Once you’ve done that, here’s how to make MozDef go using the provided docker compose files:

1) Pull the repo: git clone https://github.com/mozilla/MozDef.git

2) Run the containers:

docker-compose -f docker/compose/docker-compose.yml -p mozdef up

4) Firefox yourself to http://localhost to see the main UI (when the container starts)

5) Login using a locally created account (click login, create and choose a username/password)

7

https://github.com/mozilla/MozDef/tree/master/examples/demo
https://github.com/mozilla/MozDef/tree/master/examples/demo
https://github.com/mozilla/MozDef.git
http://localhost

MozDef Documentation

8 Chapter 3. Demo Instance

CHAPTER 4

Installation

The installation process has been tested on CentOS 7.

4.1 Build and run MozDef

You can quickly install MozDef with an automated build generation using docker:

make build
make run

You’re done! Now go to:

• http://localhost < meteor (main web interface)

• http://localhost:9090/app/kibana < kibana

• http://localhost:9200 < elasticsearch

• http://localhost:8080 < loginput

Note: The build system has changed make targets for multiple-* and single-* have been replaced by the above
commands (make run, etc.) Just type make to get a list of available targets.

4.2 Run tests

Simply run:

make test

Note, if you end up with a clobbered ES index, or anything like that which might end up in failing tests, you can clean
the environment with:

9

http://localhost
http://localhost:9090/app/kibana
http://localhost:9200
http://localhost:8080

MozDef Documentation

make clean

Then run the tests again.

4.3 Manual Installation for Yum or Apt based distros

4.3.1 Summary

This section explains the manual installation process for the MozDef system

Create a mozdef user.

On Yum-based systems:

adduser mozdef -d /opt/mozdef
mkdir /opt/mozdef/envs
chown -R mozdef:mozdef /opt/mozdef

On APT-based systems:

useradd -m -d /opt/mozdef -s /bin/bash mozdef
mkdir /opt/mozdef/envs
chown -R mozdef:mozdef /opt/mozdef

Clone repository.

On Yum-based systems:

yum install -y git
su mozdef
cd
git clone https://github.com/mozilla/MozDef.git /opt/mozdef/envs/mozdef

On APT-based systems:

apt-get install -y git
su mozdef
cd
git clone https://github.com/mozilla/MozDef.git /opt/mozdef/envs/mozdef

4.4 Web and Workers nodes

This section explains the manual installation process for Web and Workers nodes.

4.4.1 Python

We need to install a python3.6 virtualenv.

On Yum-based systems:

10 Chapter 4. Installation

MozDef Documentation

yum install -y epel-release
yum install -y python36 python36-devel python3-pip libcurl-devel gcc
pip3 install virtualenv
su mozdef
cd /opt/mozdef/envs
virtualenv -p /bin/python3 /opt/mozdef/envs/python

On APT-based systems:

apt-get install libcurl4-openssl-dev libssl-dev
apt-get install python3-pip
pip3 install virtualenv
su mozdef
cd /opt/mozdef/envs
virtualenv -p /usr/bin/python3 /opt/mozdef/envs/python

Then:

source /opt/mozdef/envs/python/bin/activate
cd /opt/mozdef/envs/mozdef
PYCURL_SSL_LIBRARY=nss pip install -r requirements.txt

If you’re using Mac OS X:

export PYCURL_SSL_LIBRARY=openssl
export LDFLAGS=-L/usr/local/opt/openssl/lib;export CPPFLAGS=-I/usr/local/opt/openssl/
→˓include
pip install -r requirements.txt

Copy the following into a file called .bash_profile for the mozdef user within /opt/mozdef:

[mozdef@server ~]$ vim /opt/mozdef/.bash_profile

Add the following to the file before "export PATH":

PATH=$PATH:$HOME/.meteor

export PATH

At this point when you launch python from within your virtual environment, It should tell you that you’re using Python
3.6.9.

4.4.2 RabbitMQ

RabbitMQ is used on workers to have queues of events waiting to be inserted into the Elasticsearch cluster (storage).

RabbitMQ does provide a zero-dependency RPM that you can find for RedHat/CentOS here:: https://github.com/
rabbitmq/erlang-rpm

For Debian/Ubuntu based distros you would need to install erlang separately.

To install it, first make sure you enabled EPEL repos. Then you need to install an Erlang environment.

If you prefer to install all the dependencies on a Red Hat based system you can do the following:: On Yum-based
systems:

sudo yum install erlang

4.4. Web and Workers nodes 11

https://www.rabbitmq.com/
https://github.com/rabbitmq/erlang-rpm
https://github.com/rabbitmq/erlang-rpm
https://fedoraproject.org/wiki/EPEL/FAQ#howtouse

MozDef Documentation

You can then install the rabbitmq server:

sudo rpm --import https://www.rabbitmq.com/rabbitmq-signing-key-public.asc
sudo yum install rabbitmq-server

To start rabbitmq at startup:

systemctl enable rabbitmq-server

On APT-based systems

sudo apt-get install rabbitmq-server
sudo invoke-rc.d rabbitmq-server start

We do advise using rabbitmq and erlang’s latest versions if you plan on using TLS protected connections with Rab-
bitmq. A simple way of doing this would be to use Bintray’s repo located at: https://www.rabbitmq.com/install-rpm.
html#bintray to download both the latest versions of rabbitmq and erlang.

4.4.3 Meteor

Meteor is a javascript framework used for the realtime aspect of the web interface.

We first need to install Mongodb since it’s the DB used by Meteor.

On Yum-based systems:

In /etc/yum.repos.d/mongo.repo, add:

[mongodb-org-3.4]
name=MongoDB Repository
baseurl=https://repo.mongodb.org/yum/redhat/$releasever/mongodb-org/3.4/x86_64/
gpgcheck=1
enabled=1
gpgkey=https://www.mongodb.org/static/pgp/server-3.4.asc

Then you can install mongodb:

sudo yum install mongodb-org

On APT-based systems:

sudo apt-get install mongodb-server

We have a mongod.conf in the config directory prepared for you. To use it simply move it in to /etc:

cp /opt/mozdef/config/mongod.conf /etc/

For meteor installation follow these steps:

sudo -i -u mozdef -g mozdef
curl https://install.meteor.com/?release=1.8 | sh

For node you can exit from the mozdef user:

wget https://nodejs.org/dist/v8.12.0/node-v8.12.0.tar.gz
tar xvzf node-v8.12.0.tar.gz
cd node-v8.12.0

(continues on next page)

12 Chapter 4. Installation

https://www.rabbitmq.com/install-rpm.html#bintray
https://www.rabbitmq.com/install-rpm.html#bintray
https://guide.meteor.com/
https://www.mongodb.org/

MozDef Documentation

(continued from previous page)

./configure
make
sudo make install

Then from the meteor subdirectory of this git repository (/opt/mozdef/meteor) run as the mozdef user with venv
activated:

sudo -i -u mozdef -g mozdef
source envs/python/bin/activate
meteor add iron-router

If you wish to use meteor as the authentication handler you’ll also need to install the Accounts-Password pkg:

meteor add accounts-password

You may want to edit the /meteor/imports/settings.js file to properly configure the URLs and Authentication The
default setting will use Meteor Accounts, but you can just as easily install an external provider like Github, Google,
Facebook or your own OIDC:

mozdef = {
...
authenticationType: "meteor-password",
...

}

or for an OIDC implementation that passes a header to the nginx reverse proxy (for example using OpenResty with
Lua and Auth0):

mozdef = {
...
authenticationType: "OIDC",
...

}

Then start meteor with:

meteor

4.4.4 Node

Alternatively you can run the meteor UI in ‘deployment’ mode using a native node installation.

First install node:

yum install bzip2 gcc gcc-c++ sqlite sqlite-devel
wget https://nodejs.org/dist/v8.12.0/node-v8.12.0.tar.gz
tar xvzf node-v8.12.0.tar.gz
cd node-v8.12.0
./configure
make
sudo make install

Then bundle the meteor portion of mozdef to deploy on another server:

4.4. Web and Workers nodes 13

MozDef Documentation

cd <your meteor mozdef directory>
meteor bundle mozdef.tgz

You can then deploy the meteor UI for mozdef as necessary:

scp mozdef.tgz to your target host
tar -xvzf mozdef.tgz

This will create a ‘bundle’ directory with the entire UI code below that directory.

If you didn’t update the settings.js before bundling the meteor installation, you will need to update the settings.js file
to match your servername/port:

vim bundle/programs/server/app/imports/settings.js

If your development OS is different than your production OS you will also need to update the fibers node module:

cd bundle/programs/server/node_modules
rm -rf fibers
sudo npm install fibers@1.0.1

Or you can bundle the meteor portion of mozdef to deploy on into a different directory. In this example we place it in
/opt/mozdef/envs/meteor/mozdef:

#!/bin/bash

if [-d /opt/mozdef/meteor]
then

cd /opt/mozdef/meteor
source /opt/mozdef/envs/python/bin/activate
mkdir -p /opt/mozdef/envs/meteor/mozdef

meteor npm install
meteor build --server localhost:3002 --directory /opt/mozdef/envs/meteor/mozdef/
cp -r node_modules /opt/mozdef/envs/meteor/mozdef/node_modules

else
echo "Meteor does not exist on this host."
exit 0

fi

There are systemd unit files available in the systemd directory of the public repo you can use to start mongo, meteor
(mozdefweb), and the restapi (mozdefrestapi). These systemd files are pointing to the bundled alternative directory
we just mentioned.

If you aren’t using systemd, or didn’t bundle to the alternative directory, then run the mozdef UI via node manually:

export MONGO_URL=mongodb://mongoservername:3002/meteor
export ROOT_URL=http://meteorUIservername/
export PORT=443
node bundle/main.js

4.4.5 Nginx

We use nginx webserver.

You need to install nginx:

14 Chapter 4. Installation

http://nginx.org/

MozDef Documentation

sudo yum install nginx

On apt-get based system:

sudo apt-get nginx

If you don’t have this package in your repos, before installing create /etc/yum.repos.d/nginx.repo with the following
content:

[nginx]
name=nginx repo
baseurl=http://nginx.org/packages/centos/7/$basearch/
gpgcheck=0
enabled=1

4.4.6 UWSGI

We use uwsgi to interface python and nginx, in your venv execute the following:

wget https://projects.unbit.it/downloads/uwsgi-2.0.17.1.tar.gz
tar zxvf uwsgi-2.0.17.1.tar.gz
cd uwsgi-2.0.17.1
~/python3.6/bin/python uwsgiconfig.py --build
~/python3.6/bin/python uwsgiconfig.py --plugin plugins/python core
cp python_plugin.so ~/envs/python/bin/
cp uwsgi ~/envs/python/bin/

cd ..
cp -r ~/mozdef/rest ~/envs/mozdef/
cp -r ~/mozdef/loginput ~/envs/mozdef/

cd ~/envs/mozdef/rest
modify config file
vim index.conf
modify restapi.ini with any changes to pathing or number of processes you might
→˓need for your use case.
vim restapi.ini

cd ../loginput
modify loginput.ini with any changes to pathing or number of processes you might
→˓need for your use case.
vim loginput.ini

Alternatively, if you do not wish to use the systemd unit files for starting these processes you can start the restapi and
loginput processes from within your venv via:

cd /opt/mozdef/envs/python
source bin/activate
(mozdef) [mozdef@mozdev mozdef]$ uwsgi --ini rest/restapi.ini
(mozdef) [mozdef@mozdev mozdef]$ uwsgi --ini loginput/loginput.ini

sudo cp nginx.conf /etc/nginx
modify /etc/nginx/nginx.conf to reflect your server, and any path changes you've
→˓made.
sudo vim /etc/nginx/nginx.conf

(continues on next page)

4.4. Web and Workers nodes 15

https://uwsgi-docs.readthedocs.io/en/latest/

MozDef Documentation

(continued from previous page)

move uwsgi_params file into venv.
cp /etc/nginx/uwsgi_params /opt/mozdef/envs/python/bin/
sudo service nginx restart

4.4.7 Supervisord

We use supervisord to run the alerts and alertactions. If you plan on starting services manually, you can skip this step.

To install supervisord perform the following as the user mozdef:

cd /opt/mozdef/envs/python
source bin/activate
cd bin
pip install supervisor

Within the alerts directory there is a supervisord_alerts.ini which is preconfigured. If you’ve changed any directory
paths for this installation then modify it to reflect your pathing changes. There are systemd files in the systemdfiles
directory that you can use to start the mozdefalerts and mozdefalertactions processes which we cover near the end of
this tutorial.

4.4.8 ElasticSearch

This section explains the manual installation process for Elasticsearch nodes (search and storage). MozDef supports
Elasticsearch version 5.x

Installation instructions are available on Elasticsearch website. You should prefer packages over archives if one is
available for your distribution.

Add the repo in /etc/yum/repos.d/elasticsearch.repo:

[elasticsearch-5.x]
name=Elasticsearch repository for 5.x packages
baseurl=https://artifacts.elastic.co/packages/5.x/yum
gpgcheck=1
gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch
enabled=1
autorefresh=1
type=rpm-md

sudo yum install elasticsearch

4.4.9 Marvel plugin

Marvel is a monitoring plugin developed by Elasticsearch (the company).

WARNING: this plugin is NOT open source. At the time of writing, Marvel is free for 30 days. After which you can
apply for a free basic license to continue using it for it’s key monitoring features.

To install Marvel, on each of your elasticsearch node, from the Elasticsearch home directory:

sudo bin/plugin install license
sudo bin/plugin install marvel-agent
sudo service elasticsearch restart

16 Chapter 4. Installation

https://www.elastic.co/products/elasticsearch
https://www.elastic.co/guide/en/marvel/current/introduction.html

MozDef Documentation

You should now be able to access to Marvel at http://any-server-in-cluster:9200/_plugin/marvel

4.4.10 Kibana

Kibana is a webapp to visualize and search your Elasticsearch cluster data

Create the Repo in /etc/yum/repos.d/kibana.repo:

[kibana-5.x]
name=Kibana repository for 5.x packages
baseurl=https://artifacts.elastic.co/packages/5.x/yum
gpgcheck=1
gpgkey=https://artifacts.elastic.co/GPG-KEY-elasticsearch
enabled=1
autorefresh=1
type=rpm-md

sudo yum install kibana

Now you’ll need to configure kibana to work with your system: You can set the various settings in
/etc/kibana/kibana.yml. Some of the settings you’ll want to configure are:

• server.name (your server’s hostname)

• elasticsearch.url (the url to your elasticsearch instance and port)

• logging.dest (/path/to/kibana.log so you can easily troubleshoot any issues)

Then you can start the service!

service kibana start

4.4.11 Start Services

To use the included systemd files you’ll copy them to your system’s default directory of /etc/systemd/system/. Ensure
it has root file permissions so that systemd can start it:

cp /opt/mozdef/systemdfiles/web/mozdefweb.service /etc/systemd/system/
cp /opt/mozdef/systemdfiles/web/mozdefrestapi.service /etc/systemd/system/
cp /opt/mozdef/systemdfiles/web/mongod.service /etc/systemd/system/
cp /opt/mozdef/systemdfiles/consumer/mozdefloginput.service /etc/systemd/system/
cp /opt/mozdef/systemdfiles/consumer/mworker-eventtask.service /etc/systemd/system/
cp /opt/mozdef/systemdfiles/alert/mozdefalerts.service /etc/systemd/system/
cp /opt/mozdef/systemdfiles/alert/mozdefbot.service /etc/systemd/system/
cp /opt/mozdef/systemdfiles/alert/mozdefalertactions.service /etc/systemd/system/

Then you will need to enable them:

systemctl enable mozdefweb.service
systemctl enable mozdefrestapi.service
systemctl enable mozdefloginput.service
systemctl enable mworker-eventtask.service
systemctl enable mozdefalerts.service
systemctl enable mozdefbot.service
systemctl enable mozdefalertactions.service
systemctl enable mongod.service

Reload systemd:

4.4. Web and Workers nodes 17

http://any-server-in-cluster:9200/_plugin/marvel
https://www.elastic.co/products/kibana

MozDef Documentation

systemctl daemon-reload

Now you can start your services:

systemctl start mongod
systemctl start mozdefalerts
systemctl start mozdefbot
systemctl start mozdefloginput
systemctl start mozdefrestapi
systemctl start mozdefweb
systemctl start mworker-eventtask
systemctl start mozdefalertactions

Alternatively you can start the following services manually in this way from inside the venv as mozdef:

Eventtask worker
cd ~/MozDef/mq
(mozdef) [mozdef@mozdev mq]$ uwsgi --ini eventtask.ini

alert worker
(mozdef) [mozdef@mozdev mozdef]$ cd ~/mozdef/alerts
(mozdef) [mozdef@mozdev alerts]$ celery -A lib.tasks worker --loglevel=info --beat

To initialize elasticsearch indices and create sample kibana dashboards:

(mozdef) [mozdef@mozdev mozdef]$ cd ~/mozdef/scripts/setup
(mozdef) [mozdef@mozdev setup$ python initial_setup.py http://<elasticsearch_host>
→˓:9200 http://<kibana_host>:5601

To add some sample data:

(mozdef) [mozdef@mozdev mozdef]$ cd ~/mozdef/scripts/demo
(mozdef) [mozdef@mozdev demo]$ python populate_sample_events.py --num-rounds=1

To continously add sample data:

(mozdef) [mozdef@mozdev mozdef]$ cd ~/mozdef/scripts/demo
(mozdef) [mozdef@mozdev demo]$ python populate_sample_events.py

18 Chapter 4. Installation

CHAPTER 5

Alert Development Guide

This guide is for someone seeking to write a MozDef alert

5.1 How to start developing your new alert

Run:

make new-alert

This will prompt for information and create two things:

• <The new alert file>

• <The new alert test file>

You can now edit these files in place, but it is recommended that you run unit-tests on the new alert to make sure it
passes before editing (instructions below).

5.2 How to run tests on your alert

Requirements:

• Make sure you have the latest version of docker installed.

• Known Issues: docker’s overlayfs has a known issue with tar files, so you will need to go to Docker => Prefer-
ences => Daemon => Advanced and add the following key pair (“storage-driver” : “aufs”). You may also need
to allow more than 2GB for docker depending on which containers you run.

make build-tests
make run-tests TEST_CASE=tests/alerts/[YOUR ALERT TEST FILE].py

This test should pass and you will have confirmed you have a working environment.

At this point, begin development and periodically run your unit-tests locally with the following commands:

19

MozDef Documentation

make build-tests
make run-tests TEST_CASE=tests/alerts/[YOUR ALERT TEST FILE].py

5.3 Background on concepts

• Logs - These are individual log entries that are typically emitted from systems, like an Apache log.

• Events - The entry point into MozDef, a log parsed into JSON by some log shipper (syslog-ng, nxlog) or a native
JSON data source like GuardDuty, CloudTrail, most SaaS systems, etc.

• Alerts - These are either a 1:1 events to alerts (this thing happens and alert) or a M:1 events to alerts (N of these
things happen and alert).

Alerts in MozDef are mini python programs. Most of the work is done by the alert library so the portions you will
need to code fall into two functions:

• main - This is where the alert defines the criteria for the types of events that will trigger the alert.

• onAggregation/onEvent - This is where the alert defines what happens when it sees those events, such as post
processing of events and making them into a useful summary to emit as an alert.

In both cases the alert is simple python, and you have all the facility of python at your disposal including any of the
python libraries you might want to add to the project.

It’s important to note that when you iterate on the alert to regularly test to ensure that the alert is still firing. Should
you run into a situation where it’s not firing, the best way to approach this is to backout the most recent change and
review the alert and tests to ensure that the expectations are still in sync.

5.4 Example first alert

Let’s step through creating a simple alert you might want to verify a working deployment. For this sub-section it is
assumed that you have a working MozDef instance which resides in some MozDefDir and is receiving logs.

First move to to your MozDefDir and issue

make new-alert

You will be asked for a string to name a new alert and the associated test. For this example we will use the string “foo”

make new-alert
Enter your alert name (Example: proxy drop executable): foo
Creating alerts/foo.py
Creating tests/alerts/test_foo.py

These will be created as above in the alerts and tests/alerts directories. There’s a lot to the generated code, but a class
called “AlertFoo” is of immediate interest and will define when and how to alert. Here’s the head of the auto generated
class.

class AlertFoo(AlertTask):
def main(self):

Create a query to look back the last 20 minutes
search_query = SearchQuery(minutes=20)

Add search terms to our query

(continues on next page)

20 Chapter 5. Alert Development Guide

MozDef Documentation

(continued from previous page)

search_query.add_must([
TermMatch('category', 'helloworld'),
ExistsMatch('details.sourceipaddress'),

])
...

This code tells MozDef to query the collection of events for messages timestamped within 20 minutes from time of
query execution which are of category “helloworld” and also have a source IP address. If you’re pumping events into
MozDef odds are you don’t have any which will be tagged as “helloworld”. You can of course create those events, but
lets assume that you have events tagged as “syslog” for the moment. Change the TermMatch line to

TermMatch('category', 'syslog'),

and you will create alerts for events marked with the category of ‘syslog’. Ideally you should edit your test to match,
but it’s not strictly necessary.

5.5 Scheduling your alert

Next we will need to enable the alert. Alerts in MozDef are scheduled via the celery task scheduler. The schedule
passed to celery is in the config.py file:

Open the file

docker/compose/mozdef_alerts/files/config.py

or simply

alerts/files/config.py

if you are not working from the docker images and add your new foo alert to the others with a crontab style schedule

ALERTS = {
'foo.AlertFoo': {'schedule': crontab(minute='*/1')},
'bruteforce_ssh.AlertBruteforceSsh': {'schedule': crontab(minute='*/1')},
'unauth_ssh.AlertUnauthSSH': {'schedule': crontab(minute='*/1')},

}

The format is ‘pythonfilename.classname’: {‘schedule’: crontab(timeunit=’*/x’)} and you can use any celery time
unit (minute, hour) along with any schedule that makes sense for your environment. Alerts don’t take many resources
to execute, typically finishing in sub second times, so it’s easiest to start by running them every minute.

5.6 How to run the alert in the docker containers

Once you’ve got your alert passing tests, you’d probably like to send in events in a docker environment to further
refine, test, etc.

There are two ways to go about integration testing this with docker: 1) Use ‘make run’ to rebuild the containers each
time you iterate on an alert 2) Use docker-compose with overlays to instantiate a docker environment with a live
container you can use to iterate your alert

In general, the ‘make run’ approach is simpler, but can take 5-10mins each iteration to rebuild the containers (even if
cached).

5.5. Scheduling your alert 21

MozDef Documentation

To use the ‘make run’ approach, you edit your alert. Add it to the docker/compose/mozdef_alerts/files/config.py file
for scheduling as discussed above and simply:

make run

This will rebuild any container that needs it, use cache for any that haven’t changed and restart mozdef with your alert.

To use a live, iterative environment via docker-compose:

docker-compose -f docker/compose/docker-compose.yml -f docker/compose/dev-alerts.yml -
→˓p mozdef up

This will start up all the containers for a mozdef environment and in addition will allow you an adhoc alerts container
to work in that loads the /alerts directory as a volume in the container. To run the alert you are developing you will need
to edit the alerts/lib/config.py file as detailed above to schedule your alert. You will also need to edit it to reference the
container environment as follows

RABBITMQ = {
'mqserver': 'rabbitmq',

...
ES = {

'servers': ['http://elasticsearch:9200']
}

Once you’ve reference the containers, you can shell into the alerts container:

docker exec -it mozdef_alerts_1 bash

Next, start celery

celery -A lib.tasks worker --loglevel=info --beat

If you need to send in adhoc events you can usually do it via curl as follows:

curl -v --header "Content-Type: application/json" --request POST --data '{"tags": [
→˓"test"],"category": "helloworld","details":{"sourceipaddress":"1.2.3.4"}}' http://
→˓loginput:8080/events

5.7 How to get the alert in a release of MozDef?

If you’d like your alert included in the release version of Mozdef, the best way is to propose a pull request and ask
for a review from a MozDef developer. They will be able to help you get the most out of the alert and help point out
pitfalls. Once the alert is accepted into MozDef master, there is a process by which MozDef installations can make
use or ‘enable’ that alert. It’s best to work with that MozDef instance’s maintainer to enable any new alerts.

5.8 Customizing the alert summary

On the alerts page of the MozDef web UI each alert is given a quick summary and for many alerts it is useful to have
contextual information displayed here. Looking at the example foo alert we see

def onAggregation(self, aggreg):
aggreg['count']: number of items in the aggregation, ex: number of failed login

→˓attempts

(continues on next page)

22 Chapter 5. Alert Development Guide

MozDef Documentation

(continued from previous page)

aggreg['value']: value of the aggregation field, ex: toto@example.com
aggreg['events']: list of events in the aggregation
category = 'My first alert!'
tags = ['Foo']
severity = 'NOTICE'
summary = "Foo alert"

Create the alert object based on these properties
return self.createAlertDict(summary, category, tags, aggreg['events'], severity)

This is where the alert object gets created and returned. In the above code the summary will simply be “Foo Alert”,
but say we want to know how many log entries were collected in the alert? The aggreg object is here to help.

summary = "Foo alert " + aggreg['count']

Gives us an alert with a count. Similarly

summary = "Foo alert " + aggreg['value']

Will append the aggregation field to the summary text. The final list aggreg[‘events’] contains the full log entries of
all logs collected and is in general the most useful. Suppose we want one string if the tag ‘foo’ exists on these logs
and another otherwise

if 'foo' in aggreg['events'][0]['_source']['tags']:
summary = "Foo alert"

else:
summary = "Bar alert"

All source log data is held within the [‘_source’] and [0] represents the first log found. Beware that no specific ordering
of the logs is guaranteed and so [0] may be first, last, or otherwise chronologically.

5.9 Questions?

Feel free to file a github issue in this repository if you find yourself with a question not answered here. Likely the
answer will help someone else and will help us improve the docs.

5.10 Resources

Python for Beginners <https://www.python.org/about/gettingstarted/>

5.9. Questions? 23

https://www.python.org/about/gettingstarted/

MozDef Documentation

24 Chapter 5. Alert Development Guide

CHAPTER 6

Mozdef_util Library

We provide a library used to interact with MozDef components.

6.1 Connecting to Elasticsearch

1 from mozdef_util.elasticsearch_client import ElasticsearchClient
2 es_client = ElasticsearchClient("http://127.0.0.1:9200")

6.2 Creating/Updating Documents

6.2.1 Create a new Event

1 event_dict = {
2 "example_key": "example value"
3 }
4 es_client.save_event(body=event_dict)

6.2.2 Update an existing event

1 event_dict = {
2 "example_key": "example new value"
3 }
4 # Assuming 12345 is the id of the existing entry
5 es_client.save_event(body=event_dict, doc_id="12345")

25

MozDef Documentation

6.2.3 Create a new alert

1 alert_dict = {
2 "example_key": "example value"
3 }
4 es_client.save_alert(body=alert_dict)

6.2.4 Update an existing alert

1 alert_dict = {
2 "example_key": "example new value"
3 }
4 # Assuming 12345 is the id of the existing entry
5 es_client.save_alert(body=alert_dict, doc_id="12345")

6.2.5 Create a new generic document

1 document_dict = {
2 "example_key": "example value"
3 }
4 es_client.save_object(index='randomindex', body=document_dict)

6.2.6 Update an existing document

1 document_dict = {
2 "example_key": "example new value"
3 }
4 # Assuming 12345 is the id of the existing entry
5 es_client.save_object(index='randomindex', body=document_dict, doc_id="12345")

6.2.7 Bulk Importing

1 from mozdef_util.elasticsearch_client import ElasticsearchClient
2 es_client = ElasticsearchClient("http://127.0.0.1:9200", bulk_amount=30, bulk_refresh_

→˓time=5)
3 es_client.save_event(body={'key': 'value'}, bulk=True)

• Line 2: bulk_amount (defaults to 100), specifies how many messages should sit in the bulk queue before they
get written to elasticsearch

• Line 2: bulk_refresh_time (defaults to 30), is the amount of time that a bulk flush is forced

• Line 3: bulk (defaults to False) determines if an event should get added to a bulk queue

26 Chapter 6. Mozdef_util Library

MozDef Documentation

6.3 Searching for documents

6.3.1 Simple search

1 from mozdef_util.query_models import SearchQuery, TermMatch, ExistsMatch
2

3 search_query = SearchQuery(hours=24)
4 must = [
5 TermMatch('category', 'brointel'),
6 ExistsMatch('seenindicator')
7]
8 search_query.add_must(must)
9 results = search_query.execute(es_client, indices=['events','events-previous'])

SimpleResults

When you perform a “simple” search (one without any aggregation), a SimpleResults object is returned. This object
is a dict, with the following format:

Key Description
hits Contains an array of documents that matched the search query
meta Contains a hash of fields describing the search query (Ex: if the query timed

out or not)

Example simple result:

1 {
2 'hits': [
3 {
4 '_id': u'cp5ZsOgLSu6tHQm5jAZW1Q',
5 '_index': 'events-20161005',
6 '_score': 1.0,
7 '_source': {
8 'details': {
9 'information': 'Example information'

10 },
11 'category': 'excategory',
12 'summary': 'Test Summary',
13 'type': 'event'
14 }
15 }
16],
17 'meta': {'timed_out': False}
18 }

6.3.2 Aggregate search

1 from mozdef_util.query_models import SearchQuery, TermMatch, Aggregation
2

3 search_query = SearchQuery(hours=24)
4 search_query.add_must(TermMatch('category', 'brointel'))
5 search_query.add_aggregation(Aggregation('source'))
6 results = search_query.execute(es_client)

6.3. Searching for documents 27

MozDef Documentation

AggregatedResults

When you perform an aggregated search (Ex: give me a count of all different ip addresses are in the documents that
match a specific query), a AggregatedResults object is returned. This object is a dict, with the following format:

Key Description
aggregations Contains the aggregation results, grouped by field name
hits Contains an array of documents that matched the search query
meta Contains a hash of fields describing the search query (Ex: if the query timed

out or not)

1 {
2 'aggregations': {
3 'ip': {
4 'terms': [
5 {
6 'count': 2,
7 'key': '1.2.3.4'
8 },
9 {

10 'count': 1,
11 'key': '127.0.0.1'
12 }
13]
14 }
15 },
16 'hits': [
17 {
18 '_id': u'LcdS2-koQWeICOpbOT__gA',
19 '_index': 'events-20161005',
20 '_score': 1.0,
21 '_source': {
22 'details': {
23 'information': 'Example information'
24 },
25 'ip': '1.2.3.4',
26 'summary': 'Test Summary',
27 'type': 'event'
28 }
29 },
30 {
31 '_id': u'F1dLS66DR_W3v7ZWlX4Jwg',
32 '_index': 'events-20161005',
33 '_score': 1.0,
34 '_source': {
35 'details': {
36 'information': 'Example information'
37 },
38 'ip': '1.2.3.4',
39 'summary': 'Test Summary',
40 'type': 'event'
41 }
42 },
43 {
44 '_id': u'G1nGdxqoT6eXkL5KIjLecA',
45 '_index': 'events-20161005',
46 '_score': 1.0,

(continues on next page)

28 Chapter 6. Mozdef_util Library

MozDef Documentation

(continued from previous page)

47 '_source': {
48 'details': {
49 'information': 'Example information'
50 },
51 'ip': '127.0.0.1',
52 'summary': 'Test Summary',
53 'type': 'event'
54 }
55 }
56],
57 'meta': {
58 'timed_out': False
59 }
60 }

6.4 Match/Query Classes

6.4.1 ExistsMatch

Checks to see if a specific field exists in a document

1 from mozdef_util.query_models import ExistsMatch
2

3 ExistsMatch("randomfield")

6.4.2 TermMatch

Checks if a specific field matches the key

1 from mozdef_util.query_models import TermMatch
2

3 TermMatch("details.ip", "127.0.0.1")

6.4.3 TermsMatch

Checks if a specific field matches any of the keys

1 from mozdef_util.query_models import TermsMatch
2

3 TermsMatch("details.ip", ["127.0.0.1", "1.2.3.4"])

6.4.4 WildcardMatch

Allows regex to be used in looking for documents that a field contains all or part of a key

1 from mozdef_util.query_models import WildcardMatch
2

3 WildcardMatch('summary', 'test*')

6.4. Match/Query Classes 29

MozDef Documentation

6.4.5 PhraseMatch

Checks if a field contains a specific phrase (includes spaces)

1 from mozdef_util.query_models import PhraseMatch
2

3 PhraseMatch('summary', 'test run')

6.4.6 BooleanMatch

Used to apply specific “matchers” to a query. This will unlikely be used outside of SearchQuery.

1 from mozdef_util.query_models import ExistsMatch, TermMatch, BooleanMatch
2

3 must = [
4 ExistsMatch('details.ip')
5]
6 must_not = [
7 TermMatch('type', 'alert')
8]
9

10 BooleanMatch(must=must, should=[], must_not=must_not)

6.4.7 MissingMatch

Checks if a field does not exist in a document

1 from mozdef_util.query_models import MissingMatch
2

3 MissingMatch('summary')

6.4.8 RangeMatch

Checks if a field value is within a specific range (mostly used to look for documents in a time frame)

1 from mozdef_util.query_models import RangeMatch
2

3 RangeMatch('utctimestamp', "2016-08-12T21:07:12.316450+00:00", "2016-08-13T21:07:12.
→˓316450+00:00")

6.4.9 QueryStringMatch

Uses a custom query string to generate the “match” based on (Similar to what you would see in kibana)

1 from mozdef_util.query_models import QueryStringMatch
2

3 QueryStringMatch('summary: test')

30 Chapter 6. Mozdef_util Library

MozDef Documentation

6.4.10 SubnetMatch

Checks if an IP field is within the bounds of a subnet

1 from mozdef_util.query_models import SubnetMatch
2

3 SubnetMatch('details.sourceipaddress', '10.1.1.0/24')

6.4.11 Aggregation

Used to aggregate results based on a specific field

1 from mozdef_util.query_models import Aggregation, SearchQuery, ExistsMatch
2

3 search_query = SearchQuery(hours=24)
4 must = [
5 ExistsMatch('seenindicator')
6]
7 search_query.add_must(must)
8 aggr = Aggregation('details.ip')
9 search_query.add_aggregation(aggr)

10 results = search_query.execute(es_client, indices=['events','events-previous'])

6.4. Match/Query Classes 31

MozDef Documentation

32 Chapter 6. Mozdef_util Library

CHAPTER 7

Screenshots

Here are a few screen captures of key portions of the MozDef user interface.

7.1 Health and Status

MozDef includes an integrated health and status screen under the ‘about’ menu showing key performance indicators
like events per second from rabbit-mq and elastic search cluster health.

You can have as many front-end processors running rabbit-mq as you like in whatever geographic distribution makes
sense for your environment. The hot threads section shows you what your individual elastic search nodes are up to.

The entire display updates in real time as new information is retrieved.

33

MozDef Documentation

7.2 Alerts

Alerts are simply python jobs run as celery tasks that query elastic search for either individual events, or correlate
multiple events into an alert.

The alerts screen shows the latest 100 alerts and allows interactive filtering by category, severity, time frame and
free-form regex.

The display updates in real time as new alerts are received and any IP address in an alert is decorated with a menu
allowing you to query whois, dshield, CIF, etc to get context on the item. If your facilities include blocking, you can
also integrate that into the menu to allow you to block an IP directly from this screen.

34 Chapter 7. Screenshots

MozDef Documentation

7.3 Incident Handling

MozDef includes an integrated, real time incident handling facility that allows multiple responders to work collabora-
tively on a security incident. As they add information to the incident they are able to see each others changes as they
happen, in real time.

MozDef includes integration into the VERIS classification system to quickly tag incidents with metadata by dragging
tags onto the incident which allows you to aggregate metrics about your incidents.

7.3. Incident Handling 35

MozDef Documentation

7.4 d3 visualizations

The d3.js library is included in MozDef to allow you custom visualizations of your data. The is a sample visualization
of login counts (success vs failed) that you can integrate into your central authentication directory for quick context
into user activity.

36 Chapter 7. Screenshots

MozDef Documentation

7.5 Geo location of Attackers

MozDef includes the WebGL globe as a three.js visualization that geolocates attackers to give you quick, interactive
context about threat actors.

7.6 3D interactive Attacker visualization

MozDef correlates alerts and events into a 3D visual representation of attackers as ogres. You can use this to quickly
filter attackers by category or timeframe and get easy access to recent alerts and events from attackers in 3D.

7.5. Geo location of Attackers 37

MozDef Documentation

7.7 3D interactive Attack visualization via Landmass

MozDef has a service-oriented visualization where you will get see various animations on a landmass service wise.
There are also options for handling attacks, and a sidebar which gives you detailed info into the attacks

38 Chapter 7. Screenshots

CHAPTER 8

Usage

8.1 Web Interface

MozDef uses the Meteor framework for the web interface and bottle.py for the REST API. For authentication, MozDef
supports local account creation. Meteor (the underlying UI framework) supports many authentication options includ-
ing google, github, twitter, facebook, oath, native accounts, etc.

8.1.1 Events visualizations

Since the backend of MozDef is Elastic Search, you get all the goodness of Kibana with little configuration. The
MozDef UI is focused on incident handling and adding security-specific visualizations of SIEM data to help you weed
through the noise.

8.1.2 Alerts

Alerts are implemented as Elastic Search searches. MozDef provides a plugin interface to allow open access to event
data for enrichment, hooks into other systems, etc.

8.1.3 Incident handling

8.2 Sending logs to MozDef

Events/Logs are accepted as json over http(s) with the POST or PUT methods or over rabbit-mq. Most modern log
shippers support json output. MozDef is tested with support for:

• heka

• beaver

• nxlog

39

https://www.meteor.com/
https://docs.meteor.com/#accounts_api
https://github.com/mozilla-services/heka
https://github.com/josegonzalez/beaver
https://nxlog.org/download

MozDef Documentation

• logstash

• rsyslog

• native python code

• AWS cloudtrail (via native python)

We have some configuration snippets

8.2.1 What should I log?

If your program doesn’t log anything it doesn’t exist. If it logs everything that happens it becomes like the proverbial
boy who cried wolf. There is a fine line between logging too little and too much but here is some guidance on key
events that should be logged and in what detail.

40 Chapter 8. Usage

https://www.elastic.co/products/logstash
https://www.rsyslog.com/doc/master/configuration/modules/omhttp.html
https://github.com/gdestuynder/mozdef_lib
https://aws.amazon.com/cloudtrail/
https://github.com/mozilla/MozDef/tree/master/examples

MozDef Documentation

Event Exam-
ple

Rationale

Au-
then-
ti-
ca-
tion
Events

Failed/Success
logins

Authentication is always an important event to log as it establishes traceability for later events
and allows correlation of user actions across systems.

Au-
tho-
riza-
tion
Events

Failed
attempts
to in-
sert/update/delete
a record
or access
a section
of an ap-
plication.

Once a user is authenticated they usually obtain certain permissions. Logging when a user’s
permissions do not allow them to perform a function helps troubleshooting and can also be
helpful when investigating security events.

Ac-
count
Life-
cy-
cle

Account
cre-
ation/deletion/update

Adding, removing or changing accounts are often the first steps an attacker performs when
entering a system.

Pass-
word/Key
Events

Pass-
word
changed,
expired,
reset.
Key
expired,
changed,
reset.

If your application takes on the responsibility of storing a user’s password (instead of using a
centralized source) it is important to note changes to a users credentials or crypto keys.

Ac-
count
Ac-
ti-
va-
tions

Account
lock,
unlock,
disable,
enable

If your application locks out users after failed login attempts or allows for accounts to be inac-
tivated, logging these events can assist in troubleshooting access issues.

Ap-
pli-
ca-
tion
Ex-
cep-
tions

Invalid
input,
fatal
errors,
known
bad
things

If your application catches errors like invalid input attempts on web forms, failures of key
components, etc creating a log record when these events occur can help in troubleshooting and
tracking security patterns across applications. Full stack traces should be avoided however as
the signal to noise ratio is often overwhelming.
It is also preferable to send a single event rather than a multitude of events if it is possible for
your application to correlate a significant exception.
For example, some systems are notorious for sending a connection event with source IP, then
sending an authentication event with a session ID then later sending an event for invalid input
that doesn’t include source IP or session ID or username. Correctly correlating these events
across time is much more difficult than just logging all pieces of information if it is available.

8.2. Sending logs to MozDef 41

MozDef Documentation

8.3 JSON format

This section describes the structure JSON objects to be sent to MozDef. Using this standard ensures developers,
admins, etc are configuring their application or system to be easily integrated into MozDef.

8.3.1 Background

Mozilla used CEF as a logging standard for compatibility with Arcsight and for standardization across systems. While
CEF is an admirable standard, MozDef prefers JSON logging for the following reasons:

• Every development language can create a JSON structure.

• JSON is easily parsed by computers/programs which are the primary consumer of logs.

• CEF is primarily used by Arcsight and rarely seen outside that platform and doesn’t offer the extensibility of
JSON.

• A wide variety of log shippers (heka, logstash, fluentd, nxlog, beaver) are readily available to meet almost any
need to transport logs as JSON.

• JSON is already the standard for cloud platforms like amazon’s cloudtrail logging.

8.3.2 Description

As there is no common RFC-style standard for json logs, we prefer the following structure adapted from a combination
of the graylog GELF and logstash specifications.

Note all fields are lowercase to avoid one program sending sourceIP, another sending sourceIp, another sending Sour-
ceIPAddress, etc. Since the backend for MozDef is elasticsearch and fields are case-sensitive this will allow for easy
compatibility and reduce potential confusion for those attempting to use the data. MozDef will perform some transla-
tion of fields to a common schema but this is intended to allow the use of heka, nxlog, beaver and retain compatible
logs.

42 Chapter 8. Usage

MozDef Documentation

8.3.3 Mandatory Fields

Field Purpose Sample Value
cate-
gory

General category/type of event matching the ‘what should I
log’ section below

authentication, authorization, account
creation, shutdown, atartup, account
deletion, account unlock, zeek

details Additional, event-specific fields that you would like included
with the event. Please completely spell out a field rather an
abbreviate: i.e. sourceipaddress instead of srcip.

<see below>

host-
name

The fully qualified domain name of the host sending the mes-
sage

server1.example.com

pro-
cessid

The PID of the process sending the log 1234

pro-
cess-
name

The name of the process sending the log myprogram.py

sever-
ity

RFC5424 severity level of the event in all caps: DEBUG,
INFO, NOTICE, WARNING, ERROR, CRITICAL, ALERT,
EMERGENCY

INFO

source Source of the event (file name, system name, component name) /var/log/syslog/2014.01.02.log
sum-
mary

Short human-readable version of the event suitable for IRC,
SMS, etc.

john login attempts over threshold, ac-
count locked

tags An array or list of any tags you would like applied to the event vpn, audit
nsm,zeek,intel

times-
tamp

Full date plus time timestamp of the event in ISO format in-
cluding the timezone offset

2014-01-30T19:24:43+06:00

utc-
times-
tamp

Full UTC date plus time timestamp of the event in ISO format
including the timezone offset

2014-01-30T13:24:43+00:00

re-
ceived-
times-
tamp

Full UTC date plus time timestamp in ISO format when
mozdef parses the event. This is set by mozdef upon receipt
of the event

2014-01-30T13:24:43+00:00

8.3.4 Details substructure (mandatory if such data is sent, otherwise optional)

Field Purpose Sample Value
destinationipaddress Destination IP of a network flow 8.8.8.8
destinationport Destination port of a network flow 80
sourceipaddress Source IP of a network flow 8.8.8.8
sourceport Source port of a network flow 42297
sourceuri Source URI such as a referer https://www.mozilla.org/
destinationuri Destination URI as in “wget this URI” https://www.mozilla.org/
error Action resulted in an error or failure true/false
success Transaction failed/ or succeeded true/false
username Username, email, login, etc. kang@mozilla.com
useragent Program agent string curl/1.76 (Windows; 5.1)

8.3. JSON format 43

https://www.mozilla.org/
https://www.mozilla.org/
mailto:kang@mozilla.com

MozDef Documentation

8.3.5 Examples

{
"timestamp": "2014-02-14T11:48:19.035762739-05:00",
"hostname": "somemachine.in.your.company.com",
"processname": "/path/to/your/program.exe",
"processid": 3380,
"severity": "INFO",
"summary": "joe login failed",
"category": "authentication",
"source": "ldap",
"tags": [

"ldap",
"adminAccess",
"failure"

],
"details": {

"username": "joe",
"task": "access to admin page /admin_secret_radioactiv",
"result": "10 authentication failures in a row",
"success": false

}
}

8.4 Simple test

If you want to just post some sample json to Mozdef do something like

curl -v --header "Content-Type: application/json" --request POST --data '{"tags":
→˓["test"],"summary": "just a test"}' http://localhost:8080/events

where http://localhost:8080 is whatever is running the ‘loginput’ service. The ‘data’ curl option is what gets posted as
json to MozDef. If your post is successful, you should then be able to find the event in elastic search/kibana.

8.5 Writing alerts

Alerts allow you to create notifications based on events stored in elasticsearch. You would usually try to aggregate
and correlate events that are the most severe and on which you have response capability. Alerts are stored in the alerts
folder.

There are two types of alerts:

• simple alerts that consider events on at a time

– For example you may want to get an alert everytime a single LDAP modification is detected.

• aggregation alerts that allow you to aggregate events on the field of your choice

– For example you may want to alert when more than 3 login attempts failed for the same username.

You’ll find documented examples in the alerts folder.

Once you’ve written your alert, you need to configure it in celery to be launched periodically. If you have
a AlertBruteforceSsh class in a alerts/bruteforce_ssh.py file for example, in alerts/lib/
config you can configure the task to run every minute:

44 Chapter 8. Usage

http://localhost:8080
https://github.com/mozilla/MozDef/tree/master/alerts
https://github.com/mozilla/MozDef/tree/master/alerts

MozDef Documentation

ALERTS = {
'bruteforce_ssh.AlertBruteforceSsh': crontab(minute='*/1'),

}

8.5. Writing alerts 45

MozDef Documentation

46 Chapter 8. Usage

CHAPTER 9

MozDef for AWS

What is MozDef for AWS

Cloud based MozDef is an opinionated deployment of the MozDef services created in 2018 to help AWS users ingest
CloudTrail, GuardDuty, and provide security services.

9.1 Feedback

MozDef for AWS is new and we’d love your feedback. Try filing GitHub issues here in the repository or connect with
us in the Mozilla Discourse Security Category.

https://discourse.mozilla.org/c/security

You can also take a short survey on MozDef for AWS after you have deployed it. https://goo.gl/forms/
JYjTYDK45d3JdnGd2

9.2 Dependencies

MozDef requires the following:

• A DNS name (e.g. cloudymozdef.security.allizom.org) which you will need to point at the IP address of the
Application Load Balancer

• An OIDC Provider with ClientID, ClientSecret, and Discovery URL

– Mozilla uses Auth0 but you can use any OIDC provider you like: Shibboleth, KeyCloak, AWS Cognito,
Okta, Ping (etc.).

– You will need to configure the redirect URI of /redirect_uri as allowed in your OIDC provider
configuration.

47

https://console.aws.amazon.com/cloudformation/home?region=us-west-2#/stacks/new?stackName=mozdef-for-aws&templateURL=https://s3-us-west-2.amazonaws.com/public.us-west-2.infosec.mozilla.org/mozdef/cf/v3.1.0/mozdef-parent.yml
https://discourse.mozilla.org/c/security
https://goo.gl/forms/JYjTYDK45d3JdnGd2
https://goo.gl/forms/JYjTYDK45d3JdnGd2

MozDef Documentation

• An ACM Certificate in the deployment region for your DNS name

• A VPC with three public subnets available

– It is advised that this VPC be dedicated to MozDef or used solely for security automation.

– The three public subnets must all be in different availability zones and have a large enough number of IP
addresses to accommodate the infrastructure.

– The VPC must have an internet gateway enabled on it so that MozDef can reach the internet.

• An SQS queue receiving GuardDuty events - At the time of writing this is not required but may be required in
future.

9.3 Supported Regions

MozDef for AWS is currently only supported in us-west-2 but additional regions will be added over time.

9.4 Architecture

48 Chapter 9. MozDef for AWS

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/using-regions-availability-zones.html#using-regions-availability-zones-describe
https://docs.aws.amazon.com/vpc/latest/userguide/VPC_Internet_Gateway.html

MozDef Documentation

9.5 Deployment Process

1. Launch the one click stack and provide the requisite values.

2. Wait for the stack to complete. You’ll see several nested stacks in the CloudFormation console. Once the EC2
instance is running there are still provisioning steps taking place on the instance. Note: This may take a while

3. Configure your DNS name to point to the application load balancer

4. Navigate to the URL you set up for MozDef. It should redirect you to the single sign on provider. If successful
you’ll see the MozDef UI.

5. Try navigating to ElasticSearch https://your_base_url:9090

You should see the following:

{
"name" : "SMf4400",
"cluster_name" : "656532927350:mozdef-mozdef-yemjpbnpw8xb",
"cluster_uuid" : "_yBEIsFkQH-nEZfrFgj7mg",
"version" : {
"number" : "5.6.8",
"build_hash" : "688ecce",
"build_date" : "2018-09-11T14:44:40.463Z",
"build_snapshot" : false,
"lucene_version" : "6.6.1"

},
"tagline" : "You Know, for Search"

}

5. Test out Kibana at https://your_base_url:9090/_plugin/kibana/app/kibana#/discover?_g=()

9.6 Troubleshooting

To view logs on the ec2 instance

1. Determine the name/IP of the autoscaled EC2 instance via the command line or web console

2. SSH into that EC2 instance as the ec2-user user using the SSH keypair that you set as the KeyName param-
eter in CloudFormation

3. List out all the containers with

sudo docker container ls

4. Tail logs from the container you’d like to examine with

show both the access logs and the error logs
sudo docker logs --follow NAME_OF_CONTAINER
show only the error logs
docker logs --follow NAME_OF_CONTAINER >/dev/null

where NAME_OF_CONTAINER is the container name or ID that you found in the step above

5. To enter the environment for that container run

sudo docker exec --interactive --tty NAME_OF_CONTAINER /bin/bash

9.5. Deployment Process 49

https://your_base_url:9090
https://your_base_url:9090/_plugin/kibana/app/kibana#/discover

MozDef Documentation

6. To view the environment variables being made available to the containers view the file /opt/mozdef/
docker/compose/cloudy_mozdef.env

9.7 Using MozDef

Refer back to our other docs on how to use MozDef for general guidance. Cloud specific instructions will evolve here.
If you saw something about MozDef for AWS at re: Invent 2018 and you want to contribute we’d love your PRs.

9.8 AWS re:invent 2018 SEC403 Presentation

• Watch our presentation on MozDef in AWS at AWS re:Invent 2018

• Read the slides

50 Chapter 9. MozDef for AWS

https://www.youtube.com/watch?v=M5yQpegaYF8&feature=youtu.be&t=2471
https://www.slideshare.net/AmazonWebServices/five-new-security-automations-using-aws-security-services-open-source-sec403-aws-reinvent-2018/65

CHAPTER 10

Advanced Settings

10.1 Conf files

MozDef python scripts in almost all cases expect to be given a -c path/to/file.conf command line option to specify
configuration/run time options.

These files all follow the same format:

[options]
setting1=value1
setting2=value2

All programs do their best to set reasonable, sane defaults and most will run fine without a conf file. By default
programname.py will look for programname.conf as it’s configuration file so if you follow that convention you don’t
even need to specify the -c path/to/file.conf option.

You can override any .conf file setting by providing an equivalent environment variable.

Certain environment variables have special meaning to the web ui (meteor):

OPTIONS_METEOR_ROOTURL is "http://localhost" by default and should be set to the dns
→˓name of the UI where you will run MozDef
OPTIONS_METEOR_PORT is 80 by default and is the port on which the UI will run
OPTIONS_METEOR_ROOTAPI is http://rest:8081 by default and should resolve to the
→˓location of the rest api
OPTIONS_METEOR_KIBANAURL is http://localhost:9090/app/kibana# by default and should
→˓resolve to your kibana installation
OPTIONS_METEOR_ENABLECLIENTACCOUNTCREATION is true by default and governs whether
→˓accounts can be created
OPTIONS_METEOR_AUTHENTICATIONTYPE is meteor-password by default and can be set to
→˓oidc to allow for oidc authentication
OPTIONS_REMOVE_FEATURES is empty by default, but if you pass a comma separated list
→˓of features you'd like to remove they will no longer be available.

You can find a list of features in the meteor/private/features.txt file in the git repo.

51

MozDef Documentation

10.1.1 Special Config Items

Here are some tips for some key settings:

[options]
esservers=http://server1:9200,http://server2:9200,http://server3:9200

is how you can specify servers in your elastic search cluster.

[options]
backup_indices = intelligence,.kibana,alerts,events,complianceitems,.jsp,.marvel-
→˓kibana,vulnerabilities
backup_dobackup = 1,1,1,1,1,1,1,1
backup_rotation = none,none,monthly,daily,none,none,none,none
backup_pruning = 0,0,0,20,0,0,0,0

is how you would configure the backupSnapshot.py and pruneIndexes.py programs to backup selected elastic search
indexes, rotate selected indexes and prune certain indexes at selected intervals. In the case above we are backing up
all indexes mentioned, rotating alerts monthly, rotating events daily and pruning events indices after 20 days.

[options]
autocategorize = True
categorymapping = [{"bruteforce":"bruteforcer"},{"nothing":"nothing"}]

is how you would configure collectAttackers.py to do autocategoization of attackers that it discovers and specify a list
of mappings matching alert categories to attacker category.

52 Chapter 10. Advanced Settings

CHAPTER 11

Code

11.1 Plugins

Plugins are supported in several places: Event Processing and the REST api.

11.1.1 Event Processing

The front-end event processing portion of MozDef supports python mq plugins to allow customization of the input
chain. Plugins are simple python modules than can register for events with a priority, so they only see events with
certain dictionary items/values and will get them in a predefined order.

To create a plugin, make a python class that presents a registration dictionary and a priority as follows:

class message(object):
def __init__(self):

'''register our criteria for being passed a message
as a list of lower case strings or values to match with an event's

→˓dictionary of keys or values
set the priority if you have a preference for order of plugins to run.
0 goes first, 100 is assumed/default if not sent

'''
self.registration = ['sourceipaddress', 'destinationipaddress']
self.priority = 20

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, message, metadata):
#do something interesting with the message or metadata
return (message, metadata)

53

https://github.com/mozilla/MozDef/tree/master/mq/plugins

MozDef Documentation

The plugin will receive a copy of the incoming event as a python dictionary in the ‘message’ variable. The plugin can
do whatever it wants with this dictionary and return it to MozDef. Plugins will be called in priority order 0 to 100 if
the incoming event matches their registration criteria. i.e. If you register for sourceipaddress you will only get events
containing the sourceipaddress field.

If you return the message as None (i.e. message=None) the message will be dropped and not be processed any further.
If you modify the metadata the new values will be used when the message is posted to elastic search. You can use this
to assign custom document types, set static document _id values, etc.

Plugin Registration

Simply place the .py file in the plugins directory where the esworker.py is located, restart the esworker.py process and
it will recognize the plugin and pass it events as it sees them.

11.1.2 REST Plugins

The REST API for MozDef also supports rest plugins which allow you to customize your handling of API calls to suit
your environment. Plugins are simple python modules than can register for REST endpoints with a priority, so they
only see calls for that endpoint and will get them in a predefined order.

To create a REST API plugin simply create a python class that presents a registration dictionary and priority as follows:

class message(object):
def __init__(self):

'''register our criteria for being passed a message
as a list of lower case strings to match with an rest endpoint
(i.e. blockip matches /blockip)
set the priority if you have a preference for order of plugins
0 goes first, 100 is assumed/default if not sent

Plugins will register in Meteor with attributes:
name: (as below)
description: (as below)
priority: (as below)
file: "plugins.filename" where filename.py is the plugin code.

Plugin gets sent main rest options as:
self.restoptions
self.restoptions['configfile'] will be the .conf file
used by the restapi's index.py file.

'''

self.registration = ['blockip']
self.priority = 10
self.name = "Banhammer"
self.description = "BGP Blackhole"

The registration is the REST endpoint for which your plugin will receive a copy of the request/response objects to
use or modify. The priority allows you to order your plugins if needed so that they operate on data in a defined
pattern. The name and description are passed to the Meteor UI for use in dialog boxes, etc so the user can make
choices when needed to include/exclude plugins. For example the /blockip endpoint allows you to register multiple
methods of blocking an IP to match your environment: firewalls, BGP tables, DNS blackholes can all be independently
implemented and chosen by the user at run time.

54 Chapter 11. Code

https://github.com/mozilla/MozDef/tree/master/rest/plugins

MozDef Documentation

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, request, response):
'''
request: https://bottlepy.org/docs/dev/api.html#the-request-object
response: https://bottlepy.org/docs/dev/api.html#the-response-object

'''
response.headers['X-PLUGIN'] = self.description

It’s a good idea to add your plugin to the response headers if it acts on a message to facilitate troubleshooting. Other
than that, you are free to perform whatever processing you need within the plugin being sure to return the request,
response object once done:

return (request, response)

Plugin Registration

Simply place the .py file in the rest/plugins directory, restart the REST API process and it will recognize the plugin
and pass it events as it sees them.

11.1.3 Alert Plugins

The alert pipeline also supports alert plugins which allow you to modify an alert’s properties while the alert is “firing”
(before it is saved into Elasticsearch/sent to alert actions).

Create a sample plugin in alerts/plugins:

class message(object):
def __init__(self):

'''
adds a new field 'testing'
to the alert if sourceipaddress is 127.0.0.1
'''

self.registration = "sourceipaddress"
self.priority = 1

This plugin’s onMessage function will get executed every time an alert has “sourceipaddress” as either a key or a
value.

Message Processing

To process a message, define an onMessage function within your class as follows:

def onMessage(self, message):
if 'sourceipaddress' in message && message['sourceipaddress'] == '127.0.0.1':

message['testing'] = True
return message

It’s worth noting that this is a blocking mechanism, so if this function is reaching out to external resources, the alert
will not “fire” until it’s execution has finished. It may be preferred to use an alert action instead in cases where you
don’t need to modify the alert, but want to trigger an API somewhere.

11.1. Plugins 55

https://github.com/mozilla/MozDef/tree/master/alerts/plugins

MozDef Documentation

Plugin Registration

Simply place the .py file in the alerts/plugins directory, restart the alerts process and it will recognize the plugin and
pass it alerts based on registration.

11.2 Actions

Actions are currently supported at the end of the alert pipeline.

11.2.1 Alert Action Processing

Alert actions run at the very end of the alert pipeline after the alert is already created, and are non blocking (meaning
they also don’t have the ability to modify alerts inline).

class message(object):
def __init__(self):

'''
triggers when a geomodel alert is generated
'''
self.alert_classname = 'AlertGeomodel'
self.registration = 'geomodel'
self.priority = 1

Alert Trigger

def onMessage(self, message):
print(message)
return message

Plugin Registration

Simply place the .py file in the alert actions directory.

56 Chapter 11. Code

https://github.com/mozilla/MozDef/tree/master/alerts/actions

CHAPTER 12

Continuous Integration and Continuous Deployment

12.1 Overview

Each git commit to the master branch in GitHub triggers both the TravisCI automated tests as well as the AWS
CodeBuild building. Each git tag applied to a git commit triggers a CodeBuild build.

12.2 Travis CI

Travis CI runs tests on the MozDef code base with each commit to master. The results can be seen on the Travis CI
MozDef dashboard

12.2.1 The Test Sequence

• Travis CI creates webhooks when first setup which allow commits to the MozDef GitHub repo to trigger Travis.

• When a commit is made to MozDef, Travis CI follows the instructions in the .travis.yml file.

• .travis.yml installs docker-compose in the before_install phase.

• In the install phase, Travis runs the build-tests make target which calls docker-compose build on the
docker/compose/docker-compose-tests.yml file which builds a few docker containers to use for testing.

• In the script phase, Travis runs the tests make target which

– calls the build-tests make target which again runs docker-compose build on the docker/compose/docker-
compose-tests.yml file.

– calls the run-tests make target which.

* calls the run-tests-resources make target which starts the docker containers listed in
docker/compose/docker-compose-tests.yml.

* runs flake8 with the .flake8 config file to check code style.

57

https://travis-ci.org/mozilla/MozDef/
https://travis-ci.org/mozilla/MozDef/
https://github.com/mozilla/MozDef/blob/master/.travis.yml
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L88-L89
https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-tests.yml
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L52
https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-tests.yml
https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-tests.yml
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L67-L69
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L60-L61
https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-tests.yml
https://github.com/mozilla/MozDef/blob/master/.flake8

MozDef Documentation

* runs py.test tests which runs all the test cases.

12.3 AWS CodeBuild

12.3.1 Enabling GitHub AWS CodeBuild Integration

Onetime Manual Step

The steps to establish a GitHub CodeBuild integration unfortunately require a onetime manual step be done before
using CloudFormation to configure the integration. This onetime manual step need only happen a single time for a
given AWS Account + Region. It need not be performed with each new CodeBuild project or each new GitHub
repo

1. Manually enable the GitHub integration in AWS CodeBuild using the dedicated, AWS account specific, GitHub
service user.

1. A service user is needed as AWS CodeBuild can only integrate with GitHub from one AWS account in
one region with a single GitHub user. Technically you could use different users for each region in a single
AWS account, but for simplicity limit yourself to only one GitHub user per AWS account (instead of one
GitHub user per AWS account per region)

2. To do the one time step of integrating the entire AWS account in that region with the GitHub service user

1. Browse to CodeBuild in AWS and click Create Project

2. Navigate down to Source and set Source Provider to GitHub

3. For Repository select Connect with a GitHub personal access token

4. Enter the persona access token for the GitHub service user. If you haven’t created one do so and grant
it repo and admin:repo_hook

5. Click Save Token

6. Abort the project setup process by clicking the Build Projects breadcrumb at the top. This
“Save Token” step was the only thing you needed to do in that process

Grant the GitHub service user access to the GitHub repository

1. As an admin of the GitHub repository go to that repositories settings, select Collaborators and Teams, and add
the GitHub service user to the repository

2. Set their access level to Admin

3. Copy the invite link, login as the service user and accept the invitation

Deploy CloudFormation stack creating CodeBuild project

Deploy the mozdef-cicd-codebuild.yml CloudFormation template to create the CodeBuild project and IAM
Role

12.3.2 The Build Sequence

• A branch is merged into master in the GitHub repo or a version git tag is applied to a commit.

• GitHub emits a webhook event to AWS CodeBuild indicating this.

58 Chapter 12. Continuous Integration and Continuous Deployment

https://us-west-2.console.aws.amazon.com/codesuite/codebuild/

MozDef Documentation

• AWS CodeBuild considers the Filter Groups configured to decide if the tag or branch warrants triggering a
build. These Filter Groups are defined in the mozdef-cicd-codebuild.yml CloudFormation template.
Assuming the tag or branch are acceptable, CodeBuild continues.

• AWS CodeBuild reads the buildspec.yml file to know what to do.

• The install phase of the buildspec.yml fetches packer and unzips it.

– packer is a tool that spawns an ec2 instance, provisions it, and renders an AWS Machine Image (AMI)
from it.

• The build phase of the buildspec.yml runs the cloudy_mozdef/ci/deploy script in the AWS CodeBuild Ubuntu
14.04 environment.

• The deploy script calls the build-from-cwd target of the Makefile which calls docker-compose build on the
docker-compose.yml file, building the docker images in the AWS CodeBuild environment. These are built both
so they can be consumed later in the build by packer and also for use by developers and the community.

• deploy then calls the docker-push-tagged make target which calls

– the tag-images make target which calls the cloudy_mozdef/ci/docker_tag_or_push tag script which applies
a docker image tag to the local image that was just built by AWS CodeBuild.

– the hub-tagged make target which calls the cloudy_mozdef/ci/docker_tag_or_push push script which

* Uploads the local image that was just built by AWS CodeBuild to DockerHub. If the branch being
built is master then the image is uploaded both with a tag of master as well as with a tag of latest.

* If the branch being built is from a version tag (e.g. v1.2.3) then the image is uploaded with only that
version tag applied.

• The deploy script next calls the packer-build-github make target in the cloudy_mozdef/Makefile which calls the
ci/pack_and_copy script which does the following steps.

– Calls packer which launches an ec2 instance, executing a bunch of steps and and producing an AMI

– Shares the resulting AMI with the AWS Marketplace account

– Copies the resulting AMI to a list of additional AWS regions

– Copies the tags from the original AMI to these copied AMIs in other regions

– Shares the AMIs in these other regions with the AWS Marketplace account

– Creates a blob of YAML which contains the AMI IDs. This blob will be used in the CloudFormation
templates

• When ci/pack_and_copy calls packer, packer launches an ec2 instance based on the configuration in
cloudy_mozdef/packer/packer.json

– Within this ec2 instance, packer clones the MozDef GitHub repo and checks out the branch that triggered
this build.

– Packer replaces all instances of the word latest in the docker-compose-cloudy-mozdef.yml file with either
the branch master or the version tag (e.g. v1.2.3).

– Packer runs docker-compose pull on the docker-compose-cloudy-mozdef.yml file to pull down both the
docker images that were just built by AWS CodeBuild and uploaded to Dockerhub as well as other non
MozDef docker images.

• After packer completes executing the steps laid out in packer.json inside the ec2 instance, it generates an AMI
from that instance and continues with the copying, tagging and sharing steps described above.

• Now back in the AWS CodeBuild environment, the deploy script continues by calling the publish-versioned-
templates make target which runs the ci/publish_versioned_templates script which

12.3. AWS CodeBuild 59

https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/buildspec.yml
https://www.packer.io/
https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/deploy
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L78-L79
https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose.yml
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L113
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L109-L110
https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/docker_tag_or_push
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/Makefile#L116-L117
https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/docker_tag_or_push
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/cloudy_mozdef/Makefile#L34-L36
https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/Makefile
https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/pack_and_copy
https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/packer/packer.json
https://github.com/mozilla/MozDef/blob/c7a166f2e29dde8e5d71853a279fb0c47a48e1b2/cloudy_mozdef/packer/packer.json#L58-L60
https://github.com/mozilla/MozDef/blob/c7a166f2e29dde8e5d71853a279fb0c47a48e1b2/cloudy_mozdef/packer/packer.json#L58-L60
https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-cloudy-mozdef.yml
https://github.com/mozilla/MozDef/blob/master/docker/compose/docker-compose-cloudy-mozdef.yml
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/cloudy_mozdef/Makefile#L85-L87
https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/cloudy_mozdef/Makefile#L85-L87
https://github.com/mozilla/MozDef/blob/master/cloudy_mozdef/ci/publish_versioned_templates

MozDef Documentation

– injects the AMI map yaml blob produced earlier into the mozdef-parent.yml CloudFormation template so
that the template knows the AMI IDs of that specific branch of code.

– uploads the CloudFormation templates to S3 in a directory either called master or the tag version that was
built (e.g. v1.2.3).

60 Chapter 12. Continuous Integration and Continuous Deployment

https://github.com/mozilla/MozDef/blob/cfeafb77f9d4d4d8df02117a0ffca0ec9379a7d5/cloudy_mozdef/cloudformation/mozdef-parent.yml#L86-L87

CHAPTER 13

References

• GeoModel

– v0.1 Specification

61

geomodel/specifications/v0_1.html

MozDef Documentation

62 Chapter 13. References

CHAPTER 14

Contributors

Here is the list of the awesome contributors helping us or that have helped us in the past:

Contributors

63

https://github.com/mozilla/MozDef/graphs/contributors

MozDef Documentation

64 Chapter 14. Contributors

CHAPTER 15

Indices and tables

• genindex

• modindex

• search

65

MozDef Documentation

66 Chapter 15. Indices and tables

CHAPTER 16

License

license

67

MozDef Documentation

68 Chapter 16. License

CHAPTER 17

Contact

• mozdef INSERTAT mozilla.com

• #mozdef

69

irc://irc.mozilla.org/mozdef

	Overview
	What?
	Why?
	Goals
	Architecture
	Status
	Roadmap

	Introduction
	Concept of operations

	Demo Instance
	Installation
	Build and run MozDef
	Run tests
	Manual Installation for Yum or Apt based distros
	Web and Workers nodes

	Alert Development Guide
	How to start developing your new alert
	How to run tests on your alert
	Background on concepts
	Example first alert
	Scheduling your alert
	How to run the alert in the docker containers
	How to get the alert in a release of MozDef?
	Customizing the alert summary
	Questions?
	Resources

	Mozdef_util Library
	Connecting to Elasticsearch
	Creating/Updating Documents
	Searching for documents
	Match/Query Classes

	Screenshots
	Health and Status
	Alerts
	Incident Handling
	d3 visualizations
	Geo location of Attackers
	3D interactive Attacker visualization
	3D interactive Attack visualization via Landmass

	Usage
	Web Interface
	Sending logs to MozDef
	JSON format
	Simple test
	Writing alerts

	MozDef for AWS
	Feedback
	Dependencies
	Supported Regions
	Architecture
	Deployment Process
	Troubleshooting
	Using MozDef
	AWS re:invent 2018 SEC403 Presentation

	Advanced Settings
	Conf files

	Code
	Plugins
	Actions

	Continuous Integration and Continuous Deployment
	Overview
	Travis CI
	AWS CodeBuild

	References
	Contributors
	Indices and tables
	License
	Contact

