

Welcome to Motorturbine’s documentation!

Motorturbine is an adapted version of the Motorengine ORM [https://motorengine.readthedocs.io/en/latest/]. The main goals are proper asyncio integration as well as a way to have more control over safe updates. Many ORMs suffer from parallelism issues and one big part of this package is to introduce transactions with retry capabilities when updating the fields of a document.

	Tutorial
	Connecting to the database

	Creating a document

	Working with documents

	Querying objects

	Updating fields

	Reference
	Documents

	Fields

	Querying

	Updating

	Connection

	Errors

Indices and tables

	Index

	Module Index

	Search Page

Tutorial

Using Motorturbine is meant to be a streamlined experience, creating an environment where it’s the only needed connection
to interact with any object in a database.

Connecting to the database

At first we need to establish a connection to the database.
Using Connection’s connect() all future operations will be made by utilising that connection.

Connection.connect(host='localhost', port=27017)

Creating a document

The next step after a global connection is established is to model your documents using the BaseDocument class. Modeling is achieved by populating the documents attributes using the supplied Fields

from motorturbine import BaseDocument, fields

def class Person(BaseDocument):
 name = fields.StringField(default='Nobody')
 age = fields.IntField(required=True)

Working with documents

From here on out each document object can be considered like a typed object.

person1 = Person(name="Steve", age=25)

person2 = Person(age=44)
person2.age = 60

When all transformations are done objects can be inserted into the database by calling save().

Note

save() is a coroutine function and therefore requires awaiting.

async def save_person(person):
 await person.save()

Querying objects

The created collections (or document classes) can be queried by using one of the classmethodds get_object() or get_objects(). These methods will search the collection that is automatically created when inserting a new document. To specify the parameters it is possible to use one or multiple instances of QueryOperator.

async def get_sixty_plus():
 oldies = await Person.get_objects(age=Gte(60))
 return oldies

In this example motorturbine.queryset.Gte is used to look for all entries with Person.age >= 60.

Updating fields

Once everything is set up, instead of just setting values directly there is a fancier way to update your fields by utilising mongos inbuilt atomic update capabilities.

Values that are updated this way don’t need to match their old state since they just add to the state instead of completely changing it.

async def happy_birthday(person):
 person.age = Inc(1)
 await person.save()

In this example the motorturbine.updateset.Inc operator is used to increase the persons age by one year.
For more information about updating see UpdateOperator.

Reference

Documents

Create new documents by subclassing the base class.

	BaseDocument

Fields

Used to populate your own Documents. Allow to set defaults, unique indexes and other
field specific parameters.

	BaseField

	FloatField

	IntField

	StringField

	BooleanField

	ObjectIdField

	DateTimeField

	ReferenceField

	DocumentField

	ListField

	MapField

Querying

Operators that allow to create field specific, mongo-like queries.

	QueryOperator

	Eq

	Ne

	Lt

	Lte

	Gt

	Gte

	In

	Nin

Updating

The Updateset enables updating of fields by using atomic operators.

Note

Makes use of write_bulk to enable the usage of multiple update operators to compress all changes to just on save call on the user side.

	UpdateOperator

	Set

	Inc

	Max

	Min

	Mul

	Push

	Pull

	PullAll

Connection

A singleton to enable a global connection that can be used by the documents.

	Connection

Errors

	FieldExpected

	TypeMismatch

	FieldNotFound

	RetryLimitReached

	UnresolvableReference

BaseDocument

	
class BaseDocument(**kwargs)

	The BaseDocument is used to create new Documents
which can be used to model your data structures.

Simple example using a StringField
and an IntField:

class ExampleDocument(BaseDocument):
 name = StringField(default='myname')
 number = IntField(default=0)

When instantiating a Document object it is possible to use keyword
arguments to initialise its fields to the given values.

>>> doc = ExampleDocument(name='Changed My Name', number=15)
>>> print(doc)
<ExampleDocument name='Changed My Name' number=15>
>>> await doc.save()
>>> print(doc)
<ExampleDocument id=ObjectId('$oid') name='Changed My Name' number=15>

	Raises

	FieldNotFound – On access of a non-existent field

Caution

The id field is reserved and will be set after a successful save. The field has the same properties as when using an ObjectIdField. Will raise an exception if the field is set regardless.

	
classmethod await get_object(**kwargs)

	A find_one wrapper for get_objects(). Queries the collection for a single document.
Will return None if there is no or more than one document.

	
classmethod await get_objects(**kwargs)

	Queries the collection for multiple objects
as defined by the supplied filters. For querying
Motorturbine supplies its own functionality in form
of QueryOperator.

	
await get_reference(field_name, collections=None)

	When using ReferenceField this method allows
loading the reference by the fields name.
Returns None if the given field exists but is not a ReferenceField type.

	Parameters

	
	field_name (str) – The name of the ReferenceField

	collections (list) – optional (None) –
A list of BaseDocument classes.
In case you allowed subclassing in a
ReferenceField you can specify
the additional document collections that will be searched if they are
not the same as the specified documents type.

	Raises

	FieldNotFound – On access of a non-existent field

	
await save(limit=0)

	Calling the save method will start a synchronisation process with
the database. Every change that was made since the last
synchronisation is considered specifically to only update based on the
condition that no fields that changed were updated in the meantime.
In case that any conflicting fields did update we make sure to pull
these changes first and only then update them to avoid critical write
errors.

If a document has not been saved before the ‘id’ field will be set
automatically after the update is done.

	Parameters

	limit (int) – optional (0) –
The maximum amount of tries before a save operation fails.
Can be used as a way to catch problematic state or to probe if the
current document has changed yet if set to 1.

	Raises

	RetryLimitReached – Raised if limit is reached

	
to_json()

	Returns the entire document as a json dictionary.

BaseField

	
class BaseField(*, default=None, required=False, unique=False)

	The base class for any field. Used for connecting to the parent document
and calling general methods for setting and validating values.

	Parameters

	
	default – optional (None) –
Defines a default value based on the field type.

	required (bool) – optional (False) –
Defines if the fields value can be None.

	unique (bool) – optional (False) –
Defines if the fields value has to be unique.

	Raises

	TypeMismatch – Trying to set a value with the wrong type

FloatField

	
class FloatField(*, default=None, required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field only allows a float type to be set as its value.

IntField

	
class IntField(*, default=None, required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field only allows an int type to be set as its value.

StringField

	
class StringField(*, default=None, required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field only allows a str type to be set as its value.

BooleanField

	
class BooleanField(*, default=None, required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field only allows an bool type to be set as its value.

ObjectIdField

	
class ObjectIdField(*, default=None, required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field only allows a bson.ObjectId to be set as its value.

DateTimeField

	
class DateTimeField(*, default=None, required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field allows multiple types to be set as its value
but will always parse them to a datetime object.

	Accepted types:

	
	str - Any accepted by dateutil.parser.parse() (docs [https://dateutil.readthedocs.io/en/stable/parser.html#dateutil.parser.parse])

	int - Unix timestamp

	float - Unix timestamp

	datetime.date

	datetime.datetime

Note

Make sure to always use UTC times when trying to insert times to avoid issues between timezones! For example use datetime.utcnow() instead of datetime.now()

ReferenceField

	
class ReferenceField(reference_doc, *, allow_subclass=False, default=None, required=False, unique=False)

	Bases: motorturbine.fields.objectid_field.ObjectIdField

This field allows another Document to be set as its value.
A ReferenceField does not auto-insert other fields. Therefore make sure
to insert them before you try to set them as a reference.

	Parameters

	
	reference_doc (BaseDocument) – Sets the document type that will be checked when setting the reference.

	allow_subclass (bool) – optional (False) –
Controls whether or not it should be possible to set instances of a subclass of
the specified document as a reference.

DocumentField

	
class DocumentField(embed_doc, *, default=None, required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field allows another Document to be set as its value. Any document inserted
as an embedded field will be treated like an object inside of its parent.
It enables to create more complex document trees than by just using
MapField.

Example usage:

class Identifier(BaseDocument):
 serial = fields.StringField()
 stamp = fields.DateTimeField()
 location = fields.StringField()

class Part(BaseDocument):
 name = fields.StringField()
 ident = fields.DocumentField(Identifier)

now = datetime.utcnow()
ident = Identifier(serial='9X1-33D-52A', stamp=now, location='US')
part = Part(name='Xerxes', ident=ident)

await part.save()

In this example an Identifier is attached to each Part that is produced. It
wouldn’t have been easily possibly to create this structure by using a
MapField because the Identifier is built from
more than one data types.

	Parameters

	embed_doc (BaseDocument) – Sets the document type that will be checked when embedding an instance.

Note

DocumentFields are not only stackable with each other, it is also possible to insert them into a ListField or MapField.

ListField

	
class ListField(sub_field, *, default=[], required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field only allows a list type to be set as its value.

If an entire list is set instead of singular values each entry in the new
list has to match the subfield that was set when initialising the field.

	Parameters

	sub_field (BaseField) – Sets the field type that will be used for the entires of the list.

MapField

	
class MapField(value_field, key_field=StringField(), *, default={}, required=False, unique=False)

	Bases: motorturbine.fields.base_field.BaseField

This field only allows a dict type to be set as its value.

If an entire dict is set instead of singular values each key-value pair in
the new dict has to match the subfields that were set when initialising
the field.

	Parameters

	value_field (BaseField) – Sets the field type that will be used for the values of the dict.

QueryOperator

	
class QueryOperator(value, requires_sync=True)

	QueryOperators can be used to automatically generate
queries that are understood by mongo. Each of the operators
can be used as defined in the mongo manual as they’re just
a direct mapping.
See BaseDocument to use it with
querying methods like
get_objects().

Note

Please note that because of the overlap in keywords all these classes are capitalised!

Eq

	
class Eq(value, requires_sync=True)

	Checks for any value that is equal to the given value.
Not using it is the default case and functionally the same
as just leaving out a QueryOperator completely.

Example usage:

>>> await Document.get_objects(num=5)
>>> await Document.get_objects(num=Eq(5))

Query:

>>> Eq(5)()
{'$eq': 5}

Ne

	
class Ne(value, requires_sync=True)

	Checks for any value that is not equal to the given value.

Example usage:

>>> await Document.get_objects(num=Ne(5))

Query:

>>> Ne(5)()
{'$ne': 5}

Lt

	
class Lt(value, requires_sync=True)

	Checks for any value that is lesser than the given value.

Example usage:

>>> await Document.get_objects(num=Lt(5))

Query:

>>> Lt(5)()
{'$lt': 5}

Lte

	
class Lte(value, requires_sync=True)

	Checks for any value that is lesser than or equal to
the given value.

Example usage:

>>> await Document.get_objects(num=Lte(5))

Query:

>>> Lte(5)()
{'$lte': 5}

Gt

	
class Gt(value, requires_sync=True)

	Checks for any value that is greater than the given value.

Example usage:

>>> await Document.get_objects(num=Gt(5))

Query:

>>> Gt(5)()
{'$gt': 5}

Gte

	
class Gte(value, requires_sync=True)

	Checks for any value that is greater than or equal to the given value.

Example usage:

>>> await Document.get_objects(num=Gte(5))

Query:

>>> Gte(5)()
{'$gte': 5}

In

	
class In(value, requires_sync=True)

	Checks for any value that is included in the given value.

Example usage:

>>> await Document.get_objects(num=In([1, 4, 5]))

Query:

>>> In([1, 4, 5])()
{'$in': [1, 4, 5]}

Nin

	
class Nin(value, requires_sync=True)

	Checks for any value that is not included in the given value.

Example usage:

>>> await Document.get_objects(num=Nin([1, 4, 5]))

Query:

>>> Nin([1, 4, 5])()
{'$nin': [1, 4, 5]}

UpdateOperator

	
class UpdateOperator(update)

	UpdateOperators can be used to automatically generate
update queries that are understood by mongo. Each of the operators
can be used as defined in the mongo manual as they’re just
a direct mapping.

Note

Please note that because of the overlap in keywords all these classes are capitalised!

Note

Makes use of write_bulk to enable the usage of multiple update operators to compress all changes to just on save call on the user side.

Set

	
class Set(update)

	Is used to set the specified field to any given value.
Not using it is the default case and
functionally the same as just leaving out an UpdateOperator completely.

Example usage:

>>> doc.num = 5
>>> doc.num = Set(5)

Query:

>>> Set(5)()
{'$set': 5}

Inc

Note

Like in mongo Inc can be used with positive and negative numbers. For continuity Dec can also be used and is used for implicit substraction.

	
class Inc(update)

	Is used to modify a numeric value by a given amount.

Example usage:

>>> doc.num = Inc(5)
>>> doc.num = Inc(-5)

Query:

>>> Inc(5)()
{'$inc': 5}

	
class Dec(update)

	Is used to decrease a numeric value.

Example usage:

>>> doc.num = Dec(5)

Query:

>>> Dec(5)()
{'$inc': -5}

Max

	
class Max(update)

	Update the field to the maximum of database and current value.

Example usage:

>>> doc.num = Max(5)

Query:

>>> Max(5)()
{'$max': 5}

Min

	
class Min(update)

	Update the field to the minimum of database and current value.

Example usage:

>>> doc.num = Min(5)

Query:

>>> Min(5)()
{'$min': 5}

Mul

	
class Mul(update)

	Is used to multipy a numeric value by a given amount.

Example usage:

>>> doc.num = Mul(5)

Query:

>>> Mul(5)()
{'$mul': 5}

Push

	
class Push(update)

	Is used to append a value to a list.

Example usage:

>>> doc.num_list = Push(5)

Query:

>>> Push(5)()
{'$push': 5}

Pull

	
class Pull(update)

	Is used to pull all entries that match the given value.

Example usage:

>>> doc.num_list = Pull(5)

Query:

>>> Pull(5)()
{'$pull': 5}

PullAll

	
class PullAll(update)

	Is used to pull all entries that match a value from a list.

Example usage:

>>> doc.num_list = PullAll([5, 6, 7])

Query:

>>> PullAll([5, 6, 7])()
{'$pullAll': [5, 6, 7]}

Connection

	
class Connection

	This singleton is used to connect motor to your database.
When initialising your application call Connection.connect()
and all subsequent operations on the database will be automatically done
by the documents.

	
classmethod connect(host='localhost', port=27017, database='motorturbine')

	Connects motorturbine to your database

	Parameters

	
	host (str) – optional (‘localhost’) –

	port (int) – optional (27017) –

	database (str) – optional (‘motorturbine’) –

FieldExpected

	
class FieldExpected(received)

	Is raised when a Document is created with an attribute
that is not a BaseField.

>>> raise FieldExpected(str)
Expected instance of BaseField, got str!

	Parameters

	received – The received type

TypeMismatch

	
class TypeMismatch(expected, received)

	Is raised when an incorrect type was supplied.

>>> raise TypeMismatch(int, str)
Expected instance of int, got str!

	Parameters

	
	expected – The expected type.

	received – The received type

FieldNotFound

	
class FieldNotFound(field_name, document)

	Is raised when trying to access a property that isn’t present as a field.

>>> raise FieldNotFound(doc, 'attr')
Field 'attr' was not found on object <ExampleDocument name='Changed My Name' number=15>.

	Parameters

	
	field_name (str) – Name of the field

	document (BaseDocument) – The document that was being accessed.

RetryLimitReached

	
class RetryLimitReached(limit, document)

	Is raised during the synchronisation process if the
specified retry limit is reached.

>>> raise RetryLimitReached(10, doc)
Reached the retry limit (10) while trying to save <ExampleDocument name='Changed My Name' number=15>.

	Parameters

	
	limit (int) – The retry limit

	received (BaseDocument) – The document that couldn’t be synced

UnresolvableReference

	
class UnresolvableReference

	Is raised when a reference can not be set/loaded.

>>> raise UnresolvableReference()
Only inserted documents can be referenced.

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 motorturbine	

 	
 	
 motorturbine.connection	

Index

 B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U

B

 	
 	BaseDocument (class in motorturbine.document)

 	
 	BaseField (class in motorturbine.fields)

 	BooleanField (class in motorturbine.fields)

C

 	
 	connect() (Connection method)

 	
 	Connection (class in motorturbine.connection)

D

 	
 	DateTimeField (class in motorturbine.fields)

 	
 	Dec (class in motorturbine.updateset)

 	DocumentField (class in motorturbine.fields)

E

 	
 	Eq (class in motorturbine.queryset)

F

 	
 	FieldExpected (class in motorturbine.errors)

 	
 	FieldNotFound (class in motorturbine.errors)

 	FloatField (class in motorturbine.fields)

G

 	
 	get_object() (BaseDocument method)

 	get_objects() (BaseDocument method)

 	
 	get_reference() (BaseDocument method)

 	Gt (class in motorturbine.queryset)

 	Gte (class in motorturbine.queryset)

I

 	
 	In (class in motorturbine.queryset)

 	
 	Inc (class in motorturbine.updateset)

 	IntField (class in motorturbine.fields)

L

 	
 	ListField (class in motorturbine.fields)

 	
 	Lt (class in motorturbine.queryset)

 	Lte (class in motorturbine.queryset)

M

 	
 	MapField (class in motorturbine.fields)

 	Max (class in motorturbine.updateset)

 	
 	Min (class in motorturbine.updateset)

 	motorturbine.connection (module)

 	Mul (class in motorturbine.updateset)

N

 	
 	Ne (class in motorturbine.queryset)

 	
 	Nin (class in motorturbine.queryset)

O

 	
 	ObjectIdField (class in motorturbine.fields)

P

 	
 	Pull (class in motorturbine.updateset)

 	
 	PullAll (class in motorturbine.updateset)

 	Push (class in motorturbine.updateset)

Q

 	
 	QueryOperator (class in motorturbine.queryset)

R

 	
 	ReferenceField (class in motorturbine.fields)

 	
 	RetryLimitReached (class in motorturbine.errors)

S

 	
 	save() (BaseDocument method)

 	
 	Set (class in motorturbine.updateset)

 	StringField (class in motorturbine.fields)

T

 	
 	to_json() (BaseDocument method)

 	
 	TypeMismatch (class in motorturbine.errors)

U

 	
 	UnresolvableReference (class in motorturbine.errors)

 	
 	UpdateOperator (class in motorturbine.updateset)

 Motorturbine is an adapted version of the Motorengine ORM [https://motorengine.readthedocs.io/en/latest/]. The main goals are proper asyncio integration as well as a way to have more control over safe updates. Many ORMs suffer from parallelism issues and one big part of this package is to introduce transactions with retry capabilities when updating the fields of a document.

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Motorturbine’s documentation!

 		
 Tutorial

 		
 Connecting to the database

 		
 Creating a document

 		
 Working with documents

 		
 Querying objects

 		
 Updating fields

 		
 Reference

 		
 Documents

 		
 BaseDocument

 		
 Fields

 		
 BaseField

 		
 FloatField

 		
 IntField

 		
 StringField

 		
 BooleanField

 		
 ObjectIdField

 		
 DateTimeField

 		
 ReferenceField

 		
 DocumentField

 		
 ListField

 		
 MapField

 		
 Querying

 		
 QueryOperator

 		
 Eq

 		
 Ne

 		
 Lt

 		
 Lte

 		
 Gt

 		
 Gte

 		
 In

 		
 Nin

 		
 Updating

 		
 UpdateOperator

 		
 Set

 		
 Inc

 		
 Max

 		
 Min

 		
 Mul

 		
 Push

 		
 Pull

 		
 PullAll

 		
 Connection

 		
 Connection

 		
 Errors

 		
 FieldExpected

 		
 TypeMismatch

 		
 FieldNotFound

 		
 RetryLimitReached

 		
 UnresolvableReference

_static/ajax-loader.gif

