
Morpx Documentation

Morpx

May 12, 2020

MU VISION SENSOR 3 GUIDES

1 MU Vision Sensor 3 Introduction 1

2 MU 3 Mixly Programming Guide 5

3 MU 3 Arduino Programming Guide 25

4 MU 3 MakeCode Programming Guide 31

5 MU 3 MicroPython Programming Guide 47

6 MU Vision Sensor Resource 55

7 MU Vision Sensor Application 57

8 MoonBot Kit Introduction 63

9 MoonBot Kit Hardware Instruction 65

10 MoonBot Kit Structure Instruction 91

11 MoonBot Kit MU Bot App Tutorial 103

12 MoonBot Kit Mixly Tutorial 135

13 MoonBot Kit Arduino Tutorial 169

14 MoonBot Kit Extended Structures 205

15 MoonBot Kit Firmware Upgrade Guide 209

16 MoonBot Kit Resource 213

17 MU Self-driving Kit Introduction 215

18 MU Self-driving Kit Structure 217

19 MU Self-driving Kit MakeCode Tutorial 219

20 MU Self-driving Kit Resource 243

21 Technical Support 245

22 /About 247

i

23 Product Copyrights 249

24 Software Licenses 251

Index 253

ii

CHAPTER

ONE

MU VISION SENSOR 3 INTRODUCTION

MU Vision Sensor 3(MU 3) is an intelligent vision sensor that can recognize many kinds of objects with deep-learning
algorithm inside. For example, it can detect color blocks, balls, human body and cards.Its detect result can be transmitted
through UART or I2C interface. MU 3 is compact, low power consumption, process all algorithms locally, and can be
widely used in intelligent toys, AI+STEAM lessons, creators and other products or fields.

1.1 Hardware Setup

1.1.1 1. Set Communication Mode

MU supports 4 kinds of communication modes: UART,I2C,WIFI,image transmission . Change mode by
switching Output switch on left side of MU.
After choosing mode, communication mode in program should be same as switch to make the codes working. Choose
communication mode before coding, and then set other parameters.Every time changing communication mode, MUmust
be restarted.

1

Morpx Documentation

output mode switch number LED indicate

UART 00 flash red

I2C 01 flash green

WiFi 10 flash yellow

image transmission 11 flash purple

1.1.2 2. Set Address

MU supports 4 address: 0x60 (default), 0x61 , 0x62 , 0x63 . Address should be changed when conflicted with other
sensors. In I2C modes, several MU sensors can work together with different address.

Note: Use default address 0x60 normally.

device address switch number device address switch number

0x60 00 0x61 01

0x62 10 0x63 11

1.1.3 3. Wire Connection

UART/WiFi/image transmission modes

MU RX TX G V
controller TX RX GND 5V

I2C modes

MU SCL SDA G V
controller SCL SDA GND 5V

2 Chapter 1. MU Vision Sensor 3 Introduction

Morpx Documentation

1.2 Software Setup

Check detailed instructions among platforms below.

1.3 Special modes introduction

1.3.1 WiFi/image transmission mode network distribution

In WiFi/iamge transmission mode, distribute network by sending AT command to MU. Default serial baudrate is 9600.
Send following command to know all AT commands

AT+HELP

Attention: all commands should end with "\r\n" or ' ' .

MU supports AP and STA modes to connect to network. Here is difference between two ways:
AP mode AP mode is default WiFi mode of MU. In this mode, MU will establish a WiFi hotspot for user

to connect. When WiFi connect successfully,LED of MU will turn off.
Default hotspot name is MORPX-MU-AB .

Note:
A stands for initial word of LED color on the left, and B stands for initial word of LED color
on the right.

For enample: left LED is R ed, right LED is **Y**ellow, then default WiFi name is MORPX-MU-
RY

Send following AT command to change WiFi name:

AT+WIFISET=<yourSSID>,<yourPassword>,AP
AT+WIFICON=1

If succeed, returns:

OK
wifi ap mode starting...
OK

STA mode STA mode means MU and another device should connect to the same WiFi to get each con-
nected. Send following commands to configure:

AT+WIFISET=<yourSSID>,<yourPassword>,STA
AT+WIFICON=1

Attention: <yourSSID> <yourPassword> should be an available WiFi(case sensitive),
or connection failed.

1.2. Software Setup 3

Morpx Documentation

If set successfully, return:

OK
wifi sta mode connecting...
OK

1.3.2 Watch image in image transmission mode

Set MU to image transmission mode and complete WiFi connect , images can be watched through website 192.168.
4.1 .

1.3.3 Wireless Transmission

MU can transmit data in WiFi/image transmission modes.CompleteWiFi connect and then take following steps:

Note: TCP/UDP software are different in PC or mobile devices, here are some common definition:
• local IP : IP address of MU
• target IP : IP address of target device that MU send to

1. Open TCP/UDP software, choose UDP, and change mode to Unicast
2. Search local IP by sending command to MU:

AT+WIFISIP

Return MU local IP.
3. Set TCP/IP to MU local IP, and port is 3333

Note: In STAmode router will distribute a random address for MU and target device. Take following steps:
1. Search target IP (Most TCP/IP software will show local IP address)
2. Send command to MU:

AT+WIFIUDP=<targetIP>,3333

Return:

OK

Now WiFi configuration is finished, and all the data from TCP/UDP software will show on MU serial port, and all data
from MU serial port will show on TCP/UDP software.

4 Chapter 1. MU Vision Sensor 3 Introduction

CHAPTER

TWO

MU 3 MIXLY PROGRAMMING GUIDE

This passage introduces how to use MU Vision Sensor 3 with Arduino board and Mixly IDE.

2.1 Import Mixly Library for MU Vision Sensor 3

Open Mixly and choose controller.For example, choose Arduino Uno. If you use MoonBot controller, choose Arduino
Mega(atmega 1280) and choose the available COM port.

Click ‘Import’.

5

Morpx Documentation

Locate the ‘MuVisionSensor3.xml’ file , select and open it.

Then the nether information window prompts” import custom Library successfully ”, and you will find ‘MuVisionSensor3’
library in the ‘Blocks’ window.

6 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

2.2 Connect to Arduino

MU Vision Sensor 3 periphrals and ports:

2.2. Connect to Arduino 7

Morpx Documentation

2.2.1 I2C Mode (recommended)

1. Output Protocol Switch: set switch 1 downwards and switch 2 upwards.
2. Connect the output SDA pin of MU to the SDA pin of Arduino, and SCL pin of MU to SCL pin of Arduino.
3. Choose the I2C address of MU by setting Address Switch. Both switches are downwards and the address is set to

0x60 on default. (Changing this setting is not recommended).

8 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

2.2.2 Serial Mode*

1. Output Protocol Switch: set both switchs downward.
2. Connect the output RX pin of MU to TX pin of Arduino and TX pin of MU to RX pin of Arduino.
3. Change the UART address of MU sensor by resetting Address Switch. Both switches are downwards and the

address is 0x60 on default. (Changing this setting is not recommended)
Arduino UNO cannot send messages to PC when MuVisionSensor is running in hardware serial mode, due to a communi-
cation conflict.

2.2. Connect to Arduino 9

Morpx Documentation

2.2.3 AT Command Mode (For firmware after V1.1.5)

1. Output Protocol Switch: set switch 1 upwards and switch 2 downwards.
2. Connect the output RX pin of MU to TX pin of Arduino and TX pin of MU to RX pin of Arduino.

2.2.4 Image Transmission Mode (For firmware after V1.1.5)

1. Output Protocol Switch: both switchs are upwards.
2. Connect the output RX pin of MU to TX pin of Arduino and TX pin of MU to RX pin of Arduino.

2.3 Block Introduction

2.3.1 Setting Blocks

Initialization

1. Hardware Serial Mode: Vision sensor uses serial mode to initialize the main control when connecting the main
control hardware serial port. The serial port is the serial communication between themain control and the computer.
When it is used for vision sensor, computer printing characters will be disordered or communication abnormalities.

1. Software Serial Mode: Vision sensor uses serial mode, and the main controller is initialized when connecting the
main control software serial port. The main controller can customize RX and TX pins. The speed of soft serial
port in real environment may be too fast and unstable. The baud rate is not recommended to exceed 9600.

1. Hardware I2C Mode: The vision sensor uses I2C mode to initialize the main controller when connecting the main
controller I2C pins.

10 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

Enable Vision Algorithms

Algorithm performance level

Enable/Disable the High FPS Mode

In high FPS mode, detect speed and power consumption will increase.

Set White Balance Mode

Adjust the image bias caused by the change of external light source.

2.3. Block Introduction 11

Morpx Documentation

LED Settings

Restore Default Settings

Disable all algorithms and restore hardware default settings.

Get Result Blocks

1. Ball/Body Detection

1. Card Detection

12 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

1. Color Block Detection

2.3. Block Introduction 13

Morpx Documentation

1. Color Recognition

14 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

2.3.2 Light Sensor Blocks

Enable Light Sensor

Enable light sensor functions. Gesture detect function can not work together with other functions.

Set Sensitivity

Set light sensor sensitivity, only working in Proximity/Ambient Light Detect.

2.3. Block Introduction 15

Morpx Documentation

Get Proximity Value

Read proximity value. Closer the distance, bigger the value.

Read Ambient Light Value

Lighter the ambient light, bigger the walue.

Read Detected Gesture or Not

Read whether detected gesture. If not detected, return 0.

Judge Detected Gesture

Judge type of the detected gesture.

2.3.3 WiFi Module Blocks

WiFi AT command Settings

Blocks below only works in image transmission or AT command mode.

WiFi Initialization

Initial WiFi port and baudrate.

Configure WiFi

Set account and password of WiFi.

16 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

Connect/Establish WiFi

Try connect to WiFi or establish WiFi and return conncetion result.

Disconnect WiFi

Set target IP

Read target IP

Read local IP

Get IP of MU.

WiFi Read

Get data that target IP sent to MU.

WiFi Write

Send data to target IP.

2.3. Block Introduction 17

Morpx Documentation

2.4 Examples

2.4.1 Color Recognition

18 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

2.4.2 Ball Detection

2.4. Examples 19

Morpx Documentation

2.4.3 Card Detection

20 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

2.4.4 Light Sensor - Gesture Detect

2.4.5 Light Sensor - Proximity/Ambient Light Detect

2.4. Examples 21

Morpx Documentation

2.4.6 Connect to WiFi through AT Command

2.5 FAQs

1. Q: What should I do if I can’t open programming blocks or blocks are black boxes?
A: Please download the latest Mixly program file and import the library again.

1. Q: What should I do when I import the library and download the examples correctly, but the vision sensor doesn’t
respond and the serial port output nothing?

A: Check whether the cable is correctly and tightly connected .
Check whether the white light on the back side is on. If this light is not on ,this means something wrong with power
supply.
Check whether the output mode switch and address switch are correctly setted.
It takes MU sensor a period of time to initialize after power-on , we suggested to add a delay of not less than 500 ms
before calling ‘setup’ block in your program.

22 Chapter 2. MU 3 Mixly Programming Guide

Morpx Documentation

After reset, the two LEDs on the front side of MU vision sensor will flicker once. Red light indicates that the current
mode is serial mode, green light indicates that the current mode is I2C mode. If the color does not go with the setting of
output mode switch, please reset this switch.

1. Q: What should I do if I download the program and the serial port output correctly, but the LED does not light?
A: When the color recognition algorithm runs, the LED lights will be shut down in order not to interfere with the recog-
nition results.
Calling the LED setting block and alter the brightness parameter with non-zero number.

1. Q: Why there are some fuctions which can be found in the datasheet while are not listed in Mixly library?
A: In order to make the library easy to understand and operate, some uncommon functions are removed from the
Mixly library, and some parameter setting methods are simplified. If these functions are needed, please email to sup-
port@morpx.com.

1. Q: Why the previously downloaded recongnition algorithms have impact on the current running program? For
example download ball detection algorithm after running color recognition algorithm ,youwill find the LEDs are still
on even if the ball is not recognized, but this will not occur when only ball recognition algorithm was downloaded.

A: Because the previous algorithm is not terminated even if the program ends, you can add ‘setDefault’ block when calling
‘setup’ block or restart MU vision sensor.

2.5. FAQs 23

Morpx Documentation

24 Chapter 2. MU 3 Mixly Programming Guide

CHAPTER

THREE

MU 3 ARDUINO PROGRAMMING GUIDE

This passage introduces how to use MU Vision Sensor 3 with Arduino board and Arduino IDE.

3.1 Import Arduino Library for MU Vision Sensor

Download Arduino IDE at Arduino official website
https://www.arduino.cc/en/Main/Software
Download latest MU Vision Sensor library in github
https://github.com/mu-opensource/MuVisionSensorIII
Install the Arduino IDE, and third-part library is located in “Documents\Arduino\libraries”. Unzip the MU Vision Sensor
library and drag it into the libraries file to finish importing the library.
Open Arduino IDE, choose “Tools - Board” to change the development board. Arduino Uno is a popular board. If you
use the MoonBot controller board, you should choose Arduino Mega 2560, and choose the processor ATmega 1280.
Then connect the board and choose the right COM port.
If the library is successfully imported, the examples of MU is shown in ”File - Examples - Mu Vision Sensor III”. Open
an example and verify it to check wether the library can be compiled.

25

https://www.arduino.cc/en/Main/Software
https://github.com/mu-opensource/MuVisionSensorIII

Morpx Documentation

26 Chapter 3. MU 3 Arduino Programming Guide

Morpx Documentation

3.2 Connect to Arduino

MU Vision Sensor 3 periphrals and ports:

3.2.1 I2C Mode(recommended)

(1) Output Protocol Switch: set switch 1 downwards and switch 2 upwards.
(2) Connect the output SDA pin of MU to the SDA pin of Arduino, and SCL pin of MU to SCL pin of Arduino.
(3) Choose the I2C address of MU by setting Address Switch. Both switches are downwards and the address is set to
0x60 on default. (Changing this setting is not recommended).

3.2. Connect to Arduino 27

Morpx Documentation

3.2.2 Serial Mode*

(1) Output Protocol Switch: set both switchs downward.
(2) Connect the output RX pin of MU to TX pin of Arduino and TX pin of MU to RX pin of Arduino.
(3) Change the UART address of MU sensor by resetting Address Switch. Both switches are downwards and the address
is 0x60 on default. (Changing this setting is not recommended)
Arduino UNO cannot send messages to PC when MuVisionSensor is running in hardware serial mode, due to a communi-
cation conflict.

28 Chapter 3. MU 3 Arduino Programming Guide

Morpx Documentation

3.2.3 AT Command Mode (For firmware after V1.1.5)

1. Output Protocol Switch: set switch 1 upwards and switch 2 downwards.
2. Connect the output RX pin of MU to TX pin of Arduino and TX pin of MU to RX pin of Arduino.

3.2.4 Image Transmission Mode (For firmware after V1.1.5)

1. Output Protocol Switch: both switchs are upwards.
2. Connect the output RX pin of MU to TX pin of Arduino and TX pin of MU to RX pin of Arduino.

3.3 Examples

ball
body
colorDetect
colorRecognition
getTargetPosition
numberCard
shapeCard
trafficCard
arduino_base_interface

3.3. Examples 29

Morpx Documentation

30 Chapter 3. MU 3 Arduino Programming Guide

CHAPTER

FOUR

MU 3 MAKECODE PROGRAMMING GUIDE

This passage introduces how to use MU Vision Sensor 3 with Micro:bit board and MakeCode IDE.

4.1 Import Extensions

Run MakeCode (open https://MakeCode.microbit.org/ in the web browser or use an offline version of MakeCode,
which can be downloaded from Microsoft MakeCode website https://www.microsoft.com/en-us/makecode). Start a
new project, find Extensions in Advanced menu.

Search muvision or mu to find ‘muision’ from the results list. (former link mu-opensource/pxt-
MuVisionSensor3 is abandoned) Click to import the extension into MakeCode.

31

https://MakeCode.microbit.org/
https://www.microsoft.com/en-us/makecode

Morpx Documentation

32 Chapter 4. MU 3 MakeCode Programming Guide

Morpx Documentation

4.2 Connect to Micro:bit

MU Vision Sensor 3 periphrals and ports

4.2.1 I2C Mode (recommended)

(1) Output Protocol Switch: set switch 1 downwards and switch 2 upwards
(2) Connect the output Pin1(SDA) to the Pin20 of Micro:bit, and Pin2(SCL) to Pin19 of Micro:bit
(3) Choose the I2C address of MU sensor by resetting Address Switch. By default, both switches are downward and the
address is set to 0x60. (Changing this setting is not recommended)
You may need a shield to connect MU to Micro:bit, as is shown below:

4.2. Connect to Micro:bit 33

Morpx Documentation

4.2.2 Serial Mode

(1) Output Protocol Switch: both switchs are downwards
(2) Connect the output Pin1(RX) to Pin13(TX) of Micro:bit and Pin2(TX) to Pin16(RX) of Micro:bit
(3) Change the UART address of MU sensor by resetting Address DIP Switches. By default, both switches are downward
and the address is 0x60. (Changing this setting is not recommended)
*Micro:bit cannot send messages to PC whenMuVisionSensor is running in serial mode, due to a communication conflict.
*The default communication baud rate is 9600 and cannot be modified.

34 Chapter 4. MU 3 MakeCode Programming Guide

Morpx Documentation

4.2.3 AT Command Mode (For firmware after V1.1.5)

1. Output Protocol Switch: set switch 1 upwards and switch 2 downwards.
2. Connect the output Pin1(RX) to Pin13(TX) of Micro:bit and Pin2(TX) to Pin16(RX) of Micro:bit.

4.2.4 Image Transmission Mode (For firmware after V1.1.5)

1. Output Protocol Switch: both switchs are upwards.
2. Connect the output Pin1(RX) to Pin13(TX) of Micro:bit and Pin2(TX) to Pin16(RX) of Micro:bit.

4.3 Block Introduction

4.3.1 MUvision

Initialization

(1)Serial Mode In serial mode, two pins are defined as TX & RX respectively, according to the hardware connection to
the MU Vision Sensor P12 and P13 as example

(2)I2C Mode

4.3. Block Introduction 35

Morpx Documentation

Enable Vision Algorithms

Seven recognition algorithms are integrated in current firmware(Version A).For detailed information please refer to the
datasheet of MU vision sensor.

Set Performance Level

Algorithm performance differs in accuarcy and speed. Performance settings can be changed to fit in certain applications.
Default setting: Balance level.

Enable/Disable the High FPS Mode

The camera is in high FPS mode by default,which has a higher speed than normal mode.High FPS mode can be turned
off to save power.

36 Chapter 4. MU 3 MakeCode Programming Guide

Morpx Documentation

Set White Balance Mode

Ambient light will influence the detect result of the vision sensor, especially color detection and recognition. In complex
light environment or in color recongnition mode, it is recommended to lock white balance.
Reset the vision sensor, and put it in front of a white paper to measure brightness. A few seconds later, white balance will
be locked.

Set Digital Zoom Level

Larger digital zoom level means longer detectable distance, and view sight is narrower meanwhile.
To get a better detect results, set a proper zoom level for the algorithm and test it.

4.3. Block Introduction 37

Morpx Documentation

On-board LED Settings

Two on-board LED lights can be programmed to shine different colors when The sensor has detected an object or not.
Default setting: When undetected objects , two lights are red and when detected they are blue.

Restore Default Settings

Enable light sensor functions

If light sensor enabled, gesture function can not be used with other functions in the mean time.

Set Light Sensor Sensitivity

Light sensor read proximity value

38 Chapter 4. MU 3 MakeCode Programming Guide

Morpx Documentation

Light sensor read brightness value

Light sensor read gesture value

Light sensor get gesture result

4.3.2 MUvisionAT

WiFi Configure Module can only be used in WiFi and image transmission modes.

Read local IP

Read IP of MU.

Read target IP

Read IP of target device.

WiFi Configuration

Configure WiFi account, password and mode.

4.3. Block Introduction 39

Morpx Documentation

WiFi link

Try turn on/off WiFi. Return true if succeed.

Configure target IP through WiFi

Only working when successfully connected to WiFi.

WiFi read transmission data

Read data from target device through WiFi.

4.4 Get Result Examples

4.4.1 Ball/Body Detection

Setup program: Init I2C connection, and set algorithm to ball detect. Other settings are default.
Loop program: If MU detected a ball, it will send data to Micro:bit through I2C interface. And PC get the data from
Micro:bit through USB serial port.The data contains position and size of the ball.
Actual result: After resetting MU and Micro:bit, LED lights flash red. When MU detected a ball, LED lights flash blue
and Makecode console will display the data.

40 Chapter 4. MU 3 MakeCode Programming Guide

Morpx Documentation

4.4.2 Card Detection

Setup program: Init I2C connection, and set algorithm to traffic card. Other settings are default.
Loop program: If MU detected traffic card, it will send data to Micro:bit through I2C interface. And PC get the data
from Micro:bit through USB serial port.The data contains position, size and type of the traffic card.
Actual result: After resetting MU and Micro:bit, LED lights flash red light. When MU detected a traffic card, LED lights
flash blue and Makecode console will display the data.

4.4. Get Result Examples 41

Morpx Documentation

42 Chapter 4. MU 3 MakeCode Programming Guide

Morpx Documentation

4.4.3 Color Recognition

Setup program: Init I2C connection, and set algorithm to color recognition. Lock the white balance to get a higher
accuracy.Other settings are default.
Loop program: If MU detected color at (50,50), it will send data to Micro:bit through I2C interface. And PC get the data
from Micro:bit through USB serial port.The data contains RGB channel and type of the color.
Actual result: After resetting MU and Micro:bit, LED lights are off. Makecode console will display the data.

4.4. Get Result Examples 43

Morpx Documentation

4.4.4 Color Block Detection

Setup program: Init I2C connection, and set algorithm to color block. Lock the white balance to get a higher accuracy.
Other settings are default.
Loop program: If MU detected a color block, it will send data to Micro:bit through I2C interface. And PC get the data
from Micro:bit through USB serial port.The data contains position, size and type of the color block.
Actual result: After resetting MU and Micro:bit, LED lights flash red light. When MU detected a color block, LED lights
flash blue and Makecode console will display the data.

4.4.5 Serial Mode Example

Change the output protocol switch to serial mode and connect MU toMicro:bit through serial port.In this mode PC cannot
communicate with Micro:bit, so the led dot screen of the Micro:bit is used to display the data directly.
Setup program: redirect the serial port to P14 and P13, and select ‘Number Card’algorithm. Other settings are default.
Loop program: If MU detects one number card, it will send data to Micro:bit through serial interface. The Micro:bit
LED screen shows the number.
Actual result: After resetting MU and Micro:bit, LED lights flash red light. When MU detected a number 1 card, LED
lights flash blue and Micro:bit screen shows 1.

44 Chapter 4. MU 3 MakeCode Programming Guide

Morpx Documentation

4.4. Get Result Examples 45

Morpx Documentation

46 Chapter 4. MU 3 MakeCode Programming Guide

CHAPTER

FIVE

MU 3 MICROPYTHON PROGRAMMING GUIDE

This passage introduces how to use MU Vision Sensor 3 with Micro:bit board and MicroPython language.

5.1 Preparations before Coding

If you want to use Micro:bit to control the MUVision Sensor, you need to import the MicroPython firmware that contains
the ‘MuVisionSensor’ module. Please follow the steps below:
(1) Download the firmware:
GitHub: https://github.com/mu-opensource/MuVisionSensor3-MicroPython
Official Website: http://mai.morpx.com/page.php?a=sensor-support
(2) Flash the firmware:
Connect the micro:bit to computer via USB cable,and drag the downloaded frimware “microbit-micropython-
MuVisionSensor-0.8.0.hex” to MICROBIT disk. Micro:bit will flash the new firmware and restart.
(3) Download and install Mu Editor:
Mu Editor is a simple Python code editor for beginner programmers with friendly GUI.
It can be downloaded in the main page: https://codewith.mu/
(4) Import module
Open Mu Editor, change the mode to BBC micro:bit,and click the”REPL”button to enter serial reply mode.The micro:bit
will send firmware version at first. Type the code below and press enter to run

>>> from MuVisionSensor import *

Now you can call all the public APIs in ‘MuVisionSensor’
Key words auto-completion fuction is only available in REPL mode.

47

https://github.com/mu-opensource/MuVisionSensor3-MicroPython
http://mai.morpx.com/page.php?a=sensor-support
https://codewith.mu/

Morpx Documentation

5.2 Connect to Micro:bit

MU Vision Sensor 3 periphrals and ports:

48 Chapter 5. MU 3 MicroPython Programming Guide

Morpx Documentation

I2C Mode
(1)Output Mode DIP Switch: set switch 1 downwards and switch 2 upwards
(2)Connect the output Pin1(SDA) to the Pin20 of Micro:bit, and Pin2(SCL) to Pin19 of Micro:bit. Also connecting the
ground pin and 3.3v power pin to micro:bit.
(3)Change the I2C address of MUVision Sensor by resetting Address DIP Switch. In default both switches are downward
and the address is 0x60. (Changing this setting is not recommended)
Only I2C mode is supported now.

You may need a shield to connect MU to Micro:bit, as is shown below:

5.2. Connect to Micro:bit 49

Morpx Documentation

5.3 Usage of APIs

5.3.1 Initialize MU Vision Sensor

Two steps to initialize this sensor:
Step1. Call the ‘MuVisionSensor(‘address’)’ to create an object , the value of ’address’ should be consistent with the setting
of Address DIP Switch (default is 0x60);
Step2. Call the ‘begin()’ function to start this sensor;

50 Chapter 5. MU 3 MicroPython Programming Guide

Morpx Documentation

5.3.2 Enable Algorithms

API

MuVisionSensor.VisionBegin(vision_type)

All available ‘vision_type’s as follows:
VISION_COLOR_DETECT

VISION_COLOR_RECOGNITION

VISION_BALL_DETECT

VISION_BODY_DETECT

VISION_SHAPE_CARD_DETECT

VISION_TRAFFIC_CARD_DETECT

VISION_NUM_CARD_DETECT

VISION_ALL

Example

from MuVisionSensor import * #import the library
.... #
mu.VisionBegin(VISION_COLOR_DETECT) #
mu.VisionBegin(VISION_SHAPE_CARD_DETECT | VISION_BALL_DETECT) #enable card detect and␣
↪→ball detect algorithms

5.3.3 Set Performance Level

API

MuVisionSensor.VisionSetLevel(vision_type, level)

‘level’ can be set to:
LevelDefault

LevelSpeed

LevelBalance

LevelAccuracy

Example

mu.VisionSetLevel(VISION_BALL_DETECT, LevelSpeed)

5.3. Usage of APIs 51

Morpx Documentation

Get Performance Level

API

mu.VisionSetLevel(vision_type)

The return value is between 0~3, which represents the 4 levels

5.3.4 Enable High FPS Mode

API

MuVisionSensor.CameraSetFPS(mode)

‘mode’ can be set to:
FPSNormal

FPSHigh

Get FPS Mode

API

MuVisionSensor.CameraGetFPS()

return ‘0’(FPSNormal) or ‘1’(FPSHigh)

5.3.5 Set White Balance Mode

Adjust the color cast caused by the changes of external light sources.
API

MuVisionSensor.CameraSetAwb(mode)

‘mode’ can be set to:
AutoWhiteBalance

LockWhiteBalance

WhiteLight

YellowLight

52 Chapter 5. MU 3 MicroPython Programming Guide

Morpx Documentation

Get White Balance mode

API

MuVisionSensor.CameraGetAwb()

The return value is between 0~3,which represents the 4 WB modes.

5.3.6 Set Digital Zoom Ratio

API:

MuVisionSensor.CameraSetZoom(mode)

‘mode’ can be set to:
ZoomDefault

Zoom1

Zoom2

Zoom3

Zoom4

Zoom5

Get Digital Zoom Ratio Setting

API

MuVisionSensor.CameraGetZoom()

The return value is between 0~5, which represents the 6 zoom levels.

5.3.7 LED Settings

API

MuVisionSensor.LedSetColor(led, detected_color, undetected_color, level)

Explanations of these parameters:
led: the LED you want to configure, the available values
Led1

Led2

detected_color: colors which are detected, the available values as follows
LedClose

LedRed

LedGreen

LedYellow

5.3. Usage of APIs 53

Morpx Documentation

LedBlue

LedPurple

LedCyan

LedWhite

undetected_color: colors which are not detected, same available values as detected_color.
level: set the brightness level; an integer between 0 and 15; the larger the brighter.

5.3.8 Restore Default Settings

API

MuVisionSensor.SensorSetDefault()

5.3.9 Restart

API

MuVisionSensor.SensorSetRestart()

5.3.10 Get Results of Detection

API

MuVisionSensor.GetValue(vision_type, object_inf)

The available values of ‘vision_type’ are as mentioned above.
object_inf can be set to:
Status 0 means undetected, 1 means detected
XValue

YValue

WidthValue

HeightValue

Label

RValue

GValue

BValue

54 Chapter 5. MU 3 MicroPython Programming Guide

CHAPTER

SIX

MU VISION SENSOR RESOURCE

6.1 Technical Information

Thanks for purchasing MU Vision Sensor 3, and we would like to provide continuous updating service, please check to
our website: www.morpx.com regularly. Updates are subject to change without notice. You can get the latest technical
information from the following websites:
Product Support: http://mai.morpx.com/page.php?a=sensor-support
GitHub: https://github.com/mu-opensource/

6.2 3D Printing Bracket

For customers bought bare MU board, we provide 3D printing cover and foldable bracket.It can be fixed anywhere and
can be adjusted to any angle. Please print by yourself if you have a 3D printer.
MU3 3D Printing Bracket

55

http://mai.morpx.com/page.php?a=sensor-support
https://github.com/mu-opensource/
https://github.com/mu-opensource/Morpx-docs-en/raw/master/MUVS3/MUVS3_Resource/sources/MU_foldable_bracket.zip

Morpx Documentation

6.3 Platform Links

MU Vision Sensor can be connected to several opensource software and hardware platforms. Check the websites for
detailed information.
Mixly
Mixly Official Website: http://mixly.org/
Arduino
Arduino Official Website: https://www.arduino.cc/
Micro:bit
Micro:bit Official Website: https://microbit.org/
MakeCode: https://makecode.microbit.org/#
MicroPython
MicroPython Official Website: http://micropython.org/
Mu IDE: https://codewith.mu/

56 Chapter 6. MU Vision Sensor Resource

http://mixly.org/
https://www.arduino.cc/
https://microbit.org/
https://makecode.microbit.org/#
http://micropython.org/
https://codewith.mu/

CHAPTER

SEVEN

MU VISION SENSOR APPLICATION

7.1 Auto Cannon

7.1.1 Introduction

This project is an auto shoot cannon based on direnjie kit and MoonBot structure parts. MU vision sensor 3 is fixed on
top of the cannon that can recognize the coordinates of the target. So that the controller can control the servos and water
gun to aim and shoot the target until clear.

7.1.2 Contents

• A water gun
• Servo gimbal
• MU vision sensor 3
• Handbit controller
• Lipo battery + 18650 Power Li battery
• Target with MU number cards

57

Morpx Documentation

This is the auto cannon. The hardware is from direnjie kit and structure is from MoonBot Kit. Other bracket parts can
be 3d printed. Number cards are sticked to the original electric target so that the target can be recognized by MU.

7.1.3 Program Example

• Initial Settings
Firstly the peripherals should be set, including servos and MU.

• Search Function

58 Chapter 7. MU Vision Sensor Application

Morpx Documentation

Move servos in horizontal direction to search card in the vision sight.

• Aim Function
When MU find a card, the program turns into aim function. Move servos slowly to adjust the position between cannon
and card.

• Shoot Function
Simply control the P7 pin to shoot for 0.5 seconds. Time can be modified to save the bullet.

7.1. Auto Cannon 59

Morpx Documentation

• Loop Program
Combine the above functions and make the program repeatly.

• Remote Control
Cannon can be settled by Blynk app through BLE. Put the loop program to blynk blocks. When touch the button on the
phone, auto shoot program can be launched.

60 Chapter 7. MU Vision Sensor Application

Morpx Documentation

7.1.4 War Game

Firstly, servos move to central position. The cannon moves from left to right and scan the target in the mean time. When
meeting the number card, program turns into aim function. When verify the target position is within 48 to 52 position,
shoot for 2 seconds and return to search function again.

7.1. Auto Cannon 61

Morpx Documentation

62 Chapter 7. MU Vision Sensor Application

CHAPTER

EIGHT

MOONBOT KIT INTRODUCTION

MoonBot Kit is a STEAMeducation kit produced byMorpx. The kit contains various hardwaremodules, sheet metal parts
and plastic shells, used to build all kinds of robots. With programming software in telephone and computer, teenagers
can make AI robots ,learn STEAM lessons and take steps towards excellent engineers in the future.

63

Morpx Documentation

64 Chapter 8. MoonBot Kit Introduction

CHAPTER

NINE

MOONBOT KIT HARDWARE INSTRUCTION

MoonBot Kit contains 9 kinds of hardware modules. Users can programme to control modules through Mixly or Arduino
platform, or design interactive program after building certain structures. In instructions below, we provide pinout graphs
and sample programs of every single module to help users get started with the kit.
Detailed software instructions at:
MoonBot Kit Mixly Instruction
Download all hardware programs here:
MoonBot Kit hardware examples

9.1 Controller Module

9.1.1 Brief Introduction

Controller Module is the programming core of the robot. The main chip is ATmega1280, which is Arduino compatible.
On-board servo, motor and GPIO ports can be used to connect to other devices. And there are on-board keys, LED lights,
buzzer and IMU that can be used to fast programme.

65

https://morpx-docs.readthedocs.io/en/latest/MoonBot/MoonBot_Mixly/index.html
https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Hardware/sources/MoonBot_Hardware_examples.zip

Morpx Documentation

9.1.2 Specification

Size: 53 x 53 x 17.6 mm
Processor: ATmega1280
Ports: 4 servos, 2 motors, 9 GPIOs
On-board Resources: keys, LED, buzzer, IMU

Pinout

66 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

9.1.3 Usage

LED and Button Example

Button and LED light are basic IO device, and can be used to test other devices.So firstly we introduce these to help test
others. The following example shows how to control 2 on-board RGB LED lights with 2 programmable buttons.
Code introduction: Loop detect the status of button A and B. LED1 turns red when button A is pressed, while LED2
turns green when button B is pressed. When both of the buttons are pressed, both LEDs turns blue.By default, both LEDs
are off.

Photo:

9.1. Controller Module 67

Morpx Documentation

Buzzer Example

This code shows the way to programme buzzer on controller.Use two methods to make the buzzer beep.
Code introduction: Set the buzzer BPM(beats per minute) to 120, which means 1 beat is 0.5 second. Buzzer can directly
play a tone like high G, or play a certain frequency like 194 Hz. A delay should be added when play the frequency, or it
will be skiped immediately. Loop play 5 times and end playing.End the whole code by adding an end block or it will play
repeatly.

IMU Example

IMU(Inertial Measurement Unit) contains one or more of gyroscope, accelerator and compass. It is usually used to
measure the posture of copters and robots. This IMU on contorller contains accelerator, compass and temperature com-
pensation. Use the feedback to know while the robot is falling, droped or shaking.
Code introduction: Initialize the compass and adjust the LEDs of controller at first. Loop judge the 4 directions defined
by compass and accelerator and show them on LEDs.
Phenomenon: Reset the controller and draw ∞ in the air to calibrate the compass. The calibration finishs when LEDs
shine. Put the controller horizontally and 180° means the right South. yaw it to the left/right and the left/right LED turns
on. Pitch up/down and LED turns green/red.

68 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

9.2 Vision Module

9.2.1 Brief Introduction

Vision module is a intelligent vision sensor containing AI algorithms.
Vision module can be connected to controller by serial interface, and controlled by pregrammed instructions. It can also
be controlled by mobile phone app through wifi.

9.2. Vision Module 69

Morpx Documentation

9.2.2 Specification

Size: 37 x 37 x 15 mm
Processor: ESP32
Camera: OV7725
Sight: 85°
On-board Resources: keys, LED
Communications: UART wifi
Connector: PH2.0 4P

Pinout

9.2.3 Usage

Serial Communication Example

Vision module can be connected to controller module and receive instructions through serial port.
Hardware connection: Connect the vision module to P9 port, as a UART3 serial port device.
Code introduction: In initial part, Serial 3 is opened and default baudrate is set to 115200. Vision mudule is connected
to serial3 and ball detect algorithm is enabled. In loop part, Controller LEDs are set same as vison module LEDs. That
is, LEDs turn blue when detected ball, and turn red when undetected.

70 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

Phenomenon: Press the reset button of vision module, wait it to be in receiving status when LEDs turn on. Then reset the
controller,and it will send instructions to vision module. Then the vision module is in ball detect mode, and LEDs flash
red.The controller will get the data from vision module and show red too. When detect a ball, all LEDs turn blue.

Photo:

Pay attention that the vison module is a little different from MU 3. Due to wifi function, vision module can only be
connected to controller through serial port, and be developed by Arduino IDE or Mixly.The initial code is shown above.
In order to show the connect and initial progress, this program is easy. Learn more blocks and examples at
MU 3 Mixly Programming Guide

9.2. Vision Module 71

https://morpx-docs.readthedocs.io/en/latest/MUVS3/MUVS3_Mixly/index.html

Morpx Documentation

Connect to App through Wifi

Vision mudule contains wifi unit, so it can be connected directly to MU Bot App. Programme or remote control it, please
check
MoonBot Kit MU Bot App Tutorial

9.3 Battery Module

9.3.1 Brief Introduction

Battery module is used to power controller module, driving actuators and sensors.
It contains battery voltage converter, electricity management, overload protect and rechagre unit. It can be charged directly
by USB port(Not for communication).

9.3.2 Specification

Size: 67.6 x 56 x 33.7 mm
Battery Type: Polymer lithium battery
Output Power: 5V 2.8A max
Charging Power: 5V 1A max
Charging Period: 3.5h
Charging Port: USB type-C

72 Chapter 9. MoonBot Kit Hardware Instruction

https://morpx-docs.readthedocs.io/en/latest/MoonBot/MoonBot_App/index.html

Morpx Documentation

Pinout

9.3.3 Usage

• Short press power button to turn on battery and long press 3 seconds to turn off. Automaticly turn off when
unconnected for 30 seconds.

• Orange light on the top is charge indicator,while white light is power indicator and red light indicates USB con-
nected.4 blue lights indicates remaining capacity.

• Battery module power the controller module through PH2.0 5P wire. It can drive high-power actuators like servos
and motors.The max output power is 5V 2.8A.

• Battery module can be charged through USB-C port(Not for communication), with 1A max charge current. Whole
charge time is about 3.5 hours.It is recommended to use standard charger, while computer USB port can usually
provide only 0.6A.

9.3.4 Attention

• Battery module can only be connected to controller module.Do not modify and disassemble it.
• Battery module contains circuit protect unit to prevent overloading.Manually control the output power can maintain
a longer battery lifetime.

• LiPo battery is a Flammable and explosive product, so protect it from pressure, falling, water, heat and metal parts.
• Control the remaining power to 50% for long time storage. Prevent touching the button to open it.

9.3. Battery Module 73

Morpx Documentation

9.4 Motor Module

9.4.1 Brief Introduction

Motor module contains a gear motor and an encoder inside.The active wheel is connected to gear motor, while the passive
wheel is connected with screw and bearings.
The wheels are attached to track, and two whole motor modules are enough to build a Chassis.

9.4.2 Specification

Size: 109 x 40 x 39.1 mm
Reducer: 120:1
Unloaded Speed: 100rpm
Unloaded Current: 150rpm
Rated Speed: 70rpm
Rated Current: 300mA
Encoder: photoelectric encoder
Connector: PH2.0 2P + PH2.0 4P

74 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

Pinout

9.4.3 Usage

Chassis Control

Under structures as MoonRover, MoonBot and MoonMech, chassis can be controlled to go forward , go back and turn
around. Run the following program to test it.
Hardware connection: Connect the motors and encoders to the controller. Motor port M1 corresponds to encoder port
P4, and M2 corresponds to P6. Motor module is a high-power device and controller should be connected to battery to
drive motor. The controller can be connected to battery and USB at the same time and uses battery as power source.
Code introduction: In setup part, the direction of chassis is set, bias of direction, distance and turning radius is corrected.
In loop part, Chassis goes forward, back, turns left and right.Conrtol the distance and angle by setting motor speed. End
the program at last.

9.4. Motor Module 75

Morpx Documentation

Photo:

76 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

Single Motor Control

Except for controlling the whole chassis, motor 1 or 2 can be directly controlled.
Hardware connection: Same as above.
Code introduction: In initialize code, serial port is opened to send encoder data. Write value and control motor voltage
through PWM for 2 seconds. Then write motor speed with encoder feedback for 2 seconds. And the controller send
encoder data through serial port.Write 0 to stop the motor.

9.4. Motor Module 77

Morpx Documentation

9.5 Servo Module

9.5.1 Brief Introduction

Servo is an angle-control actuator based on PWM signal.It contains DC motor, reducer,feedback circuit and current
control circuit.

9.5.2 Specification

Size: 54 x 20 x 47.2 mm
Servo Type: 55g metal-gear servo
Torque: 9.4kg.cm
Rated Current: 250mA
Blocked Circuit: 1A
Connector: PH2.0 3P

9.5.3 Usage

Servo Calibration

Servo can rotate from 0 to 180 degree. Degree increases clockwise and decreases CCW. Initial degree is 90 degree, with
a red mark pointing forward.
Servo is an angle-control device and it uses potentiometer to get the degree. Servo initial degree may has a devistion due
to precision of the potentiometer,usually smaller than 10 degrees. Just programme to calibrate the servo.
Code introduction: In initial part,Servo is initialize to 90 degree.Check the actual degree and change the correct value to
set the servo to right angle.

78 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

Pay attention that this value is the correct value of servo rather than port S1. If the servo changes port, and programme
should be changed too.

Servo Rotation

There are two ways to rotate servo.One for setting degree and time, and the other for setting degree and speed and moving
together. The first way is often used for single servo rotation, and the second is for multiple servos.
Code introduction: In initial part, servo is calibrated and direction is set. In loop part, control degree and time to move
servo for 30 degrees, and then move servos fastly to 150 degree.

Photo:

9.5. Servo Module 79

Morpx Documentation

9.6 Speaker Module

9.6.1 Brief Introduction

Speaker module is a mp3 player controlled by serial intruction. Put sound files to in and control it with controller module.

80 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

9.6.2 Specification

Size: 48 x 48 x 11.6 mm
Charging Power: 1W
Supported File: mp3
Memory Space: 16MB

Pinout

9.6.3 Usage

Code Introduction Let the speaker play music, and use the controller button to pause or play.
Connect the speaker to P2 of controller, set play mode to random play and define speaker volume. Detect the state of
button A. If it is pressed, play or pause.

9.6. Speaker Module 81

Morpx Documentation

Photo:

82 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

9.7 Eyes Module

9.7.1 Brief Introduction

Eyes module contains 12 serial RGB LED lights.

9.7.2 Specification

Size: 64 x 32 x 12 mm
LED Type: serial LED
LED number: 12
Color: 16 million colors

Pinout

9.7. Eyes Module 83

Morpx Documentation

9.7.3 Usage

Multiple Control

Code introduction: Connect the eyes module to P1 of main controller and define brightness of eyes. Let 12 LEDs show
appointed color for 5 seconds, show happy for 5 seconds, and turn off.

Photo:

84 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

Single Control

Code introduction: Set LEDs one by one and control the RGB value of every light for 1 second.

9.8 Touch Module

9.8.1 Brief Introduction

Touch module is a single touch button.

9.8.2 Specification

Size: 34 x 32 x 9.6 mm
Touch Type: Non-self-locking single touch
Touch Area Size: diameter 14mm

9.8. Touch Module 85

Morpx Documentation

Pinout

9.8.3 Usage

Code introduction: Connect the touch module to P1 of controller.Detect the mudule state. Controller LED turn red when
touch module is touched, otherwise turn off.

Photo:

86 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

9.9 Infrared Module

9.9.1 Brief Introduction

Infrared module has 2 infrared switch inside, used to detect certain obstacle.
It has short and long modes, which can be used in following line or aoviding obstacle.

9.9. Infrared Module 87

Morpx Documentation

9.9.2 Specification

Size: 34 x 32 x 12 mm
Infrared Type: 2 reflective switchs
Detect Distance:
short mode 10mm
long mode 110mm

Pinout

9.9.3 Usage

Code introduction: Connect the infrared module to P3 of controller module and detect 2 switchs state.
When both switchs detect the obstacle, 2 LEDS of controller turn red. When only one switch detect, turn on 1 LED
instead.

88 Chapter 9. MoonBot Kit Hardware Instruction

Morpx Documentation

Photo:

9.9. Infrared Module 89

Morpx Documentation

90 Chapter 9. MoonBot Kit Hardware Instruction

CHAPTER

TEN

MOONBOT KIT STRUCTURE INSTRUCTION

MoonBot Kit contains 3 official structures, including MoonRover, MoonMech and MoonBot. Every structure has unique
functions, and all parts are packaged in the standard and educational version.
Programme through Mixly, Arduino and MU Bot App, or directly remote control, or even express creative ideas and
design your own robot.

10.1 MoonRover Instruction

10.1.1 Introduction

MoonRover is made of sheet metal body and hardware modules.It is drived by track chasis. The controller module is
fixed on top of it, and connected to other devices with wires. Infrared module and vision module can be fixed on front or
bottom of the body, and battery is fixed backwards.
MoonRover can be used to learn applications like avoiding obstacles, following line, auto driving and so on.

91

Morpx Documentation

10.1.2 Specification

Size: 177 x 157 x 87 mm
Functions
Motion: head, chassis
Sense: vision, infrared, encoder

10.1.3 Build Manual

Download pdf manuals of MoonRover
MoonRover get started guide
MoonRover extended manual
Or watch video guide on youtube
MoonRover video guide

92 Chapter 10. MoonBot Kit Structure Instruction

https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Structure/docs/MoonRover_quick_start_guide_en.pdf
https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Structure/docs/MoonRover_extended_manual_en.pdf
https://www.youtube.com/watch?v=FRD6WWx4WkE

Morpx Documentation

10.1.4 Program Examples

Download MoonBot Mixly examples
MoonRover Examples

Avoid Obstacles

MoonRover becomes a obstacle avoiding car when 2 infrared modules are fixed in front.
Hardware connection: Build the MoonRover with the manual. Infrared sensor on the left is connected to P3 of the
controller, and the other is connected to P7. Both sensors should be set to long distance mode.
Code introduction: In initial part, Two infrared sensors are set to the ports, and chassis is calibrated. In loop part, there
are three status.When the left/right sensor detect obstacles, the chassis turn right/left.Go forward by default.

10.1. MoonRover Instruction 93

https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Structure/sources/Mixly_example_MoonRover.zip

Morpx Documentation

Auto Drive

MoonRover becomes a auto driving car when using vision module to navigate.
Hardware connection: Build the MoonRover with the manual.The vision module is connected to P9 of the controller.
Code introduction: In initial part, vision module is connected to serial 3(P9 port), algorithm is set to traffic card and
chassis is calibrated. In loop part, vision module detect traffic card.5 traffic card refer to 5 status, and MoonRover will
move as the card shows.
Phenomenon: After downloading the program, turn on battery. Vision module will shine red after setup. Put a Forward
card in front of MoonRover for about 20 centimeters and MoonRover will recognize it and go forward. Change card to
change its status. Put different cards on the road to let MoonRover auto drive.

94 Chapter 10. MoonBot Kit Structure Instruction

Morpx Documentation

10.1. MoonRover Instruction 95

Morpx Documentation

10.2 MoonMech Instruction

10.2.1 Introduction

MoonMech is a movable mechanical arm. Its body is made by plastic shell and sheet metal frame. The track chasis is
drived by motor module, and mech arm is drived by servos. The claw on top of the arm can catch various objects with
vision feedback.
MoonMech can be used to learn competitive applications like transpotation and playing basketball.

96 Chapter 10. MoonBot Kit Structure Instruction

Morpx Documentation

10.2.2 Specification

Size: 271 x 137 x 244 mm
Functions
Motion: mech arm, claw, chassis
Sense: vision, encoder

10.2.3 Build Manual

Download pdf guide of MoonMech
MoonMech build guide
Or watch video guide on youtube
MoonMech video guide

10.2.4 Program Examples

Download MoonMech Mixly examples
MoonMech Examples

Catch Ball

This example shows how to catch ping-pong ball recognized by vision module.
Code introduction: In initial part, vision module and servos are set to their ports. Vision algorithm is set to ball detect,
and servos are set to initial position. In loop part, vision module will detect ball and judge the x offet and move the
chassis.Then judge the y offset and move servos. Use the ball width to estimate the distance. When the width is above
27, the claw will close and catch the ball.
Phenomenon: Turn on MoonMech and it will open claw and look forward, with vision module LEDs shining red. Put a
ping-pong ball in front of the claw, and the LEDs turn blue. Adjust the position of ball until the claw catch it.

10.2. MoonMech Instruction 97

https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Structure/docs/MoonMech_manual_en.pdf
https://www.youtube.com/watch?v=Ec-LTPimftk
https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Structure/sources/Mixly_example_MoonMech.zip

Morpx Documentation

98 Chapter 10. MoonBot Kit Structure Instruction

Morpx Documentation

10.3 MoonBot Instruction

10.3.1 Introduction

MoonBot is a semi-humanoid robot with abundant sense and interaction. Its body is made by plastic shell and sheet metal
frame. The track chasis is drived by motor module.Head and hands are drived by servos. Eyes and speaker can interact
with others with touch, vision and position feedback.
MoonBot can be used to learn service robot applications like reception and patrol.

10.3. MoonBot Instruction 99

Morpx Documentation

10.3.2 Specification

Size: 150 x 137 x 216 mm
Functions
Motion: head, hands, chassis
Interaction: eyes, speaker
Sense: vision, touch, encoder

10.3.3 Build Manual

Download pdf guide of MoonBot
MoonBot build guide
Or watch video guide on youtube
MoonBot video guide

10.3.4 Program Examples

Download MoonBot Mixly examples
MoonBot Examples

Shake Body

MoonBot has servos in head and hands, and motors in chassis.Just program to make MoonBot dance.
Code introduction: In initial part, servos are set to head and hands.In loop part, use robot blocks to make MoonBot to
move chassis and lands slowly.

100 Chapter 10. MoonBot Kit Structure Instruction

https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Structure/docs/MoonBot_manual_en.pdf
https://www.youtube.com/watch?v=me56aYx-8Tc
https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Structure/sources/Mixly_example_MoonBot.zip

Morpx Documentation

Follow people

MoonBot can use vision module to recognize people, and always face people with chassis and head.
Code introduction: In initial part, servos are connected to ports and are adjusted direction according to actual position.
Vision module is connected to seiral 3(P9), and the algorithm is set to human body. In loop part, when detect human
body, MoonBot will move chassis according to x offset of human body, and move head according to y position.
Phenomenon: After downloading the program, put MoonBot on desk and stand in front of it. MoonBot will detect upper
body and vision module shines blue when detected. Walk around and MoonBot will rotate to keep the face in front of
you al the time.

10.3. MoonBot Instruction 101

Morpx Documentation

102 Chapter 10. MoonBot Kit Structure Instruction

CHAPTER

ELEVEN

MOONBOT KIT MU BOT APP TUTORIAL

This article introduces how to connect MoonBot Kit with MU Bot App on mobile phone or tablet.

11.1 MoonBot Kit APP Firmware Upgrade Guide

Programming with MoonBot Kit APP requires burning the specified firmware in the master control.
This article guides users how to upgrade MoonBot Kit master module to burn firmware needed for APP programming.

11.1.1 Preparation

Hardware:
• MoonBot kit
• PC (Windows,Linux,Mac OS)

Software:
• Arduino Official IDE
• MoonBot Remote control Arduino Source code or firmware

11.1.2 Upgrade by burning HEX files

• 1.Download MoonBot Firmware of Master Control Remote Controller(.hex File)
• 2.Download Arduino Hex Upload Tool
• 3.Burn .hex firmware

– Windows

1 Download Arduino Hex Burning tool
2 Select MoonBot port,Hardware select `Genuino ATmega1280`
3 Click download and wait for download to complete.

103

https://www.arduino.cc/en/Main/Software?setlang=cn
https://github.com/mu-opensource/MoonBot_RemoteController/releases/latest
https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_App/sources/Arduloader.zip

Morpx Documentation

11.1.3 Upgrade Arduino source code by compiling Arduino IDE

• 1.BuildingMoonBot Kit Arduino development environment
• 2.DownloadMoonBot Kit Master remote control source code(Source.zip File)
• 3.Open Arduino IDE,Click Project->Loading Library->Add.ZIP library`,Select the.Zip file downloaded in Step 2.

• 4.Select the. zip file downloaded in step 2 and click OK to load the source code of MoonBot Kit master remote
control

• 5.Click Arduino File->Example>MoonBotRemote->RemoteWithDemo,Open Source code

104 Chapter 11. MoonBot Kit MU Bot App Tutorial

https://github.com/mu-opensource/MoonBot_RemoteController/releases/latest

Morpx Documentation

• 6.ConnetMoonBot KitMaster Control to Computer,ClickArduinoTool->Port,Selectthe correspondingMoon-
Bot port.

• 7.Click the Download button and wait for the download to complete

11.1. MoonBot Kit APP Firmware Upgrade Guide 105

Morpx Documentation

11.1.4 Test

• 1.After restart, press the main control button A, close to the A key LED bright blue light and give a prompt sound.
• 2.After restart, press the main control button B, close to the B key LED bright green light and give a prompt sound.

11.2 APP Remote Control

First select the remote controller, and then chooses the corresponding robot form.

11.2.1 Introduction to Controller Use

1.WiFi Connection
Click on the combination of color blocks that match the color of the LED light of the VisionSensor to start the connection.
If the connection fails, press the visual module reset key to re-select the connection.

106 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

2.Robot form selection
Choose the corresponding form among the three.
3.Setting Function Button
Click on the Setup Function Key, the circle box below the Function Key is dotted.
Click on the dotted circle box to add, delete and replace each function into the circle box. Click on the Setup Function
Key to complete the setup.
Setting Function Button.gif
4.Wheel control
When WiFi is connected, the motion of the robot can be controlled by the wheel disk.
5.Functional Button
Click on the set function key to make the robot act accordingly. Some functions can be turned on/off.

11.2. APP Remote Control 107

https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_App/images/GIF/GIF_APP_Control0.gif

Morpx Documentation

MoonBotCar:Visual Angle Up/Down,Tracking Ball,Obstacle Avoidance,Card Identification

MoonBotMech:Arm up/Down,Visual Angle Up/Down,Open/Close Claw,Catch Ball,Shoot

MoonBot:Left Arm Up/Down,Right Arm Up/Down,Head Angel Up/Down,Dancer1/2,Be cute

108 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

6.LED Button and Sound Button
There will be lights/sounds when you click on the button.

11.2.2 Example

Remote Control.gif

11.2. APP Remote Control 109

https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_App/images/GIF/GIF_APP_Control1.gif

Morpx Documentation

11.3 APP Programing

11.3.1 Introduction to Programming Use

1.WiFi Conncet
Click on the combination of color blocks that match the color of the LED light of the VisionSensor to start the connection.
If the connection fails, press the visual module reset key to re-select the connection.

110 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

2.Exit Button
3.The button to be updated
4.Help Button
Click on the button and there will be instructions for each button.
5.Share Button
Click to share the program with friends / QQ / Wechat / Wechat Friends Circle
6.Project Preservation Button
The program can be named and saved to my project.
7.My Program
Select your own saved project to open
8.Program Block

11.3. APP Programing 111

Morpx Documentation

Contains various programming blocks
9.Play Button
Execute transmission

11.3.2 Example

Program.gif

11.4 APP Programming Block_Artificial intelligence

11.4.1 Artificial intelligence

Algorithm enable/Disable

Algorithm: ball,body, shape card, traffic card, number card, color block detection, color recognition
Parameter: enable/Disable
Instructions
Ball Algorithm: Identify orange ping-pong (Label:1) and green tennis (Label:2)
Body Algorithm: Detection of upper body characteristics
Shape/Trafiic/Number Card: Identify specific cards

112 Chapter 11. MoonBot Kit MU Bot App Tutorial

https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_App/images/GIF/GIF_APP_Program.gif

Morpx Documentation

Color block detection: Setting a color and detecting its block area
Color recognition: Specify an area to detect its color
One or more algorithms can be open at the same time

Setting Block Detection Colors

Color: Black, white, red, yellow, green, cyan, blue, purple
Instructions
The color block detection algorithm detects red by default. It can change the color of detection by using this function
block.

Reading algorithm to detect parameters

Algorithm: ball,body, shape card, traffic card, number card, color block detection, color recognition
Setting parameters: is detected, X , Y , width, height, label
Is detected:True when detected and False when not detected

11.4. APP Programming Block_Artificial intelligence 113

Morpx Documentation

X coordinate, Y , width, height:Quantify to (0-100)
Classification number:Label

Seeing algorithm block

Algorithm: ball,body, shape card, traffic card, number card, color block detection, color recognition

Algorithm azimuth position block

Algorithm: ball,body, shape card, traffic card, number card, color block detection
Setting parameters:center, up, down, left, right

Algorithm size block

Algorithm: ball,body, shape card, traffic card, number card, color block detection
Setting parameters: big, normal, small

Algorithmic area location block

Algorithm: ball,body, shape card, traffic card, number card, color block detection
x:1/2/3/4/5

114 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

y:1/2/3/4/5

Shape card block

Parameters: check, closs, circle, square, triangle

Trafiic card block

Parameters: forward, left, right, turn around, park.

Number card block

Parameters:0~9

Ball Recognition block

Parameters: ping-pong (orange), tennis (green)

11.4. APP Programming Block_Artificial intelligence 115

Morpx Documentation

Color recognition block

Parameters: black, white, red, yellow, green, cyan, blue, purple

Detection of gestures block

Parameters: Up, Down, Left, Right, Any

Something Approaching to MU block

Parameters: aany, far, middle, near.

Ambient luminance block

Parameters: darkest, dark, good, bright, brightest

Set camera zoom block

Parameters:1/2/3/4/5
Instructions

116 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

If the Zoom value is small, the field of vision is wide and the distance is close.
If the Zoom value is large, the field of vision is narrow and the distance is long.

White balance mode block

Parameters: auto, lock, white light , yellow light .
Instructions
Automatic mode: suitable for use in environments with good lighting and low color requirements
Lock-in mode: suitable for the environment with high color requirement, let MU calibrate the white balance on the white
paper,
then lock the white balance parameters, the color will not change with the change of the environment after lock-in.
White light mode: suitable for white light or overcast environment, this mode also belongs to automatic white balance
mode;
Yellow light mode: suitable for use in yellow light or sunshine environment, this mode also belongs to automatic white
balance mode.

Lighting settings for MU detection

LED lamp color detected: close, blue, green, cyan, red, purple, yellow, white, random
LED lamp color undetected: ibid.
Lighting brightness: 1-10, the greater the value, the brighter

11.4. APP Programming Block_Artificial intelligence 117

Morpx Documentation

11.5 APP Programming Block_Input

11.5.1 Input

Read button pressed status

Parameter A,B,A+B
Return: button pressed / not pressed

Initialization of Touch Sensor Port

Parameter Port3,Port5,Port7,Port8

118 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

Initialize the infrared sensor port and read infrared sensors

Port Parameter:Port3,Port5,Port7,Port8
infrared sensor IR1:IR2 Parameter 0:0,0:1,1:0,1:1
0 means undetected , 1 means detected

Read the compass toward(0~360°)

Return: The compass faces the angle

Read acceleration value(1024/g)

Parameter:X direction, y direction, Z direction, strength value
Return: Acceleration value

Reading rotation angle(°)

Parameters: pitch (x), roll (y), read the main control tilt angle
Return: Angle value(-180°~+180°)

11.5. APP Programming Block_Input 119

Morpx Documentation

Read thermometer values

Return: Temperature value

Read IMU actions

Parameters: vibration, free falling, X-axis up, X-axis down, Y-axis up, Y-axis down, Z-axis up, Z-axis down, 3g, 6g, 8g

Calibration compass

Compass calibration module, the main control in calibration needs to be flipped in the shape of ”∞“

120 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

11.6 APP Programming Block_Light

11.6.1 Light

Eye light setting block

Eye parameters: all, left and right eyes
Color parameters: close, blue, green, cyan, red, purple, yellow, white, random
Luminance parameters: 1-10, the greater the value, the brighter

Expression block

Parameters: happy, sad, angry, blink, turning, flashing, rainbow, closed eyes
Return: Show expression

11.6. APP Programming Block_Light 121

Morpx Documentation

Eye preset RGB value of each LED lamp

LED light:1-12 and all lights
Red:0~255
Green:0~255
Blue:0~255

Show eye preset

Main control LED lamp setting block

Main LED parameters: all, 1, 2
Color parameters: close, blue, green, cyan, red, purple, yellow, white, random
Luminance parameters: 1-10, the greater the value, the brighter

MU LED light setting block

MU LED lamp parameters: all, 1, 2
Color parameters: close, blue, green, cyan, red, purple, yellow, white, random
Luminance parameters: 1-10, the greater the value, the brighter

122 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

11.7 APP Programming Block_music

11.7.1 Music

Speaker Plays Sound block

Play the specified sound:Animal Voice, Greetings, Piano, City, Drum, Custom Voice

Volume Selection Block

Parameters: 0-10, the larger the value, the larger the volume.

11.7. APP Programming Block_music 123

Morpx Documentation

Play mode block

Parameters: single play, single loop

Speaker stop block

Stop playing sound

Buzzer play block

Buzzer to play scales in a set beat
Scales: aerial, do1-si7, Do1-Si7
Rhythm: 1/8-4 beats

Buzzer play sound block

Play the specified sound
Parameters: key tone 1-4, alarm 1-2, sound effect 1-4, ambulance sound, siren sound

124 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

11.8 APP Programming Block_motion

11.8.1 motion

Setting steering angle block

Steering port:steering1~steering4
Angle:0~180°

Read steering angle block

Read the specified steering angle
Parameters: steering gear 1-4

11.8. APP Programming Block_motion 125

Morpx Documentation

Forward

Distance set to advance at specified gear speed
Execution distance:0~999cm
Speed parameters: very fast, fast, medium, slow, very slow

Back off

Back-set distance at specified gear speed
Execution distance:0~999cm
Speed parameters: very fast, fast, medium, slow, very slow

Turn Left

Turn left at the specified gear speed and set the angle
Execution angle:0~999°
Speed parameters: very fast, fast, medium, slow, very slow

Turn right

Turn right at the specified gear speed and set the angle
Execution angle 0~999°
Speed parameters: very fast, fast, medium, slow, very slow

126 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

Stop Motion block

Writing speed of Motor block

Write a certain speed to the motor(-100~+100R/min)
Parameters: Motor 1, Motor 2

Read motor speed block

Parameters: Motor 1, Motor 2

Calibration of alignment migration block

Calibrate the alignment migration so that it does not migrate in a certain direction.
Parameters: 0-200, > 100 to the right and < 100 to the left

Calibration of alignment distance block

Calibrating the inaccuracy of the direct distance caused by external interference

11.8. APP Programming Block_motion 127

Morpx Documentation

Parameters: > 100 Increase Distance, < 100 Reduce Distance

Calibration of rotate angle block

Incomplete turning angle caused by calibration external interference
Parameters: > 100 Increase turning angle, < 100 Reduce turning angle

Calibration of steering angle block

Calibration of angle error in production and installation by rudder calibration module
Parameters: steering gear 1-4
Increase/decrease(-90~+90°)

11.9 APP Program Example

11.9.1 Touch Wave

MoonBot has steering engine in its hand and touch sensor in its head. Touch beckoning can be realized by programming.
Explain:Cyclic detection of touch sensor status, when the left side of the head is touched, the robot beckons the left hand.
When the right side of the head is touched, the robot waves its right hand.

128 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

11.9.2 Simple Algorithm

MoonBot uses VisionSensor and LED Module.
Explain:Cyclic detection of the ball algorithm, when the ball is detected, the eyes turn around the expression, when not
detected closed eyes.

11.9. APP Program Example 129

Morpx Documentation

11.9.3 Examples of functional modules

MoonBot robot uses button speaker, LED lamp, actuator lamp and mathematic module.
Explain:Cyclic detection of buttonA/B status. The MoonBot robot makes sound and light arm movements when the
button is pressed.

130 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

11.9.4 Search sb.

MoonBot Using VisionSensor and Motion Modules
Explain: Turn on Body Detection Algorithms,When the body is not detected, the VisionSensor LED flashes red light,
When the body is detected, the VisionSensor LED flashes blue light.
When the body is detected in the center, the robot stops moving, otherwise it turns left/right.

11.9. APP Program Example 131

Morpx Documentation

11.9.5 Barrier Avoidance Intelligent Vehicle

Install infrared sensors on left and right sides of intelligent vehicle car
Explain: Calibration chassis,Turn left when the right infrared sensor of the smart car detects obstacles,
turn right when the left infrared sensor detects obstacles, and go straight when none of them is detected.

132 Chapter 11. MoonBot Kit MU Bot App Tutorial

Morpx Documentation

11.9.6 Traffic Intelligent Vehicle

Intelligent Vehicle Cooperative Traffic Card Algorithms
Explain: Calibration chassis,turn on the traffic card algorithm, set the camera zoom level
and set the white balance parameters according to the lights.
When traffic card is not detected, the VisionSensor LED flashes red light and blue light when the traffic card is detected.

11.9. APP Program Example 133

Morpx Documentation

134 Chapter 11. MoonBot Kit MU Bot App Tutorial

CHAPTER

TWELVE

MOONBOT KIT MIXLY TUTORIAL

This article introduces MoonBot Kit developing tutorial with Mixly platform.
Visit Mixly official docs for basic tutorials: Mixly wiki

12.1 MoonBot Mixly Guidelines for Programming Construction

There are two ways to install MoonBot Mixly. Download the full package and unzip, or install independent library if you
already installed Mixly.
Instructions are shown below.

12.1.1 Full Installation Package Download

Windows/Linux/Mac Full Edition MoonBot Mixly Package Download Link: https://drive.google.com/drive/folders/1L_
FKMlQnddgi_rLnRiOYbA9o9q24RGEm?usp=sharing

12.1.2 Independent Library Installation

Import and upgrade Mixly-Arduino Library

• 1.Start Mixly-Arduino
– Windows
Open {your_mixly_path}/arduino-1.8.5/arduino.exefile under the Mixly installation
path start Arduino

– Linux
Running Arduino files at the terminal,start Arduino

$ cd {your_mixly_path}
$./arduino-1.8.2-linux64/arduino

• 2.Click on Project - > Load Library - > Manage Library', openLibrary Manager’.`

135

http://mixly.readthedocs.io/
https://drive.google.com/drive/folders/1L_FKMlQnddgi_rLnRiOYbA9o9q24RGEm?usp=sharing
https://drive.google.com/drive/folders/1L_FKMlQnddgi_rLnRiOYbA9o9q24RGEm?usp=sharing

Morpx Documentation

• 3.Search library AsyncDelay, install the relevant library if not installed and update if the library is not the latest
edition

136 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

• 4.Install the library Software Wire ``Adafruit_NeoPixelServo’according to the installation method
of the third step, ensure that the relevant library is installed to the latest version.

• 5.Close Arduino,Complete the installation of the base library.

Import Mixly Library

• 1.Click Download MoonBot/MuVisionSensor3 The latest version of Mixly Library Compression Pack
• 2.Upzip the downloaded MoonBot/MuVisionSensor3compression package
• 3.Open the Mixly interface, click the import button,find the files at the end of xmlunder the MoonBot/
MuVision Sensor 3 folder path.

• 4.Library installation completed

12.2 API Reference resources

The programming blocks of MoonBot Kit and MUVision Sensor 3 are customized in MoonBot Mixly. This article will
explain the program blocks one by one, as well as some complex program examples. It can be combined with previous
hardware module examples for learning.
Mixly Basic Tutorial in Mixly Help Document,will not repeat it here.
MU Vision Sensor 3 Course in : MU Vision Sensor 3 Mixly Guide

12.2. API Reference resources 137

https://github.com/mu-opensource/MoonBot-Mixly/releases/latest
https://github.com/mu-opensource/MuVisionSensor3-Mixly/releases/latest
http://mixly.readthedocs.io/
https://morpx-docs.readthedocs.io/en/latest/MUVS3/MUVS3_Mixly/index.html

Morpx Documentation

12.2.1 Input

Input include MoonBot Kit Touch Module Infrared Module Controller Module keys and pin mapping module

Initialization of Touch Sensor

Introduction Initialize the touch sensor to the corresponding port.
Introduction

port
• 1~9

138 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Reading Touch Sensor

Introduction Read the value of the corresponding port of the touch sensor
Parameters

port
• 1~9

Return
• HIGH :Object Touch Sensor
• LOW :Objectless Touch Sensor

Initialization of Infrared Sensors

Introduction Initialize touch sensor to corresponding port
Parameters

port
• 1~9

Reading Infrared Sensor

Introduction Read the corresponding pin value of infrared sensor port
Parameters

Port
• 1~9

Pin
• 1~2

Return
• HIGH :Infrared Sensor Triggered
• LOW : Infrared sensor not triggered

12.2. API Reference resources 139

Morpx Documentation

Reading Button

Introduction Read button status
Parameters

button
• A :Button A
• B :Button B
• A&B:Button A and B

Return
• HIGH:The Button is pressed
• LOW:The Button is not pressed

Port pin mapping

Introduction Reading the Arduino pin number corresponding to the MoonBot port
Parameters

Port
• 1~9

Pin
• 1~2

Return
• Corresponding Arduino pin

12.2.2 Chassis Control

Chassis Control include drives MoonBot Kit Motor Module and driving of Encoder in Motor.
By calling these modules, the motor chassis can move.

140 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Reversal direction

Introduction The direction of motion of the flip motor.
Parameters

Reversal direction
• true :Reversal direction
• false :Default direction

12.2. API Reference resources 141

Morpx Documentation

Straight-line offset correction

Introduction Because of friction, installation deviation and other disturbances, the chassis will be offset in
a certain direction when it goes straight.
Direct migration caused by external disturbance can be corrected by `direct migration correction `mod-
ule.

Introduction
Straight-line offset correction(%)

• 0~200 :>100 Correction to the right,<100 Correction to the left

Straight Distance Correction

Introduction Because of friction, installation deviation and other disturbances, chassis traveling a certain
distance will have the situation of inadequate direct travel.
Through the `direct distance correction `module, the situation of the out-of-place direct distance caused
by external disturbance can be corrected.
Before correcting the straight-line distance, it is suggested that straight-line migration correction’be car-
ried out first.`

Introduction
Straight Distance Correction(%)

• 0~+∞ :>100 Increased direct distance,<100 Straight distance decreases

Turning Angle Correction

Introduction Because of friction, installation deviation and other disturbances, chassis rotating at a certain
angle will have the situation that the turning angle is not in place.
Through the `turning angle correction’module, the situation that the turning angle caused by external
disturbance is not in place can be corrected.
Before correcting the turning angle, it is suggested that `straight-line offset correction’ and `straight-line
distance correction’ should be carried out first.

Introduction
Turning Angle Correction(%)

142 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

• 0~+∞ :>100 Increased turning angle,<100 Reduced turning angle

Forward

Introduction Control the chassis to move forward at a given speed until it stops at a given distance.
The module ** calls the encoder module ** to ensure that the corresponding encoder has been con-
nected to the corresponding port

Parameters
Forward Distance(cm)

• Distance value :Given straight distance,Unit: cm
speed

• Speed Value :Given Speed of Direct Motor,Unit: RPM

Backward

Introduction The control chassis runs backwards at a given speed until it stops at a given distance.
The module ** calls the encoder module ** to ensure that the corresponding encoder has been con-
nected to the corresponding port.

Parameters
Backward distance(cm)

• Distance value :Given straight distance,Unit: cm
speed

• Speed Value :Given Speed of Direct Motor,Unit: RPM

Left turn

Introduction Control the chassis to turn left at a given speed to a given angle and stop.
The module ** calls the encoder module ** to ensure that the corresponding encoder has been con-
nected to the corresponding port.

Parameters

12.2. API Reference resources 143

Morpx Documentation

Left turn angle(°)
• Angle value :Given a straight angle,Unit: °

speed
• Speed Value:Given Speed of Direct Motor,Unit: RPM

Right turn

Introduction Control the chassis to turn right at a given speed to a given angle and stop.
The module ** calls the encoder module ** to ensure that the corresponding encoder has been con-
nected to the corresponding port.

Parameters
Right turn angle(°)

• Angle value :Given a straight angle,Unit: °
speed

• Speed Value :Given Speed of Direct Motor,Unit: RPM

Stop

Introduction The chassis stops turning.

Motor write-in value

Introduction Write the analog to the motor at the corresponding port.
Parameters

Motor port
• 1 :Motor port 1
• 2 :Motor port 2

value
• ±255 :Write the value of the analog,>0 Turn Forward,<0 Turn back,=0 Stop turning

144 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Reading motor value

Introduction Read the analog value of the corresponding motor port.
Parameters

Motor port
• 1 :Motor port 1
• 2 :Motor port 2

Return
• value :Value of motor analogue

Writing Speed of Motor

Introduction Write the speed to the motor at the corresponding port.
The module ** calls the encoder module ** to ensure that the corresponding encoder has been con-
nected to the corresponding port.

Parameters
Motor port

• 1 :Motor port 1
• 2 :Motor port 2

value
• ±60 :Write the value of the analog,>0 Turn Forward,<0 Turn back,=0 Stop turn-
ing,unit:RPM

Reading motor speed

Introduction Read the speed of the corresponding motor port.
Parameters

Motor port
• 1 :Motor port 1

12.2. API Reference resources 145

Morpx Documentation

• 2 :Motor port 2
Return

• speed :motor speed ,unit:RPM

12.2.3 Steering engine

Steering engine include MoonBot Kit Servo Module drives,It can be used to drive the steering gear connected to the four
rudder ports in MoonBot Kit.So the actuator with one or more ports can move simultaneously.

Setting Angles

Introduction Write the angle to the steering gear connected to the specified steering port.
Parameters

146 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

steering gear port
• 1~4

angel
• 0~180°

Reading angel

Introduction Reads the current angle value of the specified steering port.
Parameters

steering gear port
• 1~4

Presupposition angle

Introduction Preset the steering angle and speed of the specified steering gear port.
The module should be used in conjunction with the `synchronous movement of all steering gear to the
preset angle `module.

Parameters
steering gear port

• 1~4

speed
• fast :Set the speed of steering gear to be fast about150°/s
• mid :Set the steering gear running at medium speed about 100°/s
• slow :Set the speed of steering gear to slow about 50°/s

12.2. API Reference resources 147

Morpx Documentation

Synchronize all steering gear to preset angle

Introduction Move all steering gear to the preset angle.
The module needs to be used in conjunction with the `preset angle’ module.

Reversal direction

Introduction The steering angle is reversed with 90 degree as the median value.
Parameters

• false :Default Motion Direction
• true :Turn the steering gear in the direction of motion

Correcting

Introduction Errors in production and installation of gears and steering gear disks may cause steering gear
to fail to turn at specified angles.
The angle error caused by the above reasons can be corrected by the steering gear calibration module.

Parameters
• ±90°

12.2.4 Music

Music include MoonBot Kit Controller Module buzzer drive and external Drive Speaker Module.
By calling these modules, you can control MoonBot Kit to play music.

148 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Speaker initialization

Introduction Initializes the speaker connected to the specified port.
Parameters

port
• 2,7,9

12.2. API Reference resources 149

Morpx Documentation

Speaker Setting Play Mode

Introduction Set up the playback mode of the speaker.
Parameters

Play mode
• Single Play :Stop playing after playing specified music
• Single tune circulation :Play specified music in a loop
• Play all :Play the next music in the music list automatically after playing the
specified music

• Random Play :Play one of the music lists randomly after playing the specifiedmusic

Speakers Play Music

Introduction Play music with a given name.
Parameters

Music Name
• :the drop-down menu for the module

Speaker Plays Custom Music

Introduction Play music with the specified music name.
Users need to put corresponding custom music into loudspeakers before this operation.(How to save
music?),The first four words of a musical name should be letters or numbers.

Parameters
Music Name

• :Customize the first four characters of the music name,Support only ** English ** or
** Numbers **

150 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Speaker Play Setting

Introduction Set the current speaker playback status.
Parameters

Play settings
• Play/pause :Play or pause current music
• Next song :Play the next music in the music list
• Last song :Play the last music in the music list
• Stop :Stop playing music

Loudspeaker set volume

Introduction Set the loudspeaker volume.
Parameters

volume
• 0~32

Buzzer Plays Scales

Introduction Buzzer to play scales in a set beat
Parameters

Scale
• High, middle and low levels

Rhythm
• 1/16~4 beat :Single beat time can be set by buzzer.

12.2. API Reference resources 151

Morpx Documentation

Buzzer pauses play

Introduction The time when the buzzer pauses to play a given beat.
Parameters

Rhythm
• 1/16~4 beat :Single beat time can be set by buzzer.

Buzzer Sets Play Rhythm

Introduction Set the number of beats per minute (BPM) of buzzer.
Parameters

beats per minute

Buzzer Play Frequency

Introduction Set up a buzzer to play music at a specified frequency at a given time.
Parameters

frequency
• 0~65535 :Frequency Recommendation Setting in the Frequency Range acceptable
to the Human Ear 20 20000Hz

time
• 0 :Continuous broadcasting
• other :Stop playing for a specified length of time

152 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Buzzer stop playing

Introduction The buzzer stopped playing sound.

12.2.5 IMU

IMU include MoonBot Kit Controller Module three-axis acceleration , drive of three-axis magnetometer and temperature
sensor on board.
By calling these modules, you can get MoonBot Kit master control of current direction, tilt angle and state, etc.

12.2. API Reference resources 153

Morpx Documentation

Compass calibration

Introduction When calibrating the compass, the master control needs to flip in the shape of ”∞“

Acquisition of compass angle

Introduction Read the angle between the current direction and the northward direction of the compass Y
axis.

Return
• 0~360°

Acquisition of acceleration value

Introduction Read the acceleration simulation of a given axis.
Parameters

Directional axis
• X,Y,Z

Return
• Acceleration analogue

Acquisition of acceleration angle

Introduction Acquisition the tilt angle of the master control
Introduction

Angle type
• Elevation angle :The angle between Y axis and horizontal plane in the master
control coordinates. When the main control tilts upward, the pitch angle is positive
and vice versa.

• Roll angle :The angle between X axis and horizontal plane in the master control
coordinates. When the main control tilts to the right, the roll angle is positive and vice
versa.

154 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Return
• ±180°

Read Temperature

Introduction Read the current temperature
Parameters

Unit of temperature
• ℃ :Celsius degree
• ℉ :Fahrenheit degree

Return
• Temperature value

Read the current status

Introduction Read the current master control state.
Parameters

state
• shock :Whether the master control is in vibration state or not
• Free fall :Whether the master control is in free falling state

Return
• true :The master control is currently in this state
• false :The master control is not currently in this state

12.2.6 Light

Light include MoonBot Kit Controller Module Two on-board LEDs and 12 external LEDs Eyes Module drivers.
With these modules, you can easily set the color and brightness of the LED.

12.2. API Reference resources 155

Morpx Documentation

Eye Initialization

Introduction Initialize the eye module to the specified port.
Parameters

port
• 1~9

156 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Eye display

Introduction Write the color value of the eye LED into the buffer and display it.
Introduction

colour

•

Eyes show expression

Introduction Eye LED displays facial movements.
Parameters

Expression
• `` Module Dropdown Menu``

Master control LED display

Introduction Write the color value of the master LED into the buffer and display it.
Parameters

colour

•

12.2. API Reference resources 157

Morpx Documentation

LED Setting RGB Value

Introduction Write the RGB color value of a given LED lamp into the buffer.
Parameters

LED Type
• Eye :eye LED
• master control LED master control LED

Lamp number
• Eye: 0~11 master control LED 0~1

R value
• 0~255 Red Channel Analog

G value
• 0~255 Green Channel Analog

B value
• 0~255 Blue Channel Analog

LED Setting HSV Value

Introduction Write the HSV color value of a given LED lamp into the cache.
Parameters

LED Type
• Eye Eye LED
• master control LED :master control LED

Lamp number
• Eye: 0~11 master control LED : 0~1

H value
• 0~360°: Tone Value

158 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

S value
• 0~255 :Saturation value analogue

V value
• 0~255 :Luminance value analogue

LED show

Introduction Show the color values in a given LED buffer
Parameters

LED Type
• Eye :Eye LED
• master control LED :master control LED

12.2. API Reference resources 159

Morpx Documentation

LED clear

Introduction Clear the cache of the specified LED.
Parameters

LED Type
• Eye :Eye LED
• master control LED :master control LED

LED brightness

Introduction Set the brightness of the given LED.
Parameters

LED Type
• Eye :Eye LED
• master control LED :master control LED

brightness
• 0~255 : 0 darkest,``255`` brightest

12.2.7 Mech

Mech include mech Integrative Action in Morphology
By calling these modules, you can easily control the manipulator to catch the ball and so on.

160 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

Initialization

Introduction Initialize the MoonMech manipulator port.
Parameters

MU adress
• MU00 MU address 0x60
• MU01 MU address 0x61
• MU10 MU address 0x62
• MU11 MU address 0x63

MU Port

12.2. API Reference resources 161

Morpx Documentation

• 2,7,9

Mech claw Steering engine port
• 1~4

Upper arm Steering engine port
• 1~4

Lower arm Steering engine port
• 1~4

Setting the position of catch ball

Introduction Setting up the position of the MoonMech manipulator to grasp the ball,The mechanical grip-
per can catch the ball by adjusting the X-Y value of the recognition ball.
When the ball is within the given X-Y value range, the mechanical claw closes to grasp the ball.

Parameters
X

• 0~100 :Horizontal position of mechanical claw grip ball The horizontal position of
the mechanical claw relative to the ball can be adjusted by modifying this value.

Y
• 0~100 :Vertical position of mechanical claw catching ball,The vertical height of the
gripper can be adjusted by modifying this value.

Setting Shooting Conditions

Introduction Setting up the conditions of MoonMech mechanical claw shooting The horizontal position
X and width of the card can be adjusted to allow the manipulator to shoot accurately into the basket.
When the card within the given X-width range, the arm triggers the shooting action to shoot.

Parameters
X

• 0~100 Horizontal position relative to transverse coordinate X of card when shooting
with mechanical claw The horizontal position of the gripper relative to the card can
be adjusted by modifying this value.

Width

162 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

• 0~100 The size of the card when the mechanical claw shoots,The distance between
MoonMECH mechanical arm and basket (card) can be adjusted by modifying this
value.

Claw movement

Introduction Set up mechanical claw action. This module can be used to control the horizontal or up-down
translation of the mechanical claw.

Parameters
action

• open Open the mechanical claw 110°
• close Close the mechanical claw 90°
• forward The mechanical claw advances horizontally in a unit.
• back The mechanical claw retreats one unit horizontally
• up The mechanical claw is vertically upward in a unit.
• down A vertical downward unit of a mechanical claw.

Find the ball

Introduction Control MoonMech manipulator to perform ball searching.
Return

• true :Find the ball
• false:No ball was found.

Catch the ball

Introduction Control MoonMech manipulator to perform catch action.
If the ball manipulator is not found during execution of this block, MoonMech will remain in place
and return false

Return
• true :Catch the ball
• false:No ball was found.

12.2. API Reference resources 163

Morpx Documentation

Find the card

Introduction The MoonMech manipulator is controlled to perform the search basket (card) action.
Parameters

card type
• shape card

• traffic card

• number card

Return
• true :Find the given card
• false:No given card was found

Shoot

Introduction Control MoonMech manipulator to execute shooting action.
If the ball manipulator is not found during execution of this block, MoonMech will remain in place.

164 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

12.2.8 MoonBot

MoonBot include MoonBot robot Integrative Action in Morphology.
By calling these modules, you can control the robot to perform nodding, waving and other actions.

Initialization

Introduction Initialize the ports of the MoonBot robot.
Parameters

Head steering gear

12.2. API Reference resources 165

Morpx Documentation

• 1~4

Left-handed steering gear
• 1~4

Right-handed steering gear
• 1~4

Wave

Introduction The arm that drives the robot waves.
Parameters

Arm
• Left hand

• Right hand

• Both hands

deviation
• 0~90 :Deviation Angle of Up and Down Waves of Robot

Speed
• fast

• mid

• slow

Swing

Introduction The head and foot of the robot are swing at the same time.
Parameters

Motor
• Left motor

• Right motor

• Dual motor

Speed
• fast

166 Chapter 12. MoonBot Kit Mixly Tutorial

Morpx Documentation

• mid

• slow

Shake your body from side to side

Introduction Control the robot motor to sway left and right.
Parameters

Speed
• fast

• mid

• slow

Time
• 0 +∞ :Single shaking time of motor

Step Forward

Introduction Controlling the robot takes a step forward.
Parameters

Speed
• fast

• mid

• slow

Time
• 0 +∞ :The longer the motor takes a step forward, the bigger the step is.

12.2. API Reference resources 167

Morpx Documentation

Nod

Introduction The control robot nodded once.
Parameters

deviation
• 0~90° :Nodding range

Speed
• fast

• mid

• slow

168 Chapter 12. MoonBot Kit Mixly Tutorial

CHAPTER

THIRTEEN

MOONBOT KIT ARDUINO TUTORIAL

This artical introduces developing MoonBot Kit with Arduino IDE.

13.1 MoonBot Kit Arduino Guidelines for Building Development En-
vironment

MoonBot Kit(hereinafter referred to as MoonBot)provide Arduino library functions,Support for development program-
ming on Arduino (ATmega1280)
This document aims to guide users to build MoonBot hardware development environment based on Aduino official IDE.

13.1.1 Preparation

Hardware:
• MoonBot Developer Suite
• PC (Windows,Linux or Mac OS)

Software:
• Arduino Official IDE
• MoonBot Arduino library

13.1.2 Detailed installation steps

First step�MoonBot Import Arduino External Dependency Library

• 1.Start Arduino official IDE
• 2.Click on Project - > Load Library - > Manage Library',openLibrary Manager’.`

169

https://www.arduino.cc/en/Main/Software?setlang=cn

Morpx Documentation

• 3.Search library `AsyncDelay’, install the relevant library if not installed, update if the library is updated

170 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

• 4.Install the library Software Wire'Adafruit_NeoPixel’ Servo according to the installation
method in step 3, Ensure that the relevant libraries are installed in the latest version

Step 2: import MoonBot Arduino library

• 1.Download the latest MuVisionSensor3 Arduino library andMoonBot Arduino library(Source code(zip))
• 2.Click on the `Project - > Load Library - > Add. zip Library’, select the MounBot Arduino Library downloaded
in the first step, complete the import of the library.

13.1. MoonBot Kit Arduino Guidelines for Building Development Environment 171

https://github.com/mu-opensource/MuVisionSensor3/releases/latest
https://github.com/mu-opensource/MoonBot/releases/latest

Morpx Documentation

• 3.Repeat the previous step and import the MuVisionSensor3 Arduino library to complete the library import

Step 3: Connecting devices

Now connect your MoonBot to PC,Device connection and port configuration
• 1.Click on Tool - > Development Board , select``Arduino/Genuino Mega or Mega 2569`
• 2.Click on Tool - > Processor ,selectATmega1280
• 3.Click on Tool - > Port`,Select the corresponding MoonBot port
Generally, serial ports display different names under different operating systems:

– **Windows Operating System: ** COM1 etc.
– Linux Operating System: Start with `dev/tty’.
– MacOS Operating System: Start with `dev/cu‘ .

172 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

Step 4: Compile routines

• 1.Click on `File - > Example - > MoonBot’,select one of the routines

• 2.Click on the upload button. If everything goes well, the development board will be reset and the corresponding
routine will start running after the burning is completed.

13.1. MoonBot Kit Arduino Guidelines for Building Development Environment 173

Morpx Documentation

13.2 API Reference

There are customized programming blocks in MoonBot Arduino used for MoonBot Kit and MU Vision Sensor 3. This
article introduces every block, and shows some complicated program examples. Users can learn programming combining
hardware modules.
Check MU Vision Sensor 3 documents here: MU Vision Sensor 3 Guide

13.2.1 Pin Map

Overview

MoonBot Kit Controller Module contains 9 GPIO ports, 4 servo ports, two motor ports and other on board resources.
And in Arduino library we provide pin map livrary and relevant defined pin to guide users requiring corresponding pin
number.
Through these functions and macros, we can easily get pin numbers of MoonBot Kit controller.

Get Keys Status

For example, turn on the on-board LEDs by getting button status.

#include <MoonBot.h>

int button_a = MOONBOT_PIN_BUTTON_A; // Get button A pin number
int button_b = MOONBOT_PIN_BUTTON_B; // Get button B pin number

void setup()
{

LED.begin(); // On board LEDs begin
}

void loop()
{

if ((!digitalRead(button_a) && !digitalRead(button_b))) {
// If button A and B is pressed at mean time, LED 0 and 1 show cyan.
LED.setPixelColor(0, 0x00ffff);
LED.setPixelColor(1, 0x00ffff);
LED.show();

} else if ((!digitalRead(button_a))) {
// If only button B is pressed, LED 0 show green
LED.setPixelColor(0, 0x00ff00);
LED.setPixelColor(1, 0x000000);
LED.show();

} else if ((!digitalRead(button_b))) {
// If only button A is pressed, LED 1 show blue.
LED.setPixelColor(0, 0x000000);
LED.setPixelColor(1, 0x0000ff);
LED.show();

} else {
// If buttons are not pressed, LEDs turn off.
LED.setPixelColor(0, 0x000000);
LED.setPixelColor(1, 0x000000);
LED.show();

(continues on next page)

174 Chapter 13. MoonBot Kit Arduino Tutorial

https://morpx-docs.readthedocs.io/en/latest/MUVS3/MUVS3_Arduino/index.html

Morpx Documentation

(continued from previous page)
}

}

Get LED Eyes Pin Number

Initialize LED by getting the status of Eyes Module on port 3.

moonbot_eyes.setPin(moonbotPortToPin(kPort3, kPortPin1)); // Set port 3 as the␣
↪→first pin of LED eyes.
moonbot_eyes.begin(); // Initialize LED eyes

Get Touch Module status

Read status of Touch Module on the GPIO ports.

#include <MoonBot.h>

// connect touch sensor 1 on port 1
uint8_t touch1 = moonbotPortToPin(kPort1, kPortPin1);
// connect touch sensor 2 on port 2
uint8_t touch2 = moonbotPortToPin(kPort2, kPortPin1);

void setup()
{

// initialize touch sensor 1/2 as INPUT_PULLUP
pinMode(touch1, INPUT);
pinMode(touch2, INPUT);

}

void loop()
{

Serial.println("=======================");
Serial.print("touch sensor1: ");
// read touch sensor 1 state
if (digitalRead(touch1)) {
Serial.println("on touch");

} else {
Serial.println("not touch");

}
Serial.print("touch sensor2: ");
// read touch sensor 2 state
if (digitalRead(touch2)) {
Serial.println("on touch");

} else {
Serial.println("not touch");

}
}

13.2. API Reference 175

Morpx Documentation

Get Infrared Module Status

We can use the same way to read the status of Infrared Module.

#include <MoonBot.h>

// connect ir sensor 1 on port 1
uint8_t ir1[2] = {

moonbotPortToPin(kPort1, kPortPin1),
moonbotPortToPin(kPort1, kPortPin2)

};
// connect ir sensor 1 on port 1
uint8_t ir2[2] = {

moonbotPortToPin(kPort2, kPortPin1),
moonbotPortToPin(kPort2, kPortPin2)

};

void setup()
{

// initialize ir sensor 1/2 as INPUT_PULLUP
pinMode(ir1[0], INPUT);
pinMode(ir1[1], INPUT);
pinMode(ir2[0], INPUT);
pinMode(ir2[1], INPUT);

}

void loop()
{

Serial.println("=======================");
Serial.print("ir sensor1: ");
// read ir sensor 1 state
if (!digitalRead(ir1[0]) || !digitalRead(ir1[1])) {
Serial.println("triggered");

} else {
Serial.println("not triggered");

}
Serial.print("ir sensor2: ");
// read ir sensor 2 state
if (!digitalRead(ir2[0]) || !digitalRead(ir2[1])) {
Serial.println("triggered");

} else {
Serial.println("not triggered");

}
}

Attention: Infrared module is in low level when touched, and pin mode is LOW; And it is not touched when level is
HIGH.

176 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

API Reference - Pin Map

Header File

• src/pins_moonbot.h

Enum

enum moonbot_servo_t
• MoonBot Kit servo port

value:

kServo1=0
kServo2
kServo3
kServo4
kServoNum

• servo port number
enum servo_pin_t

• servo port type
value:

kSignal
• servo signal pin

kShutDown
• servo power pin

kState
• servo status pin

enum moonbot_motor_t
• MoonBot Kit motor port

value:

kMotor1=0
kMotor2
kMotorNum

• motor port number
enum motor_pin_t

• motor port type
value:

kDirection
• motor direction pin

13.2. API Reference 177

https://github.com/mu-opensource/MoonBot/blob/master/src/pins_moonbot.h

Morpx Documentation

kSpeed
• motor speed pin

enum moonbot_port_t
• MoonBot Kit GPIO port

value:

kPort1=0
kPort2
kPort3
kPort4
kPort5
kPort6
kPort7
kPort8
kPort9
kPortNum

• GPIO port number
enum port_pin_t

• GPIO port type
value:

kPortPin1=0
kPortPin2
kPortPinNum

• port pin number

Macro Definition

MOONBOT_PIN_LED
• MoonBot Kit contrller on-board LED pin

MOONBOT_PIN_BUZZER_SIG
• MoonBot Kit controller buzzer signal pin

MOONBOT_PIN_BUZZER_SHDW
• MoonBot Kit controller buzzer power pin

MOONBOT_PIN_BUTTON_A
• MoonBot Kit controller button A pin

MOONBOT_PIN_BUTTON_B
• MoonBot Kit controller button B pin

178 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

Functions

uint8_t moonbotPortToPin(moonbot_port_t port_num, port_pin_t pin_num);
• Get MoonBot Kit controller Arduino pin number of the GPIO port.
value

• port_num: GPIO port
• pin_num: port pin number

return
• Arduino pin number of the port pin

uint8_t moonbotMotorToPin(moonbot_motor_t motor_num, motor_pin_t pin_type);
• Get MoonBot Kit controller Arduino pin number of the motor port.
value

• motor_num : motor port number
• pin_type : motor pin type

return
• motor port Arduino pin

uint8_t moonbotServoToPin(moonbot_servo_t servo_num, servo_pin_t pin_type);
• Get MoonBot Kit controller Arduino pin number of the servo port.
value

• servo_num : servo port number
• pin_type : servo pin type

return
• servo port Arduino pin

13.2.2 Motor

Overview

MoonBot Kit Motor Module includes motor and encoder. In Arduino library we provide motor library to drive single
motor, and chassis control library to drive dual motors.
We can include MoonBot.h header file to call TankBase to drive motor chassis, or call Motor1 Motor2 to control
single motor.

13.2. API Reference 179

Morpx Documentation

Chassis control

How to make the chassis move around? Check this simple example:

#include <MoonBot.h>

void setup()
{

TankBase.begin(); // enable TankBase, use default setting
}

void loop()
{

// forward 1s
TankBase.write(100, 100);
delay(1000);
// backward 1s
TankBase.write(-100, -100);
delay(1000);
// turn right 1s
TankBase.write(100, -100);
delay(1000);
// turn left 1s
TankBase.write(-100, 100);
delay(1000);

}

Through TankBase.write() function, write motor speed of left and right motor can make the chassis move.
If you want to control the motor speed accurately, use TankBase.writeRpm() function instead.

// Chassis turn left, with left motor speed 30 RPM, and right -30 RPM.
TankBase.writeRpm(30, -30);

Note:
Use functions that can control accurate speed of the motor like TankBase.write() TankBase.writeDistance() TankBase.writeAngle() ,

you need to connect the encoder to its port, and initialize function TankBase.begin() , and change the
parameter enc_enable to true (default is true)

You can also make motor move certain angle or distance.

void loop() {
TankBase.writeDistance(30, 20); // Chassis move forward for 20 cm with the␣

↪→speed of 30 RPM
while(TankBase.read(kLeftMotor) || TankBase.read(kRightMotor)); // Wait for␣

↪→the chassis to stop
delay(100);
TankBase.writeAngle(30, 180); // Chassis turn right for 180 degrees with␣

↪→the speed of 30 RPM
while(TankBase.read(kLeftMotor) || TankBase.read(kRightMotor)); // Wait for␣

↪→the chassis to stop
delay(100);

}

Note: Because of fix devations or friction force, you will find chassis can not go straight. You can use following calibration

180 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

functions to correct it.

void setup() {
TankBase.rpmCorrection(82); // Calibrate speed offset %
TankBase.distanceCorrection(120); // Calibrate distance offset %
TankBase.wheelSpacingSet(100); // Calibrate angle offset %

}

Control Single Motor

If you only want to control single motor, call Motor1 Motor2 to achieve.

Motor1.write(100); // Set motor1 analog value to 100
Motor2.write(100); // Set motor1 analog value to 100
Motor1.writeRpm(30); // Set motor1 speed to 30 RPM
Motor2.writeRpm(30); // Set motor1 speed to 30 RPM

API Reference - Motor

Header File

• src/MoonBot_Motor.h

Enum Type

enum moonbot_motor_t
• motor port type

value:

kMotor1=0
kMotor2
kMotorNum

Class

class Motor
• Single motor driver
member function

Motor(moonbot_motor_t motor_type);
• constructed function, define port type
parameter
• motor_type

int begin(const bool reverse_dir = false, const bool enc_enable = true);

13.2. API Reference 181

https://github.com/mu-opensource/MoonBot/blob/master/src/MoonBot_Motor.h

Morpx Documentation

• Initialize motor in the given port
parameter
• reverse_dir : Reverse motor rotate direction, false by default
• enc_enable : Enable encoder, true by default

return
• 0 :Initailization succeed
• -1 : Can not find the motor port

void write(int vol);
• Write analog value
parameter
• vol : Value of the voltage, with range of±255 ,>0means CW <0means
CCW

int read(void);
• Read the analog value
return
• ±255 : Analog value

void writeStep(uint32_t step, int rpm = 30);
• Drive motor with certain speed and steps and then stop.
• This function will use encoder, and encoder must be opened in begin() function.
parameter
• step : Rotation step, 240 steps per cycle
• rpm : Motor rotation speed, 30 RPM per cycle

void writeRpm(int rpm = 30);
• Write motor speed, unit: RPM
• This function will use encoder, and encoder must be opened in begin() function.
parameter
• rpm : Motor rotation speed, 30 RPM by default

int readRpm(void);
• Read motor speed, unit: RPM
• This function will use encoder, and encoder must be opened in begin() function.
return
• Motor rotate speed

void writeDistance(int rpm, uint32_t distance_cm);
• Drive motor with certain speed and distance and then stop. Because of the offsets,
please use``distanceCorrection()`` function to calibrate.

• This function will use encoder, and encoder must be opened in begin() function.
parameter

182 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

• rpm : Motor rotation speed
• distance_cm : Moving distance, unit: cm

uint32_t readEncoderPulse(void);
• Read encoder value
• This function will use encoder, and encoder must be opened in begin() function.
return
• Current encoder value

void rpmCorrection(uint8_t percent);
• Motors RPM calibration
parameter
• percent : Calibration percentage. >100 means increase , <100 means
decrease

void distanceCorrection(uint8_t percent);
• Motors distance calibration
parameter
• percent : Calibration percentage. >100 means increase distance, <100
means decrease

API Reference - Chassis Control

Header File

• src/MoonBot_TankBase.h

Enum Type

enum motor_type_t
• motor type

value:

kLeftMotor=0
• left motor

kRightMotor
• right motor

13.2. API Reference 183

https://github.com/mu-opensource/MoonBot/blob/master/src/MoonBot_TankBase.h

Morpx Documentation

Class

class MoonBotTankBase
• Chassis dual motor driver
member function

MoonBotTankBase(Motor& left_motor, Motor& right_motor);
• constructed function, define two motors to the port
parameter
• left_motor

• right_motor

int begin(const bool reverse_dir = false, const bool enc_enable = true);
• Initialize chassis motors
parameter
• reverse_dir : Reverse rotation direction, false by default
• enc_enable : Enable encoder, true by default

return
• 0 : Initialization succeed
• -1 : Can not find the motor port

int begin(const bool left_reverse_dir, const bool right_reverse_dir, const bool enc_enable);

• Initialize chassis motors
parameter
• left_reverse_dir : Reverse left motor rotation direction
• right_reverse_dir : Reverse right motor rotation direc-
tion

• enc_enable : Enable encoder
return
• 0 : Initialization succeed
• -1 : Can not find the motor port

void write(int left_vol, int right_vol);
• Write analog value to motors
parameter
• left_vol : Left motor voltage, range of±255 , >0 means CW,
<0 means CCW

• right_vol : Right motor voltage, range of ±255 , >0 means
CW, <0 means CCW

int read(motor_type_t motor_type);
• Read analog value from motors

184 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

parameter
• motor_type

return
• ±255 : Analog value

uint32_t readEncoderPulse(motor_type_t motor_type);
• Read motor encoder value
• This function call encoder, and should be opened after begin() function
parameter
• motor_type

return
• Current encoder value

void writeRpm(int left_rpm, int right_rpm);
• Write motors speed, unit: RPM
• This function will use encoder, and encoder must be opened in begin()
function.
parameter
• left_rpm : Left motor rotation speed
• right_rpm : Right motor rotation speed

int readRpm(motor_type_t motor_type);
• Read motors speed, unit: RPM
• This function will use encoder, and encoder must be opened in begin()
function.
parameter
• motor_type

return
• Motor rotation speed

void writeDistance(int rpm, uint32_t distance_cm);
• Drive motors with certain distance and stop. Because of the offsets, please
use rpmCorrection and distanceCorrection() function to
calibrate.

• This function will use encoder, and encoder must be opened in begin()
function.
parameter
• rpm Motor rotation speed
• distance_cm : Moving distance, unit: cm

void writeAngle(int rpm, uint32_t angle);

13.2. API Reference 185

Morpx Documentation

• Drive motors with certain distance and stop. Because of the offsets, please
use rpmCorrection and wheelSpacingSet() function to cal-
ibrate.

• This function will use encoder, and encoder must be opened in begin()
function.
parameter
• rpm : Motor rotation speed
• angle : Rotation angle, unit: degree(°)

void wheelSpacingSet(int correct, float space_cm = 0);
• Set wheel spacing and calibrate turn angle. This function can calibrate that
wheel can not turn the accurate angle
parameter
• correct Correction value, >100 means angle increase, <100
means decrease

• space_cm : Motor spacing
void rpmCorrection(int percent);

• Calibrate the speed of left and right motor
parameter
• percent : Calibration value, >100 means calibrate to right,
<100 means calibrate to left

void distanceCorrection(int percent);
• Calibrate moving distance
parameter
• percent : Calibration value, >100 means increase distance,
<100 means decrease

void forward(unsigned int step, unsigned int rpm = 30);
• Chassis move forward for certain distance and stop
parameter
• step : Forward distance, unit: cm
• rpm : Motor rotate speed, 30RPM by default

void backward(unsigned int step, unsigned int rpm = 30);
• Chassis move backward for certain distance and stop
parameter
• step : Back distance, unit: cm
• rpm : Motor rotate speed, 30RPM by default

void turnLeft(unsigned int step, unsigned int rpm = 30);
• Chassis turns left for certain degrees and stop
parameter

186 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

• step : Left turn angle, unit: degree(°)
• rpm : Motor rotate speed, 30 RPM by default

void turnRight(unsigned int step, unsigned int rpm = 30);
• Chassis turns right for certain degrees and stop
parameter
• step : Right turn angle, unit: degree(°)
• rpm : Motor rotate speed, 30 RPM by default

void stop(void);
• Chassis stop moving

13.2.3 Music

Overview

MoonBot Kit provide two sound devices, buzzer on Controller Module and Speaker Module . We can use Arduino basic
functions tone() and noTone() to control the buzzer. Use Speaker library to control the speaker.
By including MoonBot.h header file in program, we can call speaker driver to drive the speaker module.

On-board Buzzer Driver

We can use macro definition MOONBOT_PIN_BUZZER_SIG to get Arduino pin of the buzzer, and control the voltage
of MOONBOT_PIN_BUZZER_SHDW to open or close the buzzer.

#include <MoonBot.h>

void setup()
{

pinMode(MOONBOT_PIN_BUZZER_SIG, OUTPUT); // Initialize buzzer signal pin␣
↪→to output mode

pinMode(MOONBOT_PIN_BUZZER_SHDW, OUTPUT); // Initialize buzzer power pin to␣
↪→output mode

digitalWrite(MOONBOT_PIN_BUZZER_SHDW, LOW); // Pull down buzzer power pin to␣
↪→open buzzer

tone(MOONBOT_PIN_BUZZER_SIG, 1000, 2000); // Let buzzer play with 1000Hz␣
↪→for 2000ms
}

Attention: In 7th line of the example:
7 digitalWrite(MOONBOT_PIN_BUZZER_SHDW, LOW); // Initialize buzzer power pin to␣

↪→output mode

Pull MOONBOT_PIN_BUZZER_SHDW voltage LOW to open it, and HIGH to close.The default voltage is LOW.

13.2. API Reference 187

https://www.arduino.cc/reference/en/language/functions/advanced-io/tone/
https://www.arduino.cc/reference/en/language/functions/advanced-io/notone/

Morpx Documentation

Speaker Module Driver

MoonBot Kit Speaker Module use a WT2003S MP3 decoder chip. Call speaker library to control it as a MP3 player.
There is a simple MP3 player tutorial:

#include <MoonBot.h>

void setup()
{

speaker.begin(Serial2); // Initialize speaker module to Arduino serial port␣
↪→2�MoonBot GPIO port 2�

speaker.setPlayMode(0); // Set play mode to single play, which means stop␣
↪→after playing a music

speaker.setVolume(20); // Set volume to 20. Max volume is 32
}

void loop()
{

if ((!digitalRead(MOONBOT_PIN_BUTTON_A))) {
// If button A is pressed
speaker.playNext(); // Play the next music

} else if ((!digitalRead(MOONBOT_PIN_BUTTON_B))) {
// If button B is pressed
speaker.playPrevious(); // Play the last music

}
}

Check Official terminal MP3 player examples for more detailed information.

API Reference - Speaker

Header File

• src/MoonBot_WT2003S_MP3_Decoder.h

Class

class WT2003S
• WT2003S MP3 player driver
Menber function

void begin(SoftwareSerial &serialPort);
• Use software serial port to initialize speaker
parameter
• serialPort : software serial port

void begin(HardwareSerial &serialPort = Serial);
• Use hardware serial port to initialize speaker
parameter
• serialPort : hardware serial port, Serial by default

188 Chapter 13. MoonBot Kit Arduino Tutorial

https://github.com/mu-opensource/MoonBot/blob/master/examples/Terminal_MP3_Player/Terminal_MP3_Player.ino
https://github.com/mu-opensource/MoonBot/blob/master/src/MoonBot_WT2003S_MP3_Decoder.h

Morpx Documentation

uint8_t play(char* fileName);
• play music with the file name
parameter
• fileName : 4 bytes of the file name

return
• 0 means the command is right, other return means wrong

uint8_t setVolume(uint8_t volumeLevel);
• Set volume of the speaker
parameter
• volumeLevel : volume level, with range of 0~32

return
• 0 means the command is right, other return means wrong

uint8_t stop(void);
• Stop playing current music
return
• 0 means the command is right, other return means wrong

void pause(void);
• Pause when playing, play when pausing

uint8_t playPrevious(void);
• Play the last music. Play the final music when on the first
return
• 0 means the command is right, other return means wrong

uint8_t playNext(void);
• Play the next music. Play the first music when on the final
return
• 0 means the command is right, other return means wrong

uint8_t setPlayMode(uint8_t mode);
• Set play mode
parameter
• mode :

0 single play
1 single cycle
2 list loop
3 randomplay

return
• 0 means the command is right, other return means wrong

13.2. API Reference 189

Morpx Documentation

uint16_t getSongCount(void);
• Get the music order number in the list
return

• current music order number in the list
void getSongName();

• Get first 9 bytes of the song name. Read
WT2003S::songName[MP3_NUM_NAME_BYTES] to get the
name

uint8_t playTrackNumber(uint8_t trackNumber);
• Play music with the given order number
parameter

• trackNumber : music order number in the list
return

• 0 means the command is right, other return means wrong
uint8_t getVolume(void);

• Get current volume level of the speaker
return

• 0~32 : volume level of the speaker
uint8_t getPlayStatus(void);

• Get the current play status
return

1 play
2 stop
3 pause

13.2.4 IMU

Introduction

MoonBot Kit Controller Module integrates three functions of triaxial magnetometer, triaxial acceleration and temperature
sensor into IMU module. In the Arduino library, we also provide ref:IMU < api-ref-imu > library to facilitate users to
access the master control of the current attitude, direction, temperature and other states.
By calling `IMU’, we can quickly obtain the current compass angle, pitch angle, roll angle, gravity acceleration, temper-
ature and other state values.

190 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

Read master control current direction

By reading the angle of the compass, we can know the direction of the current master control:

#include <MoonBot.h>

void setup()
{

IMU.enable(); // IMU Enable
IMU.calibrateMag(); // IMU magnetometer calibration,the master control needs to␣

↪→flip in the shape of ”∞“
}

void loop()
{

Serial.print("compass:");
// Obtain the compass angle(0~360°).When pointing north, the value is 0 or 360
Serial.println(IMU.getMagAngle());

}

Note:
When the main control is flat, the return value is Y axis (see the master control front silk mark) and the northward clip.

When the main control is erected, the return value is the angle between Z axis and North direction.

Obtain Pitch angle or Rolling angle

// Obtain Pitch angle�±180°��When the main control is up, the angle is positive and␣
↪→the downward angle is negative.
int pitch = IMU.getAccAngle(kAccPitch);
// Obtain Rolling angle�±180°��The main control right deviation is positive and the␣
↪→left deviation is negative.
int roll = IMU.getAccAngle(kAccRoll);

Note: MoonBot Kit The main control direction is Y axis (see the main control front silk mark) Angles are calculated
on this premise.

Acquisition of current acceleration

// Acquisition of acceleration�unit�g�The value at rest is 1.0.
float acceleration = IMU.getAcceleration();

13.2. API Reference 191

Morpx Documentation

Obtain the current motion state

void loop()
{

if (IMU.on(kIMUShake)) {
// If the current master is shaking
// bright red LED
LED.setPixelColor(0, 0xff0000);
LED.setPixelColor(1, 0xff0000);
LED.show();

} else if (IMU.on(kIMUFreeFall)) {
// If the current master is in free fall
// bright green LED
LED.setPixelColor(0, 0x00ff00);
LED.setPixelColor(1, 0x00ff00);
LED.show();

} else {
// If the main control is stationary
// close LED
LED.setPixelColor(0, 0x000000);
LED.setPixelColor(1, 0x000000);
LED.show();

}
}

API Reference - IMU

Header file

• src/LSM303AGR_IMU_Sensor.h

enumeration

enum lsm303_axes_t
• IMU Directional axis type

value:

kDirX
kDirY
kDirZ

enum lsm303_acc_angle_t
• IMU Attitude Angle Type

value:

kAccRoll
kAccPitch

enum imu_state_t
• IMU Special state type.

192 Chapter 13. MoonBot Kit Arduino Tutorial

https://github.com/mu-opensource/MoonBot/blob/master/src/LSM303AGR_IMU_Sensor.h

Morpx Documentation

value:

kIMUShake
• IMU Is it in a sloshing state

kIMUFreeFall
• IMU Is it in a free falling state

Class

class LSM303AGR_IMU_Sensor
• IMU Drive.
group function

int enable(void);
• enable IMU
Return

• 0 enable success, unable failure
int advGetMagAngle(lsm303_axes_t main_axes, lsm303_axes_t sub_axes);

• Get the plane where the specified spindle and vice-spindle are located,
and the angle between the spindle and the North side.
parameters

• main_axes Spindle
• sub_axes Countershaft

Return
• Angle between the spindle and the North

int getMagAngle(void);
• Obtain the compass angle When the main control is placed horizontally, the angle between the positive direction of Y axis and the north is returned;

when the main control is placed vertically, the angle between the
positive direction of Z axis and the north is returned.

Return
• Angle between the spindle and the North

int getAccAngle(lsm303_acc_angle_t angle_type);
• Obtain the main control angle.
parameters

• angle_type angle type
Return

• angle
float getAcceleration(void);

• Acquisition of acceleration value
Return

13.2. API Reference 193

Morpx Documentation

• Acceleration value unit g
bool on(imu_state_t imu_state);

• Get whether the master control is in some state
parameters

• imu_state IMU state
Return

• true IMU In this state,Otherwise, it is not in this state.
bool calibrateMag(void);

• Calibration of Magnetometer
Return

• Whether the calibration is completed or not
int16_t temperature(void);

• Obtain the original temperature value
Return

• Primitive value of temperature
float temperatureC(void);

• Get the current temperature unit Celsius degree
Return

• Current temperature unit Celsius degree
float temperatureF(void);

• Current temperature unit Fahrenheit degree
Return

• Current temperature unit Fahrenheit degree
group variable

LSM303AGR_ACC_Sensor Acc;
• Acceleration drive

LSM303AGR_MAG_Sensor Mag;
• Magnetometer drive

13.2.5 Servo

Overview

MoonBot Kit Controller Module can be connected up to four Servo Module In Arduino library, we provide Servo library.
Through this library, you can control one or more servos to move.
Servo library inherit Arduino basic servo driver class Servo. Except for basic Servo class function, we also pro-
vide functions like servo calibration, several servos move together. In MoonBot.h header file, we provide four variables
m_servo[kServo1] m_servo[kServo2] m_servo[kServo3] m_servo[kServo4] to drive correspond-
ing servo ports in controller module.

194 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

Basic Application

There is a basic application of servos.

#include <MoonBot.h>

int pos;

void setup() {
m_servo[kServo1].attach(kServo1, true); // attaches servo on servo port␣

↪→1, and reverse directions
}
void loop() {

for (pos = 0; pos <= 180; pos += 1) { // goes from 0 degrees to 180 degrees
// in steps of 1 degree
m_servo[kServo1].write(pos); // tell servo to go to position␣

↪→in variable 'pos'
delay(15); // waits 15ms for the servo to reach the␣

↪→position
}
for (pos = 180; pos >= 0; pos -= 1) { // goes from 180 degrees to 0 degrees
m_servo[kServo1].write(pos); // tell servo to go to position␣

↪→in variable 'pos'
delay(15); // waits 15ms for the servo to reach the␣

↪→position
}

}

Note: Initial function of servos is changed to attach(moonbot_servo_t servo_port, bool reverse),
and original function uint8_t attach(int pin) is not supported anymore.

Servos move together

We provide void MoonBotServo::setTargetAngle() and Moon-
BotServo::moveAllServoToTarget() functions to make servos move togehther.

#include <MoonBot.h>

void setup() {
for (int i = 0; i < kServoNum; ++i) {
m_servo[i].attach((moonbot_servo_t)i); // attaches servo

}
}
void loop() {

// in steps of 1 degree
for (int i = 0; i < kServoNum; ++i) {
m_servo[i].setTargetAngle(180, 1); // set all servo to go to position in␣

↪→variable '180', speed 1 degree per pulse(20ms)
}
MoonBotServo::moveAllServoToTarget(); // move all servo to target angle
for (int i = 0; i < kServoNum; ++i) {
m_servo[i].setTargetAngle(0, 1); // set all servo to go to position in␣

↪→variable '0', speed 1 degree per pulse(20ms)
}

(continues on next page)

13.2. API Reference 195

Morpx Documentation

(continued from previous page)
MoonBotServo::moveAllServoToTarget(); // move all servo to target angle

}

Note: When using MoonBotServo::moveAllServoToTarget(); default parameter, the function will wait for
all servos finish moving and stopping. When parameter is not 0, it will stop when time is over, and feed back whether
moving is finished.

Function``bool isMoving(void);`` can be used every certain time to check the status.

while (!MoonBotServo::moveAllServoToTarget(0)) {
// Check whether servos are moving.
for (int i = 0; i < kServoNum; ++i) {

if (!m_servo[i].isMoving()) {
// when servos stop, print the status.
Serial.print("Servo");
Serial.print(i);
Serial.println(" Stopped.");

}
}

}
Serial.println("All Servo Stopped.");

When using COM monitor, information will be received as below.

Servo1 Stopped.
...
Servo1 Stopped.
Servo2 Stopped.
...
Servo2 Stopped.
Servo3 Stopped.
...
Servo3 Stopped.
All Servo Stopped.

Servo Calibration

MoonBot Kit Servo library provide servo calibration function that can correct the offset of servos.

m_servo[kServo1].correction(-2); //Calibrate servo 1 downwards for 2°

API Reference - Servo

Header File

• src/MoonBot_Servo.h

196 Chapter 13. MoonBot Kit Arduino Tutorial

https://github.com/mu-opensource/MoonBot/blob/master/src/MoonBot_Servo.h

Morpx Documentation

Enum

enum moonbot_servo_t
• servo port type

value:

kServo1
kServo2
kServo3
kServo4
kServoNum

• servo port number

Class

class MoonBotServo
• MoonBot Kit servo driver library
Member function

uint8_t attach(moonbot_servo_t servo_port, bool reverse = MOONBOT_SERVO_REVERSE);

• Initialise servo to servo ports.
Parameter

• servo_port

• reverse

Return
• NOT_A_PORT Servo port is invalid, and other initialization
is right.

uint8_t attach(moonbot_servo_t servo_port, int min, int max, bool reverse = MOONBOT_SERVO_REVERSE);

• Initialise servo to servo ports, and set its moving range.
Parameter

• servo_port servo port
• min minimum degree of servo
• max max degree of servo
• reverse reverse servo direction

Return
• NOT_A_PORT Servo port is invalid, and other initialization
is right.

void detach(void);
• Detach servo and port

13.2. API Reference 197

Morpx Documentation

void write(int value);
• Write servo angle
parameter

• value angle value range 0~180°
int read(void);

• Read current servo degree
Return

• current degree
void reverse(bool state);

• Reverse servo direction
parameter

• state: Status true Direction is reversed
void setTargetAngle(int angle, unsigned int speed = 1);

• Initialise servos.It should be used together with``static bool moveAllSer-
voToTarget()`` .
parameter

• angle : Initialised angle
• speed : degree of every pulse

void stop(void);
• stop servos

void power(bool state);
• open or close servo power.
parameter

• state status of servo power, true means open
void correction(int angle_offset);

• Servo calibration
parameter

• angle_offset Calibrate the angle. Range: ±90°
bool isMoving(void);

• Read moving status.
Return

• true Servo is moving
bool isPowerOverload(void);

• Detect whether current is overload.
Return

• true Power is overload

198 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

Static member function
static bool moveAllServoToTarget(unsigned long timeToWait_ms = 0xFFFFFFFF);

• Move all servo to set angle
Parameter

• timeToWait_ms : Default time is infinite, until servo
move to target angle.

Return
• true Finish all movement.

static void stopAllServo(void);
• Stop all servo movements.

13.2.6 Light

Overview

MoonBot Kit contains two sets of light modules Respectively located Controller Module and Eyes Module We can use
Adafruit_NeoPixel library to drive these two sets of light modules.
We can drive two on-board LED lights by calling `LED’.Drive 12 LED eyes by calling `moonbot_eyes’.At the same time,
through the call: ref: `LED eye movement < api-ref-led-action > ` let the eyes make a rich expression.

LED Foundation driven

#include <MoonBot.h>

void setup() {
// enable main control LED
LED.begin();
moonbot_eyes.begin();
// clear LED color
LED.clear();
LED.show();
moonbot_eyes.clear();
moonbot_eyes.show();

}

void loop() {
if (digitalRead(MOONBOT_PIN_BUTTON_A) == LOW

&& digitalRead(MOONBOT_PIN_BUTTON_B) == LOW) {
// If A&B is pressed at the same time
// LED and eye lights display cyan
LED.fill(0x003030);
LED.show();
moonbot_eyes.fill(0x003030);
moonbot_eyes.show();

} else if (digitalRead(MOONBOT_PIN_BUTTON_A) == LOW) {
// If key A is pressed
// LED0�The right eye display green.

(continues on next page)

13.2. API Reference 199

https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use

Morpx Documentation

(continued from previous page)
LED.setPixelColor(0, 0x003000);
LED.setPixelColor(1, 0);
LED.show();
moonbot_eyes.clear();
moonbot_eyes.fill(0x003000, 0, 6);
moonbot_eyes.show();

} else if (digitalRead(MOONBOT_PIN_BUTTON_B) == LOW) {
// If key B is pressed
// LED1�The left eye display green.
LED.setPixelColor(0, 0);
LED.setPixelColor(1, 0x000030);
LED.show();
moonbot_eyes.clear();
moonbot_eyes.fill(0x000030, 6, 6);
moonbot_eyes.show();

} else {
// LED Eye lights off
LED.clear();
LED.show();
moonbot_eyes.clear();
moonbot_eyes.show();

}
}

LED Eye Lighting Action

MoonBot Kit provides abundant Eye action to be used:

colorWipe(moonbot_eyes, 0x40, 200); // LEDs turn green one by one
theaterChase(moonbot_eyes, 0xFF00, 50); // Eyes turn around
MoonBotEyesCircle(moonbot_eyes, 50); // Eyes turn around gradually
rainbow(moonbot_eyes, 5); // Eyes show rainbow color
rainbowCycle(moonbot_eyes, 5); // Eyes show rainbow color one by one

API Reference - Adafruit_NeoPixel

Check Adafruit official website for detailed information: https://learn.adafruit.com/adafruit-neopixel-uberguide/
arduino-library-use

API Reference - LED Eyes Action

Header File

• src/MoonBot_Eyes.h

200 Chapter 13. MoonBot Kit Arduino Tutorial

https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use
https://learn.adafruit.com/adafruit-neopixel-uberguide/arduino-library-use
https://github.com/mu-opensource/MoonBot/blob/master/src/MoonBot_Eyes.h

Morpx Documentation

Enum

enum moonbot_eyes_t
• eyes type

value:

kEyesLeft
• left eye

kEyesRight
• right eye

kEyesBoth
• both eyes

enum moonbot_look_t
• direction that eyes look at

value:

kEyesLookUp
• Eyes look up

kEyesLookDown
• Eyes look down

kEyesLookLeft
• Eyes look left

kEyesLookRight
• Eyes look right

enum moonbot_eyes_scroll_t
• eyes scroll type

value:

kEyesScrollUp
• eyes scroll up

kEyesScrollDown
• eyes scroll down

kEyesScrollLeft
• eyes scroll left

kEyesScrollRight
• eyes scroll right

13.2. API Reference 201

Morpx Documentation

Functions

void colorFade(Adafruit_NeoPixel& led, uint8_t r, uint8_t g, uint8_t b, uint8_t wait);
• LED eyes turn to target color gradually
parameter

• led : LED type
• r : value of red channel
• g : value of green channel
• b : value of blue channel
• wait : time to wait

void colorWipe(Adafruit_NeoPixel& led, uint32_t c, uint8_t wait);
• LED change color one by one
parameter

• led: LED type
• c: REG color of the LED
• wait: time to wait for action

void rainbow(Adafruit_NeoPixel& led, uint8_t wait);
• LED light shine rainbow color
parameter

• led : LED type
• wait : time to wait

void rainbowCycle(Adafruit_NeoPixel& led, uint8_t wait) ;
• LED change light of rainbow color gradually
parameter

• led : LED type
• wait : time to wait for changing

void theaterChase(Adafruit_NeoPixel& led, uint32_t c, uint8_t wait);
• LED turn around with target color
parameter

• led : LED type
• c : RGB color of LED light
• wait : time to wait for action

void MoonBotEyesLook(Adafruit_NeoPixel& led, moonbot_look_t look_tpye, uint32_t color);
• LED eyes look to the direction
parameter

• led : LED type
• look_tpye : the direction that eyes looks to

202 Chapter 13. MoonBot Kit Arduino Tutorial

Morpx Documentation

• color : eyes color
void MoonBotEyesScroll(Adafruit_NeoPixel& led, moonbot_eyes_scroll_t scroll_tpye, uint32_t color, uint8_t wait = 50);

• LED eyes scroll to the direction
parameter

• led : LED type
• scroll_tpye : direction that eyes scroll to
• color : LED color type
• wait : time to wait, 50ms by default

void MoonBotEyesCircle(Adafruit_NeoPixel& led, uint32_t color, moonbot_eyes_t eyes_type = kEyesBoth, uint8_t wait = 50);

• LED eyes turn around gradually
parameter

• led : LED type
• color : eyes color
• eyes_type : eyes type
• wait : circle time, 50ms by default

13.2. API Reference 203

Morpx Documentation

204 Chapter 13. MoonBot Kit Arduino Tutorial

CHAPTER

FOURTEEN

MOONBOT KIT EXTENDED STRUCTURES

Except for official structures, makers can use MoonBot Kit hardware modules and other common materials to build
creative robots.

14.1 Lego Car

Hardware modules of MoonBot Kit can be connected to lego parts and used to build lego robots.
Basic connection: There two main types of lego parts: technic series and traditional series.Horizontally placed modules
are compatible with traditional series, while vertically placed modules are compatible with technic series. Traditional
parts needs to be transfered to a 2X2 lego block, and technic parts needs black bolts to connected to others, as is shown
below.

Demount the screw of active wheel, remove the active wheel andmount an adapter of TTmotor to Lego. ThenMoonRover
can use Lego wheels to become a traditional two wheel car. And a universal wheel is needed to make the car horizontal,
as is shown below.A big wheel will make the car drive twice faster than before.

205

Morpx Documentation

14.2 Biped Robot

MoonBot controller can be connected to 4 servos, and made a biped dancing robot with some sheet metal parts.

206 Chapter 14. MoonBot Kit Extended Structures

Morpx Documentation

14.3 Shell Mod

Shell of MoonBot can be modified by yourself.Just use 3d printing, paper and wood boards to change shell or inside parts
of MoonBot. For example, a cool dragon from Teacher Ma is shown below.

14.3. Shell Mod 207

Morpx Documentation

208 Chapter 14. MoonBot Kit Extended Structures

CHAPTER

FIFTEEN

MOONBOT KIT FIRMWARE UPGRADE GUIDE

This doc will guide users to upgrade firmware of MoonBot Kit Controller Module and Vision Module .

15.1 Preparation

Hardware:
• MoonBot Kit
• PC Windows

Software:
• Arduino IDE
• MoonBot Arduino Library
• MU Vision Sensor 3 upgrade software
• MU(for MoonBot) latest firmware(.bin file)

15.2 Upgrading Steps

15.2.1 Step One: Upgrade firmware of MoonBot Kit Controller

Refer to MoonBot Kit APP Firmware Upgrade Guide

15.2.2 Step Two: Upgrade firmware of MU Vision Sensor 3

1. Connect Vision Module to MoonBot Kit Controller Module port P9, and connect the controller to PC.
2. Press and hold function button of Vision Module on the left, and then press Reset button once. Then release function
button, and the vision sensor is in upgrading mode now.

3. Open MU Vision Sensor 3 upgrade software flash_download_tools_vx.x.x.exe
4. Choose ESP32 DownloadTool

209

https://www.arduino.cc/en/Main/Software
http://mai.morpx.com/images/page201904/flash_download_tools_v3.6.5.rar
https://github.com/mu-opensource/MoonBot_RemoteController/releases/latest

Morpx Documentation

5. Change Settings

210 Chapter 15. MoonBot Kit Firmware Upgrade Guide

Morpx Documentation

15.2. Upgrading Steps 211

Morpx Documentation

Note:
• SPI SPEED:40MHz
• SPI MODE:DIO
• FLASH SIZE:32Mbit
• BAUD:115200
• COM connect to the right COM port, which can be found in Windows device manager.

6. Choose ... button and choose firmware file, and choose √ to activate the file.
7. Input address of the firmware behind @ , which is 0x10000.

Attention: Do not forget to input the address or modify it. Otherwise you will damage the firmware order of
the vision sensor. If it happens, please contact to Morpx support to solve it.
Phone number: (0571)8195 8588
E-mail: support@morpx.com

8.Press START button on the left-bottom corner, and click continuously button B of MoonBot Kit Controller Module
until the software start burning firmware. LED on the right side of the controller turns green.
9.When the software progress bar is full, and shows FINISH, firmware downloading is complete.

212 Chapter 15. MoonBot Kit Firmware Upgrade Guide

mailto:support@morpx.com

CHAPTER

SIXTEEN

MOONBOT KIT RESOURCE

16.1 Technical Information

Thanks for purchasing MoonBot Kit, and we would like to provide continuous updating service, please check to our
website: www.morpx.com regularly. Updates are subject to change without notice. You can get the latest technical
information from the following websites:
Official Website: http://mai.morpx.com/page.php?a=moonbot-kit
GitHub: https://github.com/mu-opensource/

16.2 3D Assembly Models

MoonBot Kit 3D assembly files can be downloaded here:
MoonBot Kit 3D assembly

STP file is a universal 3D file format, which can be opened by popular CAD software like solidworks and CREO.
The models can be used to watch the details of each MoonBot Kit structure, measure dimension, render in Keyshot and
so on.
Plastic and sheet metal parts in models are optimized for manufacturing, and are not recommended to be used for FDM
3D printing.

213

http://mai.morpx.com/page.php?a=moonbot-kit
https://github.com/mu-opensource/
https://github.com/mu-opensource/Morpx-docs-en/raw/master/MoonBot/MoonBot_Resource/sources/MoonBot_Kit_asm.zip

Morpx Documentation

16.3 Projects

There are extended projects of MoonBot Kit. Watch the latest updates at https://www.hackster.io/tianli.

16.4 Platform Links

MoonBot Kit is compatible with Arduino opensource platform. Check related website to learn basic knowledge.
Mixly
Mixly Official Website: http://mixly.org/
Arduino
Arduino Official Website: https://www.arduino.cc/

214 Chapter 16. MoonBot Kit Resource

https://www.hackster.io/tianli
http://mixly.org/
https://www.arduino.cc/

CHAPTER

SEVENTEEN

MU SELF-DRIVING KIT INTRODUCTION

MU MU
Micro:bit MU Micro:bit

MU

215

Morpx Documentation

216 Chapter 17. MU Self-driving Kit Introduction

CHAPTER

EIGHTEEN

MU SELF-DRIVING KIT STRUCTURE

18.1 ������

18.2 ������

217

Morpx Documentation

218 Chapter 18. MU Self-driving Kit Structure

CHAPTER

NINETEEN

MU SELF-DRIVING KIT MAKECODE TUTORIAL

MU MakeCode
MakeCode Micro:bit EV3
MakeCode MakeCode for micro:bit

19.1 ����

19.1.1 ��

micro:bit STEAM BBC micro:bit
micro:bit MakeCode MakeCode

MakeCode AI

19.1.2 ����

“ ”

219

https://makecode.microbit.org/
https://makecode.microbit.org/

Morpx Documentation

����

micro:bit
micro:bit U hex U micro:bit

�����

220 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

����

- ”muvision” MU “maqueen”

19.1.3 ����

LED LED
“ ” hex micro:bit hex micro:bit U micro:bit

19.1. ���� 221

Morpx Documentation

Tips “ ” “ ”

19.2 ������

19.2.1 ����

(motor)

2

222 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

0 200 0 50. index index 1 index 50

19.2. ������ 223

Morpx Documentation

19.2.2 ����

(servo)
PWM

0.1 0-180 index

19.2.3 ����

�LED�

LED
LED

224 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

micro:bit��

micro:bit 25 LED LED

LED 200ms

19.2. ������ 225

Morpx Documentation

���

4 LED RGB
4 ”neopixel” P15

RGB P15 4 LED 0-3 100ms

19.2.4 ����

micro bit P0

226 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

19.3 ������

sensor
micro bit

19.3.1 ��

0 1

A A B B 0.1

19.3. ������ 227

Morpx Documentation

A B A B

19.3.2 ���

micro:bit (E) (W) (S) (N) micro:bit micro:bit

228 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

19.3.3 ����

IMU

step step

4

19.3. ������ 229

Morpx Documentation

19.3.4 ������

0.04-4

distence micro:bit

100 20cm

10cm 20cm 90

230 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

19.3.5 �����

0 1

0 1 50ms

19.4 �����

(protocol)

19.4. ����� 231

Morpx Documentation

19.4.1 ��

Serial Communication) micro:bit
COM

micro:bit distence distance
“ ”

19.4.2 ��

micro:bit micro:bit

micro:bit
1

232 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

A B 1 7 A B A+B

19.4. ����� 233

Morpx Documentation

micro:bit micro:bit

234 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

Tips: 1 2 3 4

19.4.3 ��

19.5 ������

19.5. ������ 235

Morpx Documentation

19.5.1 ��(basic)

19.5.2 ��(loop)

repeat
while “ ” while true
for index 0 1 index
for of (value)

19.5.3 ��(logic)

if
(Boolean) true(1) false(0) (and) (or) (not)

19.5.4 ��(value)

n x = x + n

19.5.5 ��(math)

19.5.6 ��(function)

236 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

19.5.7 ��(array)

0

19.5.8 ��(text)

19.6 ������

Makecode P0
micro:bit

19.6.1 GPIO

GPIO micro:bit -
P0-P20 LED

micro:bit

19.6. ������ 237

Morpx Documentation

micro:bit LED
VCC GND DC USB (USB)

238 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

P15 DC USB
GPIO

LED GPIO P8 P12 1 0

19.6. ������ 239

https://morpx-docs.readthedocs.io/zh_CN/latest/SelfDriving/SelfDriving_MakeCode/SelfDriving_MakeCode_actuator.html#id5

Morpx Documentation

19.6.2 ADC�DAC

0 1
(Analog) (Digital) ADC() DAC() micro:bit ADC 0-

1024
Volt = 3.3 * (Value/1024)

1024

micro:bit

DAC 0-1024
Volt = 3.3 * (Value/1024)

0-1000

240 Chapter 19. MU Self-driving Kit MakeCode Tutorial

Morpx Documentation

19.6.3 PWM

PWM PWM 20ms 0 1ms 90 1.5ms 180 2ms
: PWM

PWM P1 PWM

19.6.4 IIC SPI

IIC SPI

19.7 MU3����

MU3 MU3 MakeCode
MU 3

19.7. MU3���� 241

https://morpx-docs.readthedocs.io/zh_CN/latest/MUVS3/MUVS3_MakeCode/index.html#mu-3-makecode
http://mai.morpx.com/images/page201904/%E5%B0%8FMU%E8%A7%86%E8%A7%89%E4%BC%A0%E6%84%9F%E5%99%A8-%E6%B7%B1%E5%BA%A6%E5%BC%80%E5%8F%91%E6%8C%87%E5%8D%97-V0.1-20190810.pdf

Morpx Documentation

19.7.1 �����

19.7.2 Wifi��

19.7.3 PID��

19.8 ������

19.8.1 ��������

19.8.2 �������

19.8.3 �� ����

242 Chapter 19. MU Self-driving Kit MakeCode Tutorial

CHAPTER

TWENTY

MU SELF-DRIVING KIT RESOURCE

20.1 ����

MU
http://mai.morpx.com/page.php?a=sensor-support

GitHub https://github.com/mu-opensource/

20.2 �����

2mm
MU

20.3 3D����

MU 3D 3D
MU3 3D

243

http://mai.morpx.com/page.php?a=sensor-support
https://github.com/mu-opensource/
https://github.com/mu-opensource/Morpx-docs/raw/master/SelfDriving/SelfDriving_Resource/sources/PMMA_module.zip
https://github.com/mu-opensource/Morpx-docs/raw/master/MUVS3/MUVS3_Resource/sources/MU_foldable_bracket.zip

Morpx Documentation

20.4 ����

MU

[wiki]http://wiki.dfrobot.com.cn/index.php?title=(SKU:ROB0148)_micro:Maqueen(V2.0)%E6%9C%
BA%E5%99%A8%E4%BA%BA%E5%B0%8F%E8%BD%A6
Micro:bit
Micro:bit https://microbit.org/zh-CN/
MakeCode https://makecode.microbit.org/#

244 Chapter 20. MU Self-driving Kit Resource

http://wiki.dfrobot.com.cn/index.php?title=(SKU:ROB0148)_micro:Maqueen(V2.0)%E6%9C%BA%E5%99%A8%E4%BA%BA%E5%B0%8F%E8%BD%A6
http://wiki.dfrobot.com.cn/index.php?title=(SKU:ROB0148)_micro:Maqueen(V2.0)%E6%9C%BA%E5%99%A8%E4%BA%BA%E5%B0%8F%E8%BD%A6
https://microbit.org/zh-CN/
https://makecode.microbit.org/#

CHAPTER

TWENTYONE

TECHNICAL SUPPORT

Thanks for purchasing our products, andwewould like to provide continuous updating service, please check to our website:
www.morpx.com regularly. Updates are subject to change without notice. You can get the latest technical information
from the following websites:
Official Website: http://mai.morpx.com/page.php?a=moonbot-kit
GitHub: https://github.com/mu-opensource/
Wiki: http://wiki.morpx.com/index.php/Home
Phone Number: 0571-81958588
Email: support@morpx.com
Wechat ID

QQ ID

245

http://mai.morpx.com/page.php?a=moonbot-kit
https://github.com/mu-opensource/
http://wiki.morpx.com/index.php/Home

Morpx Documentation

246 Chapter 21. Technical Support

CHAPTER

TWENTYTWO

����/ABOUT

This website is document of products produced by Morpx Inc. The website can be opened in computer and mobile
devices.

22.1 ������/Page Usage Notes

Read the Docs
Click the Read the Docs button in the left-bottom corner to open the sidebar pannel. Functions are shown below.

• /Change Language

Most documents have Chinese and English version. English version is the translation of the Chinese. There is no corre-
sponding page if the page does not exist when changing language. Just click the left-top button to return to the homepage
and change again. If there is any problem, please let us know.

247

Morpx Documentation

• /Version Control
latest

The newest document is in latest branch.Other stable branch will be shown when published.
• /Download the Docs
pdf html Epub

There are pdf, html and Epub files available for downloading.

248 Chapter 22. ����/About

CHAPTER

TWENTYTHREE

PRODUCT COPYRIGHTS

23.1 MU Vision Sensor Disclaimer & Copyright

• The information in this manual applies to the MU Vision Sensor III is produced by Morpx Inc. Please check the
Morpx Inc’s website http://www.morpx.com for the latest version of the firmware and library functions. Updates
are subject to change without notice.

• Please read this manual carefully before using MU Vision Sensor and make sureyou understand it. Incorrect oper-
ation may cause the device stopping working , getting worse detection results, or even damaging the device.

• Morpx Inc will not warrant the damage caused by unauthorized repair or modification of electronic components
on the product.

• The technical solution, vision algorithms and communication protocol mentioned in this manual is developed by
Morpx and protected by intellectual property rights. Organizations or individuals should not copy or plagiarize the
technical achievements of Morpx Inc. In case of any infringement, Morpx will take legal actions to protect its
rights.

• Morpx is the registered trademark of Morpx.Inc., and MU is the registered trademark of MU Vision Sensor. All
trademarks (names and patterns) presented here in the text or figures belong to the holders of the marks.

Copyrights © 2019 Morpx.Inc. All rights reserved.

249

http://www.morpx.com

Morpx Documentation

250 Chapter 23. Product Copyrights

CHAPTER

TWENTYFOUR

SOFTWARE LICENSES

24.1 Opensource Software

24.1.1 Arduino

• Arduino is an open-source physical computing platform based on a simple I/O board and a development envi-
ronment that implements the Processing/Wiring language. Arduino can be used to develop stand-alone inter-
active objects or can be connected to software on your computer (e.g. Flash, Processing and MaxMSP). The
boards can be assembled by hand or purchased preassembled; the open-source IDE can be downloaded for free at
https://www.arduino.cc/en/Main/Software

• Arduino is an open source project, supported by many.
• The Arduino team is composed of Massimo Banzi, David Cuartielles, Tom Igoe and David A. Mellis.
• Arduino uses GNU avr-gcc toolchain, GCC ARM Embedded toolchain, avr-libc, avrdude, bossac, openOCD and
code from Processing and Wiring.

• Icon and about image designed by ToDo.

24.1.2 MicroPython

• MicroPython is written in C99 and the entire MicroPython core is available for general use under the very liberal
MIT license. Most libraries and extension modules (some of which are from a third party) are also available under
MIT or similar licenses.

• You can freely use and adapt MicroPython for personal use, in education, and in commercial products.
• MicroPython is developed in the open on GitHub and the source code is available at the GitHub page, and on the
download page. Everyone is welcome to contribute to the project.

251

Morpx Documentation

252 Chapter 24. Software Licenses

INDEX

C
class LSM303AGR_IMU_Sensor, 193
class MoonBotServo, 197
class MoonBotTankBase, 184
class Motor, 181
class WT2003S, 188

E
enum imu_state_t, 192
enum lsm303_acc_angle_t, 192
enum lsm303_axes_t, 192
enum moonbot_eyes_scroll_t, 201
enum moonbot_eyes_t, 201
enum moonbot_look_t, 201
enum moonbot_motor_t, 177, 181
enum moonbot_port_t, 178
enum moonbot_servo_t, 177, 197
enum motor_pin_t, 177
enum motor_type_t, 183
enum port_pin_t, 178
enum servo_pin_t, 177

M
MOONBOT_PIN_BUTTON_A, 178
MOONBOT_PIN_BUTTON_B, 178
MOONBOT_PIN_BUZZER_SHDW, 178
MOONBOT_PIN_BUZZER_SIG, 178
MOONBOT_PIN_LED, 178

U
uint8_t moonbotMotor-

ToPin(moonbot_motor_t mo-
tor_num, motor_pin_t pin_type);,
179

uint8_t moonbotPort-
ToPin(moonbot_port_t port_num,
port_pin_t pin_num);, 179

uint8_t moonbotServo-
ToPin(moonbot_servo_t
servo_num, servo_pin_t
pin_type);, 179

V
void colorFade(Adafruit_NeoPixel& led,

uint8_t r, uint8_t g, uint8_t b,
uint8_t wait);, 202

void colorWipe(Adafruit_NeoPixel& led,
uint32_t c, uint8_t wait);, 202

void MoonBotEyesCir-
cle(Adafruit_NeoPixel& led,
uint32_t color, moonbot_eyes_t
eyes_type = kEyesBoth, uint8_t
wait = 50);, 203

void MoonBotEyesLook(Adafruit_NeoPixel&
led, moonbot_look_t look_tpye,
uint32_t color);, 202

void MoonBotEyesS-
croll(Adafruit_NeoPixel&
led, moonbot_eyes_scroll_t
scroll_tpye, uint32_t color,
uint8_t wait = 50);, 203

void rainbow(Adafruit_NeoPixel& led,
uint8_t wait);, 202

void rainbowCycle(Adafruit_NeoPixel&
led, uint8_t wait) ;, 202

void theaterChase(Adafruit_NeoPixel&
led, uint32_t c, uint8_t wait);,
202

253

	MU Vision Sensor 3 Introduction
	MU 3 Mixly Programming Guide
	MU 3 Arduino Programming Guide
	MU 3 MakeCode Programming Guide
	MU 3 MicroPython Programming Guide
	MU Vision Sensor Resource
	MU Vision Sensor Application
	MoonBot Kit Introduction
	MoonBot Kit Hardware Instruction
	MoonBot Kit Structure Instruction
	MoonBot Kit MU Bot App Tutorial
	MoonBot Kit Mixly Tutorial
	MoonBot Kit Arduino Tutorial
	MoonBot Kit Extended Structures
	MoonBot Kit Firmware Upgrade Guide
	MoonBot Kit Resource
	MU Self-driving Kit Introduction
	MU Self-driving Kit Structure
	MU Self-driving Kit MakeCode Tutorial
	MU Self-driving Kit Resource
	Technical Support
	关于本站/About
	Product Copyrights
	Software Licenses
	Index

