

Morfessor 2.0 documentation

Note

The Morfessor 2.0 documentation is still a work in progress and
contains some unfinished parts

Contents:

	License

	General
	Morfessor 2.0 Technical Report

	Terminology

	Citing

	Installation instructions
	Installation from tarball or zip file

	Installation from PyPI

	Morfessor file types
	Binary model

	Reduced Binary model

	Morfessor 1.0 style text model

	Text corpus file

	Word list file

	Annotation file

	Command line tools
	morfessor

	morfessor-train

	morfessor-segment

	morfessor-evaluate

	Data format command line options

	Universal command line options

	Morfessor features
	Batch training

	Online training

	Recursive training

	Local Viterbi training

	Random skips

	Random initialization

	Corpusweight (alpha) tuning

	Python library interface to Morfessor
	IO class

	Model classes

	Evaluation classes

	Code Examples for using library interface
	Segmenting new data using an existing model

	Testing type vs token models

	Testing different amounts of supervision data

Indices and tables

	Index

	Module Index

	Search Page

License

Copyright (c) 2012-2018, Sami Virpioja, Peter Smit, and Stig-Arne Grönroos.
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

	Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
“AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

General

Morfessor 2.0 Technical Report

The work done in Morfessor 2.0 is described in detail in the Morfessor 2.0
Technical Report [TechRep]. The report is available for download from
http://urn.fi/URN:ISBN:978-952-60-5501-5.

Terminology

Unlike previous Morfessor implementations, Morfessor 2.0 is, in
principle, applicable to any string segmentation task. Thus we use
terms that are not specific to morphological segmentation task.

The task of the algorithm is to find a set of constructions that
describe the provided training corpus efficiently and accurately. The
training corpus contains a collection of compounds, which are the
largest sequences that a single construction can hold. The smallest
pieces of constructions and compounds are called atoms.

For example, in morphological segmentation, compounds are word forms,
constructions are morphs, and atoms are characters. In chunking,
compounds are sentences, constructions are phrases, and atoms are
words.

Citing

	The authors do kindly ask that you cite the Morfessor 2.0 techical report

	[TechRep] when using this tool in academic publications.

In addition, when you refer to the Morfessor algorithms, you should cite the
respective publications where they have been introduced. For example, the first
Morfessor algorithm was published in [Creutz2002] and the semi-supervised
extension in [Kohonen2010]. See [TechRep] for further information on the
relevant publications.

	TechRep(1,2,3)

	Sami Virpioja, Peter Smit, Stig-Arne Grönroos, and Mikko Kurimo. Morfessor 2.0: Python Implementation and Extensions for Morfessor Baseline. Aalto University publication series SCIENCE + TECHNOLOGY, 25/2013. Aalto University, Helsinki, 2013. ISBN 978-952-60-5501-5.

	Creutz2002

	Mathias Creutz and Krista Lagus. Unsupervised discovery of morphemes. In Proceedings of the Workshop on Morphological and Phonological Learning of ACL-02, pages 21-30, Philadelphia, Pennsylvania, 11 July, 2002.

	Kohonen2010

	Oskar Kohonen, Sami Virpioja and Krista Lagus. Semi-supervised learning of concatenative morphology. In Proceedings of the 11th Meeting of the ACL Special Interest Group on Computational Morphology and Phonology, pages 78-86, Uppsala, Sweden, July 2010. Association for Computational Linguistics.

Installation instructions

Morfessor 2.0 is installed using setuptools library for Python. Morfessor can
be installed from the packages available on the
Morpho project homepage [http://morpho.aalto.fi] and the Morfessor Github page [https://github.com/aalto-speech/morfessor/releases], or can be
directly installed from the Python Package Index (PyPI) [https://pypi.python.org/pypi/Morfessor].

The Morfessor packages are created using the current Python packaging
standards, as described on http://docs.python.org/install/. Morfessor packages
are fully compatible with, and recommended to run in, virtual environments as
described on http://virtualenv.org.

Installation from tarball or zip file

The Morfessor 2.0 tarball and zip files can be downloaded from the
Morpho project homepage [http://morpho.aalto.fi] (latest stable version) or from the
Morfessor Github page [https://github.com/aalto-speech/morfessor/releases] (all versions).

The tarball can be installed in two different ways. The first is to unpack the
tarball or zip file and run:

python setup.py install

A second method is to use the tool pip on the tarball or zip file directly:

pip install morfessor-VERSION.tar.gz

Installation from PyPI

Morfessor 2.0 is also distributed through the Python Package Index (PyPI) [https://pypi.python.org/pypi/Morfessor].
This means that tools like pip and easy_install can automatically download and
install the latest version of Morfessor.

Simply type:

pip install morfessor

or:

easy_install morfessor

To install the morfessor library and tools.

Morfessor file types

Binary model

Warning

Pickled models are sensitive to bitrot. Sometimes incompatibilities exist
between Python versions that prevent loading a model stored by a different
version. Also, next versions of Morfessor are not guaranteed to be able to
load models of older versions.

The standard format for Morfessor 2.0 is a binary model, generated by pickling
the BaselineModel object. This ensures that all
training-data, annotation-data and weights are exactly the same as when the
model was saved.

Reduced Binary model

A reduced Morfessor model contains only that information that is necessary for
segmenting new words using (nbest) viterbi segmentation. Reduced binary models
much smaller that the full models, but no model modificating actions can be
performed.

Morfessor 1.0 style text model

Morfessor 2.0 also supports the text model files that are used in Morfessor
1.0. These files consists of one segmentation per line, preceded by a count,
where the constructions are separated by ‘ + ‘.

Specification:

<int><space><CONSTRUCTION>[<space>+<space><CONSTRUCTION>]*

Example:

10 kahvi + kakku
5 kahvi + kilo + n
24 kahvi + kone + emme

Text corpus file

A text corpus file is a free format text-file. All lines are split into
compounds using the compound-separator (default <space>). The compounds then
are split into atoms using the atom-separator. Compounds can occur multiple
times and will be counted as such.

Example:

kavhikakku kahvikilon kahvikilon
kahvikoneemme kahvikakku

Word list file

A word list corpus file contains one compound per line, possibly preceded by a
count. If multiple entries of the same word occur there counts are summed. If
no count is given, a count of one is assumed (per entry).

Specification:

[<int><space>]<COMPOUND>

Example 1:

10 kahvikakku
5 kahvikilon
24 kahvikoneemme

Example 2:

kahvikakku
kahvikilon
kahvikoneemme

Annotation file

An annotation file contains one compound and one or more annotations per
compound on each line. The separators between the annotations (default ‘, ‘)
and between the constructions (default ‘ ‘) are configurable.

Specification:

<compound> <analysis1construction1>[<analysis1constructionN>][, <analysis2construction1> [<analysis2constructionN>]*]*

Example:

kahvikakku kahvi kakku, kahvi kak ku
kahvikilon kahvi kilon
kahvikoneemme kahvi konee mme, kah vi ko nee mme

Command line tools

The installation process installs 4 scripts in the appropriate PATH.

morfessor

The morfessor command is a full-featured script for training, updating models
and segmenting test data.

Loading existing model

	-l <file>

	load Binary model

	-L <file>

	load Morfessor 1.0 style text model

Loading data

	-t <file>, --traindata <file>

	Input corpus file(s) for training (text or bz2/gzipped text; use ‘-‘
for standard input; add several times in order to append multiple files).
Standard, all sentences are split on whitespace and the tokens are used as
compounds. The --traindata-list option can be used to read all input
files as a list of compounds, one compound per line optionally prefixed by
a count. See Data format command line options for changing the delimiters used for
separating compounds and atoms.

	--traindata-list

	Interpret all training files as list files instead of corpus files. A list
file contains one compound per line with optionally a count as prefix.

	-T <file>, --testdata <file>

	Input corpus file(s) to analyze (text or bz2/gzipped text; use ‘-‘ for
standard input; add several times in order to append multiple files). The
file is read in the same manner as an input corpus file. See
Data format command line options for changing the delimiters used for
separating compounds and atoms.

Training model options

	-m <mode>, --mode <mode>

	Morfessor can run in different modes, each doing different actions on the
model. The modes are:

	none

	Do initialize or train a model. Can be used when just loading a model
for segmenting new data

	init

	Create new model and load input data. Does not train the model

	batch

	Loads an existing model (which is already initialized with training
data) and run Batch training

	init+batch

	Create a new model, load input data and run Batch training.
Default

	online

	Create a new model, read and train the model concurrently as described
in Online training

	online+batch

	First read and train the model concurrently as described in
Online training and after that retrain the model using
Batch training

	-a <algorithm>, --algorithm <algorithm>

	Algorithm to use for training:

	recursive

	Recursive as descirbed in Recursive training Default

	viterbi

	Viterbi as described in Local Viterbi training

	-d <type>, --dampening <type>

	Method for changing the compound counts in the input data. Options:

	none

	Do not alter the counts of compounds (token based training)

	log

	Change the count \(x\) of a compound to \(\log(x)\) (log-token
based training)

	ones

	Treat all compounds as if they only occured once (type based training)

	-f <list>, --forcesplit <list>

	A list of atoms that would always cause the compound to be split. By
default only hyphens (-) would force a split. Note the notation of the
argument list. To have no force split characters, use as an empty string as
argument (-f ""). To split, for example, both hyphen (-) and
apostrophe (') use -f "-'"

	-F <float>, --finish-threshold <float>

	Stopping threshold. Training stops when the decrease in model cost of the
last iteration is smaller then finish_threshold * #boundaries; (default
‘0.005’)

	-r <seed>, --randseed <seed>

	Seed for random number generator

	-R <float>, --randsplit <float>

	Initialize new words by random splitting using the
given split probability (default no splitting). See Random initialization

	--skips

	Use random skips for frequently seen compounds to
speed up training. See Random initialization

	--batch-minfreq <int>

	Compound frequency threshold for batch training
(default 1)

	--max-epochs <int>

	Hard maximum of epochs in training

	--nosplit-re <regexp>

	If the expression matches the two surrounding
characters, do not allow splitting (default None)

	--online-epochint <int>

	Epoch interval for online training (default 10000)

	--viterbi-smoothing <float>

	Additive smoothing parameter for Viterbi training and
segmentation (default 0).

	--viterbi-maxlen <int>

	Maximum construction length in Viterbi training and
segmentation (default 30)

Saving model

	-s <file>

	save Binary model

	-S <file>

	save Morfessor 1.0 style text model

	--save-reduced

	save Reduced Binary model

Examples

Training a model from inputdata.txt, saving a Morfessor 1.0 style text model and
segmenting the test.txt set:

morfessor -t inputdata.txt -S model.segm -T test.txt

morfessor-train

The morfessor-train command is a convenience command that enables easier
training for morfessor models.

The basic command structure is:

morfessor-train [arguments] traindata-file [traindata-file ...]

The arguments are identical to the ones for the morfessor command. The most
relevant are:

	-s <file>

	save binary model

	-S <file>

	save Morfessor 1.0 style model

	--save-reduced

	save reduced binary model

Examples

Train a morfessor model from a wordcount list in ISO_8859-15, doing type based
training, writing the log to logfile and saving them model as model.bin:

morfessor-train --encoding=ISO_8859-15 --traindata-list --logfile=log.log -s model.bin -d ones traindata.txt

morfessor-segment

The morfessor-segment command is a convenience command that enables easier
segmentation of test data with a morfessor model.

The basic command structure is:

morfessor-segment [arguments] testcorpus-file [testcorpus-file ...]

	The arguments are identical to the ones for the morfessor command. The most

	relevant are:

	-l <file>

	load binary model (normal or reduced)

	-L <file>

	load Morfessor 1.0 style model

Examples

Loading a binary model and segmenting the words in testdata.txt:

morfessor-segment -l model.bin testdata.txt

morfessor-evaluate

The morfessor-evaluate command is used for evaluating a morfessor model against
a gold-standard. If multiple models are evaluated, it reports statistical
significant differences between them.

The basic command structure is:

morfessor-evaluate [arguments] <goldstandard> <model> [<model> ...]

Positional arguments

	<goldstandard>

	gold standard file in standard annotation format

	<model>

	model files to segment (either binary or Morfessor 1.0 style segmentation
models).

Optional arguments

	-t TEST_SEGMENTATIONS, --testsegmentation TEST_SEGMENTATIONS

	
	Segmentation of the test set. Note that all words in the gold-standard must

	be segmented

	--num-samples <int>

	number of samples to take for testing

	--sample-size <int>

	size of each testing samples

	--format-string <format>

	Python new style format string used to report evaluation results. The
following variables are a value and and action separated with and
underscore. E.g. fscore_avg for the average f-score. The available
values are “precision”, “recall”, “fscore”, “samplesize” and the available
actions: “avg”, “max”, “min”, “values”, “count”. A last meta-data variable
(without action) is “name”, the filename of the model. See also the
format-template option for predefined strings.

	--format-template <template>

	Uses a template string for the format-string options. Available templates
are: default, table and latex. If format-string is defined this option is
ignored.

Examples

Evaluating three different models against a golden standard, outputting the
results in latex table format::

morfessor-evaluate --format-template=latex goldstd.txt model1.bin model2.segm model3.bin

Data format command line options

	--encoding <encoding>

	Encoding of input and output files (if none is given, both the local
encoding and UTF-8 are tried).

	--lowercase

	lowercase input data

	--traindata-list

	input file(s) for batch training are lists (one compound per line,
optionally count as a prefix)

	--atom-separator <regexp>

	atom separator regexp (default None)

	--compound-separator <regexp>

	compound separator regexp (default ‘s+’)

	--analysis-separator <str>

	separator for different analyses in an annotation file. Use NONE for only
allowing one analysis per line

	--output-format <format>

	format string for –output file (default: ‘{analysis}\n’). Valid keywords
are: {analysis} = constructions of the compound, {compound} =
compound string, {count} = count of the compound (currently always 1),
{logprob} = log-probability of the analysis, and {clogprob} =
log-probability of the compound. Valid escape sequences are \n (newline)
and \t (tabular)

	--output-format-separator <str>

	construction separator for analysis in –output file (default: ‘ ‘)

	--output-newlines

	for each newline in input, print newline in –output file (default: ‘False’)

Universal command line options

	--verbose <int> -v

	verbose level; controls what is written to the standard error stream or log file (default 1)

	--logfile <file>

	write log messages to file in addition to standard error stream

	--progressbar

	Force the progressbar to be displayed (possibly lowers the log level for the standard error stream)

	--help

	-h show this help message and exit

	--version

	show version number and exit

Morfessor features

All features below are described in a short format, mainly to guide making the
right choice for a certain parameter. These features are explained in detail in
the Morfessor 2.0 Technical Report.

Batch training

In batch training, each epoch consists of an iteration over the full training
data. Epochs are repeated until the model cost is converged. All training data
needed in the training needs to be loaded before the training starts.

Online training

In online training the model is updated while the data is being added. This
allows for rapid testing and prototyping. All data is only processed once,
hence it is advisable to run Batch training afterwards. The size of an
epoch is a fixed, predefined number of compounds processed. The only use of an
epoch for online training is to select the best annotations in semi-supervised
training.

Recursive training

In recursive training, each compound is processed in the following manner. The
current split for the compound is removed from the model and its constructions
are updated accordingly. After this, all possible splits are tried, by choosing
one split and running the algorithm recursively on the created constructions.

In the end, the best split is selected and the training continues with the next
compound.

Local Viterbi training

In Local Viterbi training the compounds are processed sequentially. Each
compound is removed from the corpus and afterwards segmented using Viterbi
segmentation. The result is put back into the model.

In order to allow new constructions to be created, the smoothing parameter
must be given some non-zero value.

Random skips

In Random skips, frequently seen compounds are skipped in training with a
random probability. As shown in the Morfessor 2.0 Technical Report this speeds
up the training considerably with only a minor loss in model performance.

Random initialization

In random initialization all compounds are split randomly. Each possible
boundary is made a split with the given probability.

Selecting a good random initialization parameter helps in finding local optima
as long as the split probability is high enough.

Corpusweight (alpha) tuning

An important parameter of the Morfessor Baseline model is the corpusweight
(\(\alpha\)), which balances the cost of the lexicon and the corpus. There
are different options available for tuning this weight:

	Fixed weight (--corpusweight)

	The weight is set fixed on the beginning of the training and does not change

	Development set (--develset)

	A development set is used to balance the corpusweight so that the precision
and recall of segmenting the developmentset will be equal

	Morph length (--morph-length)

	The corpusweight is tuned so that the average length of morphs in the
lexicon will be as desired

	Num morph types (--num-morph-types)

	The corpusweight is tuned so that there will be approximate the number of
desired morph types in the lexicon

Python library interface to Morfessor

Morfessor 2.0 contains a library interface in order to be integrated in other
python applications. The public members are documented below and should remain
relatively the same between Morfessor versions. Private members are documented
in the code and can change anytime in releases.

The classes are documented below.

IO class

	
class morfessor.io.MorfessorIO(encoding=None, construction_separator=' + ', comment_start='#', compound_separator='\s+', atom_separator=None, lowercase=False)

	Definition for all input and output files. Also handles all
encoding issues.

The only state this class has is the separators used in the data.
Therefore, the same class instance can be used for initializing multiple
files.

	
format_constructions(constructions, csep=None, atom_sep=None)

	Return a formatted string for a list of constructions.

	
read_annotations_file(file_name, construction_separator=' ', analysis_sep=', ')

	Read a annotations file.

Each line has the format:
<compound> <constr1> <constr2>… <constrN>, <constr1>…<constrN>, …

Yield tuples (compound, list(analyses)).

	
read_any_model(file_name)

	Read a file that is either a binary model or a Morfessor 1.0 style
model segmentation. This method can not be used on standard input as
data might need to be read multiple times

	
static read_binary_file(file_name)

	Read a pickled object from a file.

	
read_binary_model_file(file_name)

	Read a pickled model from file.

	
read_corpus_file(file_name)

	Read one corpus file.

For each compound, yield (1, compound_atoms).
After each line, yield (0, ()).

	
read_corpus_files(file_names)

	Read one or more corpus files.

Yield for each compound found (1, compound_atoms).

	
read_corpus_list_file(file_name)

	Read a corpus list file.

Each line has the format:
<count> <compound>

Yield tuples (count, compound_atoms) for each compound.

	
read_corpus_list_files(file_names)

	Read one or more corpus list files.

Yield for each compound found (count, compound_atoms).

	
read_parameter_file(file_name)

	Read learned or estimated parameters from a file

	
read_segmentation_file(file_name, has_counts=True, **kwargs)

	Read segmentation file.

File format:
<count> <construction1><sep><construction2><sep>…<constructionN>

	
static write_binary_file(file_name, obj)

	Pickle an object into a file.

	
write_binary_model_file(file_name, model)

	Pickle a model to a file.

	
write_lexicon_file(file_name, lexicon)

	Write to a Lexicon file all constructions and their counts.

	
write_parameter_file(file_name, params)

	Write learned or estimated parameters to a file

	
write_segmentation_file(file_name, segmentations, **kwargs)

	Write segmentation file.

File format:
<count> <construction1><sep><construction2><sep>…<constructionN>

Model classes

	
class morfessor.baseline.AnnotatedCorpusEncoding(corpus_coding, weight=None, penalty=-9999.9)

	Encoding the cost of an Annotated Corpus.

In this encoding constructions that are missing are penalized.

	
get_cost()

	Return the cost of the Annotation Corpus.

	
set_constructions(constructions)

	Method for re-initializing the constructions. The count of the
constructions must still be set with a call to set_count

	
set_count(construction, count)

	Set an initial count for each construction. Missing constructions
are penalized

	
update_count(construction, old_count, new_count)

	Update the counts in the Encoding, setting (or removing) a penalty
for missing constructions

	
update_weight()

	Update the weight of the Encoding by taking the ratio of the
corpus boundaries and annotated boundaries

	
class morfessor.baseline.AnnotationCorpusWeight(devel_set, threshold=0.01)

	Class for using development annotations to update the corpus weight
during batch training

	
update(model, epoch)

	Tune model corpus weight based on the precision and
recall of the development data, trying to keep them equal

	
class morfessor.baseline.BaselineModel(forcesplit_list=None, corpusweight=None, use_skips=False, nosplit_re=None)

	Morfessor Baseline model class.

Implements training of and segmenting with a Morfessor model. The model
is complete agnostic to whether it is used with lists of strings (finding
phrases in sentences) or strings of characters (finding morphs in words).

	
forward_logprob(compound)

	Find log-probability of a compound using the forward algorithm.

	Parameters

	compound – compound to process

Returns the (negative) log-probability of the compound. If the
probability is zero, returns a number that is larger than the
value defined by the penalty attribute of the model object.

	
get_compounds()

	Return the compound types stored by the model.

	
get_constructions()

	Return a list of the present constructions and their counts.

	
get_cost()

	Return current model encoding cost.

	
get_segmentations()

	Retrieve segmentations for all compounds encoded by the model.

	
load_data(data, freqthreshold=1, count_modifier=None, init_rand_split=None)

	Load data to initialize the model for batch training.

	Parameters

	
	data – iterator of (count, compound_atoms) tuples

	freqthreshold – discard compounds that occur less than
given times in the corpus (default 1)

	count_modifier – function for adjusting the counts of each
compound

	init_rand_split – If given, random split the word with
init_rand_split as the probability for each
split

Adds the compounds in the corpus to the model lexicon. Returns
the total cost.

	
load_segmentations(segmentations)

	Load model from existing segmentations.

The argument should be an iterator providing a count, a
compound, and its segmentation.

	
make_segment_only()

	Reduce the size of this model by removing all non-morphs from the
analyses. After calling this method it is not possible anymore to call
any other method that would change the state of the model. Anyway
doing so would throw an exception.

	
segment(compound)

	Segment the compound by looking it up in the model analyses.

Raises KeyError if compound is not present in the training
data. For segmenting new words, use viterbi_segment(compound).

	
static segmentation_to_splitloc(constructions)

	Return a list of split locations for a segmented compound.

	
set_annotations(annotations, annotatedcorpusweight=None)

	Prepare model for semi-supervised learning with given
annotations.

	
tokens

	Return the number of construction tokens.

	
train_batch(algorithm='recursive', algorithm_params=(), finish_threshold=0.005, max_epochs=None)

	Train the model in batch fashion.

The model is trained with the data already loaded into the model (by
using an existing model or calling one of the load_ methods).

In each iteration (epoch) all compounds in the training data are
optimized once, in a random order. If applicable, corpus weight,
annotation cost, and random split counters are recalculated after
each iteration.

	Parameters

	
	algorithm – string in (‘recursive’, ‘viterbi’) that indicates
the splitting algorithm used.

	algorithm_params – parameters passed to the splitting algorithm.

	finish_threshold – the stopping threshold. Training stops when
the improvement of the last iteration is
smaller then finish_threshold * #boundaries

	max_epochs – maximum number of epochs to train

	
train_online(data, count_modifier=None, epoch_interval=10000, algorithm='recursive', algorithm_params=(), init_rand_split=None, max_epochs=None)

	Train the model in online fashion.

The model is trained with the data provided in the data argument.
As example the data could come from a generator linked to standard in
for live monitoring of the splitting.

All compounds from data are only optimized once. After online
training, batch training could be used for further optimization.

Epochs are defined as a fixed number of compounds. After each epoch (
like in batch training), the annotation cost, and random split counters
are recalculated if applicable.

	Parameters

	
	data – iterator of (_, compound_atoms) tuples. The first
argument is ignored, as every occurence of the
compound is taken with count 1

	count_modifier – function for adjusting the counts of each
compound

	epoch_interval – number of compounds to process before starting
a new epoch

	algorithm – string in (‘recursive’, ‘viterbi’) that indicates
the splitting algorithm used.

	algorithm_params – parameters passed to the splitting algorithm.

	init_rand_split – probability for random splitting a compound to
at any point for initializing the model. None
or 0 means no random splitting.

	max_epochs – maximum number of epochs to train

	
types

	Return the number of construction types.

	
viterbi_nbest(compound, n, addcount=1.0, maxlen=30)

	Find top-n optimal segmentations using the Viterbi algorithm.

	Parameters

	
	compound – compound to be segmented

	n – how many segmentations to return

	addcount – constant for additive smoothing (0 = no smoothing)

	maxlen – maximum length for the constructions

If additive smoothing is applied, new complex construction types can
be selected during the search. Without smoothing, only new
single-atom constructions can be selected.

Returns the n most probable segmentations and their
log-probabilities.

	
viterbi_segment(compound, addcount=1.0, maxlen=30)

	Find optimal segmentation using the Viterbi algorithm.

	Parameters

	
	compound – compound to be segmented

	addcount – constant for additive smoothing (0 = no smoothing)

	maxlen – maximum length for the constructions

If additive smoothing is applied, new complex construction types can
be selected during the search. Without smoothing, only new
single-atom constructions can be selected.

Returns the most probable segmentation and its log-probability.

	
class morfessor.baseline.ConstrNode(rcount, count, splitloc)

	
	
count

	Alias for field number 1

	
rcount

	Alias for field number 0

	
splitloc

	Alias for field number 2

	
class morfessor.baseline.CorpusEncoding(lexicon_encoding, weight=1.0)

	Encoding the corpus class

The basic difference to a normal encoding is that the number of types is
not stored directly but fetched from the lexicon encoding. Also does the
cost function not contain any permutation cost.

	
frequency_distribution_cost()

	Calculate -log[(M - 1)! (N - M)! / (N - 1)!] for M types and N
tokens.

	
get_cost()

	Override for the Encoding get_cost function. A corpus does not
have a permutation cost

	
types

	Return the number of types of the corpus, which is the same as the
number of boundaries in the lexicon + 1

	
class morfessor.baseline.Encoding(weight=1.0)

	Base class for calculating the entropy (encoding length) of a corpus
or lexicon.

Commonly subclassed to redefine specific methods.

	
frequency_distribution_cost()

	Calculate -log[(u - 1)! (v - u)! / (v - 1)!]

v is the number of tokens+boundaries and u the number of types

	
get_cost()

	Calculate the cost for encoding the corpus/lexicon

	
permutations_cost()

	The permutations cost for the encoding.

	
types

	Define number of types as 0. types is made a property method to
ensure easy redefinition in subclasses

	
update_count(construction, old_count, new_count)

	Update the counts in the encoding.

	
class morfessor.baseline.LexiconEncoding

	Class for calculating the encoding cost for the Lexicon

	
add(construction)

	Add a construction to the lexicon, updating automatically the
count for its atoms

	
get_codelength(construction)

	Return an approximate codelength for new construction.

	
remove(construction)

	Remove construction from the lexicon, updating automatically the
count for its atoms

	
types

	Return the number of different atoms in the lexicon + 1 for the
compound-end-token

Evaluation classes

	
class morfessor.evaluation.EvaluationConfig(num_samples, sample_size)

	
	
num_samples

	Alias for field number 0

	
sample_size

	Alias for field number 1

	
class morfessor.evaluation.MorfessorEvaluation(reference_annotations)

	Do the evaluation of one model, on one testset. The basic procedure is
to create, in a stable manner, a number of samples and evaluate them
independently. The stable selection of samples makes it possible to use
the resulting values for Pair-wise statistical significance testing.

reference_annotations is a standard annotation dictionary:
{compound => ([annoation1],..) }

	
evaluate_model(model, configuration=EvaluationConfig(num_samples=10, sample_size=1000), meta_data=None)

	Get the prediction of the test samples from the model and do the
evaluation

The meta_data object has preferably at least the key ‘name’.

	
evaluate_segmentation(segmentation, configuration=EvaluationConfig(num_samples=10, sample_size=1000), meta_data=None)

	Method for evaluating an existing segmentation

	
get_samples(configuration=EvaluationConfig(num_samples=10, sample_size=1000))

	Get a list of samples. A sample is a list of compounds.

This method is stable, so each time it is called with a specific
test_set and configuration it will return the same samples. Also this
method caches the samples in the _samples variable.

	
class morfessor.evaluation.MorfessorEvaluationResult(meta_data=None)

	A MorfessorEvaluationResult is returned by a MorfessorEvaluation
object. It’s purpose is to store the evaluation data and provide nice
formatting options.

Each MorfessorEvaluationResult contains the data of 1 evaluation
(which can have multiple samples).

	
add_data_point(precision, recall, f_score, sample_size)

	Method used by MorfessorEvaluation to add the results of a single
sample to the object

	
format(format_string)

	Format this object. The format string can contain all variables,
e.g. fscore_avg, precision_values or any item from metadata

	
class morfessor.evaluation.WilcoxonSignedRank

	Class for doing statistical signficance testing with the Wilcoxon
Signed-Rank test

It implements the Pratt method for handling zero-differences and
applies a 0.5 continuity correction for the z-statistic.

	
static print_table(results)

	Nicely format a results table as returned by significance_test

	
significance_test(evaluations, val_property='fscore_values', name_property='name')

	Takes a set of evaluations (which should have the same
test-configuration) and calculates the p-value for the Wilcoxon signed
rank test

Returns a dictionary with (name1,name2) keys and p-values as values.

Code Examples for using library interface

Segmenting new data using an existing model

import morfessor

io = morfessor.MorfessorIO()

model = io.read_binary_model_file('model.bin')

words = ['words', 'segmenting', 'morfessor', 'unsupervised']

for word in words:
 print(model.viterbi_segment(word))

Testing type vs token models

import morfessor

io = morfessor.MorfessorIO()

train_data = list(io.read_corpus_file('training_data'))

model_types = morfessor.BaselineModel()
model_logtokens = morfessor.BaselineModel()
model_tokens = morfessor.BaselineModel()

model_types.load_data(train_data, count_modifier=lambda x: 1)
def log_func(x):
 return int(round(math.log(x + 1, 2)))
model_logtokens.load_data(train_data, count_modifier=log_func)
model_tokens.load_data(train_data)

models = [model_types, model_logtokens, model_tokens]

for model in models:
 model.train_batch()

goldstd_data = io.read_annotations_file('gold_std')
ev = morfessor.MorfessorEvaluation(goldstd_data)
results = [ev.evaluate_model(m) for m in models]

wsr = morfessor.WilcoxonSignedRank()
r = wsr.significance_test(results)
WilcoxonSignedRank.print_table(r)

The equivalent of this on the command line would be:

morfessor-train -s model_types -d ones training_data
morfessor-train -s model_logtokens -d log training_data
morfessor-train -s model_tokens training_data

morfessor-evaluate gold_std morfessor-train morfessor-train morfessor-train

Testing different amounts of supervision data

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 morfessor	

 	
 	
 morfessor.baseline	

 	
 	
 morfessor.evaluation	

 	
 	
 morfessor.io	

Index

 A
 | B
 | C
 | E
 | F
 | G
 | L
 | M
 | N
 | P
 | R
 | S
 | T
 | U
 | V
 | W

A

 	
 	add() (morfessor.baseline.LexiconEncoding method)

 	add_data_point() (morfessor.evaluation.MorfessorEvaluationResult method)

 	
 	AnnotatedCorpusEncoding (class in morfessor.baseline)

 	AnnotationCorpusWeight (class in morfessor.baseline)

B

 	
 	BaselineModel (class in morfessor.baseline)

C

 	
 	ConstrNode (class in morfessor.baseline)

 	
 	CorpusEncoding (class in morfessor.baseline)

 	count (morfessor.baseline.ConstrNode attribute)

E

 	
 	Encoding (class in morfessor.baseline)

 	evaluate_model() (morfessor.evaluation.MorfessorEvaluation method)

 	
 	evaluate_segmentation() (morfessor.evaluation.MorfessorEvaluation method)

 	EvaluationConfig (class in morfessor.evaluation)

F

 	
 	format() (morfessor.evaluation.MorfessorEvaluationResult method)

 	format_constructions() (morfessor.io.MorfessorIO method)

 	
 	forward_logprob() (morfessor.baseline.BaselineModel method)

 	frequency_distribution_cost() (morfessor.baseline.CorpusEncoding method)

 	(morfessor.baseline.Encoding method)

G

 	
 	get_codelength() (morfessor.baseline.LexiconEncoding method)

 	get_compounds() (morfessor.baseline.BaselineModel method)

 	get_constructions() (morfessor.baseline.BaselineModel method)

 	get_cost() (morfessor.baseline.AnnotatedCorpusEncoding method)

 	(morfessor.baseline.BaselineModel method)

 	(morfessor.baseline.CorpusEncoding method)

 	(morfessor.baseline.Encoding method)

 	
 	get_samples() (morfessor.evaluation.MorfessorEvaluation method)

 	get_segmentations() (morfessor.baseline.BaselineModel method)

L

 	
 	LexiconEncoding (class in morfessor.baseline)

 	
 	load_data() (morfessor.baseline.BaselineModel method)

 	load_segmentations() (morfessor.baseline.BaselineModel method)

M

 	
 	make_segment_only() (morfessor.baseline.BaselineModel method)

 	morfessor.baseline (module)

 	morfessor.evaluation (module)

 	
 	morfessor.io (module)

 	MorfessorEvaluation (class in morfessor.evaluation)

 	MorfessorEvaluationResult (class in morfessor.evaluation)

 	MorfessorIO (class in morfessor.io)

N

 	
 	num_samples (morfessor.evaluation.EvaluationConfig attribute)

P

 	
 	permutations_cost() (morfessor.baseline.Encoding method)

 	
 	print_table() (morfessor.evaluation.WilcoxonSignedRank static method)

R

 	
 	rcount (morfessor.baseline.ConstrNode attribute)

 	read_annotations_file() (morfessor.io.MorfessorIO method)

 	read_any_model() (morfessor.io.MorfessorIO method)

 	read_binary_file() (morfessor.io.MorfessorIO static method)

 	read_binary_model_file() (morfessor.io.MorfessorIO method)

 	read_corpus_file() (morfessor.io.MorfessorIO method)

 	
 	read_corpus_files() (morfessor.io.MorfessorIO method)

 	read_corpus_list_file() (morfessor.io.MorfessorIO method)

 	read_corpus_list_files() (morfessor.io.MorfessorIO method)

 	read_parameter_file() (morfessor.io.MorfessorIO method)

 	read_segmentation_file() (morfessor.io.MorfessorIO method)

 	remove() (morfessor.baseline.LexiconEncoding method)

S

 	
 	sample_size (morfessor.evaluation.EvaluationConfig attribute)

 	segment() (morfessor.baseline.BaselineModel method)

 	segmentation_to_splitloc() (morfessor.baseline.BaselineModel static method)

 	set_annotations() (morfessor.baseline.BaselineModel method)

 	
 	set_constructions() (morfessor.baseline.AnnotatedCorpusEncoding method)

 	set_count() (morfessor.baseline.AnnotatedCorpusEncoding method)

 	significance_test() (morfessor.evaluation.WilcoxonSignedRank method)

 	splitloc (morfessor.baseline.ConstrNode attribute)

T

 	
 	tokens (morfessor.baseline.BaselineModel attribute)

 	train_batch() (morfessor.baseline.BaselineModel method)

 	train_online() (morfessor.baseline.BaselineModel method)

 	
 	types (morfessor.baseline.BaselineModel attribute)

 	(morfessor.baseline.CorpusEncoding attribute)

 	(morfessor.baseline.Encoding attribute)

 	(morfessor.baseline.LexiconEncoding attribute)

U

 	
 	update() (morfessor.baseline.AnnotationCorpusWeight method)

 	update_count() (morfessor.baseline.AnnotatedCorpusEncoding method)

 	(morfessor.baseline.Encoding method)

 	
 	update_weight() (morfessor.baseline.AnnotatedCorpusEncoding method)

V

 	
 	viterbi_nbest() (morfessor.baseline.BaselineModel method)

 	
 	viterbi_segment() (morfessor.baseline.BaselineModel method)

W

 	
 	WilcoxonSignedRank (class in morfessor.evaluation)

 	write_binary_file() (morfessor.io.MorfessorIO static method)

 	write_binary_model_file() (morfessor.io.MorfessorIO method)

 	
 	write_lexicon_file() (morfessor.io.MorfessorIO method)

 	write_parameter_file() (morfessor.io.MorfessorIO method)

 	write_segmentation_file() (morfessor.io.MorfessorIO method)

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Morfessor 2.0 documentation

 		
 License

 		
 General

 		
 Morfessor 2.0 Technical Report

 		
 Terminology

 		
 Citing

 		
 Installation instructions

 		
 Installation from tarball or zip file

 		
 Installation from PyPI

 		
 Morfessor file types

 		
 Binary model

 		
 Reduced Binary model

 		
 Morfessor 1.0 style text model

 		
 Text corpus file

 		
 Word list file

 		
 Annotation file

 		
 Command line tools

 		
 morfessor

 		
 Loading existing model

 		
 Loading data

 		
 Training model options

 		
 Saving model

 		
 Examples

 		
 morfessor-train

 		
 Examples

 		
 morfessor-segment

 		
 Examples

 		
 morfessor-evaluate

 		
 Positional arguments

 		
 Optional arguments

 		
 Examples

 		
 Data format command line options

 		
 Universal command line options

 		
 Morfessor features

 		
 Batch training

 		
 Online training

 		
 Recursive training

 		
 Local Viterbi training

 		
 Random skips

 		
 Random initialization

 		
 Corpusweight (alpha) tuning

 		
 Python library interface to Morfessor

 		
 IO class

 		
 Model classes

 		
 Evaluation classes

 		
 Code Examples for using library interface

 		
 Segmenting new data using an existing model

 		
 Testing type vs token models

 		
 Testing different amounts of supervision data

_static/up-pressed.png

_static/up.png

