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Mopidy is an extensible music server written in Python.

Mopidy plays music from local disk, Spotify, SoundCloud, Google Play Music, and more. You edit the playlist from
any phone, tablet, or computer using a range of MPD and web clients.

Stream music from the cloud

Vanilla Mopidy only plays music from your local disk and radio streams. Through extensions, Mopidy can play music
from cloud services like Spotify, SoundCloud, and Google Play Music. With Mopidy’s extension support, backends
for new music sources can be easily added.

Mopidy is just a server

Mopidy is a Python application that runs in a terminal or in the background on Linux computers or Macs that have
network connectivity and audio output. Out of the box, Mopidy is an MPD and HTTP server. Additional frontends for
controlling Mopidy can be installed from extensions.

Everybody use their favorite client

You and the people around you can all connect their favorite MPD or web client to the Mopidy server to search for
music and manage the playlist together. With a browser or MPD client, which is available for all popular operating
systems, you can control the music from any phone, tablet, or computer.

Mopidy on Raspberry Pi

The Raspberry Pi is a popular device to run Mopidy on, either using Raspbian or Arch Linux. It is quite slow, but
it is very affordable. In fact, the Kickstarter funded Gramofon: Modern Cloud Jukebox project used Mopidy on a
Raspberry Pi to prototype the Gramofon device. Mopidy is also a major building block in the Pi Musicbox integrated
audio jukebox system for Raspberry Pi.

Mopidy is hackable

Mopidy’s extension support and Python, JSON-RPC, and JavaScript APIs makes Mopidy perfect for building your
own hacks. In one project, a Raspberry Pi was embedded in an old cassette player. The buttons and volume control are
wired up with GPIO on the Raspberry Pi, and is used to control playback through a custom Mopidy extension. The
cassettes have NFC tags used to select playlists from Spotify.

Getting started

To get started with Mopidy, start by reading Installation.

Getting help

If you get stuck, you can get help at the Mopidy discussion forum. We also hang around at IRC on the #mopidy
channel at irc.freenode.net.

If you stumble into a bug or have a feature request, please create an issue in the issue tracker. If you’re unsure if it’s a
bug or not, ask for help in the forum or at IRC first. The source code may also be of help.

If you want to stay up to date on Mopidy developments, you can follow @mopidy on Twitter. There’s also a mailing
list used for announcements related to Mopidy and Mopidy extensions.

Usage 1
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CHAPTER 1

Installation

There are several ways to install Mopidy. What way is best depends upon your OS and/or distribution.

If you want to contribute to the development of Mopidy, you should first follow the instructions here to install a regular
install of Mopidy, then continue with reading Contributing and Development environment.

1.1 Debian/Ubuntu: Install from apt.mopidy.com

If you run a Debian based Linux distribution, like Ubuntu, the easiest way to install Mopidy is from the Mopidy APT
archive. When installing from the APT archive, you will automatically get updates to Mopidy in the same way as you
get updates to the rest of your system.

If you’re on a Raspberry Pi running Debian or Raspbian, the following instructions should work for you as well.
If you’re setting up a Raspberry Pi from scratch, we have a guide for installing Debian/Raspbian and Mopidy. See
Raspberry Pi.

The packages are built for:

• Debian stretch (stable), which also works for Raspbian stretch and Ubuntu 16.04 LTS and newer.

The packages are available for multiple CPU architectures: i386, amd64, armel, and armhf (compatible with all
Raspberry Pi models).

Note: This is just what we currently support, not a promise to continue to support the same in the future. We will
drop support for older distributions and architectures when supporting those stops us from moving forward with the
project.

1. Add the archive’s GPG key:

wget -q -O - https://apt.mopidy.com/mopidy.gpg | sudo apt-key add -

2. Add the APT repo to your package sources:

3
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sudo wget -q -O /etc/apt/sources.list.d/mopidy.list https://apt.mopidy.com/
→˓stretch.list

3. Install Mopidy and all dependencies:

sudo apt-get update
sudo apt-get install mopidy

4. Finally, you need to set a couple of config values, and then you’re ready to run Mopidy. Alternatively you may
want to have Mopidy run as a system service, automatically starting at boot.

When a new release of Mopidy is out, and you can’t wait for you system to figure it out for itself, run the following to
upgrade right away:

sudo apt-get update
sudo apt-get dist-upgrade

1.1.1 Installing extensions

If you want to use any Mopidy extensions, like Spotify support or Last.fm scrobbling, you need to install additional
packages.

To list all the extensions available from apt.mopidy.com, you can run:

apt-cache search mopidy

To install one of the listed packages, e.g. mopidy-spotify, simply run:

sudo apt-get install mopidy-spotify

You can also install any Mopidy extension directly from PyPI with pip. To list all the extensions available from PyPI,
run:

pip search mopidy

Note that extensions installed from PyPI will only automatically install Python dependencies. Please refer to the
extension’s documentation for information about any other requirements needed for the extension to work properly.

For a full list of available Mopidy extensions, including those not installable from apt.mopidy.com, see Extensions.

1.2 Arch Linux: Install from community

If you are running Arch Linux, you can install Mopidy using the mopidy package found in community.

1. To install Mopidy with all dependencies, you can use:

pacman -S mopidy

To upgrade Mopidy to future releases, just upgrade your system using:

pacman -Syu

2. Finally, you need to set a couple of config values, and then you’re ready to run Mopidy or run Mopidy as a
service.

4 Chapter 1. Installation
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1.2.1 Installing extensions

If you want to use any Mopidy extensions, like Spotify support or Last.fm scrobbling, AUR has packages for lots of
Mopidy extensions.

You can also install any Mopidy extension directly from PyPI with pip. To list all the extensions available from PyPI,
run:

pip search mopidy

Note that extensions installed from PyPI will only automatically install Python dependencies. Please refer to the
extension’s documentation for information about any other requirements needed for the extension to work properly.

For a full list of available Mopidy extensions, including those not installable from AUR, see Extensions.

1.3 OS X: Install from Homebrew

If you are running OS X, you can install everything needed with Homebrew.

1. Install Xcode command line developer tools. Do this even if you already have Xcode installed:

xcode-select --install

2. Install Homebrew.

3. If you are already using Homebrew, make sure your installation is up to date before you continue:

brew upgrade

Note that this will upgrade all software on your system that have been installed with Homebrew.

4. Mopidy works out of box if you have installed Python from Homebrew:

brew install python

Note: If you want to use the Python version bundled with OS X, you’ll need to include Python packages
installed by Homebrew in your PYTHONPATH. If you don’t do this, the mopidy executable will not find its
dependencies and will crash.

You can either amend your PYTHONPATH permanently, by adding the following statement to your shell’s init
file, e.g. ~/.bashrc:

export PYTHONPATH=$(brew --prefix)/lib/python2.7/site-packages:$PYTHONPATH

And then reload the shell’s init file or restart your terminal:

source ~/.bashrc

Or, you can prefix the Mopidy command every time you run it:

PYTHONPATH=$(brew --prefix)/lib/python2.7/site-packages mopidy

5. Mopidy has its own Homebrew formula repo, called a “tap”. To enable our Homebrew tap, run:

1.3. OS X: Install from Homebrew 5
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brew tap mopidy/mopidy

Note: Mopidy currently requires that a few of its dependencies be built with Python 2 support via the
--with-python@2 build option. To ensure that this is done for your installation, it is recommended to
uninstall the dependencies first with:

brew uninstall --ignore-dependencies gst-python pygobject3

These dependencies will be re-installed automatically when Mopidy is installed.

6. To install Mopidy, run:

brew install mopidy

7. Finally, you need to set a couple of config values, and then you’re ready to run Mopidy.

1.3.1 Installing extensions

If you want to use any Mopidy extensions, like Spotify support or Last.fm scrobbling, the Homebrew tap has formulas
for several Mopidy extensions as well. Extensions installed from Homebrew will come complete with all dependen-
cies, both Python and non-Python ones.

To list all the extensions available from our tap, you can run:

brew search mopidy

You can also install any Mopidy extension directly from PyPI with pip, just like on Linux. To list all the extensions
available from PyPI, run:

pip search mopidy

Note that extensions installed from PyPI will only automatically install Python dependencies. Please refer to the
extension’s documentation for information about any other requirements needed for the extension to work properly.

For a full list of available Mopidy extensions, including those not installable from Homebrew, see Extensions.

1.3.2 Running Mopidy automatically on login

On OS X, you can use launchd to start Mopidy automatically at login.

If you installed Mopidy from Homebrew, simply run brew info mopidy and follow the instructions in the
“Caveats” section:

$ brew info mopidy
...
==> Caveats
To have launchd start mopidy at login:

ln -sfv /usr/local/opt/mopidy/*.plist ~/Library/LaunchAgents
Then to load mopidy now:

launchctl load ~/Library/LaunchAgents/homebrew.mopidy.mopidy.plist
Or, if you don't want/need launchctl, you can just run:

mopidy

6 Chapter 1. Installation
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If you happen to be on OS X, but didn’t install Mopidy with Homebrew, you can get the same effect by adding the file
~/Library/LaunchAgents/mopidy.plist with the following contents:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE plist PUBLIC "-//Apple//DTD PLIST 1.0//EN" "http://www.apple.com/DTDs/
→˓PropertyList-1.0.dtd">
<plist version="1.0">
<dict>

<key>Label</key>
<string>mopidy</string>
<key>ProgramArguments</key>
<array>
<string>/usr/local/bin/mopidy</string>

</array>
<key>RunAtLoad</key>
<true/>
<key>KeepAlive</key>
<true/>

</dict>
</plist>

You might need to adjust the path to the mopidy executable, /usr/local/bin/mopidy, to match your system.

Then, to start Mopidy with launchd right away:

launchctl load ~/Library/LaunchAgents/mopidy.plist

1.4 Install from source

If you are on Linux, but can’t install from the APT archive or from the Arch Linux repository, you can install Mopidy
from PyPI using the pip installer.

If you are looking to contribute or wish to install from source using git please follow the directions here.

1. First of all, you need Python 2.7. Check if you have Python and what version by running:

python --version

2. You need to make sure you have pip, the Python package installer. You’ll also need a C compiler and the
Python development headers to build pyspotify later.

This is how you install it on Debian/Ubuntu:

sudo apt-get install build-essential python-dev python-pip

And on Arch Linux from the official repository:

sudo pacman -S base-devel python2-pip

And on Fedora Linux from the official repositories:

sudo yum install -y gcc python-devel python-pip

Note: On Fedora Linux, you must replace pip with pip-python in the following steps.

1.4. Install from source 7
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3. Then you’ll need to install GStreamer >= 1.2.3, with Python bindings. GStreamer is packaged for most pop-
ular Linux distributions. Search for GStreamer in your package manager, and make sure to install the Python
bindings, and the “good” and “ugly” plugin sets.

If you use Debian/Ubuntu you can install GStreamer like this:

sudo apt-get install python-gst-1.0 \
gir1.2-gstreamer-1.0 gir1.2-gst-plugins-base-1.0 \
gstreamer1.0-plugins-good gstreamer1.0-plugins-ugly \
gstreamer1.0-tools

If you use Arch Linux, install the following packages from the official repository:

sudo pacman -S gst-python2 gst-plugins-good gst-plugins-ugly

If you use Fedora you can install GStreamer like this:

sudo yum install -y python-gstreamer1 gstreamer1-plugins-good \
gstreamer1-plugins-ugly

If you use Gentoo you can install GStreamer like this:

emerge -av gst-python gst-plugins-meta

gst-plugins-meta is the one that actually pulls in the plugins you want, so pay attention to the USE flags,
e.g. alsa, mp3, etc.

4. Install the latest release of Mopidy:

sudo pip install -U mopidy

This will use pip to install the latest release of Mopidy from PyPI. To upgrade Mopidy to future releases, just
rerun this command.

5. Finally, you need to set a couple of config values, and then you’re ready to run Mopidy.

1.4.1 Installing extensions

If you want to use any Mopidy extensions, like Spotify support or Last.fm scrobbling, you need to install additional
Mopidy extensions.

You can install any Mopidy extension directly from PyPI with pip. To list all the extensions available from PyPI, run:

pip search mopidy

Note that extensions installed from PyPI will only automatically install Python dependencies. Please refer to the
extension’s documentation for information about any other requirements needed for the extension to work properly.

For a full list of available Mopidy extensions see Extensions.

1.5 Raspberry Pi

Mopidy runs on all versions of Raspberry Pi. However, note that the Raspberry Pi 2 and 3 are significantly more
powerful than the Raspberry Pi 1 and Raspberry Pi Zero; Mopidy will run noticably faster on the later models.

8 Chapter 1. Installation
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1.5.1 How to for Raspbian

1. Download the latest Raspbian Desktop or Lite disk image from https://www.raspberrypi.org/downloads/
raspbian/.

Unless you need a full graphical desktop the Lite image is preferable since it’s much smaller.

2. Flash the Raspbian image you downloaded to your SD card.

See the Raspberry Pi installation docs for instructions.

You’ll need to enable SSH if you are not connecting a monitor and a keyboard. As of the November 2016
release, Raspbian has the SSH server disabled by default. SSH can be enabled by placing a file named ‘ssh’,
without any extension, onto the boot partition of the SD card. See here for more details.

3. If you boot with only a network cable connected, you’ll have to find the IP address of the Pi yourself, e.g.
by looking in the client list on your router/DHCP server. When you have found the Pi’s IP address, you can
SSH to the IP address and login with the user pi and password raspberry. Once logged in, run sudo
raspi-config to start the config tool as the root user.

4. Use the raspi-config tool to setup the basics of your Pi. You might want to do one or more of the following:

• Change the password of the pi user.

• Change the language, time zone, etc.

Under “Advanced Options”:

• Set a hostname.

• Enable SSH if not already enabled.

• Force a specific audio output. By default, when using a HDMI display the audio will also be output over
HDMI, otherwise the 3.5mm jack will be used.

1.5. Raspberry Pi 9
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• Adjust the memory split. If you’re not using a display (i.e. Raspbian Lite), you should set the minimum
value here in order to make best use of the available RAM.

Once done, select “Finish”. Depending on what you changed you may be asked if you want to restart your Pi,
select “Yes” and then log back in again afterwards.

If you want to change any settings later, you can simply rerun sudo raspi-config.

5. Install Mopidy and any Mopidy extensions you want, as described in Debian/Ubuntu: Install from
apt.mopidy.com.

Note: If you used the Raspbian Desktop image you may also need to add the mopidy user to the video group. Run
sudo adduser mopidy video to do this.

1.5.2 Testing sound output

You can test sound output independent of Mopidy by running:

aplay /usr/share/sounds/alsa/Front_Center.wav

If you hear a voice saying “Front Center”, then your sound is working.

If you want to change your audio output setting, simply rerun sudo raspi-config.

10 Chapter 1. Installation
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Configuration

Mopidy has a lot of config values you can tweak, but you only need to change a few to get up and running. A complete
~/.config/mopidy/mopidy.conf may be as simple as this:

[mpd]
hostname = ::

[spotify]
username = alice
password = mysecret

Mopidy primarily reads config from the file ~/.config/mopidy/mopidy.conf, where ~ means your home di-
rectory. If your username is alice and you are running Linux, the config file should probably be at /home/alice/
.config/mopidy/mopidy.conf. You can either create the configuration file yourself, or run the mopidy com-
mand, and it will create an empty config file for you and print what config values must be set to successfully start
Mopidy.

If running Mopidy as a service, the location of the config file and other details documented here differs a bit. See
Running as a service for details about this.

When you have created the configuration file, open it in a text editor, and add the config values you want to change. If
you want to keep the default for a config value, you should not add it to the config file, but leave it out so that when
we change the default value in a future version, you won’t have to change your configuration accordingly.

To see what’s the effective configuration for your Mopidy installation, you can run:

mopidy config

This will print your full effective config with passwords masked out so that you safely can share the output with others
for debugging.

You can find a description of all config values belonging to Mopidy’s core below, together with their default values. In
addition, all extensions got additional config values. The extension’s config values and config defaults are documented
on the extension pages.

11
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2.1 Default configuration

This is the default configuration for Mopidy itself. All extensions bring additional configuration values with their own
defaults.

[core]
cache_dir = $XDG_CACHE_DIR/mopidy
config_dir = $XDG_CONFIG_DIR/mopidy
data_dir = $XDG_DATA_DIR/mopidy
max_tracklist_length = 10000
restore_state = false

[logging]
color = true
console_format = %(levelname)-8s %(message)s
debug_format = %(levelname)-8s %(asctime)s [%(process)d:%(threadName)s] %(name)s\n
→˓%(message)s
debug_file = mopidy.log
config_file =

[audio]
mixer = software
mixer_volume =
output = autoaudiosink
buffer_time =

[proxy]
scheme =
hostname =
port =
username =
password =

2.2 Core config section

core/cache_dir
Path to base directory for storing cached data.

Mopidy and extensions will use this path to cache data that can safely be thrown away.

If your system is running from an SD card, it can help avoid wear and corruption of your SD card by pointing
this config to another location. If you have enough RAM, a tmpfs might be a good choice.

When running Mopidy as a regular user, this should usually be $XDG_CACHE_DIR/mopidy, i.e. ~/.
cache/mopidy.

When running Mopidy as a system service, this should usually be /var/cache/mopidy.

core/config_dir
Path to base directory for config files.

When running Mopidy as a regular user, this should usually be $XDG_CONFIG_DIR/mopidy, i.e. ~/.
config/mopidy.

When running Mopidy as a system service, this should usually be /etc/mopidy.

core/data_dir
Path to base directory for persistent data files.

12 Chapter 2. Configuration
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Mopidy and extensions will use this path to store data that cannot be be thrown away and reproduced without
some effort. Examples include Mopidy-Local’s index of your media library and Mopidy-M3U’s stored playlists.

When running Mopidy as a regular user, this should usually be $XDG_DATA_DIR/mopidy, i.e. ~/.local/
share/mopidy.

When running Mopidy as a system service, this should usually be /var/lib/mopidy.

core/max_tracklist_length
Max length of the tracklist. Defaults to 10000.

The original MPD server only supports 10000 tracks in the tracklist. Some MPD clients will crash if this limit
is exceeded.

core/restore_state
When set to true, Mopidy restores its last state when started. The restored state includes the tracklist, playback
history, the playback state, the volume, and mute state.

Default is false.

2.3 Audio configuration

These are the available audio configurations. For specific use cases, see Advanced audio setups.

audio/mixer
Audio mixer to use.

The default is software, which does volume control inside Mopidy before the audio is sent to the audio
output. This mixer does not affect the volume of any other audio playback on the system. It is the only mixer
that will affect the audio volume if you’re streaming the audio from Mopidy through Shoutcast.

If you want to disable audio mixing set the value to none.

If you want to use a hardware mixer, you need to install a Mopidy extension which integrates with your sound
subsystem. E.g. for ALSA, install Mopidy-ALSAMixer.

audio/mixer_volume
Initial volume for the audio mixer.

Expects an integer between 0 and 100.

Setting the config value to blank leaves the audio mixer volume unchanged. For the software mixer blank means
100.

audio/output
Audio output to use.

Expects a GStreamer sink. Typical values are autoaudiosink, alsasink, osssink, oss4sink,
pulsesink, and shout2send, and additional arguments specific to each sink. You can use the command
gst-inspect-1.0 to see what output properties can be set on the sink. For example: gst-inspect-1.0
shout2send

audio/buffer_time
Buffer size in milliseconds.

Expects an integer above 0.

Sets the buffer size of the GStreamer queue. If you experience buffering before track changes, it may help to
increase this, possibly by at least a few seconds. The default is letting GStreamer decide the size, which at the
time of this writing is 1000.

2.3. Audio configuration 13
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2.4 Logging configuration

logging/color
Whether or not to colorize the console log based on log level. Defaults to true.

logging/console_format
The log format used for informational logging.

See the Python logging docs for details on the format.

logging/debug_format
The log format used for debug logging.

See the Python logging docs for details on the format.

logging/debug_file
The file to dump debug log data to when Mopidy is run with the mopidy --save-debug-log option.

logging/config_file
Config file that overrides all logging config values, see the Python logging docs for details.

loglevels/*
The loglevels config section can be used to change the log level for specific parts of Mopidy during devel-
opment or debugging. Each key in the config section should match the name of a logger. The value is the log
level to use for that logger, one of debug, info, warning, error, or critical.

logcolors/*
The logcolors config section can be used to change the log color for specific parts of Mopidy during devel-
opment or debugging. Each key in the config section should match the name of a logger. The value is the color
to use for that logger, one of black, red, green, yellow, blue, magenta, cyan or white.

2.5 Proxy configuration

Not all parts of Mopidy or all Mopidy extensions respect the proxy server configuration when connecting to the
Internet. Currently, this is at least used when Mopidy’s audio subsystem reads media directly from the network, like
when listening to Internet radio streams, and by the Mopidy-Spotify extension. With time, we hope that more of the
Mopidy ecosystem will respect these configurations to help users on locked down networks.

proxy/scheme
URI scheme for the proxy server. Typically http, https, socks4, or socks5.

proxy/hostname
Hostname of the proxy server.

proxy/port
Port number of the proxy server.

proxy/username
Username for the proxy server, if needed.

proxy/password
Password for the proxy server, if needed.

2.6 Extension configuration

Each installed Mopidy extension adds its own configuration section with one or more config values that you may want
to tweak. For the available config values, please refer to the docs for each extension. Most, if not all, can be found at
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Extensions.

Mopidy extensions are enabled by default when they are installed. If you want to disable an extension without unin-
stalling it, all extensions support the enabled config value even if it isn’t explicitly documented by all extensions.
If the enabled config value is set to false the extension will not be started. For example, to disable the Spotify
extension, add the following to your mopidy.conf:

[spotify]
enabled = false

2.7 Adding new configuration values

Mopidy’s config validator will validate all of its own config sections and the config sections belonging to any installed
extension. It will raise an error if you add any config values in your config file that Mopidy doesn’t know about. This
may sound obnoxious, but it helps us detect typos in your config, and to warn about deprecated config values that
should be removed or updated.

If you’re extending Mopidy, and want to use Mopidy’s configuration system, you can add new sections to the config
without triggering the config validator. We recommend that you choose a good and unique name for the config section
so that multiple extensions to Mopidy can be used at the same time without any danger of naming collisions.

2.7. Adding new configuration values 15
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CHAPTER 3

Running Mopidy

To start Mopidy, simply open a terminal and run:

mopidy

For a complete reference to the Mopidy commands and their command line options, see mopidy command.

When Mopidy says MPD server running at [127.0.0.1]:6600 it’s ready to accept connections by any
MPD client. Check out our non-exhaustive MPD clients list to find recommended clients.

3.1 Updating the library

To update the library, e.g. after audio files have changed, run:

mopidy local scan

Afterwards, to refresh the library (which is for now only available through the API) it is necessary to run:

curl -d '{"jsonrpc": "2.0", "id": 1, "method": "core.library.refresh"}' http://
→˓localhost:6680/mopidy/rpc

This makes the changes in the library visible to the clients.

3.2 Stopping Mopidy

To stop Mopidy, press CTRL+C in the terminal where you started Mopidy.

Mopidy will also shut down properly if you send it the TERM signal, e.g. by using pkill:

pkill mopidy
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3.3 Running as a service

Once you’re done exploring Mopidy and want to run it as a proper service, check out Running as a service.
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CHAPTER 4

Running as a service

If you want to run Mopidy as a service using either an init script or a systemd service, there’s a few differences from
running Mopidy as your own user you’ll want to know about. The following applies to Debian, Ubuntu, Raspbian, and
Arch. Hopefully, other distributions packaging Mopidy will make sure this works the same way on their distribution.

4.1 Configuration

All configuration is in /etc/mopidy/mopidy.conf, not in your user’s home directory.

4.2 mopidy user

The Mopidy service runs as the mopidy user, which is automatically created when you install the Mopidy package.
The mopidy user will need read access to any local music you want Mopidy to play.

4.3 Subcommands

To run Mopidy subcommands with the same user and config files as the service uses, you can use sudo mopidyctl
<subcommand>. In other words, where you’ll usually run:

mopidy config

You should instead run the following to inspect the service’s configuration:

sudo mopidyctl config

The same applies to scanning your local music collection. Where you’ll normally run:

mopidy local scan
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You should instead run:

sudo mopidyctl local scan

4.4 Service management with systemd

On modern systems using systemd you can enable the Mopidy service by running:

sudo systemctl enable mopidy

This will make Mopidy start when the system boots.

Mopidy is started, stopped, and restarted just like any other systemd service:

sudo systemctl start mopidy
sudo systemctl stop mopidy
sudo systemctl restart mopidy

You can check if Mopidy is currently running as a service by running:

sudo systemctl status mopidy

4.5 Service management on Debian

On Debian systems (both those using systemd and not) you can enable the Mopidy service by running:

sudo dpkg-reconfigure mopidy

Mopidy can be started, stopped, and restarted using the service command:

sudo service mopidy start
sudo service mopidy stop
sudo service mopidy restart

You can check if Mopidy is currently running as a service by running:

sudo service mopidy status

4.6 Service on OS X

If you’re installing Mopidy on OS X, see Running Mopidy automatically on login.

4.7 Configure PulseAudio

When using PulseAudio, you will typically have a PulseAudio server run by your main user. Since Mopidy is running
as its own user, it can’t access this server directly. Running PulseAudio as a system-wide daemon is discouraged by
upstream (see here for details). Rather you can configure PulseAudio and Mopidy so Mopidy sends the sound to the
PulseAudio server already running as your main user.

20 Chapter 4. Running as a service

https://www.freedesktop.org/wiki/Software/PulseAudio/Documentation/User/WhatIsWrongWithSystemWide/


Mopidy Documentation, Release 2.2.3

First, configure PulseAudio to accept sound over TCP from localhost by uncommenting or adding the TCP module to /
etc/pulse/default.pa or $XDG_CONFIG_HOME/pulse/default.pa (typically ~/.config/pulse/
default.pa):

### Network access (may be configured with paprefs, so leave this commented
### here if you plan to use paprefs)
#load-module module-esound-protocol-tcp
load-module module-native-protocol-tcp auth-ip-acl=127.0.0.1
#load-module module-zeroconf-publish

Next, configure Mopidy to use this PulseAudio server:

[audio]
output = pulsesink server=127.0.0.1

After this, restart both PulseAudio and Mopidy:

pulseaudio --kill
start-pulseaudio-x11
sudo systemctl restart mopidy

If you are not running any X server, run pulseaudio --start instead of start-pulseaudio-x11.

If you don’t want to hard code the output in your Mopidy config, you can instead of adding any config to Mopidy add
this to ~mopidy/.pulse/client.conf:

default-server=127.0.0.1

4.7. Configure PulseAudio 21
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CHAPTER 5

Advanced audio setups

Mopidy has very few audio configs, but the ones we have are very powerful because they let you modify the GStreamer
audio pipeline directly. Here we describe some use cases that can be solved with the audio configs and GStreamer.

5.1 Custom audio sink

If you have successfully installed GStreamer, and then run the gst-inspect-1.0 command, you should see a long
listing of installed plugins, ending in a summary line:

$ gst-inspect-1.0
... long list of installed plugins ...
Total count: 233 plugins, 1339 features

Next, you should be able to produce a audible tone by running:

gst-launch-1.0 audiotestsrc ! audioresample ! autoaudiosink

If you cannot hear any sound when running this command, you won’t hear any sound from Mopidy either, as Mopidy
by default uses GStreamer’s autoaudiosink to play audio. Thus, make this work before you file a bug against
Mopidy.

If you for some reason want to use some other GStreamer audio sink than autoaudiosink, you can set the audio/
output config value to a partial GStreamer pipeline description describing the GStreamer sink you want to use.

Example mopidy.conf for using OSS4:

[audio]
output = oss4sink

Again, this is the equivalent of the following gst-launch-1.0 command, so make this work first:

gst-launch-1.0 audiotestsrc ! audioresample ! oss4sink
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5.2 Streaming through Icecast

If you want to play the audio on another computer than the one running Mopidy, you can stream the audio from
Mopidy through an Icecast audio streaming server. Multiple media players can then be connected to the streaming
server simultaneously. To use the Icecast output, do the following:

1. Install, configure and start the Icecast server. It can be found in the icecast2 package in Debian/Ubuntu.

2. Set the audio/output config value to encode the output audio to MP3 (lamemp3enc) or Ogg
Vorbis (audioresample ! audioconvert ! vorbisenc ! oggmux) and send it to Icecast
(shout2send).

You might also need to change the shout2send default settings, run gst-inspect-1.0 shout2send
to see the available settings. Most likely you want to change ip, username, password, and mount.

Example for MP3 streaming:

[audio]
output = lamemp3enc ! shout2send async=false mount=mopidy ip=127.0.0.1 port=8000
→˓password=hackme

Example for Ogg Vorbis streaming:

[audio]
output = audioresample ! audioconvert ! vorbisenc ! oggmux ! shout2send
→˓async=false mount=mopidy ip=127.0.0.1 port=8000 password=hackme

Example for MP3 streaming and local audio (multiple outputs):

[audio]
output = tee name=t ! queue ! audioresample ! autoaudiosink t. ! queue !
→˓lamemp3enc ! shout2send async=false mount=mopidy ip=127.0.0.1 port=8000
→˓password=hackme

Other advanced setups are also possible for outputs. Basically, anything you can use with the gst-launch-1.0
command can be plugged into audio/output.

5.2.1 Known issues

• Changing track: As of Mopidy 1.2 we support gapless playback, and the stream does no longer end when
changing from one track to another.

• Previous/next: The stream ends on previous and next. See #1306 for details. This can be worked around using
a fallback stream, as described below.

• Pause: Pausing playback stops the stream. This is probably not something we’re going to fix. This can be
worked around using a fallback stream, as described below.

• Metadata: Track metadata is mostly missing from the stream. For Spotify, fixing #1357 should help. The
general issue for other extensions is #866.

5.2.2 Fallback stream

By using a fallback stream playing silence, you can somewhat mitigate the known issues above.

Example Icecast configuration:
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<mount>
<mount-name>/mopidy</mount-name>
<fallback-mount>/silence.mp3</fallback-mount>
<fallback-override>1</fallback-override>

</mount>

You can easily find MP3 files with just silence by searching the web. The silence.mp3 file needs to be placed in
the directory defined by <webroot>...</webroot> in the Icecast configuration.

5.2. Streaming through Icecast 25
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CHAPTER 6

Troubleshooting

If you run into problems with Mopidy, we usually hang around at #mopidy on irc.freenode.net and also have a
discussion forum. If you stumble into a bug or have a feature request, please create an issue in the issue tracker.

When you’re debugging yourself or asking for help, there are some tools built into Mopidy that you should know
about.

6.1 Sharing config and log output

If you’re getting help at IRC, we recommend that you use a pastebin, like pastebin.com or GitHub Gist, to share your
configuration and log output. Pasting more than a couple of lines on IRC is generally frowned upon. On the mailing
list or when reporting an issue, somewhat longer text dumps are accepted, but large logs should still be shared through
a pastebin.

6.2 Show effective configuration

The command mopidy config will print your full effective configuration the way Mopidy sees it after all defaults
and all config files have been merged into a single config document. Any secret values like passwords are masked out,
so the output of the command should be safe to share with others for debugging.

6.3 Show installed dependencies

The command mopidy deps will list the paths to and versions of any dependency Mopidy or the extensions might
need to work. This is very useful data for checking that you’re using the right versions, and that you’re using the right
installation if you have multiple installations of a dependency on your system.
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6.4 Debug logging

If you run mopidy -v or mopidy -vv or mopidy -vvv Mopidy will print more and more debug log to stdout.
All three options will give you debug level output from Mopidy and extensions, while -vv and -vvv will give you
more log output from their dependencies as well.

If you run mopidy --save-debug-log, it will save the log equivalent with -vvv to the file mopidy.log in
the directory you ran the command from.

If you want to reduce the logging for some component, see the docs for the loglevels/* config section.

6.5 Debugging deadlocks

If Mopidy hangs without an obvious explanation, you can send the SIGUSR1 signal to the Mopidy process. If
Mopidy’s main thread is still responsive, it will log a traceback for each running thread, showing what the threads are
currently doing. This is a very useful tool for understanding exactly how the system is deadlocking. If you have the
pkill command installed, you can use this by simply running:

pkill -SIGUSR1 mopidy

6.6 Debugging GStreamer

If you really want to dig in and debug GStreamer behaviour, then check out the Debugging section of GStreamer’s
documentation for your options. Note that Mopidy does not support the GStreamer command line options, like
--gst-debug-level=3, but setting GStreamer environment variables, like GST_DEBUG, works with Mopidy.
For example, to run Mopidy with debug logging and GStreamer logging at level 3, you can run:

GST_DEBUG=3 mopidy -v

This will produce a lot of output, but given some GStreamer knowledge this is very useful for debugging GStreamer
pipeline issues. Additionally GST_DEBUG_FILE=gstreamer.log can be used to redirect the debug logging to a
file instead of standard out.

Lastly GST_DEBUG_DUMP_DOT_DIR can be used to get descriptions of the current pipeline in dot format. Currently
we trigger a dump of the pipeline on every completed state change:

GST_DEBUG_DUMP_DOT_DIR=. mopidy
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CHAPTER 7

Mopidy-Local

Mopidy-Local is an extension for playing music from your local music archive. It is bundled with Mopidy and enabled
by default. Though, you’ll have to scan your music collection to build a cache of metadata before the Mopidy-Local
will be able to play your music.

This backend handles URIs starting with local:.

7.1 Generating a local library

The command mopidy local scan will scan the path set in the local/media_dir config value for any audio
files and build a library of metadata.

To make a local library for your music available for Mopidy:

1. Ensure that the local/media_dir config value points to where your music is located. Check the current
setting by running:

mopidy config

2. Scan your media library.:

mopidy local scan

3. Start Mopidy, find the music library in a client, and play some local music!

7.2 Updating the local library

When you’ve added or removed music in your collection and want to update Mopidy’s index of your local library, you
need to rescan:

mopidy local scan
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Note that if you are using the default local library storage, json, you need to restart Mopidy after the scan completes
for the updated index to be used.

If you want index updates to come into effect immediately, you can try out Mopidy-Local-SQLite, which will probably
become the default backend in the near future.

7.3 Pluggable library support

Local libraries are fully pluggable. What this means is that users may opt to disable the current default library json,
replacing it with a third party one. When running mopidy local scan Mopidy will populate whatever the current
active library is with data. Only one library may be active at a time.

To create a new library provider you must create class that implements the mopidy.local.Library interface and
install it in the extension registry under local:library. Any data that the library needs to store on disc should be
stored in the extension’s data dir, as returned by get_data_dir().

7.4 Configuration

See Configuration for general help on configuring Mopidy.

[local]
enabled = true
library = json
media_dir = $XDG_MUSIC_DIR
scan_timeout = 1000
scan_flush_threshold = 100
scan_follow_symlinks = false
excluded_file_extensions =

.directory

.html

.jpeg

.jpg

.log

.nfo

.pdf

.png

.txt

.zip

local/enabled
If the local extension should be enabled or not.

local/library
Local library provider to use, change this if you want to use a third party library for local files.

local/media_dir
Path to directory with local media files.

local/scan_timeout
Number of milliseconds before giving up scanning a file and moving on to the next file.

local/scan_follow_symlinks
If we should follow symlinks found in local/media_dir
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local/scan_flush_threshold
Number of tracks to wait before telling library it should try and store its progress so far. Some libraries might
not respect this setting. Set this to zero to disable flushing.

local/excluded_file_extensions
File extensions to exclude when scanning the media directory. Values should be separated by either comma or
newline.
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CHAPTER 8

Mopidy-File

Mopidy-File is an extension for playing music from your local music archive. It is bundled with Mopidy and enabled
by default. It allows you to browse through your local file system. Only files that are considered playable will be
shown.

This backend handles URIs starting with file:.

8.1 Configuration

See Configuration for general help on configuring Mopidy.

[file]
enabled = true
media_dirs =

$XDG_MUSIC_DIR|Music
~/|Home

show_dotfiles = false
excluded_file_extensions =

.directory

.html

.jpeg

.jpg

.log

.nfo

.pdf

.png

.txt

.zip
follow_symlinks = false
metadata_timeout = 1000

file/enabled
If the file extension should be enabled or not.
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file/media_dirs
A list of directories to be browsable. Optionally the path can be followed by | and a name that will be shown
for that path.

file/show_dotfiles
Whether to show hidden files and directories that start with a dot. Default is false.

file/excluded_file_extensions
File extensions to exclude when scanning the media directory. Values should be separated by either comma or
newline.

file/follow_symlinks
Whether to follow symbolic links found in file/media_dirs. Directories and files that are outside the
configured directories will not be shown. Default is false.

file/metadata_timeout
Number of milliseconds before giving up scanning a file and moving on to the next file. Reducing the value
might speed up the directory listing, but can lead to some tracks not being shown.
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CHAPTER 9

Mopidy-M3U

Mopidy-M3U is an extension for reading and writing M3U playlists stored on disk. It is bundled with Mopidy and
enabled by default.

This backend handles URIs starting with m3u:.

9.1 Migrating from Mopidy-Local playlists

Mopidy-M3U was split out of the Mopidy-Local extension in Mopidy 1.0. To migrate your playlists from Mopidy-
Local, simply move them from the local/playlists_dir directory to the m3u/playlists_dir directory.
Assuming you have not changed the default config, run the following commands to migrate:

mkdir -p ~/.local/share/mopidy/m3u/
mv ~/.local/share/mopidy/local/playlists/* ~/.local/share/mopidy/m3u/

9.2 Editing playlists

There is a core playlist API in place for editing playlists. This is supported by a few Mopidy clients, but not through
Mopidy’s MPD server yet.

It is possible to edit playlists by editing the M3U files located in the m3u/playlists_dir directory, usually ~/
.local/share/mopidy/m3u/, by hand with a text editor. See Wikipedia for a short description of the quite
simple M3U playlist format.

9.3 Configuration

See Configuration for general help on configuring Mopidy.
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[m3u]
enabled = true
playlists_dir =
base_dir = $XDG_MUSIC_DIR
default_encoding = latin-1
default_extension = .m3u8

m3u/enabled
If the M3U extension should be enabled or not.

m3u/playlists_dir
Path to directory with M3U files. Unset by default, in which case the extension’s data dir is used to store
playlists.

m3u/base_dir
Path to base directory for resolving relative paths in M3U files. If not set, relative paths are resolved based on
the M3U file’s location.

m3u/default_encoding
Text encoding used for files with extension .m3u. Default is latin-1. Note that files with extension .m3u8
are always expected to be UTF-8 encoded.

m3u/default_extension
The file extension for M3U playlists created using the core playlist API. Default is .m3u8.
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CHAPTER 10

Mopidy-Stream

Mopidy-Stream is an extension for playing streaming music. It is bundled with Mopidy and enabled by default.

This backend does not provide a library or playlist storage. It simply accepts any URI added to Mopidy’s tracklist that
matches any of the protocols in the stream/protocols config value. It then tries to retrieve metadata and play
back the URI using GStreamer. For example, if you’re using an MPD client, you’ll just have to find your clients “add
URI” interface, and provide it with the URI of a stream.

In addition to playing streams, the extension also understands how to extract streams from a lot of playlist formats.
This is convenient as most Internet radio stations links to playlists instead of directly to the radio streams.

If you’re having trouble playing back a stream, run the mopidy deps command to check if you have all relevant
GStreamer plugins installed.

10.1 Configuration

See Configuration for general help on configuring Mopidy.

[stream]
enabled = true
protocols =

http
https
mms
rtmp
rtmps
rtsp

timeout = 5000
metadata_blacklist =

stream/enabled
If the stream extension should be enabled or not.

stream/protocols
Whitelist of URI schemas to allow streaming from. Values should be separated by either comma or newline.
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stream/timeout
Number of milliseconds before giving up looking up stream metadata.

stream/metadata_blacklist
List of URI globs to not fetch metadata from before playing. This feature is typically needed for play once URIs
provided by certain streaming providers. Regular POSIX glob semantics apply, so http://*.example.
com/* would match all example.com sub-domains.
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CHAPTER 11

Mopidy-HTTP

Mopidy-HTTP is an extension that lets you control Mopidy through HTTP and WebSockets, for example from a web
client. It is bundled with Mopidy and enabled by default.

When it is enabled it starts a web server at the port specified by the http/port config value.

Warning: As a simple security measure, the web server is by default only available from localhost. To make
it available from other computers, change the http/hostname config value. Before you do so, note that the
HTTP extension does not feature any form of user authentication or authorization. Anyone able to access the web
server can use the full core API of Mopidy. Thus, you probably only want to make the web server available from
your local network or place it behind a web proxy which takes care of user authentication. You have been warned.

11.1 Hosting web clients

Mopidy-HTTP’s web server can also host Tornado apps or any static files, for example the HTML, CSS, JavaScript,
and images needed for a web based Mopidy client. See HTTP server side API for how to make static files or server-side
functionality from a Mopidy extension available through Mopidy’s web server.

If you’re making a web based client and want to do server side development using some other technology than Tornado,
you are of course free to run your own web server and just use Mopidy’s web server to host the API endpoints. But,
for clients implemented purely in JavaScript, letting Mopidy host the files is a simpler solution.

See HTTP JSON-RPC API for details on how to integrate with Mopidy over HTTP. If you’re looking for a web based
client for Mopidy, go check out HTTP clients.

11.2 Configuration

See Configuration for general help on configuring Mopidy.
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[http]
enabled = true
hostname = 127.0.0.1
port = 6680
static_dir =
zeroconf = Mopidy HTTP server on $hostname
allowed_origins =
csrf_protection = true

http/enabled
If the HTTP extension should be enabled or not.

http/hostname
Which address the HTTP server should bind to.

127.0.0.1 Listens only on the IPv4 loopback interface

::1 Listens only on the IPv6 loopback interface

0.0.0.0 Listens on all IPv4 interfaces

:: Listens on all interfaces, both IPv4 and IPv6

http/port
Which TCP port the HTTP server should listen to.

http/static_dir
Deprecated: This config is deprecated and will be removed in a future version of Mopidy.

Which directory the HTTP server should serve at “/”

Change this to have Mopidy serve e.g. files for your JavaScript client. “/mopidy” will continue to work as usual
even if you change this setting, but any other Mopidy webclient installed with pip to be served at “/ext_name”
will stop working if you set this config.

You’re strongly encouraged to make Mopidy extensions which use the the HTTP server side API to host static
files on Mopidy’s web server instead of using http/static_dir. That way, installation of your web client
will be a lot easier for your end users, and multiple web clients can easily share the same web server.

http/zeroconf
Name of the HTTP service when published through Zeroconf. The variables $hostname and $port can be
used in the name.

If set, the Zeroconf services _http._tcp and _mopidy-http._tcp will be published.

Set to an empty string to disable Zeroconf for HTTP.

http/allowed_origins
A list of domains allowed to perform Cross-Origin Resource Sharing (CORS) requests. This applies to both
JSON-RPC and WebSocket requests. Values should be in the format hostname:port, should not specify
any scheme and be separated by either a comma or newline. Additionally, the port should not be specified if
it is the default (80 for http, 443 for https).

Same-origin requests (i.e. requests from Mopidy’s web server) are always allowed and so you don’t need an
entry for those. However, if your requests originate from a different web server, you will need to add an entry for
that server in this list. For example, to allow requests from a web server at ‘http://my-web-client.example.com’
you would specify the entry ‘my-web-client.example.com’.

http/csrf_protection
Enable the HTTP server’s protection against Cross-Site Request Forgery (CSRF) from both JSON-RPC and
WebSocket requests.
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Disabling this will remove the requirement to set a Content-Type: application/json header
for JSON-RPC POST requests. It will also disable all same-origin checks, effectively ignoring
the http/allowed_origins config since requests from any origin will be allowed. Lastly, all
Access-Control-Allow-* response headers will be suppressed.

This config should only be disabled if you understand the security implications and require the HTTP server’s
old behaviour.
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CHAPTER 12

Mopidy-MPD

Mopidy-MPD is an extension that provides a full MPD server implementation to make Mopidy available to MPD
clients. It is bundled with Mopidy and enabled by default.

Warning: As a simple security measure, the MPD server is by default only available from localhost. To make it
available from other computers, change the mpd/hostname config value. Before you do so, note that the MPD
server does not support any form of encryption and only a single clear text password (see mpd/password) for
weak authentication. Anyone able to access the MPD server can control music playback on your computer. Thus,
you probably only want to make the MPD server available from your local network. You have been warned.

MPD stands for Music Player Daemon, which is also the name of the original MPD server project. Mopidy does not
depend on the original MPD server, but implements the MPD protocol itself, and is thus compatible with clients for
the original MPD server.

For more details on our MPD server implementation, see mopidy.mpd.

12.1 Limitations

This is a non exhaustive list of MPD features that Mopidy doesn’t support. Items on this list will probably not be
supported in the near future.

• Only a single password is supported. It gives all-or-nothing access.

• Toggling of audio outputs is not supported

• Channels for client-to-client communication are not supported

• Stickers are not supported

• Crossfade is not supported

• Replay gain is not supported

• stats does not provide any statistics
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• decoders does not provide information about available decoders

The following items are currently not supported, but should be added in the near future:

• tagtypes is not supported

• Live update of the music database is not supported

12.2 Configuration

See Configuration for general help on configuring Mopidy.

[mpd]
enabled = true
hostname = 127.0.0.1
port = 6600
password =
max_connections = 20
connection_timeout = 60
zeroconf = Mopidy MPD server on $hostname
command_blacklist = listall,listallinfo
default_playlist_scheme = m3u

mpd/enabled
If the MPD extension should be enabled or not.

mpd/hostname
Which address the MPD server should bind to. This can be a network address or the path to a Unix socket.

127.0.0.1 Listens only on the IPv4 loopback interface

::1 Listens only on the IPv6 loopback interface

0.0.0.0 Listens on all IPv4 interfaces

:: Listens on all interfaces, both IPv4 and IPv6

unix:/path/to/unix/socket.sock Listen on the Unix socket at the specified path. Must be prefixed
with unix:

mpd/port
Which TCP port the MPD server should listen to.

mpd/password
The password required for connecting to the MPD server. If blank, no password is required.

mpd/max_connections
The maximum number of concurrent connections the MPD server will accept.

mpd/connection_timeout
Number of seconds an MPD client can stay inactive before the connection is closed by the server.

mpd/zeroconf
Name of the MPD service when published through Zeroconf. The variables $hostname and $port can be
used in the name.

Set to an empty string to disable Zeroconf for MPD.

mpd/command_blacklist
List of MPD commands which are disabled by the server. By default this setting blacklists listall and
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listallinfo. These commands don’t fit well with many of Mopidy’s backends and are better left disabled
unless you know what you are doing.
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CHAPTER 13

Mopidy-SoftwareMixer

Mopidy-SoftwareMixer is an extension for controlling audio volume in software through GStreamer. It is the only
mixer bundled with Mopidy and is enabled by default.

If you use PulseAudio, the software mixer will control the per-application volume for Mopidy in PulseAudio, and any
changes to the per-application volume done from outside Mopidy will be reflected by the software mixer.

If you don’t use PulseAudio, the mixer will adjust the volume internally in Mopidy’s GStreamer pipeline.

13.1 Configuration

Multiple mixers can be installed and enabled at the same time, but only the mixer pointed to by the audio/mixer
config value will actually be used.

See Configuration for general help on configuring Mopidy.

[softwaremixer]
enabled = true

softwaremixer/enabled
If the software mixer should be enabled or not. Usually you don’t want to change this, but instead change the
audio/mixer config value to decide which mixer is actually used.
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CHAPTER 14

Mixer extensions

Here you can find a list of external packages that extend Mopidy with additional audio mixers by implementing the
mopidy.mixer — Audio mixer API which was added in Mopidy 0.19.

This list is moderated and updated on a regular basis. If you want your package to show up here, follow the guide on
creating extensions.

14.1 Mopidy-ALSAMixer

https://github.com/mopidy/mopidy-alsamixer

Extension for controlling volume on a Linux system using ALSA.

14.2 Mopidy-Arcam

https://github.com/TooDizzy/mopidy-arcam

Extension for controlling volume using an external Arcam amplifier. Developed and tested with an Arcam AVR-300.

14.3 Mopidy-dam1021

https://github.com/fortaa/mopidy-dam1021

Extension for controlling volume using a dam1021 DAC device.

14.4 Mopidy-NAD

https://github.com/mopidy/mopidy-nad
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Extension for controlling volume using an external NAD amplifier. Developed and tested with a NAD C355BEE.

14.5 Mopidy-SoftwareMixer

Bundled with Mopidy. See Mopidy-SoftwareMixer.

14.6 Mopidy-Yamaha

https://github.com/knutz3n/mopidy-yamaha

Extension for controlling volume using an external Yamaha network connected amplifier.
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CHAPTER 15

Backend extensions

Here you can find a list of external packages that extend Mopidy with additional music sources by implementing the
mopidy.backend — Backend API.

This list is moderated and updated on a regular basis. If you want your package to show up here, follow the guide on
creating extensions.

15.1 Mopidy-AudioAddict

https://github.com/nilicule/mopidy-audioaddict

Provides a backend for playing music from the AudioAddict network of sites, including Digitally Imported, Radio-
Tunes, RockRadio, JazzRadio, and FrescaRadio.

15.2 Mopidy-Banshee

https://github.com/tamland/mopidy-banshee

Provides a backend for playing music from the Banshee music player’s music library.

15.3 Mopidy-Bassdrive

https://github.com/felixb/mopidy-Bassdrive

Provides a backend for playing radio streams from BassDrive.

15.4 Mopidy-Beets

https://github.com/mopidy/mopidy-beets
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Provides a backend for playing music from your Beets music library through Beets’ web extension.

15.5 Mopidy-Dirble

https://github.com/mopidy/mopidy-dirble

Provides a backend for browsing the Internet radio channels from the Dirble directory.

15.6 Mopidy-dLeyna

https://github.com/tkem/mopidy-dleyna

Provides a backend for playing music from Digital Media Servers using the dLeyna D-Bus interface.

15.7 Mopidy-Emby

https://github.com/xsteadfastx/mopidy-emby

Provides a backend for playing music from Emby Media Servers.

15.8 Mopidy-File

Bundled with Mopidy. See Mopidy-File.

15.9 Mopidy-GMusic

https://github.com/mopidy/mopidy-gmusic

Provides a backend for playing music from Google Play Music.

15.10 Mopidy-InternetArchive

https://github.com/tkem/mopidy-internetarchive

Extension for playing music and audio from the Internet Archive.

15.11 Mopidy-Local

Bundled with Mopidy. See Mopidy-Local.
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15.12 Mopidy-Local-Images

https://github.com/mopidy/mopidy-local-images

Extension which plugs into Mopidy-Local to allow Web clients access to album art embedded in local media files. Not
to be used on its own, but acting as a proxy between mopidy local scan and the actual local library provider
being used.

15.13 Mopidy-Local-SQLite

https://github.com/mopidy/mopidy-local-sqlite

Extension which plugs into Mopidy-Local to use an SQLite database to keep track of your local media. This extension
lets you browse your music collection by album, artist, composer and performer, and provides full-text search capabil-
ities based on SQLite’s FTS modules. It also notices updates via mopidy local scan while Mopidy is running,
so you can scan your media library periodically from a cron job, for example.

15.14 Mopidy-OE1

https://github.com/tischlda/mopidy-oe1

Extension for playing the live stream and browsing the 7-day archive of the Austrian radio station OE1.

15.15 Mopidy-Podcast

https://github.com/tkem/mopidy-podcast

Extension for browsing RSS feeds of podcasts and stream the episodes.

15.16 Mopidy-Podcast-gpodder

https://github.com/tkem/mopidy-podcast-gpodder

Extension for Mopidy-Podcast that lets you search and browse podcasts from the gpodder web site.

15.17 Mopidy-Podcast-iTunes

https://github.com/tkem/mopidy-podcast-itunes

Extension for Mopidy-Podcast that lets you search and browse podcasts from the Apple iTunes Store.

15.18 Mopidy-radio-de

https://github.com/hechtus/mopidy-radio-de

Extension for listening to Internet radio stations and podcasts listed at radio.de, radio.net, radio.fr, and radio.at.
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15.19 Mopidy-RNZ

https://github.com/danbrough/mopidy-rnz

Extension for playing Radio New Zealands podcasts,live streams and latest news bulletin.

15.20 Mopidy-SomaFM

https://github.com/AlexandrePTJ/mopidy-somafm

Provides a backend for playing music from the SomaFM service.

15.21 Mopidy-SoundCloud

https://github.com/mopidy/mopidy-soundcloud

Provides a backend for playing music from the SoundCloud service.

15.22 Mopidy-Spotify

https://github.com/mopidy/mopidy-spotify

Extension for playing music from the Spotify music streaming service.

15.23 Mopidy-Spotify-Tunigo

https://github.com/trygveaa/mopidy-spotify-tunigo

Extension for providing the browse feature of Spotify. This lets you browse playlists, genres and new releases.

15.24 Mopidy-Stream

Bundled with Mopidy. See Mopidy-Stream.

15.25 Mopidy-Subsonic

https://github.com/rattboi/mopidy-subsonic

Provides a backend for playing music from a Subsonic Music Streamer library.

15.26 Mopidy-TuneIn

https://github.com/kingosticks/mopidy-tunein

Provides a backend for playing music from the TuneIn online radio service.
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15.27 Mopidy-VKontakte

https://github.com/sibuser/mopidy-vkontakte

Provides a backend for playing music from the VKontakte social network.

15.28 Mopidy-YDisk

https://github.com/vonZeppelin/mopidy-ydisk

Provides a backend for playing music from Yandex.Disk cloud storage.

15.29 Mopidy-YouTube

https://github.com/mopidy/mopidy-youtube

Provides a backend for playing music from the YouTube service.
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CHAPTER 16

Frontend extensions

Here you can find a list of external packages that extend Mopidy with additional frontends, which includes just about
anything that use the mopidy.core — Core API.

This list is moderated and updated on a regular basis. If you want your package to show up here, follow the guide on
creating extensions.

16.1 Mopidy-EvtDev

https://github.com/liamw9534/mopidy-evtdev

Extension for controll Mopidy from virtual input devices.

16.2 Mopidy-HTTP

Bundled with Mopidy. See Mopidy-HTTP.

16.3 Mopidy-MPD

Bundled with Mopidy. See Mopidy-MPD.

16.4 Mopidy-MPRIS

https://github.com/mopidy/mopidy-mpris

Extension for controlling Mopidy through the MPRIS D-Bus interface, for example using the Ubuntu Sound Menu.
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16.5 Mopidy-Scrobbler

https://github.com/mopidy/mopidy-scrobbler

Extension for scrobbling played tracks to Last.fm.

16.6 Mopidy-Touchscreen

https://github.com/9and3r/mopidy-touchscreen

Extension for displaying track info and controlling Mopidy from a touch screen using PyGame/SDL.

16.7 Mopidy-TtsGpio

https://github.com/9and3r/mopidy-ttsgpio

Extension for controlling Mopidy without a display by using e.g. buttons connected to GPIO and text-to-speech for
track information.

16.8 Mopidy-Webhooks

https://github.com/paddycarey/mopidy-webhooks

Extension for sending HTTP POST requests with JSON payloads to a remote server when Mopidy core triggers an
event and on regular intervals.
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CHAPTER 17

Web extensions

Here you can find a list of external packages that extend Mopidy with additional web interfaces by implementing the
HTTP server side API, which was added in Mopidy 0.19, and optionally using the HTTP JSON-RPC API.

This list is moderated and updated on a regular basis. If you want your package to show up here, follow the guide on
creating extensions.

17.1 Mopidy-API-Explorer

https://github.com/dz0ny/mopidy-api-explorer

Web extension for browsing the Mopidy HTTP API.
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To install, run:

pip install Mopidy-API-Explorer

17.2 Mopidy-Auto

https://github.com/gotling/mopidy-auto

Mopidy extension to automate music playback based on time of day.

Warning: This extension reacts to the events tracklist_changed, track_playback_ended, and
track_playback_resumed to accomplish its goals. Other web extensions will not work as expected when
this extension is installed.
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To install, run:

pip install Mopidy-Auto

17.3 Mopidy-Iris

https://github.com/jaedb/iris

A comprehensive and mobile-friendly client that presents your library and extensions in a user-friendly and intuitive
interface. Built using React and Redux. Made by James Barnsley.
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To install, run:

pip install Mopidy-Iris

17.4 Mopidy-Local-Images

https://github.com/tkem/mopidy-local-images

Not a full-featured web client, but rather a local library and web extension which allows other web clients access to
album art embedded in local media files.
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To install, run:

pip install Mopidy-Local-Images

17.5 Mopidy-Material-Webclient

https://github.com/matgallacher/mopidy-material-webclient

A Mopidy web client with an Android Material design feel.
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To install, run:

pip install Mopidy-Material-Webclient

17.6 Mopidy-Mobile

https://github.com/tkem/mopidy-mobile

A Mopidy web client extension and hybrid mobile app, made with Ionic, AngularJS and Apache Cordova by Thomas
Kemmer.
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To install, run:

pip install Mopidy-Mobile

17.7 Mopidy-Moped

https://github.com/martijnboland/moped

A Mopidy web client made with AngularJS by Martijn Boland.
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To install, run:

pip install Mopidy-Moped

17.8 Mopidy-Mopify

https://github.com/dirkgroenen/mopidy-mopify

A web client that uses external web services to provide additional features and a more “complete” Spotify music
experience. It’s currently targeted at people using Spotify through Mopidy. Made by Dirk Groenen.
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To install, run:

pip install Mopidy-Mopify

17.9 Mopidy-MusicBox-Webclient

https://github.com/pimusicbox/mopidy-musicbox-webclient

The first web client for Mopidy, made with jQuery Mobile by Wouter van Wijk. Also the web client used for Wouter’s
popular Pi Musicbox image for Raspberry Pi.
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To install, run:

pip install Mopidy-MusicBox-Webclient

17.10 Mopidy-Party

https://github.com/Lesterpig/mopidy-party

Minimal web client designed for collaborative music management during parties.
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To install, run:

pip install Mopidy-Party

17.11 Mopidy-Simple-Webclient

https://github.com/xolox/mopidy-simple-webclient

A minimalistic web client targeted for mobile devices. Made with jQuery and Bootstrap by Peter Odding.
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To install, run:

pip install Mopidy-Simple-Webclient

17.12 Mopidy-WebSettings

https://github.com/pimusicbox/mopidy-websettings

A web extension for changing settings. Used by the Pi MusicBox distribution for Raspberry Pi, but also usable for
other projects.

17.13 Mopster

https://github.com/cowbell/mopster

Simple web client hosted online written in Ember.js and styled using basic Bootstrap by Wojciech Wnętrzak.
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To use, just visit http://mopster.urizen.pl/.

17.14 Mopidy-Jukepi

https://github.com/meantimeit/jukepi

A Mopidy web client built with Backbone by connrs.
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To install, run:

pip install Mopidy-Jukepi

17.15 Other web clients

There are also some other web clients for Mopidy that use the HTTP JSON-RPC API but are not installable using
pip:

• Apollo Player

In addition, there are several web based MPD clients, which doesn’t use the Mopidy-HTTP frontend at all, but connect
to Mopidy through our Mopidy-MPD frontend. For a list of those, see MPD web clients.
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CHAPTER 18

HTTP clients

See Web extensions.

73



Mopidy Documentation, Release 2.2.3

74 Chapter 18. HTTP clients



CHAPTER 19

MPD clients

This is a list of MPD clients we either know works well with Mopidy, or that we know won’t work well. For a more
exhaustive list of MPD clients, see https://mpd.fandom.com/wiki/Clients.

Contents

• MPD console clients

– ncmpcpp

– ncmpc

– mpc

• MPD graphical clients

– Cantata

– GMPC

– MPDel

– Sonata

– Theremin

• MPD Android clients

– MPDroid

• MPD iOS clients

– MPoD

– MPaD

• MPD web clients

– Rompr
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– Partify

19.1 MPD console clients

19.1.1 ncmpcpp

A console client that works well with Mopidy, and is regularly used by Mopidy developers.

Search does not work in the “Match if tag contains search phrase (regexes supported)” mode because the client tries
to fetch all known metadata and do the search on the client side. The two other search modes works nicely, so this is
not a problem.

With ncmpcpp <= 0.5, the library view is very slow when used together with Mopidy-Spotify. A workaround is to edit
the ncmpcpp configuration file (~/.ncmpcpp/config) and set:

media_library_display_date = "no"

With this change ncmpcpp’s library view will still be a bit slow, but usable.

Note that this option was removed in ncmpcpp 0.6, but with this version, the library view works well without it.
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19.1.2 ncmpc

A console client. Works with Mopidy 0.6 and upwards. Uses the idle MPD command, but in a resource inefficient
way.

19.1.3 mpc

A command line client. Version 0.16 and upwards seems to work nicely with Mopidy.

19.2 MPD graphical clients

19.2.1 Cantata

Cantata is a graphical MPD client with support for Linux, mac OS, and Windows.

19.2.2 GMPC

GMPC is a graphical MPD client (GTK+) which works well with Mopidy.
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GMPC may sometimes requests a lot of meta data of related albums, artists, etc. This takes more time with Mopidy,
which needs to query Spotify for the data, than with a normal MPD server, which has a local cache of meta data. Thus,
GMPC may sometimes feel frozen, but usually you just need to give it a bit of slack before it will catch up.

19.2.3 MPDel

MPDel is an MPD client working within Emacs.
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19.2.4 Sonata

Sonata is a graphical MPD client (GTK+). It generally works well with Mopidy, except for search.
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When you search in Sonata, it only sends the first to letters of the search query to Mopidy, and then does the rest of the
filtering itself on the client side. Since Spotify has a collection of millions of tracks and they only return the first 100
hits for any search query, searching for two-letter combinations seldom returns any useful results. See #1 for details.

19.2.5 Theremin

Theremin is a graphical MPD client for OS X. It is unmaintained, but generally works well with Mopidy.
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19.3 MPD Android clients

19.3.1 MPDroid

You can get MPDroid from Google Play.

MPDroid is a good MPD client, and really the only one we can recommend.
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19.4 MPD iOS clients

19.4.1 MPoD

The MPoD iPhone/iPod Touch app can be installed from MPoD at iTunes Store.

82 Chapter 19. MPD clients

http://www.katoemba.net/makesnosenseatall/mpod/
https://itunes.apple.com/us/app/mpod/id285063020


Mopidy Documentation, Release 2.2.3

19.4.2 MPaD

The MPaD iPad app can be purchased from MPaD at iTunes Store

19.5 MPD web clients

The following web clients use the MPD protocol to communicate with Mopidy. For other web clients, see HTTP
clients.
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19.5.1 Rompr

Rompr is a web based MPD client. mrvanes, a Mopidy and Rompr user, said: “These projects are a real match made
in heaven.”

19.5.2 Partify

Partify is a web based MPD client focussing on making music playing collaborative and social.
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CHAPTER 20

MPRIS clients

MPRIS is short for Media Player Remote Interfacing Specification. It is a spec that describes a standard D-Bus
interface for making media players available to other applications on the same system.

See the Mopidy-MPRIS documentation for a survey of some MPRIS clients.
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CHAPTER 21

UPnP clients

UPnP is a set of specifications for media sharing, playing, remote control, etc, across a home network. The specs are
supported by a lot of consumer devices (like smartphones, TVs, Xbox, and PlayStation) that are often labeled as being
DLNA compatible or certified.

The DLNA guidelines and UPnP specifications defines several device roles, of which Mopidy may play two:

DLNA Digital Media Server (DMS) / UPnP AV MediaServer:

A MediaServer provides a library of media and is capable of streaming that media to a MediaRenderer. If
Mopidy was a MediaServer, you could browse and play Mopidy’s music on a TV, smartphone, or tablet
supporting UPnP. Mopidy does not currently support this, but we may in the future. #52 is the relevant
wishlist issue.

DLNA Digital Media Renderer (DMR) / UPnP AV MediaRenderer:

A MediaRenderer is asked by some remote controller to play some given media, typically served by a
MediaServer. If Mopidy was a MediaRenderer, you could use e.g. your smartphone or tablet to make
Mopidy play media. Mopidy does already have experimental support for being a MediaRenderer, as you
can read more about below.

21.1 Mopidy as an UPnP MediaRenderer

There are two ways Mopidy can be made available as an UPnP MediaRenderer: Using Mopidy-MPRIS and Rygel, or
using Mopidy-MPD and upmpdcli.

21.1.1 Mopidy-MPD and upmpdcli

upmpdcli is recommended, since it is easier to setup, and offers OpenHome compatibility. upmpdcli exposes a UPnP
MediaRenderer to the network, while using the MPD protocol to control Mopidy.

1. Install upmpdcli. On Debian/Ubuntu:
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apt-get install upmpdcli

Alternatively, follow the instructions from the upmpdcli website.

2. The default settings of upmpdcli will work with the default settings of Mopidy-MPD. Edit /etc/upmpdcli.
conf if you want to use different ports, hosts, or other settings.

3. Start upmpdcli using the command:

upmpdcli

Or, run it in the background as a service:

sudo service upmpdcli start

4. A UPnP renderer should be available now.

21.1.2 Mopidy-MPRIS and Rygel

See the Mopidy-MPRIS documentation for how to setup Rygel to make Mopidy an UPnP MediaRenderer.

21.2 Clients

For a long list of UPnP clients for all possible platforms, see Wikipedia’s List of UPnP AV media servers and clients.
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If want to help us making Mopidy better, the best way to do so is to contribute back to the community, either through
code, documentation, tests, bug reports, or by helping other users, spreading the word, etc. See Contributing for a
head start.
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CHAPTER 23

Sponsors

The Mopidy project would like to thank the following sponsors for supporting the project.

23.1 Rackspace

Rackspace lets Mopidy use their hosting services for free. We use their services for the following sites:

• Hosting of the APT package repository at https://apt.mopidy.com.

• OAuth bridges at https://auth.mopidy.com.

23.2 Fastly

Fastly lets Mopidy use their CDN for free. We accelerate requests to most Mopidy services, including:

• https://apt.mopidy.com/dists/, which is used to distribute Debian packages.

23.3 Discourse

Discourse sponsors Mopidy with free hosting of our discussion forum at https://discourse.mopidy.com.
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CHAPTER 24

Versioning

Mopidy follows Semantic Versioning. In summary this means that our version numbers have three parts, MA-
JOR.MINOR.PATCH, which change according to the following rules:

• When we make incompatible API changes, we increase the MAJOR number.

• When we add features in a backwards-compatible manner, we increase the MINOR number.

• When we fix bugs in a backwards-compatible manner, we increase the PATCH number.

The promise is that if you make a Mopidy extension for Mopidy 1.0, it should work unchanged with any Mopidy 1.x
release, but probably not with 2.0. When a new major version is released, you must review the incompatible changes
and update your extension accordingly.

24.1 Release schedule

We intend to have about one feature release every month in periods of active development. The features added is a
mix of what we feel is most important/requested of the missing features, and features we develop just because we find
them fun to make, even though they may be useful for very few users or for a limited use case.

Bugfix releases will be released whenever we discover bugs that are too serious to wait for the next feature release.
We will only release bugfix releases for the last feature release. E.g. when 1.2.0 is released, we will no longer provide
bugfix releases for the 1.1.x series. In other words, there will be just a single supported release at any point in time.
This is to not spread our limited resources too thin.
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CHAPTER 25

Changelog

This changelog is used to track all major changes to Mopidy.

For older releases, see History.

25.1 v2.2.3 (2019-06-20)

Bug fix release.

• Audio: Fix switching between tracks with different sample rates. (Fixes: #1528, PR: #1735)

• Audio: Prevent buffering handling interfering with track changes. (Fixes: #1722, PR: #1740)

• Local: Add .pdf and .zip to the default local/excluded_file_extensions config value. (PR:
#1737)

• File: Synchronised the default file/excluded_file_extensions config values with local/
excluded_file_extensions. (PR: #1743)

• Stream: Fix error when playing stream from .pls playlist with quoted URLs. (Fixes: #1770, PR: #1771)

• Docs: Resize and compress images, reducing the release tarball size from 3.5 to 1.1 MB.

• Docs: Fix broken links.

25.2 v2.2.2 (2018-12-29)

Bug fix release.

• HTTP: Fix hang on exit due to change in Tornado v5.0 IOLoop. (Fixes: #1715, PR: #1716)

• Files: Fix crash due to mix of text and bytes in paths that come from $XDG_CONFIG_HOME/user-dirs.
dirs. (Fixes: #1676, #1725)
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25.3 v2.2.1 (2018-10-15)

Bug fix release.

• HTTP: Stop blocking connections where the network location part of the Origin header is empty, such as
WebSocket connections originating from local files. (Fixes: #1711, PR: #1712)

• HTTP: Add new config value http/csrf_protection which enables all CSRF protections intro-
duced in Mopidy 2.2.0. It is enabled by default and should only be disabled by those users who are
unable to set a Content-Type: application/json request header or cannot utilise the http/
allowed_origins config value. (Fixes: #1713, PR: #1714)

25.4 v2.2.0 (2018-09-30)

Mopidy 2.2.0, a feature release, is out. It is a quite small release, featuring mostly minor fixes and improvements.

Most notably, this release introduces CSRF protection for both the HTTP and WebSocket RPC interfaces, and improves
the file path checking in the M3U backend. The CSRF protection should stop attacks against local Mopidy servers
from malicious websites, like what was demonstrated by Josef Gajdusek in #1659.

Since the release of 2.1.0, we’ve closed approximately 21 issues and pull requests through 133 commits by 22 authors.

• Dependencies: Drop support for Tornado < 4.4. Though strictly a breaking change, this shouldn’t affect any
supported systems as even Debian stable includes Tornado >= 4.4.

• Core: Remove upper limit of 10000 tracks in tracklist. 10000 tracks is still the default limit as some MPD clients
crash if the tracklist is longer, but it is now possible to set the core/max_tracklist_length config value
as high as you want to. (Fixes: #1600, PR: #1666)

• Core: Fix crash on library.lookup(uris=[]). (Fixes: #1619, PR: #1620)

• Core: Define return value of playlists.delete() to be a bool, True on success, False otherwise. (PR:
#1702)

• M3U: Ignore all attempts at accessing files outside the m3u/playlist_dir. (Partly fixes: #1659, PR: #1702)

• File: Change default ordering to show directories first, then files. (PR: #1595)

• File: Fix extraneous encoding of path. (PR: #1611)

• HTTP: Protect RPC and WebSocket interfaces against CSRF by blocking requests that originate from servers
other than those specified in the new config value http/allowed_origins. An artifact of this is that all
JSON-RPC requests must now always set the header Content-Type: application/json. (Partly
fixes: #1659, PR: #1668)

• MPD: Added idle to the list of available commands. (Fixes: #1593, PR: #1597)

• MPD: Added Unix domain sockets for binding MPD to. (Fixes: #1531, PR: #1629)

• MPD: Lookup track metadata for MPD load and listplaylistinfo. (Fixes: #1511, PR: #1621)

• Ensure that decoding of OS errors with unknown encoding never crashes, but instead replaces unknown bytes
with a replacement marker. (Fixes: #1599)

• Set GLib program and application name, so that we show up as “Mopidy” in PulseAudio instead of “python
. . . ”. (PR: #1626)
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25.5 v2.1.0 (2017-01-02)

Mopidy 2.1.0, a feature release, is finally out!

Since the release of 2.0.0, it has been quiet times in Mopidy circles. This is mainly caused by core developers moving
from the enterprise to startups or into positions with more responsibility, and getting more kids. Of course, this has
greatly decreased the amount of spare time available for open source work. But fear not, Mopidy is not dead. We’ve
returned from year long periods with close to no activity before, and will hopefully do so again.

Despite all, we’ve closed or merged approximately 18 issues and pull requests through about 170 commits since the
release of v2.0.1 back in August.

The major new feature in Mopidy 2.1 is support for restoring playback state and the current playlist after a restart.
This feature was contributed by Jens Lütjen.

• Dependencies: Drop support for Tornado < 3.2. Though strictly a breaking change, this shouldn’t have any
effect on what systems we support, as Tornado 3.2 or newer is available from the distros that include GStreamer
>= 1.2.3, which we already require.

• Core: Mopidy restores its last state when started. Can be enabled by setting the config value core/
restore_state to true.

• Audio: Update scanner to handle sources such as RTSP. (Fixes: #1479)

• Audio: The scanner set the date to mopidy.models.Track.date and mopidy.models.Album.date
(Fixes: #1741)

• File: Add new config value file/excluded_file_extensions.

• Local: Skip hidden directories directly in media_dir. (Fixes: #1559, PR: #1555)

• MPD: Fix MPD protocol for replay_gain_status command. The actual command remains unimple-
mented. (PR: #1520)

• MPD: Add nextsong and nextsongid to the response of MPD status command. (Fixes: #1133, #1516,
PR: #1523)

• MPD: Fix inconsistent playlist state after playlist is emptied with repeat and consume mode turned on. (Fixes:
#1512, PR: #1549)

• Audio: Improve handling of duration in scanning. VBR tracks should fail less frequently and MMS works
again. (Fixes: #1553, PR #1575, #1576, #1577)

25.6 v2.0.1 (2016-08-16)

Bug fix release.

• Audio: Set soft-volume flag on GStreamer’s playbin element. This is the playbin’s default, but we managed
to override it when configuring the playbin to only process audio. This should fix the “Volume/mute is not
available” warning.

• Audio: Fix buffer conversion. This fixes image extraction. (Fixes: #1469, PR: #1472)

• Audio: Update scan logic to workaround GStreamer issue where tags and duration might only be available after
we start playing. (Fixes: #935, #1453, #1474, #1480, PR: #1487)

• Audio: Better handling of seek when position does not match the expected pending position. (Fixes: #1462,
#1505, PR: #1496)

• Audio: Handle bad date tags from audio, thanks to Mario Lang and Tom Parker who fixed this in parallel.
(Fixes: #1506, PR: #1525, #1517)
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• Audio: Make sure scanner handles streams without a duration. (Fixes: #1526)

• Audio: Ensure audio tags are never None. (Fixes: #1449)

• Audio: Update mopidy.audio.Audio.set_metadata() to postpone sending tags if there is a pending
track change. (Fixes: #1357, PR: #1538)

• Core: Avoid endless loop if all tracks in the tracklist are unplayable and consume mode is off. (Fixes: #1221,
#1454, PR: #1455)

• Core: Correctly record the last position of a track when switching to another one. Particularly relevant for
Mopidy-Scrobbler users, as before it was essentially unusable. (Fixes: #1456, PR: #1534)

• Models: Fix encoding error if Identifier fields, like the musicbrainz_id model fields, contained non-
ASCII Unicode data. (Fixes: #1508, PR: #1546)

• File: Ensure path comparison is done between bytestrings only. Fixes crash where a file/media_dirs path
contained non-ASCII characters. (Fixes: #1345, PR: #1493)

• Stream: Fix milliseconds vs seconds mistake in timeout handling. (Fixes: #1521, PR: #1522)

• Docs: Fix the rendering of mopidy.core.Core and mopidy.audio.Audio docs. This should also
contribute towards making the Mopidy Debian package build bit-by-bit reproducible. (Fixes: #1500)

25.7 v2.0.0 (2016-02-15)

Mopidy 2.0 is here!

Since the release of 1.1, we’ve closed or merged approximately 80 issues and pull requests through about 350 commits
by 14 extraordinary people, including 10 newcomers. That’s about the same amount of issues and commits as between
1.0 and 1.1. The number of contributors is a bit lower but we didn’t have a real life sprint during this development
cycle. Thanks to everyone who has contributed!

With the release of Mopidy 1.0 we promised that any extension working with Mopidy 1.0 should continue working
with all Mopidy 1.x releases. Mopidy 2.0 is quite a friendly major release and will only break a single extension
that we know of: Mopidy-Spotify. To ensure that everything continues working, please upgrade to Mopidy 2.0 and
Mopidy-Spotify 3.0 at the same time.

No deprecated functionality has been removed in Mopidy 2.0.

The major features of Mopidy 2.0 are:

• Gapless playback has been mostly implemented. It works as long as you don’t change tracks in the middle of
a track or use previous and next. In a future release, previous and next will also become gapless. It is now
quite easy to have Mopidy streaming audio over the network using Icecast. See the updated Streaming through
Icecast docs for details of how to set it up and workarounds for the remaining issues.

• Mopidy has upgraded from GStreamer 0.10 to 1.x. This has been in our backlog for more than three years. With
this upgrade we’re ridding ourselves of years of GStreamer bugs that have been fixed in newer releases, we can
get into Debian testing again, and we’ve removed the last major roadblock for running Mopidy on Python 3.

25.7.1 Dependencies

• Mopidy now requires GStreamer >= 1.2.3, as we’ve finally ported from GStreamer 0.10. Since we’re requiring
a new major version of our major dependency, we’re upping the major version of Mopidy too. (Fixes: #225)
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25.7.2 Core API

• Start tlid counting at 1 instead of 0 to keep in sync with MPD’s songid.

• get_time_position() now returns the seek target while a seek is in progress. This gives better results
than just failing the position query. (Fixes: #312 PR: #1346)

• Add mopidy.core.PlaylistsController.get_uri_schemes(). (PR: #1362)

• The track_playback_ended event now includes the correct tl_track reference when changing to the
next track in consume mode. (Fixes: #1402 PR: #1403 PR: #1406)

25.7.3 Models

• Deprecated: mopidy.models.Album.images is deprecated. Use mopidy.core.
LibraryController.get_images() instead. (Fixes: #1325)

25.7.4 Extension support

• Log exception and continue if an extension crashes during setup. Previously, we let Mopidy crash if an exten-
sion’s setup crashed. (PR: #1337)

25.7.5 Local backend

• Made local/data_dir really deprecated. This change breaks older versions of Mopidy-Local-SQLite and
Mopidy-Local-Images.

25.7.6 M3U backend

• Add m3u/base_dir for resolving relative paths in M3U files. (Fixes: #1428, PR: #1442)

• Derive track name from file name for non-extended M3U playlists. (Fixes: #1364, PR: #1369)

• Major refactoring of the M3U playlist extension. (Fixes: #1370 PR: #1386)

– Add m3u/default_encoding and m3u/default_extension config values for improved text
encoding support.

– No longer scan playlist directory and parse playlists at startup or refresh. Similarly tothe file extension,
this now happens on request.

– Use mopidy.models.Ref instances when reading and writing playlists. Therefore, Track.length
is no longer stored in extended M3U playlists and #EXTINF runtime is always set to -1.

– Improve reliability of playlist updates using the core playlist API by applying the write-replace pattern for
file updates.

25.7.7 Stream backend

• Make sure both lookup and playback correctly handle playlists and our blacklist support. (Fixes: #1445, PR:
#1447)
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25.7.8 MPD frontend

• Implemented commands for modifying stored playlists:

– playlistadd

– playlistclear

– playlistdelete

– playlistmove

– rename

– rm

– save

(Fixes: #1014, PR: #1187, #1308, #1322)

• Start songid counting at 1 instead of 0 to match the original MPD server.

• Idle events are now emitted on seeked events. This fix means that clients relying on idle events now get
notified about seeks. (Fixes: #1331, PR: #1347)

• Idle events are now emitted on playlists_loaded events. This fix means that clients relying on idle
events now get notified about playlist loads. (Fixes: #1331, PR: #1347)

• Event handler for playlist_deleted has been unbroken. This unreported bug would cause the MPD
frontend to crash preventing any further communication via the MPD protocol. (PR: #1347)

25.7.9 Zeroconf

• Require stype argument to mopidy.zeroconf.Zeroconf.

• Use Avahi’s interface selection by default. (Fixes: #1283)

• Use Avahi server’s hostname instead of socket.getfqdn() in service display name.

25.7.10 Cleanups

• Removed warning if ~/.mopidy exists. We stopped using this location in 0.6, released in October 2011.

• Removed warning if ~/.config/mopidy/settings.py exists. We stopped using this settings file in
0.14, released in April 2013.

• The on_event handler in our listener helper now catches exceptions. This means that any errors in event
handling won’t crash the actor in question.

• Catch errors when loading logging/config_file. (Fixes: #1320)

• Breaking: Removed unused internal mopidy.internal.process.BaseThread. This breaks Mopidy-
Spotify 1.4.0. Versions < 1.4.0 was already broken by Mopidy 1.1, while versions >= 2.0 doesn’t use this
class.

25.7.11 Audio

• Breaking: The audio scanner now returns ISO-8601 formatted strings instead of datetime objects for dates
found in tags. Because of this change, we can now return years without months or days, which matches the
semantics of the date fields in our data models.
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• Breaking: mopidy.audio.Audio.set_appsrc()’s caps argument has changed format due to the up-
grade from GStreamer 0.10 to GStreamer 1. As far as we know, this is only used by Mopidy-Spotify. As an
example, with GStreamer 0.10 the Mopidy-Spotify caps was:

audio/x-raw-int, endianness=(int)1234, channels=(int)2, width=(int)16,
depth=(int)16, signed=(boolean)true, rate=(int)44100

With GStreamer 1 this changes to:

audio/x-raw,format=S16LE,rate=44100,channels=2,layout=interleaved

If your Mopidy backend uses set_appsrc(), please refer to GStreamer documentation for details on the new
caps string format.

• Breaking: mopidy.audio.utils.create_buffer()’s capabilities argument is no longer in use
and has been removed. As far as we know, this was only used by Mopidy-Spotify.

• Duplicate seek events getting to appsrc based backends is now fixed. This should prevent seeking in Mopidy-
Spotify from glitching. (Fixes: #1404)

• Workaround crash caused by a race that does not seem to affect functionality. This should be fixed properly
together with #1222. (Fixes: #1430, PR: #1438)

• Add a new config option, audio/buffer_time, for setting the buffer time of the GStreamer queue. If you
experience buffering before track changes, it may help to increase this. (Workaround for #1409)

• tags_changed events are only emitted for fields that have changed. Previous behavior was to emit this for
all fields received from GStreamer. (PR: #1439)

25.7.12 Gapless

• Add partial support for gapless playback. Gapless now works as long as you don’t change tracks or use
next/previous. (PR: #1288)

The Streaming through Icecast docs has been updated with the workarounds still needed to properly stream
Mopidy audio through Icecast.

• Core playback has been refactored to better handle gapless, and async state changes.

• Tests have been updated to always use a core actor so async state changes don’t trip us up.

• Seek events are now triggered when the seek completes. Previously the event was emitted when the seek was
requested, not when it completed. Further changes have been made to make seek work correctly for gapless
related corner cases. (Fixes: #1305 PR: #1346)
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CHAPTER 26

History

These are the changelogs for historical releases of Mopidy.

For the latest releases, see Changelog.

26.1 Changelog 1.x series

This is the changelog of Mopidy v1.0.0 through v1.1.2.

For the latest releases, see Changelog.

26.1.1 v1.1.2 (2016-01-18)

Bug fix release.

• Main: Catch errors when loading the logging/config_file file. (Fixes: #1320)

• Core: If changing to another track while the player is paused, the new track would not be added to the history
or marked as currently playing. (Fixes: #1352, PR: #1356)

• Core: Skips over unplayable tracks if the user attempts to change tracks while paused, like we already did if in
playing state. (Fixes #1378, PR: #1379)

• Core: Make lookup() ignore tracks with empty URIs. (Partly fixes: #1340, PR: #1381)

• Core: Fix crash if backends emits events with wrong names or arguments. (Fixes: #1383)

• Stream: If an URI is considered playable, don’t consider it as a candidate for playlist parsing. Just looking at
MIME type prefixes isn’t enough, as for example Ogg Vorbis has the MIME type application/ogg. (Fixes:
#1299)

• Local: If the scan or clear commands are used on a library that does not exist, exit with an error. (Fixes: #1298)

• MPD: Notify idling clients when a seek is performed. (Fixes: #1331)

• MPD: Don’t return tracks with empty URIs. (Partly fixes: #1340, PR: #1343)

105

https://github.com/mopidy/mopidy/issues/1320
https://github.com/mopidy/mopidy/issues/1352
https://github.com/mopidy/mopidy/issues/1356
https://github.com/mopidy/mopidy/issues/1378
https://github.com/mopidy/mopidy/issues/1379
https://github.com/mopidy/mopidy/issues/1340
https://github.com/mopidy/mopidy/issues/1381
https://github.com/mopidy/mopidy/issues/1383
https://github.com/mopidy/mopidy/issues/1299
https://github.com/mopidy/mopidy/issues/1298
https://github.com/mopidy/mopidy/issues/1331
https://github.com/mopidy/mopidy/issues/1340
https://github.com/mopidy/mopidy/issues/1343


Mopidy Documentation, Release 2.2.3

• MPD: Add volume command that was reintroduced, though still as a deprecated command, in MPD 0.18 and
is in use by some clients like mpc. (Fixes: #1393, PR: #1397)

• Proxy: Handle case where proxy/port is either missing from config or set to an empty string. (PR: #1371)

26.1.2 v1.1.1 (2015-09-14)

Bug fix release.

• Dependencies: Specify that we need Requests >= 2.0, not just any version. This ensures that we fail earlier if
Mopidy is used with a too old Requests.

• Core: Make mopidy.core.LibraryController.refresh() work for all backends with a library
provider. Previously, it wrongly worked for all backends with a playlists provider. (Fixes: #1257)

• Core: Respect core/cache_dir and core/data_dir config values added in 1.1.0 when creating the dirs
Mopidy need to store data. This should not change the behavior for desktop users running Mopidy. When
running Mopidy as a system service installed from a package which sets the core dir configs properly (e.g.
Debian and Arch packages), this fix avoids the creation of a couple of directories that should not be used,
typically /var/lib/mopidy/.local and /var/lib/mopidy/.cache. (Fixes: #1259, PR: #1266)

• Core: Fix error in get_eot_tlid() docstring. (Fixes: #1269)

• Audio: Add timeout parameter to scan(). (Part of: #1250, PR: #1281)

• Extension support: Make get_cache_dir(), get_config_dir(), and get_data_dir() class meth-
ods, so they can be used without creating an instance of the Extension class. (Fixes: #1275)

• Local: Deprecate local/data_dir and respect core/data_dir instead. This does not change the de-
faults for desktop users, only system services installed from packages that properly set core/data_dir, like
the Debian and Arch packages. (Fixes: #1259, PR: #1266)

• Local: Change default value of local/scan_flush_threshold from 1000 to 100 to shorten the time
Mopidy-Local-SQLite blocks incoming requests while scanning the local library.

• M3U: Changed default for the m3u/playlists_dir from $XDG_DATA_DIR/mopidy/m3u to unset,
which now means the extension’s data dir. This does not change the defaults for desktop users, only sys-
tem services installed from packages that properly set core/data_dir, like the Debian and Arch pakages.
(Fixes: #1259, PR: #1266)

• Stream: Expand nested playlists to find the stream URI. This used to work, but regressed in 1.1.0 with the
extraction of stream playlist parsing from GStreamer to being handled by the Mopidy-Stream backend. (Fixes:
#1250, PR: #1281)

• Stream: If “file” is present in the stream/protocols config value and the Mopidy-File extension is enabled,
we exited with an error because two extensions claimed the same URI scheme. We now log a warning recom-
mending to remove “file” from the stream/protocols config, and then proceed startup. (Fixes: #1248, PR:
#1254)

• Stream: Fix bug in new playlist parser. A non-ASCII char in an urilist comment would cause a crash while
parsing due to comparison of a non-ASCII bytestring with a Unicode string. (Fixes: #1265)

• File: Adjust log levels when failing to expand $XDG_MUSIC_DIR into a real path. This usually happens when
running Mopidy as a system service, and thus with a limited set of environment variables. (Fixes: #1249, PR:
#1255)

• File: When browsing files, we no longer scan the files to check if they’re playable. This makes browsing of the
file hierarchy instant for HTTP clients, which do no scanning of the files’ metadata, and a bit faster for MPD
clients, which no longer scan the files twice. (Fixes: #1260, PR: #1261)

106 Chapter 26. History

https://github.com/mopidy/mopidy/issues/1393
https://github.com/mopidy/mopidy/issues/1397
https://github.com/mopidy/mopidy/issues/1371
https://github.com/mopidy/mopidy/issues/1257
https://github.com/mopidy/mopidy/issues/1259
https://github.com/mopidy/mopidy/issues/1266
https://github.com/mopidy/mopidy/issues/1269
https://github.com/mopidy/mopidy/issues/1250
https://github.com/mopidy/mopidy/issues/1281
https://github.com/mopidy/mopidy/issues/1275
https://github.com/mopidy/mopidy/issues/1259
https://github.com/mopidy/mopidy/issues/1266
https://github.com/mopidy/mopidy/issues/1259
https://github.com/mopidy/mopidy/issues/1266
https://github.com/mopidy/mopidy/issues/1250
https://github.com/mopidy/mopidy/issues/1281
https://github.com/mopidy/mopidy/issues/1248
https://github.com/mopidy/mopidy/issues/1254
https://github.com/mopidy/mopidy/issues/1265
https://github.com/mopidy/mopidy/issues/1249
https://github.com/mopidy/mopidy/issues/1255
https://github.com/mopidy/mopidy/issues/1260
https://github.com/mopidy/mopidy/issues/1261


Mopidy Documentation, Release 2.2.3

• File: Allow looking up metadata about any file:// URI, just like we did in Mopidy 1.0.x, where Mopidy-
Stream handled file:// URIs. In Mopidy 1.1.0, Mopidy-File did not allow one to lookup files outside the
directories listed in file/media_dir. This broke Mopidy-Local-SQLite when the local/media_dir
directory was not within one of the file/media_dirs directories. For browsing of files, we still limit
access to files inside the file/media_dir directories. For lookup, you can now read metadata for any file
you know the path of. (Fixes: #1268, PR: #1273)

• Audio: Fix timeout handling in scanner. This regression caused timeouts to expire before it should, causing
scans to fail.

• Audio: Update scanner to emit MIME type instead of an error when missing a plugin.

26.1.3 v1.1.0 (2015-08-09)

Mopidy 1.1 is here!

Since the release of 1.0, we’ve closed or merged approximately 65 issues and pull requests through about 400 commits
by a record high 20 extraordinary people, including 14 newcomers. That’s less issues and commits than in the 1.0
release, but even more contributors, and a doubling of the number of newcomers. Thanks to everyone who has
contributed, especially those that joined the sprint at EuroPython 2015 in Bilbao, Spain a couple of weeks ago!

As we promised with the release of Mopidy 1.0, any extension working with Mopidy 1.0 should continue working
with all Mopidy 1.x releases. However, this release brings a lot stronger enforcement of our documented APIs. If an
extension doesn’t use the APIs properly, it may no longer work. The advantage of this change is that Mopidy is now
more robust against errors in extensions, and also provides vastly better error messages when extensions misbehave.
This should make it easier to create quality extensions.

The major features of Mopidy 1.1 are:

• Validation of the arguments to all core API methods, as well as all responses from backends and all data model
attributes.

• New bundled backend, Mopidy-File. It is similar to Mopidy-Local, but allows you to browse and play music
from local disk without running a scan to index the music first. The drawback is that it doesn’t support searching.

• The Mopidy-MPD server should now be up to date with the 0.19 version of the MPD protocol.

Dependencies

• Mopidy now requires Requests.

• Heads up: Porting from GStreamer 0.10 to 1.x and support for running Mopidy with Python 3.4+ is not far off
on our roadmap.

Core API

• Deprecated: Calling the following methods with kwargs is being deprecated. (PR: #1090)

– mopidy.core.LibraryController.search()

– mopidy.core.PlaylistsController.filter()

– mopidy.core.TracklistController.filter()

– mopidy.core.TracklistController.remove()

• Updated core controllers to handle backend exceptions in all calls that rely on multiple backends. (Issue: #667)

• Update core methods to do strict input checking. (Fixes: #700)

26.1. Changelog 1.x series 107

https://github.com/mopidy/mopidy/issues/1268
https://github.com/mopidy/mopidy/issues/1273
https://github.com/mopidy/mopidy/issues/1090
https://github.com/mopidy/mopidy/issues/667
https://github.com/mopidy/mopidy/issues/700


Mopidy Documentation, Release 2.2.3

• Add tlid alternatives to methods that take tl_track and also add get_{eot,next,previous}_tlid
methods as light weight alternatives to the tl_track versions of the calls. (Fixes: #1131, PR: #1136, #1140)

• Add mopidy.core.PlaybackController.get_current_tlid(). (Part of: #1137)

• Update core to handle backend crashes and bad data. (Fixes: #1161)

• Add core/max_tracklist_length config and limitation. (Fixes: #997 PR: #1225)

• Added playlist_deleted event. (Fixes: #996)

Models

• Added type checks and other sanity checks to model construction and serialization. (Fixes: #865)

• Memory usage for models has been greatly improved. We now have a lower overhead per instance by using
slots, interned identifiers and automatically reuse instances. For the test data set this was developed against, a
library of ~14.000 tracks, went from needing ~75MB to ~17MB. (Fixes: #348)

• Added mopidy.models.Artist.sortname field that is mapped to musicbrainz-sortname tag.
(Fixes: #940)

Configuration

• Add new configurations to set base directories to be used by Mopidy and Mopidy extensions: core/
cache_dir, core/config_dir, and core/data_dir. (Fixes: #843, PR: #1232)

Extension support

• Add new methods to Extension class for getting cache, config and data directories specific to your extension:

– mopidy.ext.Extension.get_cache_dir()

– mopidy.ext.Extension.get_config_dir()

– mopidy.ext.Extension.get_data_dir()

Extensions should use these methods so that the correct directories are used both when Mopidy is run by a
regular user and when run as a system service. (Fixes: #843, PR: #1232)

• Add mopidy.httpclient.format_proxy() and mopidy.httpclient.
format_user_agent(). (Part of: #1156)

• It is now possible to import mopidy.backends without having GObject or GStreamer installed. In other
words, a lot of backend extensions should now be able to run tests in a virtualenv with global site-packages
disabled. This removes a lot of potential error sources. (Fixes: #1068, PR: #1115)

Local backend

• Filter out None from get_distinct() results. All returned results should be strings. (Fixes: #1202)

Stream backend

• Move stream playlist parsing from GStreamer to the stream backend. (Fixes: #671)
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File backend

The Mopidy-File backend is a new bundled backend. It is similar to Mopidy-Local since it works with local files, but
it differs in a few key ways:

• Mopidy-File lets you browse your media files by their file hierarchy.

• It supports multiple media directories, all exposed under the “Files” directory when you browse your library
with e.g. an MPD client.

• There is no index of the media files, like the JSON or SQLite files used by Mopidy-Local. Thus no need to scan
the music collection before starting Mopidy. Everything is read from the file system when needed and changes
to the file system is thus immediately visible in Mopidy clients.

• Because there is no index, there is no support for search.

Our long term plan is to keep this very simple file backend in Mopidy, as it has a well defined and limited scope, while
splitting the more feature rich Mopidy-Local extension out to an independent project. (Fixes: #1004, PR: #1207)

M3U backend

• Support loading UTF-8 encoded M3U files with the .m3u8 file extension. (PR: #1193)

MPD frontend

• The MPD command count now ignores tracks with no length, which would previously cause a TypeError.
(PR: #1192)

• Concatenate multiple artists, composers and performers using the “A;B” format instead of “A, B”. This is a part
of updating our protocol implementation to match MPD 0.19. (PR: #1213)

• Add “not implemented” skeletons of new commands in the MPD protocol version 0.19:

– Current playlist:

* rangeid

* addtagid

* cleartagid

– Mounts and neighbors:

* mount

* unmount

* listmounts

* listneighbors

– Music DB:

* listfiles

• Track data now include the Last-Modified field if set on the track model. (Fixes: #1218, PR: #1219)

• Implement tagtypes MPD command. (PR: #1235)

• Exclude empty tags fields from metadata output. (Fixes: #1045, PR: #1235)

• Implement protocol extensions to output Album URIs and Album Images when outputting track data to clients.
(PR: #1230)
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• The MPD commands lsinfo and listplaylists are now implemented using the as_list() method,
which retrieves a lot less data and is thus much faster than the deprecated get_playlists(). The drawback
is that the Last-Modified timestamp is not available through this method, and the timestamps in the MPD
command responses are now always set to the current time.

Internal changes

• Tests have been cleaned up to stop using deprecated APIs where feasible. (Partial fix: #1083, PR: #1090)

26.1.4 v1.0.8 (2015-07-22)

Bug fix release.

• Fix reversal of Title and Name in MPD protocol (Fixes: #1212 PR: #1214)

• Fix crash if an M3U file in the m3u/playlist_dir directory has a file name not decodable with the current
file system encoding. (Fixes: #1209)

26.1.5 v1.0.7 (2015-06-26)

Bug fix release.

• Fix error in the MPD command list title .... The error was introduced in v1.0.6.

26.1.6 v1.0.6 (2015-06-25)

Bug fix release.

• Core/MPD/Local: Add support for title in mopidy.core.LibraryController.
get_distinct(). (Fixes: #1181, PR: #1183)

• Core: Make sure track changes make it to audio while paused. (Fixes: #1177, PR: #1185)

26.1.7 v1.0.5 (2015-05-19)

Bug fix release.

• Core: Add workaround for playlist providers that do not support creating playlists. (Fixes: #1162, PR #1165)

• M3U: Fix encoding error when saving playlists with non-ASCII track titles. (Fixes: #1175, PR #1176)

26.1.8 v1.0.4 (2015-04-30)

Bug fix release.

• Audio: Since all previous attempts at tweaking the queuing for #1097 seems to break things in subtle ways for
different users. We are giving up on tweaking the defaults and just going to live with a bit more lag on software
volume changes. (Fixes: #1147)
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26.1.9 v1.0.3 (2015-04-28)

Bug fix release.

• HTTP: Another follow-up to the Tornado <3.0 fixing. Since the tests aren’t run for Tornado 2.3 we didn’t catch
that our previous fix wasn’t sufficient. (Fixes: #1153, PR: #1154)

• Audio: Follow-up fix for #1097 still exhibits issues for certain setups. We are giving this get an other go by
setting the buffer size to maximum 100ms instead of a fixed number of buffers. (Addresses: #1147, PR: #1154)

26.1.10 v1.0.2 (2015-04-27)

Bug fix release.

• HTTP: Make event broadcasts work with Tornado 2.3 again. The threading fix in v1.0.1 broke this.

• Audio: Fix for #1097 tuned down the buffer size in the queue. Turns out this can cause distortions in certain
cases. Give this an other go with a more generous buffer size. (Addresses: #1147, PR: #1152)

• Audio: Make sure mute events get emitted by software mixer. (Fixes: #1146, PR: #1152)

26.1.11 v1.0.1 (2015-04-23)

Bug fix release.

• Core: Make the new history controller available for use. (Fixes: mopidy.js#6)

• Audio: Software volume control has been reworked to greatly reduce the delay between changing the volume
and the change taking effect. (Fixes: #1097, PR: #1101)

• Audio: As a side effect of the previous bug fix, software volume is no longer tied to the PulseAudio application
volume when using pulsesink. This behavior was confusing for many users and doesn’t work well with the
plans for multiple outputs.

• Audio: Update scanner to decode all media it finds. This should fix cases where the scanner hangs on non-audio
files like video. The scanner will now also let us know if we found any decodeable audio. (Fixes: #726, PR:
issue:1124)

• HTTP: Fix threading bug that would cause duplicate delivery of WS messages. (PR: #1127)

• MPD: Fix case where a playlist that is present in both browse and as a listed playlist breaks the MPD frontend
protocol output. (Fixes #1120, PR: #1142)

26.1.12 v1.0.0 (2015-03-25)

Three months after our fifth anniversary, Mopidy 1.0 is finally here!

Since the release of 0.19, we’ve closed or merged approximately 140 issues and pull requests through more than
600 commits by a record high 19 extraordinary people, including seven newcomers. Thanks to everyone who has
contributed!

For the longest time, the focus of Mopidy 1.0 was to be another incremental improvement, to be numbered 0.20. The
result is still very much an incremental improvement, with lots of small and larger improvements across Mopidy’s
functionality.

The major features of Mopidy 1.0 are:

• Semantic Versioning. We promise to not break APIs before Mopidy 2.0. A Mopidy extension working with
Mopidy 1.0 should continue to work with all Mopidy 1.x releases.
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• Preparation work to ease migration to a cleaned up and leaner core API in Mopidy 2.0, and to give us some of
the benefits of the cleaned up core API right away.

• Preparation work to enable gapless playback in an upcoming 1.x release.

Dependencies

Since the previous release there are no changes to Mopidy’s dependencies. However, porting from GStreamer 0.10 to
1.x and support for running Mopidy with Python 3.4+ is not far off on our roadmap.

Core API

In the API used by all frontends and web extensions there is lots of methods and arguments that are now deprecated in
preparation for the next major release. With the exception of some internals that leaked out in the playback controller,
no core APIs have been removed in this release. In other words, most clients should continue to work unchanged when
upgrading to Mopidy 1.0. Though, it is strongly encouraged to review any use of the deprecated parts of the API as
those parts will be removed in Mopidy 2.0.

• Deprecated: Deprecate all Python properties in the core API. The previously undocumented getter and setter
methods are now the official API. This aligns the Python API with the WebSocket/JavaScript API. Python
frontends needs to be updated. WebSocket/JavaScript API users are not affected. (Fixes: #952)

• Add mopidy.core.HistoryController which keeps track of what tracks have been played. (Fixes:
#423, #1056, PR: #803, #1063)

• Add mopidy.core.MixerController which keeps track of volume and mute. (Fixes: #962)

Core library controller

• Deprecated: mopidy.core.LibraryController.find_exact(). Use mopidy.core.
LibraryController.search() with the exact keyword argument set to True.

• Deprecated: The uri argument to mopidy.core.LibraryController.lookup(). Use new uris
keyword argument instead.

• Add exact keyword argument to mopidy.core.LibraryController.search().

• Add uris keyword argument to mopidy.core.LibraryController.lookup() which allows for
simpler lookup of multiple URIs. (Fixes: #1008, PR: #1047)

• Updated mopidy.core.LibraryController.search() and mopidy.core.
LibraryController.find_exact() to normalize and warn about malformed queries from clients.
(Fixes: #1067, PR: #1073)

• Add mopidy.core.LibraryController.get_distinct() for getting unique values for a given
field. (Fixes: #913, PR: #1022)

• Add mopidy.core.LibraryController.get_images() for looking up images for any URI that is
known to the backends. (Fixes #973, PR: #981, #992 and #1013)

Core playlist controller

• Deprecated: mopidy.core.PlaylistsController.get_playlists(). Use as_list() and
get_items() instead. (Fixes: #1057, PR: #1075)
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• Deprecated: mopidy.core.PlaylistsController.filter(). Use as_list() and filter your-
self.

• Add mopidy.core.PlaylistsController.as_list(). (Fixes: #1057, PR: #1075)

• Add mopidy.core.PlaylistsController.get_items(). (Fixes: #1057, PR: #1075)

Core tracklist controller

• Removed: The following methods were documented as internal. They are now fully private and unavailable
outside the core actor. (Fixes: #1058, PR: #1062)

– mopidy.core.TracklistController.mark_played()

– mopidy.core.TracklistController.mark_playing()

– mopidy.core.TracklistController.mark_unplayable()

• Add uris argument to mopidy.core.TracklistController.add() which allows for simpler addi-
tion of multiple URIs to the tracklist. (Fixes: #1060, PR: #1065)

Core playback controller

• Removed: Remove several internal parts that were leaking into the public API and was never intended to be
used externally. (Fixes: #1070, PR: #1076)

– mopidy.core.PlaybackController.change_track() is now internal.

– Removed on_error_step keyword argument from mopidy.core.PlaybackController.
play()

– Removed clear_current_track keyword argument to mopidy.core.
PlaybackController.stop().

– Made the following event triggers internal:

* mopidy.core.PlaybackController.on_end_of_track()

* mopidy.core.PlaybackController.on_stream_changed()

* mopidy.core.PlaybackController.on_tracklist_changed()

– mopidy.core.PlaybackController.set_current_tl_track() is now internal.

• Deprecated: The old methods on mopidy.core.PlaybackController for volume and mute manage-
ment have been deprecated. Use mopidy.core.MixerController instead. (Fixes: #962)

• When seeking while paused, we no longer change to playing. (Fixes: #939, PR: #1018)

• Changed mopidy.core.PlaybackController.play() to take the return value from mopidy.
backend.PlaybackProvider.change_track() into account when determining the success of the
play() call. (PR: #1071)

• Add mopidy.core.Listener.stream_title_changed() and mopidy.core.
PlaybackController.get_stream_title() for letting clients know about the current title in
streams. (PR: #938, #1030)
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Backend API

In the API implemented by all backends there have been way fewer but somewhat more drastic changes with some
methods removed and new ones being required for certain functionality to continue working. Most backends were
already updated to be compatible with Mopidy 1.0 before the release. New versions of the backends will be released
shortly after Mopidy itself.

Backend library providers

• Removed: Remove mopidy.backend.LibraryProvider.find_exact().

• Add an exact keyword argument to mopidy.backend.LibraryProvider.search() to replace the
old find_exact() method.

Backend playlist providers

• Removed: Remove default implementation of mopidy.backend.PlaylistsProvider.playlists.
This is potentially backwards incompatible. (PR: #1046)

• Changed the API for mopidy.backend.PlaylistsProvider. Note that this change is not backwards
compatible. These changes are important to reduce the Mopidy startup time. (Fixes: #1057, PR: #1075)

– Add mopidy.backend.PlaylistsProvider.as_list().

– Add mopidy.backend.PlaylistsProvider.get_items().

– Remove mopidy.backend.PlaylistsProvider.playlists property.

Backend playback providers

• Changed the API for mopidy.backend.PlaybackProvider. Note that this change is not backwards
compatible for certain backends. These changes are crucial to adding gapless in one of the upcoming releases.
(Fixes: #1052, PR: #1064)

– mopidy.backend.PlaybackProvider.translate_uri() has been added. It is strongly rec-
ommended that all backends migrate to using this API for translating “Mopidy URIs” to real ones for
playback.

– The semantics and signature of mopidy.backend.PlaybackProvider.play() has changed.
The method is now only used to set the playback state to playing, and no longer takes a track.

Backends must migrate to mopidy.backend.PlaybackProvider.translate_uri() or
mopidy.backend.PlaybackProvider.change_track() to continue working.

– mopidy.backend.PlaybackProvider.prepare_change() has been added.

Models

• Add mopidy.models.Image model to be returned by mopidy.core.LibraryController.
get_images(). (Part of #973)

• Change the semantics of mopidy.models.Track.last_modified to be milliseconds instead of seconds
since Unix epoch, or a simple counter, depending on the source of the track. This makes it match the semantics
of mopidy.models.Playlist.last_modified. (Fixes: #678, PR: #1036)
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Commands

• Make the mopidy command print a friendly error message if the gobject Python module cannot be imported.
(Fixes: #836)

• Add support for repeating the -v argument four times to set the log level for all loggers to the lowest possible
value, including log records at levels lower than DEBUG too.

• Add path to the current mopidy executable to the output of mopidy deps. This make it easier to see that a
user is using pip-installed Mopidy instead of APT-installed Mopidy without asking for which mopidy output.

Configuration

• Add support for the log level value all to the loglevels configurations. This can be used to show absolutely all
log records, including those at custom levels below DEBUG.

• Add debug logging of unknown sections. (Fixes: #694, PR: #1002)

Logging

• Add custom log level TRACE (numerical level 5), which can be used by Mopidy and extensions to log at an
even more detailed level than DEBUG.

• Add support for per logger color overrides. (Fixes: #808, PR: #1005)

Local backend

• Improve error logging for scanner. (Fixes: #856, PR: #874)

• Add symlink support with loop protection to file finder. (Fixes: #858, PR: #874)

• Add --force option for mopidy local scan for forcing a full rescan of the library. (Fixes: #910, PR:
#1010)

• Stop ignoring offset and limit in searches when using the default JSON backed local library. (Fixes: #917,
PR: #949)

• Removed double triggering of playlists_loaded event. (Fixes: #998, PR: #999)

• Cleanup and refactoring of local playlist code. Preserves playlist names better and fixes bug in deletion of
playlists. (Fixes: #937, PR: #995 and rebased into #1000)

• Sort local playlists by name. (Fixes: #1026, PR: #1028)

• Moved playlist support out to a new extension, Mopidy-M3U.

• Deprecated: The config value local/playlists_dir is no longer in use and can be removed from your
config.

Local library API

• Implementors of mopidy.local.Library.lookup() should now return a list of Track instead of a
single track, just like the other lookup() methods in Mopidy. For now, returning a single track will continue
to work. (PR: #840)

• Add support for giving local libraries direct access to tags and duration. (Fixes: #967)
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• Add mopidy.local.Library.get_images() for looking up images for local URIs. (Fixes: #1031,
PR: #1032 and #1037)

Stream backend

• Add support for HTTP proxies when doing initial metadata lookup for a stream. (Fixes #390, PR: #982)

• Add basic tests for the stream library provider.

M3U backend

• Mopidy-M3U is a new bundled backend. It provides the same M3U support as was previously part of the local
backend. See Migrating from Mopidy-Local playlists for how to migrate your local playlists to work with the
M3U backend. (Fixes: #1054, PR: #1066)

• In playlist names, replace “/”, which are illegal in M3U file names, with “|”. (PR: #1084)

MPD frontend

• Add support for blacklisting MPD commands. This is used to prevent clients from using listall and
listallinfo which recursively lookup the entire “database”. If you insist on using a client that needs these
commands change mpd/command_blacklist.

• Start setting the Name field with the stream title when listening to radio streams. (Fixes: #944, PR: #1030)

• Enable browsing of artist references, in addition to albums and playlists. (PR: #884)

• Switch the list command over to using the new method mopidy.core.LibraryController.
get_distinct() for increased performance. (Fixes: #913)

• In stored playlist names, replace “/”, which are illegal, with “|” instead of a whitespace. Pipes are more similar
to forward slash.

• Share a single mapping between names and URIs across all MPD sessions. (Fixes: #934, PR: #968)

• Add support for toggleoutput command. (PR: #1015)

• The mixrampdb and mixrampdelay commands are now known to Mopidy, but are not implemented. (PR:
#1015)

• Fix crash on socket error when using a locale causing the exception’s error message to contain characters not in
ASCII. (Fixes: issue:971, PR: #1044)

HTTP frontend

• Deprecated: Deprecated the http/static_dir config. Please make your web clients pip-installable
Mopidy extensions to make it easier to install for end users.

• Prevent a race condition in WebSocket event broadcasting from crashing the web server. (PR: #1020)

Mixers

• Add support for disabling volume control in Mopidy entirely by setting the configuration audio/mixer to
none. (Fixes: #936, PR: #1015, #1035)
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Audio

• Removed: Support for visualizers and the audio/visualizer config value. The feature was originally
added as a workaround for all the people asking for ncmpcpp visualizer support, and since we could get it
almost for free thanks to GStreamer. But, this feature did never make sense for a server such as Mopidy.

• Deprecated: Deprecated mopidy.audio.Audio.emit_end_of_stream(). Pass a None buffer to
mopidy.audio.Audio.emit_data() to end the stream. This should only affect Mopidy-Spotify.

• Add mopidy.audio.AudioListener.tags_changed(). Notifies core when new tags are found.

• Add mopidy.audio.Audio.get_current_tags() for looking up the current tags of the playing me-
dia.

• Internal code cleanup within audio subsystem:

– Started splitting audio code into smaller better defined pieces.

– Improved GStreamer related debug logging.

– Provide better error messages for missing plugins.

– Add foundation for trying to re-add multiple output support.

– Add internal helper for converting GStreamer data types to Python.

– Reduce scope of audio scanner to just find tags and duration. Modification time, URI and minimum length
handling are now outside of this class.

– Update scanner to operate with milliseconds for duration.

– Update scanner to use a custom source, typefind and decodebin. This allows us to detect playlists before
we try to decode them.

– Refactored scanner to create a new pipeline per track, this is needed as reseting decodebin is much slower
than tearing it down and making a fresh one.

• Move and rename helper for converting tags to tracks.

• Ignore albums without a name when converting tags to tracks.

• Support UTF-8 in M3U playlists. (Fixes: #853)

• Add workaround for volume not persisting across tracks on OS X. (Issue: #886, PR: #958)

• Improved missing plugin error reporting in scanner. (PR: #1033)

• Introduced a new return type for the scanner, a named tuple with uri, tags, duration, seekable and
mime. (PR: #1033)

• Added support for checking if the media is seekable, and getting the initial MIME type guess. (PR: #1033)

Mopidy.js client library

This version has been released to npm as Mopidy.js v0.5.0.

• Reexport When.js library as Mopidy.when, to make it easily available to users of Mopidy.js. (Fixes:
mopidy.js#1)

• Default to wss:// as the WebSocket protocol if the page is hosted on https://. This has no effect if the
webSocketUrl setting is specified. (Pull request: mopidy.js#2)

• Upgrade dependencies.
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Development

• Add new contribution guidelines.

• Add new development guide.

• Speed up event emitting.

• Changed test runner from nose to py.test. (PR: #1024)

26.2 Changelog 0.x series

This is the changelog of Mopidy v0.1.0a0 through v0.19.5.

For the latest releases, see Changelog.

26.2.1 v0.19.5 (2014-12-23)

Today is Mopidy’s five year anniversary. We’re celebrating with a bugfix release and are looking forward to the next
five years!

• Config: Support UTF-8 in extension’s default config. If an extension with non-ASCII characters in its default
config was installed, and Mopidy didn’t already have a config file, Mopidy would crashed when trying to create
the initial config file based on the default config of all available extensions. (Fixes: discourse.mopidy.com/t/428)

• Extensions: Fix crash when unpacking data from pkg_resources.VersionConflict created with a
single argument. (Fixes: #911)

• Models: Hide empty collections from repr() representations.

• Models: Field values are no longer stored on the model instance when the value matches the default value for
the field. This makes two models equal when they have a field which in one case is implicitly set to the default
value and in the other case explicitly set to the default value, but with otherwise equal fields. (Fixes: #837)

• Models: Changed the default value of mopidy.models.Album.num_tracks, mopidy.models.
Track.track_no, and mopidy.models.Track.last_modified from 0 to None.

• Core: When skipping to the next track in consume mode, remove the skipped track from the tracklist. This is
consistent with the original MPD server’s behavior. (Fixes: #902)

• Local: Fix scanning of modified files. (PR: #904)

• MPD: Re-enable browsing of empty directories. (PR: #906)

• MPD: Remove track comments from responses. They are not included by the original MPD server, and this
works around #881. (PR: #882)

• HTTP: Errors while starting HTTP apps are logged instead of crashing the HTTP server. (Fixes: #875)

26.2.2 v0.19.4 (2014-09-01)

Bug fix release.

• Configuration: mopidy --config now supports directories.

• Logging: Fix that some loggers would be disabled if logging/config_file was set. (Fixes: #740)

• Quit process with exit code 1 when stopping because of a backend, frontend, or mixer initialization error.
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• Backend API: Update mopidy.backend.LibraryProvider.browse() signature and docs to match
how the core use the backend’s browse method. (Fixes: #833)

• Local library API: Add mopidy.local.Library.ROOT_DIRECTORY_URI constant for use by imple-
mentors of mopidy.local.Library.browse(). (Related to: #833)

• HTTP frontend: Guard against double close of WebSocket, which causes an AttributeError on Tornado <
3.2.

• MPD frontend: Make the list command return albums when sending 3 arguments. This was incorrectly
returning artists after the MPD command changes in 0.19.0. (Fixes: #817)

• MPD frontend: Fix a race condition where two threads could try to free the same data simultaneously. (Fixes:
#781)

26.2.3 v0.19.3 (2014-08-03)

Bug fix release.

• Audio: Fix negative track length for radio streams. (Fixes: #662, PR: #796)

• Audio: Tell GStreamer to not pick Jack sink. (Fixes: #604)

• Zeroconf: Fix discovery by adding .local to the announced hostname. (PR: #795)

• Zeroconf: Fix intermittent DBus/Avahi exception.

• Extensions: Fail early if trying to setup an extension which doesn’t implement the mopidy.ext.
Extension.setup() method. (Fixes: #813)

26.2.4 v0.19.2 (2014-07-26)

Bug fix release, directly from the Mopidy development sprint at EuroPython 2014 in Berlin.

• Audio: Make audio/mixer_volume work on the software mixer again. This was broken with the mixer
changes in 0.19.0. (Fixes: #791)

• HTTP frontend: When using Tornado 4.0, allow WebSocket requests from other hosts. (Fixes: #788)

• MPD frontend: Fix crash when MPD commands are called with the wrong number of arguments. This was
broken with the MPD command changes in 0.19.0. (Fixes: #789)

26.2.5 v0.19.1 (2014-07-23)

Bug fix release.

• Dependencies: Mopidy now requires Tornado >= 2.3, instead of >= 3.1. This should make Mopidy continue to
work on Debian/Raspbian stable, where Tornado 2.3 is the newest version available.

• HTTP frontend: Add missing string interpolation placeholder.

• Development: mopidy --version and mopidy.core.Core.get_version() now returns the cor-
rect version when Mopidy is run from a Git repo other than Mopidy’s own. (Related to #706)
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26.2.6 v0.19.0 (2014-07-21)

The focus of 0.19 have been on improving the MPD implementation, replacing GStreamer mixers with our own mixer
API, and on making web clients installable with pip, like any other Mopidy extension.

Since the release of 0.18, we’ve closed or merged 53 issues and pull requests through about 445 commits by 12 people,
including five new guys. Thanks to everyone that has contributed!

Dependencies

• Mopidy now requires Tornado >= 3.1.

• Mopidy no longer requires CherryPy or ws4py. Previously, these were optional dependencies required for the
HTTP frontend to work.

Backend API

• Breaking change: Imports of the backend API from mopidy.backends no longer works. The new API
introuced in v0.18 is now required. Most extensions already use the new API location.

Commands

• The mopidy-convert-config tool for migrating the setings.py configuration file used by Mopidy up
until 0.14 to the new config file format has been removed after over a year of trusty service. If you still need to
convert your old settings.py configuration file, do so using and older release, like Mopidy 0.18, or migrate
the configuration to the new format by hand.

Configuration

• Add optional=True support to mopidy.config.Boolean.

Logging

• Fix proper decoding of exception messages that depends on the user’s locale.

• Colorize logs depending on log level. This can be turned off with the new logging/color configuration.
(Fixes: #772)

Extension support

• Breaking change: Removed the Extension methods that were deprecated
in 0.18: get_backend_classes(), get_frontend_classes(), and
register_gstreamer_elements(). Use mopidy.ext.Extension.setup() instead, as
most extensions already do.

Audio

• Breaking change: Removed support for GStreamer mixers. GStreamer 1.x does not support volume control, so
we changed to use software mixing by default in v0.17.0. Now, we’re removing support for all other GStreamer
mixers and are reintroducing mixers as something extensions can provide independently of GStreamer. (Fixes:
#665, PR: #760)

• Breaking change: Changed the audio/mixer config value to refer to Mopidy mixer extensions instead of
GStreamer mixers. The default value, software, still has the same behavior. All other values will either no
longer work or will at the very least require you to install an additional extension.

• Changed the audio/mixer_volume config value behavior from affecting GStreamer mixers to affecting
Mopidy mixer extensions instead. The end result should be the same without any changes to this config value.

• Deprecated the audio/mixer_track config value. This config value is no longer in use. Mixer extensions
that need additional configuration handle this themselves.

• Use Proxy configuration when streaming media from the Internet. (Partly fixing #390)

• Fix proper decoding of exception messages that depends on the user’s locale.
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• Fix recognition of ASX and XSPF playlists with tags in all caps or with carriage return line endings. (Fixes:
#687)

• Support simpler ASX playlist variant with <ENTRY> elements without children.

• Added target_state attribute to the audio layer’s state_changed() event. Currently, it is None ex-
cept when we’re paused because of buffering. Then the new field exposes our target state after buffering has
completed.

Mixers

• Added new mopidy.mixer.Mixer API which can be implemented by extensions.

• Created a bundled extension, Mopidy-SoftwareMixer, for controlling volume in software in GStreamer’s
pipeline. This is Mopidy’s default mixer. To use this mixer, set the audio/mixer config value to software.

• Created an external extension, Mopidy-ALSAMixer, for controlling volume with hardware through ALSA. To
use this mixer, install the extension, and set the audio/mixer config value to alsamixer.

HTTP frontend

• CherryPy and ws4py have been replaced with Tornado. This will hopefully reduce CPU usage on OS X (#445)
and improve error handling in corner cases, like when returning from suspend (#718).

• Added support for packaging web clients as Mopidy extensions and installing them using pip. See the HTTP
server side API for details. (Fixes: #440)

• Added web page at /mopidy/ which lists all web clients installed as Mopidy extensions. (Fixes: #440)

• Added support for extending the HTTP frontend with additional server side functionality. See HTTP server side
API for details.

• Exposed the core API using HTTP POST requests with JSON-RPC payloads at /mopidy/rpc. This is the
same JSON-RPC interface as is exposed over the WebSocket at /mopidy/ws, so you can run any core API
command.

The HTTP POST interfaces does not give you access to events from Mopidy, like the WebSocket does. The
WebSocket interface is still recommended for web clients. The HTTP POST interface may be easier to use
for simpler programs, that just needs to query the currently playing track or similar. See HTTP POST API for
details.

• If Zeroconf is enabled, we now announce the _mopidy-http._tcp service in addition to _http._tcp.
This is to make it easier to automatically find Mopidy’s HTTP server among other Zeroconf-published HTTP
servers on the local network.

Mopidy.js client library

This version has been released to npm as Mopidy.js v0.4.0.

• Update Mopidy.js to use when.js 3. If you maintain a Mopidy client, you should review the differences between
when.js 2 and 3 and the when.js debugging guide.

• All of Mopidy.js’ promise rejection values are now of the Error type. This ensures that all JavaScript VMs will
show a useful stack trace if a rejected promise’s value is used to throw an exception. To allow catch clauses to
handle different errors differently, server side errors are of the type Mopidy.ServerError, and connection
related errors are of the type Mopidy.ConnectionError.

• Add support for method calls with by-name arguments. The old calling convention, by-position-only,
is still the default, but this will change in the future. A warning is logged to the console if you don’t explicitly
select a calling convention. See the Mopidy.js JavaScript library docs for details.

MPD frontend
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• Proper command tokenization for MPD requests. This replaces the old regex based system with an MPD pro-
tocol specific tokenizer responsible for breaking requests into pieces before the handlers have at them. (Fixes:
#591 and #592)

• Updated command handler system. As part of the tokenizer cleanup we’ve updated how commands are regis-
tered and making it simpler to create new handlers.

• Simplified a bunch of handlers. All the “browse” type commands now use a common browse helper under the
hood for less repetition. Likewise the query handling of “search” commands has been somewhat simplified.

• Adds placeholders for missing MPD commands, preparing the way for bumping the protocol version once they
have been added.

• Respond to all pending requests before closing connection. (PR: #722)

• Stop incorrectly catching LookupError in command handling. (Fixes: #741)

• Browse support for playlists and albums has been added. (PR: #749, #754)

• The lsinfo command now returns browse results before local playlists. This is helpful as not all clients sort
the returned items. (PR: #755)

• Browse now supports different entries with identical names. (PR: #762)

• Search terms that are empty or consists of only whitespace are no longer included in the search query sent to
backends. (PR: #758)

Local backend

• The JSON local library backend now logs a friendly message telling you about mopidy local scan if you
don’t have a local library cache. (Fixes: #711)

• The local scan command now use multiple threads to walk the file system and check files’ modification
time. This speeds up scanning, escpecially when scanning remote file systems over e.g. NFS.

• the local scan command now creates necessary folders if they don’t already exist. Previously, this was only
done by the Mopidy server, so doing a local scan before running the server the first time resulted in a crash.
(Fixes: #703)

• Fix proper decoding of exception messages that depends on the user’s locale.

Stream backend

• Add config value stream/metadata_blacklist to blacklist certain URIs we should not open to read
metadata from before they are opened for playback. This is typically needed for services that invalidate URIs
after a single use. (Fixes: #660)

26.2.7 v0.18.3 (2014-02-16)

Bug fix release.

• Fix documentation build.

26.2.8 v0.18.2 (2014-02-16)

Bug fix release.

• We now log warnings for wrongly configured extensions, and clearly label them in mopidy config, but does
no longer stop Mopidy from starting because of misconfigured extensions. (Fixes: #682)

• Fix a crash in the server side WebSocket handler caused by connection problems with clients. (Fixes: #428,
#571)
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• Fix the time_position field of the track_playback_ended event, which has been always 0 since
v0.18.0. This made scrobbles by Mopidy-Scrobbler not be persisted by Last.fm, because Mopidy reported that
you listened to 0 seconds of each track. (Fixes: #674)

• Fix the log setup so that it is possible to increase the amount of logging from a specific logger using the
loglevels config section. (Fixes: #684)

• Serialization of Playlistmodels with the last_modified field set to a datetime.datetime instance
did not work. The type of mopidy.models.Playlist.last_modified has been redefined from a
datetime.datetime instance to the number of milliseconds since Unix epoch as an integer. This makes
serialization of the time stamp simpler.

• Minor refactor of the MPD server context so that Mopidy’s MPD protocol implementation can easier be reused.
(Fixes: #646)

• Network and signal handling has been updated to play nice on Windows systems.

26.2.9 v0.18.1 (2014-01-23)

Bug fix release.

• Disable extension instead of crashing if a dependency has the wrong version. (Fixes: #657)

• Make logging work to both console, debug log file, and any custom logging setup from logging/
config_file at the same time. (Fixes: #661)

26.2.10 v0.18.0 (2014-01-19)

The focus of 0.18 have been on two fronts: the local library and browsing.

First, the local library’s old tag cache file used for storing the track metadata scanned from your music collection has
been replaced with a far simpler implementation using JSON as the storage format. At the same time, the local library
have been made replaceable by extensions, so you can now create extensions that use your favorite database to store
the metadata.

Second, we’ve finally implemented the long awaited “file system” browsing feature that you know from MPD. It is
supported by both the MPD frontend and the local and Spotify backends. It is also used by the new Mopidy-Dirble
extension to provide you with a directory of Internet radio stations from all over the world.

Since the release of 0.17, we’ve closed or merged 49 issues and pull requests through about 285 commits by 11 people,
including six new guys. Thanks to everyone that has contributed!

Core API

• Add mopidy.core.Core.version() for HTTP clients to manage compatibility between API versions.
(Fixes: #597)

• Add mopidy.models.Ref class for use as a lightweight reference to other model types, containing just an
URI, a name, and an object type. It is barely used for now, but its use will be extended over time.

• Add mopidy.core.LibraryController.browse() method for browsing a virtual file sys-
tem of tracks. Backends can implement support for this by implementing mopidy.backend.
LibraryProvider.browse().

• Events emitted on play/stop, pause/resume, next/previous and on end of track has been cleaned up to work
consistently. See the message of commit 1d108752f6 for the full details. (Fixes: #629)

Backend API
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• Move the backend API classes from mopidy.backends.base to mopidy.backend and remove the
Base prefix from the class names:

– From mopidy.backends.base.Backend to mopidy.backend.Backend

– From mopidy.backends.base.BaseLibraryProvider to mopidy.backend.
LibraryProvider

– From mopidy.backends.base.BasePlaybackProvider to mopidy.backend.
PlaybackProvider

– From mopidy.backends.base.BasePlaylistsProvider to mopidy.backend.
PlaylistsProvider

– From mopidy.backends.listener.BackendListener to mopidy.backend.
BackendListener

Imports from the old locations still works, but are deprecated.

• Add mopidy.backend.LibraryProvider.browse(), which can be implemented by backends that
wants to expose directories of tracks in Mopidy’s virtual file system.

Frontend API

• The dummy backend used for testing many frontends have moved from mopidy.backends.dummy to
mopidy.backend.dummy. (PR: #984)

Commands

• Reduce amount of logging from dependencies when using mopidy -v . (Fixes: #593)

• Add support for additional logging verbosity levels with mopidy -vv and mopidy -vvv which increases
the amount of logging from dependencies. (Fixes: #593)

Configuration

• The default for the mopidy --config option has been updated to include $XDG_CONFIG_DIRS in addi-
tion to $XDG_CONFIG_DIR. (Fixes #431)

• Added support for deprecating config values in order to allow for graceful removal of the no longer used config
value local/tag_cache_file.

Extension support

• Switched to using a registry model for classes provided by extension. This allows extensions to be extended
by other extensions, as needed by for example pluggable libraries for the local backend. See mopidy.ext.
Registry for details. (Fixes #601)

• Added the new method mopidy.ext.Extension.setup(). This method replaces
the now deprecated get_backend_classes(), get_frontend_classes(), and
register_gstreamer_elements().

Audio

• Added audio/mixer_volume to set the initial volume of mixers. This is especially useful for setting the
software mixer volume to something else than the default 100%. (Fixes: #633)

Local backend

Note: After upgrading to Mopidy 0.18 you must run mopidy local scan to reindex your local music collection.
This is due to the change of storage format.

• Added support for browsing local directories in Mopidy’s virtual file system.
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• Finished the work on creating pluggable libraries. Users can now reconfigure Mopidy to use alternate library
providers of their choosing for local files. (Fixes issue #44, partially resolves #397, and causes a temporary
regression of #527.)

• Switched default local library provider from a “tag cache” file that closely resembled the one used by the original
MPD server to a compressed JSON file. This greatly simplifies our library code and reuses our existing model
serialization code, as used by the HTTP API and web clients.

• Removed our outdated and bug-ridden “tag cache” local library implementation.

• Added the config value local/library to select which library to use. It defaults to json, which is the only
local library bundled with Mopidy.

• Added the config value local/data_dir to have a common config for where to store local library data. This
is intended to avoid every single local library provider having to have it’s own config value for this.

• Added the config value local/scan_flush_threshold to control how often to tell local libraries to store
changes when scanning local music.

Streaming backend

• Add live lookup of URI metadata. (Fixes #540)

• Add support for extended M3U playlist, meaning that basic track metadata stored in playlists will be used by
Mopidy.

HTTP frontend

• Upgrade Mopidy.js dependencies and add support for using Mopidy.js with Browserify. This version has been
released to npm as Mopidy.js v0.2.0. (Fixes: #609)

MPD frontend

• Make the lsinfo, listall, and listallinfo commands support browsing of Mopidy’s virtual file sys-
tem. (Fixes: #145)

• Empty commands now return a ACK [5@0] {} No command given error instead of OK. This is consis-
tent with the original MPD server implementation.

Internal changes

• Events from the audio actor, backends, and core actor are now emitted asyncronously through the GObject event
loop. This should resolve the issue that has blocked the merge of the EOT-vs-EOS fix for a long time.

26.2.11 v0.17.0 (2013-11-23)

The focus of 0.17 has been on introducing subcommands to the mopidy command, making it possible for extensions
to add subcommands of their own, and to improve the default config file when starting Mopidy the first time. In
addition, we’ve grown support for Zeroconf publishing of the MPD and HTTP servers, and gotten a much faster
scanner. The scanner now also scans some additional tags like composers and performers.

Since the release of 0.16, we’ve closed or merged 22 issues and pull requests through about 200 commits by five
people, including one new contributor.

Commands

• Switched to subcommands for the mopidy command , this implies the following changes: (Fixes: #437)

Old command New command
mopidy –show-deps mopidy deps
mopidy –show-config mopidy config
mopidy-scan mopidy local scan
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• Added hooks for extensions to create their own custom subcommands and converted mopidy-scan as a first
user of the new API. (Fixes: #436)

Configuration

• When mopidy is started for the first time we create an empty $XDG_CONFIG_DIR/mopidy/mopidy.
conf file. We now populate this file with the default config for all installed extensions so it’ll be easier to set
up Mopidy without looking through all the documentation for relevant config values. (Fixes: #467)

Core API

• The Track model has grown fields for composers, performers, genre, and comment.

• The search field track has been renamed to track_name to avoid confusion with track_no. (Fixes: #535)

• The signature of the tracklist’s filter() and remove() methods have changed. Previously, they ex-
pected e.g. tracklist.filter(tlid=17). Now, the value must always be a list, e.g. tracklist.
filter(tlid=[17]). This change allows you to get or remove multiple tracks with a single call, e.g.
tracklist.remove(tlid=[1, 2, 7]). This is especially useful for web clients, as requests can be
batched. This also brings the interface closer to the library’s find_exact() and search() methods.

Audio

• Change default volume mixer from autoaudiomixer to software. GStreamer 1.x does not support vol-
ume control, so we’re changing to use software mixing by default, as that may be the only thing we’ll support
in the future when we upgrade to GStreamer 1.x.

Local backend

• Library scanning has been switched back from GStreamer’s discoverer to our custom implementation due to
various issues with GStreamer 0.10’s built in scanner. This also fixes the scanner slowdown. (Fixes: #565)

• When scanning, we no longer default the album artist to be the same as the track artist. Album artist is now only
populated if the scanned file got an explicit album artist set.

• The scanner will now extract multiple artists from files with multiple artist tags.

• The scanner will now extract composers and performers, as well as genre, bitrate, and comments. (Fixes: #577)

• Fix scanner so that time of last modification is respected when deciding which files can be skipped when scan-
ning the music collection for changes.

• The scanner now ignores the capitalization of file extensions in local/excluded_file_extensions,
so you no longer need to list both .jpg and .JPG to ignore JPEG files when scanning. (Fixes: #525)

• The scanner now by default ignores *.nfo and *.html files too.

MPD frontend

• The MPD service is now published as a Zeroconf service if avahi-daemon is running on the system. Some
MPD clients will use this to present Mopidy as an available server on the local network without needing any
configuration. See the mpd/zeroconf config value to change the service name or disable the service. (Fixes:
#39)

• Add support for composer, performer, comment, genre, and performer. These tags can be used with
list ..., search ..., and find ... and their variants, and are supported in the any tag also

• The bitrate field in the status response is now always an integer. This follows the behavior of the original
MPD server. (Fixes: #577)

HTTP frontend

• The HTTP service is now published as a Zeroconf service if avahi-daemon is running on the system. Some
browsers will present HTTP Zeroconf services on the local network as “local sites” bookmarks. See the http/
zeroconf config value to change the service name or disable the service. (Fixes: #39)
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DBUS/MPRIS

• The mopidy process now registers it’s GObject event loop as the default eventloop for dbus-python. (Fixes:
mopidy-mpris#2)

26.2.12 v0.16.1 (2013-11-02)

This is very small release to get Mopidy’s Debian package ready for inclusion in Debian.

Commands

• Fix removal of last dir level in paths to dependencies in mopidy --show-deps output.

• Add manpages for all commands.

Local backend

• Fix search filtering by track number that was added in 0.16.0.

MPD frontend

• Add support for list "albumartist" ...which was missed when find and search learned to handle
albumartist in 0.16.0. (Fixes: #553)

26.2.13 v0.16.0 (2013-10-27)

The goals for 0.16 were to add support for queuing playlists of e.g. radio streams directly to Mopidy, without manually
extracting the stream URLs from the playlist first, and to move the Spotify, Last.fm, and MPRIS support out to
independent Mopidy extensions, living outside the main Mopidy repo. In addition, we’ve seen some cleanup to the
playback vs tracklist part of the core API, which will require some changes for users of the HTTP/JavaScript APIs, as
well as the addition of audio muting to the core API. To speed up the development of new extensions, we’ve added a
cookiecutter project to get the skeleton of a Mopidy extension up and running in a matter of minutes. Read below for
all the details and for links to issues with even more details.

Since the release of 0.15, we’ve closed or merged 31 issues and pull requests through about 200 commits by five
people, including three new contributors.

Dependencies

Parts of Mopidy have been moved to their own external extensions. If you want Mopidy to continue to work like it
used to, you may have to install one or more of the following extensions as well:

• The Spotify backend has been moved to Mopidy-Spotify.

• The Last.fm scrobbler has been moved to Mopidy-Scrobbler.

• The MPRIS frontend has been moved to Mopidy-MPRIS.

Core

• Parts of the functionality in mopidy.core.PlaybackController have been moved to mopidy.core.
TracklistController:
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Old location New location
playback.get_consume() tracklist.get_consume()
playback.set_consume(v) tracklist.set_consume(v)
playback.consume tracklist.consume
playback.get_random() tracklist.get_random()
playback.set_random(v) tracklist.set_random(v)
playback.random tracklist.random
playback.get_repeat() tracklist.get_repeat()
playback.set_repeat(v) tracklist.set_repeat(v)
playback.repeat tracklist.repeat
playback.get_single() tracklist.get_single()
playback.set_single(v) tracklist.set_single(v)
playback.single tracklist.single
playback.get_tracklist_position() tracklist.index(tl_track)
playback.tracklist_position tracklist.index(tl_track)
playback.get_tl_track_at_eot() tracklist.eot_track(tl_track)
playback.tl_track_at_eot tracklist.eot_track(tl_track)
playback.get_tl_track_at_next() tracklist.next_track(tl_track)
playback.tl_track_at_next tracklist.next_track(tl_track)
playback.get_tl_track_at_previous() tracklist.previous_track(tl_track)
playback.tl_track_at_previous tracklist.previous_track(tl_track)

The tl_track argument to the last four new functions are used as the reference tl_track in the tracklist to
find e.g. the next track. Usually, this will be current_tl_track.

• Added mopidy.core.PlaybackController.mute for muting and unmuting audio. (Fixes: #186)

• Added mopidy.core.CoreListener.mute_changed() event that is triggered when the mute state
changes.

• In “random” mode, after a full playthrough of the tracklist, playback continued from the last track played to the
end of the playlist in non-random order. It now stops when all tracks have been played once, unless “repeat”
mode is enabled. (Fixes: #453)

• In “single” mode, after a track ended, playback continued with the next track in the tracklist. It now stops after
playing a single track, unless “repeat” mode is enabled. (Fixes: #496)

Audio

• Added support for parsing and playback of playlists in GStreamer. For end users this basically means that you
can now add a radio playlist to Mopidy and we will automatically download it and play the stream inside it.
Currently we support M3U, PLS, XSPF and ASX files. Also note that we can currently only play the first
stream in the playlist.

• We now handle the rare case where an audio track has max volume equal to min. This was causing divide by
zero errors when scaling volumes to a zero to hundred scale. (Fixes: #525)

• Added support for muting audio without setting the volume to 0. This works both for the software and hardware
mixers. (Fixes: #186)

Local backend

• Replaced our custom media library scanner with GStreamer’s builtin scanner. This should make scanning less
error prone and faster as timeouts should be infrequent. (Fixes: #198)

• Media files with less than 100ms duration are now excluded from the library.
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• Media files with the file extensions .jpeg, .jpg, .png, .txt, and .log are now skipped by the
media library scanner. You can change the list of excluded file extensions by setting the local/
excluded_file_extensions config value. (Fixes: #516)

• Unknown URIs found in playlists are now made into track objects with the URI set instead of being ignored.
This makes it possible to have playlists with e.g. HTTP radio streams and not just local:track:... URIs.
This used to work, but was broken in Mopidy 0.15.0. (Fixes: #527)

• Fixed crash when playing local:track:... URIs which contained non-ASCII chars after uridecode.

• Removed media files are now also removed from the in-memory media library when the media library is reloaded
from disk. (Fixes: #500)

MPD frontend

• Made the formerly unused commands outputs, enableoutput, and disableoutput mute/unmute au-
dio. (Related to: #186)

• The MPD command list now works with "albumartist" as its second argument, e.g. list "album"
"albumartist" "anartist". (Fixes: #468)

• The MPD commands find and search now accepts albumartist and track (this is the track number,
not the track name) as field types to limit the search result with.

• The MPD command count is now implemented. It accepts the same type of arguments as find and search,
but returns the number of tracks and their total playtime instead.

Extension support

• A cookiecutter project for quickly creating new Mopidy extensions have been created. You can find it at
cookiecutter-mopidy-ext. (Fixes: #522)

26.2.14 v0.15.0 (2013-09-19)

A release with a number of small and medium fixes, with no specific focus.

Dependencies

• Mopidy no longer supports Python 2.6. Currently, the only Python version supported by Mopidy is Python 2.7.
We’re continuously working towards running Mopidy on Python 3. (Fixes: #344)

Command line options

• Converted from the optparse to the argparse library for handling command line options.

• mopidy --show-config will now take into consideration any mopidy --option arguments appearing
later on the command line. This helps you see the effective configuration for runs with the same mopidy
--options arguments.

Audio

• Added support for audio visualization. audio/visualizer can now be set to GStreamer visualizers.

• Properly encode localized mixer names before logging.

Local backend

• An album’s number of discs and a track’s disc number are now extracted when scanning your music collection.

• The scanner now gives up scanning a file after a second, and continues with the next file. This fixes some hangs
on non-media files, like logs. (Fixes: #476, #483)

• Added support for pluggable library updaters. This allows extension writers to start providing their own custom
libraries instead of being stuck with just our tag cache as the only option.
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• Converted local backend to use new local:playlist:path and local:track:path URI scheme.
Also moves support of file:// to streaming backend.

Spotify backend

• Prepend playlist folder names to the playlist name, so that the playlist hierarchy from your Spotify account is
available in Mopidy. (Fixes: #62)

• Fix proxy config values that was broken with the config system change in 0.14. (Fixes: #472)

MPD frontend

• Replace newline, carriage return and forward slash in playlist names. (Fixes: #474, #480)

• Accept listall and listallinfo commands without the URI parameter. The methods are still not imple-
mented, but now the commands are accepted as valid.

HTTP frontend

• Fix too broad truth test that caused mopidy.models.TlTrack objects with tlid set to 0 to be sent to the
HTTP client without the tlid field. (Fixes: #501)

• Upgrade Mopidy.js dependencies. This version has been released to npm as Mopidy.js v0.1.1.

Extension support

• mopidy.config.Secret is now deserialized to unicode instead of bytes. This may require modifications
to extensions.

26.2.15 v0.14.2 (2013-07-01)

This is a maintenance release to make Mopidy 0.14 work with pyspotify 1.11.

Dependencies

• pyspotify >= 1.9, < 2 is now required for Spotify support. In other words, you’re free to upgrade to pyspotify
1.11, but it isn’t a requirement.

26.2.16 v0.14.1 (2013-04-28)

This release addresses an issue in v0.14.0 where the new mopidy-convert-config tool and the new mopidy
--option command line option was broken because some string operations inadvertently converted some byte
strings to unicode.

26.2.17 v0.14.0 (2013-04-28)

The 0.14 release has a clear focus on two things: the new configuration system and extension support. Mopidy’s
documentation has also been greatly extended and improved.

Since the last release a month ago, we’ve closed or merged 53 issues and pull requests. A total of seven authors have
contributed, including one new.

Dependencies

• setuptools or distribute is now required. We’ve introduced this dependency to use setuptools’ entry points
functionality to find installed Mopidy extensions.

New configuration system
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• Mopidy has a new configuration system based on ini-style files instead of a Python file. This makes configuration
easier for users, and also makes it possible for Mopidy extensions to have their own config sections.

As part of this change we have cleaned up the naming of our config values.

To ease migration we’ve made a tool named mopidy-convert-config for automatically converting the
old settings.py to a new mopidy.conf file. This tool takes care of all the renamed config values as well.
See mopidy-convert-config for details on how to use it.

• A long wanted feature: You can now enable or disable specific frontends or backends without having to redefine
FRONTENDS or BACKENDS in your config. Those config values are gone completely.

Extension support

• Mopidy now supports extensions. This means that any developer now easily can create a Mopidy extension to
add new control interfaces or music backends. This helps spread the maintenance burden across more develop-
ers, and also makes it possible to extend Mopidy with new backends the core developers are unable to create
and/or maintain because of geo restrictions, etc. If you’re interested in creating an extension for Mopidy, read
up on Extension development.

• All of Mopidy’s existing frontends and backends are now plugged into Mopidy as extensions, but they are still
distributed together with Mopidy and are enabled by default.

• The NAD mixer have been moved out of Mopidy core to its own project, Mopidy-NAD. See Extensions for
more information.

• Janez Troha has made the first two external extensions for Mopidy: a backend for playing music from Sound-
cloud, and a backend for playing music from a Beets music library. See Extensions for more information.

Command line options

• The command option mopidy --list-settings is now named mopidy --show-config.

• The command option mopidy --list-deps is now named mopidy --show-deps.

• What configuration files to use can now be specified through the command option mopidy --config, mul-
tiple files can be specified using colon as a separator.

• Configuration values can now be overridden through the command option mopidy --option. For example:
mopidy --option spotify/enabled=false.

• The GStreamer command line options, mopidy --gst-* and mopidy --help-gst are no longer sup-
ported. To set GStreamer debug flags, you can use environment variables such as GST_DEBUG. Refer to
GStreamer’s documentation for details.

Spotify backend

• Add support for starred playlists, both your own and those owned by other users. (Fixes: #326)

• Fix crash when a new playlist is added by another Spotify client. (Fixes: #387, #425)

MPD frontend

• Playlists with identical names are now handled properly by the MPD frontend by suffixing the duplicate names
with e.g. [2]. This is needed because MPD identify playlists by name only, while Mopidy and Spotify supports
multiple playlists with the same name, and identify them using an URI. (Fixes: #114)

MPRIS frontend

• The frontend is now disabled if the DISPLAY environment variable is unset. This avoids some harmless error
messages, that have been known to confuse new users debugging other problems.

Development
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• Developers running Mopidy from a Git clone now need to run python setup.py develop to register the
bundled extensions. If you don’t do this, Mopidy will not find any frontends or backends. Note that we highly
recomend you do this in a virtualenv, not system wide. As a bonus, the command also gives you a mopidy
executable in your search path.

26.2.18 v0.13.0 (2013-03-31)

The 0.13 release brings small improvements and bugfixes throughout Mopidy. There are no major new features, just
incremental improvement of what we already have.

Dependencies

• Pykka >= 1.1 is now required.

Core

• Removed the mopidy.settings.DEBUG_THREAD setting and the mopidy --debug-thread com-
mand line option. Sending SIGUSR1 to the Mopidy process will now always make it log tracebacks for all alive
threads.

• Log a warning if a track isn’t playable to make it more obvious that backend X needs backend Y to be present
for playback to work.

• mopidy.core.TracklistController.add() now accepts an uri which it will lookup in the library
and then add to the tracklist. This is helpful for e.g. web clients that doesn’t want to transfer all track meta data
back to the server just to add it to the tracklist when the server already got all the needed information easily
available. (Fixes: #325)

• Change the following methods to accept an uris keyword argument:

– mopidy.core.LibraryController.find_exact()

– mopidy.core.LibraryController.search()

Search queries will only be forwarded to backends handling the given URI roots, and the backends may use
the URI roots to further limit what results are returned. For example, a search with uris=['file:'] will
only be processed by the local backend. A search with uris=['file:///media/music'] will only be
processed by the local backend, and, if such filtering is supported by the backend, will only return results with
URIs within the given URI root.

Audio sub-system

• Make audio error logging handle log messages with non-ASCII chars. (Fixes: #347)

Local backend

• Make mopidy-scan work with Ogg Vorbis files. (Fixes: #275)

• Fix playback of files with non-ASCII chars in their file path. (Fixes: #353)

Spotify backend

• Let GStreamer handle time position tracking and seeks. (Fixes: #191)

• For all playlists owned by other Spotify users, we now append the owner’s username to the playlist name. (Partly
fixes: #114)

HTTP frontend

• Mopidy.js now works both from browsers and from Node.js environments. This means that you now can make
Mopidy clients in Node.js. Mopidy.js has been published to the npm registry for easy installation in Node.js
projects.

• Upgrade Mopidy.js’ build system Grunt from 0.3 to 0.4.

132 Chapter 26. History

https://github.com/mopidy/mopidy/issues/325
https://github.com/mopidy/mopidy/issues/347
https://github.com/mopidy/mopidy/issues/275
https://github.com/mopidy/mopidy/issues/353
https://github.com/mopidy/mopidy/issues/191
https://github.com/mopidy/mopidy/issues/114
https://www.npmjs.com/package/mopidy


Mopidy Documentation, Release 2.2.3

• Upgrade Mopidy.js’ dependencies when.js from 1.6.1 to 2.0.0.

• Expose mopidy.core.Core.get_uri_schemes() to HTTP clients. It is available through Mopidy.js
as mopidy.getUriSchemes().

MPRIS frontend

• Publish album art URIs if available.

• Publish disc number of track if available.

26.2.19 v0.12.0 (2013-03-12)

The 0.12 release has been delayed for a while because of some issues related some ongoing GStreamer cleanup we
didn’t invest enough time to finish. Finally, we’ve come to our senses and have now cherry-picked the good parts to
bring you a new release, while postponing the GStreamer changes to 0.13. The release adds a new backend for playing
audio streams, as well as various minor improvements throughout Mopidy.

• Make Mopidy work on early Python 2.6 versions. (Fixes: #302)

– optparse fails if the first argument to add_option is a unicode string on Python < 2.6.2rc1.

– foo(**data) fails if the keys in data is unicode strings on Python < 2.6.5rc1.

Audio sub-system

• Improve selection of mixer tracks for volume control. (Fixes: #307)

Local backend

• Make mopidy-scan support symlinks.

Stream backend

We’ve added a new backend for playing audio streams, the stream backend. It is activated by default. The stream
backend supports the intersection of what your GStreamer installation supports and what protocols are included in the
mopidy.settings.STREAM_PROTOCOLS setting.

Current limitations:

• No metadata about the current track in the stream is available.

• Playlists are not parsed, so you can’t play e.g. a M3U or PLS file which contains stream URIs. You need to
extract the stream URL from the playlist yourself. See #303 for progress on this.

Core API

• mopidy.core.PlaylistsController.get_playlists() now accepts an argument
include_tracks. This defaults to True, which has the same old behavior. If set to False, the
tracks are stripped from the playlists before they are returned. This can be used to limit the amount of data
returned if the response is to be passed out of the application, e.g. to a web client. (Fixes: #297)

Models

• Add mopidy.models.Album.images field for including album art URIs. (Partly fixes #263)

• Add mopidy.models.Track.disc_no field. (Partly fixes: #286)

• Add mopidy.models.Album.num_discs field. (Partly fixes: #286)
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26.2.20 v0.11.1 (2012-12-24)

Spotify search was broken in 0.11.0 for users of Python 2.6. This release fixes it. If you’re using Python 2.7, v0.11.0
and v0.11.1 should be equivalent.

26.2.21 v0.11.0 (2012-12-24)

In celebration of Mopidy’s three year anniversary December 23, we’re releasing Mopidy 0.11. This release brings
several improvements, most notably better search which now includes matching artists and albums from Spotify in the
search results.

Settings

• The settings validator now complains if a setting which expects a tuple of values (e.g. mopidy.settings.
BACKENDS, mopidy.settings.FRONTENDS) has a non-iterable value. This typically happens because
the setting value contains a single value and one has forgotten to add a comma after the string, making the value
a tuple. (Fixes: #278)

Spotify backend

• Add mopidy.settings.SPOTIFY_TIMEOUT setting which allows you to control how long we should
wait before giving up on Spotify searches, etc.

• Add support for looking up albums, artists, and playlists by URI in addition to tracks. (Fixes: #67)

As an example of how this can be used, you can try the the following MPD commands which now all adds one
or more tracks to your tracklist:

add "spotify:track:1mwt9hzaH7idmC5UCoOUkz"
add "spotify:album:3gpHG5MGwnipnap32lFYvI"
add "spotify:artist:5TgQ66WuWkoQ2xYxaSTnVP"
add "spotify:user:p3.no:playlist:0XX6tamRiqEgh3t6FPFEkw"

• Increase max number of tracks returned by searches from 100 to 200, which seems to be Spotify’s current max
limit.

Local backend

• Load track dates from tag cache.

• Add support for searching by track date.

MPD frontend

• Add mopidy.settings.MPD_SERVER_CONNECTION_TIMEOUT setting which controls how long an
MPD client can stay inactive before the connection is closed by the server.

• Add support for the findadd command.

• Updated to match the MPD 0.17 protocol (Fixes: #228):

– Add support for seekcur command.

– Add support for config command.

– Add support for loading a range of tracks from a playlist to the load command.

– Add support for searchadd command.

– Add support for searchaddpl command.

– Add empty stubs for channel commands for client to client communication.

• Add support for search by date.
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• Make seek and seekid not restart the current track before seeking in it.

• Include fake tracks representing albums and artists in the search results. When these are added to the tracklist,
they expand to either all tracks in the album or all tracks by the artist. This makes it easy to play full albums in
proper order, which is a feature that have been frequently requested. (Fixes: #67, #148)

Internal changes

Models:

• Specified that mopidy.models.Playlist.last_modified should be in UTC.

• Added mopidy.models.SearchResult model to encapsulate search results consisting of more than just
tracks.

Core API:

• Change the following methods to return mopidy.models.SearchResult objects which can include both
track results and other results:

– mopidy.core.LibraryController.find_exact()

– mopidy.core.LibraryController.search()

• Change the following methods to accept either a dict with filters or kwargs. Previously they only accepted
kwargs, which made them impossible to use from the Mopidy.js through JSON-RPC, which doesn’t support
kwargs.

– mopidy.core.LibraryController.find_exact()

– mopidy.core.LibraryController.search()

– mopidy.core.PlaylistsController.filter()

– mopidy.core.TracklistController.filter()

– mopidy.core.TracklistController.remove()

• Actually trigger the mopidy.core.CoreListener.volume_changed() event.

• Include the new volume level in the mopidy.core.CoreListener.volume_changed() event.

• The track_playback_{paused,resumed,started,ended} events now include a mopidy.
models.TlTrack instead of a mopidy.models.Track.

Audio:

• Mixers with fewer than 100 volume levels could report another volume level than what you just set due to the
conversion between Mopidy’s 0-100 range and the mixer’s range. Now Mopidy returns the recently set volume
if the mixer reports a volume level that matches the recently set volume, otherwise the mixer’s volume level is
rescaled to the 1-100 range and returned.

26.2.22 v0.10.0 (2012-12-12)

We’ve added an HTTP frontend for those wanting to build web clients for Mopidy!

Dependencies

• pyspotify >= 1.9, < 1.11 is now required for Spotify support. In other words, you’re free to upgrade to pyspotify
1.10, but it isn’t a requirement.

Documentation

• Added installation instructions for Fedora.

Spotify backend
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• Save a lot of memory by reusing artist, album, and track models.

• Make sure the playlist loading hack only runs once.

Local backend

• Change log level from error to warning on messages emitted when the tag cache isn’t found and a couple of
similar cases.

• Make mopidy-scan ignore invalid dates, e.g. dates in years outside the range 1-9999.

• Make mopidy-scan accept -q/--quiet and -v/--verbose options to control the amount of logging
output when scanning.

• The scanner can now handle files with other encodings than UTF-8. Rebuild your tag cache with
mopidy-scan to include tracks that may have been ignored previously.

HTTP frontend

• Added new optional HTTP frontend which exposes Mopidy’s core API through JSON-RPC 2.0 messages over
a WebSocket. See HTTP JSON-RPC API for further details.

• Added a JavaScript library, Mopidy.js, to make it easier to develop web based Mopidy clients using the new
HTTP frontend.

Bug fixes

• #256: Fix crash caused by non-ASCII characters in paths returned from glib. The bug can be worked around
by overriding the settings that includes offending $XDG_ variables.

26.2.23 v0.9.0 (2012-11-21)

Support for using the local and Spotify backends simultaneously have for a very long time been our most requested
feature. Finally, it’s here!

Dependencies

• pyspotify >= 1.9, < 1.10 is now required for Spotify support.

Documentation

• New Installation guides, organized by OS and distribution so that you can follow one concise list of instructions
instead of jumping around the docs to look for instructions for each dependency.

• Moved Raspberry Pi howto from the wiki to the docs.

• Updated MPD clients overview.

• Added MPRIS clients and UPnP clients overview.

Multiple backends support

• Both the local backend and the Spotify backend are now turned on by default. The local backend is listed first
in the mopidy.settings.BACKENDS setting, and are thus given the highest priority in e.g. search results,
meaning that we’re listing search hits from the local backend first. If you want to prioritize the backends in
another way, simply set BACKENDS in your own settings file and reorder the backends.

There are no other setting changes related to the local and Spotify backends. As always, see mopidy.
settings for the full list of available settings.

Spotify backend

• The Spotify backend now includes release year and artist on albums.

• #233: The Spotify backend now returns the track if you search for the Spotify track URI.
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• Added support for connecting to the Spotify service through an HTTP or SOCKS proxy, which is supported by
pyspotify >= 1.9.

• Subscriptions to other Spotify user’s “starred” playlists are ignored, as they currently isn’t fully supported by
pyspotify.

Local backend

• #236: The mopidy-scan command failed to include tags from ALAC files (Apple lossless) because it didn’t
support multiple tag messages from GStreamer per track it scanned.

• Added support for search by filename to local backend.

MPD frontend

• #218: The MPD commands listplaylist and listplaylistinfo now accepts unquoted playlist
names if they don’t contain spaces.

• #246: The MPD command list album artist "" and similar search, find, and list commands
with empty filter values caused a LookupError, but should have been ignored by the MPD server.

• The MPD frontend no longer lowercases search queries. This broke e.g. search by URI, where casing may be
essential.

• The MPD command plchanges always returned the entire playlist. It now returns an empty response when
the client has seen the latest version.

• The MPD commands search and find now allows the key file, which is used by ncmpcpp instead of
filename.

• The MPD commands search and find now allow search query values to be empty strings.

• The MPD command listplaylists will no longer return playlists without a name. This could crash ncm-
pcpp.

• The MPD command list will no longer return artist names, album names, or dates that are blank.

• The MPD command decoders will now return an empty response instead of a “not implemented” error to
make the ncmpcpp browse view work the first time it is opened.

MPRIS frontend

• The MPRIS playlists interface is now supported by our MPRIS frontend. This means that you now can select
playlists to queue and play from the Ubuntu Sound Menu.

Audio mixers

• Made the NAD mixer responsive to interrupts during amplifier calibration. It will now quit immediately, while
previously it completed the calibration first, and then quit, which could take more than 15 seconds.

Developer support

• Added optional background thread for debugging deadlocks. When the feature is enabled via the mopidy
--debug-thread option or mopidy.settings.DEBUG_THREAD setting a SIGUSR1 signal will dump
the traceback for all running threads.

• The settings validator will now allow any setting prefixed with CUSTOM_ to exist in the settings file.

Internal changes

Internally, Mopidy have seen a lot of changes to pave the way for multiple backends and the future HTTP frontend.

• A new layer and actor, “core”, has been added to our stack, inbetween the frontends and the backends. The
responsibility of the core layer and actor is to take requests from the frontends, pass them on to one or more
backends, and combining the response from the backends into a single response to the requesting frontend.
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Frontends no longer know anything about the backends. They just use the mopidy.core — Core API.

• The dependency graph between the core controllers and the backend providers have been straightened out, so
that we don’t have any circular dependencies. The frontend, core, backend, and audio layers are now strictly
separate. The frontend layer calls on the core layer, and the core layer calls on the backend layer. Both the core
layer and the backends are allowed to call on the audio layer. Any data flow in the opposite direction is done
by broadcasting of events to listeners, through e.g. mopidy.core.CoreListener and mopidy.audio.
AudioListener.

See Architecture for more details and illustrations of all the relations.

• All dependencies are now explicitly passed to the constructors of the frontends, core, and the backends. This
makes testing each layer with dummy/mocked lower layers easier than with the old variant, where dependencies
where looked up in Pykka’s actor registry.

• All properties in the core API now got getters, and setters if setting them is allowed. They are not explictly
listed in the docs as they have the same behavior as the documented properties, but they are available and may
be used. This is useful for the future HTTP frontend.

Models:

• Added mopidy.models.Album.date attribute. It has the same format as the existing mopidy.models.
Track.date.

• Added mopidy.models.ModelJSONEncoder and mopidy.models.model_json_decoder() for
automatic JSON serialization and deserialization of data structures which contains Mopidy models. This is
useful for the future HTTP frontend.

Library:

• mopidy.core.LibraryController.find_exact() and mopidy.core.
LibraryController.search() now returns plain lists of tracks instead of playlist objects.

• mopidy.core.LibraryController.lookup() now returns a list of tracks instead of a single track.
This makes it possible to support lookup of artist or album URIs which then can expand to a list of tracks.

Playback:

• The base playback provider has been updated with sane default behavior instead of empty functions. By default,
the playback provider now lets GStreamer keep track of the current track’s time position. The local backend
simply uses the base playback provider without any changes. Any future backend that just feeds URIs to
GStreamer to play can also use the base playback provider without any changes.

• Removed mopidy.core.PlaybackController.track_at_previous. Use mopidy.core.
PlaybackController.tl_track_at_previous instead.

• Removed mopidy.core.PlaybackController.track_at_next. Use mopidy.core.
PlaybackController.tl_track_at_next instead.

• Removed mopidy.core.PlaybackController.track_at_eot. Use mopidy.core.
PlaybackController.tl_track_at_eot instead.

• Removed mopidy.core.PlaybackController.current_tlid. Use mopidy.core.
PlaybackController.current_tl_track instead.

Playlists:

The playlists part of the core API has been revised to be more focused around the playlist URI, and some redundant
functionality has been removed:

• Renamed “stored playlists” to “playlists” everywhere, including the core API used by frontends.
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• mopidy.core.PlaylistsController.playlists no longer supports assignment to it. The playlists
property on the backend layer still does, and all functionality is maintained by assigning to the playlists collec-
tions at the backend level.

• mopidy.core.PlaylistsController.delete() now accepts an URI, and not a playlist object.

• mopidy.core.PlaylistsController.save() now returns the saved playlist. The returned playlist
may differ from the saved playlist, and should thus be used instead of the playlist passed to mopidy.core.
PlaylistsController.save().

• mopidy.core.PlaylistsController.rename() has been removed, since renaming can be done
with mopidy.core.PlaylistsController.save().

• mopidy.core.PlaylistsController.get() has been replaced by mopidy.core.
PlaylistsController.filter().

• The event mopidy.core.CoreListener.playlist_changed() has been changed to include the
playlist that was changed.

Tracklist:

• Renamed “current playlist” to “tracklist” everywhere, including the core API used by frontends.

• Removed mopidy.core.TracklistController.append(). Use mopidy.core.
TracklistController.add() instead, which is now capable of adding multiple tracks.

• mopidy.core.TracklistController.get() has been replaced by mopidy.core.
TracklistController.filter().

• mopidy.core.TracklistController.remove() can now remove multiple tracks, and returns the
tracks it removed.

• When the tracklist is changed, we now trigger the new mopidy.core.CoreListener.
tracklist_changed() event. Previously we triggered mopidy.core.CoreListener.
playlist_changed(), which is intended for stored playlists, not the tracklist.

Towards Python 3 support:

• Make the entire code base use unicode strings by default, and only fall back to bytestrings where it is required.
Another step closer to Python 3.

26.2.24 v0.8.1 (2012-10-30)

A small maintenance release to fix a bug introduced in 0.8.0 and update Mopidy to work with Pykka 1.0.

Dependencies

• Pykka >= 1.0 is now required.

Bug fixes

• #213: Fix “streaming task paused, reason not-negotiated” errors observed by some users on some Spotify tracks
due to a change introduced in 0.8.0. See the issue for a patch that applies to 0.8.0.

• #216: Volume returned by the MPD command status contained a floating point .0 suffix. This bug was intro-
duced with the large audio output and mixer changes in v0.8.0 and broke the MPDroid Android client. It now
returns an integer again.
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26.2.25 v0.8.0 (2012-09-20)

This release does not include any major new features. We’ve done a major cleanup of how audio outputs and audio
mixers work, and on the way we’ve resolved a bunch of related issues.

Audio output and mixer changes

• Removed multiple outputs support. Having this feature currently seems to be more trouble than what it is worth.
The mopidy.settings.OUTPUTS setting is no longer supported, and has been replaced with mopidy.
settings.OUTPUTwhich is a GStreamer bin description string in the same format as gst-launch expects.
Default value is autoaudiosink. (Fixes: #81, #115, #121, #159)

• Switch to pure GStreamer based mixing. This implies that users setup a GStreamer bin with a mixer in it in
mopidy.settings.MIXER. The default value is autoaudiomixer, a custom mixer that attempts to find
a mixer that will work on your system. If this picks the wrong mixer you can of course override it. Setting the
mixer to None is also supported. MPD protocol support for volume has also been updated to return -1 when we
have no mixer set. software can be used to force software mixing.

• Removed the Denon hardware mixer, as it is not maintained.

• Updated the NAD hardware mixer to work in the new GStreamer based mixing regime. Settings are now passed
as GStreamer element properties. In practice that means that the following old-style config:

MIXER = u'mopidy.mixers.nad.NadMixer'
MIXER_EXT_PORT = u'/dev/ttyUSB0'
MIXER_EXT_SOURCE = u'Aux'
MIXER_EXT_SPEAKERS_A = u'On'
MIXER_EXT_SPEAKERS_B = u'Off'

Now is reduced to simply:

MIXER = u'nadmixer port=/dev/ttyUSB0 source=aux speakers-a=on speakers-b=off'

The port property defaults to /dev/ttyUSB0, and the rest of the properties may be left out if you don’t want
the mixer to adjust the settings on your NAD amplifier when Mopidy is started.

Changes

• When unknown settings are encountered, we now check if it’s similar to a known setting, and suggests to the
user what we think the setting should have been.

• Added mopidy --list-deps option that lists required and optional dependencies, their current versions,
and some other information useful for debugging. (Fixes: #74)

• Added tools/debug-proxy.py to tee client requests to two backends and diff responses. Intended as
a developer tool for checking for MPD protocol changes and various client support. Requires gevent, which
currently is not a dependency of Mopidy.

• Support tracks with only release year, and not a full release date, like e.g. Spotify tracks.

• Default value of LOCAL_MUSIC_PATH has been updated to be $XDG_MUSIC_DIR, which on most systems
this is set to $HOME. Users of local backend that relied on the old default ~/music need to update their settings.
Note that the code responsible for finding this music now also ignores UNIX hidden files and folders.

• File and path settings now support $XDG_CACHE_DIR, $XDG_DATA_DIR and $XDG_MUSIC_DIR substi-
tution. Defaults for such settings have been updated to use this instead of hidden away defaults.

• Playback is now done using playbin2 from GStreamer instead of rolling our own. This is the first step towards
resolving #171.

Bug fixes
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• #72: Created a Spotify track proxy that will switch to using loaded data as soon as it becomes available.

• #150: Fix bug which caused some clients to block Mopidy completely. The bug was caused by some clients
sending close and then shutting down the connection right away. This trigged a situation in which the connec-
tion cleanup code would wait for an response that would never come inside the event loop, blocking everything
else.

• #162: Fixed bug when the MPD command playlistinfo is used with a track position. Track position and
CPID was intermixed, so it would cause a crash if a CPID matching the track position didn’t exist.

• Fixed crash on lookup of unknown path when using local backend.

• #189: LOCAL_MUSIC_PATH and path handling in rest of settings has been updated so all of the code now uses
the correct value.

• Fixed incorrect track URIs generated by M3U playlist parsing code. Generated tracks are now relative to
LOCAL_MUSIC_PATH.

• #203: Re-add support for software mixing.

26.2.26 v0.7.3 (2012-08-11)

A small maintenance release to fix a crash affecting a few users, and a couple of small adjustments to the Spotify
backend.

Changes

• Fixed crash when logging IOError exceptions on systems using languages with non-ASCII characters, like
French.

• Move the default location of the Spotify cache from ~/.cache/mopidy to ~/.cache/mopidy/spotify. You can
change this by setting mopidy.settings.SPOTIFY_CACHE_PATH.

• Reduce time required to update the Spotify cache on startup. One one system/Spotify account, the time from
clean cache to ready for use was reduced from 35s to 12s.

26.2.27 v0.7.2 (2012-05-07)

This is a maintenance release to make Mopidy 0.7 build on systems without all of Mopidy’s runtime dependencies,
like Launchpad PPAs.

Changes

• Change from version tuple at mopidy.VERSION to PEP 386 compliant version string at mopidy.
__version__ to conform to PEP 396.

26.2.28 v0.7.1 (2012-04-22)

This is a maintenance release to make Mopidy 0.7 work with pyspotify >= 1.7.

Changes

• Don’t override pyspotify’s notify_main_thread callback. The default implementation is sensible, while
our override did nothing.
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26.2.29 v0.7.0 (2012-02-25)

Not a big release with regard to features, but this release got some performance improvements over v0.6, especially
for slower Atom systems. It also fixes a couple of other bugs, including one which made Mopidy crash when using
GStreamer from the prereleases of Ubuntu 12.04.

Changes

• The MPD command playlistinfo is now faster, thanks to John Bäckstrand.

• Added the method mopidy.backends.base.CurrentPlaylistController.length(),
mopidy.backends.base.CurrentPlaylistController.index(), and mopidy.backends.
base.CurrentPlaylistController.slice() to reduce the need for copying the entire current
playlist from one thread to another. Thanks to John Bäckstrand for pinpointing the issue.

• Fix crash on creation of config and cache directories if intermediate directories does not exist. This was espe-
cially the case on OS X, where ~/.config doesn’t exist for most users.

• Fix gst.LinkError which appeared when using newer versions of GStreamer, e.g. on Ubuntu 12.04 Alpha.
(Fixes: #144)

• Fix crash on mismatching quotation in list MPD queries. (Fixes: #137)

• Volume is now reported to be the same as the volume was set to, also when internal rounding have been done due
to mopidy.settings.MIXER_MAX_VOLUME has been set to cap the volume. This should make it possible
to manage capped volume from clients that only increase volume with one step at a time, like ncmpcpp does.

26.2.30 v0.6.1 (2011-12-28)

This is a maintenance release to make Mopidy 0.6 work with pyspotify >= 1.5, which Mopidy’s develop branch have
supported for a long time. This should also make the Debian packages work out of the box again.

Important changes

• pyspotify 1.5 or greater is required.

Changes

• Spotify playlist folder boundaries are now properly detected. In other words, if you use playlist folders, you will
no longer get lots of log messages about bad playlists.

26.2.31 v0.6.0 (2011-10-09)

The development of Mopidy have been quite slow for the last couple of months, but we do have some goodies to release
which have been idling in the develop branch since the warmer days of the summer. This release brings support for the
MPD idle command, which makes it possible for a client wait for updates from the server instead of polling every
second. Also, we’ve added support for the MPRIS standard, so that Mopidy can be controlled over D-Bus from e.g.
the Ubuntu Sound Menu.

Please note that 0.6.0 requires some updated dependencies, as listed under Important changes below.

Important changes

• Pykka 0.12.3 or greater is required.

• pyspotify 1.4 or greater is required.

• All config, data, and cache locations are now based on the XDG spec.

– This means that your settings file will need to be moved from ~/.mopidy/settings.py to ~/.
config/mopidy/settings.py.
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– Your Spotify cache will now be stored in ~/.cache/mopidy instead of ~/.mopidy/
spotify_cache.

– The local backend’s tag_cache should now be in ~/.local/share/mopidy/tag_cache, like-
wise your playlists will be in ~/.local/share/mopidy/playlists.

– The local client now tries to lookup where your music is via XDG, it will fall-back to ~/music or use
whatever setting you set manually.

• The MPD command idle is now supported by Mopidy for the following subsystems: player, playlist, options,
and mixer. (Fixes: #32)

• A new frontend mopidy.frontends.mpris have been added. It exposes Mopidy through the MPRIS
interface over D-Bus. In practice, this makes it possible to control Mopidy through the Ubuntu Sound Menu.

Changes

• Replace mopidy.backends.base.Backend.uri_handlers with mopidy.backends.base.
Backend.uri_schemes, which just takes the part up to the colon of an URI, and not any prefix.

• Add Listener API, mopidy.listeners, to be implemented by actors wanting to receive events from the
backend. This is a formalization of the ad hoc events the Last.fm scrobbler has already been using for some
time.

• Replaced all of the MPD network code that was provided by asyncore with custom stack. This change was made
to facilitate support for the idle command, and to reduce the number of event loops being used.

• Fix metadata update in Shoutcast streaming. (Fixes: #122)

• Unescape all incoming MPD requests. (Fixes: #113)

• Increase the maximum number of results returned by Spotify searches from 32 to 100.

• Send Spotify search queries to pyspotify as unicode objects, as required by pyspotify 1.4. (Fixes: #129)

• Add setting mopidy.settings.MPD_SERVER_MAX_CONNECTIONS. (Fixes: #134)

• Remove destroy() methods from backend controller and provider APIs, as it was not in use and actually not
called by any code. Will reintroduce when needed.

26.2.32 v0.5.0 (2011-06-15)

Since last time we’ve added support for audio streaming to SHOUTcast servers and fixed the longstanding playlist
loading issue in the Spotify backend. As always the release has a bunch of bug fixes and minor improvements.

Please note that 0.5.0 requires some updated dependencies, as listed under Important changes below.

Important changes

• If you use the Spotify backend, you must upgrade to libspotify 0.0.8 and pyspotify 1.3. If you install from
APT, libspotify and pyspotify will automatically be upgraded. If you are not installing from APT, follow the
instructions at Installation.

• If you have explicitly set the mopidy.settings.SPOTIFY_HIGH_BITRATE setting, you must update
your settings file. The new setting is named mopidy.settings.SPOTIFY_BITRATE and accepts the
integer values 96, 160, and 320.

• Mopidy now supports running with 1 to N outputs at the same time. This feature was mainly added to facilitate
SHOUTcast support, which Mopidy has also gained. In its current state outputs can not be toggled during
runtime.

Changes

• Local backend:
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– Fix local backend time query errors that where coming from stopped pipeline. (Fixes: #87)

• Spotify backend:

– Thanks to Antoine Pierlot-Garcin’s recent work on updating and improving pyspotify, stored playlists will
again load when Mopidy starts. The workaround of searching and reconnecting to make the playlists
appear are no longer necessary. (Fixes: #59)

– Track’s that are no longer available in Spotify’s archives are now “autolinked” to corresponding tracks in
other albums, just like the official Spotify clients do. (Fixes: #34)

• MPD frontend:

– Refactoring and cleanup. Most notably, all request handlers now get an instance of mopidy.
frontends.mpd.dispatcher.MpdContext as the first argument. The new class contains ref-
erence to any object in Mopidy the MPD protocol implementation should need access to.

– Close the client connection when the command close is received.

– Do not allow access to the command kill.

– commands and notcommands now have correct output if password authentication is turned on, but the
connected user has not been authenticated yet.

• Command line usage:

– Support passing options to GStreamer. See mopidy --help-gst for a list of available options. (Fixes:
#95)

– Improve mopidy --list-settings output. (Fixes: #91)

– Added mopidy --interactive for reading missing local settings from stdin. (Fixes: #96)

– Improve shutdown procedure at CTRL+C. Add signal handler for SIGTERM, which initiates the same
shutdown procedure as CTRL+C does.

• Tag cache generator:

– Made it possible to abort mopidy-scan with CTRL+C.

– Fixed bug regarding handling of bad dates.

– Use logging instead of print statements.

– Found and worked around strange WMA metadata behaviour.

• Backend API:

– Calling on mopidy.backends.base.playback.PlaybackController.next() and
mopidy.backends.base.playback.PlaybackController.previous() no longer im-
plies that playback should be started. The playback state–whether playing, paused or stopped–will now
be kept.

– The method mopidy.backends.base.playback.PlaybackController.
change_track() has been added. Like next(), and prev(), it changes the current track
without changing the playback state.

26.2.33 v0.4.1 (2011-05-06)

This is a bug fix release fixing audio problems on older GStreamer and some minor bugs.

Bug fixes

• Fix broken audio on at least GStreamer 0.10.30, which affects Ubuntu 10.10. The GStreamer appsrc bin wasn’t
being linked due to lack of default caps. (Fixes: #85)
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• Fix crash in mopidy.mixers.nad that occures at startup when the io module is available. We used an eol
keyword argument which is supported by serial.FileLike.readline(), but not by io.RawBaseIO.
readline(). When the io module is available, it is used by PySerial instead of the FileLike implementation.

• Fix UnicodeDecodeError in MPD frontend on non-english locale. Thanks to Antoine Pierlot-Garcin for the
patch. (Fixes: #88)

• Do not create Pykka proxies that are not going to be used in mopidy.core. The underlying actor may already
intentionally be dead, and thus the program may crash on creating a proxy it doesn’t need. Combined with
the Pykka 0.12.2 release this fixes a crash in the Last.fm frontend which may occur when all dependencies are
installed, but the frontend isn’t configured. (Fixes: #84)

26.2.34 v0.4.0 (2011-04-27)

Mopidy 0.4.0 is another release without major feature additions. In 0.4.0 we’ve fixed a bunch of issues and bugs, with
the help of several new contributors who are credited in the changelog below. The major change of 0.4.0 is an internal
refactoring which clears way for future features, and which also make Mopidy work on Python 2.7. In other words,
Mopidy 0.4.0 works on Ubuntu 11.04 and Arch Linux.

Please note that 0.4.0 requires some updated dependencies, as listed under Important changes below. Also, the known
bug in the Spotify playlist loading from Mopidy 0.3.0 is still present.

Warning: Known bug in Spotify playlist loading

There is a known bug in the loading of Spotify playlists. To avoid the bug, follow the simple workaround described
at #59.

Important changes

• Mopidy now depends on Pykka >=0.12. If you install from APT, Pykka will automatically be installed. If you
are not installing from APT, you may install Pykka from PyPI:

sudo pip install -U Pykka

• If you use the Spotify backend, you should upgrade to libspotify 0.0.7 and the latest pyspotify from the Mopidy
developers. If you install from APT, libspotify and pyspotify will automatically be upgraded. If you are not
installing from APT, follow the instructions at Installation.

Changes

• Mopidy now use Pykka actors for thread management and inter-thread communication. The immediate ad-
vantage of this is that Mopidy now works on Python 2.7, which is the default on e.g. Ubuntu 11.04. (Fixes:
#66)

• Spotify backend:

– Fixed multiple segmentation faults due to bugs in Pyspotify. Thanks to Antoine Pierlot-Garcin and Jamie
Kirkpatrick for patches to Pyspotify.

– Better error messages on wrong login or network problems. Thanks to Antoine Pierlot-Garcin for patches
to Mopidy and Pyspotify. (Fixes: #77)

– Reduce log level for trivial log messages from warning to info. (Fixes: #71)

– Pause playback on network connection errors. (Fixes: #65)

• Local backend:
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– Fix crash in mopidy-scan if a track has no artist name. Thanks to Martins Grunskis for test and patch
and “octe” for patch.

– Fix crash in tag_cache parsing if a track has no total number of tracks in the album. Thanks to Martins
Grunskis for the patch.

• MPD frontend:

– Add support for “date” queries to both the find and search commands. This makes media library
browsing in ncmpcpp work, though very slow due to all the meta data requests to Spotify.

– Add support for play "-1" when in playing or paused state, which fixes resume and addition of tracks
to the current playlist while playing for the MPoD client.

– Fix bug where status returned song: None, which caused MPDroid to crash. (Fixes: #69)

– Gracefully fallback to IPv4 sockets on systems that supports IPv6, but has turned it off. (Fixes: #75)

• GStreamer output:

– Use uridecodebin for playing audio from both Spotify and the local backend. This contributes to
support for multiple backends simultaneously.

• Settings:

– Fix crash on mopidy --list-settings on clean installation. Thanks to Martins Grunskis for the
bug report and patch. (Fixes: #63)

• Packaging:

– Replace test data symlinks with real files to avoid symlink issues when installing with pip. (Fixes: #68)

• Debugging:

– Include platform, architecture, Linux distribution, and Python version in the debug log, to ease debugging
of issues with attached debug logs.

26.2.35 v0.3.1 (2011-01-22)

A couple of fixes to the 0.3.0 release is needed to get a smooth installation.

Bug fixes

• The Spotify application key was missing from the Python package.

• Installation of the Python package as a normal user failed because it did not have permissions to install mopidy.
desktop. The file is now only installed if the installation is executed as the root user.

26.2.36 v0.3.0 (2011-01-22)

Mopidy 0.3.0 brings a bunch of small changes all over the place, but no large changes. The main features are support
for high bitrate audio from Spotify, and MPD password authentication.

Regarding the docs, we’ve improved the installation instructions and done a bit of testing of the available Android and
iOS clients for MPD.

Please note that 0.3.0 requires some updated dependencies, as listed under Important changes below. Also, there is a
known bug in the Spotify playlist loading, as described below. As the bug will take some time to fix and has a known
workaround, we did not want to delay the release while waiting for a fix to this problem.
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Warning: Known bug in Spotify playlist loading

There is a known bug in the loading of Spotify playlists. This bug affects both Mopidy 0.2.1 and 0.3.0, given that
you use libspotify 0.0.6. To avoid the bug, either use Mopidy 0.2.1 with libspotify 0.0.4, or use either Mopidy
version with libspotify 0.0.6 and follow the simple workaround described at #59.

Important changes

• If you use the Spotify backend, you need to upgrade to libspotify 0.0.6 and the latest pyspotify from the Mopidy
developers. Follow the instructions at Installation.

• If you use the Last.fm frontend, you need to upgrade to pylast 0.5.7. Run sudo pip install --upgrade
pylast or install Mopidy from APT.

Changes

• Spotify backend:

– Support high bitrate (320k) audio. Set the new setting mopidy.settings.
SPOTIFY_HIGH_BITRATE to True to switch to high bitrate audio.

– Rename mopidy.backends.libspotify to mopidy.backends.spotify. If you have set
mopidy.settings.BACKENDS explicitly, you may need to update the setting’s value.

– Catch and log error caused by playlist folder boundaries being threated as normal playlists. More perma-
nent fix requires support for checking playlist types in pyspotify (see #62).

– Fix crash on failed lookup of track by URI. (Fixes: #60)

• Local backend:

– Add mopidy-scan command to generate tag_cache files without any help from the original MPD
server. See Generating a local library for instructions on how to use it.

– Fix support for UTF-8 encoding in tag caches.

• MPD frontend:

– Add support for password authentication. See mopidy.settings.MPD_SERVER_PASSWORD for
details on how to use it. (Fixes: #41)

– Support setvol 50 without quotes around the argument. Fixes volume control in Droid MPD.

– Support seek 1 120 without quotes around the arguments. Fixes seek in Droid MPD.

• Last.fm frontend:

– Update to use Last.fm’s new Scrobbling 2.0 API, as the old Submissions Protocol 1.2.1 is deprecated.
(Fixes: #33)

– Fix crash when track object does not contain all the expected meta data.

– Fix crash when response from Last.fm cannot be decoded as UTF-8. (Fixes: #37)

– Fix crash when response from Last.fm contains invalid XML.

– Fix crash when response from Last.fm has an invalid HTTP status line.

• Mixers:

– Support use of unicode strings for settings specific to mopidy.mixers.nad.

• Settings:

– Automatically expand the “~” characted to the user’s home directory and make the path absolute for
settings with names ending in _PATH or _FILE.
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– Rename the following settings. The settings validator will warn you if you need to change your local
settings.

* LOCAL_MUSIC_FOLDER to mopidy.settings.LOCAL_MUSIC_PATH

* LOCAL_PLAYLIST_FOLDER to mopidy.settings.LOCAL_PLAYLIST_PATH

* LOCAL_TAG_CACHE to mopidy.settings.LOCAL_TAG_CACHE_FILE

* SPOTIFY_LIB_CACHE to mopidy.settings.SPOTIFY_CACHE_PATH

– Fix bug which made settings set to None or 0 cause a mopidy.SettingsError to be raised.

• Packaging and distribution:

– Setup APT repository and create Debian packages of Mopidy. See Installation for instructions for how to
install Mopidy, including all dependencies, from APT.

– Install mopidy.desktop file that makes Mopidy available from e.g. Gnome application menus.

• API:

– Rename and generalize Playlist._with(**kwargs) to mopidy.models.
ImmutableObject.copy().

– Add musicbrainz_id field to mopidy.models.Artist, mopidy.models.Album, and
mopidy.models.Track.

– Prepare for multi-backend support (see #40) by introducing the provider concept. Split the backend API
into a backend controller API (for frontend use) and a backend provider API (for backend implementation
use), which includes the following changes:

* Rename BaseBackend to mopidy.backends.base.Backend.

* Rename BaseCurrentPlaylistController to mopidy.backends.base.
CurrentPlaylistController.

* Split BaseLibraryController to mopidy.backends.base.LibraryController and
mopidy.backends.base.BaseLibraryProvider.

* Split BasePlaybackController to mopidy.backends.base.PlaybackController
and mopidy.backends.base.BasePlaybackProvider.

* Split BaseStoredPlaylistsController to mopidy.backends.
base.StoredPlaylistsController and mopidy.backends.base.
BaseStoredPlaylistsProvider.

– Move BaseMixer to mopidy.mixers.base.BaseMixer.

– Add docs for the current non-stable output API, mopidy.outputs.base.BaseOutput.

26.2.37 v0.2.1 (2011-01-07)

This is a maintenance release without any new features.

Bug fixes

• Fix crash in mopidy.frontends.lastfm which occurred at playback if either pylast was not installed
or the Last.fm scrobbling was not correctly configured. The scrobbling thread now shuts properly down at
failure.
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26.2.38 v0.2.0 (2010-10-24)

In Mopidy 0.2.0 we’ve added a Last.fm scrobbling support, which means that Mopidy now can submit meta data about
the tracks you play to your Last.fm profile. See mopidy.frontends.lastfm for details on new dependencies
and settings. If you use Mopidy’s Last.fm support, please join the Mopidy group at Last.fm.

With the exception of the work on the Last.fm scrobbler, there has been a couple of quiet months in the Mopidy camp.
About the only thing going on, has been stabilization work and bug fixing. All bugs reported on GitHub, plus some,
have been fixed in 0.2.0. Thus, we hope this will be a great release!

We’ve worked a bit on OS X support, but not all issues are completely solved yet. #25 is the one that is currently
blocking OS X support. Any help solving it will be greatly appreciated!

Finally, please update your pyspotify installation when upgrading to Mopidy 0.2.0. The latest pyspotify got a fix for
the segmentation fault that occurred when playing music and searching at the same time, thanks to Valentin David.

Important changes

• Added a Last.fm scrobbler. See mopidy.frontends.lastfm for details.

Changes

• Logging and command line options:

– Simplify the default log format, mopidy.settings.CONSOLE_LOG_FORMAT. From a user’s point
of view: Less noise, more information.

– Rename the mopidy --dump command line option to mopidy --save-debug-log.

– Rename setting mopidy.settings.DUMP_LOG_FORMAT to mopidy.settings.
DEBUG_LOG_FORMAT and use it for mopidy --verbose too.

– Rename setting mopidy.settings.DUMP_LOG_FILENAME to mopidy.settings.
DEBUG_LOG_FILENAME.

• MPD frontend:

– MPD command list now supports queries by artist, album name, and date, as used by e.g. the Ario
client. (Fixes: #20)

– MPD command add "" and addid "" now behaves as expected. (Fixes #16)

– MPD command playid "-1" now correctly resumes playback if paused.

• Random mode:

– Fix wrong behavior on end of track and next after random mode has been used. (Fixes: #18)

– Fix infinite recursion loop crash on playback of non-playable tracks when in random mode. (Fixes #17)

– Fix assertion error that happened if one removed tracks from the current playlist, while in random mode.
(Fixes #22)

• Switched from using subprocesses to threads. (Fixes: #14)

• mopidy.outputs.gstreamer: Set caps on the appsrc bin before use. This makes sound output work
with GStreamer >= 0.10.29, which includes the versions used in Ubuntu 10.10 and on OS X if using Homebrew.
(Fixes: #21, #24, contributes to #14)

• Improved handling of uncaught exceptions in threads. The entire process should now exit immediately.
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26.2.39 v0.1.0 (2010-08-23)

After three weeks of long nights and sprints we’re finally pleased enough with the state of Mopidy to remove the alpha
label, and do a regular release.

Mopidy 0.1.0 got important improvements in search functionality, working track position seeking, no known stability
issues, and greatly improved MPD client support. There are lots of changes since 0.1.0a3, and we urge you to at least
read the important changes below.

This release does not support OS X. We’re sorry about that, and are working on fixing the OS X issues for a future
release. You can track the progress at #14.

Important changes

• License changed from GPLv2 to Apache License, version 2.0.

• GStreamer is now a required dependency. See our GStreamer installation docs.

• mopidy.backends.libspotify is now the default backend. mopidy.backends.despotify is no
longer available. This means that you need to install the dependencies for libspotify.

• If you used mopidy.backends.libspotify previously, pyspotify must be updated when updating to this
release, to get working seek functionality.

• mopidy.settings.SERVER_HOSTNAME and mopidy.settings.SERVER_PORT has been renamed
to mopidy.settings.MPD_SERVER_HOSTNAME and mopidy.settings.MPD_SERVER_PORT to
allow for multiple frontends in the future.

Changes

• Exit early if not Python >= 2.6, < 3.

• Validate settings at startup and print useful error messages if the settings has not been updated or anything is
misspelled.

• Add command line option mopidy --list-settings to print the currently active settings.

• Include Sphinx scripts for building docs, pylintrc, tests and test data in the packages created by setup.py for
i.e. PyPI.

• MPD frontend:

– Search improvements, including support for multi-word search.

– Fixed play "-1" and playid "-1" behaviour when playlist is empty or when a current track is set.

– Support plchanges "-1" to work better with MPDroid.

– Support pause without arguments to work better with MPDroid.

– Support plchanges, play, consume, random, repeat, and single without quotes to work better
with BitMPC.

– Fixed deletion of the currently playing track from the current playlist, which crashed several clients.

– Implement seek and seekid.

– Fix playlistfind output so the correct song is played when playing songs directly from search results
in GMPC.

– Fix load so that one can append a playlist to the current playlist, and make it return the correct error
message if the playlist is not found.

– Support for single track repeat added. (Fixes: #4)

– Relocate from mopidy.mpd to mopidy.frontends.mpd.
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– Split gigantic protocol implementation into eleven modules.

– Rename mopidy.frontends.mpd.{serializer => translator} to match naming in back-
ends.

– Remove setting mopidy.settings.SERVER and mopidy.settings.FRONTEND in favour of the
new mopidy.settings.FRONTENDS.

– Run MPD server in its own process.

• Backends:

– Rename mopidy.backends.gstreamer to mopidy.backends.local.

– Remove mopidy.backends.despotify, as Despotify is little maintained and the Libspotify back-
end is working much better. (Fixes: #9, #10, #13)

– A Spotify application key is now bundled with the source. mopidy.settings.
SPOTIFY_LIB_APPKEY is thus removed.

– If failing to play a track, playback will skip to the next track.

– Both mopidy.backends.libspotify and mopidy.backends.local have been rewritten to
use the new common GStreamer audio output module, mopidy.outputs.gstreamer.

• Mixers:

– Added new mopidy.mixers.gstreamer_software.GStreamerSoftwareMixerwhich now
is the default mixer on all platforms.

– New setting mopidy.settings.MIXER_MAX_VOLUME for capping the maximum output volume.

• Backend API:

– Relocate from mopidy.backends to mopidy.backends.base.

– The id field of mopidy.models.Track has been removed, as it is no longer needed after the CPID
refactoring.

– mopidy.backends.base.BaseBackend() now accepts an output_queue which it can use to
send messages (i.e. audio data) to the output process.

– mopidy.backends.base.BaseLibraryController.find_exact() now accepts keyword
arguments of the form find_exact(artist=['foo'], album=['bar']).

– mopidy.backends.base.BaseLibraryController.search() now accepts keyword
arguments of the form search(artist=['foo', 'fighters'], album=['bar',
'grooves']).

– mopidy.backends.base.BaseCurrentPlaylistController.append() replaces
mopidy.backends.base.BaseCurrentPlaylistController.load(). Use mopidy.
backends.base.BaseCurrentPlaylistController.clear() if you want to clear the
current playlist.

– The following fields in mopidy.backends.base.BasePlaybackController has been renamed
to reflect their relation to methods called on the controller:

* next_track to track_at_next

* next_cp_track to cp_track_at_next

* previous_track to track_at_previous

* previous_cp_track to cp_track_at_previous
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– mopidy.backends.base.BasePlaybackController.track_at_eot and mopidy.
backends.base.BasePlaybackController.cp_track_at_eot has been added to better
handle the difference between the user pressing next and the current track ending.

– Rename mopidy.backends.base.BasePlaybackController.
new_playlist_loaded_callback() to mopidy.backends.base.
BasePlaybackController.on_current_playlist_change().

– Rename mopidy.backends.base.BasePlaybackController.
end_of_track_callback() to mopidy.backends.base.BasePlaybackController.
on_end_of_track().

– Remove mopidy.backends.base.BaseStoredPlaylistsController.search() since it
was barely used, untested, and we got no use case for non-exact search in stored playlists yet. Use
mopidy.backends.base.BaseStoredPlaylistsController.get() instead.

26.2.40 v0.1.0a3 (2010-08-03)

In the last two months, Mopidy’s MPD frontend has gotten lots of stability fixes and error handling improvements,
proper support for having the same track multiple times in a playlist, and support for IPv6. We have also fixed the
choppy playback on the libspotify backend. For the road ahead of us, we got an updated release roadmap with our
goals for the 0.1 to 0.3 releases.

Enjoy the best alpha relase of Mopidy ever :-)

Changes

• MPD frontend:

– Support IPv6.

– addid responds properly on errors instead of crashing.

– commands support, which makes RelaXXPlayer work with Mopidy. (Fixes: #6)

– Does no longer crash on invalid data, i.e. non-UTF-8 data.

– ACK error messages are now MPD-compliant, which should make clients handle errors from Mopidy
better.

– Requests to existing commands with wrong arguments are no longer reported as unknown commands.

– command_list_end before command_list_start now returns unknown command error instead
of crashing.

– list accepts field argument without quotes and capitalized, to work with GMPC and ncmpc.

– noidle command now returns OK instead of an error. Should make some clients work a bit better.

– Having multiple identical tracks in a playlist is now working properly. (CPID refactoring)

• Despotify backend:

– Catch and log spytify.SpytifyError. (Fixes: #11)

• Libspotify backend:

– Fix choppy playback using the Libspotify backend by using blocking ALSA mode. (Fixes: #7)

• Backend API:

– A new data structure called cp_track is now used in the current playlist controller and the playback
controller. A cp_track is a two-tuple of (CPID integer, mopidy.models.Track), identifying an
instance of a track uniquely within the current playlist.
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– mopidy.backends.BaseCurrentPlaylistController.load() now accepts lists of
mopidy.models.Track instead of mopidy.models.Playlist, as none of the other fields on
the Playlist model was in use.

– mopidy.backends.BaseCurrentPlaylistController.add() now returns the cp_track
added to the current playlist.

– mopidy.backends.BaseCurrentPlaylistController.remove() now takes criterias, just
like mopidy.backends.BaseCurrentPlaylistController.get().

– mopidy.backends.BaseCurrentPlaylistController.get() now returns a cp_track.

– mopidy.backends.BaseCurrentPlaylistController.tracks is now read-only. Use the
methods to change its contents.

– mopidy.backends.BaseCurrentPlaylistController.cp_tracks is a read-only list of
cp_track. Use the methods to change its contents.

– mopidy.backends.BasePlaybackController.current_track is now just for conve-
nience and read-only. To set the current track, assign a cp_track to mopidy.backends.
BasePlaybackController.current_cp_track.

– mopidy.backends.BasePlaybackController.current_cpid is the read-only CPID of the
current track.

– mopidy.backends.BasePlaybackController.next_cp_track is the next cp_track in
the playlist.

– mopidy.backends.BasePlaybackController.previous_cp_track is the previous
cp_track in the playlist.

– mopidy.backends.BasePlaybackController.play() now takes a cp_track.

26.2.41 v0.1.0a2 (2010-06-02)

It has been a rather slow month for Mopidy, but we would like to keep up with the established pace of at least a release
per month.

Changes

• Improvements to MPD protocol handling, making Mopidy work much better with a group of clients, including
ncmpc, MPoD, and Theremin.

• New command line flag mopidy --dump for dumping debug log to dump.log in the current directory.

• New setting mopidy.settings.MIXER_ALSA_CONTROL for forcing what ALSA control mopidy.
mixers.alsa.AlsaMixer should use.

26.2.42 v0.1.0a1 (2010-05-04)

Since the previous release Mopidy has seen about 300 commits, more than 200 new tests, a libspotify release, and
major feature additions to Spotify. The new releases from Spotify have lead to updates to our dependencies, and also
to new bugs in Mopidy. Thus, this is primarily a bugfix release, even though the not yet finished work on a GStreamer
backend have been merged.

All users are recommended to upgrade to 0.1.0a1, and should at the same time ensure that they have the latest versions
of our dependencies: Despotify r508 if you are using DespotifyBackend, and pyspotify 1.1 with libspotify 0.0.4 if you
are using LibspotifyBackend.

As always, report problems at our IRC channel or our issue tracker. Thanks!
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Changes

• Backend API changes:

– Removed backend.playback.volume wrapper. Use backend.mixer.volume directly.

– Renamed backend.playback.playlist_position to current_playlist_position to
match naming of current_track.

– Replaced get_by_id() with a more flexible get(**criteria).

• Merged the gstreamer branch from Thomas Adamcik:

– More than 200 new tests, and thus several bug fixes to existing code.

– Several new generic features, like shuffle, consume, and playlist repeat. (Fixes: #3)

– [Work in Progress] A new backend for playing music from a local music archive using the GStreamer
library.

• Made mopidy.mixers.alsa.AlsaMixer work on machines without a mixer named “Master”.

• Make mopidy.backends.DespotifyBackend ignore local files in playlists (feature added in Spotify
0.4.3). Reported by Richard Haugen Olsen.

• And much more.

26.2.43 v0.1.0a0 (2010-03-27)

“Release early. Release often. Listen to your customers.” wrote Eric S. Raymond in The Cathedral and the Bazaar.

Three months of development should be more than enough. We have more to do, but Mopidy is working and usable.
0.1.0a0 is an alpha release, which basicly means we will still change APIs, add features, etc. before the final 0.1.0
release. But the software is usable as is, so we release it. Please give it a try and give us feedback, either at our IRC
channel or through the issue tracker. Thanks!

Changes

• Initial version. No changelog available.
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CHAPTER 27

Contributing

If you want to contribute to Mopidy, here are some tips to get you started.

27.1 Asking questions

Please get in touch with us in one of these ways when requesting help with Mopidy and its extensions:

• Our discussion forum: discourse.mopidy.com. Just sign in and fire away.

• Our IRC channel: #mopidy on irc.freenode.net. Be prepared to hang around for a while, as we’re not always
around to answer straight away.

Before asking for help, it might be worth your time to read the Troubleshooting page, both so you might find a solution
to your problem but also to be able to provide useful details when asking for help.

27.2 Helping users

If you want to contribute to Mopidy, a great place to start is by helping other users on IRC and in the discussion forum.
This is a contribution we value highly. As more people help with user support, new users get faster and better help.
For your own benefit, you’ll quickly learn what users find confusing, difficult or lacking, giving you some ideas for
where you may contribute improvements, either to code or documentation. Lastly, this may also free up time for other
contributors to spend more time on fixing bugs or implementing new features.

27.3 Issue guidelines

1. If you need help, see Asking questions above. The GitHub issue tracker is not a support forum.

2. If you are not sure if what you’re experiencing is a bug or not, post in the discussion forum first to verify that
it’s a bug.
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3. If you are sure that you’ve found a bug or have a feature request, check if there’s already an issue in the issue
tracker. If there is, see if there is anything you can add to help reproduce or fix the issue.

4. If there is no exising issue matching your bug or feature request, create a new issue. Please include as much
relevant information as possible. If it’s a bug, including how to reproduce the bug and any relevant logs or error
messages.

27.4 Pull request guidelines

1. Before spending any time on making a pull request:

• If it’s a bug, file an issue.

• If it’s an enhancement, discuss it with other Mopidy developers first, either in a GitHub issue, on the
discussion forum, or on IRC. Making sure your ideas and solutions are aligned with other contributors
greatly increases the odds of your pull request being quickly accepted.

2. Create a new branch, based on the develop branch, for every feature or bug fix. Keep branches small and on
topic, as that makes them far easier to review. We often use the following naming convention for branches:

• Features get the prefix feature/, e.g. feature/track-last-modified-as-ms.

• Bug fixes get the prefix fix/, e.g. fix/902-consume-track-on-next.

• Improvements to the documentation get the prefix docs/, e.g. docs/
add-ext-mopidy-spotify-tunigo.

3. Follow the code style, especially make sure the flake8 linter does not complain about anything. Travis CI will
check that your pull request is “flake8 clean”. See Style checking and linting.

4. Include tests for any new feature or substantial bug fix. See Running tests.

5. Include documentation for any new feature. See Writing documentation.

6. Feel free to include a changelog entry in your pull request. The changelog is in docs/changelog.rst.

7. Write good commit messages.

• Follow the template “topic: description” for the first line of the commit message, e.g. “mpd: Switch list
command to using list_distinct”. See the commit history for inspiration.

• Use the rest of the commit message to explain anything you feel isn’t obvious. It’s better to have the details
here than in the pull request description, since the commit message will live forever.

• Write in the imperative, present tense: “add” not “added”.

For more inspiration, feel free to read these blog posts:

• Writing Git commit messages

• A Note About Git Commit Messages

• On commit messages

8. Send a pull request to the develop branch. See the GitHub pull request docs for help.

Note: If you are contributing a bug fix for a specific minor version of Mopidy you should create the branch based
on release-x.y instead of develop. When the release is done the changes will be merged back into develop
automatically as part of the normal release process. See Creating releases.
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CHAPTER 28

Development environment

This page describes a common development setup for working with Mopidy and Mopidy extensions. Of course, there
may be other ways that work better for you and the tools you use, but here’s one recommended way to do it.

• Initial setup

– Install Mopidy the regular way

– Make a development workspace

– Make a virtualenv

– Clone the repo from GitHub

– Install development tools

– Install Mopidy from the Git repo

• Running Mopidy from Git

• Running tests

– Test it all

– Running unit tests

– Continuous integration

– Style checking and linting

• Writing documentation

• Working on extensions

– Installing extensions

– Upgrading extensions

• Contribution workflow

157



Mopidy Documentation, Release 2.2.3

– Setting up Git remotes

– Creating a branch

– Creating a pull request

– Updating a pull request

28.1 Initial setup

The following steps help you get a good initial setup. They build on each other to some degree, so if you’re not very
familiar with Python development it might be wise to proceed in the order laid out here.

• Install Mopidy the regular way

• Make a development workspace

• Make a virtualenv

• Clone the repo from GitHub

• Install development tools

• Install Mopidy from the Git repo

28.1.1 Install Mopidy the regular way

Install Mopidy the regular way. Mopidy has some non-Python dependencies which may be tricky to install. Thus we
recommend to always start with a full regular Mopidy install, as described in Installation. That is, if you’re running
e.g. Debian, start with installing Mopidy from Debian packages.

28.1.2 Make a development workspace

Make a directory to be used as a workspace for all your Mopidy development:

mkdir ~/mopidy-dev

It will contain all the Git repositories you’ll check out when working on Mopidy and extensions.

28.1.3 Make a virtualenv

Make a Python virtualenv for Mopidy development. The virtualenv will wall off Mopidy and its dependencies from
the rest of your system. All development and installation of Python dependencies, versions of Mopidy, and extensions
are done inside the virtualenv. This way your regular Mopidy install, which you set up in the first step, is unaffected
by your hacking and will always be working.

Most of us use the virtualenvwrapper to ease working with virtualenvs, so that’s what we’ll be using for the examples
here. First, install and setup virtualenvwrapper as described in their docs.

To create a virtualenv named mopidy which uses Python 2.7, allows access to system-wide packages like GStreamer,
and uses the Mopidy workspace directory as the “project path”, run:
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mkvirtualenv -a ~/mopidy-dev --python `which python2.7` \
--system-site-packages mopidy

Now, each time you open a terminal and want to activate the mopidy virtualenv, run:

workon mopidy

This will both activate the mopidy virtualenv, and change the current working directory to ~/mopidy-dev.

28.1.4 Clone the repo from GitHub

Once inside the virtualenv, it’s time to clone the mopidy/mopidy Git repo from GitHub:

git clone https://github.com/mopidy/mopidy.git

When you’ve cloned the mopidy Git repo, cd into it:

cd ~/mopidy-dev/mopidy/

With a fresh clone of the Git repo, you should start out on the develop branch. This is where all features for the next
feature release land. To confirm that you’re on the right branch, run:

git branch

28.1.5 Install development tools

We use a number of Python development tools. The dev-requirements.txt file has comments describing what
we use each dependency for, so we might just as well include the file verbatim here:

# Automate tasks
invoke

# Build documentation
sphinx

# Check code style, errors, etc
flake8
flake8-import-order

# Mock dependencies in tests
mock
responses

# Test runners
pytest>=3.3.0
pytest-cov
pytest-xdist
tox

# Check that MANIFEST.in matches Git repo contents before making a release
check-manifest

# To make wheel packages
wheel

(continues on next page)
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(continued from previous page)

# Securely upload packages to PyPI
twine

Install them all into the active virtualenv by running pip:

pip install --upgrade -r dev-requirements.txt

To upgrade the tools in the future, just rerun the exact same command.

28.1.6 Install Mopidy from the Git repo

Next up, we’ll want to run Mopidy from the Git repo. There’s two reasons for this: first of all, it lets you easily change
the source code, restart Mopidy, and see the change take effect. Second, it’s a convenient way to keep at the bleeding
edge, testing the latest developments in Mopidy itself or test some extension against the latest Mopidy changes.

Assuming you’re still inside the Git repo, use pip to install Mopidy from the Git repo in an “editable” form:

pip install --editable .

This will not copy the source code into the virtualenv’s site-packages directory, but instead create a link there
pointing to the Git repo. Using cdsitepackages from virtualenvwrapper, we can quickly show that the installed
Mopidy.egg-link file points back to the Git repo:

$ cdsitepackages
$ cat Mopidy.egg-link
/home/user/mopidy-dev/mopidy
.%
$

It will also create a mopidy executable inside the virtualenv that will always run the latest code from the Git repo.
Using another virtualenvwrapper command, cdvirtualenv, we can show that too:

$ cdvirtualenv
$ cat bin/mopidy
...

The executable should contain something like this, using pkg_resources to look up Mopidy’s “console script”
entry point:

#!/home/user/virtualenvs/mopidy/bin/python2
# EASY-INSTALL-ENTRY-SCRIPT: 'Mopidy==0.19.5','console_scripts','mopidy'
__requires__ = 'Mopidy==0.19.5'
import sys
from pkg_resources import load_entry_point

if __name__ == '__main__':
sys.exit(

load_entry_point('Mopidy==0.19.5', 'console_scripts', 'mopidy')()
)

Note: It still works to run python mopidy directly on the ~/mopidy-dev/mopidy/mopidy/ Python pack-
age directory, but if you don’t run the pip install command above, the extensions bundled with Mopidy will not
be registered with pkg_resources, making Mopidy quite useless.
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Third, the pip install command will register the bundled Mopidy extensions so that Mopidy may find them
through pkg_resources. The result of this can be seen in the Git repo, in a new directory called Mopidy.
egg-info, which is ignored by Git. The Mopidy.egg-info/entry_points.txt file is of special interest as
it shows both how the above executable and the bundled extensions are connected to the Mopidy source code:

[console_scripts]
mopidy = mopidy.__main__:main

[mopidy.ext]
http = mopidy.http:Extension
local = mopidy.local:Extension
mpd = mopidy.mpd:Extension
softwaremixer = mopidy.softwaremixer:Extension
stream = mopidy.stream:Extension

Warning: It’s not uncommon to clean up in the Git repo now and then, e.g. by running git clean.

If you do this, then the Mopidy.egg-info directory will be removed, and pkg_resources will no longer
know how to locate the “console script” entry point or the bundled Mopidy extensions.

The fix is simply to run the install command again:

pip install --editable .

Finally, we can go back to the workspace, again using a virtualenvwrapper tool:

cdproject

28.2 Running Mopidy from Git

As long as the virtualenv is activated, you can start Mopidy from any directory. Simply run:

mopidy

To stop it again, press Ctrl+C.

Every time you change code in Mopidy or an extension and want to see it live, you must restart Mopidy.

If you want to iterate quickly while developing, it may sound a bit tedious to restart Mopidy for every minor change.
Then it’s useful to have tests to exercise your code. . .

28.3 Running tests

Mopidy has quite good test coverage, and we would like all new code going into Mopidy to come with tests.

• Test it all

• Running unit tests

• Continuous integration

• Style checking and linting
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28.3.1 Test it all

You need to know at least one command; the one that runs all the tests:

tox

This will run exactly the same tests as Travis CI runs for all our branches and pull requests. If this command turns
green, you can be quite confident that your pull request will get the green flag from Travis as well, which is a require-
ment for it to be merged.

As this is the ultimate test command, it’s also the one taking the most time to run; up to a minute, depending on your
system. But, if you have patience, this is all you need to know. Always run this command before pushing your changes
to GitHub.

If you take a look at the tox config file, tox.ini, you’ll see that tox runs tests in multiple environments, including a
flake8 environment that lints the source code for issues and a docs environment that tests that the documentation
can be built. You can also limit tox to just test specific environments using the -e option, e.g. to run just unit tests:

tox -e py27

To learn more, see the tox documentation .

28.3.2 Running unit tests

Under the hood, tox -e py27 will use pytest as the test runner. We can also use it directly to run all tests:

pytest

pytest has lots of possibilities, so you’ll have to dive into their docs and plugins to get full benefit from it. To get you
interested, here are some examples.

We can limit to just tests in a single directory to save time:

pytest tests/http/

With the help of the pytest-xdist plugin, we can run tests with four Python processes in parallel, which usually cuts the
test time in half or more:

pytest -n 4

Another useful feature from pytest-xdist, is the possiblity to stop on the first test failure, watch the file system for
changes, and then rerun the tests. This makes for a very quick code-test cycle:

pytest -f # or --looponfail

With the help of the pytest-cov plugin, we can get a report on what parts of the given module, mopidy in this example,
are covered by the test suite:

pytest --cov=mopidy --cov-report=term-missing

Note: Up to date test coverage statistics can also be viewed online at coveralls.io.

If we want to speed up the test suite, we can even get a list of the ten slowest tests:
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pytest --durations=10

By now, you should be convinced that running pytest directly during development can be very useful.

28.3.3 Continuous integration

Mopidy uses the free service Travis CI for automatically running the test suite when code is pushed to GitHub. This
works both for the main Mopidy repo, but also for any forks. This way, any contributions to Mopidy through GitHub
will automatically be tested by Travis CI, and the build status will be visible in the GitHub pull request interface,
making it easier to evaluate the quality of pull requests.

For each successful build, Travis submits code coverage data to coveralls.io. If you’re out of work, coveralls might
help you find areas in the code which could need better test coverage.

28.3.4 Style checking and linting

We’re quite pedantic about Code style and try hard to keep the Mopidy code base a very clean and nice place to work
in.

Luckily, you can get very far by using the flake8 linter to check your code for issues before submitting a pull request.
Mopidy passes all of flake8’s checks, with only a very few exceptions configured in setup.cfg. You can either run
the flake8 tox environment, like Travis CI will do on your pull request:

tox -e flake8

Or you can run flake8 directly:

flake8

If successful, the command will not print anything at all.

Note: In some rare cases it doesn’t make sense to listen to flake8’s warnings. In those cases, ignore the check by
appending # noqa: <warning code> to the source line that triggers the warning. The # noqa part will make
flake8 skip all checks on the line, while the warning code will help other developers lookup what you are ignoring.

28.4 Writing documentation

To write documentation, we use Sphinx. See their site for lots of documentation on how to use Sphinx.

Note: To generate a few graphs which are part of the documentation, you need some additional dependencies. You
can install them from APT with:

sudo apt-get install python-pygraphviz graphviz

To build the documentation, go into the docs/ directory:

cd ~/mopidy-dev/mopidy/docs/

Then, to see all available build targets, run:
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make

To generate an HTML version of the documentation, run:

make html

The generated HTML will be available at _build/html/index.html. To open it in a browser you can run either
of the following commands, depending on your OS:

xdg-open _build/html/index.html # Linux
open _build/html/index.html # OS X

The documentation at https://docs.mopidy.com/ is hosted by Read the Docs, which automatically updates the docu-
mentation when a change is pushed to the mopidy/mopidy repo at GitHub.

28.5 Working on extensions

Much of the above also applies to Mopidy extensions, though they’re often a bit simpler. They don’t have documenta-
tion sites and their test suites are either small and fast, or sadly missing entirely. Most of them use tox and flake8, and
pytest can be used to run their test suites.

• Installing extensions

• Upgrading extensions

28.5.1 Installing extensions

As always, the mopidy virtualenv should be active when working on extensions:

workon mopidy

Just like with non-development Mopidy installations, you can install extensions using pip:

pip install Mopidy-Scrobbler

Installing an extension from its Git repo works the same way as with Mopidy itself. First, go to the Mopidy workspace:

cdproject # or cd ~/mopidy-dev/

Clone the desired Mopidy extension:

git clone https://github.com/mopidy/mopidy-spotify.git

Change to the newly created extension directory:

cd mopidy-spotify/

Then, install the extension in “editable” mode, so that it can be imported from anywhere inside the virtualenv and the
extension is registered and discoverable through pkg_resources:

pip install --editable .

164 Chapter 28. Development environment

https://docs.mopidy.com/
https://readthedocs.org/


Mopidy Documentation, Release 2.2.3

Every extension will have a README.rst file. It may contain information about extra dependencies required, devel-
opment process, etc. Extensions usually have a changelog in the readme file.

28.5.2 Upgrading extensions

Extensions often have a much quicker life cycle than Mopidy itself, often with daily releases in periods of active
development. To find outdated extensions in your virtualenv, you can run:

pip search mopidy

This will list all available Mopidy extensions and compare the installed versions with the latest available ones.

To upgrade an extension installed with pip, simply use pip:

pip install --upgrade Mopidy-Scrobbler

To upgrade an extension installed from a Git repo, it’s usually enough to pull the new changes in:

cd ~/mopidy-dev/mopidy-spotify/
git pull

Of course, if you have local modifications, you’ll need to stash these away on a branch or similar first.

Depending on the changes to the extension, it may be necessary to update the metadata about the extension package
by installing it in “editable” mode again:

pip install --editable .

28.6 Contribution workflow

Before you being, make sure you’ve read the Contributing page and the guidelines there. This section will focus more
on the practical workflow.

For the examples, we’re making a change to Mopidy. Approximately the same workflow should work for most Mopidy
extensions too.

• Setting up Git remotes

• Creating a branch

• Creating a pull request

• Updating a pull request

28.6.1 Setting up Git remotes

Assuming we already have a local Git clone of the upstream Git repo in ~/mopidy-dev/mopidy/, we can run
git remote -v to list the configured remotes of the repo:

$ git remote -v
origin https://github.com/mopidy/mopidy.git (fetch)
origin https://github.com/mopidy/mopidy.git (push)
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For clarity, we can rename the origin remote to upstream:

$ git remote rename origin upstream
$ git remote -v
upstream https://github.com/mopidy/mopidy.git (fetch)
upstream https://github.com/mopidy/mopidy.git (push)

If you haven’t already, fork the repository to your own GitHub account.

Then, add the new fork as a remote to your local clone:

git remote add myuser git@github.com:myuser/mopidy.git

The end result is that you have both the upstream repo and your own fork as remotes:

$ git remote -v
myuser git@github.com:myuser/mopidy.git (fetch)
myuser git@github.com:myuser/mopidy.git (push)
upstream https://github.com/mopidy/mopidy.git (fetch)
upstream https://github.com/mopidy/mopidy.git (push)

28.6.2 Creating a branch

Fetch the latest data from all remotes without affecting your working directory:

git remote update

Now, we are ready to create and checkout a new branch off of the upstream develop branch for our work:

git checkout -b fix/666-crash-on-foo upstream/develop

Do the work, while remembering to adhere to code style, test the changes, make necessary updates to the documenta-
tion, and making small commits with good commit messages. All as described in Contributing and elsewhere in the
Development environment guide.

28.6.3 Creating a pull request

When everything is done and committed, push the branch to your fork on GitHub:

git push myuser fix/666-crash-on-foo

Go to the repository on GitHub where you want the change merged, in this case https://github.com/mopidy/mopidy,
and create a pull request.

28.6.4 Updating a pull request

When the pull request is created, Travis CI will run all tests on it. If something fails, you’ll get notified by email.
You might as well just fix the issues right away, as we won’t merge a pull request without a green Travis build. See
Running tests on how to run the same tests locally as Travis CI runs on your pull request.

When you’ve fixed the issues, you can update the pull request simply by pushing more commits to the same branch in
your fork:
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git push myuser fix/666-crash-on-foo

Likewise, when you get review comments from other developers on your pull request, you’re expected to create
additional commits which addresses the comments. Push them to your branch so that the pull request is updated.

Note: Setup the remote as the default push target for your branch:

git branch --set-upstream-to myuser/fix/666-crash-on-foo

Then you can push more commits without specifying the remote:

git push
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CHAPTER 29

Release procedures

Here we try to keep an up to date record of how Mopidy releases are made. This documentation serves both as a
checklist, to reduce the project’s dependency on key individuals, and as a stepping stone to more automation.

29.1 Creating releases

1. Update changelog and commit it.

2. Bump the version number in mopidy/__init__.py.

3. Merge the release branch (develop in the example) into master:

git checkout master
git merge --no-ff -m "Release v0.16.0" develop

4. Install/upgrade tools used for packaging:

pip install -U twine wheel

5. Build package and test it manually in a new virtualenv. The following assumes the use of virtualenvwrapper:

python setup.py sdist bdist_wheel

mktmpenv
pip install path/to/dist/Mopidy-0.16.0.tar.gz
toggleglobalsitepackages
# do manual test
deactivate

mktmpenv
pip install path/to/dist/Mopidy-0.16.0-py27-none-any.whl
toggleglobalsitepackages
# do manual test
deactivate
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6. Tag the release:

git tag -a -m "Release v0.16.0" v0.16.0

7. Push to GitHub:

git push --follow-tags

8. Upload the previously built and tested sdist and bdist_wheel packages to PyPI:

twine upload dist/Mopidy-0.16.0*

9. Merge master back into develop and push the branch to GitHub.

10. Make sure the new tag is built by Read the Docs, and that the latest version shows the newly released version.

11. Spread the word through the topic on #mopidy on IRC, @mopidy on Twitter, and on the mailing list.

12. Notify distribution packagers, including but not limited to: Debian, Arch Linux, Homebrew.
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CHAPTER 30

Code style

• Always import unicode_literals and use unicode literals for everything except where you’re explicitly
working with bytes, which are marked with the b prefix.

Do this:

from __future__ import unicode_literals

foo = 'I am a unicode string, which is a sane default'
bar = b'I am a bytestring'

Not this:

foo = u'I am a unicode string'
bar = 'I am a bytestring, but was it intentional?'

• Follow PEP 8 unless otherwise noted. flake8 should be used to check your code against the guidelines.

• Use four spaces for indentation, never tabs.

• Use CamelCase with initial caps for class names:

ClassNameWithCamelCase

• Use underscore to split variable, function and method names for readability. Don’t use CamelCase.

lower_case_with_underscores

• Use the fact that empty strings, lists and tuples are False and don’t compare boolean values using == and !=.

• Follow whitespace rules as described in PEP 8. Good examples:

spam(ham[1], {eggs: 2})
spam(1)
dict['key'] = list[index]
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• Limit lines to 80 characters and avoid trailing whitespace. However note that wrapped lines should be one
indentation level in from level above, except for if, for, with, and while lines which should have two
levels of indentation:

if (foo and bar ...
baz and foobar):

a = 1

from foobar import (foo, bar, ...
baz)

• For consistency, prefer ' over " for strings, unless the string contains '.

• Take a look at PEP 20 for a nice peek into a general mindset useful for Python coding.
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CHAPTER 31

Extension development

Mopidy started as simply an MPD server that could play music from Spotify. Early on, Mopidy got multiple “fron-
tends” to expose Mopidy to more than just MPD clients: for example the scrobbler frontend that scrobbles your
listening history to your Last.fm account, the MPRIS frontend that integrates Mopidy into the Ubuntu Sound Menu,
and the HTTP server and JavaScript player API making web based Mopidy clients possible. In Mopidy 0.9 we added
support for multiple music sources without stopping and reconfiguring Mopidy: for example the local backend for
playing music from your disk, the stream backend for playing Internet radio streams, and the Spotify and SoundCloud
backends, for playing music directly from those services.

All of these are examples of what you can accomplish by creating a Mopidy extension. If you want to create your own
Mopidy extension for something that does not exist yet, this guide to extension development will help you get your
extension running in no time, and make it feel the way users would expect your extension to behave.

31.1 Anatomy of an extension

Extensions are located in a Python package called mopidy_something where “something” is the name of the
application, library or web service you want to integrate with Mopidy. So, for example, if you plan to add support for
a service named Soundspot to Mopidy, you would name your extension’s Python package mopidy_soundspot.

The extension must be shipped with a setup.py file and be registered on PyPI. The name of the distribution on PyPI
would be something like “Mopidy-Soundspot”. Make sure to include the name “Mopidy” somewhere in that name
and that you check the capitalization. This is the name users will use when they install your extension from PyPI.

Mopidy extensions must be licensed under an Apache 2.0 (like Mopidy itself), BSD, MIT or more liberal license to
be able to be enlisted in the Mopidy documentation. The license text should be included in the LICENSE file in the
root of the extension’s Git repo.

Combining this together, we get the following folder structure for our extension, Mopidy-Soundspot:

mopidy-soundspot/ # The Git repo root
LICENSE # The license text
MANIFEST.in # List of data files to include in PyPI package
README.rst # Document what it is and how to use it

(continues on next page)
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(continued from previous page)

mopidy_soundspot/ # Your code
__init__.py
ext.conf # Default config for the extension
...

setup.py # Installation script

Example content for the most important files follows below.

31.2 cookiecutter project template

We’ve also made a cookiecutter project template for creating new Mopidy extensions. If you install cookiecutter and
run a single command, you’re asked a few questions about the name of your extension, etc. This is used to create a
folder structure similar to the above, with all the needed files and most of the details filled in for you. This saves you a
lot of tedious work and copy-pasting from this howto. See the readme of cookiecutter-mopidy-ext for further details.

31.3 Example README.rst

The README file should quickly explain what the extension does, how to install it, and how to configure it. It should
also contain a link to a tarball of the latest development version of the extension. It’s important that this link ends with
#egg=Mopidy-Something-dev for installation using pip install Mopidy-Something==dev to work.

****************
Mopidy-Soundspot
****************

`Mopidy <http://www.mopidy.com/>`_ extension for playing music from
`Soundspot <http://soundspot.example.com/>`_.

Requires a Soundspot Platina subscription and the pysoundspot library.

Installation
============

Install by running::

sudo pip install Mopidy-Soundspot

Or, if available, install the Debian/Ubuntu package from `apt.mopidy.com
<http://apt.mopidy.com/>`_.

Configuration
=============

Before starting Mopidy, you must add your Soundspot username and password
to the Mopidy configuration file::

[soundspot]
username = alice
password = secret

(continues on next page)
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(continued from previous page)

Project resources
=================

- `Source code <https://github.com/mopidy/mopidy-soundspot>`_
- `Issue tracker <https://github.com/mopidy/mopidy-soundspot/issues>`_
- `Development branch tarball <https://github.com/mopidy/mopidy-soundspot/tarball/
→˓master#egg=Mopidy-Soundspot-dev>`_

Changelog
=========

v0.1.0 (2013-09-17)
-------------------

- Initial release.

31.4 Example setup.py

The setup.py file must use setuptools, and not distutils. This is because Mopidy extensions use setuptools’ entry
point functionality to register themselves as available Mopidy extensions when they are installed on your system.

The example below also includes a couple of convenient tricks for reading the package version from the source code
so that it is defined in a single place, and to reuse the README file as the long description of the package for the PyPI
registration.

The package must have install_requires on setuptools and Mopidy >= 0.14 (or a newer version, if
your extension requires it), in addition to any other dependencies required by your extension. If you implement a
Mopidy frontend or backend, you’ll need to include Pykka >= 1.1 in the requirements. The entry_points
part must be included. The mopidy.ext part cannot be changed, but the innermost string should be changed. It’s
format is ext_name = package_name:Extension. ext_name should be a short name for your extension,
typically the part after “Mopidy-” in lowercase. This name is used e.g. to name the config section for your extension.
The package_name:Extension part is simply the Python path to the extension class that will connect the rest of
the dots.

from __future__ import absolute_import, unicode_literals

import re
from setuptools import setup, find_packages

def get_version(filename):
content = open(filename).read()
metadata = dict(re.findall("__([a-z]+)__ = '([^']+)'", content))
return metadata['version']

setup(
name='Mopidy-Soundspot',
version=get_version('mopidy_soundspot/__init__.py'),
url='https://github.com/your-account/mopidy-soundspot',
license='Apache License, Version 2.0',
author='Your Name',

(continues on next page)
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author_email='your-email@example.com',
description='Very short description',
long_description=open('README.rst').read(),
packages=find_packages(exclude=['tests', 'tests.*']),
zip_safe=False,
include_package_data=True,
install_requires=[

'setuptools',
'Mopidy >= 0.14',
'Pykka >= 1.1',
'pysoundspot',

],
entry_points={

'mopidy.ext': [
'soundspot = mopidy_soundspot:Extension',

],
},
classifiers=[

'Environment :: No Input/Output (Daemon)',
'Intended Audience :: End Users/Desktop',
'License :: OSI Approved :: Apache Software License',
'Operating System :: OS Independent',
'Programming Language :: Python :: 2',
'Topic :: Multimedia :: Sound/Audio :: Players',

],
)

To make sure your README, license file and default config file is included in the package that is uploaded to PyPI,
we’ll also need to add a MANIFEST.in file:

include LICENSE
include MANIFEST.in
include README.rst
include mopidy_soundspot/ext.conf

For details on the MANIFEST.in file format, check out the distutils docs. check-manifest is a very useful tool to
check your MANIFEST.in file for completeness.

31.5 Example __init__.py

The __init__.py file should be placed inside the mopidy_soundspot Python package.

The root of your Python package should have an __version__ attribute with a PEP 386 compliant version number,
for example “0.1”. Next, it should have a class named Extension which inherits from Mopidy’s extension base
class, mopidy.ext.Extension. This is the class referred to in the entry_points part of setup.py. Any
imports of other files in your extension, outside of Mopidy and it’s core requirements, should be kept inside methods.
This ensures that this file can be imported without raising ImportError exceptions for missing dependencies, etc.

The default configuration for the extension is defined by the get_default_config()method in the Extension
class which returns a ConfigParser compatible config section. The config section’s name must be the same as
the extension’s short name, as defined in the entry_points part of setup.py, for example soundspot. All
extensions must include an enabled config which normally should default to true. Provide good defaults for all
config values so that as few users as possible will need to change them. The exception is if the config value has
security implications; in that case you should default to the most secure configuration. Leave any configurations
that don’t have meaningful defaults blank, like username and password. In the example below, we’ve chosen to
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maintain the default config as a separate file named ext.conf. This makes it easy to include the default config in
documentation without duplicating it.

This is mopidy_soundspot/__init__.py:

from __future__ import absolute_import, unicode_literals

import logging
import os

from mopidy import config, exceptions, ext

__version__ = '0.1'

# If you need to log, use loggers named after the current Python module
logger = logging.getLogger(__name__)

class Extension(ext.Extension):

dist_name = 'Mopidy-Soundspot'
ext_name = 'soundspot'
version = __version__

def get_default_config(self):
conf_file = os.path.join(os.path.dirname(__file__), 'ext.conf')
return config.read(conf_file)

def get_config_schema(self):
schema = super(Extension, self).get_config_schema()
schema['username'] = config.String()
schema['password'] = config.Secret()
return schema

def get_command(self):
from .commands import SoundspotCommand
return SoundspotCommand()

def validate_environment(self):
# Any manual checks of the environment to fail early.
# Dependencies described by setup.py are checked by Mopidy, so you
# should not check their presence here.
pass

def setup(self, registry):
# You will typically only do one of the following things in a
# single extension.

# Register a frontend
from .frontend import SoundspotFrontend
registry.add('frontend', SoundspotFrontend)

# Register a backend
from .backend import SoundspotBackend
registry.add('backend', SoundspotBackend)

# Or nothing to register e.g. command extension
pass
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And this is mopidy_soundspot/ext.conf:

[soundspot]
enabled = true
username =
password =

For more detailed documentation on the extension class, see the mopidy.ext – Extension API.

31.6 Example frontend

If you want to use Mopidy’s core API from your extension, then you want to implement a frontend.

The skeleton of a frontend would look like this. Notice that the frontend gets passed a reference to the core API when
it’s created. See the Frontend API for more details.

import pykka

from mopidy import core

class SoundspotFrontend(pykka.ThreadingActor, core.CoreListener):
def __init__(self, config, core):

super(SoundspotFrontend, self).__init__()
self.core = core

# Your frontend implementation

31.7 Example backend

If you want to extend Mopidy to support new music and playlist sources, you want to implement a backend. A backend
does not have access to Mopidy’s core API at all, but it does have a bunch of interfaces it can implement to extend
Mopidy.

The skeleton of a backend would look like this. See mopidy.backend — Backend API for more details.

import pykka

from mopidy import backend

class SoundspotBackend(pykka.ThreadingActor, backend.Backend):
def __init__(self, config, audio):

super(SoundspotBackend, self).__init__()
self.audio = audio

# Your backend implementation

31.8 Example command

If you want to extend the Mopidy with a new helper not run from the server, such as scanning for media, adding a
command is the way to go. Your top level command name will always match your extension name, but you are free to
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add sub-commands with names of your choosing.

The skeleton of a command would look like this. See mopidy.commands — Commands API for more details.

from mopidy import commands

class SoundspotCommand(commands.Command):
help = 'Some text that will show up in --help'

def __init__(self):
super(SoundspotCommand, self).__init__()
self.add_argument('--foo')

def run(self, args, config, extensions):
# Your command implementation
return 0

31.9 Example web application

As of Mopidy 0.19, extensions can use Mopidy’s built-in web server to host static web clients as well as Tornado
and WSGI web applications. For several examples, see the HTTP server side API docs or explore with Mopidy-API-
Explorer extension.

31.10 Running an extension

Once your extension is ready to go, to see it in action you’ll need to register it with Mopidy. Typically this is done by
running python setup.py install from your extension’s Git repo root directory. While developing your ex-
tension and to avoid doing this every time you make a change, you can instead run python setup.py develop
to effectively link Mopidy directly with your development files.

31.11 Python conventions

In general, it would be nice if Mopidy extensions followed the same Code style as Mopidy itself, as they’re part of
the same ecosystem. Among other things, the code style guide explains why all the above examples start with from
__future__ import absolute_import, unicode_literals.

31.12 Use of Mopidy APIs

When writing an extension, you should only use APIs documented at API reference. Other parts of Mopidy, like
mopidy.internal, may change at any time and are not something extensions should use.

Mopidy performs type checking to help catch extension bugs. This applies to both frontend calls into core and return
values from backends. Additionally model fields always get validated to further guard against bad data.
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31.13 Logging in extensions

For servers like Mopidy, logging is essential for understanding what’s going on. We use the logging module from
Python’s standard library. When creating a logger, always namespace the logger using your Python package name as
this will be visible in Mopidy’s debug log:

import logging

logger = logging.getLogger('mopidy_soundspot')

# Or even better, use the Python module name as the logger name:
logger = logging.getLogger(__name__)

When logging at logging level info or higher (i.e. warning, error, and critical, but not debug) the log
message will be displayed to all Mopidy users. Thus, the log messages at those levels should be well written and easy
to understand.

As the logger name is not included in Mopidy’s default logging format, you should make it obvious from the log
message who is the source of the log message. For example:

Loaded 17 Soundspot playlists

Is much better than:

Loaded 17 playlists

If you want to turn on debug logging for your own extension, but not for everything else due to the amount of noise,
see the docs for the loglevels/* config section.

31.14 Making HTTP requests from extensions

Many Mopidy extensions need to make HTTP requests to use some web API. Here’s a few recommendations to those
extensions.

31.14.1 Proxies

If you make HTTP requests please make sure to respect the proxy configs, so that all the requests you make go through
the proxy configured by the Mopidy user. To make this easier for extension developers, the helper function mopidy.
httpclient.format_proxy() was added in Mopidy 1.1. This function returns the proxy settings formatted the
way Requests expects.

31.14.2 User-Agent strings

When you make HTTP requests, it’s helpful for debugging and usage analysis if the client identifies itself
with a proper User-Agent string. In Mopidy 1.1, we added the helper function mopidy.httpclient.
format_user_agent(). Here’s an example of how to use it:

>>> from mopidy import httpclient
>>> import mopidy_soundspot
>>> httpclient.format_user_agent('%s/%s' % (
... mopidy_soundspot.Extension.dist_name, mopidy_soundspot.__version__))
u'Mopidy-SoundSpot/2.0.0 Mopidy/1.0.7 Python/2.7.10'
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31.14.3 Example using Requests sessions

Most Mopidy extensions that make HTTP requests use the Requests library to do so. When using Requests, the most
convenient way to make sure the proxy and User-Agent header is set properly is to create a Requests session object
and use that object to make all your HTTP requests:

from mopidy import httpclient

import requests

import mopidy_soundspot

def get_requests_session(proxy_config, user_agent):
proxy = httpclient.format_proxy(proxy_config)
full_user_agent = httpclient.format_user_agent(user_agent)

session = requests.Session()
session.proxies.update({'http': proxy, 'https': proxy})
session.headers.update({'user-agent': full_user_agent})

return session

# ``mopidy_config`` is the config object passed to your frontend/backend
# constructor
session = get_requests_session(

proxy_config=mopidy_config['proxy'],
user_agent='%s/%s' % (

mopidy_soundspot.Extension.dist_name,
mopidy_soundspot.__version__))

response = session.get('http://example.com')
# Now do something with ``response`` and/or make further requests using the
# ``session`` object.

For further details, see Requests’ docs on session objects.

31.15 Testing extensions

Creating test cases for your extensions makes them much simpler to maintain over the long term. It can also make it
easier for you to review and accept pull requests from other contributors knowing that they will not break the extension
in some unanticipated way.

Before getting started, it is important to familiarize yourself with the Python mock library. When it comes to running
tests, Mopidy typically makes use of testing tools like tox and pytest.

31.15.1 Testing approach

To a large extent the testing approach to follow depends on how your extension is structured, which parts of Mopidy
it interacts with, and if it uses any 3rd party APIs or makes any HTTP requests to the outside world.

The sections that follow contain code extracts that highlight some of the key areas that should be tested. For more
exhaustive examples, you may want to take a look at the test cases that ship with Mopidy itself which covers everything
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from instantiating various controllers, reading configuration files, and simulating events that your extension can listen
to.

In general your tests should cover the extension definition, the relevant Mopidy controllers, and the Pykka backend
and / or frontend actors that form part of the extension.

31.15.2 Testing the extension definition

Test cases for checking the definition of the extension should ensure that:

• the extension provides a ext.conf configuration file containing the relevant parameters with their default
values,

• that the config schema is fully defined, and

• that the extension’s actor(s) are added to the Mopidy registry on setup.

An example of what these tests could look like is provided below:

def test_get_default_config():
ext = Extension()
config = ext.get_default_config()

assert '[my_extension]' in config
assert 'enabled = true' in config
assert 'param_1 = value_1' in config
assert 'param_2 = value_2' in config
assert 'param_n = value_n' in config

def test_get_config_schema():
ext = Extension()
schema = ext.get_config_schema()

assert 'enabled' in schema
assert 'param_1' in schema
assert 'param_2' in schema
assert 'param_n' in schema

def test_setup():
registry = mock.Mock()

ext = Extension()
ext.setup(registry)
calls = [mock.call('frontend', frontend_lib.MyFrontend),

mock.call('backend', backend_lib.MyBackend)]
registry.add.assert_has_calls(calls, any_order=True)

31.15.3 Testing backend actors

Backends can usually be constructed with a small mockup of the configuration file, and mocking the audio actor:

@pytest.fixture
def config():

return {
'http': {

'hostname': '127.0.0.1',
'port': '6680'

(continues on next page)
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(continued from previous page)

},
'proxy': {

'hostname': 'host_mock',
'port': 'port_mock'

},
'my_extension': {

'enabled': True,
'param_1': 'value_1',
'param_2': 'value_2',
'param_n': 'value_n',

}
}

def get_backend(config):
return backend.MyBackend(config=config, audio=mock.Mock())

The following libraries might be useful for mocking any HTTP requests that your extension makes:

• responses - A utility library for mocking out the requests Python library.

• vcrpy - Automatically mock your HTTP interactions to simplify and speed up testing.

At the very least, you’ll probably want to patch requests or any other web API’s that you use to avoid any unin-
tended HTTP requests from being made by your backend during testing:

from mock import patch
@mock.patch('requests.get',

mock.Mock(side_effect=Exception('Intercepted unintended HTTP call')))

Backend tests should also ensure that:

• the backend provides a unique URI scheme,

• that it sets up the various providers (e.g. library, playback, etc.)

def test_uri_schemes(config):
backend = get_backend(config)

assert 'my_scheme' in backend.uri_schemes

def test_init_sets_up_the_providers(config):
backend = get_backend(config)

assert isinstance(backend.library, library.MyLibraryProvider)
assert isinstance(backend.playback, playback.MyPlaybackProvider)

Once you have a backend instance to work with, testing the various playback, library, and other providers is straight
forward and should not require any special setup or processing.

31.15.4 Testing libraries

Library test cases should cover the implementations of the standard Mopidy API (e.g. browse, lookup, refresh,
get_images, search, etc.)
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31.15.5 Testing playback controllers

Testing change_track and translate_uri is probably the highest priority, since these methods are used to
prepare the track and provide its audio URL to Mopidy’s core for playback.

31.15.6 Testing frontends

Because most frontends will interact with the Mopidy core, it will most likely be necessary to have a full core running
for testing purposes:

self.core = core.Core.start(
config, backends=[get_backend(config)]).proxy()

It may be advisable to take a quick look at the Pykka API at this point to make sure that you are familiar with
ThreadingActor, ThreadingFuture, and the proxies that allow you to access the attributes and methods
of the actor directly.

You’ll also need a list of Track and a list of URIs in order to populate the core with some simple tracks that can be
used for testing:

class BaseTest(unittest.TestCase):
tracks = [

models.Track(uri='my_scheme:track:id1', length=40000), # Regular track
models.Track(uri='my_scheme:track:id2', length=None), # No duration

]

uris = [ 'my_scheme:track:id1', 'my_scheme:track:id2']

In the setup() method of your test class, you will then probably need to monkey patch looking up tracks in the
library (so that it will always use the lists that you defined), and then populate the core’s tracklist:

def lookup(uris):
result = {uri: [] for uri in uris}
for track in self.tracks:

if track.uri in result:
result[track.uri].append(track)

return result

self.core.library.lookup = lookup
self.tl_tracks = self.core.tracklist.add(uris=self.uris).get()

With all of that done you should finally be ready to instantiate your frontend:

self.frontend = frontend.MyFrontend.start(config(), self.core).proxy()

Keep in mind that the normal core and frontend methods will usually return pykka.ThreadingFuture objects,
so you will need to add .get() at the end of most method calls in order to get to the actual return values.

31.15.7 Triggering events

There may be test case scenarios that require simulating certain event triggers that your extension’s actors can listen
for and respond on. An example for patching the listener to store these events, and then play them back for your actor,
may look something like this:
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self.events = []
self.patcher = mock.patch('mopidy.listener.send')
self.send_mock = self.patcher.start()

def send(cls, event, **kwargs):
self.events.append((event, kwargs))

self.send_mock.side_effect = send

Once all of the events have been captured, a method like replay_events() can be called at the relevant points in
the code to have the events fire:

def replay_events(self, my_actor, until=None):
while self.events:

if self.events[0][0] == until:
break

event, kwargs = self.events.pop(0)
frontend.on_event(event, **kwargs).get()

For further details and examples, refer to the /tests directory on the Mopidy development branch.
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CHAPTER 32

Glossary

backend A part of Mopidy providing music library, playlist storage and/or playback capability to the core. Mopidy
has a backend for each music store or music service it supports. See mopidy.backend — Backend API for details.

core The part of Mopidy that makes multiple frontends capable of using multiple backends. The core module is also
the owner of the tracklist. To use the core module, see mopidy.core — Core API.

extension A Python package that can extend Mopidy with one or more backends, frontends, or GStreamer elements
like mixers. See Extensions for a list of existing extensions and Extension development for how to make a new
extension.

frontend A part of Mopidy using the core API. Existing frontends include the MPD server, the MPRIS/D-Bus inte-
gration, the Last.fm scrobbler, and the HTTP server with JavaScript API. See Frontend API for details.

mixer A GStreamer element that controls audio volume.

tracklist Mopidy’s name for the play queue or current playlist. The name is inspired by the MPRIS specification.

187



Mopidy Documentation, Release 2.2.3

188 Chapter 32. Glossary



CHAPTER 33

mopidy command

33.1 Synopsis

mopidy [-h] [–version] [-q] [-v] [–save-debug-log] [–config CONFIG_FILES] [-o CONFIG_OVERRIDES] [COM-
MAND] . . .

33.2 Description

Mopidy is a music server which can play music both from multiple sources, like your local hard drive, radio streams,
and from Spotify and SoundCloud. Searches combines results from all music sources, and you can mix tracks from
all sources in your play queue. Your playlists from Spotify or SoundCloud are also available for use.

The mopidy command is used to start the server.

33.3 Options

--help, -h
Show help message and exit.

--version
Show Mopidy’s version number and exit.

--quiet, -q
Show less output: warning level and higher.

--verbose, -v
Show more output. Repeat up to four times for even more.

--save-debug-log
Save debug log to the file specified in the logging/debug_file config value, typically ./mopidy.log.
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--config <file|directory>
Specify config files and directories to use. To use multiple config files or directories, separate them with a colon.
The later files override the earlier ones if there’s a conflict. When specifying a directory, all files ending in .conf
in the directory are used.

--option <option>, -o <option>
Specify additional config values in the section/key=value format. Can be provided multiple times.

33.4 Built in commands

config
Show the current effective config. All configuration sources are merged together to show the effective document.
Secret values like passwords are masked out. Config for disabled extensions are not included.

deps
Show dependencies, their versions and installation location.

33.5 Extension commands

Additionally, extensions can provide extra commands. Run mopidy –help for a list of what is available on your system
and command-specific help. Commands for disabled extensions will be listed, but can not be run.

local clear
Clear local media files from the local library.

local scan
Scan local media files present in your library.

33.6 Files

/etc/mopidy/mopidy.conf System wide Mopidy configuration file.

~/.config/mopidy/mopidy.conf Your personal Mopidy configuration file. Overrides any configs from the
system wide configuration file.

33.7 Examples

To start the music server, run:

mopidy

To start the server with an additional config file, that can override configs set in the default config files, run:

mopidy --config ./my-config.conf

To start the server and change a config value directly on the command line, run:

mopidy --option mpd/enabled=false

The --option flag may be repeated multiple times to change multiple configs:
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mopidy -o mpd/enabled=false -o spotify/bitrate=320

The mopidy config output shows the effect of the --option flags:

mopidy -o mpd/enabled=false -o spotify/bitrate=320 config

33.8 Reporting bugs

Report bugs to Mopidy’s issue tracker at <https://github.com/mopidy/mopidy/issues>
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CHAPTER 34

API reference

Note: Only APIs documented here are public and open for use by Mopidy extensions.

34.1 Concepts

34.1.1 Architecture

The overall architecture of Mopidy is organized around multiple frontends and backends. The frontends use the core
API. The core actor makes multiple backends work as one. The backends connect to various music sources. The core
actor use the mixer actor to control volume, while the backends use the audio actor to play audio.

193



Mopidy Documentation, Release 2.2.3

Multiple frontends

Core

Multiple backends Mixer

Audio

Frontends

Frontends expose Mopidy to the external world. They can implement servers for protocols like HTTP, MPD and
MPRIS, and they can be used to update other services when something happens in Mopidy, like the Last.fm scrobbler
frontend does. See Frontend API for more details.

HTTP
frontend

Core

MPD
frontend

MPRIS
frontend

Scrobbler
frontend
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Core

The core is organized as a set of controllers with responsiblity for separate sets of functionality.

The core is the single actor that the frontends send their requests to. For every request from a frontend it calls out
to one or more backends which does the real work, and when the backends respond, the core actor is responsible for
combining the responses into a single response to the requesting frontend.

The core actor also keeps track of the tracklist, since it doesn’t belong to a specific backend.

See mopidy.core — Core API for more details.

Core

Tracklist
controller

Library
controller

Playback
controller

Playlists
controller

History
controller

Local backendSpotify backend Audio

Backends

The backends are organized as a set of providers with responsiblity for separate sets of functionality, similar to the
core actor.

Anything specific to i.e. Spotify integration or local storage is contained in the backends. To integrate with new music
sources, you just add a new backend. See mopidy.backend — Backend API for more details.

Local backend

Local
library

provider

Local
playback
provider

Local
playlists
provider

Local disk Audio

Spotify backend

Spotify
library

provider

Spotify
playback
provider

Spotify
playlists
provider

Spotify service
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Audio

The audio actor is a thin wrapper around the parts of the GStreamer library we use. If you implement an advanced
backend, you may need to implement your own playback provider using the mopidy.audio — Audio API, but most
backends can use the default playback provider without any changes.

Mixer

The mixer actor is responsible for volume control and muting. The default mixer use the audio actor to control volume
in software. The alternative implementations are typically independent of the audio actor, but instead use some third
party Python library or a serial interface to control other forms of volume controls.

34.1.2 mopidy.models — Data models

These immutable data models are used for all data transfer within the Mopidy backends and between the backends
and the MPD frontend. All fields are optional and immutable. In other words, they can only be set through the class
constructor during instance creation. Additionally fields are type checked.

If you want to modify a model, use the replace() method. It accepts keyword arguments for the parts of the model
you want to change, and copies the rest of the data from the model you call it on. Example:

>>> from mopidy.models import Track
>>> track1 = Track(name='Christmas Carol', length=171)
>>> track1
Track(artists=[], length=171, name='Christmas Carol')
>>> track2 = track1.replace(length=37)
>>> track2
Track(artists=[], length=37, name='Christmas Carol')
>>> track1
Track(artists=[], length=171, name='Christmas Carol')
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Data model relations

Ref

Album

Artist

DirectoryPlaylist

Track

has 0..n

has 0..n

has 0..1

has 0..n

Image

SearchResult

has 0..n

has 0..n

has 0..n

TlTrack

has 1

Data model API

class mopidy.models.Ref(*args, **kwargs)
Model to represent URI references with a human friendly name and type attached. This is intended for use a
lightweight object “free” of metadata that can be passed around instead of using full blown models.

Parameters

• uri (string) – object URI

• name (string) – object name

• type (string) – object type

ALBUM = u'album'
Constant used for comparison with the type field.

ARTIST = u'artist'
Constant used for comparison with the type field.

DIRECTORY = u'directory'
Constant used for comparison with the type field.
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PLAYLIST = u'playlist'
Constant used for comparison with the type field.

TRACK = u'track'
Constant used for comparison with the type field.

classmethod album(**kwargs)
Create a Ref with type ALBUM .

classmethod artist(**kwargs)
Create a Ref with type ARTIST.

classmethod directory(**kwargs)
Create a Ref with type DIRECTORY .

name
The object name. Read-only.

classmethod playlist(**kwargs)
Create a Ref with type PLAYLIST.

classmethod track(**kwargs)
Create a Ref with type TRACK.

type
The object type, e.g. “artist”, “album”, “track”, “playlist”, “directory”. Read-only.

uri
The object URI. Read-only.

class mopidy.models.Track(*args, **kwargs)

Parameters

• uri (string) – track URI

• name (string) – track name

• artists (list of Artist) – track artists

• album (Album) – track album

• composers (list of Artist) – track composers

• performers (list of Artist) – track performers

• genre (string) – track genre

• track_no (integer or None if unknown) – track number in album

• disc_no (integer or None if unknown) – disc number in album

• date (string) – track release date (YYYY or YYYY-MM-DD)

• length (integer or None if there is no duration) – track length in milliseconds

• bitrate (integer) – bitrate in kbit/s

• comment (string) – track comment

• musicbrainz_id (string) – MusicBrainz ID

• last_modified (integer or None if unknown) – Represents last modification time

album
The track Album. Read-only.
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artists
A set of track artists. Read-only.

bitrate
The track’s bitrate in kbit/s. Read-only.

comment
The track comment. Read-only.

composers
A set of track composers. Read-only.

date
The track release date. Read-only.

disc_no
The disc number in the album. Read-only.

genre
The track genre. Read-only.

last_modified
Integer representing when the track was last modified. Exact meaning depends on source of track. For
local files this is the modification time in milliseconds since Unix epoch. For other backends it could be
an equivalent timestamp or simply a version counter.

length
The track length in milliseconds. Read-only.

musicbrainz_id
The MusicBrainz ID of the track. Read-only.

name
The track name. Read-only.

performers
A set of track performers‘. Read-only.

track_no
The track number in the album. Read-only.

uri
The track URI. Read-only.

class mopidy.models.Album(*args, **kwargs)

Parameters

• uri (string) – album URI

• name (string) – album name

• artists (list of Artist) – album artists

• num_tracks (integer or None if unknown) – number of tracks in album

• num_discs (integer or None if unknown) – number of discs in album

• date (string) – album release date (YYYY or YYYY-MM-DD)

• musicbrainz_id (string) – MusicBrainz ID

• images (list of strings) – album image URIs

Deprecated since version 1.2: The images field is deprecated. Use mopidy.core.
LibraryController.get_images() instead.
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artists
A set of album artists. Read-only.

date
The album release date. Read-only.

images
The album image URIs. Read-only.

Deprecated since version 1.2: Use mopidy.core.LibraryController.get_images() instead.

musicbrainz_id
The MusicBrainz ID of the album. Read-only.

name
The album name. Read-only.

num_discs
The number of discs in the album. Read-only.

num_tracks
The number of tracks in the album. Read-only.

uri
The album URI. Read-only.

class mopidy.models.Artist(*args, **kwargs)

Parameters

• uri (string) – artist URI

• name (string) – artist name

• sortname (string) – artist name for sorting

• musicbrainz_id (string) – MusicBrainz ID

musicbrainz_id
The MusicBrainz ID of the artist. Read-only.

name
The artist name. Read-only.

sortname
Artist name for better sorting, e.g. with articles stripped

uri
The artist URI. Read-only.

class mopidy.models.Playlist(*args, **kwargs)

Parameters

• uri (string) – playlist URI

• name (string) – playlist name

• tracks (list of Track elements) – playlist’s tracks

• last_modified (int) – playlist’s modification time in milliseconds since Unix epoch

last_modified
The playlist modification time in milliseconds since Unix epoch. Read-only.

Integer, or None if unknown.
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length
The number of tracks in the playlist. Read-only.

name
The playlist name. Read-only.

tracks
The playlist’s tracks. Read-only.

uri
The playlist URI. Read-only.

class mopidy.models.Image(*args, **kwargs)

Parameters

• uri (string) – URI of the image

• width (int) – Optional width of image or None

• height (int) – Optional height of image or None

height
Optional height of the image or None. Read-only.

uri
The image URI. Read-only.

width
Optional width of the image or None. Read-only.

class mopidy.models.TlTrack(*args, **kwargs)
A tracklist track. Wraps a regular track and it’s tracklist ID.

The use of TlTrack allows the same track to appear multiple times in the tracklist.

This class also accepts it’s parameters as positional arguments. Both arguments must be provided, and they must
appear in the order they are listed here.

This class also supports iteration, so your extract its values like this:

(tlid, track) = tl_track

Parameters

• tlid (int) – tracklist ID

• track (Track) – the track

tlid
The tracklist ID. Read-only.

track
The track. Read-only.

class mopidy.models.SearchResult(*args, **kwargs)

Parameters

• uri (string) – search result URI

• tracks (list of Track elements) – matching tracks

• artists (list of Artist elements) – matching artists

• albums (list of Album elements) – matching albums
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albums
The albums matching the search query. Read-only.

artists
The artists matching the search query. Read-only.

tracks
The tracks matching the search query. Read-only.

uri
The search result URI. Read-only.

Data model helpers

class mopidy.models.ImmutableObject(*args, **kwargs)
Superclass for immutable objects whose fields can only be modified via the constructor.

This version of this class has been retained to avoid breaking any clients relying on it’s behavior. Internally in
Mopidy we now use ValidatedImmutableObject for type safety and it’s much smaller memory footprint.

Parameters kwargs (any) – kwargs to set as fields on the object

copy(**values)
Deprecated since version 1.1: Use replace() instead.

replace(**kwargs)
Replace the fields in the model and return a new instance

Examples:

# Returns a track with a new name
Track(name='foo').replace(name='bar')
# Return an album with a new number of tracks
Album(num_tracks=2).replace(num_tracks=5)

Parameters kwargs (any) – kwargs to set as fields on the object

Return type instance of the model with replaced fields

class mopidy.models.ValidatedImmutableObject(*args, **kwargs)
Superclass for immutable objects whose fields can only be modified via the constructor. Fields should be Field
instances to ensure type safety in our models.

Note that since these models can not be changed, we heavily memoize them to save memory. So constructing a
class with the same arguments twice will give you the same instance twice.

replace(**kwargs)
Replace the fields in the model and return a new instance

Examples:

# Returns a track with a new name
Track(name='foo').replace(name='bar')
# Return an album with a new number of tracks
Album(num_tracks=2).replace(num_tracks=5)

Note that internally we memoize heavily to keep memory usage down given our overly repetitive data
structures. So you might get an existing instance if it contains the same values.

Parameters kwargs (any) – kwargs to set as fields on the object
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Return type instance of the model with replaced fields

Data model (de)serialization

mopidy.models.model_json_decoder(dct)
Automatically deserialize Mopidy models from JSON.

Usage:

>>> import json
>>> json.loads(
... '{"a_track": {"__model__": "Track", "name": "name"}}',
... object_hook=model_json_decoder)
{u'a_track': Track(artists=[], name=u'name')}

class mopidy.models.ModelJSONEncoder(skipkeys=False, ensure_ascii=True,
check_circular=True, allow_nan=True,
sort_keys=False, indent=None, separators=None,
encoding=’utf-8’, default=None)

Automatically serialize Mopidy models to JSON.

Usage:

>>> import json
>>> json.dumps({'a_track': Track(name='name')}, cls=ModelJSONEncoder)
'{"a_track": {"__model__": "Track", "name": "name"}}'

Data model field types

class mopidy.models.fields.Field(default=None, type=None, choices=None)
Base field for use in ValidatedImmutableObject. These fields are responsible for type checking and
other data sanitation in our models.

For simplicity fields use the Python descriptor protocol to store the values in the instance dictionary. Also note
that fields are mutable if the object they are attached to allow it.

Default values will be validated with the exception of None.

Parameters

• default – default value for field

• type – if set the field value must be of this type

• choices – if set the field value must be one of these

class mopidy.models.fields.String(default=None)
Specialized Field which is wired up for bytes and unicode.

Parameters default – default value for field

class mopidy.models.fields.Identifier(default=None)
Field for storing values such as GUIDs or other identifiers.

Values will be interned.

Parameters default – default value for field
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class mopidy.models.fields.URI(default=None)
Field for storing URIs

Values will be interned, currently not validated.

Parameters default – default value for field

class mopidy.models.fields.Date(default=None)
Field for storing ISO 8601 dates as a string.

Supported formats are YYYY-MM-DD, YYYY-MM and YYYY, currently not validated.

Parameters default – default value for field

class mopidy.models.fields.Integer(default=None, min=None, max=None)
Field for storing integer numbers.

Parameters

• default – default value for field

• min – field value must be larger or equal to this value when set

• max – field value must be smaller or equal to this value when set

class mopidy.models.fields.Collection(type, container=<type ’tuple’>)
Field for storing collections of a given type.

Parameters

• type – all items stored in the collection must be of this type

• container – the type to store the items in

34.2 Basics

34.2.1 mopidy.core — Core API

The core API is the interface that is used by frontends like mopidy.http and mopidy.mpd. The core layer is in
between the frontends and the backends. Don’t forget that you will be accessing core as a Pykka actor. If you are only
interested in being notified about changes in core see CoreListener.

Changed in version 1.1: All core API calls are now type checked.

Changed in version 1.1: All backend return values are now type checked.

class mopidy.core.Core(config=None, mixer=None, backends=None, audio=None)

tracklist
Manages everything related to the list of tracks we will play. See TracklistController.

playback
Manages playback state and the current playing track. See PlaybackController.

library
Manages the music library, e.g. searching and browsing for music. See LibraryController.

playlists
Manages stored playlists. See PlaylistsController.

mixer
Manages volume and muting. See MixerController.
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history
Keeps record of what tracks have been played. See HistoryController.

get_uri_schemes()
Get list of URI schemes we can handle

get_version()
Get version of the Mopidy core API

Tracklist controller

class mopidy.core.TracklistController(core)

Manipulating

TracklistController.add(tracks=None, at_position=None, uri=None, uris=None)
Add tracks to the tracklist.

If uri is given instead of tracks, the URI is looked up in the library and the resulting tracks are added to the
tracklist.

If uris is given instead of uri or tracks, the URIs are looked up in the library and the resulting tracks are
added to the tracklist.

If at_position is given, the tracks are inserted at the given position in the tracklist. If at_position is
not given, the tracks are appended to the end of the tracklist.

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

Parameters

• tracks (list of mopidy.models.Track or None) – tracks to add

• at_position (int or None) – position in tracklist to add tracks

• uri (string or None) – URI for tracks to add

• uris (list of string or None) – list of URIs for tracks to add

Return type list of mopidy.models.TlTrack

New in version 1.0: The uris argument.

Deprecated since version 1.0: The tracks and uri arguments. Use uris.

TracklistController.remove(criteria=None, **kwargs)
Remove the matching tracks from the tracklist.

Uses filter() to lookup the tracks to remove.

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

Parameters criteria (dict) – on or more criteria to match by

Return type list of mopidy.models.TlTrack that was removed

Deprecated since version 1.1: Providing the criteria via kwargs.

TracklistController.clear()
Clear the tracklist.

Triggers the mopidy.core.CoreListener.tracklist_changed() event.
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TracklistController.move(start, end, to_position)
Move the tracks in the slice [start:end] to to_position.

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

Parameters

• start (int) – position of first track to move

• end (int) – position after last track to move

• to_position (int) – new position for the tracks

TracklistController.shuffle(start=None, end=None)
Shuffles the entire tracklist. If start and end is given only shuffles the slice [start:end].

Triggers the mopidy.core.CoreListener.tracklist_changed() event.

Parameters

• start (int or None) – position of first track to shuffle

• end (int or None) – position after last track to shuffle

Current state

TracklistController.get_tl_tracks()
Get tracklist as list of mopidy.models.TlTrack.

TracklistController.index(tl_track=None, tlid=None)
The position of the given track in the tracklist.

If neither tl_track or tlid is given we return the index of the currently playing track.

Parameters

• tl_track (mopidy.models.TlTrack or None) – the track to find the index of

• tlid (int or None) – TLID of the track to find the index of

Return type int or None

New in version 1.1: The tlid parameter

TracklistController.get_version()
Get the tracklist version.

Integer which is increased every time the tracklist is changed. Is not reset before Mopidy is restarted.

TracklistController.get_length()
Get length of the tracklist.

TracklistController.get_tracks()
Get tracklist as list of mopidy.models.Track.

TracklistController.slice(start, end)
Returns a slice of the tracklist, limited by the given start and end positions.

Parameters

• start (int) – position of first track to include in slice

• end (int) – position after last track to include in slice

Return type mopidy.models.TlTrack
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TracklistController.filter(criteria=None, **kwargs)
Filter the tracklist by the given criterias.

A criteria consists of a model field to check and a list of values to compare it against. If the model field matches
one of the values, it may be returned.

Only tracks that matches all the given criterias are returned.

Examples:

# Returns tracks with TLIDs 1, 2, 3, or 4 (tracklist ID)
filter({'tlid': [1, 2, 3, 4]})

# Returns track with URIs 'xyz' or 'abc'
filter({'uri': ['xyz', 'abc']})

# Returns track with a matching TLIDs (1, 3 or 6) and a
# matching URI ('xyz' or 'abc')
filter({'tlid': [1, 3, 6], 'uri': ['xyz', 'abc']})

Parameters criteria (dict, of (string, list) pairs) – on or more criteria to
match by

Return type list of mopidy.models.TlTrack

Deprecated since version 1.1: Providing the criteria via kwargs.

Future state

TracklistController.get_eot_tlid()
The TLID of the track that will be played after the current track.

Not necessarily the same TLID as returned by get_next_tlid().

Return type int or None

New in version 1.1.

TracklistController.get_next_tlid()
The tlid of the track that will be played if calling mopidy.core.PlaybackController.next().

For normal playback this is the next track in the tracklist. If repeat is enabled the next track can loop around the
tracklist. When random is enabled this should be a random track, all tracks should be played once before the
tracklist repeats.

Return type int or None

New in version 1.1.

TracklistController.get_previous_tlid()
Returns the TLID of the track that will be played if calling mopidy.core.PlaybackController.
previous().

For normal playback this is the previous track in the tracklist. If random and/or consume is enabled it should
return the current track instead.

Return type int or None

New in version 1.1.
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TracklistController.eot_track(tl_track)
The track that will be played after the given track.

Not necessarily the same track as next_track().

Parameters tl_track (mopidy.models.TlTrack or None) – the reference track

Return type mopidy.models.TlTrack or None

TracklistController.next_track(tl_track)
The track that will be played if calling mopidy.core.PlaybackController.next().

For normal playback this is the next track in the tracklist. If repeat is enabled the next track can loop around the
tracklist. When random is enabled this should be a random track, all tracks should be played once before the
tracklist repeats.

Parameters tl_track (mopidy.models.TlTrack or None) – the reference track

Return type mopidy.models.TlTrack or None

TracklistController.previous_track(tl_track)
Returns the track that will be played if calling mopidy.core.PlaybackController.previous().

For normal playback this is the previous track in the tracklist. If random and/or consume is enabled it should
return the current track instead.

Parameters tl_track (mopidy.models.TlTrack or None) – the reference track

Return type mopidy.models.TlTrack or None

Options

TracklistController.get_consume()
Get consume mode.

True Tracks are removed from the tracklist when they have been played.

False Tracks are not removed from the tracklist.

TracklistController.set_consume(value)
Set consume mode.

True Tracks are removed from the tracklist when they have been played.

False Tracks are not removed from the tracklist.

TracklistController.get_random()
Get random mode.

True Tracks are selected at random from the tracklist.

False Tracks are played in the order of the tracklist.

TracklistController.set_random(value)
Set random mode.

True Tracks are selected at random from the tracklist.

False Tracks are played in the order of the tracklist.

TracklistController.get_repeat()
Get repeat mode.

True The tracklist is played repeatedly.
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False The tracklist is played once.

TracklistController.set_repeat(value)
Set repeat mode.

To repeat a single track, set both repeat and single.

True The tracklist is played repeatedly.

False The tracklist is played once.

TracklistController.get_single()
Get single mode.

True Playback is stopped after current song, unless in repeat mode.

False Playback continues after current song.

TracklistController.set_single(value)
Set single mode.

True Playback is stopped after current song, unless in repeat mode.

False Playback continues after current song.

Playback controller

class mopidy.core.PlaybackController(audio, backends, core)

Playback control

PlaybackController.play(tl_track=None, tlid=None)
Play the given track, or if the given tl_track and tlid is None, play the currently active track.

Note that the track must already be in the tracklist.

Parameters

• tl_track (mopidy.models.TlTrack or None) – track to play

• tlid (int or None) – TLID of the track to play

PlaybackController.next()
Change to the next track.

The current playback state will be kept. If it was playing, playing will continue. If it was paused, it will still be
paused, etc.

PlaybackController.previous()
Change to the previous track.

The current playback state will be kept. If it was playing, playing will continue. If it was paused, it will still be
paused, etc.

PlaybackController.stop()
Stop playing.

PlaybackController.pause()
Pause playback.

PlaybackController.resume()
If paused, resume playing the current track.
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PlaybackController.seek(time_position)
Seeks to time position given in milliseconds.

Parameters time_position (int) – time position in milliseconds

Return type True if successful, else False

Current track

PlaybackController.get_current_tl_track()
Get the currently playing or selected track.

Returns a mopidy.models.TlTrack or None.

PlaybackController.get_current_track()
Get the currently playing or selected track.

Extracted from get_current_tl_track() for convenience.

Returns a mopidy.models.Track or None.

PlaybackController.get_stream_title()
Get the current stream title or None.

PlaybackController.get_time_position()
Get time position in milliseconds.

Playback states

PlaybackController.get_state()
Get The playback state.

PlaybackController.set_state(new_state)
Set the playback state.

Must be PLAYING, PAUSED, or STOPPED.

Possible states and transitions:
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STOPPED

PLAYING

play

PAUSED

pause

stop

play

pause

stop

resume

class mopidy.core.PlaybackState

STOPPED = 'stopped'

PLAYING = 'playing'

PAUSED = 'paused'

Library controller

class mopidy.core.LibraryController

LibraryController.browse(uri)
Browse directories and tracks at the given uri.

uri is a string which represents some directory belonging to a backend. To get the intial root directories for
backends pass None as the URI.

Returns a list of mopidy.models.Ref objects for the directories and tracks at the given uri.

The Ref objects representing tracks keep the track’s original URI. A matching pair of objects can look like this:

Track(uri='dummy:/foo.mp3', name='foo', artists=..., album=...)
Ref.track(uri='dummy:/foo.mp3', name='foo')

The Ref objects representing directories have backend specific URIs. These are opaque values, so no one but
the backend that created them should try and derive any meaning from them. The only valid exception to this is
checking the scheme, as it is used to route browse requests to the correct backend.

For example, the dummy library’s /bar directory could be returned like this:
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Ref.directory(uri='dummy:directory:/bar', name='bar')

Parameters uri (string) – URI to browse

Return type list of mopidy.models.Ref

New in version 0.18.

LibraryController.search(query=None, uris=None, exact=False, **kwargs)
Search the library for tracks where field contains values. field can be one of uri, track_name,
album, artist, albumartist, composer, performer, track_no, genre, date, comment or
any.

If uris is given, the search is limited to results from within the URI roots. For example passing
uris=['file:'] will limit the search to the local backend.

Examples:

# Returns results matching 'a' in any backend
search({'any': ['a']})

# Returns results matching artist 'xyz' in any backend
search({'artist': ['xyz']})

# Returns results matching 'a' and 'b' and artist 'xyz' in any
# backend
search({'any': ['a', 'b'], 'artist': ['xyz']})

# Returns results matching 'a' if within the given URI roots
# "file:///media/music" and "spotify:"
search({'any': ['a']}, uris=['file:///media/music', 'spotify:'])

# Returns results matching artist 'xyz' and 'abc' in any backend
search({'artist': ['xyz', 'abc']})

Parameters

• query (dict) – one or more queries to search for

• uris (list of string or None) – zero or more URI roots to limit the search to

• exact (bool) – if the search should use exact matching

Return type list of mopidy.models.SearchResult

New in version 1.0: The exact keyword argument, which replaces find_exact().

Deprecated since version 1.0: Previously, if the query was empty, and the backend could support it, all available
tracks were returned. This has not changed, but it is strongly discouraged. No new code should rely on this
behavior.

Deprecated since version 1.1: Providing the search query via kwargs is no longer supported.

LibraryController.lookup(uri=None, uris=None)
Lookup the given URIs.

If the URI expands to multiple tracks, the returned list will contain them all.

Parameters

• uri (string or None) – track URI
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• uris (list of string or None) – track URIs

Return type list of mopidy.models.Track if uri was set or {uri: list of mopidy.models.
Track} if uris was set.

New in version 1.0: The uris argument.

Deprecated since version 1.0: The uri argument. Use uris instead.

LibraryController.refresh(uri=None)
Refresh library. Limit to URI and below if an URI is given.

Parameters uri (string) – directory or track URI

LibraryController.get_images(uris)
Lookup the images for the given URIs

Backends can use this to return image URIs for any URI they know about be it tracks, albums, playlists. The
lookup result is a dictionary mapping the provided URIs to lists of images.

Unknown URIs or URIs the corresponding backend couldn’t find anything for will simply return an empty list
for that URI.

Parameters uris (list of string) – list of URIs to find images for

Return type {uri: tuple of mopidy.models.Image}

New in version 1.0.

LibraryController.get_distinct(field, query=None)
List distinct values for a given field from the library.

This has mainly been added to support the list commands the MPD protocol supports in a more sane fashion.
Other frontends are not recommended to use this method.

Parameters

• field (string) – One of track, artist, albumartist, album, composer,
performer, date or genre.

• query (dict) – Query to use for limiting results, see search() for details about the
query format.

Return type set of values corresponding to the requested field type.

New in version 1.0.

Playlists controller

class mopidy.core.PlaylistsController

PlaylistsController.get_uri_schemes()
Get the list of URI schemes that support playlists.

Return type list of string

New in version 2.0.

Fetching

PlaylistsController.as_list()
Get a list of the currently available playlists.
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Returns a list of Ref objects referring to the playlists. In other words, no information about the playlists’ content
is given.

Return type list of mopidy.models.Ref

New in version 1.0.

PlaylistsController.get_items(uri)
Get the items in a playlist specified by uri.

Returns a list of Ref objects referring to the playlist’s items.

If a playlist with the given uri doesn’t exist, it returns None.

Return type list of mopidy.models.Ref, or None

New in version 1.0.

PlaylistsController.lookup(uri)
Lookup playlist with given URI in both the set of playlists and in any other playlist sources. Returns None if
not found.

Parameters uri (string) – playlist URI

Return type mopidy.models.Playlist or None

PlaylistsController.refresh(uri_scheme=None)
Refresh the playlists in playlists.

If uri_scheme is None, all backends are asked to refresh. If uri_scheme is an URI scheme handled by a
backend, only that backend is asked to refresh. If uri_scheme doesn’t match any current backend, nothing
happens.

Parameters uri_scheme (string) – limit to the backend matching the URI scheme

Manipulating

PlaylistsController.create(name, uri_scheme=None)
Create a new playlist.

If uri_scheme matches an URI scheme handled by a current backend, that backend is asked to create the
playlist. If uri_scheme is None or doesn’t match a current backend, the first backend is asked to create the
playlist.

All new playlists must be created by calling this method, and not by creating new instances of mopidy.
models.Playlist.

Parameters

• name (string) – name of the new playlist

• uri_scheme (string) – use the backend matching the URI scheme

Return type mopidy.models.Playlist or None

PlaylistsController.save(playlist)
Save the playlist.

For a playlist to be saveable, it must have the uri attribute set. You must not set the uri atribute yourself,
but use playlist objects returned by create() or retrieved from playlists, which will always give you
saveable playlists.
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The method returns the saved playlist. The return playlist may differ from the saved playlist. E.g. if the playlist
name was changed, the returned playlist may have a different URI. The caller of this method must throw away
the playlist sent to this method, and use the returned playlist instead.

If the playlist’s URI isn’t set or doesn’t match the URI scheme of a current backend, nothing is done and None
is returned.

Parameters playlist (mopidy.models.Playlist) – the playlist

Return type mopidy.models.Playlist or None

PlaylistsController.delete(uri)
Delete playlist identified by the URI.

If the URI doesn’t match the URI schemes handled by the current backends, nothing happens.

Returns True if deleted, False otherwise.

Parameters uri (string) – URI of the playlist to delete

Return type bool

Changed in version 2.2: Return type defined.

Mixer controller

class mopidy.core.MixerController

MixerController.get_mute()
Get mute state.

True if muted, False unmuted, None if unknown.

MixerController.set_mute(mute)
Set mute state.

True to mute, False to unmute.

Returns True if call is successful, otherwise False.

MixerController.get_volume()
Get the volume.

Integer in range [0..100] or None if unknown.

The volume scale is linear.

MixerController.set_volume(volume)
Set the volume.

The volume is defined as an integer in range [0..100].

The volume scale is linear.

Returns True if call is successful, otherwise False.

History controller

class mopidy.core.HistoryController

HistoryController.get_history()
Get the track history.

The timestamps are milliseconds since epoch.
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Returns the track history

Return type list of (timestamp, mopidy.models.Ref) tuples

HistoryController.get_length()
Get the number of tracks in the history.

Returns the history length

Return type int

Core events

class mopidy.core.CoreListener
Marker interface for recipients of events sent by the core actor.

Any Pykka actor that mixes in this class will receive calls to the methods defined here when the corresponding
events happen in the core actor. This interface is used both for looking up what actors to notify of the events,
and for providing default implementations for those listeners that are not interested in all events.

mute_changed(mute)
Called whenever the mute state is changed.

MAY be implemented by actor.

Parameters mute (boolean) – the new mute state

on_event(event, **kwargs)
Called on all events.

MAY be implemented by actor. By default, this method forwards the event to the specific event methods.

Parameters

• event (string) – the event name

• kwargs – any other arguments to the specific event handlers

options_changed()
Called whenever an option is changed.

MAY be implemented by actor.

playback_state_changed(old_state, new_state)
Called whenever playback state is changed.

MAY be implemented by actor.

Parameters

• old_state (string from mopidy.core.PlaybackState field) – the state before
the change

• new_state (string from mopidy.core.PlaybackState field) – the state after the
change

playlist_changed(playlist)
Called whenever a playlist is changed.

MAY be implemented by actor.

Parameters playlist (mopidy.models.Playlist) – the changed playlist
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playlist_deleted(uri)
Called whenever a playlist is deleted.

MAY be implemented by actor.

Parameters uri (string) – the URI of the deleted playlist

playlists_loaded()
Called when playlists are loaded or refreshed.

MAY be implemented by actor.

seeked(time_position)
Called whenever the time position changes by an unexpected amount, e.g. at seek to a new time position.

MAY be implemented by actor.

Parameters time_position (int) – the position that was seeked to in milliseconds

static send(event, **kwargs)
Helper to allow calling of core listener events

stream_title_changed(title)
Called whenever the currently playing stream title changes.

MAY be implemented by actor.

Parameters title (string) – the new stream title

track_playback_ended(tl_track, time_position)
Called whenever playback of a track ends.

MAY be implemented by actor.

Parameters

• tl_track (mopidy.models.TlTrack) – the track that was played before playback
stopped

• time_position (int) – the time position in milliseconds

track_playback_paused(tl_track, time_position)
Called whenever track playback is paused.

MAY be implemented by actor.

Parameters

• tl_track (mopidy.models.TlTrack) – the track that was playing when playback
paused

• time_position (int) – the time position in milliseconds

track_playback_resumed(tl_track, time_position)
Called whenever track playback is resumed.

MAY be implemented by actor.

Parameters

• tl_track (mopidy.models.TlTrack) – the track that was playing when playback
resumed

• time_position (int) – the time position in milliseconds
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track_playback_started(tl_track)
Called whenever a new track starts playing.

MAY be implemented by actor.

Parameters tl_track (mopidy.models.TlTrack) – the track that just started playing

tracklist_changed()
Called whenever the tracklist is changed.

MAY be implemented by actor.

volume_changed(volume)
Called whenever the volume is changed.

MAY be implemented by actor.

Parameters volume (int) – the new volume in the range [0..100]

Deprecated API features

Warning: Though these features still work, they are slated to go away in the next major Mopidy release.

Core

Core.version
Deprecated since version 1.0: Use get_version() instead.

Core.uri_schemes
Deprecated since version 1.0: Use get_uri_schemes() instead.

TracklistController

TracklistController.tl_tracks
Deprecated since version 1.0: Use get_tl_tracks() instead.

TracklistController.tracks
Deprecated since version 1.0: Use get_tracks() instead.

TracklistController.version
Deprecated since version 1.0: Use get_version() instead.

TracklistController.length
Deprecated since version 1.0: Use get_length() instead.

TracklistController.consume
Deprecated since version 1.0: Use get_consume() and set_consume() instead.

TracklistController.random
Deprecated since version 1.0: Use get_random() and set_random() instead.

TracklistController.repeat
Deprecated since version 1.0: Use get_repeat() and set_repeat() instead.

TracklistController.single
Deprecated since version 1.0: Use get_single() and set_single() instead.
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PlaybackController

PlaybackController.get_mute()
Deprecated since version 1.0: Use core.mixer.get_mute() instead.

PlaybackController.get_volume()
Deprecated since version 1.0: Use core.mixer.get_volume() instead.

PlaybackController.current_tl_track
Deprecated since version 1.0: Use get_current_tl_track() instead.

PlaybackController.current_track
Deprecated since version 1.0: Use get_current_track() instead.

PlaybackController.state
Deprecated since version 1.0: Use get_state() and set_state() instead.

PlaybackController.time_position
Deprecated since version 1.0: Use get_time_position() instead.

PlaybackController.mute
Deprecated since version 1.0: Use core.mixer.get_mute() and core.mixer.set_mute() instead.

PlaybackController.volume
Deprecated since version 1.0: Use core.mixer.get_volume() and core.mixer.set_volume()
instead.

LibraryController

LibraryController.find_exact(query=None, uris=None, **kwargs)
Search the library for tracks where field is values.

Deprecated since version 1.0: Use search() with exact set.

PlaylistsController

PlaylistsController.filter(criteria=None, **kwargs)
Filter playlists by the given criterias.

Examples:

# Returns track with name 'a'
filter({'name': 'a'})

# Returns track with URI 'xyz'
filter({'uri': 'xyz'})

# Returns track with name 'a' and URI 'xyz'
filter({'name': 'a', 'uri': 'xyz'})

Parameters criteria (dict) – one or more criteria to match by

Return type list of mopidy.models.Playlist

Deprecated since version 1.0: Use as_list() and filter yourself.

PlaylistsController.get_playlists(include_tracks=True)
Get the available playlists.
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Return type list of mopidy.models.Playlist

Changed in version 1.0: If you call the method with include_tracks=False, the last_modified field
of the returned playlists is no longer set.

Deprecated since version 1.0: Use as_list() and get_items() instead.

PlaylistsController.playlists
Deprecated since version 1.0: Use as_list() and get_items() instead.

34.2.2 Frontend API

The following requirements applies to any frontend implementation:

• A frontend MAY do mostly whatever it wants to, including creating threads, opening TCP ports and exposing
Mopidy for a group of clients.

• A frontend MUST implement at least one Pykka actor, called the “main actor” from here on.

• The main actor MUST accept two constructor arguments:

– config, which is a dict structure with the entire Mopidy configuration.

– core, which will be an ActorProxy for the core actor. This object gives access to the full mopidy.core
— Core API.

• It MAY use additional actors to implement whatever it does, and using actors in frontend implementations is
encouraged.

• The frontend is enabled if the extension it is part of is enabled. See Extension development for more information.

• The main actor MUST be able to start and stop the frontend when the main actor is started and stopped.

• The frontend MAY require additional config values to be set for it to work.

• Such config values MUST be documented.

• The main actor MUST raise the mopidy.exceptions.FrontendError with a descriptive error message
if the defined config values are not adequate for the frontend to work properly.

• Any actor which is part of the frontend MAY implement the mopidy.core.CoreListener interface to
receive notification of the specified events.

Frontend implementations

See Frontend extensions.

34.2.3 mopidy.backend — Backend API

The backend API is the interface that must be implemented when you create a backend. If you are working on a
frontend and need to access the backends, see the mopidy.core — Core API instead.

URIs and routing of requests to the backend

When Mopidy’s core layer is processing a client request, it routes the request to one or more appropriate back-
ends based on the URIs of the objects the request touches on. The objects’ URIs are compared with the backends’
uri_schemes to select the relevant backends.
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An often used pattern when implementing Mopidy backends is to create your own URI scheme which you use for
all tracks, playlists, etc. related to your backend. In most cases the Mopidy URI is translated to an actual URI that
GStreamer knows how to play right before playback. For example:

• Spotify already has its own URI scheme (spotify:track:..., spotify:playlist:..., etc.) used
throughout their applications, and thus Mopidy-Spotify simply uses the same URI scheme. Playback is handled
by pushing raw audio data into a GStreamer appsrc element.

• Mopidy-SoundCloud created it’s own URI scheme, after the model of Spotify, and use URIs of the
following forms: soundcloud:search, soundcloud:user-..., soundcloud:exp-..., and
soundcloud:set-.... Playback is handled by converting the custom soundcloud:.. URIs to http:/
/ URIs immediately before they are passed on to GStreamer for playback.

• Mopidy differentiates between file://... URIs handled by Mopidy-Stream and local:... URIs han-
dled by Mopidy-Local. Mopidy-Stream can play file://... URIs pointing to tracks and playlists located
anywhere on your system, but it doesn’t know a thing about the object before you play it. On the other hand,
Mopidy-Local scans a predefined local/media_dir to build a meta data library of all known tracks. It is
thus limited to playing tracks residing in the media library, but can provide additional features like directory
browsing and search. In other words, we have two different ways of playing local music, handled by two dif-
ferent backends, and have thus created two different URI schemes to separate their handling. The local:...
URIs are converted to file://... URIs immediately before they are passed on to GStreamer for playback.

If there isn’t an existing URI scheme that fits for your backend’s purpose, you should create your own, and name it
after your extension’s ext_name. Care should be taken not to conflict with already in use URI schemes. It is also
recommended to design the format such that tracks, playlists and other entities can be distinguished easily.

Backend class

class mopidy.backend.Backend
Backend API

If the backend has problems during initialization it should raise mopidy.exceptions.BackendError
with a descriptive error message. This will make Mopidy print the error message and exit so that the user can
fix the issue.

Parameters

• config (dict) – the entire Mopidy configuration

• audio (pykka.ActorProxy for mopidy.audio.Audio) – actor proxy for the audio
subsystem

audio = None
Actor proxy to an instance of mopidy.audio.Audio.

Should be passed to the backend constructor as the kwarg audio, which will then set this field.

library = None
The library provider. An instance of LibraryProvider, or None if the backend doesn’t provide a
library.

ping()
Called to check if the actor is still alive.

playback = None
The playback provider. An instance of PlaybackProvider, or None if the backend doesn’t provide
playback.

34.2. Basics 221

https://docs.python.org/2/library/stdtypes.html#dict


Mopidy Documentation, Release 2.2.3

playlists = None
The playlists provider. An instance of PlaylistsProvider, or class:None if the backend doesn’t
provide playlists.

uri_schemes = []
List of URI schemes this backend can handle.

Playback provider

class mopidy.backend.PlaybackProvider(audio, backend)

Parameters

• audio (actor proxy to an instance of mopidy.audio.Audio) – the audio actor

• backend (mopidy.backend.Backend) – the backend

change_track(track)
Swith to provided track.

MAY be reimplemented by subclass.

It is unlikely it makes sense for any backends to override this. For most practical purposes it should be
considered an internal call between backends and core that backend authors should not touch.

The default implementation will call translate_uri() which is what you want to implement.

Parameters track (mopidy.models.Track) – the track to play

Return type True if successful, else False

get_time_position()
Get the current time position in milliseconds.

MAY be reimplemented by subclass.

Return type int

pause()
Pause playback.

MAY be reimplemented by subclass.

Return type True if successful, else False

play()
Start playback.

MAY be reimplemented by subclass.

Return type True if successful, else False

prepare_change()
Indicate that an URI change is about to happen.

MAY be reimplemented by subclass.

It is extremely unlikely it makes sense for any backends to override this. For most practical purposes it
should be considered an internal call between backends and core that backend authors should not touch.

resume()
Resume playback at the same time position playback was paused.

MAY be reimplemented by subclass.

Return type True if successful, else False
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seek(time_position)
Seek to a given time position.

MAY be reimplemented by subclass.

Parameters time_position (int) – time position in milliseconds

Return type True if successful, else False

stop()
Stop playback.

MAY be reimplemented by subclass.

Should not be used for tracking if tracks have been played or when we are done playing them.

Return type True if successful, else False

translate_uri(uri)
Convert custom URI scheme to real playable URI.

MAY be reimplemented by subclass.

This is very likely the only thing you need to override as a backend author. Typically this is where you
convert any Mopidy specific URI to a real URI and then return it. If you can’t convert the URI just return
None.

Parameters uri (string) – the URI to translate

Return type string or None if the URI could not be translated

Playlists provider

class mopidy.backend.PlaylistsProvider(backend)
A playlist provider exposes a collection of playlists, methods to create/change/delete playlists in this collection,
and lookup of any playlist the backend knows about.

Parameters backend (mopidy.backend.Backend instance) – backend the controller is a
part of

as_list()
Get a list of the currently available playlists.

Returns a list of Ref objects referring to the playlists. In other words, no information about the playlists’
content is given.

Return type list of mopidy.models.Ref

New in version 1.0.

create(name)
Create a new empty playlist with the given name.

Returns a new playlist with the given name and an URI, or None on failure.

MUST be implemented by subclass.

Parameters name (string) – name of the new playlist

Return type mopidy.models.Playlist or None

delete(uri)
Delete playlist identified by the URI.

Returns True if deleted, False otherwise.
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MUST be implemented by subclass.

Parameters uri (string) – URI of the playlist to delete

Return type bool

Changed in version 2.2: Return type defined.

get_items(uri)
Get the items in a playlist specified by uri.

Returns a list of Ref objects referring to the playlist’s items.

If a playlist with the given uri doesn’t exist, it returns None.

Return type list of mopidy.models.Ref, or None

New in version 1.0.

lookup(uri)
Lookup playlist with given URI in both the set of playlists and in any other playlist source.

Returns the playlists or None if not found.

MUST be implemented by subclass.

Parameters uri (string) – playlist URI

Return type mopidy.models.Playlist or None

refresh()
Refresh the playlists in playlists.

MUST be implemented by subclass.

save(playlist)
Save the given playlist.

The playlist must have an uri attribute set. To create a new playlist with an URI, use create().

Returns the saved playlist or None on failure.

MUST be implemented by subclass.

Parameters playlist (mopidy.models.Playlist) – the playlist to save

Return type mopidy.models.Playlist or None

Library provider

class mopidy.backend.LibraryProvider(backend)

Parameters backend (mopidy.backend.Backend) – backend the controller is a part of

browse(uri)
See mopidy.core.LibraryController.browse().

If you implement this method, make sure to also set root_directory .

MAY be implemented by subclass.

get_distinct(field, query=None)
See mopidy.core.LibraryController.get_distinct().

MAY be implemented by subclass.

Default implementation will simply return an empty set.
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Note that backends should always return an empty set for unexpected field types.

get_images(uris)
See mopidy.core.LibraryController.get_images().

MAY be implemented by subclass.

Default implementation will simply call lookup and try and use the album art for any tracks returned. Most
extensions should replace this with something smarter or simply return an empty dictionary.

lookup(uri)
See mopidy.core.LibraryController.lookup().

MUST be implemented by subclass.

refresh(uri=None)
See mopidy.core.LibraryController.refresh().

MAY be implemented by subclass.

root_directory = None
mopidy.models.Ref.directory instance with a URI and name set representing the root of this
library’s browse tree. URIs must use one of the schemes supported by the backend, and name should be
set to a human friendly value.

MUST be set by any class that implements LibraryProvider.browse().

search(query=None, uris=None, exact=False)
See mopidy.core.LibraryController.search().

MAY be implemented by subclass.

New in version 1.0: The exact param which replaces the old find_exact.

Backend listener

class mopidy.backend.BackendListener
Marker interface for recipients of events sent by the backend actors.

Any Pykka actor that mixes in this class will receive calls to the methods defined here when the corresponding
events happen in a backend actor. This interface is used both for looking up what actors to notify of the events,
and for providing default implementations for those listeners that are not interested in all events.

Normally, only the Core actor should mix in this class.

playlists_loaded()
Called when playlists are loaded or refreshed.

MAY be implemented by actor.

static send(event, **kwargs)
Helper to allow calling of backend listener events

Backend implementations

See Backend extensions.
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34.2.4 mopidy.ext – Extension API

If you want to learn how to make Mopidy extensions, read Extension development.

class mopidy.ext.Extension
Base class for Mopidy extensions

dist_name = None
The extension’s distribution name, as registered on PyPI

Example: Mopidy-Soundspot

ext_name = None
The extension’s short name, as used in setup.py and as config section name

Example: soundspot

classmethod get_cache_dir(config)
Get or create cache directory for the extension.

Use this directory to cache data that can safely be thrown away.

Parameters config – the Mopidy config object

Returns string

get_command()
Command to expose to command line users running mopidy.

Returns Instance of a Command class.

classmethod get_config_dir(config)
Get or create configuration directory for the extension.

Parameters config – the Mopidy config object

Returns string

get_config_schema()
The extension’s config validation schema

Returns ConfigSchema

classmethod get_data_dir(config)
Get or create data directory for the extension.

Use this directory to store data that should be persistent.

Parameters config – the Mopidy config object

Returns string

get_default_config()
The extension’s default config as a bytestring

Returns bytes or unicode

setup(registry)
Register the extension’s components in the extension Registry .

For example, to register a backend:

def setup(self, registry):
from .backend import SoundspotBackend
registry.add('backend', SoundspotBackend)

226 Chapter 34. API reference



Mopidy Documentation, Release 2.2.3

See Registry for a list of registry keys with a special meaning. Mopidy will instantiate and start any
classes registered under the frontend and backend registry keys.

This method can also be used for other setup tasks not involving the extension registry.

Parameters registry (Registry) – the extension registry

validate_environment()
Checks if the extension can run in the current environment.

Dependencies described by setup.py are checked by Mopidy, so you should not check their presence
here.

If a problem is found, raise ExtensionError with a message explaining the issue.

Raises ExtensionError

Returns None

version = None
The extension’s version

Should match the __version__ attribute on the extension’s main Python module and the version regis-
tered on PyPI.

class mopidy.ext.ExtensionData(extension, entry_point, config_schema, config_defaults, com-
mand)

command
Alias for field number 4

config_defaults
Alias for field number 3

config_schema
Alias for field number 2

entry_point
Alias for field number 1

extension
Alias for field number 0

class mopidy.ext.Registry
Registry of components provided by Mopidy extensions.

Passed to the setup() method of all extensions. The registry can be used like a dict of string keys and lists.

Some keys have a special meaning, including, but not limited to:

• backend is used for Mopidy backend classes.

• frontend is used for Mopidy frontend classes.

• local:library is used for Mopidy-Local libraries.

Extensions can use the registry for allow other to extend the extension itself. For example the Mopidy-Local
use the local:library key to allow other extensions to register library providers for Mopidy-Local
to use. Extensions should namespace custom keys with the extension’s ext_name, e.g. local:foo or
http:bar.

add(name, cls)
Add a component to the registry.

Multiple classes can be registered to the same name.
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mopidy.ext.load_extensions()
Find all installed extensions.

Returns list of installed extensions

mopidy.ext.validate_extension_data(data)
Verify extension’s dependencies and environment.

Parameters extensions – an extension to check

Returns if extension should be run

34.3 Web/JavaScript

34.3.1 HTTP server side API

The Mopidy-HTTP extension comes with an HTTP server to host Mopidy’s HTTP JSON-RPC API. This web server
can also be used by other extensions that need to expose something over HTTP.

The HTTP server side API can be used to:

• host static files for e.g. a Mopidy client written in pure JavaScript,

• host a Tornado application, or

• host a WSGI application, including e.g. Flask applications.

To host static files using the web server, an extension needs to register a name and a file path in the extension registry
under the http:static key.

To extend the web server with a web application, an extension must register a name and a factory function in the
extension registry under the http:app key.

For details on how to make a Mopidy extension, see the Extension development guide.

Static web client example

To serve static files, you just need to register an http:static dictionary in the extension registry. The dictionary
must have two keys: name and path. The name is used to build the URL the static files will be served on. By
convention, it should be identical with the extension’s ext_name, like in the following example. The path tells
Mopidy where on the disk the static files are located.

Assuming that the code below is located in the file mywebclient/__init__.py, the files in the directory
mywebclient/static/ will be made available at /mywebclient/ on Mopidy’s web server. For example,
mywebclient/static/foo.html will be available at http://localhost:6680/mywebclient/foo.html.

from __future__ import absolute_import, unicode_literals

import os

from mopidy import ext

class MyWebClientExtension(ext.Extension):
ext_name = 'mywebclient'

def setup(self, registry):
registry.add('http:static', {

(continues on next page)
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(continued from previous page)

'name': self.ext_name,
'path': os.path.join(os.path.dirname(__file__), 'static'),

})

# See the Extension API for the full details on this class

Tornado application example

The Mopidy-HTTP extension’s web server is based on the Tornado web framework. Thus, it has first class support for
Tornado request handlers.

In the following example, we create a tornado.web.RequestHandler called MyRequestHandler that re-
sponds to HTTP GET requests with the string Hello, world! This is Mopidy $version, where it gets
the Mopidy version from Mopidy’s core API.

To hook the request handler into Mopidy’s web server, we must register a dictionary under the http:app key in the
extension registry. The dictionary must have two keys: name and factory.

The name is used to build the URL the app will be served on. By convention, it should be identical with the extension’s
ext_name, like in the following example.

The factory must be a function that accepts two arguments, config and core, respectively a dict structure of
Mopidy’s config and a pykka.ActorProxy to the full Mopidy core API. The factory function must return a list
of Tornado request handlers. The URL patterns of the request handlers should not include the name, as that will be
prepended to the URL patterns by the web server.

When the extension is installed, Mopidy will respond to requests to http://localhost:6680/mywebclient/ with the string
Hello, world! This is Mopidy $version.

from __future__ import absolute_import, unicode_literals

import os

import tornado.web

from mopidy import ext

class MyRequestHandler(tornado.web.RequestHandler):
def initialize(self, core):

self.core = core

def get(self):
self.write(

'Hello, world! This is Mopidy %s' %
self.core.get_version().get())

def my_app_factory(config, core):
return [

('/', MyRequestHandler, {'core': core})
]

class MyWebClientExtension(ext.Extension):
ext_name = 'mywebclient'

(continues on next page)
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(continued from previous page)

def setup(self, registry):
registry.add('http:app', {

'name': self.ext_name,
'factory': my_app_factory,

})

# See the Extension API for the full details on this class

WSGI application example

WSGI applications are second-class citizens on Mopidy’s HTTP server. The WSGI applications are run inside Tor-
nado, which is based on non-blocking I/O and a single event loop. In other words, your WSGI applications will only
have a single thread to run on, and if your application is doing blocking I/O, it will block all other requests from being
handled by the web server as well.

The example below shows how a WSGI application that returns the string Hello, world! This is Mopidy
$version on all requests. The WSGI application is wrapped as a Tornado application and mounted at http:
//localhost:6680/mywebclient/.

from __future__ import absolute_import, unicode_literals

import os

import tornado.web
import tornado.wsgi

from mopidy import ext

def my_app_factory(config, core):

def wsgi_app(environ, start_response):
status = '200 OK'
response_headers = [('Content-type', 'text/plain')]
start_response(status, response_headers)
return [

'Hello, world! This is Mopidy %s\n' %
self.core.get_version().get()

]

return [
('(.*)', tornado.web.FallbackHandler, {

'fallback': tornado.wsgi.WSGIContainer(wsgi_app),
}),

]

class MyWebClientExtension(ext.Extension):
ext_name = 'mywebclient'

def setup(self, registry):
registry.add('http:app', {

'name': self.ext_name,
'factory': my_app_factory,

(continues on next page)
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(continued from previous page)

})

# See the Extension API for the full details on this class

API implementors

See Web extensions.

34.3.2 HTTP JSON-RPC API

The Mopidy-HTTP extension makes Mopidy’s mopidy.core — Core API available using JSON-RPC over HTTP using
HTTP POST and WebSockets. We also provide a JavaScript wrapper, called Mopidy.js, around the JSON-RPC over
WebSocket API for use both from browsers and Node.js. The Mopidy-API-Explorer extension, can also be used to get
you familiarized with HTTP based APIs.

HTTP POST API

The Mopidy web server accepts HTTP requests with the POST method to http://localhost:6680/mopidy/rpc, where the
localhost:6680 part will vary with your local setup. Your requests must also set the Content-Type header
to application/json. The HTTP POST endpoint gives you access to Mopidy’s full core API, but does not give
you notification on events. If you need to listen to events, you should probably use the WebSocket API instead.

Example usage from the command line:

$ curl -d '{"jsonrpc": "2.0", "id": 1, "method": "core.playback.get_state"}' -H
→˓'Content-Type: application/json' http://localhost:6680/mopidy/rpc
{"jsonrpc": "2.0", "id": 1, "result": "stopped"}

For details on the request and response format, see JSON-RPC 2.0 messages.

WebSocket API

The Mopidy web server exposes a WebSocket at http://localhost:6680/mopidy/ws, where the localhost:6680
part will vary with your local setup. The WebSocket gives you access to Mopidy’s full API and enables Mopidy to
instantly push events to the client, as they happen.

On the WebSocket we send two different kind of messages: The client can send JSON-RPC 2.0 requests, and the
server will respond with JSON-RPC 2.0 responses. In addition, the server will send event messages when something
happens on the server. Both message types are encoded as JSON objects.

If you’re using the API from JavaScript, either in the browser or in Node.js, you should use Mopidy.js JavaScript
library which wraps the WebSocket API in a nice JavaScript API.

JSON-RPC 2.0 messages

JSON-RPC 2.0 messages can be recognized by checking for the key named jsonrpc with the string value 2.0. For
details on the messaging format, please refer to the JSON-RPC 2.0 spec.

All methods in the mopidy.core — Core API is made available through JSON-RPC calls over the WebSocket.
For example, mopidy.core.PlaybackController.play() is available as the JSON-RPC method core.
playback.play.
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Example JSON-RPC request:

{"jsonrpc": "2.0", "id": 1, "method": "core.playback.get_current_track"}

Example JSON-RPC response:

{"jsonrpc": "2.0", "id": 1, "result": {"__model__": "Track", "...": "..."}}

The JSON-RPC method core.describe returns a data structure describing all available methods. If you’re unsure
how the core API maps to JSON-RPC, having a look at the core.describe response can be helpful.

Event messages

Event objects will always have a key named event whose value is the event type. Depending on the event
type, the event may include additional fields for related data. The events maps directly to the mopidy.
core.CoreListener API. Refer to the CoreListener method names is the available event types. The
CoreListener method’s keyword arguments are all included as extra fields on the event objects. Example event
message:

{"event": "track_playback_started", "track": {...}}

34.3.3 Mopidy.js JavaScript library

We’ve made a JavaScript library, Mopidy.js, which wraps the WebSocket API and gets you quickly started with working
on your client instead of figuring out how to communicate with Mopidy.

Getting the library for browser use

Regular and minified versions of Mopidy.js, ready for use, is installed together with Mopidy. When the HTTP exten-
sion is enabled, the files are available at:

• http://localhost:6680/mopidy/mopidy.js

• http://localhost:6680/mopidy/mopidy.min.js

You may need to adjust hostname and port for your local setup.

Thus, if you use Mopidy to host your web client, like described in Static web client example, you can load the latest
version of Mopidy.js by adding the following script tag to your HTML file:

<script type="text/javascript" src="/mopidy/mopidy.min.js"></script>

If you don’t use Mopidy to host your web client, you can find the JS files in the Git repo at:

• mopidy/http/data/mopidy.js

• mopidy/http/data/mopidy.min.js

Getting the library for Node.js or Browserify use

If you want to use Mopidy.js from Node.js or on the web through Browserify, you can install Mopidy.js using npm:

npm install mopidy

After npm completes, you can import Mopidy.js using require():
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var Mopidy = require("mopidy");

Getting the library for development on the library

If you want to work on the Mopidy.js library itself, you’ll find the source code and a complete development setup in
the Mopidy.js Git repo. The instructions in README.md will guide you on your way.

Creating an instance

Once you have Mopidy.js loaded, you need to create an instance of the wrapper:

var mopidy = new Mopidy();

When you instantiate Mopidy() without arguments, it will connect to the WebSocket at /mopidy/ws/ on the
current host. Thus, if you don’t host your web client using Mopidy’s web server, or if you use Mopidy.js from a
Node.js environment, you’ll need to pass the URL to the WebSocket end point:

var mopidy = new Mopidy({
webSocketUrl: "ws://localhost:6680/mopidy/ws/"

});

It is also possible to create an instance first and connect to the WebSocket later:

var mopidy = new Mopidy({autoConnect: false});
// ... do other stuff, like hooking up events ...
mopidy.connect();

When creating an instance, you can specify the following settings:

autoConnect Whether or not to connect to the WebSocket on instance creation. Defaults to true.

backoffDelayMin The minimum number of milliseconds to wait after a connection error before we try to recon-
nect. For every failed attempt, the backoff delay is doubled until it reaches backoffDelayMax. Defaults to
1000.

backoffDelayMax The maximum number of milliseconds to wait after a connection error before we try to recon-
nect. Defaults to 64000.

callingConvention Which calling convention to use when calling methods.

If set to “by-position-only”, methods expect to be called with positional arguments, like mopidy.foo.
bar(null, true, 2).

If set to “by-position-or-by-name”, methods expect to be called either with an array of position arguments, like
mopidy.foo.bar([null, true, 2]), or with an object of named arguments, like mopidy.foo.
bar({id: 2}). The advantage of the “by-position-or-by-name” calling convention is that arguments with
default values can be left out of the named argument object. Using named arguments also makes the code more
readable, and more resistent to future API changes.

Note: For backwards compatibility, the default is “by-position-only”. In the future, the default will change to
“by-position-or-by-name”. You should explicitly set this setting to your choice, so you won’t be affected when
the default changes.

New in version 0.19: (Mopidy.js 0.4)
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console If set, this object will be used to log errors from Mopidy.js. This is mostly useful for testing Mopidy.js.

webSocket An existing WebSocket object to be used instead of creating a new WebSocket. Defaults to undefined.

webSocketUrl URL used when creating new WebSocket objects. Defaults to ws://<document.location.
host>/mopidy/ws, or ws://localhost/mopidy/ws if document.location.host isn’t avail-
able, like it is in the browser environment.

Hooking up to events

Once you have a Mopidy.js object, you can hook up to the events it emits. To explore your possibilities, it can be
useful to subscribe to all events and log them:

mopidy.on(console.log.bind(console));

Several types of events are emitted:

• You can get notified about when the Mopidy.js object is connected to the server and ready for method calls,
when it’s offline, and when it’s trying to reconnect to the server by looking at the events state:online,
state:offline, reconnectionPending, and reconnecting.

• You can get events sent from the Mopidy server by looking at the events with the name prefix event:, like
event:trackPlaybackStarted.

• You can introspect what happens internally on the WebSocket by looking at the events emitted with the name
prefix websocket:.

Mopidy.js uses the event emitter library BANE, so you should refer to BANE’s short API documentation to see how
you can hook up your listeners to the different events.

Calling core API methods

Once your Mopidy.js object has connected to the Mopidy server and emits the state:online event, it is ready to
accept core API method calls:

mopidy.on("state:online", function () {
mopidy.playback.next();

});

Any calls you make before the state:online event is emitted will fail. If you’ve hooked up an errback (more on
that a bit later) to the promise returned from the call, the errback will be called with a Mopidy.ConnectionError
instance.

All methods in Mopidy’s mopidy.core — Core API is available via Mopidy.js. For example, the mopidy.core.
PlaybackController.get_state() method is available in JSON-RPC as the method core.playback.
get_state and in Mopidy.js as mopidy.playback.getState().

Both the WebSocket API and the JavaScript API are based on introspection of the core Python API. Thus, they will
always be up to date and immediately reflect any changes we do to the core API.

The best way to explore the JavaScript API, is probably by opening your browser’s console, and using its tab
completion to navigate the API. You’ll find the Mopidy core API exposed under mopidy.playback, mopidy.
tracklist, mopidy.playlists, and mopidy.library.

All methods in the JavaScript API have an associated data structure describing the Python params it expects, and most
methods also have the Python API documentation available. This is available right there in the browser console, by
looking at the method’s description and params attributes:
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console.log(mopidy.playback.next.params);
console.log(mopidy.playback.next.description);

JSON-RPC 2.0 limits method parameters to be sent either by-position or by-name. Combinations of both, like we’re
used to from Python, isn’t supported by JSON-RPC 2.0.

Obviously, you’ll want to get a return value from many of your method calls. Since everything is happening across
the WebSocket and maybe even across the network, you’ll get the results asynchronously. Instead of having to pass
callbacks and errbacks to every method you call, the methods return “promise” objects, which you can use to pipe the
future result as input to another method, or to hook up callback and errback functions.

var track = mopidy.playback.getCurrentTrack();
// => ``track`` isn't a track, but a "promise" object

Instead, typical usage will look like this:

var printCurrentTrack = function (track) {
if (track) {

console.log("Currently playing:", track.name, "by",
track.artists[0].name, "from", track.album.name);

} else {
console.log("No current track");

}
};

mopidy.playback.getCurrentTrack()
.done(printCurrentTrack);

The function passed to done(), printCurrentTrack, is the callback that will be called if the method call
succeeds. If anything goes wrong, done() will throw an exception.

If you want to explicitly handle any errors and avoid an exception being thrown, you can register an error handler
function anywhere in a promise chain. The function will be called with the error object as the only argument:

mopidy.playback.getCurrentTrack()
.catch(console.error.bind(console))
.done(printCurrentTrack);

You can also register the error handler at the end of the promise chain by passing it as the second argument to done():

mopidy.playback.getCurrentTrack()
.done(printCurrentTrack, console.error.bind(console));

If you don’t hook up an error handler function and never call done() on the promise object, warnings will be logged
to the console complaining that you have unhandled errors. In general, unhandled errors will not go silently missing.

The promise objects returned by Mopidy.js adheres to the CommonJS Promises/A standard. We use the implementa-
tion known as when.js, and reexport it as Mopidy.when so you don’t have to duplicate the dependency. Please refer
to when.js’ documentation or the standard for further details on how to work with promise objects.

Cleaning up

If you for some reason want to clean up after Mopidy.js before the web page is closed or navigated away from, you
can close the WebSocket, unregister all event listeners, and delete the object like this:

34.3. Web/JavaScript 235

http://wiki.commonjs.org/wiki/Promises/A
https://github.com/cujojs/when


Mopidy Documentation, Release 2.2.3

// Close the WebSocket without reconnecting. Letting the object be garbage
// collected will have the same effect, so this isn't strictly necessary.
mopidy.close();

// Unregister all event listeners. If you don't do this, you may have
// lingering references to the object causing the garbage collector to not
// clean up after it.
mopidy.off();

// Delete your reference to the object, so it can be garbage collected.
mopidy = null;

Example to get started with

1. Make sure that you’ve installed all dependencies required by Mopidy-HTTP.

2. Create an empty directory for your web client.

3. Change the http/static_dir config value to point to your new directory.

4. Start/restart Mopidy.

5. Create a file in the directory named index.html containing e.g. “Hello, world!”.

6. Visit http://localhost:6680/ to confirm that you can view your new HTML file there.

7. Include Mopidy.js in your web page:

<script type="text/javascript" src="/mopidy/mopidy.min.js"></script>

8. Add one of the following Mopidy.js examples of how to queue and start playback of your first playlist either to
your web page or a JavaScript file that you include in your web page.

“Imperative” style:

var trackDesc = function (track) {
return track.name + " by " + track.artists[0].name +

" from " + track.album.name;
};

var queueAndPlay = function (playlistNum, trackNum) {
playlistNum = playlistNum || 0;
trackNum = trackNum || 0;
mopidy.playlists.getPlaylists().then(function (playlists) {

var playlist = playlists[playlistNum];
console.log("Loading playlist:", playlist.name);
return mopidy.tracklist.add(playlist.tracks).then(function (tlTracks) {

return mopidy.playback.play(tlTracks[trackNum]).then(function () {
return mopidy.playback.getCurrentTrack().then(function (track) {

console.log("Now playing:", trackDesc(track));
});

});
});

})
.catch(console.error.bind(console)) // Handle errors here
.done(); // ...or they'll be thrown here

};

(continues on next page)
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(continued from previous page)

var mopidy = new Mopidy(); // Connect to server
mopidy.on(console.log.bind(console)); // Log all events
mopidy.on("state:online", queueAndPlay);

Approximately the same behavior in a more functional style, using chaining of promises.

var get = function (key, object) {
return object[key];

};

var printTypeAndName = function (model) {
console.log(model.__model__ + ": " + model.name);
// By returning the playlist, this function can be inserted
// anywhere a model with a name is piped in the chain.
return model;

};

var trackDesc = function (track) {
return track.name + " by " + track.artists[0].name +

" from " + track.album.name;
};

var printNowPlaying = function () {
// By returning any arguments we get, the function can be inserted
// anywhere in the chain.
var args = arguments;
return mopidy.playback.getCurrentTrack()

.then(function (track) {
console.log("Now playing:", trackDesc(track));
return args;

});
};

var queueAndPlay = function (playlistNum, trackNum) {
playlistNum = playlistNum || 0;
trackNum = trackNum || 0;
mopidy.playlists.getPlaylists()

// => list of Playlists
.fold(get, playlistNum)
// => Playlist
.then(printTypeAndName)
// => Playlist
.fold(get, 'tracks')
// => list of Tracks
.then(mopidy.tracklist.add)
// => list of TlTracks
.fold(get, trackNum)
// => TlTrack
.then(mopidy.playback.play)
// => null
.then(printNowPlaying)
// => null
.catch(console.error.bind(console)) // Handle errors here
// => null
.done(); // ...or they'll be thrown here

};

(continues on next page)
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(continued from previous page)

var mopidy = new Mopidy(); // Connect to server
mopidy.on(console.log.bind(console)); // Log all events
mopidy.on("state:online", queueAndPlay);

9. The web page should now queue and play your first playlist every time you load it. See the browser’s console
for output from the function, any errors, and all events that are emitted.

34.4 Audio

34.4.1 mopidy.audio — Audio API

The audio API is the interface we have built around GStreamer to support our specific use cases. Most backends
should be able to get by with simply setting the URI of the resource they want to play, for these cases the default
playback provider should be used.

For more advanced cases such as when the raw audio data is delivered outside of GStreamer or the backend needs to
add metadata to the currently playing resource, developers should sub-class the base playback provider and implement
the extra behaviour that is needed through the following API:

class mopidy.audio.Audio(config, mixer)
Audio output through GStreamer.

emit_data(buffer_)
Call this to deliver raw audio data to be played.

If the buffer is None, the end-of-stream token is put on the playbin. We will get a GStreamer message
when the stream playback reaches the token, and can then do any end-of-stream related tasks.

Note that the URI must be set to appsrc:// for this to work.

Returns True if data was delivered.

Parameters buffer (Gst.Buffer or None) – buffer to pass to appsrc

Return type boolean

emit_end_of_stream()
Put an end-of-stream token on the playbin. This is typically used in combination with emit_data().

We will get a GStreamer message when the stream playback reaches the token, and can then do any end-
of-stream related tasks.

Deprecated since version 1.0: Use emit_data() with a None buffer instead.

enable_sync_handler()
Enable manual processing of messages from bus.

Should only be used by tests.

get_current_tags()
Get the currently playing media’s tags.

If no tags have been found, or nothing is playing this returns an empty dictionary. For each set of tags we
collect a tags_changed event is emitted with the keys of the changes tags. After such calls users may call
this function to get the updated values.

Return type {key: [values]} dict for the current media.
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get_position()
Get position in milliseconds.

Return type int

mixer = None
The software mixing interface mopidy.audio.actor.SoftwareMixer

on_start()
Hook for doing any setup that should be done after the actor is started, but before it starts processing
messages.

For ThreadingActor, this method is executed in the actor’s own thread, while __init__() is exe-
cuted in the thread that created the actor.

If an exception is raised by this method the stack trace will be logged, and the actor will stop.

on_stop()
Hook for doing any cleanup that should be done after the actor has processed the last message, and before
the actor stops.

This hook is not called when the actor stops because of an unhandled exception. In that case, the
on_failure() hook is called instead.

For ThreadingActor this method is executed in the actor’s own thread, immediately before the thread
exits.

If an exception is raised by this method the stack trace will be logged, and the actor will stop.

pause_playback()
Notify GStreamer that it should pause playback.

Return type True if successfull, else False

prepare_change()
Notify GStreamer that we are about to change state of playback.

This function MUST be called before changing URIs or doing changes like updating data that is being
pushed. The reason for this is that GStreamer will reset all its state when it changes to Gst.State.
READY.

set_about_to_finish_callback(callback)
Configure audio to use an about-to-finish callback.

This should be used to achieve gapless playback. For this to work the callback MUST call set_uri()
with the new URI to play and block until this call has been made. prepare_change() is not needed
before set_uri() in this one special case.

Parameters callback (callable) – Callback to run when we need the next URI.

set_appsrc(caps, need_data=None, enough_data=None, seek_data=None)
Switch to using appsrc for getting audio to be played.

You MUST call prepare_change() before calling this method.

Parameters

• caps (string) – GStreamer caps string describing the audio format to expect

• need_data (callable which takes data length hint in ms) – call-
back for when appsrc needs data

• enough_data (callable) – callback for when appsrc has enough data
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• seek_data (callable which takes time position in ms) – callback for
when data from a new position is needed to continue playback

set_metadata(track)
Set track metadata for currently playing song.

Only needs to be called by sources such as appsrc which do not already inject tags in playbin, e.g. when
using emit_data() to deliver raw audio data to GStreamer.

Parameters track (mopidy.models.Track) – the current track

set_position(position)
Set position in milliseconds.

Parameters position (int) – the position in milliseconds

Return type True if successful, else False

set_uri(uri)
Set URI of audio to be played.

You MUST call prepare_change() before calling this method.

Parameters uri (string) – the URI to play

start_playback()
Notify GStreamer that it should start playback.

Return type True if successfull, else False

state = u'stopped'
The GStreamer state mapped to mopidy.audio.PlaybackState

stop_playback()
Notify GStreamer that is should stop playback.

Return type True if successfull, else False

wait_for_state_change()
Block until any pending state changes are complete.

Should only be used by tests.

Audio listener

class mopidy.audio.AudioListener
Marker interface for recipients of events sent by the audio actor.

Any Pykka actor that mixes in this class will receive calls to the methods defined here when the corresponding
events happen in the core actor. This interface is used both for looking up what actors to notify of the events,
and for providing default implementations for those listeners that are not interested in all events.

position_changed(position)
Called whenever the position of the stream changes.

MAY be implemented by actor.

Parameters position (int) – Position in milliseconds.

reached_end_of_stream()
Called whenever the end of the audio stream is reached.

MAY be implemented by actor.
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static send(event, **kwargs)
Helper to allow calling of audio listener events

state_changed(old_state, new_state, target_state)
Called after the playback state have changed.

Will be called for both immediate and async state changes in GStreamer.

Target state is used to when we should be in the target state, but temporarily need to switch to an other state.
A typical example of this is buffering. When this happens an event with old=PLAYING, new=PAUSED,
target=PLAYING will be emitted. Once we have caught up a old=PAUSED, new=PLAYING, target=None
event will be be generated.

Regular state changes will not have target state set as they are final states which should be stable.

MAY be implemented by actor.

Parameters

• old_state (string from mopidy.core.PlaybackState field) – the state before
the change

• new_state (string from mopidy.core.PlaybackState field) – the state after the
change

• target_state (string from mopidy.core.PlaybackState field or None if this
is a final state.) – the intended state

stream_changed(uri)
Called whenever the audio stream changes.

MAY be implemented by actor.

Parameters uri (string) – URI the stream has started playing.

tags_changed(tags)
Called whenever the current audio stream’s tags change.

This event signals that some track metadata has been updated. This can be metadata such as artists, titles,
organization, or details about the actual audio such as bit-rates, numbers of channels etc.

For the available tag keys please refer to GStreamer documentation for tags.

MAY be implemented by actor.

Parameters tags (set of strings) – The tags that have just been updated.

Audio scanner

class mopidy.audio.scan.Scanner(timeout=1000, proxy_config=None)
Helper to get tags and other relevant info from URIs.

Parameters

• timeout – timeout for scanning a URI in ms

• proxy_config – dictionary containing proxy config strings.

scan(uri, timeout=None)
Scan the given uri collecting relevant metadata.

Parameters

• uri (string) – URI of the resource to scan.
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• timeout (int) – timeout for scanning a URI in ms. Defaults to the timeout value
used when creating the scanner.

Returns A named tuple containing (uri, tags, duration, seekable, mime).
tags is a dictionary of lists for all the tags we found. duration is the length of the
URI in milliseconds, or None if the URI has no duration. seekable is boolean. indicating
if a seek would succeed.

Audio utils

class mopidy.audio.utils.Signals
Helper for tracking gobject signal registrations

clear()
Clear all registered signal handlers.

connect(element, event, func, *args)
Connect a function + args to signal event on an element.

Each event may only be handled by one callback in this implementation.

disconnect(element, event)
Disconnect whatever handler we have for an element+event pair.

Does nothing it the handler has already been removed.

mopidy.audio.utils.calculate_duration(num_samples, sample_rate)
Determine duration of samples using GStreamer helper for precise math.

mopidy.audio.utils.clocktime_to_millisecond(value)
Convert an internal GStreamer time to millisecond time.

mopidy.audio.utils.create_buffer(data, timestamp=None, duration=None)
Create a new GStreamer buffer based on provided data.

Mainly intended to keep gst imports out of non-audio modules.

Changed in version 2.0: capabilites argument was removed.

mopidy.audio.utils.millisecond_to_clocktime(value)
Convert a millisecond time to internal GStreamer time.

mopidy.audio.utils.setup_proxy(element, config)
Configure a GStreamer element with proxy settings.

Parameters

• element (Gst.GstElement) – element to setup proxy in.

• config (dict) – proxy settings to use.

mopidy.audio.utils.supported_uri_schemes(uri_schemes)
Determine which URIs we can actually support from provided whitelist.

Parameters uri_schemes (list or set or URI schemes as strings.) – list/set
of URIs to check support for.

Return type set of URI schemes we can support via this GStreamer install.
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34.4.2 mopidy.mixer — Audio mixer API

class mopidy.mixer.Mixer(config)
Audio mixer API

If the mixer has problems during initialization it should raise mopidy.exceptions.MixerError with a
descriptive error message. This will make Mopidy print the error message and exit so that the user can fix the
issue.

Parameters config (dict) – the entire Mopidy configuration

get_mute()
Get mute state of the mixer.

MAY be implemented by subclass.

Return type True if muted, False if unmuted, None if unknown.

get_volume()
Get volume level of the mixer on a linear scale from 0 to 100.

Example values:

0: Minimum volume, usually silent.

100: Maximum volume.

None: Volume is unknown.

MAY be implemented by subclass.

Return type int in range [0..100] or None

name = None
Name of the mixer.

Used when configuring what mixer to use. Should match the ext_name of the extension providing the
mixer.

ping()
Called to check if the actor is still alive.

set_mute(mute)
Mute or unmute the mixer.

MAY be implemented by subclass.

Parameters mute (bool) – True to mute, False to unmute

Return type True if success, False if failure

set_volume(volume)
Set volume level of the mixer.

MAY be implemented by subclass.

Parameters volume (int) – Volume in the range [0..100]

Return type True if success, False if failure

trigger_mute_changed(mute)
Send mute_changed event to all mixer listeners.

This method should be called by subclasses when the mute state is changed, either because of a call to
set_mute() or because of any external entity changing the mute state.
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trigger_volume_changed(volume)
Send volume_changed event to all mixer listeners.

This method should be called by subclasses when the volume is changed, either because of a call to
set_volume() or because of any external entity changing the volume.

class mopidy.mixer.MixerListener
Marker interface for recipients of events sent by the mixer actor.

Any Pykka actor that mixes in this class will receive calls to the methods defined here when the corresponding
events happen in the mixer actor. This interface is used both for looking up what actors to notify of the events,
and for providing default implementations for those listeners that are not interested in all events.

mute_changed(mute)
Called after the mute state has changed.

MAY be implemented by actor.

Parameters mute (bool) – True if muted, False if not muted

static send(event, **kwargs)
Helper to allow calling of mixer listener events

volume_changed(volume)
Called after the volume has changed.

MAY be implemented by actor.

Parameters volume (int in range [0..100]) – the new volume

Mixer implementations

See Mixer extensions.

34.5 Utilities

34.5.1 mopidy.commands — Commands API

class mopidy.commands.Command
Command parser and runner for building trees of commands.

This class provides a wraper around argparse.ArgumentParser for handling this type of command line
application in a better way than argprases own sub-parser handling.

add_argument(*args, **kwargs)
Add an argument to the parser.

This method takes all the same arguments as the argparse.ArgumentParser version of this method.

add_child(name, command)
Add a child parser to consider using.

Parameters name (string) – name to use for the sub-command that is being added.

exit(status_code=0, message=None, usage=None)
Optionally print a message and exit.

format_help(prog=None)
Format help for current parser and children.
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format_usage(prog=None)
Format usage for current parser.

parse(args, prog=None)
Parse command line arguments.

Will recursively parse commands until a final parser is found or an error occurs. In the case of errors we
will print a message and exit. Otherwise, any overrides are applied and the current parser stored in the
command attribute of the return value.

Parameters

• args (list of strings) – list of arguments to parse

• prog (string) – name to use for program

Return type argparse.Namespace

run(*args, **kwargs)
Run the command.

Must be implemented by sub-classes that are not simply an intermediate in the command namespace.

set(**kwargs)
Override a value in the finaly result of parsing.

34.5.2 mopidy.config — Config API

class mopidy.config.Proxy(data)

mopidy.config.read(config_file)
Helper to load config defaults in same way across core and extensions

Config section schemas

class mopidy.config.schemas.ConfigSchema(name)
Logical group of config values that correspond to a config section.

Schemas are set up by assigning config keys with config values to instances. Once setup deserialize()
can be called with a dict of values to process. For convienience we also support format() method that can
used for converting the values to a dict that can be printed and serialize() for converting the values to a
form suitable for persistence.

deserialize(values)
Validates the given values using the config schema.

Returns a tuple with cleaned values and errors.

serialize(values, display=False)
Converts the given values to a format suitable for persistence.

If display is True secret config values, like passwords, will be masked out.

Returns a dict of config keys and values.

class mopidy.config.schemas.MapConfigSchema(name, value_type)
Schema for handling multiple unknown keys with the same type.

Does not sub-class ConfigSchema, but implements the same serialize/deserialize interface.
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Config value types

class mopidy.config.types.Boolean(optional=False)
Boolean value.

Accepts 1, yes, true, and on with any casing as True.

Accepts 0, no, false, and off with any casing as False.

class mopidy.config.types.ConfigValue
Represents a config key’s value and how to handle it.

Normally you will only be interacting with sub-classes for config values that encode either deserialization be-
havior and/or validation.

Each config value should be used for the following actions:

1. Deserializing from a raw string and validating, raising ValueError on failure.

2. Serializing a value back to a string that can be stored in a config.

3. Formatting a value to a printable form (useful for masking secrets).

None values should not be deserialized, serialized or formatted, the code interacting with the config should
simply skip None config values.

deserialize(value)
Cast raw string to appropriate type.

serialize(value, display=False)
Convert value back to string for saving.

class mopidy.config.types.Deprecated
Deprecated value

Used for ignoring old config values that are no longer in use, but should not cause the config parser to crash.

class mopidy.config.types.ExpandedPath(original, expanded)

class mopidy.config.types.Hostname(optional=False)
Network hostname value.

class mopidy.config.types.Integer(minimum=None, maximum=None, choices=None, op-
tional=False)

Integer value.

class mopidy.config.types.List(optional=False)
List value.

Supports elements split by commas or newlines. Newlines take presedence and empty list items will be filtered
out.

class mopidy.config.types.LogLevel
Log level value.

Expects one of critical, error, warning, info, debug, or all, with any casing.

class mopidy.config.types.Path(optional=False)
File system path

The following expansions of the path will be done:

• ~ to the current user’s home directory

• $XDG_CACHE_DIR according to the XDG spec

• $XDG_CONFIG_DIR according to the XDG spec
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• $XDG_DATA_DIR according to the XDG spec

• $XDG_MUSIC_DIR according to the XDG spec

class mopidy.config.types.Port(choices=None, optional=False)
Network port value.

Expects integer in the range 0-65535, zero tells the kernel to simply allocate a port for us.

class mopidy.config.types.Secret(optional=False, choices=None)
Secret string value.

Is decoded as utf-8 and n t escapes should work and be preserved.

Should be used for passwords, auth tokens etc. Will mask value when being displayed.

class mopidy.config.types.String(optional=False, choices=None)
String value.

Is decoded as utf-8 and n t escapes should work and be preserved.

Config value validators

mopidy.config.validators.validate_choice(value, choices)
Validate that value is one of the choices

Normally called in deserialize().

mopidy.config.validators.validate_maximum(value, maximum)
Validate that value is at most maximum

Normally called in deserialize().

mopidy.config.validators.validate_minimum(value, minimum)
Validate that value is at least minimum

Normally called in deserialize().

mopidy.config.validators.validate_required(value, required)
Validate that value is set if required

Normally called in deserialize() on the raw string, _not_ the converted value.

34.5.3 mopidy.httpclient — HTTP Client helpers

mopidy.httpclient.format_proxy(proxy_config, auth=True)
Convert a Mopidy proxy config to the commonly used proxy string format.

Outputs scheme://host:port, scheme://user:pass@host:port or None depending on the
proxy config provided.

You can also opt out of getting the basic auth by setting auth to False.

New in version 1.1.

mopidy.httpclient.format_user_agent(name=None)
Construct a User-Agent suitable for use in client code.

This will identify use by the provided name (which should be on the format dist_name/version), Mopidy
version and Python version.

New in version 1.1.
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34.5.4 mopidy.zeroconf — Zeroconf API

class mopidy.zeroconf.Zeroconf(name, stype, port, domain=u”, host=u”, text=None)
Publish a network service with Zeroconf.

Currently, this only works on Linux using Avahi via D-Bus.

Parameters

• name (str) – human readable name of the service, e.g. ‘MPD on neptune’

• stype (str) – service type, e.g. ‘_mpd._tcp’

• port (int) – TCP port of the service, e.g. 6600

• domain (str) – local network domain name, defaults to ‘’

• host (str) – interface to advertise the service on, defaults to ‘’

• text (list of str) – extra information depending on stype, defaults to empty list

publish()
Publish the service.

Call when your service starts.

unpublish()
Unpublish the service.

Call when your service shuts down.
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Module reference

35.1 mopidy.local — Local backend

For details on how to use Mopidy’s local backend, see Mopidy-Local.

35.1.1 Local library API

class mopidy.local.Library(config)
Local library interface.

Extensions that wish to provide an alternate local library storage backend need to sub-class this class and install
and configure it with an extension. Both scanning and library calls will use the active local library.

Parameters config – Config dictionary

ROOT_DIRECTORY_URI = u'local:directory'
URI of the local backend’s root directory.

This constant should be used by libraries implementing the Library.browse() method.

add(track, tags=None, duration=None)
Add the given track to library. Optional args will only be added if
add_supports_tags_and_duration has been set.

Parameters

• track (Track) – Track to add to the library

• tags (dictionary of tag keys with a list of values.) – All the tags
the scanner found for the media. See mopidy.audio.utils for details about the tags.

• duration (int or None) – Duration of media in milliseconds or None if unknown

add_supports_tags_and_duration = False
Feature marker to indicate that you want add() calls to be called with optional arguments tags and
duration.
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begin()
Prepare library for accepting updates. Exactly what this means is highly implementation depended. This
must however return an iterator that generates all tracks in the library for efficient scanning.

Return type Track iterator

browse(uri)
Browse directories and tracks at the given URI.

The URI for the root directory is a constant available at Library.ROOT_DIRECTORY_URI.

Parameters path (string) – URI to browse.

Return type List of Ref tracks and directories.

clear()
Clear out whatever data storage is used by this backend.

Return type Boolean indicating if state was cleared.

close()
Close any resources used for updating, commit outstanding work etc.

flush()
Called for every n-th track indicating that work should be committed. Sub-classes are free to ignore these
hints.

Return type Boolean indicating if state was flushed.

get_distinct(field, query=None)
List distinct values for a given field from the library.

Parameters

• field (string) – One of artist, albumartist, album, composer,
performer, date``or ``genre.

• query (dict) – Query to use for limiting results, see search() for details about the
query format.

Return type set of values corresponding to the requested field type.

get_images(uris)
Lookup the images for the given URIs.

The default implementation will simply call lookup() and try and use the album art for any tracks
returned. Most local libraries should replace this with something smarter or simply return an empty dic-
tionary.

Parameters uris (list) – list of URIs to find images for

Return type {uri: tuple of mopidy.models.Image}

load()
(Re)load any tracks stored in memory, if any, otherwise just return number of available tracks currently
available. Will be called at startup for both library and update use cases, so if you plan to store tracks in
memory this is when the should be (re)loaded.

Return type int representing number of tracks in library.

lookup(uri)
Lookup the given URI.

Parameters uri (string) – track URI

Return type list of Track (or single Track for backward compatibility)
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name = None
Name of the local library implementation, must be overriden.

remove(uri)
Remove the given track from the library.

Parameters uri (str) – URI to remove from the library/

search(query=None, limit=100, offset=0, exact=False, uris=None)
Search the library for tracks where field contains values.

Parameters

• query (dict) – one or more queries to search for

• limit (int) – maximum number of results to return

• offset (int) – offset into result set to use.

• exact (bool) – whether to look for exact matches

• uris (list of strings or None) – zero or more URI roots to limit the search to

Return type SearchResult

35.1.2 Translation utils

mopidy.local.translator.local_uri_to_file_uri(uri, media_dir)
Convert local track or directory URI to file URI.

mopidy.local.translator.local_uri_to_path(uri, media_dir)
Convert local track or directory URI to absolute path.

mopidy.local.translator.path_to_file_uri(abspath)
Convert absolute path to file URI.

mopidy.local.translator.path_to_local_directory_uri(relpath)
Convert path relative to local/media_dir to directory URI.

mopidy.local.translator.path_to_local_track_uri(relpath)
Convert path relative to local/media_dir to local track URI.

35.2 mopidy.mpd — MPD server

For details on how to use Mopidy’s MPD server, see Mopidy-MPD.

35.2.1 MPD tokenizer

mopidy.mpd.tokenize.split(line)
Splits a line into tokens using same rules as MPD.

• Lines may not start with whitespace

• Tokens are split by arbitrary amount of spaces or tabs

• First token must match [a-z][a-z0-9_]*

• Remaining tokens can be unquoted or quoted tokens.

• Unquoted tokens consist of all printable characters except double quotes, single quotes, spaces and tabs.
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• Quoted tokens are surrounded by a matching pair of double quotes.

• The closing quote must be followed by space, tab or end of line.

• Any value is allowed inside a quoted token. Including double quotes, assuming it is correctly escaped.

• Backslash inside a quoted token is used to escape the following character.

For examples see the tests for this function.

35.2.2 MPD dispatcher

class mopidy.mpd.dispatcher.MpdContext(dispatcher, session=None, config=None,
core=None, uri_map=None)

This object is passed as the first argument to all MPD command handlers to give the command handlers access
to important parts of Mopidy.

browse(path, recursive=True, lookup=True)
Browse the contents of a given directory path.

Returns a sequence of two-tuples (path, data).

If recursive is true, it returns results for all entries in the given path.

If lookup is true and the path is to a track, the returned data is a future which will contain the results
from looking up the URI with mopidy.core.LibraryController.lookup(). If lookup is
false and the path is to a track, the returned data will be a mopidy.models.Ref for the track.

For all entries that are not tracks, the returned data will be None.

core = None
The Mopidy core API. An instance of mopidy.core.Core.

dispatcher = None
The current MpdDispatcher.

events = None
The active subsystems that have pending events.

lookup_playlist_name_from_uri(uri)
Helper function to retrieve the unique MPD playlist name from its uri.

lookup_playlist_uri_from_name(name)
Helper function to retrieve a playlist from its unique MPD name.

password = None
The MPD password

session = None
The current mopidy.mpd.MpdSession.

subscriptions = None
The subsytems that we want to be notified about in idle mode.

class mopidy.mpd.dispatcher.MpdDispatcher(session=None, config=None, core=None,
uri_map=None)

The MPD session feeds the MPD dispatcher with requests. The dispatcher finds the correct handler, processes
the request and sends the response back to the MPD session.

handle_request(request, current_command_list_index=None)
Dispatch incoming requests to the correct handler.
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35.2.3 MPD protocol

rather incomplete with regards to data formats, both for requests and responses. Thus, we have had to talk a great deal
with the the original MPD server using telnet to get the details we need to implement our own MPD server which is
compatible with the numerous existing MPD clients.

mopidy.mpd.protocol.BOOL(value)
Convert the values 0 and 1 into booleans.

class mopidy.mpd.protocol.Commands
Collection of MPD commands to expose to users.

Normally used through the global instance which command handlers have been installed into.

add(name, auth_required=True, list_command=True, **validators)
Create a decorator that registers a handler and validation rules.

Additional keyword arguments are treated as converters/validators to apply to tokens converting them to
proper Python types.

Requirements for valid handlers:

• must accept a context argument as the first arg.

• may not use variable keyword arguments, **kwargs.

• may use variable arguments *args or a mix of required and optional arguments.

Decorator returns the unwrapped function so that tests etc can use the functions with values with correct
python types instead of strings.

Parameters

• name (string) – Name of the command being registered.

• auth_required (bool) – If authorization is required.

• list_command (bool) – If command should be listed in reflection.

call(tokens, context=None)
Find and run the handler registered for the given command.

If the handler was registered with any converters/validators they will be run before calling the real handler.

Parameters

• tokens (list) – List of tokens to process

• context (MpdContext) – MPD context.

mopidy.mpd.protocol.ENCODING = u'UTF-8'
The MPD protocol uses UTF-8 for encoding all data.

mopidy.mpd.protocol.INT(value)
Converts a value that matches [+-]?d+ into and integer.

mopidy.mpd.protocol.LINE_TERMINATOR = u'\n'
The MPD protocol uses \n as line terminator.

mopidy.mpd.protocol.RANGE(value)
Convert a single integer or range spec into a slice

n should become slice(n, n+1) n: should become slice(n, None) n:m should become slice(n,
m) and m > n must hold
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mopidy.mpd.protocol.UINT(value)
Converts a value that matches d+ into an integer.

mopidy.mpd.protocol.VERSION = u'0.19.0'
The MPD protocol version is 0.19.0.

mopidy.mpd.protocol.commands = <mopidy.mpd.protocol.Commands object>
Global instance to install commands into

mopidy.mpd.protocol.load_protocol_modules()
The protocol modules must be imported to get them registered in commands.

Audio output

mopidy.mpd.protocol.audio_output.disableoutput(context, outputid)
musicpd.org, audio output section:

disableoutput {ID}

Turns an output off.

mopidy.mpd.protocol.audio_output.enableoutput(context, outputid)
musicpd.org, audio output section:

enableoutput {ID}

Turns an output on.

mopidy.mpd.protocol.audio_output.outputs(context)
musicpd.org, audio output section:

outputs

Shows information about all outputs.

mopidy.mpd.protocol.audio_output.toggleoutput(context, outputid)
musicpd.org, audio output section:

toggleoutput {ID}

Turns an output on or off, depending on the current state.

Channels

mopidy.mpd.protocol.channels.channels(context)
musicpd.org, client to client section:

channels

Obtain a list of all channels. The response is a list of “channel:” lines.

mopidy.mpd.protocol.channels.readmessages(context)
musicpd.org, client to client section:

readmessages

Reads messages for this client. The response is a list of “channel:” and “message:” lines.

mopidy.mpd.protocol.channels.sendmessage(context, channel, text)
musicpd.org, client to client section:

sendmessage {CHANNEL} {TEXT}

Send a message to the specified channel.
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mopidy.mpd.protocol.channels.subscribe(context, channel)
musicpd.org, client to client section:

subscribe {NAME}

Subscribe to a channel. The channel is created if it does not exist already. The name may consist of
alphanumeric ASCII characters plus underscore, dash, dot and colon.

mopidy.mpd.protocol.channels.unsubscribe(context, channel)
musicpd.org, client to client section:

unsubscribe {NAME}

Unsubscribe from a channel.

Command list

mopidy.mpd.protocol.command_list.command_list_begin(context)
musicpd.org, command list section:

To facilitate faster adding of files etc. you can pass a list of commands all at once using a command
list. The command list begins with command_list_begin or command_list_ok_begin
and ends with command_list_end.

It does not execute any commands until the list has ended. The return value is whatever the return
for a list of commands is. On success for all commands, OK is returned. If a command fails, no more
commands are executed and the appropriate ACK error is returned. If command_list_ok_begin
is used, list_OK is returned for each successful command executed in the command list.

mopidy.mpd.protocol.command_list.command_list_end(context)
See command_list_begin().

mopidy.mpd.protocol.command_list.command_list_ok_begin(context)
See command_list_begin().

Connection

mopidy.mpd.protocol.connection.close(context)
musicpd.org, connection section:

close

Closes the connection to MPD.

mopidy.mpd.protocol.connection.kill(context)
musicpd.org, connection section:

kill

Kills MPD.

mopidy.mpd.protocol.connection.password(context, password)
musicpd.org, connection section:

password {PASSWORD}

This is used for authentication with the server. PASSWORD is simply the plaintext password.

mopidy.mpd.protocol.connection.ping(context)
musicpd.org, connection section:
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ping

Does nothing but return OK.

Current playlist

mopidy.mpd.protocol.current_playlist.add(context, uri)
musicpd.org, current playlist section:

add {URI}

Adds the file URI to the playlist (directories add recursively). URI can also be a single file.

Clarifications:

• add "" should add all tracks in the library to the current playlist.

mopidy.mpd.protocol.current_playlist.addid(context, uri, songpos=None)
musicpd.org, current playlist section:

addid {URI} [POSITION]

Adds a song to the playlist (non-recursive) and returns the song id.

URI is always a single file or URL. For example:

addid "foo.mp3"
Id: 999
OK

Clarifications:

• addid "" should return an error.

mopidy.mpd.protocol.current_playlist.addtagid(context, tlid, tag, value)
musicpd.org, current playlist section:

addtagid {SONGID} {TAG} {VALUE}

Adds a tag to the specified song. Editing song tags is only possible for remote songs. This change is
volatile: it may be overwritten by tags received from the server, and the data is gone when the song
gets removed from the queue.

New in version 0.19: New in MPD protocol version 0.19

mopidy.mpd.protocol.current_playlist.clear(context)
musicpd.org, current playlist section:

clear

Clears the current playlist.

mopidy.mpd.protocol.current_playlist.cleartagid(context, tlid, tag)
musicpd.org, current playlist section:

cleartagid {SONGID} [TAG]

Removes tags from the specified song. If TAG is not specified, then all tag values will be removed.
Editing song tags is only possible for remote songs.

New in version 0.19: New in MPD protocol version 0.19

mopidy.mpd.protocol.current_playlist.delete(context, songrange)
musicpd.org, current playlist section:
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delete [{POS} | {START:END}]

Deletes a song from the playlist.

mopidy.mpd.protocol.current_playlist.deleteid(context, tlid)
musicpd.org, current playlist section:

deleteid {SONGID}

Deletes the song SONGID from the playlist

mopidy.mpd.protocol.current_playlist.move_range(context, songrange, to)
musicpd.org, current playlist section:

move [{FROM} | {START:END}] {TO}

Moves the song at FROM or range of songs at START:END to TO in the playlist.

mopidy.mpd.protocol.current_playlist.moveid(context, tlid, to)
musicpd.org, current playlist section:

moveid {FROM} {TO}

Moves the song with FROM (songid) to TO (playlist index) in the playlist. If TO is negative, it is
relative to the current song in the playlist (if there is one).

mopidy.mpd.protocol.current_playlist.playlist(context)
musicpd.org, current playlist section:

playlist

Displays the current playlist.

Note: Do not use this, instead use playlistinfo.

mopidy.mpd.protocol.current_playlist.playlistfind(context, tag, needle)
musicpd.org, current playlist section:

playlistfind {TAG} {NEEDLE}

Finds songs in the current playlist with strict matching.

mopidy.mpd.protocol.current_playlist.playlistid(context, tlid=None)
musicpd.org, current playlist section:

playlistid {SONGID}

Displays a list of songs in the playlist. SONGID is optional and specifies a single song to display info
for.

mopidy.mpd.protocol.current_playlist.playlistinfo(context, parameter=None)
musicpd.org, current playlist section:

playlistinfo [[SONGPOS] | [START:END]]

Displays a list of all songs in the playlist, or if the optional argument is given, displays information
only for the song SONGPOS or the range of songs START:END.

ncmpc and mpc:

• uses negative indexes, like playlistinfo "-1", to request the entire playlist

mopidy.mpd.protocol.current_playlist.playlistsearch(context, tag, needle)
musicpd.org, current playlist section:
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playlistsearch {TAG} {NEEDLE}

Searches case-sensitively for partial matches in the current playlist.

GMPC:

• uses filename and any as tags

mopidy.mpd.protocol.current_playlist.plchanges(context, version)
musicpd.org, current playlist section:

plchanges {VERSION}

Displays changed songs currently in the playlist since VERSION.

To detect songs that were deleted at the end of the playlist, use playlistlength returned by
status command.

MPDroid:

• Calls plchanges "-1" two times per second to get the entire playlist.

mopidy.mpd.protocol.current_playlist.plchangesposid(context, version)
musicpd.org, current playlist section:

plchangesposid {VERSION}

Displays changed songs currently in the playlist since VERSION. This function only returns the
position and the id of the changed song, not the complete metadata. This is more bandwidth efficient.

To detect songs that were deleted at the end of the playlist, use playlistlength returned by
status command.

mopidy.mpd.protocol.current_playlist.prio(context, priority, position)
musicpd.org, current playlist section:

prio {PRIORITY} {START:END...}

Set the priority of the specified songs. A higher priority means that it will be played first when
“random” mode is enabled.

A priority is an integer between 0 and 255. The default priority of new songs is 0.

mopidy.mpd.protocol.current_playlist.prioid(context, *args)
musicpd.org, current playlist section:

prioid {PRIORITY} {ID...}

Same as prio, but address the songs with their id.

mopidy.mpd.protocol.current_playlist.rangeid(context, tlid, songrange)
musicpd.org, current playlist section:

rangeid {ID} {START:END}

Specifies the portion of the song that shall be played. START and END are offsets in seconds (frac-
tional seconds allowed); both are optional. Omitting both (i.e. sending just “:”) means “remove the
range, play everything”. A song that is currently playing cannot be manipulated this way.

New in version 0.19: New in MPD protocol version 0.19

mopidy.mpd.protocol.current_playlist.shuffle(context, songrange=None)
musicpd.org, current playlist section:

shuffle [START:END]

Shuffles the current playlist. START:END is optional and specifies a range of songs.

258 Chapter 35. Module reference



Mopidy Documentation, Release 2.2.3

mopidy.mpd.protocol.current_playlist.swap(context, songpos1, songpos2)
musicpd.org, current playlist section:

swap {SONG1} {SONG2}

Swaps the positions of SONG1 and SONG2.

mopidy.mpd.protocol.current_playlist.swapid(context, tlid1, tlid2)
musicpd.org, current playlist section:

swapid {SONG1} {SONG2}

Swaps the positions of SONG1 and SONG2 (both song ids).

Mounts and neighbors

mopidy.mpd.protocol.mount.listmounts(context)
musicpd.org, mounts and neighbors section:

listmounts

Queries a list of all mounts. By default, this contains just the configured music_directory. Example:

listmounts
mount:
storage: /home/foo/music
mount: foo
storage: nfs://192.168.1.4/export/mp3
OK

New in version 0.19: New in MPD protocol version 0.19

mopidy.mpd.protocol.mount.listneighbors(context)
musicpd.org, mounts and neighbors section:

listneighbors

Queries a list of “neighbors” (e.g. accessible file servers on the local net). Items on that list may be
used with the mount command. Example:

listneighbors
neighbor: smb://FOO
name: FOO (Samba 4.1.11-Debian)
OK

New in version 0.19: New in MPD protocol version 0.19

mopidy.mpd.protocol.mount.mount(context, path, uri)
musicpd.org, mounts and neighbors section:

mount {PATH} {URI}

Mount the specified remote storage URI at the given path. Example:

mount foo nfs://192.168.1.4/export/mp3

New in version 0.19: New in MPD protocol version 0.19

mopidy.mpd.protocol.mount.unmount(context, path)
musicpd.org, mounts and neighbors section:
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unmount {PATH}

Unmounts the specified path. Example:

unmount foo

New in version 0.19: New in MPD protocol version 0.19

Music database

mopidy.mpd.protocol.music_db.count(context, *args)
musicpd.org, music database section:

count {TAG} {NEEDLE}

Counts the number of songs and their total playtime in the db matching TAG exactly.

GMPC:

• use multiple tag-needle pairs to make more specific searches.

mopidy.mpd.protocol.music_db.find(context, *args)
musicpd.org, music database section:

find {TYPE} {WHAT}

Finds songs in the db that are exactly WHAT. TYPE can be any tag supported by MPD, or one of the
two special parameters - file to search by full path (relative to database root), and any to match
against all available tags. WHAT is what to find.

GMPC:

• also uses find album "[ALBUM]" artist "[ARTIST]" to list album tracks.

ncmpc:

• capitalizes the type argument.

ncmpcpp:

• also uses the search type “date”.

• uses “file” instead of “filename”.

mopidy.mpd.protocol.music_db.findadd(context, *args)
musicpd.org, music database section:

findadd {TYPE} {WHAT}

Finds songs in the db that are exactly WHAT and adds them to current playlist. Parameters have the
same meaning as for find.

mopidy.mpd.protocol.music_db.list_(context, *args)
musicpd.org, music database section:

list {TYPE} [ARTIST]

Lists all tags of the specified type. TYPE should be album, artist, albumartist, date, or
genre.

ARTIST is an optional parameter when type is album, date, or genre. This filters the result list
by an artist.

Clarifications:
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The musicpd.org documentation for list is far from complete. The command also supports the
following variant:

list {TYPE} {QUERY}

Where QUERY applies to all TYPE. QUERY is one or more pairs of a field name and a value. If the
QUERY consists of more than one pair, the pairs are AND-ed together to find the result. Examples of
valid queries and what they should return:

list "artist" "artist" "ABBA" List artists where the artist name is “ABBA”. Response:

Artist: ABBA
OK

list "album" "artist" "ABBA" Lists albums where the artist name is “ABBA”. Re-
sponse:

Album: More ABBA Gold: More ABBA Hits
Album: Absolute More Christmas
Album: Gold: Greatest Hits
OK

list "artist" "album" "Gold: Greatest Hits" Lists artists where the album
name is “Gold: Greatest Hits”. Response:

Artist: ABBA
OK

list "artist" "artist" "ABBA" "artist" "TLC" Lists artists where the artist name
is “ABBA” and “TLC”. Should never match anything. Response:

OK

list "date" "artist" "ABBA" Lists dates where artist name is “ABBA”. Response:

Date:
Date: 1992
Date: 1993
OK

list "date" "artist" "ABBA" "album" "Gold: Greatest Hits" Lists dates
where artist name is “ABBA” and album name is “Gold: Greatest Hits”. Response:

Date: 1992
OK

list "genre" "artist" "The Rolling Stones" Lists genres where artist name is
“The Rolling Stones”. Response:

Genre:
Genre: Rock
OK

ncmpc:

• capitalizes the field argument.

mopidy.mpd.protocol.music_db.listall(context, uri=None)
musicpd.org, music database section:
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listall [URI]

Lists all songs and directories in URI.

Do not use this command. Do not manage a client-side copy of MPD’s database. That is fragile
and adds huge overhead. It will break with large databases. Instead, query MPD whenever you need
something.

Warning: This command is disabled by default in Mopidy installs.

mopidy.mpd.protocol.music_db.listallinfo(context, uri=None)
musicpd.org, music database section:

listallinfo [URI]

Same as listall, except it also returns metadata info in the same format as lsinfo.

Do not use this command. Do not manage a client-side copy of MPD’s database. That is fragile
and adds huge overhead. It will break with large databases. Instead, query MPD whenever you need
something.

Warning: This command is disabled by default in Mopidy installs.

mopidy.mpd.protocol.music_db.listfiles(context, uri=None)
musicpd.org, music database section:

listfiles [URI]

Lists the contents of the directory URI, including files are not recognized by MPD. URI can be a path
relative to the music directory or an URI understood by one of the storage plugins. The response
contains at least one line for each directory entry with the prefix “file: ” or “directory: “, and may be
followed by file attributes such as “Last-Modified” and “size”.

For example, “smb://SERVER” returns a list of all shares on the given SMB/CIFS server; “nfs:
//servername/path” obtains a directory listing from the NFS server.

New in version 0.19: New in MPD protocol version 0.19

mopidy.mpd.protocol.music_db.lsinfo(context, uri=None)
musicpd.org, music database section:

lsinfo [URI]

Lists the contents of the directory URI.

When listing the root directory, this currently returns the list of stored playlists. This behavior is
deprecated; use listplaylists instead.

MPD returns the same result, including both playlists and the files and directories located at the root level, for
both lsinfo, lsinfo "", and lsinfo "/".

mopidy.mpd.protocol.music_db.readcomments(context, uri)
musicpd.org, music database section:

readcomments [URI]

Read “comments” (i.e. key-value pairs) from the file specified by “URI”. This “URI” can be a path
relative to the music directory or a URL in the form “file:///foo/bar.ogg”.
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This command may be used to list metadata of remote files (e.g. URI beginning with “http://” or
“smb://”).

The response consists of lines in the form “KEY: VALUE”. Comments with suspicious characters
(e.g. newlines) are ignored silently.

The meaning of these depends on the codec, and not all decoder plugins support it. For example, on
Ogg files, this lists the Vorbis comments.

mopidy.mpd.protocol.music_db.rescan(context, uri=None)
musicpd.org, music database section:

rescan [URI]

Same as update, but also rescans unmodified files.

mopidy.mpd.protocol.music_db.search(context, *args)
musicpd.org, music database section:

search {TYPE} {WHAT} [...]

Searches for any song that contains WHAT. Parameters have the same meaning as for find, except
that search is not case sensitive.

GMPC:

• uses the undocumented field any.

• searches for multiple words like this:

search any "foo" any "bar" any "baz"

ncmpc:

• capitalizes the field argument.

ncmpcpp:

• also uses the search type “date”.

• uses “file” instead of “filename”.

mopidy.mpd.protocol.music_db.searchadd(context, *args)
musicpd.org, music database section:

searchadd {TYPE} {WHAT} [...]

Searches for any song that contains WHAT in tag TYPE and adds them to current playlist.

Parameters have the same meaning as for find, except that search is not case sensitive.

mopidy.mpd.protocol.music_db.searchaddpl(context, *args)
musicpd.org, music database section:

searchaddpl {NAME} {TYPE} {WHAT} [...]

Searches for any song that contains WHAT in tag TYPE and adds them to the playlist named NAME.

If a playlist by that name doesn’t exist it is created.

Parameters have the same meaning as for find, except that search is not case sensitive.

mopidy.mpd.protocol.music_db.update(context, uri=None)
musicpd.org, music database section:

35.2. mopidy.mpd — MPD server 263

http://
smb://


Mopidy Documentation, Release 2.2.3

update [URI]

Updates the music database: find new files, remove deleted files, update modified files.

URI is a particular directory or song/file to update. If you do not specify it, everything is updated.

Prints updating_db: JOBID where JOBID is a positive number identifying the update job.
You can read the current job id in the status response.

Playback

mopidy.mpd.protocol.playback.consume(context, state)
musicpd.org, playback section:

consume {STATE}

Sets consume state to STATE, STATE should be 0 or 1. When consume is activated, each song
played is removed from playlist.

mopidy.mpd.protocol.playback.crossfade(context, seconds)
musicpd.org, playback section:

crossfade {SECONDS}

Sets crossfading between songs.

mopidy.mpd.protocol.playback.mixrampdb(context, decibels)
musicpd.org, playback section:

mixrampdb {deciBels}

Sets the threshold at which songs will be overlapped. Like crossfading but doesn’t fade the track volume, just
overlaps. The songs need to have MixRamp tags added by an external tool. 0dB is the normalized maximum
volume so use negative values, I prefer -17dB. In the absence of mixramp tags crossfading will be used. See
https://sourceforge.net/projects/mixramp/

mopidy.mpd.protocol.playback.mixrampdelay(context, seconds)
musicpd.org, playback section:

mixrampdelay {SECONDS}

Additional time subtracted from the overlap calculated by mixrampdb. A value of “nan” disables
MixRamp overlapping and falls back to crossfading.

mopidy.mpd.protocol.playback.next_(context)
musicpd.org, playback section:

next

Plays next song in the playlist.

MPD’s behaviour when affected by repeat/random/single/consume:

Given a playlist of three tracks numbered 1, 2, 3, and a currently playing track c. next_track is
defined at the track that will be played upon calls to next.

Tests performed on MPD 0.15.4-1ubuntu3.

264 Chapter 35. Module reference

https://sourceforge.net/projects/mixramp/


Mopidy Documentation, Release 2.2.3

repeat random single consume c = 1 c = 2 c = 3 Notes
T T T T 2 3 EOPL
T T T . Rand Rand Rand [1]
T T . T Rand Rand Rand [4]
T T . . Rand Rand Rand [4]
T . T T 2 3 EOPL
T . T . 2 3 1
T . . T 3 3 EOPL
T . . . 2 3 1
. T T T Rand Rand Rand [3]
. T T . Rand Rand Rand [3]
. T . T Rand Rand Rand [2]
. T . . Rand Rand Rand [2]
. . T T 2 3 EOPL
. . T . 2 3 EOPL
. . . T 2 3 EOPL
. . . . 2 3 EOPL

• When end of playlist (EOPL) is reached, the current track is unset.

• [1] When random and single is combined, next selects a track randomly at each invocation,
and not just the next track in an internal prerandomized playlist.

• [2] When random is active, next will skip through all tracks in the playlist in random order,
and finally EOPL is reached.

• [3] single has no effect in combination with random alone, or random and consume.

• [4] When random and repeat is active, EOPL is never reached, but the playlist is played again,
in the same random order as the first time.

mopidy.mpd.protocol.playback.pause(context, state=None)
musicpd.org, playback section:

pause {PAUSE}

Toggles pause/resumes playing, PAUSE is 0 or 1.

MPDroid:

• Calls pause without any arguments to toogle pause.

mopidy.mpd.protocol.playback.play(context, songpos=None)
musicpd.org, playback section:

play [SONGPOS]

Begins playing the playlist at song number SONGPOS.

The original MPD server resumes from the paused state on play without arguments.

Clarifications:

• play "-1" when playing is ignored.

• play "-1" when paused resumes playback.

• play "-1" when stopped with a current track starts playback at the current track.
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• play "-1" when stopped without a current track, e.g. after playlist replacement, starts playback at the
first track.

BitMPC:

• issues play 6 without quotes around the argument.

mopidy.mpd.protocol.playback.playid(context, tlid)
musicpd.org, playback section:

playid [SONGID]

Begins playing the playlist at song SONGID.

Clarifications:

• playid "-1" when playing is ignored.

• playid "-1" when paused resumes playback.

• playid "-1" when stopped with a current track starts playback at the current track.

• playid "-1" when stopped without a current track, e.g. after playlist replacement, starts playback at
the first track.

mopidy.mpd.protocol.playback.previous(context)
musicpd.org, playback section:

previous

Plays previous song in the playlist.

MPD’s behaviour when affected by repeat/random/single/consume:

Given a playlist of three tracks numbered 1, 2, 3, and a currently playing track c.
previous_track is defined at the track that will be played upon previous calls.

Tests performed on MPD 0.15.4-1ubuntu3.

repeat random single consume c = 1 c = 2 c = 3
T T T T Rand? Rand? Rand?
T T T . 3 1 2
T T . T Rand? Rand? Rand?
T T . . 3 1 2
T . T T 3 1 2
T . T . 3 1 2
T . . T 3 1 2
T . . . 3 1 2
. T T T c c c
. T T . c c c
. T . T c c c
. T . . c c c
. . T T 1 1 2
. . T . 1 1 2
. . . T 1 1 2
. . . . 1 1 2

• If time_position of the current track is 15s or more, previous should do a seek to time
position 0.
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mopidy.mpd.protocol.playback.random(context, state)
musicpd.org, playback section:

random {STATE}

Sets random state to STATE, STATE should be 0 or 1.

mopidy.mpd.protocol.playback.repeat(context, state)
musicpd.org, playback section:

repeat {STATE}

Sets repeat state to STATE, STATE should be 0 or 1.

mopidy.mpd.protocol.playback.replay_gain_mode(context, mode)
musicpd.org, playback section:

replay_gain_mode {MODE}

Sets the replay gain mode. One of off, track, album.

Changing the mode during playback may take several seconds, because the new settings does not
affect the buffered data.

This command triggers the options idle event.

mopidy.mpd.protocol.playback.replay_gain_status(context)
musicpd.org, playback section:

replay_gain_status

Prints replay gain options. Currently, only the variable replay_gain_mode is returned.

mopidy.mpd.protocol.playback.seek(context, songpos, seconds)
musicpd.org, playback section:

seek {SONGPOS} {TIME}

Seeks to the position TIME (in seconds) of entry SONGPOS in the playlist.

Droid MPD:

• issues seek 1 120 without quotes around the arguments.

mopidy.mpd.protocol.playback.seekcur(context, time)
musicpd.org, playback section:

seekcur {TIME}

Seeks to the position TIME within the current song. If prefixed by ‘+’ or ‘-’, then the time is relative
to the current playing position.

mopidy.mpd.protocol.playback.seekid(context, tlid, seconds)
musicpd.org, playback section:

seekid {SONGID} {TIME}

Seeks to the position TIME (in seconds) of song SONGID.

mopidy.mpd.protocol.playback.setvol(context, volume)
musicpd.org, playback section:

setvol {VOL}

Sets volume to VOL, the range of volume is 0-100.

Droid MPD:
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• issues setvol 50 without quotes around the argument.

mopidy.mpd.protocol.playback.single(context, state)
musicpd.org, playback section:

single {STATE}

Sets single state to STATE, STATE should be 0 or 1. When single is activated, playback is stopped
after current song, or song is repeated if the repeat mode is enabled.

mopidy.mpd.protocol.playback.stop(context)
musicpd.org, playback section:

stop

Stops playing.

mopidy.mpd.protocol.playback.volume(context, change)
musicpd.org, playback section:

volume {CHANGE}

Changes volume by amount CHANGE.

Note: volume is deprecated, use setvol instead.

Reflection

mopidy.mpd.protocol.reflection.commands(context)
musicpd.org, reflection section:

commands

Shows which commands the current user has access to.

mopidy.mpd.protocol.reflection.config(context)
musicpd.org, reflection section:

config

Dumps configuration values that may be interesting for the client. This command is only permitted
to “local” clients (connected via UNIX domain socket).

mopidy.mpd.protocol.reflection.decoders(context)
musicpd.org, reflection section:

decoders

Print a list of decoder plugins, followed by their supported suffixes and MIME types. Example
response:

plugin: mad
suffix: mp3
suffix: mp2
mime_type: audio/mpeg
plugin: mpcdec
suffix: mpc

Clarifications:

• ncmpcpp asks for decoders the first time you open the browse view. By returning nothing and OK instead
of an not implemented error, we avoid “Not implemented” showing up in the ncmpcpp interface, and we
get the list of playlists without having to enter the browse interface twice.
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mopidy.mpd.protocol.reflection.notcommands(context)
musicpd.org, reflection section:

notcommands

Shows which commands the current user does not have access to.

mopidy.mpd.protocol.reflection.tagtypes(context)
musicpd.org, reflection section:

tagtypes

Shows a list of available song metadata.

mopidy.mpd.protocol.reflection.urlhandlers(context)
musicpd.org, reflection section:

urlhandlers

Gets a list of available URL handlers.

Status

mopidy.mpd.protocol.status.SUBSYSTEMS = [u'database', u'mixer', u'options', u'output', u'player', u'playlist', u'stored_playlist', u'update']
Subsystems that can be registered with idle command.

mopidy.mpd.protocol.status.clearerror(context)
musicpd.org, status section:

clearerror

Clears the current error message in status (this is also accomplished by any command that starts
playback).

mopidy.mpd.protocol.status.currentsong(context)
musicpd.org, status section:

currentsong

Displays the song info of the current song (same song that is identified in status).

mopidy.mpd.protocol.status.idle(context, *subsystems)
musicpd.org, status section:

idle [SUBSYSTEMS...]

Waits until there is a noteworthy change in one or more of MPD’s subsystems. As soon as there is one,
it lists all changed systems in a line in the format changed: SUBSYSTEM, where SUBSYSTEM
is one of the following:

• database: the song database has been modified after update.

• update: a database update has started or finished. If the database was modified during the
update, the database event is also emitted.

• stored_playlist: a stored playlist has been modified, renamed, created or deleted

• playlist: the current playlist has been modified

• player: the player has been started, stopped or seeked

• mixer: the volume has been changed

• output: an audio output has been enabled or disabled

• options: options like repeat, random, crossfade, replay gain

35.2. mopidy.mpd — MPD server 269



Mopidy Documentation, Release 2.2.3

While a client is waiting for idle results, the server disables timeouts, allowing a client to wait for
events as long as MPD runs. The idle command can be canceled by sending the command noidle
(no other commands are allowed). MPD will then leave idle mode and print results immediately;
might be empty at this time.

If the optional SUBSYSTEMS argument is used, MPD will only send notifications when something
changed in one of the specified subsystems.

mopidy.mpd.protocol.status.noidle(context)
See _status_idle().

mopidy.mpd.protocol.status.stats(context)
musicpd.org, status section:

stats

Displays statistics.

• artists: number of artists

• songs: number of albums

• uptime: daemon uptime in seconds

• db_playtime: sum of all song times in the db

• db_update: last db update in UNIX time

• playtime: time length of music played

mopidy.mpd.protocol.status.status(context)
musicpd.org, status section:

status

Reports the current status of the player and the volume level.

• volume: 0-100 or -1

• repeat: 0 or 1

• single: 0 or 1

• consume: 0 or 1

• playlist: 31-bit unsigned integer, the playlist version number

• playlistlength: integer, the length of the playlist

• state: play, stop, or pause

• song: playlist song number of the current song stopped on or playing

• songid: playlist songid of the current song stopped on or playing

• nextsong: playlist song number of the next song to be played

• nextsongid: playlist songid of the next song to be played

• time: total time elapsed (of current playing/paused song)

• elapsed: Total time elapsed within the current song, but with higher resolution.

• bitrate: instantaneous bitrate in kbps

• xfade: crossfade in seconds

• audio: sampleRate‘‘:bits‘‘:channels
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• updatings_db: job id

• error: if there is an error, returns message here

Clarifications based on experience implementing

• volume: can also be -1 if no output is set.

• elapsed: Higher resolution means time in seconds with three decimal places for millisecond preci-
sion.

Stickers

mopidy.mpd.protocol.stickers.sticker(context, action, field, uri, name=None, value=None)
musicpd.org, sticker section:

sticker list {TYPE} {URI}

Lists the stickers for the specified object.

sticker find {TYPE} {URI} {NAME}

Searches the sticker database for stickers with the specified name, below the specified directory
(URI). For each matching song, it prints the URI and that one sticker’s value.

sticker get {TYPE} {URI} {NAME}

Reads a sticker value for the specified object.

sticker set {TYPE} {URI} {NAME} {VALUE}

Adds a sticker value to the specified object. If a sticker item with that name already exists, it is
replaced.

sticker delete {TYPE} {URI} [NAME]

Deletes a sticker value from the specified object. If you do not specify a sticker name, all sticker
values are deleted.

Stored playlists

mopidy.mpd.protocol.stored_playlists.listplaylist(context, name)
musicpd.org, stored playlists section:

listplaylist {NAME}

Lists the files in the playlist NAME.m3u.

Output format:

file: relative/path/to/file1.flac
file: relative/path/to/file2.ogg
file: relative/path/to/file3.mp3

mopidy.mpd.protocol.stored_playlists.listplaylistinfo(context, name)
musicpd.org, stored playlists section:

listplaylistinfo {NAME}

Lists songs in the playlist NAME.m3u.

Output format:
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Standard track listing, with fields: file, Time, Title, Date, Album, Artist, Track

mopidy.mpd.protocol.stored_playlists.listplaylists(context)
musicpd.org, stored playlists section:

listplaylists

Prints a list of the playlist directory.

After each playlist name the server sends its last modification time as attribute Last-Modified in
ISO 8601 format. To avoid problems due to clock differences between clients and the server, clients
should not compare this value with their local clock.

Output format:

playlist: a
Last-Modified: 2010-02-06T02:10:25Z
playlist: b
Last-Modified: 2010-02-06T02:11:08Z

Clarifications:

• ncmpcpp 0.5.10 segfaults if we return ‘playlist: ‘ on a line, so we must ignore playlists without names,
which isn’t very useful anyway.

mopidy.mpd.protocol.stored_playlists.load(context, name, playlist_slice=slice(0, None,
None))

musicpd.org, stored playlists section:

load {NAME} [START:END]

Loads the playlist into the current queue. Playlist plugins are supported. A range may be specified to
load only a part of the playlist.

Clarifications:

• load appends the given playlist to the current playlist.

• MPD 0.17.1 does not support open-ended ranges, i.e. without end specified, for the load command, even
though MPD’s general range docs allows open-ended ranges.

• MPD 0.17.1 does not fail if the specified range is outside the playlist, in either or both ends.

mopidy.mpd.protocol.stored_playlists.playlistadd(context, name, track_uri)
musicpd.org, stored playlists section:

playlistadd {NAME} {URI}

Adds URI to the playlist NAME.m3u.

NAME.m3u will be created if it does not exist.

mopidy.mpd.protocol.stored_playlists.playlistclear(context, name)
musicpd.org, stored playlists section:

playlistclear {NAME}

Clears the playlist NAME.m3u.

The playlist will be created if it does not exist.

mopidy.mpd.protocol.stored_playlists.playlistdelete(context, name, songpos)
musicpd.org, stored playlists section:

playlistdelete {NAME} {SONGPOS}

Deletes SONGPOS from the playlist NAME.m3u.
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mopidy.mpd.protocol.stored_playlists.playlistmove(context, name, from_pos, to_pos)
musicpd.org, stored playlists section:

playlistmove {NAME} {SONGID} {SONGPOS}

Moves SONGID in the playlist NAME.m3u to the position SONGPOS.

Clarifications:

• The second argument is not a SONGID as used elsewhere in the protocol documentation, but just the
SONGPOS to move from, i.e. playlistmove {NAME} {FROM_SONGPOS} {TO_SONGPOS}.

mopidy.mpd.protocol.stored_playlists.rename(context, old_name, new_name)
musicpd.org, stored playlists section:

rename {NAME} {NEW_NAME}

Renames the playlist NAME.m3u to NEW_NAME.m3u.

mopidy.mpd.protocol.stored_playlists.rm(context, name)
musicpd.org, stored playlists section:

rm {NAME}

Removes the playlist NAME.m3u from the playlist directory.

mopidy.mpd.protocol.stored_playlists.save(context, name)
musicpd.org, stored playlists section:

save {NAME}

Saves the current playlist to NAME.m3u in the playlist directory.
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Indices and tables

• genindex

• modindex
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Python Module Index
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mopidy.audio.utils, 242

b
mopidy.backend, 220

c
mopidy.commands, 244
mopidy.config, 245
mopidy.config.schemas, 245
mopidy.config.types, 246
mopidy.config.validators, 247
mopidy.core, 204

e
mopidy.ext, 226

h
mopidy.httpclient, 247

l
mopidy.local, 249
mopidy.local.translator, 251

m
mopidy.mixer, 243
mopidy.models, 197
mopidy.mpd, 251
mopidy.mpd.dispatcher, 252
mopidy.mpd.protocol, 253
mopidy.mpd.protocol.audio_output, 254
mopidy.mpd.protocol.channels, 254
mopidy.mpd.protocol.command_list, 255
mopidy.mpd.protocol.connection, 255
mopidy.mpd.protocol.current_playlist,

256
mopidy.mpd.protocol.mount, 259
mopidy.mpd.protocol.music_db, 260

mopidy.mpd.protocol.playback, 264
mopidy.mpd.protocol.reflection, 268
mopidy.mpd.protocol.status, 269
mopidy.mpd.protocol.stickers, 271
mopidy.mpd.protocol.stored_playlists,

271
mopidy.mpd.tokenize, 251

z
mopidy.zeroconf, 248
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Symbols
-config <file|directory>

mopidy command line option, 189
-help, -h

mopidy command line option, 189
-option <option>, -o <option>

mopidy command line option, 190
-quiet, -q

mopidy command line option, 189
-save-debug-log

mopidy command line option, 189
-verbose, -v

mopidy command line option, 189
-version

mopidy command line option, 189

A
add() (in module mopidy.mpd.protocol.current_playlist),

256
add() (mopidy.core.TracklistController method), 205
add() (mopidy.ext.Registry method), 227
add() (mopidy.local.Library method), 249
add() (mopidy.mpd.protocol.Commands method), 253
add_argument() (mopidy.commands.Command

method), 244
add_child() (mopidy.commands.Command method),

244
add_supports_tags_and_duration

(mopidy.local.Library attribute), 249
addid() (in module

mopidy.mpd.protocol.current_playlist), 256
addtagid() (in module

mopidy.mpd.protocol.current_playlist), 256
Album (class in mopidy.models), 199
ALBUM (mopidy.models.Ref attribute), 197
album (mopidy.models.Track attribute), 198
album() (mopidy.models.Ref class method), 198
albums (mopidy.models.SearchResult attribute), 202
Artist (class in mopidy.models), 200

ARTIST (mopidy.models.Ref attribute), 197
artist() (mopidy.models.Ref class method), 198
artists (mopidy.models.Album attribute), 199
artists (mopidy.models.SearchResult attribute), 202
artists (mopidy.models.Track attribute), 198
as_list() (mopidy.backend.PlaylistsProvider

method), 223
as_list() (mopidy.core.PlaylistsController method),

213
Audio (class in mopidy.audio), 238
audio (mopidy.backend.Backend attribute), 221
audio/buffer_time

configuration value, 13
audio/mixer

configuration value, 13
audio/mixer_volume

configuration value, 13
audio/output

configuration value, 13
AudioListener (class in mopidy.audio), 240

B
backend, 187
Backend (class in mopidy.backend), 221
BackendListener (class in mopidy.backend), 225
begin() (mopidy.local.Library method), 249
bitrate (mopidy.models.Track attribute), 199
BOOL() (in module mopidy.mpd.protocol), 253
Boolean (class in mopidy.config.types), 246
browse() (mopidy.backend.LibraryProvider method),

224
browse() (mopidy.core.LibraryController method),

211
browse() (mopidy.local.Library method), 250
browse() (mopidy.mpd.dispatcher.MpdContext

method), 252

C
calculate_duration() (in module

mopidy.audio.utils), 242
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call() (mopidy.mpd.protocol.Commands method), 253
change_track() (mopidy.backend.PlaybackProvider

method), 222
channels() (in module

mopidy.mpd.protocol.channels), 254
clear() (in module

mopidy.mpd.protocol.current_playlist), 256
clear() (mopidy.audio.utils.Signals method), 242
clear() (mopidy.core.TracklistController method), 205
clear() (mopidy.local.Library method), 250
clearerror() (in module

mopidy.mpd.protocol.status), 269
cleartagid() (in module

mopidy.mpd.protocol.current_playlist), 256
clocktime_to_millisecond() (in module

mopidy.audio.utils), 242
close() (in module mopidy.mpd.protocol.connection),

255
close() (mopidy.local.Library method), 250
Collection (class in mopidy.models.fields), 204
Command (class in mopidy.commands), 244
command (mopidy.ext.ExtensionData attribute), 227
command_list_begin() (in module

mopidy.mpd.protocol.command_list), 255
command_list_end() (in module

mopidy.mpd.protocol.command_list), 255
command_list_ok_begin() (in module

mopidy.mpd.protocol.command_list), 255
Commands (class in mopidy.mpd.protocol), 253
commands (in module mopidy.mpd.protocol), 254
commands() (in module

mopidy.mpd.protocol.reflection), 268
comment (mopidy.models.Track attribute), 199
composers (mopidy.models.Track attribute), 199
config

mopidy command line option, 190
config() (in module mopidy.mpd.protocol.reflection),

268
config_defaults (mopidy.ext.ExtensionData at-

tribute), 227
config_schema (mopidy.ext.ExtensionData at-

tribute), 227
ConfigSchema (class in mopidy.config.schemas), 245
configuration value

audio/buffer_time, 13
audio/mixer, 13
audio/mixer_volume, 13
audio/output, 13
core/cache_dir, 12
core/config_dir, 12
core/data_dir, 12
core/max_tracklist_length, 13
core/restore_state, 13
file/enabled, 33

file/excluded_file_extensions, 34
file/follow_symlinks, 34
file/media_dirs, 33
file/metadata_timeout, 34
file/show_dotfiles, 34
http/allowed_origins, 40
http/csrf_protection, 40
http/enabled, 40
http/hostname, 40
http/port, 40
http/static_dir, 40
http/zeroconf, 40
local/enabled, 30
local/excluded_file_extensions, 31
local/library, 30
local/media_dir, 30
local/scan_flush_threshold, 30
local/scan_follow_symlinks, 30
local/scan_timeout, 30
logcolors/*, 14
logging/color, 14
logging/config_file, 14
logging/console_format, 14
logging/debug_file, 14
logging/debug_format, 14
loglevels/*, 14
m3u/base_dir, 36
m3u/default_encoding, 36
m3u/default_extension, 36
m3u/enabled, 36
m3u/playlists_dir, 36
mpd/command_blacklist, 44
mpd/connection_timeout, 44
mpd/enabled, 44
mpd/hostname, 44
mpd/max_connections, 44
mpd/password, 44
mpd/port, 44
mpd/zeroconf, 44
proxy/hostname, 14
proxy/password, 14
proxy/port, 14
proxy/scheme, 14
proxy/username, 14
softwaremixer/enabled, 47
stream/enabled, 37
stream/metadata_blacklist, 38
stream/protocols, 37
stream/timeout, 38

ConfigValue (class in mopidy.config.types), 246
connect() (mopidy.audio.utils.Signals method), 242
consume (mopidy.core.TracklistController attribute),

218
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consume() (in module mopidy.mpd.protocol.playback),
264

copy() (mopidy.models.ImmutableObject method), 202
core, 187
Core (class in mopidy.core), 204
core (mopidy.mpd.dispatcher.MpdContext attribute),

252
core/cache_dir

configuration value, 12
core/config_dir

configuration value, 12
core/data_dir

configuration value, 12
core/max_tracklist_length

configuration value, 13
core/restore_state

configuration value, 13
CoreListener (class in mopidy.core), 216
count() (in module mopidy.mpd.protocol.music_db),

260
create() (mopidy.backend.PlaylistsProvider method),

223
create() (mopidy.core.PlaylistsController method),

214
create_buffer() (in module mopidy.audio.utils),

242
crossfade() (in module

mopidy.mpd.protocol.playback), 264
current_tl_track (mopidy.core.PlaybackController

attribute), 219
current_track (mopidy.core.PlaybackController at-

tribute), 219
currentsong() (in module

mopidy.mpd.protocol.status), 269

D
Date (class in mopidy.models.fields), 204
date (mopidy.models.Album attribute), 200
date (mopidy.models.Track attribute), 199
decoders() (in module

mopidy.mpd.protocol.reflection), 268
delete() (in module

mopidy.mpd.protocol.current_playlist), 256
delete() (mopidy.backend.PlaylistsProvider method),

223
delete() (mopidy.core.PlaylistsController method),

215
deleteid() (in module

mopidy.mpd.protocol.current_playlist), 257
Deprecated (class in mopidy.config.types), 246
deps

mopidy command line option, 190
deserialize() (mopidy.config.schemas.ConfigSchema

method), 245

deserialize() (mopidy.config.types.ConfigValue
method), 246

DIRECTORY (mopidy.models.Ref attribute), 197
directory() (mopidy.models.Ref class method), 198
disableoutput() (in module

mopidy.mpd.protocol.audio_output), 254
disc_no (mopidy.models.Track attribute), 199
disconnect() (mopidy.audio.utils.Signals method),

242
dispatcher (mopidy.mpd.dispatcher.MpdContext at-

tribute), 252
DISPLAY, 131
dist_name (mopidy.ext.Extension attribute), 226

E
emit_data() (mopidy.audio.Audio method), 238
emit_end_of_stream() (mopidy.audio.Audio

method), 238
enable_sync_handler() (mopidy.audio.Audio

method), 238
enableoutput() (in module

mopidy.mpd.protocol.audio_output), 254
ENCODING (in module mopidy.mpd.protocol), 253
entry_point (mopidy.ext.ExtensionData attribute),

227
environment variable

DISPLAY, 131
GST_DEBUG, 28, 131
GST_DEBUG_DUMP_DOT_DIR, 28
GST_DEBUG_FILE=gstreamer.log, 28

eot_track() (mopidy.core.TracklistController
method), 207

events (mopidy.mpd.dispatcher.MpdContext attribute),
252

exit() (mopidy.commands.Command method), 244
ExpandedPath (class in mopidy.config.types), 246
ext_name (mopidy.ext.Extension attribute), 226
extension, 187
Extension (class in mopidy.ext), 226
extension (mopidy.ext.ExtensionData attribute), 227
ExtensionData (class in mopidy.ext), 227

F
Field (class in mopidy.models.fields), 203
file/enabled

configuration value, 33
file/excluded_file_extensions

configuration value, 34
file/follow_symlinks

configuration value, 34
file/media_dirs

configuration value, 33
file/metadata_timeout

configuration value, 34
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file/show_dotfiles
configuration value, 34

filter() (mopidy.core.PlaylistsController method),
219

filter() (mopidy.core.TracklistController method),
206

find() (in module mopidy.mpd.protocol.music_db),
260

find_exact() (mopidy.core.LibraryController
method), 219

findadd() (in module
mopidy.mpd.protocol.music_db), 260

flush() (mopidy.local.Library method), 250
format_help() (mopidy.commands.Command

method), 244
format_proxy() (in module mopidy.httpclient), 247
format_usage() (mopidy.commands.Command

method), 244
format_user_agent() (in module

mopidy.httpclient), 247
frontend, 187

G
genre (mopidy.models.Track attribute), 199
get_cache_dir() (mopidy.ext.Extension class

method), 226
get_command() (mopidy.ext.Extension method), 226
get_config_dir() (mopidy.ext.Extension class

method), 226
get_config_schema() (mopidy.ext.Extension

method), 226
get_consume() (mopidy.core.TracklistController

method), 208
get_current_tags() (mopidy.audio.Audio

method), 238
get_current_tl_track()

(mopidy.core.PlaybackController method),
210

get_current_track()
(mopidy.core.PlaybackController method),
210

get_data_dir() (mopidy.ext.Extension class
method), 226

get_default_config() (mopidy.ext.Extension
method), 226

get_distinct() (mopidy.backend.LibraryProvider
method), 224

get_distinct() (mopidy.core.LibraryController
method), 213

get_distinct() (mopidy.local.Library method), 250
get_eot_tlid() (mopidy.core.TracklistController

method), 207
get_history() (mopidy.core.HistoryController

method), 215

get_images() (mopidy.backend.LibraryProvider
method), 225

get_images() (mopidy.core.LibraryController
method), 213

get_images() (mopidy.local.Library method), 250
get_items() (mopidy.backend.PlaylistsProvider

method), 224
get_items() (mopidy.core.PlaylistsController

method), 214
get_length() (mopidy.core.HistoryController

method), 216
get_length() (mopidy.core.TracklistController

method), 206
get_mute() (mopidy.core.MixerController method),

215
get_mute() (mopidy.core.PlaybackController

method), 219
get_mute() (mopidy.mixer.Mixer method), 243
get_next_tlid() (mopidy.core.TracklistController

method), 207
get_playlists() (mopidy.core.PlaylistsController

method), 219
get_position() (mopidy.audio.Audio method), 238
get_previous_tlid()

(mopidy.core.TracklistController method),
207

get_random() (mopidy.core.TracklistController
method), 208

get_repeat() (mopidy.core.TracklistController
method), 208

get_single() (mopidy.core.TracklistController
method), 209

get_state() (mopidy.core.PlaybackController
method), 210

get_stream_title()
(mopidy.core.PlaybackController method),
210

get_time_position()
(mopidy.backend.PlaybackProvider method),
222

get_time_position()
(mopidy.core.PlaybackController method),
210

get_tl_tracks() (mopidy.core.TracklistController
method), 206

get_tracks() (mopidy.core.TracklistController
method), 206

get_uri_schemes() (mopidy.core.Core method),
205

get_uri_schemes()
(mopidy.core.PlaylistsController method),
213

get_version() (mopidy.core.Core method), 205
get_version() (mopidy.core.TracklistController
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method), 206
get_volume() (mopidy.core.MixerController

method), 215
get_volume() (mopidy.core.PlaybackController

method), 219
get_volume() (mopidy.mixer.Mixer method), 243
GST_DEBUG, 28, 131
GST_DEBUG_DUMP_DOT_DIR, 28
GST_DEBUG_FILE=gstreamer.log, 28

H
handle_request() (mopidy.mpd.dispatcher.MpdDispatcher

method), 252
height (mopidy.models.Image attribute), 201
history (mopidy.core.Core attribute), 204
Hostname (class in mopidy.config.types), 246
http/allowed_origins

configuration value, 40
http/csrf_protection

configuration value, 40
http/enabled

configuration value, 40
http/hostname

configuration value, 40
http/port

configuration value, 40
http/static_dir

configuration value, 40
http/zeroconf

configuration value, 40

I
Identifier (class in mopidy.models.fields), 203
idle() (in module mopidy.mpd.protocol.status), 269
Image (class in mopidy.models), 201
images (mopidy.models.Album attribute), 200
ImmutableObject (class in mopidy.models), 202
index() (mopidy.core.TracklistController method), 206
INT() (in module mopidy.mpd.protocol), 253
Integer (class in mopidy.config.types), 246
Integer (class in mopidy.models.fields), 204

K
kill() (in module mopidy.mpd.protocol.connection),

255

L
last_modified (mopidy.models.Playlist attribute),

200
last_modified (mopidy.models.Track attribute), 199
length (mopidy.core.TracklistController attribute), 218
length (mopidy.models.Playlist attribute), 200
length (mopidy.models.Track attribute), 199
Library (class in mopidy.local), 249

library (mopidy.backend.Backend attribute), 221
library (mopidy.core.Core attribute), 204
LibraryProvider (class in mopidy.backend), 224
LINE_TERMINATOR (in module mopidy.mpd.protocol),

253
List (class in mopidy.config.types), 246
list_() (in module mopidy.mpd.protocol.music_db),

260
listall() (in module

mopidy.mpd.protocol.music_db), 261
listallinfo() (in module

mopidy.mpd.protocol.music_db), 262
listfiles() (in module

mopidy.mpd.protocol.music_db), 262
listmounts() (in module

mopidy.mpd.protocol.mount), 259
listneighbors() (in module

mopidy.mpd.protocol.mount), 259
listplaylist() (in module

mopidy.mpd.protocol.stored_playlists), 271
listplaylistinfo() (in module

mopidy.mpd.protocol.stored_playlists), 271
listplaylists() (in module

mopidy.mpd.protocol.stored_playlists), 272
load() (in module mopidy.mpd.protocol.stored_playlists),

272
load() (mopidy.local.Library method), 250
load_extensions() (in module mopidy.ext), 227
load_protocol_modules() (in module

mopidy.mpd.protocol), 254
local/enabled

configuration value, 30
local/excluded_file_extensions

configuration value, 31
local/library

configuration value, 30
local/media_dir

configuration value, 30
local/scan_flush_threshold

configuration value, 30
local/scan_follow_symlinks

configuration value, 30
local/scan_timeout

configuration value, 30
local_uri_to_file_uri() (in module

mopidy.local.translator), 251
local_uri_to_path() (in module

mopidy.local.translator), 251
logcolors/*

configuration value, 14
logging/color

configuration value, 14
logging/config_file

configuration value, 14
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logging/console_format
configuration value, 14

logging/debug_file
configuration value, 14

logging/debug_format
configuration value, 14

LogLevel (class in mopidy.config.types), 246
loglevels/*

configuration value, 14
lookup() (mopidy.backend.LibraryProvider method),

225
lookup() (mopidy.backend.PlaylistsProvider method),

224
lookup() (mopidy.core.LibraryController method),

212
lookup() (mopidy.core.PlaylistsController method),

214
lookup() (mopidy.local.Library method), 250
lookup_playlist_name_from_uri()

(mopidy.mpd.dispatcher.MpdContext method),
252

lookup_playlist_uri_from_name()
(mopidy.mpd.dispatcher.MpdContext method),
252

lsinfo() (in module mopidy.mpd.protocol.music_db),
262

M
m3u/base_dir

configuration value, 36
m3u/default_encoding

configuration value, 36
m3u/default_extension

configuration value, 36
m3u/enabled

configuration value, 36
m3u/playlists_dir

configuration value, 36
MapConfigSchema (class in mopidy.config.schemas),

245
millisecond_to_clocktime() (in module

mopidy.audio.utils), 242
mixer, 187
Mixer (class in mopidy.mixer), 243
mixer (mopidy.audio.Audio attribute), 239
mixer (mopidy.core.Core attribute), 204
MixerListener (class in mopidy.mixer), 244
mixrampdb() (in module

mopidy.mpd.protocol.playback), 264
mixrampdelay() (in module

mopidy.mpd.protocol.playback), 264
model_json_decoder() (in module

mopidy.models), 203
ModelJSONEncoder (class in mopidy.models), 203

mopidy command line option
-config <file|directory>, 189
-help, -h, 189
-option <option>, -o <option>, 190
-quiet, -q, 189
-save-debug-log, 189
-verbose, -v, 189
-version, 189
config, 190
deps, 190

mopidy.audio (module), 238
mopidy.audio.utils (module), 242
mopidy.backend (module), 220
mopidy.commands (module), 244
mopidy.config (module), 245
mopidy.config.schemas (module), 245
mopidy.config.types (module), 246
mopidy.config.validators (module), 247
mopidy.core (module), 204
mopidy.core.HistoryController (class in

mopidy.core), 215
mopidy.core.LibraryController (class in

mopidy.core), 211
mopidy.core.MixerController (class in

mopidy.core), 215
mopidy.core.PlaybackState (class in

mopidy.core), 211
mopidy.core.PlaylistsController (class in

mopidy.core), 213
mopidy.ext (module), 226
mopidy.httpclient (module), 247
mopidy.local (module), 249
mopidy.local.translator (module), 251
mopidy.mixer (module), 243
mopidy.models (module), 197
mopidy.mpd (module), 251
mopidy.mpd.dispatcher (module), 252
mopidy.mpd.protocol (module), 253
mopidy.mpd.protocol.audio_output (mod-

ule), 254
mopidy.mpd.protocol.channels (module), 254
mopidy.mpd.protocol.command_list (mod-

ule), 255
mopidy.mpd.protocol.connection (module),

255
mopidy.mpd.protocol.current_playlist

(module), 256
mopidy.mpd.protocol.mount (module), 259
mopidy.mpd.protocol.music_db (module), 260
mopidy.mpd.protocol.playback (module), 264
mopidy.mpd.protocol.reflection (module),

268
mopidy.mpd.protocol.status (module), 269
mopidy.mpd.protocol.stickers (module), 271
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mopidy.mpd.protocol.stored_playlists
(module), 271

mopidy.mpd.tokenize (module), 251
mopidy.zeroconf (module), 248
mount() (in module mopidy.mpd.protocol.mount), 259
move() (mopidy.core.TracklistController method), 205
move_range() (in module

mopidy.mpd.protocol.current_playlist), 257
moveid() (in module

mopidy.mpd.protocol.current_playlist), 257
mpd/command_blacklist

configuration value, 44
mpd/connection_timeout

configuration value, 44
mpd/enabled

configuration value, 44
mpd/hostname

configuration value, 44
mpd/max_connections

configuration value, 44
mpd/password

configuration value, 44
mpd/port

configuration value, 44
mpd/zeroconf

configuration value, 44
MpdContext (class in mopidy.mpd.dispatcher), 252
MpdDispatcher (class in mopidy.mpd.dispatcher),

252
musicbrainz_id (mopidy.models.Album attribute),

200
musicbrainz_id (mopidy.models.Artist attribute),

200
musicbrainz_id (mopidy.models.Track attribute),

199
mute (mopidy.core.PlaybackController attribute), 219
mute_changed() (mopidy.core.CoreListener

method), 216
mute_changed() (mopidy.mixer.MixerListener

method), 244

N
name (mopidy.local.Library attribute), 250
name (mopidy.mixer.Mixer attribute), 243
name (mopidy.models.Album attribute), 200
name (mopidy.models.Artist attribute), 200
name (mopidy.models.Playlist attribute), 201
name (mopidy.models.Ref attribute), 198
name (mopidy.models.Track attribute), 199
next() (mopidy.core.PlaybackController method), 209
next_() (in module mopidy.mpd.protocol.playback),

264
next_track() (mopidy.core.TracklistController

method), 208

noidle() (in module mopidy.mpd.protocol.status), 270
notcommands() (in module

mopidy.mpd.protocol.reflection), 268
num_discs (mopidy.models.Album attribute), 200
num_tracks (mopidy.models.Album attribute), 200

O
on_event() (mopidy.core.CoreListener method), 216
on_start() (mopidy.audio.Audio method), 239
on_stop() (mopidy.audio.Audio method), 239
options_changed() (mopidy.core.CoreListener

method), 216
outputs() (in module

mopidy.mpd.protocol.audio_output), 254

P
parse() (mopidy.commands.Command method), 245
password (mopidy.mpd.dispatcher.MpdContext at-

tribute), 252
password() (in module

mopidy.mpd.protocol.connection), 255
Path (class in mopidy.config.types), 246
path_to_file_uri() (in module

mopidy.local.translator), 251
path_to_local_directory_uri() (in module

mopidy.local.translator), 251
path_to_local_track_uri() (in module

mopidy.local.translator), 251
pause() (in module mopidy.mpd.protocol.playback),

265
pause() (mopidy.backend.PlaybackProvider method),

222
pause() (mopidy.core.PlaybackController method),

209
pause_playback() (mopidy.audio.Audio method),

239
PAUSED (mopidy.core.mopidy.core.PlaybackState

attribute), 211
performers (mopidy.models.Track attribute), 199
ping() (in module mopidy.mpd.protocol.connection),

255
ping() (mopidy.backend.Backend method), 221
ping() (mopidy.mixer.Mixer method), 243
play() (in module mopidy.mpd.protocol.playback), 265
play() (mopidy.backend.PlaybackProvider method),

222
play() (mopidy.core.PlaybackController method), 209
playback (mopidy.backend.Backend attribute), 221
playback (mopidy.core.Core attribute), 204
playback_state_changed()

(mopidy.core.CoreListener method), 216
PlaybackController (class in mopidy.core), 209
PlaybackProvider (class in mopidy.backend), 222
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playid() (in module mopidy.mpd.protocol.playback),
266

PLAYING (mopidy.core.mopidy.core.PlaybackState at-
tribute), 211

Playlist (class in mopidy.models), 200
PLAYLIST (mopidy.models.Ref attribute), 197
playlist() (in module

mopidy.mpd.protocol.current_playlist), 257
playlist() (mopidy.models.Ref class method), 198
playlist_changed() (mopidy.core.CoreListener

method), 216
playlist_deleted() (mopidy.core.CoreListener

method), 216
playlistadd() (in module

mopidy.mpd.protocol.stored_playlists), 272
playlistclear() (in module

mopidy.mpd.protocol.stored_playlists), 272
playlistdelete() (in module

mopidy.mpd.protocol.stored_playlists), 272
playlistfind() (in module

mopidy.mpd.protocol.current_playlist), 257
playlistid() (in module

mopidy.mpd.protocol.current_playlist), 257
playlistinfo() (in module

mopidy.mpd.protocol.current_playlist), 257
playlistmove() (in module

mopidy.mpd.protocol.stored_playlists), 273
playlists (mopidy.backend.Backend attribute), 221
playlists (mopidy.core.Core attribute), 204
playlists (mopidy.core.PlaylistsController attribute),

220
playlists_loaded()

(mopidy.backend.BackendListener method),
225

playlists_loaded() (mopidy.core.CoreListener
method), 217

playlistsearch() (in module
mopidy.mpd.protocol.current_playlist), 257

PlaylistsProvider (class in mopidy.backend), 223
plchanges() (in module

mopidy.mpd.protocol.current_playlist), 258
plchangesposid() (in module

mopidy.mpd.protocol.current_playlist), 258
Port (class in mopidy.config.types), 247
position_changed() (mopidy.audio.AudioListener

method), 240
prepare_change() (mopidy.audio.Audio method),

239
prepare_change() (mopidy.backend.PlaybackProvider

method), 222
previous() (in module

mopidy.mpd.protocol.playback), 266
previous() (mopidy.core.PlaybackController

method), 209

previous_track() (mopidy.core.TracklistController
method), 208

prio() (in module mopidy.mpd.protocol.current_playlist),
258

prioid() (in module
mopidy.mpd.protocol.current_playlist), 258

Proxy (class in mopidy.config), 245
proxy/hostname

configuration value, 14
proxy/password

configuration value, 14
proxy/port

configuration value, 14
proxy/scheme

configuration value, 14
proxy/username

configuration value, 14
publish() (mopidy.zeroconf.Zeroconf method), 248
Python Enhancement Proposals

PEP 20, 172
PEP 386, 141, 176
PEP 396, 141
PEP 8, 171

R
random (mopidy.core.TracklistController attribute), 218
random() (in module mopidy.mpd.protocol.playback),

266
RANGE() (in module mopidy.mpd.protocol), 253
rangeid() (in module

mopidy.mpd.protocol.current_playlist), 258
reached_end_of_stream()

(mopidy.audio.AudioListener method), 240
read() (in module mopidy.config), 245
readcomments() (in module

mopidy.mpd.protocol.music_db), 262
readmessages() (in module

mopidy.mpd.protocol.channels), 254
Ref (class in mopidy.models), 197
refresh() (mopidy.backend.LibraryProvider method),

225
refresh() (mopidy.backend.PlaylistsProvider

method), 224
refresh() (mopidy.core.LibraryController method),

213
refresh() (mopidy.core.PlaylistsController method),

214
Registry (class in mopidy.ext), 227
remove() (mopidy.core.TracklistController method),

205
remove() (mopidy.local.Library method), 251
rename() (in module

mopidy.mpd.protocol.stored_playlists), 273
repeat (mopidy.core.TracklistController attribute), 218
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repeat() (in module mopidy.mpd.protocol.playback),
267

replace() (mopidy.models.ImmutableObject method),
202

replace() (mopidy.models.ValidatedImmutableObject
method), 202

replay_gain_mode() (in module
mopidy.mpd.protocol.playback), 267

replay_gain_status() (in module
mopidy.mpd.protocol.playback), 267

rescan() (in module mopidy.mpd.protocol.music_db),
263

resume() (mopidy.backend.PlaybackProvider method),
222

resume() (mopidy.core.PlaybackController method),
209

rm() (in module mopidy.mpd.protocol.stored_playlists),
273

root_directory (mopidy.backend.LibraryProvider
attribute), 225

ROOT_DIRECTORY_URI (mopidy.local.Library at-
tribute), 249

run() (mopidy.commands.Command method), 245

S
save() (in module mopidy.mpd.protocol.stored_playlists),

273
save() (mopidy.backend.PlaylistsProvider method),

224
save() (mopidy.core.PlaylistsController method), 214
scan() (mopidy.audio.scan.Scanner method), 241
Scanner (class in mopidy.audio.scan), 241
search() (in module mopidy.mpd.protocol.music_db),

263
search() (mopidy.backend.LibraryProvider method),

225
search() (mopidy.core.LibraryController method),

212
search() (mopidy.local.Library method), 251
searchadd() (in module

mopidy.mpd.protocol.music_db), 263
searchaddpl() (in module

mopidy.mpd.protocol.music_db), 263
SearchResult (class in mopidy.models), 201
Secret (class in mopidy.config.types), 247
seek() (in module mopidy.mpd.protocol.playback), 267
seek() (mopidy.backend.PlaybackProvider method),

222
seek() (mopidy.core.PlaybackController method), 209
seekcur() (in module mopidy.mpd.protocol.playback),

267
seeked() (mopidy.core.CoreListener method), 217
seekid() (in module mopidy.mpd.protocol.playback),

267

send() (mopidy.audio.AudioListener static method),
240

send() (mopidy.backend.BackendListener static
method), 225

send() (mopidy.core.CoreListener static method), 217
send() (mopidy.mixer.MixerListener static method),

244
sendmessage() (in module

mopidy.mpd.protocol.channels), 254
serialize() (mopidy.config.schemas.ConfigSchema

method), 245
serialize() (mopidy.config.types.ConfigValue

method), 246
session (mopidy.mpd.dispatcher.MpdContext at-

tribute), 252
set() (mopidy.commands.Command method), 245
set_about_to_finish_callback()

(mopidy.audio.Audio method), 239
set_appsrc() (mopidy.audio.Audio method), 239
set_consume() (mopidy.core.TracklistController

method), 208
set_metadata() (mopidy.audio.Audio method), 240
set_mute() (mopidy.core.MixerController method),

215
set_mute() (mopidy.mixer.Mixer method), 243
set_position() (mopidy.audio.Audio method), 240
set_random() (mopidy.core.TracklistController

method), 208
set_repeat() (mopidy.core.TracklistController

method), 209
set_single() (mopidy.core.TracklistController

method), 209
set_state() (mopidy.core.PlaybackController

method), 210
set_uri() (mopidy.audio.Audio method), 240
set_volume() (mopidy.core.MixerController

method), 215
set_volume() (mopidy.mixer.Mixer method), 243
setup() (mopidy.ext.Extension method), 226
setup_proxy() (in module mopidy.audio.utils), 242
setvol() (in module mopidy.mpd.protocol.playback),

267
shuffle() (in module

mopidy.mpd.protocol.current_playlist), 258
shuffle() (mopidy.core.TracklistController method),

206
Signals (class in mopidy.audio.utils), 242
single (mopidy.core.TracklistController attribute), 218
single() (in module mopidy.mpd.protocol.playback),

268
slice() (mopidy.core.TracklistController method), 206
softwaremixer/enabled

configuration value, 47
sortname (mopidy.models.Artist attribute), 200
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split() (in module mopidy.mpd.tokenize), 251
start_playback() (mopidy.audio.Audio method),

240
state (mopidy.audio.Audio attribute), 240
state (mopidy.core.PlaybackController attribute), 219
state_changed() (mopidy.audio.AudioListener

method), 241
stats() (in module mopidy.mpd.protocol.status), 270
status() (in module mopidy.mpd.protocol.status), 270
sticker() (in module mopidy.mpd.protocol.stickers),

271
stop() (in module mopidy.mpd.protocol.playback), 268
stop() (mopidy.backend.PlaybackProvider method),

223
stop() (mopidy.core.PlaybackController method), 209
stop_playback() (mopidy.audio.Audio method),

240
STOPPED (mopidy.core.mopidy.core.PlaybackState at-

tribute), 211
stream/enabled

configuration value, 37
stream/metadata_blacklist

configuration value, 38
stream/protocols

configuration value, 37
stream/timeout

configuration value, 38
stream_changed() (mopidy.audio.AudioListener

method), 241
stream_title_changed()

(mopidy.core.CoreListener method), 217
String (class in mopidy.config.types), 247
String (class in mopidy.models.fields), 203
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