
MOOSE User Manual
Release chennapoda (3.2.rc)

Upinder Bhalla, Niraj Dudani, Subhasis Ray
Aditya Gilra,Harsha Rani, Aviral Goel

Dilawar Singh, Malav Shah, Dhruva Gowda Storz

August 01, 2019

Contents

1 What is MOOSE and what is it good for? 1

2 Installation 3
2.1 Use pre-built packages . 3
2.2 Building MOOSE . 4
2.3 Graphical User Interface (GUI) . 6
2.4 Building moogli . 7

3 Quick Start 9
3.1 Interactive Tutorials . 9
3.2 MOOSE GUI: Graphical interface for MOOSE . 9
3.3 Getting started with python scripting for MOOSE 15
3.4 Demonstration of basic functionalities . 28
3.5 MOOSE Classes . 28

4 Cook Book 31
4.1 Single Neuron Electrical Aspects (BioPhysics) . 31
4.2 Chemical Aspects . 36
4.3 Networking . 54
4.4 MultiScale Modeling . 57

5 Rdesignuer 59
5.1 Rdesigneur: Building multiscale models . 59
5.2 Rdesigneur Examples . 149

6 Teaching Tutorials 151
6.1 Chemical Bistables . 151
6.2 Chemical Oscillators . 184
6.3 Squid giant axon . 197

7 Graphics 199
7.1 MOOGLI . 199
7.2 MatPlotLib . 199

8 References 201
8.1 How to use the documentation . 201

i

9 Doxygen 213

10 Release Notes 215

11 Series chennapoda 217
11.1 Version 3.2.0 . 217

12 Series chamcham 219
12.1 Version 3.1.3 . 219

13 Known issues 221

14 Indices and tables 223

ii

CHAPTER 1

What is MOOSE and what is it good for?

MOOSE is the Multiscale Object-Oriented Simulation Environment. It is designed to simu-
late neural systems ranging from subcellular components and biochemical reactions to com-
plex models of single neurons, circuits, and large networks. MOOSE can operate at many
levels of detail, from stochastic chemical computations, to multicompartment single-neuron
models, to spiking neuron network models.

Fig. 1: Multiple scales can be modelled and simulated in MOOSE

MOOSE is multiscale: It can do all these calculations together. One of its major uses is to make
biologically detailed models that combine electrical and chemical signaling.

1

MOOSE User Manual, Release chennapoda (3.2.rc)

MOOSE is object-oriented. Biological concepts are mapped into classes, and a model is built
by creating instances of these classes and connecting them by messages. MOOSE also has
numerical classes whose job is to take over difficult computations in a certain domain, and
do them fast. There are such solver classes for stochastic and deterministic chemistry, for
diffusion, and for multicompartment neuronal models.

MOOSE is a simulation environment, not just a numerical engine: It provides data represen-
tations and solvers (of course!), but also a scripting interface with Python, graphical displays
with Matplotlib, PyQt, and OpenGL, and support for many model formats. These include
SBML, NeuroML, GENESIS kkit and cell.p formats, HDF5 and NSDF for data writing.

2 Chapter 1. What is MOOSE and what is it good for?

CHAPTER 2

Installation

2.1 Use pre-built packages

2.1.1 pip

If you only need python interface, the recommended way is via pip.

pip install pymoose --user

To install nightly version

pip install pymoose --pre --upgrade --user

We also have moose package with additional components such as gui and moogli.

2.1.2 Linux

We recommend that you use our repositories hosted at Open Build
Service (https://build.opensuse.org/package/show/home:moose/moose).
Packages for most linux distributions are available. Visit this page
(https://software.opensuse.org/download.html?project=home:moose&package=moose)
to pick your distribution and follow instructions.

Note: moogli (tool to visualize network activity) is not available for CentOS-6.

Todo: Packages for gentoo

3

https://build.opensuse.org/package/show/home:moose/moose
https://build.opensuse.org/package/show/home:moose/moose
https://software.opensuse.org/download.html?project=home:moose&package=moose

MOOSE User Manual, Release chennapoda (3.2.rc)

2.1.3 Mac OSX

MacOSX support for moose-gui is not complete yet because moose-gui depends on PyQt4
but that world has moved onto PyQt5 (See the status here: https://github.com/BhallaLab/
moose-gui/issues/16). However, the python-scripting interface can be installed on OSX using
homebrew

$ brew tap BhallaLab/moose
$ brew install moose

Or alternatively, via pip

$ pip install pymoose --user

2.1.4 Docker Images

Docker images of stable version are available from public repository.

$ docker pull bhallalab/moose
$ docker run -it --rm -v /tmp/.X11-unix:/tmp/.X11-unix -e DISPLAY=
↪→$DISPLAY bhallalab/moose

This will launch xterm; run moosegui in terminal to lauch the GUI.

2.2 Building MOOSE

In case your distribution is not listed on our repository page
(https://software.opensuse.org/download.html?project=home:moose&package=moose)
, or if you want to build the latest development code, read on.

First, you need to get the source code. You can use git (clone the
repository) or download snapshot of github repo by clicking on this link
(https://github.com/BhallaLab/moose/archive/master.zip).

$ git clone https://github.com/BhallaLab/moose

(This will create folder called “moose”) Or,

$ wget https://github.com/BhallaLab/moose/archive/master.zip
$ unzip master.zip

If you don’t want latest snapshot of MOOSE, you can download other released versions from
here (https://github.com/BhallaLab/moose/releases).

2.2.1 Install dependencies

Next, you need to install required dependencies. Depending on your OS, names of following
packages may vary.

4 Chapter 2. Installation

https://github.com/BhallaLab/moose-gui/issues/16
https://github.com/BhallaLab/moose-gui/issues/16
https://software.opensuse.org/download.html?project=home:moose&package=moose
https://github.com/BhallaLab/moose/archive/master.zip
https://github.com/BhallaLab/moose/releases

MOOSE User Manual, Release chennapoda (3.2.rc)

Core MOOSE

• Required:

– cmake (version 2.8 or higher)

– g++ or clang (with c++11 support).

– gsl-1.16 or higher.

• Optional

– HDF5 (>=1.8.x) For reading and writing data into HDF5 based formats. Dis-
abled by default.

Python interface for core MOOSE API (pymoose)

• Required

– python (Both 2.7 and 3.x versions are supported).

– python-dev. Python development headers and libraries, e.g. python-dev or
python-devel

– NumPy (>= 1.6.x) For array interface, e.g. python-numpy or numpy

• Optional

– networkx (>=1.x) For automatical layout

– pygraphviz. For automatic layout for chemical models

– matplotlib (>=2.x). For plotting simulation results

– python-libsbml. For reading and writing chemical models from and into SBML
format

– pylibsbml

All of these dependencies can be installed using pip or your package manager.

On Debian/Ubuntu

$ sudo apt-get install libhdf5-dev cmake libgsl0-dev libpython-dev
↪→python-numpy

On CentOS/Fedora/RHEL/Scientific Linux

$ sudo yum install hdf5-devel cmake libgsl-dev python-devel python-
↪→numpy

On OpenSUSE

$ sudo zypper install hdf5-devel cmake libgsl-dev python-devel python-
↪→numpy

2.2. Building MOOSE 5

MOOSE User Manual, Release chennapoda (3.2.rc)

2.2.2 Build moose

$ cd /to/moose_directory/moose-core/
$ mkdir _build
$ cd _build
$ cmake ..
$ make
$ ctest --output-on-failure # optional
$ sudo make install

This will build pyMOOSE (MOOSE’s python extention), ctest will run few tests to check if
build process was successful.

Note: To install MOOSE into non-standard directory, pass additional argument -
DCMAKE_INSTALL_PREFIX=path/to/install/dir to cmake

$ cmake -DCMAKE_INSTALL_PREFIC=$HOME/.local ..

To use different version of python

$ cmake -DPYTHON_EXECUTABLE=/opt/python3/bin/python3 ..

After that installation is pretty easy

$ sudo make install

If everything went fine, you should be able to import moose in python shell.

>>> import moose

2.3 Graphical User Interface (GUI)

If you have installed the pre-built package, then you already have the GUI. You can launch it
by runnung moosegui command in terminal.

You can get the source of moose-gui from here (https://github.com/BhallaLab/moose-gui).
You can download it either by clicking on this link (https://github.com/BhallaLab/moose-
gui/archive/master.zip) or by using git

$ git clone https://github.com/BhallaLab/moose-gui

Alternatively the moose-gui folder exists within the moose folder downloaded and built earlier
in the installation process. It can be found under location_of_moose_folder/moose/
moose-gui/.

Below are packages which you may want to install to use MOOSE Graphical User Interface.

• Required:

– PyQt4 (4.8.x). For Python GUI

– Matplotlib (>= 2.x). For plotting simulation results

6 Chapter 2. Installation

https://github.com/BhallaLab/moose-gui
https://github.com/BhallaLab/moose-gui/archive/master.zip

MOOSE User Manual, Release chennapoda (3.2.rc)

– NetworkX (1.x). For automatical layout

• Optional:

– python-libsbml. For reading and writing signalling models from and into SBML
format

On Ubuntu/Debian, these can be installed with

$ sudo apt-get install python-matplotlib python-qt4

On CentOS/Fedora/RHEL

$ sudo yum install python-matplotlib python-qt4

Now you can fire up the GUI

$ cd /to/moose-gui
$ python mgui.py

Note: If you have installed moose package, then GUI is launched by running following
commnad:

$ moosegui

2.4 Building moogli

moogli is subproject of MOOSE for visualizing models. More details can be found here
(http://moose.ncbs.res.in/moogli).

Moogli is part of moose package. Building moogli can be tricky because of multiple depednecies
it has.

• Required

– OSG (3.2.x) For 3D rendering and simulation of neuronal models

– Qt4 (4.8.x) For C++ GUI of Moogli

To get the latest source code of moogli, click on this link
(https://github.com/BhallaLab/moogli/archive/master.zip).

Moogli depends on OpenSceneGraph (version 3.2.0 or higher) which may not be easily
available for your operating system. For this reason, we distribute required OpenScene-
Graph with moogli source code.

Depending on distribution of your operating system, you would need following packages to
be installed.

On Ubuntu/Debian

$ sudo apt-get install python-qt4-dev python-qt4-gl python-sip-dev
↪→libqt4-dev

On Fedora/CentOS/RHEL

2.4. Building moogli 7

http://moose.ncbs.res.in/moogli
https://github.com/BhallaLab/moogli/archive/master.zip

MOOSE User Manual, Release chennapoda (3.2.rc)

$ sudo yum install sip-devel PyQt4-devel qt4-devel libjpeg-devel PyQt4

On openSUSE

$ sudo zypper install python-sip python-qt4-devel libqt4-devel python-
↪→qt4

After this, building and installing moogli should be as simple as

$ cd /path/to/moogli
$ mkdir _build
$ cd _build
$ cmake ..
$ make -j3
$ sudo make install

If you run into troubles, please report it on our github repository
(https://github.com/BhallaLab/moose/issues).

8 Chapter 2. Installation

https://github.com/BhallaLab/moose/issues

CHAPTER 3

�ick Start

3.1 Interactive Tutorials

Some of the pages in the documentation, such as the python scripting page and teaching tuto-
rials are available in interactive form.

These interactive tutorials serve as fully executable python environments that can run moose.
Therefore, it is a great place to both learn about and play around with MOOSE.

All the currently available interactive tutorials are available by clicking the link below:

(https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2FIndex.ipynb)

3.2 MOOSE GUI: Graphical interface for MOOSE

Upinder Bhalla, Harsha Rani, Aviral Goel

MOOSE is the Multiscale Object-Oriented Simulation Environment. It can do all these calcu-
lations together. One of its major uses is to make biologically detailed models that combine
electrical and chemical signaling.

This document describes the salient features of the GUI and Kinetickit of MOOSE.

3.2.1 Contents

• Introduction (page 10)

• Interface (page 10)

– Menu Bar (page ??)

* File (page ??)

9

https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2FIndex.ipynb

MOOSE User Manual, Release chennapoda (3.2.rc)

· New (page ??)

· Load Model (page ??)

· Connect BioModels (page ??)

· Quit (page ??)

* View (page ??)

· Editor View (page ??)

· Run View (page ??)

· Dock Widgets (page ??)

· SubWindows (page ??)

* Help (page ??)

· About MOOSE (page ??)

· Built-in Documentation (page ??)

· Report a bug (page ??)

– Editor View (page ??)

* Model Editor (page ??)

* Property Editor (page ??)

– Run View (page ??)

* Simulation Controls (page 14)

* Plot Widget (page 14)

· Toolbar (page ??)

· Context Menu (page ??)

3.2.2 Introduction

The Moose GUI currently allow you work on chemical (page 36) and electrical (page 33) models
using a interface. This document describes the salient features of the GUI.

3.2.3 Interface

The interface layout consists of a menu bar (page ??) and two views, editor view (page ??) and
run view (page ??).

Menu Bar

The menu bar appears at the top of the main window. In Ubuntu 12.04, the menu bar appears
only when the mouse is in the top menu strip of the screen. It consists of the following options
-

10 Chapter 3. �ick Start

MOOSE User Manual, Release chennapoda (3.2.rc)

File

The File menu option provides the following sub options

• New (page ??) - Create a new chemical signalling model.

• Load Model (page ??) - Load a chemical signalling or compartmental neuronal model from
a file.

• Paper_2015_Demos Model (page ??) - Loads and Runs chemical signalling or compartmen-
tal neuronal model from a file.

• Recently Loaded Models (page ??) - List of models loaded in MOOSE. (Atleast one model
should be loaded)

• Connect BioModels (page ??) - Load chemical signaling models from the BioModels
database.

• Save (page ??) - Saves chemical model to Genesis/SBML format.

• Quit (page ??) - Quit the interface.

View

View menu option provides the following sub options -

• Editor View (page ??) - Switch to the editor view for editing models.

• Run View (page ??) - Switch to run view for running models.

• Dock Widgets (page ??) - Following dock widgets are provided

• Python (page ??) - Brings up a full fledged python interpreter integrated with MOOSE
GUI. You can interact with loaded models and load new models through the PyMoose
API. The entire power of python language is accessible, as well as MOOSE-specific func-
tions and classes.

• Edit (page ??) - A property editor for viewing and editing the fields of a selected object
such as a pool, enzyme, function or compartment. Editable field values can be changed
by clicking on them and overwriting the new values. Please be sure to press enter once
the editing is complete, in order to save your changes.

• SubWindows (page ??) - This allows you to tile or tabify the run and editor views.

Help

• About Moose (page ??) - Version and general information about MOOSE.

• Built-in documentation (page ??) - Documentation of MOOSE GUI.

• Report a bug (page ??) - Directs to the github bug tracker for reporting bugs.

Editor View

The editor view provides two windows -

3.2. MOOSE GUI: Graphical interface for MOOSE 11

MOOSE User Manual, Release chennapoda (3.2.rc)

• Model Editor (page ??) - The model editor is a workspace to edit and create models. Using
click-and-drag from the icons in the menu bar, you can create model entities such as
chemical pools, reactions, and so on. A click on any object brings its property editor on
screen (see below). In objects that can be interconnected, a click also brings up a special
arrow icon that is used to connect objects together with messages. You can move objects
around within the edit window using click-and-drag. Finally, you can delete objects by
selecting one or more, and then choosing the delete option from the pop-up menu. The
links below is the screenshots point to the details for the chemical signalling model editor.

Fig. 1: Chemical Signalling Model Editor

• Property Editor (page ??) - The property editor provides a way of viewing and editing the
properties of objects selected in the model editor.

Run View

The Run view, as the name suggests, puts the GUI into a mode where the model can be simu-
lated. As a first step in this, you can click-and-drag an object to the graph window in order to
create a time-series plot for that object. For example, in a chemical reaction, you could drag a

12 Chapter 3. �ick Start

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 2: Property Editor

3.2. MOOSE GUI: Graphical interface for MOOSE 13

MOOSE User Manual, Release chennapoda (3.2.rc)

pool into the graph window and subsequent simulations will display a graph of the concentra-
tion of the pool as a function of time. Within the Run View window, the time-evolution of the
simulation is displayed as an animation. For chemical kinetic models, the size of the icons for
reactant pools scale to indicate concentration. Above the Run View window, there is a special
tool bar with a set of simulation controls to run the simulation.

Simulation Controls

Fig. 3: Simulation Control

This panel allows you to control the various aspects of the simulation.

• Run Time (page ??) - Determines duration for which simulation is to run. A simulation
which has already run, runs further for the specified additional period.

• Reset (page ??) - Restores simulation to its initial state; re-initializes all variables to t = 0.

• Stop (page ??) - This button halts an ongoing simulation.

• Current time (page ??) - This reports the current simulation time.

• Preferences (page ??) - Allows you to set simulation and visualization related preferences.

Plot Widget

Toolbar

On top of plot window there is a little row of icons:

These are the plot controls. If you hover the mouse over them for a few seconds, a tool-tip
pops up. The icons represent the following functions:

• - Add a new plot window

• - Deletes current plot window

• - Toggle X-Y axis grid

14 Chapter 3. �ick Start

MOOSE User Manual, Release chennapoda (3.2.rc)

• - Returns the plot display to its default position

• - Undoes or re-does manipulations you have done to the display.

• - The plots will pan around with the mouse when you hold the left button down.
The plots will zoom with the mouse when you hold the right button down.

• - With the ‘‘left mouse button‘‘, this will zoom in to the specified rectangle so that
the plots become bigger. With the ‘‘right mouse button‘‘, the entire plot display will be
shrunk to fit into the specified rectangle.

• - You don’t want to mess with these .

• - Save the plot.

Context Menu

The context menu is enabled by right clicking on the plot window. It has the following options
-

• Export to CSV - Exports the plotted data to CSV format

• Toggle Legend - Toggles the plot legend

• Remove - Provides a list of plotted entities. The selected entity will not be plotted.

3.3 Ge�ing started with python scripting for MOOSE

To see an interactive version of this page, click the following link

(https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2Fquickstart%2FGetting%20started%20with%20python%20scripting%20for%20MOOSE.ipynb)
This document describes how to use the moose module in Python scripts or in an interactive
Python shell. It aims to give you enough overview to help you start scripting using MOOSE
and extract farther information that may be required for advanced work. Knowledge of
Python or programming in general will be helpful. If you just want to simulate existing
models in one of the supported formats, you can fire the MOOSE GUI and locate the model
file using the File menu and load it. The GUI is described in separate document. If you are
looking for recipes for specific tasks, take a look at cookbook. The example code in the boxes
can be entered in a Python shell.

MOOSE is object-oriented. Biological concepts are mapped into classes, and a model is built
by creating instances of these classes and connecting them by messages. MOOSE also has
numerical classes whose job is to take over difficult computations in a certain domain, and

3.3. Ge�ing started with python scripting for MOOSE 15

https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2Fquickstart%2FGetting%20started%20with%20python%20scripting%20for%20MOOSE.ipynb

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 4: Multiple scales can be modelled and simulated in MOOSE

do them fast. There are such solver classes for stochastic and deterministic chemistry, for
diffusion, and for multicompartment neuronal models.

MOOSE is a simulation environment, not just a numerical engine: It provides data represen-
tations and solvers (of course!), but also a scripting interface with Python, graphical displays
with Matplotlib, PyQt, and OpenGL, and support for many model formats. These include
SBML, NeuroML, GENESIS kkit and cell.p formats, HDF5 and NSDF for data writing.

Contents:

• Coding basics and how to use this document (page 17)

• Importing moose and accessing documentation (page 17)

• Setting the properties of elements: accessing fields (page 20)

• Putting them together: setting up connections (page 22)

• Scheduling (page 24)

• Running the simulation (page 26)

• Some more details (page 27)

• Moving on (page 28)

16 Chapter 3. �ick Start

MOOSE User Manual, Release chennapoda (3.2.rc)

3.3.1 Coding basics and how to use this document

This page acts as the first stepping stone for learning how moose works. The tutorials here
are intended to be interactive, and are presented as python commands. Python commands are
identifiable by the >>> before the command as opposed to $ which identifies a command-line
command.

>>> this_is_a_python_command

You are encouraged to run a python shell while reading through this documentation and trying
out each command for yourself. Python shells are environments within your terminal wherein
everything you type is interpreted as a python command. They can be accessed by typing

$ python

in your command-line terminal.

While individually typing lines of code in a python terminal is useful for practicing using
moose and coding in general, note that once you close the python environment all the code
you typed is gone and the moose models created are also lost. In order to ‘save’ models that
you create, you would have to type your code in a text file with a .py extension. The easiest
way to do this is to create a text file in command line, open it with a text editor (for example,
gedit), and simply type your code in (make sure you indent correctly).

$ touch code.py
$ gedit code.py

Once you have written your code in the file, you can run it through your python environment.

$ python code.py

Note that apart from this section of the quickstart, most of the moose documentation is in
the form of snippets. These are basically .py files with code that demonstrates a certain
functionality in moose. If you see a dialogue box like this one:

You can view the code by clicking the green source button on the left side of the box. Alterna-
tively, the source code for all of the examples in the documentation can be found in moose/
moose-examples/snippets. Once you run each file in python, it is encouraged that you
look through the code to understand how it works.

In the quickstart, most of the snippets demonstrate the functionality of specific classes. How-
ever, snippets in later sections such as the cookbook show how to do specific things in moose
such as creating networks, chemical models, and synaptic channels.

3.3.2 Importing moose and accessing documentation

In a python script you import modules to access the functionalities they provide. In order to
use moose, you need to import it within a python environment or at the beginning of your
python script.

>>> import moose

This make the moose module available for use in Python. You can use Python’s built-in help
function to read the top-level documentation for the moose module.

3.3. Ge�ing started with python scripting for MOOSE 17

MOOSE User Manual, Release chennapoda (3.2.rc)

>>> help(moose)

This will give you an overview of the module. Press q to exit the pager and get back to the
interpreter. You can also access the documentation for individual classes and functions this
way.

>>> help(moose.connect)

To list the available functions and classes you can use dir function1.

>>> dir(moose)

MOOSE has built-in documentation in the C++-source-code independent of Python. The
moose module has a separate doc function to extract this documentation.

>>> moose.doc('moose.Compartment')

The class level documentation will show whatever the author/maintainer of the class wrote
for documentation followed by a list of various kinds of fields and their data types. This can
be very useful in an interactive session.

Each field can have its own detailed documentation, too.

>>> moose.doc('Compartment.Rm')

Note that you need to put the class-name followed by dot followed by field-name within
quotes. Otherwise, moose.doc will receive the field value as parameter and get confused.

Alternatively, if you want to see a full list of classes, functions and their fields, you can browse
through the following pages. This is especially helpful when going through snippets.

• genindex

• modindex

Creating objects and traversing the object hierarchy

Different types of biological entities like neurons, enzymes, etc are represented by classes and
individual instances of those types are objects of those classes. Objects are the building-blocks
of models in MOOSE. We call MOOSE objects element and use object and element inter-
changeably in the context of MOOSE. Elements are conceptually laid out in a tree-like hierar-
chical structure. If you are familiar with file system hierarchies in common operating systems,
this should be simple.

At the top of the object hierarchy sits the Shell, equivalent to the root directory in UNIX-
based systems and represented by the path /. You can list the existing objects under / using
the le function.

>>> moose.le()
Elements under /
/Msgs
/clock

(continues on next page)

1 To list the classes only, use moose.le('/classes')

18 Chapter 3. �ick Start

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

/classes
/postmaster

Msgs, clock and classes are predefined objects in MOOSE. And each object can contain
other objects inside them. You can see them by passing the path of the parent object to le

>>> moose.le('/Msgs')
Elements under /Msgs[0]
/Msgs[0]/singleMsg
/Msgs[0]/oneToOneMsg
/Msgs[0]/oneToAllMsg
/Msgs[0]/diagonalMsg
/Msgs[0]/sparseMsg

Now let us create some objects of our own. This can be done by invoking MOOSE class con-
structors (just like regular Python classes).

>>> model = moose.Neutral('/model')

The above creates a Neutral object named model. Neutral is the most basic class in
MOOSE. A Neutral element can act as a container for other elements. We can create some-
thing under model

>>> soma = moose.Compartment('/model/soma')

Every element has a unique path. This is a concatenation of the names of all the objects one
has to traverse starting with the root to reach that element.

>>> print soma.path
/model/soma

The name of the element can be printed, too.

>>> print soma.name
soma

The Compartment elements model small sections of a neuron. Some basic experiments can
be carried out using a single compartment. Let us create another object to act on the soma.
This will be a step current generator to inject a current pulse into the soma.

>>> pulse = moose.PulseGen('/model/pulse')

You can use le at any point to see what is there

>>> moose.le('/model')
Elements under /model
/model/soma
/model/pulse

And finally, we can create a Table to record the time series of the soma’s membrane potential.
It is good practice to organize the data separately from the model. So we do it as below

>>> data = moose.Neutral('/data')
>>> vmtab = moose.Table('/data/soma_Vm')

3.3. Ge�ing started with python scripting for MOOSE 19

MOOSE User Manual, Release chennapoda (3.2.rc)

Now that we have the essential elements for a small model, we can go on to set the properties
of this model and the experimental protocol.

3.3.3 Se�ing the properties of elements: accessing fields

Elements have several kinds of fields. The simplest ones are the value fields. These
can be accessed like ordinary Python members. You can list the available value fields using
getFieldNames function

>>> soma.getFieldNames('valueFinfo')

Here valueFinfo is the type name for value fields. Finfo is short form of field informa-
tion. For each type of field there is a name ending with -Finfo. The above will display the
following list

('this',
'name',
'me',
'parent',
'children',
'path',
'class',
'linearSize',
'objectDimensions',
'lastDimension',
'localNumField',
'pathIndices',
'msgOut',
'msgIn',
'Vm',
'Cm',
'Em',
'Im',
'inject',
'initVm',
'Rm',
'Ra',
'diameter',
'length',
'x0',
'y0',
'z0',
'x',
'y',
'z')

Some of these fields are for internal or advanced use, some give access to the physical proper-
ties of the biological entity we are trying to model. Now we are interested in Cm, Rm, Em and
initVm. In the most basic form, a neuronal compartment acts like a parallel RC circuit with a
battery attached. Here R and C are resistor and capacitor connected in parallel, and the battery
with voltage Em is in series with the resistor, as shown below:

The fields are populated with some defaults.

20 Chapter 3. �ick Start

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 5: Passive neuronal compartment

>>> print soma.Cm, soma.Rm, soma.Vm, soma.Em, soma.initVm
1.0 1.0 -0.06 -0.06 -0.06

You can set the Cm and Rm fields to something realistic using simple assignment (we follow SI
unit)2.

>>> soma.Cm = 1e-9
>>> soma.Rm = 1e7
>>> soma.initVm = -0.07

Instead of writing print statements for each field, you could use the utility function showfield
to see that the changes took effect

>>> moose.showfield(soma)
[/soma[0]]
diameter = 0.0
Ra = 1.0
y0 = 0.0
Rm = 10000000.0
numData = 1
inject = 0.0
initVm = -0.07
Em = -0.06
y = 0.0

(continues on next page)

2 MOOSE is unit agnostic and things should work fine as long as you use values all converted to a consistent
unit system.

3.3. Ge�ing started with python scripting for MOOSE 21

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

numField = 1
path = /soma[0]
dt = 5e-05
tick = 4
z0 = 0.0
name = soma
Cm = 1e-09
x0 = 0.0
Vm = -0.06
className = Compartment
length = 0.0
Im = 0.0
x = 0.0
z = 0.0

Now we can setup the current pulse to be delivered to the soma

>>> pulse.delay[0] = 50e-3
>>> pulse.width[0] = 100e-3
>>> pulse.level[0] = 1e-9
>>> pulse.delay[1] = 1e9

This tells the pulse generator to create a 100 ms long pulse 50 ms after the start of the sim-
ulation. The amplitude of the pulse is set to 1 nA. We set the delay for the next pulse to a
very large value (larger than the total simulation time) so that the stimulation stops after the
first pulse. Had we set pulse.delay = 0 , it would have generated a pulse train at 50 ms
intervals.

3.3.4 Pu�ing them together: se�ing up connections

In order for the elements to interact during simulation, we need to connect them via messages.
Elements are connected to each other using special source and destination fields. These types
are named srcFinfo and destFinfo. You can query the available source and destination
fields on an element using getFieldNames as before. This time, let us do it another way: by
the class name

>>> moose.getFieldNames('PulseGen', 'srcFinfo')
('childMsg', 'output')

This form has the advantage that you can get information about a class without creating ele-
ments of that class.

Here childMsg is a source field that is used by the MOOSE internals to connect child ele-
ments to parent elements. The second one is of our interest. Check out the built-in documen-
tation here

>>> moose.doc('PulseGen.output')
PulseGen.output: double - source field
Current output level.

so this is the output of the pulse generator and this must be injected into the soma to stimulate
it. But where in the soma can we send it? Again, MOOSE has some introspection built in.

22 Chapter 3. �ick Start

MOOSE User Manual, Release chennapoda (3.2.rc)

>>> soma.getFieldNames('destFinfo')
('parentMsg',
'setThis',
'getThis',

...
'setZ',
'getZ',
'injectMsg',
'randInject',
'cable',
'process',
'reinit',
'initProc',
'initReinit',
'handleChannel',
'handleRaxial',
'handleAxial')

Now that is a long list. But much of it are fields for internal or special use. Anything that starts
with get or set are internal destFinfo used for accessing value fields (we shall use one
of those when setting up data recording). Among the rest injectMsg seems to be the most
likely candidate. Use the connect function to connect the pulse generator output to the soma
input

>>> m = moose.connect(pulse, 'output', soma, 'injectMsg')

connect(source, source_field, dest, dest_field) creates a message from
source element’s source_field field to dest element’s dest_field field and returns
that message. Messages are also elements. You can print them to see their identity

>>> print m
<moose.SingleMsg: id=5, dataId=733, path=/Msgs/singleMsg[733]>

You can print any element as above and the string representation will show you the class, two
numbers(id and dataId) uniquely identifying it among all elements, and its path. You can
get some more information about a message

>>> print m.e1.path, m.e2.path, m.srcFieldsOnE1, m.destFieldsOnE2
/model/pulse /model/soma ('output',) ('injectMsg',)

will confirm what you already know.

A message element has fields e1 and e2 referring to the elements it connects. For single
one-directional messages these are source and destination elements, which are pulse and
soma respectively. The next two items are lists of the field names which are connected by this
message.

You could also check which elements are connected to a particular field

>>> print soma.neighbors['injectMsg']
[<moose.vec: class=PulseGen, id=729,path=/model/pulse>]

Notice that the list contains something called vec. We discuss this later (page 27). Also
neighbors is a new kind of field: lookupFinfo which behaves like a dictionary. Next
we connect the table to the soma to retrieve its membrane potential Vm. This is where all
those destFinfo starting with get or set come in use. For each value field X, there is a

3.3. Ge�ing started with python scripting for MOOSE 23

MOOSE User Manual, Release chennapoda (3.2.rc)

destFinfo get{X} to retrieve the value at simulation time. This is used by the table to
record the values Vm takes.

>>> moose.connect(vmtab, 'requestOut', soma, 'getVm')
<moose.SingleMsg: id=5, dataIndex=0, path=/Msgs[0]/singleMsg[0]>

This finishes our model and recording setup. You might be wondering about the source-
destination relationship above. It is natural to think that soma is the source of Vm values
which should be sent to vmtab. But here requestOut is a srcFinfo acting like a reply
card. This mode of obtaining data is called pull mode.3

You can skip the next section on fine control of the timing of updates and read Running the
simulation (page 26).

3.3.5 Scheduling

With the model all set up, we have to schedule the simulation. Different components in a
model may have different rates of update. For example, the dynamics of electrical compo-
nents require the update intervals to be of the order 0.01 ms whereas chemical components
can be as slow as 1 s. Also, the results may depend on the sequence of the updates of differ-
ent components. These issues are addressed in MOOSE using a clock-based update scheme.
Each model component is scheduled on a clock tick (think of multiple hands of a clock ticking
at different intervals and the object being updated at each tick of the corresponding hand).
The scheduling also guarantees the correct sequencing of operations. For example, your Table
objects should always be scheduled after the computations that they are recording, otherwise
they will miss the outcome of the latest calculation.

MOOSE has a central clock element (/clock) to manage time. Clock has a set of Tick ele-
ments under it that take care of advancing the state of each element with time as the simulation
progresses. Every element to be included in a simulation must be assigned a tick. Each tick can
have a different ticking interval (dt) that allows different elements to be updated at different
rates.

By default, every object is assigned a clock tick with reasonable default timesteps as soon it is
created:

Class type tick dt
Electrical computations: 0-7 50 microseconds
electrical compartments,
V and ligand-gated ion channels,
Calcium conc and Nernst,
stimulus generators and tables,
HSolve.

Table (to plot elec. signals) 8 100 microseconds

Diffusion solver 10 0.01 seconds
Chemical computations: 11-17 0.1 seconds
Pool, Reac, Enz, MMEnz,
Func, Function,
Gsolve, Ksolve,

(continues on next page)

3 This apparently convoluted implementation is for performance reason. Can you figure out why? Hint: the
table is driven by a slower clock than the compartment.

24 Chapter 3. �ick Start

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

Stats (to do stats on outputs)

Table2 (to plot chem. signals) 18 1 second

HDF5DataWriter 30 1 second
Postmaster (for parallel 31 0.01 seconds
computations)

There are 32 available clock ticks. Numbers 20 to 29 are unassigned so you can use them for
whatever purpose you like.

If you want fine control over the scheduling, there are three things you can do.

• Alter the ‘tick’ field on the object

• Alter the dt associated with a given tick, using the moose.setClock(tick, newdt) com-
mand

• Go through a wildcard path of objects reassigning there clock ticks, using
moose.useClock(path, newtick, function).

Here we discuss these in more detail.

Altering the ‘tick’ field

Every object knows which tick and dt it uses:

>>> a = moose.Pool('/a')
>>> print a.tick, a.dt
13 0.1

The tick field on every object can be changed, and the object will adopt whatever clock dt
is used for that tick. The dt field is readonly, because changing it would have side-effects on
every object associated with the current tick.

Ticks -1 and -2 are special: They both tell the object that it is disabled (not scheduled for any
operations). An object with a tick of -1 will be left alone entirely. A tick of -2 is used in solvers
to indicate that should the solver be removed, the object will revert to its default tick.

Altering the dt associated with a given tick

We initialize the ticks and set their dt values using the setClock function.

>>> moose.setClock(0, 0.025e-3)
>>> moose.setClock(1, 0.025e-3)
>>> moose.setClock(2, 0.25e-3)

This will initialize tick #0 and tick #1 with dt = 25 Î¼s and tick #2 with dt = 250 Î¼s.
Thus all the elements scheduled on ticks #0 and 1 will be updated every 25 Î¼s and those on
tick #2 every 250 Î¼s. We use the faster clocks for the model components where finer timescale
is required for numerical accuracy and the slower clock to sample the values of Vm.

Note that if you alter the dt associated with a given tick, this will affect the update time for
all the objects using that clock tick. If you’re unsure that you want to do this, use one of the
vacant ticks.

Assigning clock ticks to all objects in a wildcard path

3.3. Ge�ing started with python scripting for MOOSE 25

MOOSE User Manual, Release chennapoda (3.2.rc)

To assign tick #2 to the table for recording Vm, we pass its whole path to the useClock func-
tion.

>>> moose.useClock(2, '/data/soma_Vm', 'process')

Read this as “use tick # 2 on the element at path /data/soma_Vm to call its process method
at every step”. Every class that is supposed to update its state or take some action during
simulation implements a process method. And in most cases that is the method we want
the ticks to call at every time step. A less common method is init, which is implemented in
some classes to interleave actions or updates that must be executed in a specific order4. The
Compartment class is one such case where a neuronal compartment has to know the Vm of
its neighboring compartments before it can calculate its Vm for the next step. This is done with:

>>> moose.useClock(0, soma.path, 'init')

Here we used the path field instead of writing the path explicitly.

Next we assign tick #1 to process method of everything under /model.

>>> moose.useClock(1, '/model/##', 'process')

Here the second argument is an example of wild-card path. The ## matches everything under
the path preceding it at any depth. Thus if we had some other objects under /model/soma,
process method of those would also have been scheduled on tick #1. This is very useful
for complex models where it is tedious to scheduled each element individually. In this case
we could have used /model/# as well for the path. This is a single level wild-card which
matches only the children of /model but does not go farther down in the hierarchy.

3.3.6 Running the simulation

Once the model is all set up, we can put the model to its initial state using

>>> moose.reinit()

You may remember that we had changed initVm from -0.06 to -0.07. The reinit call we
initialize Vm to that value. You can verify that

>>> print soma.Vm
-0.07

Finally, we run the simulation for 300 ms

>>> moose.start(300e-3)

The data will be recorded by the soma_vm table, which is referenced by the variable vmtab.
The Table class provides a numpy array interface to its content. The field is vector. So you
can easily plot the membrane potential using the matplotlib (http://matplotlib.org/) library.

4 In principle any function available in a MOOSE class can be executed periodically this way as long as that class
exposes the function for scheduling following the MOOSE API. So you have to consult the class’ documentation
for any nonstandard methods that can be scheduled this way.

26 Chapter 3. �ick Start

http://matplotlib.org/

MOOSE User Manual, Release chennapoda (3.2.rc)

>>> import pylab
>>> t = pylab.linspace(0, 300e-3, len(vmtab.vector))
>>> pylab.plot(t, vmtab.vector)
>>> pylab.show()

The first line imports the pylab submodule from matplotlib. This useful for interactive plotting.
The second line creates the time points to match our simulation time and length of the recorded
data. The third line plots the Vm and the fourth line makes it visible. Does the plot match your
expectation?

3.3.7 Some more details

vec, melement and element

MOOSE elements are instances of the class melement. Compartment, PulseGen and other
MOOSE classes are derived classes of melement. All melement instances are contained in
array-like structures called vec. Each vec object has a numerical id_ field uniquely identify-
ing it. An vec can have one or more elements. You can create an array of elements

>>> comp_array = moose.vec('/model/comp', n=3, dtype='Compartment')

This tells MOOSE to create an vec of 3 Compartment elements with path /model/comp.
For vec objects with multiple elements, the index in the vec is part of the element path.

>>> print comp_array.path, type(comp_array)

shows that comp_array is an instance of vec class. You can loop through the elements in an
vec like a Python list

>>> for comp in comp_array:
... print comp.path, type(comp)
...

shows

/model[0]/comp[0] <type 'moose.Compartment'>
/model[0]/comp[1] <type 'moose.Compartment'>
/model[0]/comp[2] <type 'moose.Compartment'>

Thus elements are instances of class melement. All elements in an vec share the id_ of the
vec which can retrieved by melement.getId().

A frequent use case is that after loading a model from a file one knows the paths of various
model components but does not know the appropriate class name for them. For this scenario
there is a function called element which converts (“casts” in programming jargon) a path or
any moose object to its proper MOOSE class. You can create additional references to soma in
the example this way

x = moose.element('/model/soma')

Any MOOSE class can be extended in Python. But any additional attributes added in Python
are invisible to MOOSE. So those can be used for functionalities at the Python level only. You
can see moose-examples/squid/squid.py for an example.

3.3. Ge�ing started with python scripting for MOOSE 27

MOOSE User Manual, Release chennapoda (3.2.rc)

Finfos

The following kinds of Finfo are accessible in Python

• ‘‘valueFinfo‘‘ : simple values. For each readable valueFinfo XYZ there is a
destFinfo getXYZ that can be used for reading the value at run time. If
XYZ is writable then there will also be destFinfo to set it: setXYZ. Example:
Compartment.Rm

• ‘‘lookupFinfo‘‘ : lookup tables. These fields act like Python dictionaries but iteration is
not supported. Example: Neutral.neighbors.

• ‘‘srcFinfo‘‘ : source of a message. Example: PulseGen.output.

• ‘‘destFinfo‘‘ : destination of a message. Example: Compartment.injectMsg. Apart
from being used in setting up messages, these are accessible as functions from Python.
HHGate.setupAlpha is an example.

• ‘‘sharedFinfo‘‘ : a composition of source and destination fields. Example:
Compartment.channel.

3.3.8 Moving on

Now you know the basics of pymoose and how to access the help system. You can figure out
how to do specific things by looking at the ‘cookbook‘. In addition, the moose-examples/
snippets directory in your MOOSE installation has small executable python scripts that
show usage of specific classes or functionalities. Beyond that you can browse the code in the
moose-examples directory to see some more complex models.

MOOSE is backward compatible with GENESIS and most GENESIS classes have been
reimplemented in MOOSE. There is slight change in naming (MOOSE uses CamelCase),
and setting up messages are different. But GENESIS documentation (http://www.genesis-
sim.org/GENESIS/Hyperdoc/Manual.html) is still a good source for documentation on
classes that have been ported from GENESIS.

If the built-in MOOSE classes do not satisfy your needs entirely, you are welcome to add new
classes to MOOSE. The API documentation will help you get started.

3.4 Demonstration of basic functionalities

3.4.1 Load and Run a Model

3.4.2 Start, Stop, and se�ing clocks

3.4.3 Run Python from MOOSE

3.5 MOOSE Classes

3.5.1 Messages

One-to-one message

28 Chapter 3. �ick Start

http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual.html

MOOSE User Manual, Release chennapoda (3.2.rc)

Show the message

Single Message Cross

3.5.2 Time

Clocks

Generating Time Data Table

3.5.3 Vectors

3.5.4 Data Entries

3.5.5 Interpolation

1-dimentional Interpolation

2-dimentional interpolation

3.5.6 Function

3.5.7 SymCompartment

3.5.8 Tables

3.5.9 Data Types

HDF DataType

NSDF DataType

3.5.10 Threading

3.5.11 PyMoose

3.5.12 Mathematics with MOOSE

3.5.13 Computing an arbitrary function

3.5.14 Di�erential Equation Solving

3.5.15 Harmonic Oscillatory Function

3.5.16 Lotka-Voltera Model

3.5.17 Vary Concentration with mathematical function

3.5. MOOSE Classes 29

MOOSE User Manual, Release chennapoda (3.2.rc)

30 Chapter 3. �ick Start

CHAPTER 4

Cook Book

The MOOSE Cookbook contains recipes showing you, how to do specific tasks in MOOSE.

4.1 Single Neuron Electrical Aspects (BioPhysics)

4.1.1 Neuron Modeling

Neurons are modelled as equivalent electrical circuits. The morphology of a neuron can be bro-
ken into isopotential compartments connected by axial resistances Ra denoting the cytoplasmic
resistance. In each compartment, the neuronal membrane is represented as a capacitance Cm
with a shunt leak resistance Rm. Electrochemical gradient (due to ion pumps) across the leaky
membrane causes a voltage drive Em, that hyperpolarizes the inside of the cell membrane
compared to the outside.

Each voltage dependent ion channel, present on the membrane, is modelled as a voltage de-
pendent conductance Gk with gating kinetics, in series with an electrochemical voltage drive
(battery) Ek, across the membrane capacitance Cm, as in the figure below.

Fig. 1: Equivalent circuit of neuronal compartments

Neurons fire action potentials / spikes (sharp rise and fall of membrane potential Vm) due
to voltage dependent channels. These result in opening of excitatory / inhibitory synaptic

31

MOOSE User Manual, Release chennapoda (3.2.rc)

channels (conductances with batteries, similar to voltage gated channels) on other connected
neurons in the network.

MOOSE can handle large networks of detailed neurons, each with complicated channel dy-
namics. Further, MOOSE can integrate chemical signalling with electrical activity. Presently,
creating and simulating these requires PyMOOSE scripting, but these will be incorporated into
the GUI in the future.

To understand channel kinetics and neuronal action potentials, run the Squid Axon demo in-
stalled along with MOOSEGUI and consult its help/tutorial.

Read more about compartmental modelling in the first few chapters of the Book of Genesis
(http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf/index.html).

Models can be defined in NeuroML (http://www.neuroml.org), an XML format which is
mostly supported across simulators. Channels, neuronal morphology (compartments), and
networks can be specified using various levels of NeuroML, namely ChannelML, Mor-
phML and NetworkML. Importing of cell models in the GENESIS (http://www.genesis-
sim.org/GENESIS) .p format is supported for backward compatibitility.

Modeling details

Some salient properties of neuronal building blocks in MOOSE are described below. Variables
that are updated at every simulation time step are listed dynamically. Rest are parameters.

• Compartment When you select a compartment, you can view and edit its properties in
the right pane. Vm and Imare plot-able.

– Vm membrane potential (across Cm) in Volts. It is a dynamical variable.

– Cm membrane capacitance in Farads.

– Em membrane leak potential in Volts due to the electrochemical gradient setup by
ion pumps.

– Im current in Amperes across the membrane via leak resistance Rm.

– inject current in Amperes injected externally into the compartment.

– initVm initial Vm in Volts.

– Rm membrane leak resistance in Ohms due to leaky channels.

– diameter diameter of the compartment in metres.

– length length of the compartment in metres.

• HHChannel Hodgkin-Huxley channel with voltage dependent dynamical gates.

– Gbar peak channel conductance in Siemens.

– Ek reversal potential of the channel, due to electrochemical gradient of the ion(s) it
allows.

– Gk conductance of the channel in Siemens. Gk(t) = Gbar × X(t)Xpower × Y(t)Ypower ×
Z(t)Zpower

– Ik

current through the channel into the neuron in Amperes. Ik(t) = Gk(t) × (Ek-
Vm(t))

32 Chapter 4. Cook Book

http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf/index.html
http://www.neuroml.org
http://www.genesis-sim.org/GENESIS

MOOSE User Manual, Release chennapoda (3.2.rc)

– X, Y, Z gating variables (range 0.0 to 1.0) that may turn on or off as voltage increases
with different time constants.

dX(t)/dt = Xinf/τ - X(t)/τ

Here, Xinf and τ are typically sigmoidal/linear/linear-sigmoidal func-
tions of membrane potential Vm, which are described in a ChannelML
file and presently not editable from MOOSEGUI. Thus, a gate may open
(Xinf(Vm) → 1) or close (Xinf(Vm) → 0) on increasing Vm, with time con-
stant τ(Vm).

– Xpower, Ypower, Zpower powers to which gates are raised in the Gk(t) formula
above.

• HHChannel2D The Hodgkin-Huxley channel2D can have the usual voltage dependent
dynamical gates, and also gates that depend on voltage and an ionic concentration, as
for say Ca-dependent K conductance. It has the properties of HHChannel above, and
a few more, similar to in the GENESIS tab2Dchannel reference (http://www.genesis-
sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.61).

• CaConc This is a pool of Ca ions in each compartment, in a shell volume under the
cell membrane. The dynamical Ca concentration increases when Ca channels open, and
decays back to resting with a specified time constant τ. Its concentration controls Ca-
dependent K channels, etc.

– Ca Ca concentration in the pool in units mM (i.e., mol/m3).

d[Ca2+]/dt = B × ICa - [Ca2+]/τ

– CaBasal/Ca_base Base Ca concentration to which the Ca decays

– tau time constant with which the Ca concentration decays to the base Ca level.

– B constant in the [Ca2+] equation above.

– thick thickness of the Ca shell within the cell membrane which is used to
calculate B (see Chapter 19 of Book of GENESIS (http://www.genesis-
sim.org/GENESIS/iBoG/iBoGpdf/index.html).)

4.1.2 Neuronal simulations in MOOSEGUI

Neuronal models in various formats can be loaded and simulated in the MOOSE Graphical
User Interface. The GUI displays the neurons in 3D, and allows visual selection and editing
of neuronal properties. Plotting and visualization of activity proceed concurrently with the
simulation. Support for creating and editing channels, morphology, and networks is planned
for the future. MOOSEGUI uses SI units throughout.

moose-examples

• Cerebellar granule cell

File -> Load -> ~/moose/moose-examples/neuroml/GranuleCell/GranuleCell.net.xml

This is a single compartment Cerebellar granule cell with a variety of channels Maex, R.
and De Schutter, E., 1997 (http://www.tnb.ua.ac.be/models/network.shtml) (exported
from http://www.neuroconstruct.org/). Click on its soma, and See children for its list

4.1. Single Neuron Electrical Aspects (BioPhysics) 33

http://www.genesis-sim.org/GENESIS/Hyperdoc/Manual-26.html#ss26.61
http://www.genesis-sim.org/GENESIS/iBoG/iBoGpdf/index.html
http://www.tnb.ua.ac.be/models/network.shtml
http://www.tnb.ua.ac.be/models/network.shtml
http://www.neuroconstruct.org/

MOOSE User Manual, Release chennapoda (3.2.rc)

of channels. Vary the Gbar of these channels to obtain regular firing, adapting and bursty
behaviour (may need to increase tau of the Ca pool).

• Pyloric rhythm generator in the stomatogastric ganglion of lobster

File -> Load -> ~/moose/moose-examples/neuroml/pyloric/Generated.net.xml

• Purkinje cell

File -> Load -> ~/moose/moose-examples/neuroml/PurkinjeCell/Purkinje.net.xml

This is a purely passive cell, but with extensive morphology [De Schutter, E. and Bower, J.
M., 1994] (exported from http://www.neuroconstruct.org/). The channel specifications
are in an obsolete ChannelML format which MOOSE does not support.

• Olfactory bulb subnetwork

File -> Load -> ~/moose/moose-examples/neuroml/OlfactoryBulb/numgloms2_seed100.0_decimated.xml

This is a pruned and decimated version of a detailed network model of the Olfactory
bulb [Gilra A. and Bhalla U., in preparation] without channels and synaptic connections.
We hope to post the ChannelML specifications of the channels and synapses soon.

• All channels cell

File -> Load -> ~/moose/moose-examples/neuroml/allChannelsCell/allChannelsCell.net.xml

This is the Cerebellar granule cell as above, but with loads of channels from vari-
ous cell types (exported from http://www.neuroconstruct.org/). Play around with
the channel properties to see what they do. You can also edit the ChannelML
files in ~/moose/moose-examples/neuroml/allChannelsCell/cells_channels/ to exper-
iment further.

• NeuroML python scripts In directory ~/moose/moose-
examples/neuroml/GranuleCell, you can run python FvsI_Granule98.py which
plots firing rate vs injected current for the granule cell. Consult this python script to see
how to read in a NeuroML model and to set up simulations. There are ample snippets
in ~/moose/moose-examples/snippets too.

4.1.3 Load and Run simple models

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under

(...)/moose/moose-examples/snippets

They can be run by typing

$ python filename.py

(continues on next page)

34 Chapter 4. Cook Book

http://www.neuroconstruct.org/
http://www.neuroconstruct.org/

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

in your command line, where filename.py is the python file you want
↪→to run.

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

Single Cubicle Compartmental Neuron

Single Neuron Model

Load neuron model from GENESIS

Integrate-and-fire models

4.1.4 Simple Examples

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under

(...)/moose/moose-examples/snippets

They can be run by typing

$ python filename.py

in your command line, where filename.py is the python file you want
↪→to run.

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

(continues on next page)

4.1. Single Neuron Electrical Aspects (BioPhysics) 35

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

Create a Leaky Neuron

Create a Leaky Compartment

Voltage Clamping

Generate Pulse

Synapse

Message transmission via synapse

Gap Junction

Insert Spine heads

4.2 Chemical Aspects

4.2.1 Interface for chemical kinetic models in MOOSEGUI

Upinder Bhalla, Harsha Rani

Nov 8 2016.

• Introduction (page 37)

• **TODO** What are chemical kinetic models? (page 37)

– Levels of model (page 37)

– Numerical methods (page 37)

• Using Kinetikit 12 (page 38)

– Overview (page 38)

– Model layout and icons (page 38)

* Compartment (page 39)

* Pool (page 39)

36 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

* Buffered pools (page 40)

* Reaction (page 41)

* Mass-action enzymes (page 42)

* Michaelis-Menten Enzymes (page 43)

* Summation (page 44)

– Model operations (page 45)

– Model Building (page 45)

Introduction

Kinetikit 12 is a graphical interface for doing chemical kinetic modeling in MOOSE. It is de-
rived in part from Kinetikit, which was the graphical interface used in GENESIS for similar
models. Kinetikit, also known as kkit, was at version 11 with GENESIS. Here we start with
Kinetikit 12.

TODO What are chemical kinetic models?

Much of neuronal computation occurs through chemical signaling. For example, many forms
of synaptic plasticity begin with calcium influx into the synapse, followed by calcium binding
to calmodulin, and then calmodulin activation of numerous enzymes. These events can be
represented in chemical terms:

4 Ca2++ CaM <===> Ca4.CaM

Such chemical equations can be modeled through standard Ordinary Differential Equations, if
we ignore space:

d[Ca]/dt = â^’4Kf â^— [Ca]4 â^— [CaM] + 4Kb â^— [Ca4.CaM] d[CaM]/dt =
↪→â^’Kf â^— [Ca]4 â^— [CaM] + Kb â^— [Ca4.CaM] d[Ca4.CaM]/dt = Kf â^—
↪→[Ca]4 â^— [CaM] â^’ Kb â^— [Ca4.CaM]

MOOSE models these chemical systems. This help document describes how to do such mod-
elling using the graphical interface, Kinetikit 12.

Levels of model

Chemical kinetic models can be simple well-stirred (or point) models, or they could have mul-
tiple interacting compartments, or they could include space explicitly using reaction-diffusion.
In addition such models could be solved either deterministically, or using a stochastic formu-
lation. At present Kinetikit handles compartmental models but does not compute diffusion
within the compartments, though MOOSE itself can do this at the script level. Kkit12 will do
deterministic as well as stochastic chemical calculations.

Numerical methods

• Deterministic: Adaptive timestep 5th order Runge-Kutta-Fehlberg from the GSL (GNU
Scientific Library).

4.2. Chemical Aspects 37

MOOSE User Manual, Release chennapoda (3.2.rc)

• Stochastic: Optimized Gillespie Stochastic Systems Algorithm, custom implementation.

Using Kinetikit 12

Overview

• Load models using ‘File -> Load model’. A reaction schematic for the chemical system
appears in the ‘Editor view’ tab.

• From ‘Editor view’ tab

• View parameters by clicking on icons, and looking at entries in ‘Properties’ table to the
right.

• Edit parameters by changing their values in the ‘Properties’ table.

• From ‘Run View’

• Pools can be plotted by clicking on their icons and dragging the icons onto the plot Win-
dow. Presently only concentration v/s time is plottable.

• Select simulation, diffusion dt’s along updateInterval for plot and Gui with numerical
method using options under ‘Preferences’ button in simulation control.

• Run model using ‘Run’ button.

• Save plots image using the icons at the top of the ‘Plot Window’ or right click on plot to
Export to csv.

Most of these operations are detailed in other sections, and are shared with other aspects of
the MOOSE simulation interface. Here we focus on the Kinetikit-specific items.

Model layout and icons

When you are in the ‘Editor View’ tab you will see a collection of icons, arrows, and grey boxes
surrounding these. This is a schematic of the reaction scheme being modeled. You can view
and change parameters, and change the layout of the model.

Resizing the model layout and icons:

• Zoom: Comma and period keys. Alternatively, the mouse scroll wheel or vertical scroll
line on the track pad will cause the display to zoom in and out.

• Pan: The arrow keys move the display left, right, up, and down.

• Entire Model View: Pressing the ‘a’ key will fit the entire model into the entire field of
view.

• Resize Icons: Angle bracket keys, that is, ‘<’ and ‘>’ or ‘+’ and ‘-‘. This resizes the icons
while leaving their positions on the screen layout more or less the same.

• Original Model View: Pressing the ‘A’ key (capital ‘A’) will revert to the original model
view including the original icon scaling.

38 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

Compartment

The compartment in moose is usually a contiguous domain in which a certain set of chemical
reactions and molecular species occur. The definition is very closely related to that of a cell-
biological compartment. Examples include the extracellular space, the cell membrane, the
cytosol, and the nucleus. Compartments can be nested, but of course you cannot put a bigger
compartment into a smaller one.

• Icon: Grey boundary around a set of reactions.

• Moving Compartments: Click and drag on the boundary.

• Resizing Compartment boundary: Happens automatically when contents are reposi-
tioned, so that the boundary just contains contents.

• Compartment editable parameters:

• ‘name’: The name of the compartment.

• ‘size’: This is the volume, surface area or length of the compartment, depending on its
type.

• Compartment fixed parameters:

• ‘numDimensions’: This specifies whether the compartment is a volume, a 2-D surface,
or if it is just being represented as a length.

Pool

This is the set of molecules of a given species within a compartment. Different chemical states
of the same molecule are in different pools.

4.2. Chemical Aspects 39

MOOSE User Manual, Release chennapoda (3.2.rc)

• Icon: Colored rectangle with pool name in it.

• Moving pools: Click and drag.

• Pool editable parameters:

• name: Name of the pool

• n: Number of molecules in the pool

• nInit: Initial number of molecules in the pool. ‘n’ gets set to this value when the ‘reinit’
operation is done.

• conc: Concentration of the molecules in the pool. conc = n * unit_scale_factor
/ (N_A * vol)

• concInit: Initial concentration of the molecules in the pool. ‘conc’ is set to this value
when the ‘reinit’ operation is done.

concInit = nInit * unit_scale_factor / (N_A * vol)

• Pool fixed parameters

• size: Derived from the compartment that holds the pool. Specifies volume, surface area
or length of the holding compartment.

Bu�ered pools

Some pools are set to a fixed ‘n’, that is number of molecules, and therefore a fixed concentra-
tion, throughout a simulation. These are buffered pools.

• Icon: Colored rectangle with pool name in it.

• Moving Buffered pools: Click and drag.

• Buffered Pool editable parameters

• name: Name of the pool

• nInit: Fixed number of molecules in the pool. ‘n’ gets set to this value throughout the
run.

• concInit: Fixed concentration of the molecules in the pool. ‘conc’ is set to this value
throughout the run.

concInit = nInit * unit_scale_factor / (N_A * vol)

• Pool fixed parameters:

40 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

• n: Number of molecules in the pool. Derived from ‘nInit’.

• conc: Concentration of molecules in the pool. Derived from ‘concInit’.

• size: Derived from the compartment that holds the pool. Specifies volume, surface area
or length of the holding compar’tment.

Reaction

These are conversion reactions between sets of pools. They are reversible, but you can set either
of the rates to zero to get irreversibility. In the illustration below, ‘D’ and ‘A’ are substrates,
and ‘B’ is the product of the reaction. This is indicated by the direction of the green arrow.

• Icon: Reversible reaction arrow.

• Moving Reactions: Click and drag.

• Reaction editable parameters:

• Name : Name of reaction

• Kf: ‘Forward rate’ of reaction, in ‘concentration/time’ units. This is the normal way to
express and manipulate the reaction rate.

• kf: Forward rate of reaction, in ‘number/time’ units. This is used internally for compu-
tations, but is volume-dependent and should not be used to manipulate the reaction rate
unless you really know what you are doing.

• Kb: Backward rate’ of reaction, in ‘concentration/time’ units. This is the normal way to
express and manipulate the reaction rate.

• kb: Backward rate of reaction, in ‘number/time’ units. This is used internally for com-
putations, but is volume-dependent and should not be used to manipulate the reaction
rate unless you really know what you are doing.

4.2. Chemical Aspects 41

MOOSE User Manual, Release chennapoda (3.2.rc)

• Reaction fixed parameters:

• numSubstrates: Number of substrates molecules.

• numProducts: Number of product molecules.

Mass-action enzymes

These are enzymes that model the chemical equation’s

E + S <===> E.S -> E + P

Note that the second reaction is irreversible. Note also that mass-action enzymes include a
pool to represent the ‘E.S’ (enzyme-substrate) complex. In the example below, the enzyme
pool is named ‘MassActionEnz’, the substrate is ‘C’, and the product is ‘E’. The direction of
the enzyme reaction is indicated by the red arrows.

• Icon: Colored ellipse atop a small square. The ellipse represents the enzyme. The
small square represents ‘E.S’, the enzyme-substrate complex. The ellipse icon has the
same color as the enzyme pool ‘E’. It is connected to the enzyme pool ‘E’ with a straight
line of the same color.

The ellipse icon sits on a continuous, typically curved arrow in red, from the sub-
strate to the product.

A given enzyme pool can have any number of enzyme activities, since the same
enzyme might catalyze many reactions.

• Moving Enzymes: Click and drag on the ellipse.

• Enzyme editable parameters

• name : Name of enzyme.

42 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

• Km : Michaelis-Menten value for enzyme, in ‘concentration’ units.

• kcat : Production rate of enzyme, in ‘1/time’ units. Equal to k3, the rate of the second,
irreversible reaction.

• k1 : Forward rate of the E+S reaction, in number and ‘1/time’ units. This is what is used
in the internal calculations.

• k2 : Backward rate of the E+S reaction, in ‘1/time’ units. Used in internal calculations.

• k3 : Forward rate of the E.S -> E + P reaction, in ‘1/time’ units. Equivalent to kcat. Used
in internal calculations.

• ratio : This is equal to k2/k3. Needed to define the internal rates in terms of Km and kcat.
I usually use a value of 4.

• Enzyme-substrate-complex editable parameters: These are identica’l to those of any
other pool.

• name: Name of the E.S complex. Defaults to **_cplx**.

• n: Number of molecules in the pool

• nInit: Initial number of molecules in the complex. ‘n’ gets set to this value when the
‘reinit’ operation is done.

• conc: Concentration of the molecules in the pool.

conc = n * unit_scale_factor / (N_A * vol)

• concInit: Initial concentration of the molecules in the pool. ‘conc’ is set to this value
when the ‘reinit’ operation is done. concI'nit = nInit * unit_scale_factor
/ (N_A * vol)

• Enzyme-substrate-complex fixed parameters:

• size: Derived from the compartment that holds the pool. Specifies volume, surface area
or length of the holding compartment. Note that the Enzyme-substrate-complex is as-
sumed to be in the same compartment as the enzyme molecule.

Michaelis-Menten Enzymes

These are enzymes that obey the Michaelis-Menten equation

V = V_max * [S] / (K_m + [S]) = k_cat * [Etot] * [S] / (K_m
+ [S]) where - Vmax is the maximum rate of the enzyme - [Etot] is the total amount of the
enzyme - Km is the Michaelis-Menten constant - S is the substrate.

Nominally these enzymes model the same chemical equation as the mass-action enzyme’:

E + S <===> E.S -> E + P

but they make the assumption that the E.S is in a quasi-steady-state with E and S, and they
also ignore sequestration of the enzyme into the complex. So there is no representation of the
E.S complex. In the example below, the enzyme pool is named MM_Enz, the substrate is E,
and the product is P. The direction of the enzyme reaction is indicated by the red arrows.

• Icon: Colored ellipse. The ellipse represents the enzyme The ellipse icon has the
same color as the enzyme ‘MM_Enz’. It is connected to the enzyme pool ‘MM_Enz’ with

4.2. Chemical Aspects 43

MOOSE User Manual, Release chennapoda (3.2.rc)

a straight line of the same color. The ellipse icon sits on a continuous, typically curved
arrow in red, from the substrate to the product. A given enzyme pool can have any
number of enzyme activities, since the same enzyme might catalyze many reactions.

• Moving Enzymes: Click and drag.

• Enzyme editable parameters:

– name: Name of enzyme.

– Km: Michaelis-Menten value for enzyme, in ‘concentration’ units.

– kcat: Production rate of enzyme, in ‘1/time’ units. Equal to k3, the rate of the second,
irreversible reaction.

Summation

Summation object can be used to add specified variable values. The variables can be input
from pool object.

• Icon: This is Î£ in the example image below. The input pools ‘A’ and
‘B’ connect to the Î£ with blue arrows. The function ouput’s to BuffPool

44 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

Model operations

• Loading models: File -> Load Model -> select from dialog. This operation makes the
previously loaded model disable and loads newly selected models in ‘Model View’.

• New: File -> New -> Model name. This opens a empty widget for model building

• Saving models: File -> Save Model -> select from dialog.

• Changing numerical methods: Preference->Chemical tab item from Simulation Con-
trol. Currently supports:

1. Runge Kutta: This is the Runge-Kutta-Fehlberg implementation from the GNU Scientific
Library (GSL). It is a fifth order variable timestep explicit method. Works well for most
reaction systems except if they have very stiff reactions.

2. Gillespie: Optimized Gillespie stochastic systems algorithm, custom implementation.
This uses variable timesteps internally. Note that it slows down with increasing numbers
of molecules in each pool. It also slows down, but not so badly, if the number of reactions
goes up.

3. Exponential Euler:This methods computes the solution of partial and ordinary differen-
tial equations.

Model building

• The Edit Widget includes various menu options and model icons on the top. Use the
mouse buttton to click and drag icons from toolbar to Edit Widget, two things will hap-
pen, icon will appear in the editor widget and an object editor will pop up with lots of
parameters with respect to moose object.

Rules:

* Compartment has to be created firstly(At present only single
↪→compartment model is allowed)

* Enzyme should be dropped on a pool as parent
* function should be dropped on buffPool for output

Note:

4.2. Chemical Aspects 45

MOOSE User Manual, Release chennapoda (3.2.rc)

* Drag in pool and reaction on to the editor widget, now one can
↪→set up a reaction.

* Click on mooseObject one can find a little arrow on the top right
↪→corner of the object, drag from this little arrow to any object
↪→for connection. e.g pool to reaction and reaction to pool.
↪→Specific connection type gets specific colored arrow. e.g. Green
↪→color arrow for specifying connection between reactant and product
↪→for reaction.

* Clicking on the object one can rearrange object for clean layout.
* Second order reaction can also be done by repeating the
↪→connection over again

* Each connection can be deleted and using rubberband selection
↪→each moose object can be deleted

• From run widget, pools are draggable to plot window for plotting. (Currently conc is
plotted as default field) Plots are color-coded as per in model.

• Model can be run by clicking start button. One can stop button in mid-stream and start
up again without affectiong the calculations. The reset button clears the simulation.

4.2.2 Load - Run - Save models

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under
(continues on next page)

46 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

4.2. Chemical Aspects 47

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

(...)/moose/moose-examples/snippets

They can be run by typing

$ python filename.py

in your command line, where filename.py is the python file you want
↪→to run.

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

Load a Kinetic Model

Load an SBML Model

Load a CSpace Model

Save a model into SBML format

Save a model

4.2.3 Simple Examples

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under

(...)/moose/moose-examples/snippets

They can be run by typing

(continues on next page)

48 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

$ python filename.py

in your command line, where filename.py is the python file you want
↪→to run.

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

Set-up a kinetic solver and model

with Scripting

With something else

Building a chemical Model from Parts

Disclaimer: Avoid doing this for all but the very simplest models. This is error-prone, tedious,
and non-portable. For preference use one of the standard model formats like SBML, which
MOOSE and many other tools can read and write.

Nevertheless, it is useful to see how these models are set up. There are several tutorials and
snippets that build the entire chemical model system using the basic MOOSE calls. The se-
quence of steps is typically:

1. Create container (chemical compartment) for model. This is typically a CubeMesh, a
CylMesh, and if you really know what you are doing, a NeuroMesh.

2. Create the reaction components: pools of molecules moose.Pool; reactions moose.Reac;
and enzymes moose.Enz. Note that when creating an enzyme, one must also create a
molecule beneath it to serve as the enzyme-substrate complex. Other less-used compo-
nents include Michaelis-Menten enzymes moose.MMenz, input tables, pulse generators
and so on. These are illustrated in other examples. All these reaction components should
be child objects of the compartment, since this defines what volume they will occupy.
Specifically , a pool or reaction object must be placed somewhere below the compart-
ment in the object tree for the volume to be set correctly and for the solvers to know what
to use.

3. Assign parameters for the components.

4.2. Chemical Aspects 49

MOOSE User Manual, Release chennapoda (3.2.rc)

• Compartments have a volume, and each subtype will have quite elaborate options
for partitioning the compartment into voxels.

• Pool s have one key parameter, the initial concentration concInit.

• Reac tions have two parameters: Kf and Kb.

• Enz ymes have two primary parameters kcat and Km. That is enough for MMenz
ymes. Regular Enz ymes have an additional parameter k2 which by default is set to
4.0 times kcat, but you may also wish to explicitly assign it if you know its value.

4. Connect up the reaction system using moose messaging.

5. Create and connect up input and output tables as needed.

6. Create and connect up the solvers as needed. This has to be done in a specific order.
Examples are linked below, but briefly the order is:

a. Make the compartment and reaction system.

b. Make the Ksolve or Gsolve.

c. Make the Stoich.

d. Assign stoich.compartment to the compartment

e. Assign stoich.ksolve to either the Ksolve or Gsolve.

f. Assign stoich.path to finally fill in the reaction system.

An example of manipulating the models is as following:

The recommended way to build a chemical model, of course, is to load it in from a file for-
mat specific to such models. MOOSE understands SBML, kkit.g (a legacy GENESIS format),
and cspace (a very compact format used in a large study of bistables from Ramakrishnan and
Bhalla, PLoS Comp. Biol 2008).

One key concept is that in MOOSE the components, messaging, and access to model compo-
nents is identical regardless of whether the model was built from parts, or loaded in from a
file. All that the file loaders do is to use the file to automate the steps above. Thus the model
components and their fields are completely accessible from the script even if the model has
been loaded from a file.

Cross-Compartment Reaction Systems

Frequently reaction systems span cellular (chemical) compartments. For example, a
membrane-bound molecule may be phosphorylated by a cytosolic kinase, using soluble ATP
as one of the substrates. Here the membrane and the cytsol are different chemical compart-
ments. MOOSE supports such reactions. The following snippets illustrate cross-compartment
chemistry. Note that the interpretation of the rates of enzymes and reactions does depend on
which compartment they reside in.

Tweaking Parameters

Models’ Demonstration

50 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

Oscillation Model

Bistability Models

MAPK feedback loop model

Simple minimal bistable model

Strongly bistable Model

Model of bidirectional synaptic plasticity

[showing bistable chemical switch]

Reaction Di�usion Models

The MOOSE design for reaction-diffusion is to specify one or more cellular ‘compartments’,
and embed reaction systems in each of them.

A ‘compartment’, in the context of reaction-diffusion, is used in the cellular sense of a bio-
chemically defined, volume restricted subpart of a cell. Many but not all compartments are
bounded by a cell membrane, but biochemically the membrane itself may form a compart-
ment. Note that this interpretation differs from that of a ‘compartment’ in detailed electrical
models of neurons.

4.2. Chemical Aspects 51

MOOSE User Manual, Release chennapoda (3.2.rc)

A reaction system can be loaded in from any of the supported MOOSE formats, or built within
Python from MOOSE parts.

The computations for such models are done by a set of objects: Stoich, Ksolve and Dsolve.
Respectively, these handle the model reactions and stoichiometry matrix, the reaction compu-
tations for each voxel, and the diffusion between voxels. The ‘Compartment’ specifies how the
model should be spatially discretized.

[Reaction-diffusion + transport in a tapering cylinder]

Neuronal Di�usion Reaction

A Turing Model

Reaction Di�usion in Neurons

Manipulating Chemical Models

Running with di�erent numerical methods

Changing volumes

Feeding tabulated input to a model

Finding steady states

Making a dose-response curve

Transport in branching dendritic tree

4.2.4 Tutorials

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under

(...)/moose/moose-examples/snippets

They can be run by typing

$ python filename.py

in your command line, where filename.py is the python file you want
↪→to run.

(continues on next page)

52 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

4.2. Chemical Aspects 53

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

Finding Steady State (CSpace)

Define a kinetic model using the scripting

4.3 Networking

4.3.1 Simple Examples

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under

(...)/moose/moose-examples/snippets

They can be run by typing

$ python filename.py

in your command line, where filename.py is the python file you want
↪→to run.

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

(continues on next page)

54 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

Connecting two cells via a synapse

Below is the connectivity diagram for setting up a synaptic connection from one neuron to an-
other. The PulseGen object is there for stimulating the presynaptic cell as part of experimental
setup. The cells are defined as single-compartments with Hodgkin-Huxley type Na+ and K+
channels.

Multi Compartmental Leaky Neurons

Providing random input to a cell

Plastic synapse

Synapse Handler for Spikes

Recurrent integrate-and-fire network

Recurrent integrate-and-fire network with plasticity

Demonstration Models

4.3. Networking 55

MOOSE User Manual, Release chennapoda (3.2.rc)

Building Models

4.3.2 Tutorials

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under

(...)/moose/moose-examples/snippets

They can be run by typing

$ python filename.py

in your command line, where filename.py is the python file you want
↪→to run.

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

56 Chapter 4. Cook Book

MOOSE User Manual, Release chennapoda (3.2.rc)

Network with Ca-based plasticity

4.4 MultiScale Modeling

4.4.1 Simple Examples

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under

(...)/moose/moose-examples/snippets

They can be run by typing

$ python filename.py

in your command line, where filename.py is the python file you want
↪→to run.

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

Single-compartment multiscale model

Multi compartment Single Neuron Model

Modeling chemical reactions in neurons

4.4. MultiScale Modeling 57

MOOSE User Manual, Release chennapoda (3.2.rc)

58 Chapter 4. Cook Book

CHAPTER 5

Rdesignuer

5.1 Rdesigneur: Building multiscale models

Author: Upi Bhalla

Date: Aug 26 2016,

Last-Updated: Nov 08 2018

By: Upi Bhalla

5.1.1 Contents

Contents

• Rdesigneur: Building multiscale models (page 59)

– Contents (page 59)

– Introduction (page 61)

– Rdesigneur examples (page 62)

* Bare Rdesigneur: single passive compartment (page 62)

* Simulate and display current pulse to soma (page 63)

* Simulate and display voltage clamp stimulus to soma (page 64)

* HH Squid model in a single compartment (page 65)

* HH Squid model with voltage clamp (page 69)

* HH Squid model in an axon (page 69)

* Action potential collision in HH Squid axon model (page 73)

59

MOOSE User Manual, Release chennapoda (3.2.rc)

* HH Squid model in a myelinated axon (page 74)

* Alternate (non-squid) way to define soma (page 76)

* Ball-and-stick model of a neuron (page 76)

* Benchmarking simulation speed (page 79)

* Synaptic stimulus: random (Possion) (page 82)

* Synaptic stimulus: periodic (page 82)

* Reaction system in a single compartment (page 84)

* Reaction-diffusion system (page 85)

* Primer on using the 3-D MOOGLI display (page 88)

* Diffusion of a single molecule (page 89)

* Calcium-induced calcium release (page 90)

* Intracellular transport (page 92)

* Travelling oscillator (page 97)

* Bidirectional transport (page 99)

* Controlling a reaction by a function (page 102)

* Multiscale models: single compartment (page 103)

* Multiscale model of CICR in dendrite triggered by synaptic input (page 106)

* Multiscale model spanning PSD, spine head and dendrite (page 113)

* Multiscale model in which spine geometry changes due to signaling (page 119)

* Morphology: Load .swc morphology file and view it (page 125)

* Build an active neuron model by putting channels into a morphology file (page 127)

* Build a spiny neuron from a morphology file and put active channels in it. (page 129)

* Place spines in a spiral along a dendrite (page 132)

– Rdesigneur command reference (page 133)

* turnOffElec (page 134)

* useGssa (page 134)

* combineSegments (page 134)

* stealCellFromLibrary (page 134)

* verbose (page 134)

* addSomaChemCompt (page 135)

* addEndoChemCompt (page 135)

* diffusionLength (page 135)

* temperature (page 135)

* chemDt (page 135)

60 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

* diffDt (page 136)

* elecDt (page 136)

* chemPlotDt (page 136)

* elecPlotDt (page 136)

* funcDt (page 136)

* cellProto (page 137)

* spineProto (page 137)

* chanProto (page 138)

* chemProto (page 140)

* passiveDistrib (page 140)

* spineDistrib (page 141)

* chanDistrib (page 143)

* chemDistrib (page 144)

* adaptorList (page 145)

* stimList (page 145)

* plotList (page 146)

* moogList (page 147)

5.1.2 Introduction

Rdesigneur (Reaction Diffusion and Electrical SIGnaling in NEURons) is an interface to the
multiscale modeling capabilities in MOOSE. It is designed to build models incorporating bio-
chemical signaling pathways in dendrites and spines, coupled to electrical events in neurons.
Rdesigneur assembles models from predefined parts: it delegates the details to specialized
model definition formats. Rdesigneur combines one or more of the following cell parts to
build models:

• Neuronal morphology

• Dendritic spines

• Ion channels

• Reaction systems

• Adaptors that couple between these for multiscale models

It also folds in simulation input and output

• Time-series stimuli for molecular concentration change and reaction rates

• Current and voltage clamp

• Synaptic input.

• Time-series plots

5.1. Rdesigneur: Building multiscale models 61

MOOSE User Manual, Release chennapoda (3.2.rc)

• File dumps

• 3-D neuronal graphics

Rdesigneur’s main role is to specify how these are put together, including assigning parame-
ters for the model. Using Rdesigneur one can compactly and quickly put together quite com-
plex multiscale models.

5.1.3 Rdesigneur examples

Here we provide a few use cases, building up from a minimal model to a reasonably com-
plete multiscale model spanning chemical and electrical signaling. The files for these examples
are also available in moose-examples/tutorials/Rdesigneur, and the file names are
mentioned as we go along.

Bare Rdesigneur: single passive compartment

ex1_minimalModel.py

If we don’t provide any arguments at all to the Rdesigneur, it makes a model with a single
passive electrical compartment in the MOOSE path /model/elec/soma. Here is how to do
this:

import moose
import rdesigneur as rd
rdes = rd.rdesigneur()
rdes.buildModel()

To confirm that it has made a compartment with some default values we can add a line:

moose.showfields(rdes.soma)

This should produce the output:

[/model[0]/elec[0]/soma[0]]
diameter = 0.0005
fieldIndex = 0
Ra = 7639437.26841
y0 = 0.0
Rm = 424413.177334
index = 0
numData = 1
inject = 0.0
initVm = -0.065
Em = -0.0544
y = 0.0
numField = 1
path = /model[0]/elec[0]/soma[0]
dt = 0.0
tick = -2
z0 = 0.0
name = soma
Cm = 7.85398163398e-09
x0 = 0.0

(continues on next page)

62 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

Vm = -0.06
className = ZombieCompartment
idValue = 465
length = 0.0005
Im = 1.3194689277e-08
x = 0.0005
z = 0.0

Simulate and display current pulse to soma

ex2.0_currentPulse.py

A more useful script would run and display the model. Rdesigneur can help with the stimulus
and the plotting. This simulation has the same passive compartment, and current is injected
as the simulation runs. This script displays the membrane potential of the soma as it charges
and discharges.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(

stimList = [['soma', '1', '.', 'inject', '(t>0.1 && t<0.2) * 2e-8
↪→']],

plotList = [['soma', '1', '.', 'Vm', 'Soma membrane potential']],
)
rdes.buildModel()
moose.reinit()
moose.start(0.3)
rdes.display()

The stimList defines a stimulus. Each entry has five arguments:

[region_in_cell, region_expression, moose_object, parameter,
↪→expression_string]

• region_in_cell specifies the objects to stimulate. Here it is just the soma.

• region_expression specifies a geometry based calculation to decide whether to ap-
ply the stimulus. The value must be >0 for the stimulus to be present. Here it is just
1. moose_object specifies the simulation object to operate upon during the stimulus.
Here the . means that it is the soma itself. In other models it might be a channel on the
soma, or a synapse, and so on.

• parameter specifies the simulation parameter on the moose object that the stimulus
will modify. Here it is the injection current to the soma compartment.

• expression_string calculates the value of the parameter, typically as a function of
time. Here we use the function (t>0.1 && t<0.2) * 2e-8 which evaluates as 2e-8
between the times of 0.1 and 0.2 seconds.

To summarise this, the stimList here means inject a current of 20nA to the soma between the times
of 0.1 and 0.2 s.

The plotList defines what to plot. It has a similar set of arguments:

5.1. Rdesigneur: Building multiscale models 63

MOOSE User Manual, Release chennapoda (3.2.rc)

[region_in_cell, region_expression, moose_object, parameter, title_of_
↪→plot]

These mean the same thing as for the stimList except for the title of the plot.

The rdes.display() function causes the plots to be displayed.

Fig. 1: Plot for current input to passive compartment

When we run this we see an initial depolarization as the soma settles from its initial -65 mV to
a resting Em = -54.4 mV. These are the original HH values, see the example above. At t = 0.1
seconds there is another depolarization due to the current injection, and at t = 0.2 seconds this
goes back to the resting potential.

Simulate and display voltage clamp stimulus to soma

ex2.1_vclamp.py

This model introduces the voltage clamp stimulus on a passive compartment. As before, we
add a few lines to define the stimulus and plot. This script displays both the membrane po-
tential, and the holding current of the voltage clamp circuit as it charges and discharges the
passive compartment model.

import moose
import rdesigneur as rd

(continues on next page)

64 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

rdes = rd.rdesigneur(
stimList = [['soma', '1', '.', 'vclamp', '-0.065 + (t>0.1 && t<0.

↪→2) * 0.02']],
plotList = [

['soma', '1', '.', 'Vm', 'Soma membrane potential'],
['soma', '1', 'vclamp', 'current', 'Soma holding current'],

]
)
rdes.buildModel()
moose.reinit()
moose.start(0.3)
rdes.display()

Here the stimList line tells the system to deliver a voltage clamp (vclamp) on the soma, starting
at -65 mV and jumping up by 20 mV between 0.1 and 0.2 seconds. The plotList now includes
two entries, and will generate two plots. The first is for plotting the soma membrane potential,
just to be sure that the voltage clamp is doing its job.

Fig. 2: Plot for membrane potential in voltage clamp

The second graph plots the holding current. Note the capacitive transients.

HH Squid model in a single compartment

ex3.0_squid_currentPulse.py

5.1. Rdesigneur: Building multiscale models 65

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 3: Plot for holding current for voltage clamp

66 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Here we put the Hodgkin-Huxley squid model channels into a passive compartment. The HH
channels are predefined as prototype channels for Rdesigneur,

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
chanDistrib = [

['Na', 'soma', 'Gbar', '1200'],
['K', 'soma', 'Gbar', '360']],

stimList = [['soma', '1', '.', 'inject', '(t>0.1 && t<0.2) * 1e-8
↪→']],

plotList = [['soma', '1', '.', 'Vm', 'Membrane potential']]
)

rdes.buildModel()
moose.reinit()
moose.start(0.3)
rdes.display()

Here we introduce two new model specification lines:

• chanProto: This specifies which ion channels will be used in the model. Each entry
here has two fields: the source of the channel definition, and (optionally) the name of
the channel. In this example we specify two channels, an Na and a K channel using
the original Hodgkin-Huxley parameters. As the source of the channel definition we
use the name of the Python function that builds the channel. The make_HH_Na() and
make_HH_K() functions are predefined but we can also specify our own functions for
making prototypes. We could also have specified the channel prototype using the name
of a channel definition file in ChannelML (a subset of NeuroML) format.

• chanDistrib: This specifies where the channels should be placed over the geometry of the
cell. Each entry in the chanDistrib list specifies the distribution of parameters for one
channel using four entries:

[object_name, region_in_cell, parameter, expression_string]

In this case the job is almost trivial, since we just have a single compartment named soma.
So the line

['Na', 'soma', 'Gbar', '1200']

means Put the Na channel in the soma, and set its maximal conductance density (Gbar) to 1200
Siemens/m^2.

As before we apply a somatic current pulse. Since we now have HH channels in the model,
this generates action potentials.

There are several interesting things to do with the model by varying stimulus parameters:

• Change injection current.

• Put in a protocol to get rebound action potential.

• Put in a current ramp, and run it for a different duration

• Put in a frequency chirp, and see how the squid model is tuned to a certain frequency
range.

5.1. Rdesigneur: Building multiscale models 67

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 4: Plot for HH squid simulation

68 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

• Modify channel or passive parameters. See if it still fires.

• Try the frequency chirp on the cell with parameters changed. Does the tuning change?

HH Squid model with voltage clamp

ex3.1_squid_vclamp.py

This is the same squid model, but now we add a voltage clamp to the squid and monitor the
holding current. This stimulus line is identical to ex2.1.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
chanDistrib = [

['Na', 'soma', 'Gbar', '1200'],
['K', 'soma', 'Gbar', '360']],

stimList = [['soma', '1', '.', 'vclamp', '-0.065 + (t>0.1 && t<0.
↪→2) * 0.02']],

plotList = [
['soma', '1', '.', 'Vm', 'Membrane potential'],
['soma', '1', 'vclamp', 'current', 'Soma holding current']

]
)
rdes.buildModel()
moose.reinit()
moose.start(0.3)
rdes.display()

Here we see the classic HH current response, a downward brief deflection due to the Na chan-
nel, and a slower upward sustained current due to the K delayed rectifier.

Here are some suggestions for further exploration:

• Monitor individual channel currents through additional plots.

• Convert this into a voltage clamp series. Easiest way to do this is
to complete the rdes.BuildModel, then delete the Function object on the
/model/elec/soma/vclamp. Now you can simply set the ‘command’ field of the
vclamp in a for loop, going from -ve to +ve voltages. Remember, SI units. You
may wish to capture the plot vectors each cycle. The plot vectors are accessed
by something like

moose.element('/model/graphs/plot1').vector

HH Squid model in an axon

ex3.2_squid_axon_propgn.py

Here we put the Hodgkin-Huxley squid model into a long compartment that is subdivided
into many segments, so that we can watch action potentials propagate. Most of this example is
boilerplate code to build a spiral axon. There is a short rdesigneur segment that takes the spiral
axon prototype and populates it with channels, and sets up the display. Later examples will
show you how to read morphology files to specify the neuronal geometry.

5.1. Rdesigneur: Building multiscale models 69

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 5: Plot for HH squid voltage clamp pulse.

70 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

import numpy as np
import moose
import pylab
import rdesigneur as rd

numAxonSegments = 200
comptLen = 10e-6
comptDia = 1e-6
RM = 1.0
RA = 10.0
CM = 0.01

def makeAxonProto():
axon = moose.Neuron('/library/axon')
prev = rd.buildCompt(axon, 'soma', RM = RM, RA = RA, CM = CM,

↪→ dia = 10e-6, x=0, dx=comptLen)
theta = 0
x = comptLen
y = 0.0

for i in range(numAxonSegments):
dx = comptLen * np.cos(theta)
dy = comptLen * np.sin(theta)
r = np.sqrt(x * x + y * y)
theta += comptLen / r
compt = rd.buildCompt(axon, 'axon' + str(i), RM = RM, RA

↪→= RA, CM = CM, x = x, y = y, dx = dx, dy = dy, dia = comptDia)
moose.connect(prev, 'axial', compt, 'raxial')
prev = compt
x += dx
y += dy

return axon

moose.Neutral('/library')
makeAxonProto()

rdes = rd.rdesigneur(
chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
cellProto = [['elec','axon']],
chanDistrib = [

['Na', '#', 'Gbar', '1200'],
['K', '#', 'Gbar', '360']],

stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.2) *
↪→2e-11']],

plotList = [['soma', '1', '.', 'Vm', 'Membrane potential']],
moogList = [['#', '1', '.', 'Vm', 'Vm (mV)']]
)

rdes.buildModel()
moose.reinit()

rdes.displayMoogli(0.00005, 0.05, 0.0)

Note how we explicitly create the prototype axon on ‘/library’, and then specify it using the
cellProto line in the rdesigneur. The moogList specifies the 3-D display. See below for how to
set up and use these displays.

5.1. Rdesigneur: Building multiscale models 71

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 6: Axon with propagating action potential

72 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Action potential collision in HH Squid axon model

ex3.3_AP_collision.py

This is identical to the previous example, except that now we deliver current injection at at two
points, the soma and a point along the axon. The modified stimulus line is:

...
stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.2) * 2e-11'
↪→],

['axon100', '1', '.', 'inject', '(t>0.01 && t<0.2) * 3e-11']],
...

Watch how the AP is triggered bidirectionally from the stimulus point on the 100th segment of
the axon, and observe what happens when two action potentials bump into each other.

Fig. 7: Colliding action potentials

5.1. Rdesigneur: Building multiscale models 73

MOOSE User Manual, Release chennapoda (3.2.rc)

HH Squid model in a myelinated axon

ex3.4_myelinated_axon.py

This is a curious cross-species chimera model, where we embed the HH equations into a myeli-
nated example model. As for the regular axon above, most of the example is boilerplate setup
code. Note how we restrict the HH channels to the nodes of Ranvier using a conditional test
for the diameter of the axon segment.

import numpy as np
import moose
import pylab
import rdesigneur as rd

numAxonSegments = 405
nodeSpacing = 100
comptLen = 10e-6
comptDia = 2e-6 # 2x usual
RM = 100.0 # 10x usual
RA = 5.0
CM = 0.001 # 0.1x usual

nodeDia = 1e-6
nodeRM = 1.0
nodeCM = 0.01

def makeAxonProto():
axon = moose.Neuron('/library/axon')
x = 0.0
y = 0.0
prev = rd.buildCompt(axon, 'soma', RM = RM, RA = RA, CM = CM,

↪→dia = 10e-6, x=0, dx=comptLen)
theta = 0
x = comptLen

for i in range(numAxonSegments):
r = comptLen
dx = comptLen * np.cos(theta)
dy = comptLen * np.sin(theta)
r = np.sqrt(x * x + y * y)
theta += comptLen / r
if i % nodeSpacing == 0:

compt = rd.buildCompt(axon, 'axon' + str(i), RM = nodeRM,
↪→ RA = RA, CM = nodeCM, x = x, y = y, dx = dx, dy = dy, dia =
↪→nodeDia)

else:
compt = rd.buildCompt(axon, 'axon' + str(i), RM = RM, RA

↪→= RA, CM = CM, x = x, y = y, dx = dx, dy = dy, dia = comptDia)
moose.connect(prev, 'axial', compt, 'raxial')
prev = compt
x += dx
y += dy

return axon

moose.Neutral('/library')
makeAxonProto()

(continues on next page)

74 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

rdes = rd.rdesigneur(
chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
cellProto = [['elec','axon']],
chanDistrib = [

['Na', '#', 'Gbar', '12000 * (dia < 1.5e-6)'],
['K', '#', 'Gbar', '3600 * (dia < 1.5e-6)']],

stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.2) * 1e-
↪→10']],

plotList = [['soma,axon100,axon200,axon300,axon400', '1', '.', 'Vm
↪→', 'Membrane potential']],

moogList = [['#', '1', '.', 'Vm', 'Vm (mV)']]
)

rdes.buildModel()

for i in moose.wildcardFind("/model/elec/#/Na"):
print i.parent.name, i.Gbar

moose.reinit()

rdes.displayMoogli(0.00005, 0.05, 0.0)

When you run the example, keep an eye out for a few things:

• saltatory conduction: This is the way the action potential jumps from one node of Ran-
vier to the next. Between the nodes it is just passive propagation.

• Failure to propagate: Observe that the second and fourth action potentials fails to trigger
propagation along the axon. Here we have specially tuned the model properties so that
this happens. With a larger RA of 10.0, the model will be more reliable.

• Speed: Compare the propagation speed with the previous, unmyelinated axon. Note
that the current model is larger!

Fig. 8: Myelinated axon with propagating action potential

5.1. Rdesigneur: Building multiscale models 75

MOOSE User Manual, Release chennapoda (3.2.rc)

Alternate (non-squid) way to define soma

ex4.0_scaledSoma.py

The default HH-squid axon is not a very convincing soma. Rdesigneur offers a somewhat
more general way to define the soma in the cell prototype line.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

cellProto syntax: ['somaProto', 'name', dia, length]
cellProto = [['somaProto', 'soma', 20e-6, 200e-6]],
chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
chanDistrib = [

['Na', 'soma', 'Gbar', '1200'],
['K', 'soma', 'Gbar', '360']],

stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.05) * 1e-
↪→9']],

plotList = [['soma', '1', '.', 'Vm', 'Membrane potential']],
moogList = [['#', '1', '.', 'Vm', 'Vm (mV)']]

)

rdes.buildModel()
soma = moose.element('/model/elec/soma')
print('Soma dia = {}, length = {}'.format(soma.diameter, soma.
↪→length))

moose.reinit()

rdes.displayMoogli(0.0005, 0.06, 0.0)

Here the crucial line is the cellProto line. There are four arguments here:

['somaProto', 'name', dia, length]

• The first argument tells the system to use a prototype soma, that is a single
cylindrical compartment.

• The second argument is the name to give the cell.

• The third argument is the diameter. Note that this is a double, not a string.

• The fourth argument is the length of the cylinder that makes up the soma.
This too is a double, not a string. The cylinder is oriented along the x axis,
with one end at (0,0,0) and the other end at (length, 0, 0).

This is what the soma looks like:

It a somewhat elongated soma, being a cylinder 10 times as long as it is wide.

Ball-and-stick model of a neuron

ex4.1_ballAndStick.py

A somewhat more electrically reasonable model of a neuron has a soma and a single den-
drite, which can itself be subdivided into segments so that it can exhibit voltage gradients,
have channel and receptor distributions, and so on. This is accomplished in rdesigneur using a
variant of the cellProto syntax.

76 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 9: Image of soma.

5.1. Rdesigneur: Building multiscale models 77

MOOSE User Manual, Release chennapoda (3.2.rc)

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

cellProto syntax: ['ballAndStick', 'name', somaDia, somaLength,
↪→dendDia, dendLength, numDendSegments]

The numerical arguments are all optional
cellProto = [['ballAndStick', 'soma', 20e-6, 20e-6, 4e-6, 500e-6,

↪→10]],
chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
chanDistrib = [

['Na', 'soma', 'Gbar', '1200'],
['K', 'soma', 'Gbar', '360'],
['Na', 'dend#', 'Gbar', '400'],
['K', 'dend#', 'Gbar', '120']
],

stimList = [['soma', '1', '.', 'inject', '(t>0.01 && t<0.05) * 1e-
↪→9']],

plotList = [['soma', '1', '.', 'Vm', 'Membrane potential']],
moogList = [['#', '1', '.', 'Vm', 'Vm (mV)']]

)
rdes.buildModel()
soma = moose.element('/model/elec/soma')
moose.reinit()
rdes.displayMoogli(0.0005, 0.06, 0.0)

As before, the cellProto line plays a key role. Here, because we have a long dendrite, we have a
few more numerical arguments. All of the numerical arguments are optional.

['ballAndStick', 'name', somaDia, somaLength, dendDia,
dendLength, numDendSegments]

• The first argument specifies a ballAndStick model: soma + dendrite. The
length of the dendrite is along the x axis. The soma is a single segment, the
dendrite can be more than one.

• The second argument is the name to give the cell.

• Arg 3 is the soma diameter, as a double.

• Arg 4 is the length of the soma, as a double.

• Arg 5 is the diameter of the dendrite, as a double.

• Arg 6 is the length of the dendrite, as a double.

• Arg 7 is the number of segments into which the dendrite should be divided.
This is a positive integer greater than 0.

This is what the ball-and-stick cell looks like:

In this version of the 3-D display, the soma is displayed as a bit blocky rather than round. Note
that we have populated the dendrite with Na and K channels and it has 10 segments, so it
supports action potential propagation. The snapshot illustrates this.

Here are some things to try:

• Change the length of the dendrite

78 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 10: Image of ball and stick cell.

• Change the number of segments. Explore what it does to accuracy. How will you know
that you have an accurate model?

Benchmarking simulation speed

ex4.2_ballAndStickSpeed.py

The ball-and-stick model gives us an opportunity to check out your system and how compu-
tation scales with model size. While we’re at it we’ll deliver a sine-wave stimulus just to see
how it can be done. The test model is very similar to the previous one, ex4.1:

import moose
import pylab
import rdesigneur as rd
import time
rdes = rd.rdesigneur(

cellProto = [['ballAndStick', 'soma', 20e-6, 20e-6, 4e-6, 500e-6,
↪→10]],

chanProto = [['make_HH_Na()', 'Na'], ['make_HH_K()', 'K']],
chanDistrib = [

['Na', 'soma', 'Gbar', '1200'],
['K', 'soma', 'Gbar', '360'],
['Na', 'dend#', 'Gbar', '400'],
['K', 'dend#', 'Gbar', '120']

],
stimList = [['soma', '1', '.', 'inject', '(1+cos(t/10))*(t>31.4 &&

↪→ t<94) * 0
.2e-9']],

plotList = [
['soma', '1', '.', 'Vm', 'Membrane potential'],
['soma', '1', '.', 'inject', 'Stimulus current']

],
)
rdes.buildModel()

(continues on next page)

5.1. Rdesigneur: Building multiscale models 79

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

runtime = 100
moose.reinit()
t0= time.time()
moose.start(runtime)
print "Real time to run {} simulated seconds = {} seconds".format(
↪→runtime, time

.time() - t0)

rdes.display()

While the real point of this simulation is to check speed, it does illustrate how to deliver a
stimulus shaped like a sine wave:

Fig. 11: Sine-wave shaped stimulus.

We can see that the cell has a peculiar response to this. Not surprising, as the cell uses HH
channels which are not good at rate coding.

As a reference point, on a fast 2018 laptop this benchmark runs in 5.4 seconds. Some more
things to try for benchmarking:

• How slow does it get if you turn on the 3-D moogli display?

• Is it costlier to run 2 compartments for 1000 seconds, or 200 compartments for 10 seconds?

80 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 12: Spiking response to sine-wave shaped stimulus.

5.1. Rdesigneur: Building multiscale models 81

MOOSE User Manual, Release chennapoda (3.2.rc)

Synaptic stimulus: random (Possion)

ex5.0_random_syn_input.py

In this example we introduce synaptic inputs: both the receptor channels and a means for
stimulating the channels. We do this in a passive model.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(

cellProto = [['somaProto', 'soma', 20e-6, 200e-6]],
chanProto = [['make_glu()', 'glu']],
chanDistrib = [['glu', 'soma', 'Gbar', '1']],
stimList = [['soma', '0.5', 'glu', 'randsyn', '50']],
Deliver stimulus to glu synapse on soma, at mean 50 Hz Poisson.
plotList = [['soma', '1', '.', 'Vm', 'Soma membrane potential']]

)
rdes.buildModel()
moose.reinit()
moose.start(0.3)
rdes.display()

Most of the rdesigneur setup uses familiar syntax.

Novelty 1: we use the default built-in glutamate receptor model, in chanProto. We just put it
in the soma at a max conductance of 1 Siemen/sq metre.

Novelty 2: We specify a new kind of stimulus in the stimList:

['soma', '0.5', 'glu', 'randsyn', '50']

Most of this is similar to previous stimLists.

• arg0: ‘soma’: the named compartments in the cell to populate with the glu receptor

• arg1: ‘0.5’: Tell the system to use a uniform synaptic weight of 0.5. This argument could
be a more complicated expression incorporating spatial arguments. Here it is just uni-
form.

• arg2: ‘glu’: Which receptor to stimulate

• arg3: ‘randsyn’: Apply random (Poisson) synaptic input.

• arg4: ‘50’: Mean firing rate of the Poisson input. Note that this last argument could be a
function of time and hence is quite versatile.

As the model has no voltage-gated channels, we do not see spiking.

Things to try: Vary the rate and the weight of the synaptic input.

Synaptic stimulus: periodic

ex5.1_periodic_syn_input.py

This is almost identical to 5.0, except that the input is now perfectly periodic. The one change
is of an argument in the stimList to say periodicsyn rather than randsyn.

82 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 13: Random synaptic input with a Poisson distribution.

5.1. Rdesigneur: Building multiscale models 83

MOOSE User Manual, Release chennapoda (3.2.rc)

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(

cellProto = [['somaProto', 'soma', 20e-6, 200e-6]],
chanProto = [['make_glu()', 'glu']],
chanDistrib = [['glu', 'soma', 'Gbar', '1']],

Deliver stimulus to glu synapse on soma, periodically at 50 Hz.
stimList = [['soma', '0.5', 'glu', 'periodicsyn', '50']],
plotList = [['soma', '1', '.', 'Vm', 'Soma membrane potential']]

)
rdes.buildModel()
moose.reinit()
moose.start(0.3)
rdes.display()

As designed, we get periodically firing synaptic input.

Fig. 14: Periodic synaptic input

Reaction system in a single compartment

ex6_chem_osc.py

Here we use the compartment as a place in which to embed a chemical model. The chemical
oscillator model is predefined in the rdesigneur prototypes. Its general form is:

84 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

s ---a---> a // s goes to a, catalyzed by a.
s ---a---> b // s goes to b, catalyzed by a.
a ---b---> s // a goes to s, catalyzed by b.
b -------> s // b is degraded irreversibly to s

Here is the script:

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

turnOffElec = True,
diffusionLength = 1e-3, # Default diffusion length is 2

↪→microns
chemProto = [['makeChemOscillator()', 'osc']],
chemDistrib = [['osc', 'soma', 'install', '1']],
plotList = [['soma', '1', 'dend/a', 'conc', 'a Conc'],

['soma', '1', 'dend/b', 'conc', 'b Conc']]
)
rdes.buildModel()
b = moose.element('/model/chem/dend/b')
b.concInit *= 5
moose.reinit()
moose.start(200)

rdes.display()

In this special case we set the turnOffElec flag to True, so that Rdesigneur only sets up chem-
ical and not electrical calculations. This makes the calculations much faster, since we disable
electrical calculations and delink chemical calculations from them.

We also have a line which sets the diffusionLength to 1 mm, so that it is bigger than the
0.5 mm squid axon segment in the default compartment. If you don’t do this the system will
subdivide the compartment into the default 2 micron voxels for the purposes of putting in a
reaction-diffusion system. We discuss this case below.

Note how the plotList is done here. To remind you, each entry has five arguments

[region_in_cell, region_expression, moose_object, parameter, title_of_
↪→plot]

The change from the earlier usage is that the moose_object now refers to a chemical entity,
in this example the molecule dend/a. The simulator builds a default chemical compartment
named dend to hold the reactions defined in the chemProto. What we do in this plot is to select
molecule a sitting in dend, and plot its concentration. Then we do this again for molecule b.

After the model is built, we add a couple of lines to change the initial concentration of the
molecular pool b. Note its full path within MOOSE: /model/chem/dend/b. It is scaled up 5x to
give rise to slowly decaying oscillations.

Reaction-di�usion system

ex7.0_spatial_chem_osc.py

In order to see what a reaction-diffusion system looks like, we assign the diffusionLength

5.1. Rdesigneur: Building multiscale models 85

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 15: Plot for single-compartment reaction simulation

86 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

expression in the previous example to a much shorter length, and add a couple of lines to set
up 3-D graphics for the reaction-diffusion product:

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

turnOffElec = True,
#This subdivides the length of the soma into 2 micron voxels
diffusionLength = 2e-6,
chemProto = [['makeChemOscillator()', 'osc']],
chemDistrib = [['osc', 'soma', 'install', '1']],
plotList = [['soma', '1', 'dend/a', 'conc', 'Concentration of

↪→a'],
['soma', '1', 'dend/b', 'conc', 'Concentration of b']],

moogList = [['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 360
↪→]]

)

rdes.buildModel()
bv = moose.vec('/model/chem/dend/b')
bv[0].concInit *= 2
bv[-1].concInit *= 2
moose.reinit()

rdes.displayMoogli(1, 400, rotation = 0, azim = np.pi/2, elev = 0.0)

This is the new value for diffusion length.

diffusionLength = 2e-3,

With this change we tell rdesigneur to use the diffusion length of 2 microns. This happens to
be the default too. The 500-micron axon segment is now subdivided into 250 voxels, each of
which has a reaction system and diffusing molecules. To make it more picturesque, we have
added a line after the plotList, to display the outcome in 3-D:

moogList = [['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 360]]

This line says: take the model compartments defined by soma as the region to display, do so
throughout the the geometry (the 1 signifies this), and over this range find the chemical entity
defined by dend/a. For each a molecule, find the conc and dsiplay it. There are two optional
arguments, 0 and 360, which specify the low and high value of the displayed variable.

In order to initially break the symmetry of the system, we change the initial concentration of
molecule b at each end of the cylinder:

bv[0].concInit *= 2
bv[-1].concInit *= 2

If we didn’t do this the entire system would go through a few cycles of decaying oscillation
and then reach a boring, spatially uniform, steady state. Try putting an initial symmetry break
elsewhere to see what happens.

To display the concenctration changes in the 3-D soma as the simulation runs, we use the line

5.1. Rdesigneur: Building multiscale models 87

MOOSE User Manual, Release chennapoda (3.2.rc)

rdes.displayMoogli(1, 400, rotation = 0, azim = np.pi/2, elev = 0.0)

The arguments mean: displayMoogli(frametime, runtime, rotation, azimuth, elevation) Here,

frametime = time by which simulation advances between display updates
runtime = Total simulated time
rotation = angle by which display rotates in each frame, in radians.
azimuth = Azimuth angle of view point, in radians
elevation = elevation angle of view point, in radians

When we run this, we first get a 3-D display with the oscillating reaction-diffusion system mak-
ing its way inward from the two ends. After the simulation ends the plots for all compartments
for the whole run come up.

Fig. 16: Display for oscillatory reaction-diffusion simulation

For those who would rather use the much simpler matplotlib 3-D display option, this is what
the same simulation looks like:

Primer on using the 3-D MOOGLI display

There are two variants of the MOOGLI display. The first, named Moogli, uses OpenGL and
OpenSceneGraph. It is fast to display, slow to load, and difficult to compile. It produces much
better looking 3-D graphics. The second is a fallback interface using mplot3d, which is a library
of Matplotlib and so should be generally available. It is slower to display, faster to load, but
needs no special compilation. It uses stick graphics and though it conveys much the same
information, isn’t as nice to look at as the original Moogli. Its controls are more or less the
same but less smooth than the original Moogli.

88 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 17: Display for oscillatory reac-diff simulation using matplotlib

Here is a short primer on the 3-D display controls.

• Roll, pitch, and yaw: Use the letters r, p, and y. To rotate backwards, use capitals.

• Zoom out and in: Use the , and . keys, or their upper-case equivalents, < and >. Easier to
remember if you think in terms of the upper-case.

• Left/right/up/down: Arrow keys.

• Quit: control-q or control-w.

• You can also use the mouse or trackpad to control most of the above.

• By default rdesigneur gives Moogli a small rotation each frame. It is the rotation argument
in the line:

displayMoogli(frametime, runtime, rotation)

These controls operate over and above this rotation, but the rotation continues. If you set the
rotation to zero you can, with a suitable flick of the mouse, get the image to rotate in any
direction you choose as long as the window is updating.

Di�usion of a single molecule

ex7.1_diffusive_gradient.py

This is simply a test model to confirm that simple diffusion happens as expected. While the
model is just that of a single pool, we spend a few lines taking snapshots of the spatial profile
of this pool.

5.1. Rdesigneur: Building multiscale models 89

MOOSE User Manual, Release chennapoda (3.2.rc)

import moose
import pylab
import re
import rdesigneur as rd
import matplotlib.pyplot as plt
import numpy as np

moose.Neutral('/library')
moose.Neutral('/library/diffn')
moose.CubeMesh('/library/diffn/dend')
A = moose.Pool('/library/diffn/dend/A')
A.diffConst = 1e-10

rdes = rd.rdesigneur(
turnOffElec = True,
diffusionLength = 1e-6,
chemProto = [['diffn', 'diffn']],
chemDistrib = [['diffn', 'soma', 'install', '1']],
moogList = [

['soma', '1', 'dend/A', 'conc', 'A Conc', 0, 360]
]

)
rdes.buildModel()

rdes.displayMoogli(1, 2, rotation = 0, azim = -np.pi/2, elev = 0.0,
↪→block = False)

av = moose.vec('/model/chem/dend/A')
for i in range(10):

av[i].concInit = 1
moose.reinit()
plist = []
for i in range(20):

plist.append(av.conc[:200])
moose.start(2)

fig = plt.figure(figsize = (10, 12))
plist = np.array(plist).T
plt.plot(range(0, 200), plist)
plt.xlabel("position (microns)")
plt.ylabel("concentration (mM)")
plt.show(block = True)

Here are the snapshots, overlaid in a single plot:

Calcium-induced calcium release

ex7.2_CICR.py

This is a somewhat more complex reaction-diffusion system, involving calcium release from in-
tracellular stores that propagates in a wave of activity along a dendrite. This example demon-
strates the use of endo compartments.

Endo-compartments, as the name suggests, represent compartments that sit within other cel-
lular compartments. If the surround compartment is subdivided into N voxels, so is the endo-
compartment. The rdesigneur system looks at the provided model, and if there are 2 com-
partments and the addEndoChemCompt flag is True, then the chemistry contained in the smaller
of the two compartments is positioned in an endo compartment surrounded by the first com-

90 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 18: Display for simple time-series of spread of a diffusing molecule using matplotlib

5.1. Rdesigneur: Building multiscale models 91

MOOSE User Manual, Release chennapoda (3.2.rc)

partment. Here we use the endo-compartment to represent the endoplasmic reticulum sitting
inside the dendrite.

In the chemical model, we also introduce a new MOOSE class, ConcChan. These act as mem-
brane pores whose permeability scales with number of channels in the open state. The IP3
receptor in this model is implemented as a ConcChan which opens due to binding to IP3 and
Calcium. This leads to the release of more calcium from the ER, and this feedback loop devel-
ops into a propagating-wave oscillation.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

turnOffElec = True,
chemDt = 0.005,
chemPlotDt = 0.02,
diffusionLength = 1e-6,
useGssa = False,
addSomaChemCompt = False,
addEndoChemCompt = True,
cellProto syntax: ['somaProto', 'name', dia, length]
cellProto = [['somaProto', 'soma', 2e-6, 10e-6]],
chemProto = [['./chem/CICRwithConcChan.g', 'chem']],
chemDistrib = [['chem', 'soma', 'install', '1']],
plotList = [

['soma', '1', 'dend/CaCyt', 'conc', 'Dendritic Ca'],
['soma', '1', 'dend/CaCyt', 'conc', 'Dendritic Ca', 'wave'],
['soma', '1', 'dend_endo/CaER', 'conc', 'ER Ca'],
['soma', '1', 'dend/ActIP3R', 'conc', 'active IP3R'],

],
)
rdes.buildModel()
IP3 = moose.element('/model/chem/dend/IP3')
IP3.vec.concInit = 0.004
IP3.vec[0].concInit = 0.02
moose.reinit()
moose.start(40)
rdes.display()

Note how the dendritic calcium is displayed both as a time-series plot and as a wave plot,
which presents the time-evolution of the calcium as a function of position in successive image
frames.

Intracellular transport

ex7.3_simple_transport.py

This illustrates how intracellular transport works in MOOSE. We have a an elongated soma in
which molecules start out at the left and are transported to the right. Note that they spread
out as they go along, This is because the transport is implemented as drift-diffusion, in which
a fraction of the molecules move to the next location each timestep. The equation is

flux = motorConst * conc / spacing

for a uniform cylinder. MOOSE applies suitable scaling terms if the neuronal geometry is
non-uniform.

92 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 19: Time-series plot of dendritic calcium. Different colors represent different voxels in the
dendrite.

5.1. Rdesigneur: Building multiscale models 93

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 20: Place holder for time-evolving movie of dendritic calcium as a function of position
along the dendrite.

94 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

import moose
import numpy as np
import pylab
import rdesigneur as rd

moose.Neutral('/library')
moose.Neutral('/library/transp')
moose.CubeMesh('/library/transp/dend')
A = moose.Pool('/library/transp/dend/A')
A.diffConst = 0
A.motorConst = 1e-6 # Metres/sec

rdes = rd.rdesigneur(
turnOffElec = True,
#This subdivides the length of the soma into 0.5 micron voxels
diffusionLength = 0.5e-6,
cellProto = [['somaProto', 'soma', 2e-6, 50e-6]],
chemProto = [['transp', 'transp']],
chemDistrib = [['transp', 'soma', 'install', '1']],
plotList = [

['soma', '1', 'dend/A', 'conc', 'Concentration of A'],
['soma', '1', 'dend/A', 'conc', 'Concentration of A', 'wave'],

],
moogList = [['soma', '1', 'dend/A', 'conc', 'A Conc', 0, 20]]

)
rdes.buildModel()
moose.element('/model/chem/dend/A[0]').concInit = 0.1
moose.reinit()
rdes.displayMoogli(1, 80, rotation = 0, azim = -np.pi/2, elev = 0.0)

In this example we explicitly create the single-molecule reaction system, and assign a motor-
Const of 1 micron/sec to the molecule A. We start off with all the molecules in a single voxel
on the left of the cylinder, and then watch the molecules move. Once the molecules reach the
end of the cylindrical soma, they have nowhere further to go so they pile up.

Suggestions:

• Play with different motor rates.

• The motor constant sign detemines the direction of transport. See what happens if you
get it going in the opposite direction.

• Consider how you could avoid the buildup in the last voxel.

5.1. Rdesigneur: Building multiscale models 95

MOOSE User Manual, Release chennapoda (3.2.rc)

96 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 21: Frames at increasing intervals from the transport simulation showing spreading and
piling up of the molecule at the right end of the cylinder.

• Consider how to achieve a nice exponential falloff over a much longer range than possi-
ble with diffusion.

Travelling oscillator

ex7.4_travelling_osc.py

Here we put a chemical oscillator into a cylinder, and activate motor transport in one of the
molecules. The oscillatory zone slowly moves to the right, with an amplification in the last
compartment due to end-effects.

import moose
import numpy as np
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

turnOffElec = True,
diffusionLength = 2e-6,
chemProto = [['makeChemOscillator()', 'osc']],
chemDistrib = [['osc', 'soma', 'install', '1']],
plotList = [

['soma', '1', 'dend/a', 'conc', 'Concentration of a'],
['soma', '1', 'dend/b', 'conc', 'Concentration of b'],
['soma', '1', 'dend/a', 'conc', 'Concentration of a', 'wave'],

],
moogList = [['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 360]]

)
a = moose.element('/library/osc/kinetics/a')
b = moose.element('/library/osc/kinetics/b')
s = moose.element('/library/osc/kinetics/s')
a.diffConst = 0
b.diffConst = 0
a.motorConst = 1e-6

rdes.buildModel()
moose.reinit()

rdes.displayMoogli(1, 400, rotation = 0, azim = -np.pi/2, elev = 0.0
↪→)

5.1. Rdesigneur: Building multiscale models 97

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 22: Snapshot of travelling oscillator waveform at t = 198.

98 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Suggestions:

• What happens if all molecules undergo transport?

• What happens if b is transported opposite to a?

• What happens if there is also diffusion?

Bidirectional transport

ex7.5_bidirectional_transport.py

This is almost identical to ex7.4, except that we implement bidirectional transport. Molecule a
goes from left to right, and b and s go from right to left. Here we see that the system builds up
with large oscillations in the middle as the molecules converge, then the peaks collapse when
the molecules go away.

import moose
import numpy as np
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

turnOffElec = True,
diffusionLength = 2e-6,
numWaveFrames = 50,
chemProto = [['makeChemOscillator()', 'osc']],
chemDistrib = [['osc', 'soma', 'install', '1']],
plotList = [

['soma', '1', 'dend/a', 'conc', 'Concentration of a', 'wave',
↪→0, 1800],

['soma', '1', 'dend/b', 'conc', 'Concentration of b', 'wave',
↪→0, 500],

['soma', '1', 'dend/s', 'conc', 'Concentration of s', 'wave',
↪→0, 1200],

],
moogList = [['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 600]]

)
a = moose.element('/library/osc/kinetics/a')
b = moose.element('/library/osc/kinetics/b')
s = moose.element('/library/osc/kinetics/s')
a.diffConst = 0
b.diffConst = 0
a.motorConst = 2e-6
b.motorConst = -2e-6
s.motorConst = -2e-6

rdes.buildModel()
moose.reinit()

rdes.displayMoogli(1, 250, rotation = 0, azim = -np.pi/2, elev = 0.0
↪→)

Above we see a, b, s at a point where the transport has collected the molecules toward the
middle of the cylinder, so the oscillations are large. Below we see molecule a later, when it has
gone past the b and s pools and so the reaction system is depleted and does not oscillate.

5.1. Rdesigneur: Building multiscale models 99

MOOSE User Manual, Release chennapoda (3.2.rc)

100 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

5.1. Rdesigneur: Building multiscale models 101

MOOSE User Manual, Release chennapoda (3.2.rc)

Controlling a reaction by a function

ex7.6_func_controls_reac_rate.py

This example illustrates how a function can be used to control a reaction rate. This kind of
calculation is appropriate when we need to link different kinds of physical processses with
chemical reactions, for example, membrane curvature with molecule accumulation. The use
of functions to modify reaction rates should be avoided in purely chemical systems since they
obscure the underlying chemistry, and do not map cleanly to stochastic calculations.

In this example we simply have a molecule C that controls the forward rate of a reaction that
converts A to B. C is a function of location on the cylinder, and is fixed. In more elaborate com-
putations we could have a function of multiple molecules, some of which could be changing
and others could be buffered.

import numpy as np
import moose
import pylab
import rdesigneur as rd

def makeFuncRate():
model = moose.Neutral('/library')
model = moose.Neutral('/library/chem')
compt = moose.CubeMesh('/library/chem/compt')
compt.volume = 1e-15
A = moose.Pool('/library/chem/compt/A')
B = moose.Pool('/library/chem/compt/B')
C = moose.Pool('/library/chem/compt/C')
reac = moose.Reac('/library/chem/compt/reac')
func = moose.Function('/library/chem/compt/reac/func')
func.x.num = 1
func.expr = "(x0/1e8)^2"
moose.connect(C, 'nOut', func.x[0], 'input')
moose.connect(func, 'valueOut', reac, 'setNumKf')
moose.connect(reac, 'sub', A, 'reac')
moose.connect(reac, 'prd', B, 'reac')

A.concInit = 1
B.concInit = 0
C.concInit = 0
reac.Kb = 1

makeFuncRate()
rdes = rd.rdesigneur(

turnOffElec = True,
#This subdivides the 50-micron cylinder into 2 micron voxels
diffusionLength = 2e-6,
cellProto = [['somaProto', 'soma', 5e-6, 50e-6]],
chemProto = [['chem', 'chem']],
chemDistrib = [['chem', 'soma', 'install', '1']],
plotList = [['soma', '1', 'dend/A', 'conc', 'A conc', 'wave'],

['soma', '1', 'dend/C', 'conc', 'C conc', 'wave']],
)
rdes.buildModel()
C = moose.element('/model/chem/dend/C')

(continues on next page)

102 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

C.vec.concInit = [1+np.sin(x/5.0) for x in range(len(C.vec))]
moose.reinit()
moose.start(10)
rdes.display()

We plot the controlling molecule C and the substrate molecule A as functions of position, using
a waveplot. C remains fixed, and A decreases with time and space. A is smallest at about voxel
8, where the reaction rate, as controlled by C, is highest.

Multiscale models: single compartment

ex8.0_multiscale_KA_phosph.py

The next few examples are for the multiscale modeling that is the main purpose of rdesigneur
and MOOSE as a whole. These are ‘toy’ examples in that the chemical and electrical signaling
is simplified, but they exhibit dynamics that are of real interest.

The first example is of a bistable system where the feedback loop comprises of

calcium influx -> chemical activity -> channel modulation -> electrical activity -> calcium influx.

Calcium enters through voltage gated calcium channels, leads to enzyme activation and phos-
phorylation of a KA channel, which depolarizes the cell, so it spikes more, so more calcium
enters.

5.1. Rdesigneur: Building multiscale models 103

MOOSE User Manual, Release chennapoda (3.2.rc)

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

elecDt = 50e-6,
chemDt = 0.002,
chemPlotDt = 0.002,
cellProto syntax: ['somaProto', 'name', dia, length]
cellProto = [['somaProto', 'soma', 12e-6, 12e-6]],
chemProto = [['./chem/chanPhosphByCaMKII.g', 'chem']],
chanProto = [

['make_Na()', 'Na'],
['make_K_DR()', 'K_DR'],
['make_K_A()', 'K_A'],
['make_Ca()', 'Ca'],
['make_Ca_conc()', 'Ca_conc']

],
Some changes to the default passive properties of the cell.
passiveDistrib = [['soma', 'CM', '0.03', 'Em', '-0.06']],
chemDistrib = [['chem', 'soma', 'install', '1']],
chanDistrib = [

['Na', 'soma', 'Gbar', '300'],
['K_DR', 'soma', 'Gbar', '250'],
['K_A', 'soma', 'Gbar', '200'],
['Ca_conc', 'soma', 'tau', '0.0333'],
['Ca', 'soma', 'Gbar', '40']

(continues on next page)

104 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

],
adaptorList = [

['dend/chan', 'conc', 'K_A', 'modulation', 0.0, 70],
['Ca_conc', 'Ca', 'dend/Ca', 'conc', 0.00008, 2]

],
Give a + pulse from 5 to 7s, and a - pulse from 20 to 21.
stimList = [['soma', '1', '.', 'inject', '((t>5 && t<7) - (t>20 &&

↪→ t<21)) * 1.0e-12']],
plotList = [

['soma', '1', '.', 'Vm', 'Membrane potential'],
['soma', '1', '.', 'inject', 'current inj'],
['soma', '1', 'K_A', 'Ik', 'K_A current'],
['soma', '1', 'dend/chan', 'conc', 'Unphosph K_A conc'],
['soma', '1', 'dend/Ca', 'conc', 'Chem Ca'],

],
)

rdes.buildModel()
moose.reinit()
moose.start(30)

rdes.display()

There is only one fundamentally new element in this script:

adaptor List: [source, sourceField, dest, destField, offset, scale] The adaptor list maps between
molecular, electrical or even structural quantities in the simulation. At present it is linear
mapping, in due course it may evolve to an arbitrary function.

The two adaptorLists in the above script do the following:

['dend/chan', 'conc', 'K_A', 'modulation', 0.0, 70]:

Use the concentration of the ‘chan’ molecule in the ‘dend’ compartment, to modulate the con-
ductance of the ‘K_A’ channel such that the basal conductance is zero and 1 millimolar of ‘chan’
results in a conductance that is 70 times greater than the baseline conductance of the channel,
Gbar.

It is advisable to use the field ‘modulation’ on channels undergoing scaling, rather than to di-
rectly assign the conductance ‘Gbar’. This is because Gbar is an absolute conductance, and
therefore it is scaled to the area of the electrical segment. This makes it difficult to keep track
of. Modulation is a simple multiplier term onto Gbar, and is therefore easier to work with.

['Ca_conc', 'Ca', 'dend/Ca', 'conc', 0.00008, 2]:

Use the concentration of Ca as computed in the electrical model, to assign the concentration of
molecule Ca on the dendrite compartment. There is a basal level of 80 nanomolar, and every
unit of electrical Ca maps to 2 millimolar of chemical Ca.

The arguments in the adaptorList are:

• Source and Dest: Strings. These can be either a molecular or an electrical object. To iden-
tify a molecular object, it should be prefixed with the name of the chemical compartment,
which is one of dend, spine, psd. Thus dend/chan specifies a molecule named ‘chan’ sitting
in the ‘dend’ compartment.

To identify an electrical object, just pass in its path, such as ‘.’ or ‘Ca_conc’.

5.1. Rdesigneur: Building multiscale models 105

MOOSE User Manual, Release chennapoda (3.2.rc)

Note that the adaptors do not need to know anything about the location. It is assumed
that the adaptors do their job wherever the specified source and dest coexist. There is a
subtlety here due to the different length and time scales. The rule of thumb is that the
adaptor averages whichever one is subdivided more finely.

– Example 1: Molecules are typically spatially partitioned into short voxels (micron-
scale) compared to typical 100-micron electrical segments. So an adaptor going from
molecules to, say, channel conductance, would average all the molecular voxels that
fit in the electrical segment.

– Example 2: Electrical activity is typically much faster than chemical. So an adaptor
going from an electrical entity (Ca computed from channel opening) to molecules
(Chemical Ca concentration) would average all the time-steps between updates to
the molecule.

• Fields: Strings. These are simply the field names on the objects coupled by the adaptors.

• offset and scale: Doubles. At present the adaptor is just a straight-line conversion, obey-
ing y = mx + c. The computed output is y, averaged input is x, offset is c and scale is
m.

There is a handy new line to specify cellular passive properties:

passiveDistrib: [path, field, value, field, value, . . .],

• path: String. Specifies the object whose parameters are to be changed.

• field: String. Name of the field on the object.

• value: String, that is the value has to be enclosed in quotes. The value to be assigned to
the object.

With these in place, the model behavior is rather neat. It starts out silent, then we apply 2
seconds of +ve current injection.

The cell fires briskly, and keeps firing even when the current injection drops to zero.

The firing of the neuron leads to Ca influx.

The chemical reactions downstream of Ca lead to phosphorylation of the K_A channel. Only
the unphosphorylated K_A channel is active, so the net effect is to reduce K_A conductance
while the Ca influx persists.

Since the phosphorylated form has low conductance, the cell becomes more excitable and
keeps firing even when the current injection is stopped. It takes a later, -ve current injection to
turn the firing off again.

Suggestions for things to do with the model:

• Vary the adaptor settings, which couple electrical to chemical signaling and vice versa.

• Play with the channel densities

• Open the chem model in moosegui and vary its parameters too.

Multiscale model of CICR in dendrite triggered by synaptic input

ex8.1_synTrigCICR.py

106 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 23: Current injection stimuli for multiscale model.

5.1. Rdesigneur: Building multiscale models 107

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 24: Firing responses of cell with multiscale signaling.

108 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 25: Calcium buildup in cell due to firing.

5.1. Rdesigneur: Building multiscale models 109

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 26: Removal of KA channel due to phosphorylation.

110 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

In this model synaptic input arrives at a dendritic spine, leading to calcium influx through the
NMDA receptor. An adaptor converts this influx to the concentration of a chemical species,
and this then diffuses into the dendrite and sets off the CICR.

This example models Calcium events in three compartments: dendrite, ER inside dendrite,
and spine. The signaling is a slight change from the toy model used in ex7.2_CICR.py. Note
how the range of CICR wave propagation is limited by a domain of the dendrite in which the
level of IP3 is elevated.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

turnOffElec = False,
chemDt = 0.002,
chemPlotDt = 0.02,
diffusionLength = 1e-6,
numWaveFrames = 50,
useGssa = False,
addSomaChemCompt = False,
addEndoChemCompt = True,
cellProto syntax: ['ballAndStick', 'name', somaDia, somaLength,

↪→dendDia, dendLength, numDendSeg]
cellProto = [['ballAndStick', 'soma', 10e-6, 10e-6, 2e-6, 40e-6,

↪→4]],
spineProto = [['makeActiveSpine()', 'spine']],
chemProto = [['./chem/CICRspineDend.g', 'chem']],
spineDistrib = [['spine', '#dend#', '10e-6', '0.1e-6']],
chemDistrib = [['chem', 'dend#,spine#,head#', 'install', '1']],
adaptorList = [

['Ca_conc', 'Ca', 'spine/Ca', 'conc', 0.00008, 8]
],
stimList = [

['head0', '0.5', 'glu', 'periodicsyn', '1 + 40*(t>5 && t<6)'],
['head0', '0.5', 'NMDA', 'periodicsyn', '1 + 40*(t>5 && t<6)

↪→'],
['dend#', 'g>10e-6 && g<=31e-6', 'dend/IP3', 'conc', '0.0006

↪→'],
],

plotList = [
['head#', '1', 'spine/Ca', 'conc', 'Spine Ca conc'],
['dend#', '1', 'dend/Ca', 'conc', 'Dend Ca conc'],
['dend#', '1', 'dend/Ca', 'conc', 'Dend Ca conc', 'wave'],
['dend#', '1', 'dend_endo/CaER', 'conc', 'ER Ca conc', 'wave

↪→'],
['soma', '1', '.', 'Vm', 'Memb potl'],

],
)
moose.seed(1234)
rdes.buildModel()
moose.reinit()
moose.start(16)
rdes.display()

The demo illustrates how to specify the range of elevated IP3 in the stimList using the second
argument, which selects a geometric range of electrical compartments.

5.1. Rdesigneur: Building multiscale models 111

MOOSE User Manual, Release chennapoda (3.2.rc)

['dend#', 'g>10e-6 && g<=31e-6', 'dend/IP3', 'conc', '0.0006']

This means to look at all dendrite compartments (first argument), and select those which are
between a geometrical distance g of 10 to 31 microns from the soma (second argument). The
system then sets the IP3 concentration (third and fourth arguments) to 0.6 uM (last argument)
for all the chemical voxels embedded in these dendrite compartments.

A note on defining the endo compartments: In cases like this, where the compartment identity
isn’t built into the chemical model definition, we need a heuristic to decide which compartment
is which. The heuristic used in rdesigneur goes like this:

• Sort chemical compartments in decreasing order by volume

• If the addSomaChemCompt flag is true, they are assigned to soma, dendrite, spine-head,
spine-psd, depending on how many compartments are specified. If the flag is false, the
soma is omitted.

• If the addEndoChemCompt is true, then alternate compartments are assigned to the
endo_compartment. Here it is dend, dend_endo, spine-head. If we had six compartments
defined (no soma) it would have been: dend, dend_endo, spine-head, spine-endo, psd, psd-
endo. The psd-endo doesn’t make a lot of biological sense, though.

When we run this model, we trigger a propagating Ca wave from about voxel number 16 of
40. It spreads in both directions, and comes to a halt at voxels 10 and 30, which mark the limits
of the IP3 elevation zone.

Fig. 27: Calcium wave propagation along the dendrite

112 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Note two subtle effects on the ER Ca concentration: first, there is a periodic small influx of
calcium at voxel 16 due to synaptic input. Second, there is a slow restoration of the ER Ca level
toward baseline due to diffusion in the dendrite and the action of pumps to within the ER, and
out of the cell. Note also that the gradient within the ER is actually quite small, being about a
12% deviation from the resting calcium.

Fig. 28: Calcium depletion and buildup in the ER due to CICR wave.

Multiscale model spanning PSD, spine head and dendrite

ex8.2_multiscale_glurR_phosph_3compt.py

This is another multiscale model on similar lines to 8.0. It is structurally and computation-
ally more complicated, because the action is distributed between spines and dendrites, but
formally it does the same thing: it turns on and stays on after a strong stimulus, due to phos-
phorylation of a (receptor) channel leading to greater excitability.

calcium influx -> chemical activity -> channel modulation -> electrical activity -> calcium influx.

The model is bistable as long as synaptic input keeps coming along at a basal rate, in this case
1 Hz.

Here we have two new lines, to do with addition of spines. These are discussed in detail in
a later example. For now it is enough to know that the spineProto line defines one of the
prototype spines to be used to put into the model, and the spineDistrib line tells the system
where to put them, and how widely to space them.

5.1. Rdesigneur: Building multiscale models 113

MOOSE User Manual, Release chennapoda (3.2.rc)

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(

elecDt = 50e-6,
chemDt = 0.002,
diffDt = 0.002,
chemPlotDt = 0.02,
useGssa = False,
cellProto syntax: ['ballAndStick', 'name', somaDia, somaLength,

↪→dendDia, d
endLength, numDendSegments]

cellProto = [['ballAndStick', 'soma', 12e-6, 12e-6, 4e-6, 100e-6,
↪→2]],

chemProto = [['./chem/chanPhosph3compt.g', 'chem']],
spineProto = [['makeActiveSpine()', 'spine']],
chanProto = [

['make_Na()', 'Na'],
['make_K_DR()', 'K_DR'],
['make_K_A()', 'K_A'],
['make_Ca()', 'Ca'],
['make_Ca_conc()', 'Ca_conc']

],
passiveDistrib = [['soma', 'CM', '0.01', 'Em', '-0.06']],
spineDistrib = [['spine', '#dend#', '50e-6', '1e-6']],
chemDistrib = [['chem', '#', 'install', '1']],
chanDistrib = [

['Na', 'soma', 'Gbar', '300'],
['K_DR', 'soma', 'Gbar', '250'],
['K_A', 'soma', 'Gbar', '200'],
['Ca_conc', 'soma', 'tau', '0.0333'],
['Ca', 'soma', 'Gbar', '40']

],
adaptorList = [

['psd/chan_p', 'n', 'glu', 'modulation', 0.1, 1.0],
['Ca_conc', 'Ca', 'spine/Ca', 'conc', 0.00008, 8]

],
Syn input basline 1 Hz, and 40Hz burst for 1 sec at t=20. Syn

↪→weight
is 0.5, specified in 2nd argument as a special case stimLists.
stimList = [['head#', '0.5','glu', 'periodicsyn', '1 + 40*(t>10 &&

↪→ t<11)']],
plotList = [

['soma', '1', '.', 'Vm', 'Membrane potential'],
['#', '1', 'spine/Ca', 'conc', 'Ca in Spine'],
['#', '1', 'dend/DEND/Ca', 'conc', 'Ca in Dend'],
['#', '1', 'spine/Ca_CaM', 'conc', 'Ca_CaM'],
['head#', '1', 'psd/chan_p', 'conc', 'Phosph gluR'],
['head#', '1', 'psd/Ca_CaM_CaMKII', 'conc', 'Active CaMKII'],

]
)
moose.seed(123)
rdes.buildModel()
moose.reinit()
moose.start(25)
rdes.display()

This is how it works:

114 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

This is a ball-and-stick model with a couple of spines sitting on the dendrite. The spines get
synaptic input onto NMDARs and gluRs. There is a baseline input rate of 1 Hz thoughout, and
there is a burst at 40 Hz for 1 second at t = 10s.

Fig. 29: Membrane potential responses of cell with synaptic input and multiscale signaling

At baseline, we just have small EPSPs and little Ca influx. A burst of strong synaptic input
causes Ca entry into the spine via NMDAR.

Ca diffuses from the spine into the dendrite and spreads. In the graph below we see how
Calcium goes into the 50-odd voxels of the dendrite.

The Ca influx into the spine triggers activation of CaMKII and its translocation to the PSD,
where it phosphorylates and increases the conductance of gluR. We have two spines with
slightly different geometry, so the CaMKII activity differs slightly.

Now that gluR has a greater weight, the baseline synaptic input keeps Ca trickling in enough
to keep the CaMKII active.

Here are the reactions:

Ca+CaM <===> Ca_CaM; Ca_CaM + CaMKII <===> Ca_CaM_CaMKII (all in
spine head, except that the Ca_CaM_CaMKII translocates to the PSD)

chan ------Ca_CaM_CaMKII-----> chan_p; chan_p ------> chan (all in
↪→PSD)

Suggestions:

5.1. Rdesigneur: Building multiscale models 115

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 30: Calcium influx into spine.

116 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 31: Calcium influx and diffusion in dendrite.

5.1. Rdesigneur: Building multiscale models 117

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 32: Activation of CaMKII and translocation to PSD

118 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

• Add GABAR using make_GABA(), put it on soma or dendrite. Stimulate it after 20 s to
see if you can turn off the sustained activation

• Replace the ‘periodicsyn’ in stimList with ‘randsyn’. This gives Poisson activity at the
specified mean frequency. Does the switch remain reliable?

• What are the limits of various parameters for this switching? You could try basal synap-
tic rate, burst rate, the various scaling factors for the adaptors, the densities of various
channels, synaptic weight, and so on.

• In real life an individual synaptic EPSP is tiny, under a millivolt. How many synapses
would you need to achieve this kind of switching? You can play with # of synapses by
altering the spacing between spines as the third argument of spineDistrib.

Multiscale model in which spine geometry changes due to signaling

ex8.3_spine_vol_change.py

This model is very similar to 8.2. The main design difference is that adaptor, instead of just
modulating the gluR conductance, scales the entire spine cross-section area, with all sorts of
electrical and chemical ramifications. There are a lot of plots, to illustrate some of these out-
comes.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(

elecDt = 50e-6,
chemDt = 0.002,
diffDt = 0.002,
chemPlotDt = 0.02,
useGssa = False,
stealCellFromLibrary = True, # Simply move library model to use

↪→for sim
cellProto = [['ballAndStick', 'soma', 12e-6, 12e-6, 4e-6, 100e-6,

↪→2]],
chemProto = [['./chem/chanPhosph3compt.g', 'chem']],
spineProto = [['makeActiveSpine()', 'spine']],
chanProto = [

['make_Na()', 'Na'],
['make_K_DR()', 'K_DR'],
['make_K_A()', 'K_A'],
['make_Ca()', 'Ca'],
['make_Ca_conc()', 'Ca_conc']

],
passiveDistrib = [['soma', 'CM', '0.01', 'Em', '-0.06']],
spineDistrib = [['spine', '#dend#', '50e-6', '1e-6']],
chemDistrib = [['chem', '#', 'install', '1']],
chanDistrib = [

['Na', 'soma', 'Gbar', '300'],
['K_DR', 'soma', 'Gbar', '250'],
['K_A', 'soma', 'Gbar', '200'],
['Ca_conc', 'soma', 'tau', '0.0333'],
['Ca', 'soma', 'Gbar', '40']

],
adaptorList = [

This scales the psdArea of the spine by # of chan_p. Note
↪→that (continues on next page)

5.1. Rdesigneur: Building multiscale models 119

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

the cross-section area of the spine head is identical to
↪→psdArea.

['psd/chan_p', 'n', 'spine', 'psdArea', 0.1e-12, 0.01e-12],
['Ca_conc', 'Ca', 'spine/Ca', 'conc', 0.00008, 8]

],
Syn input basline 1 Hz, and 40Hz burst for 1 sec at t=20. Syn

↪→wt=10
stimList = [['head#', '10','glu', 'periodicsyn', '1 + 40*(t>10 &&

↪→t<11)']],
plotList = [

['soma', '1', '.', 'Vm', 'Membrane potential'],
['#', '1', 'spine/Ca', 'conc', 'Ca in Spine'],
['#', '1', 'dend/DEND/Ca', 'conc', 'Ca in Dend'],
['head#', '1', 'psd/chan_p', 'n', 'Amount of Phospho-chan'],
['head#', '1', 'spine/CaMKII', 'conc', 'Conc of CaMKII in

↪→spine'],
['head#', '1', '.', 'Cm', 'Capacitance of spine head'],
['head#', '1', '.', 'Rm', 'Membrane res of spine head'],
['head#', '1', '.', 'Ra', 'Axial res of spine head'],
['head#', '1', 'glu', 'Gbar', 'Conductance of gluR'],
['head#', '1', 'NMDA', 'Gbar', 'Conductance of NMDAR'],

]
)
moose.seed(123)
rdes.buildModel()
moose.reinit()
moose.start(25)
rdes.display()

The key adaptor line is as follows:

['psd/chan_p', 'n', 'spine', 'psdArea', 0.1e-12, 0.01e-12]

Here, we use the phosphorylated chan_p molecule in the PSD as a proxy for processes that
control spine size. We operate on a special object called spine which manages many aspects of
spines in the model (see below). Here we control the psdArea, which defines the cross-section
area of the spine head and by extension of the PSD too. We keep a minimum spine area of 0.1
um^2, and a scaling factor of 0.01um^2 per phosphorylated molecule.

The reaction system is identical to the one in ex8.2:

Ca+CaM <===> Ca_CaM; Ca_CaM + CaMKII <===> Ca_CaM_CaMKII (all in
spine head, except that the Ca_CaM_CaMKII translocates to the PSD)

chan ------Ca_CaM_CaMKII-----> chan_p; chan_p ------> chan (all in
↪→PSD)

Rather than list all the 10 plots, here are a few to show what is going on.

First, just the spiking activity of the cell. Here the burst of activity is followed by a few seconds
of enhanced synaptic weight, followed by subthreshold EPSPs:

Then, we fast-forward to the amount of chan_p which is the molecule that controls spine size
scaling:

This causes some obvious outcomes. One of them is to increase the synaptic conductance of
the glutamate receptor. The system assumes that the conductance of all channels in the PSD

120 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 33: Membrane potential and spiking.

5.1. Rdesigneur: Building multiscale models 121

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 34: Molecule that controles spine size

122 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

scales linearly with the psdArea.

Fig. 35: Conductance of glutamate receptor

Here is one of several non-intuitive outcomes. Because the spine volume has increased, the
concentration of molecules in the spine is diluted out. So the concentration of active CaMKII
actually falls when the spine gets bigger. In a more detailed model, this would be a race
between the increase in spine size and the time taken for diffusion and further reactions to
replenish CaMKII. In the current model we don’t have a diffusive coupling of CaMKII to the
dendrite, so this replenishment doesn’t happen.

In the simulation we display several other electrical and chemical properties that change with
spine size. The diffusion properties also change since the cross-section areas are altered. This
is harder to visualize but has large effects on coupling to the dendrite, especially if the shaftDi-
ameter is the parameter scaled by the signaling.

Suggestions:

• The Spine class (instance: spine) manages several possible scaling targets on the spine ge-
ometry: shaftLength, shaftDiameter, headLength, headDiameter, psdArea, headVolume,
totalLength. Try them out. Think about mechanisms by which molecular concentrations
might affect each.

• When volume changes, we assume that the molecular numbers stay fixed, so concentra-
tion changes. Except for buffered molecules, where we assume concentration remains
fixed. Use this to design a bistable simply relying on molecules and spine geometry
terms.

5.1. Rdesigneur: Building multiscale models 123

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 36: Concentration of CaMKII in the spine

124 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

• Even more interesting, use it to design an oscillator. You could look at Bhalla, BiophysJ
2011 for some ideas.

Morphology: Load .swc morphology file and view it

ex9.0_load_neuronal_morphology_file.py

Here we build a passive model using a morphology file in the .swc file format (as used by Neu-
roMorpho.org). The morphology file is predefined for Rdesigneur and resides in the directory
./cells. We apply a somatic current pulse, and view the somatic membrane potential in a
plot, as before. To make things interesting we display the morphology in 3-D upon which we
represent the membrane potential as colors.

import sys
import moose
import rdesigneur as rd

if len(sys.argv) > 1:
fname = sys.argv[1]

else:
fname = './cells/h10.CNG.swc'

rdes = rd.rdesigneur(
cellProto = [[fname, 'elec']],
stimList = [['soma', '1', '.', 'inject', 't * 25e-9']],
plotList = [['#', '1', '.', 'Vm', 'Membrane potential'],

['#', '1', 'Ca_conc', 'Ca', 'Ca conc (uM)']],
moogList = [['#', '1', '.', 'Vm', 'Soma potential']]

)
rdes.buildModel()
moose.reinit()
rdes.displayMoogli(0.001, 0.1, rotation = 0.02)

Here the new concept is the cellProto line, which loads in the specified cell model:

[filename, cellname]

The system recognizes the filename extension and builds a model from the swc file. It uses the
cellname elec in this example.

We use a similar line as in the reaction-diffusion example, to build up a Moogli display of the
cell model:

moogList = [['#', '1', '.', 'Vm', 'Soma potential']]

Here we have:

: the path to use for selecting the compartments to display.
This wildcard means use all compartments.
1 : The expression to use for the compartments. Again, 1 means use
all of them.
. : Which object in the compartment to display. Here we are using the
compartment itself, so it is just a dot.
Vm : Field to display
Soma potential : Title for display.

Suggestions:

5.1. Rdesigneur: Building multiscale models 125

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 37: 3-D display for passive neuron

126 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

• The tutorial directory already has a number of pre-loaded files from NeuroMorpho. Pass
them in to ex9.0 on the command line:

python ex9.0_load_neuronal_morphology_file.py <morpho.swc>

• Grab other morphology files from NeuroMorpho.org, try them out.

Build an active neuron model by pu�ing channels into a morphology file

ex9.1_chans_in_neuronal_morph.py

Here we load in a morphology file and distribute voltage-gated ion channels over the neuron.
The voltage-gated channels are obtained from a number of channelML files, located in the ./
channels subdirectory. Since we have a spatially extended neuron, we need to specify the
spatial distribution of channel densities too.

import moose
import rdesigneur as rd
rdes = rd.rdesigneur(

chanProto = [
['./chans/hd.xml'],
['./chans/kap.xml'],
['./chans/kad.xml'],
['./chans/kdr.xml'],
['./chans/na3.xml'],
['./chans/nax.xml'],
['./chans/CaConc.xml'],
['./chans/Ca.xml']

],
cellProto = [['./cells/h10.CNG.swc', 'elec']],
chanDistrib = [\

["hd", "#dend#,#apical#", "Gbar", "50e-2*(1+(p*3e4))"],
["kdr", "#", "Gbar", "p < 50e-6 ? 500 : 100"],
["na3", "#soma#,#dend#,#apical#", "Gbar", "850"],
["nax", "#soma#,#axon#", "Gbar", "1250"],
["kap", "#axon#,#soma#", "Gbar", "300"],
["kap", "#dend#,#apical#", "Gbar",

"300*(H(100-p*1e6)) * (1+(p*1e4))"],
["Ca_conc", "#", "tau", "0.0133"],
["kad", "#soma#,#dend#,#apical#", "Gbar", "50"],
["Ca", "#", "Gbar", "50"]

],
stimList = [['soma', '1', '.', 'inject', '(t>0.02) * 1e-9']],
plotList = [['#', '1', '.', 'Vm', 'Membrane potential'],

['#', '1', 'Ca_conc', 'Ca', 'Ca conc (uM)']],
moogList = [['#', '1', 'Ca_conc', 'Ca', 'Calcium conc (uM)', 0,

↪→120],
['#', '1', '.', 'Vm', 'Soma potential']]

)

rdes.buildModel()

moose.reinit()
rdes.displayMoogli(0.0002, 0.052)

Here we make more extensive use of two concepts which we’ve already seen from the single
compartment squid model:

5.1. Rdesigneur: Building multiscale models 127

MOOSE User Manual, Release chennapoda (3.2.rc)

1. chanProto: This defines numerous channels, each of which is of the form:

[filename]

or

[filename, channelname]

or

[channelFunction(), channelname]

If the channelname is not specified the system uses the last part of the channel name, before the
filetype suffix.

2. chanDistrib: This defines the spatial distribution of each channel type. Each line is of a
form that should be familiar now:

[channelname, region_in_cell, parameter, expression_string]

• The channelname is the name of the prototype from chanproto. This is usually an ion
channel, but in the example above you can also see a calcium concentration pool defined.

• The region_in_cell is typically defined using wildcards, so that it generalizes to any cell
morphology. For example, the plain wildcard # means to consider all cell compartments.
The wildcard #dend# means to consider all compartments with the string dend some-
where in the name. Wildcards can be comma-separated, so #soma#,#dend# means
consider all compartments with either soma or dend in their name. The naming in
MOOSE is defined by the model file. Importantly, in .swc files MOOSE generates names
that respect the classification of compartments into axon, soma, dendrite, and apical den-
drite compartments respectively. SWC files generate compartment names such as:

soma_<number>
dend_<number>
apical_<number>
axon_<number>

where the number is automatically assigned by the reader. In order to select all dendritic
compartments, for example, one would use “#dend#” where the “#” acts as a wildcard to accept
any string. - The parameter is usually Gbar, the channel conductance density in S/m^2. If Gbar
is zero or less, then the system economizes by not incorporating this channel mechanism in
this part of the cell. Similarly, for calcium pools, if the tau is below zero then the calcium pool
object is simply not inserted into this part of the cell. - The expression_string defines the value of
the parameter, such as Gbar. This is typically a function of position in the cell. The expression
evaluator knows about several parameters of cell geometry. All units are in metres:

• x, y and z coordinates.

• g, the geometrical distance from the soma

• p, the path length from the soma, measured along the dendrites.

• dia, the diameter of the dendrite.

• L, The electrotonic length from the soma (no units).

Along with these geometrical arguments, we make liberal use of the ternary expressions like
p < 50e-6 ? 500 : 100 or multiplying a channel density with a logical function or Heaviside
function H(x) to set up the channel distributions. The expression evaluator also knows about

128 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

pretty much all common algebraic, trignometric, and logarithmic functions, should you wish
to use these.

Also note the two Moogli displays. The first is the calcium concentration. The second is the
membrane potential in each compartment. Easy!

Fig. 38: 3-D display for active neuron

Suggestions:

• Try another morphology file.

• Try different channel distributions by editing the chanDistrib lines.

• There are numerous predefined channels available within Rdesigneur. These can be de-
fined using the following chanProto options:

['make_HH_Na()', 'HH_Na']
['make_HH_K_DR()', 'HH_K']
['make_Na()', 'Na']
['make_K_DR()', 'K_DR']
['make_K_A()', 'K_A']
['make_K_AHP()', 'K_AHP']
['make_K_C()', 'K_C']
['make_Ca()', 'Ca']
['make_Ca_conc()', 'Ca_conc']
['make_glu()', 'glu']
['make_GABA()', 'GABA']

Then the chanDistrib can refer to these channels instead.

• Deliver stimuli on the dendrites rather than the soma.

Build a spiny neuron from a morphology file and put active channels in it.

ex9.2_spines_in_neuronal_morpho.py

This model is one step elaborated from the previous one, in that we now also have dendritic
spines. MOOSE lets one decorate a bare neuronal morphology file with dendritic spines, spec-

5.1. Rdesigneur: Building multiscale models 129

MOOSE User Manual, Release chennapoda (3.2.rc)

ifying various geometric parameters of their location. As before, we use an swc file for the
morphology, and the same ion channels and distribution.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

chanProto = [
['./chans/hd.xml'],
['./chans/kap.xml'],
['./chans/kad.xml'],
['./chans/kdr.xml'],
['./chans/na3.xml'],
['./chans/nax.xml'],
['./chans/CaConc.xml'],
['./chans/Ca.xml']

],
cellProto = [['./cells/h10.CNG.swc', 'elec']],
spineProto = [['makeActiveSpine()', 'spine']],
chanDistrib = [

["hd", "#dend#,#apical#", "Gbar", "50e-2*(1+(p*3e4))"],
["kdr", "#", "Gbar", "p < 50e-6 ? 500 : 100"],
["na3", "#soma#,#dend#,#apical#", "Gbar", "850"],
["nax", "#soma#,#axon#", "Gbar", "1250"],
["kap", "#axon#,#soma#", "Gbar", "300"],
["kap", "#dend#,#apical#", "Gbar",

"300*(H(100-p*1e6)) * (1+(p*1e4))"],
["Ca_conc", "#", "tau", "0.0133"],
["kad", "#soma#,#dend#,#apical#", "Gbar", "50"],
["Ca", "#", "Gbar", "50"]

],
spineDistrib = [['spine', '#dend#,#apical#', '20e-6', '1e-6']],
stimList = [['soma', '1', '.', 'inject', '(t>0.02) * 1e-9']],
plotList = [['#', '1', '.', 'Vm', 'Membrane potential'],

['#', '1', 'Ca_conc', 'Ca', 'Ca conc (uM)']],
moogList = [['#', '1', 'Ca_conc', 'Ca', 'Calcium conc (uM)', 0,

↪→120],
['#', '1', '.', 'Vm', 'Soma potential']]

)

rdes.buildModel()

moose.reinit()
rdes.displayMoogli(0.0002, 0.023)

Spines are set up in a familiar way: we first define one (or more) prototype spines, and then
distribute these around the cell. Here is the prototype string:

[spine_proto, spinename]

spineProto: This is typically a function. One can define one’s own, but there are several prede-
fined ones in rdesigneur. All these define a spine with the following parameters:

• head diameter 0.5 microns

• head length 0.5 microns

• shaft length 1 micron

130 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

• shaft diameter of 0.2 microns

• RM = 1.0 ohm-metre square

• RA = 1.0 ohm-meter

• CM = 0.01 Farads per square metre.

Here are the predefined spine prototypes:

• makePassiveSpine(): This just makes a passive spine with the default parameters

• makeExcSpine(): This makes a spine with NMDA and glu receptors, and also a calcium
pool. The NMDA channel feeds the Ca pool.

• makeActiveSpine(): This adds a Ca channel to the exc_spine. and also a calcium pool.

The spine distributions are specified in a familiar way for the first few arguments, and then
there are multiple (optional) spine-specific parameters:

[spinename, region_in_cell, spacing, spacing_distrib, size, size_distrib, angle, angle_distrib]

Only the first two arguments are mandatory.

• spinename: The prototype name

• region_in_cell: Usual wildcard specification of names of compartments in which to put
the spines.

• spacing: Math expression to define spacing between spines. In the current implemen-
tation this evaluates to 1/probability_of_spine_per_unit_length. Defaults
to 10 microns. Thus, there is a 10% probability of a spine insertion in every micron. This
evaluation method has the drawback that it is possible to space spines rather too close to
each other. If spacing is zero or less, no spines are inserted.

• spacing_distrib: Math expression for distribution of spacing. In the current implementa-
tion, this specifies the interval at which the system samples from the spacing probability
above. Defaults to 1 micron.

• size: Linear scale factor for size of spine. All dimensions are scaled by this factor. The
default spine head here is 0.5 microns in diameter and length. If the scale factor were to
be 2, the volume would be 8 times as large. Defaults to 1.0.

• size_distrib: Range for size of spine. A random number R is computed in the range 0 to 1,
and the final size used is size + (R - 0.5) * size_distrib. Defaults to 0.5

• angle: This specifies the initial angle at which the spine sticks out of the dendrite. If all
angles were zero, they would all point away from the soma. Defaults to 0 radians.

• angle_distrib: Specifies a random number to add to the initial angle. Defaults to 2 PI
radians, so the spines come out in any direction.

Suggestions:

• Try different spine settings. Warning: if you put in too many spines it will take much
longer to load and run!

• Try different spine geometry layouts.

• See if you can deliver the current injection to the spine. Hint: the name of the spine
compartments is ‘head#’ where # is the index of the spine.

5.1. Rdesigneur: Building multiscale models 131

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 39: 3-D display for spiny active neuron

Place spines in a spiral along a dendrite

ex9.3_spiral_spines.py

Just for fun. Illustrates how to place spines in a spiral around the dendrite. For good measure
the spines get bigger the further they are from the soma.

Note that the uniform spacing of spines is signified by the negative minSpacing term, the
fourth argument to spineDistrib.

import moose
import pylab
import rdesigneur as rd
rdes = rd.rdesigneur(

cellProto = [['ballAndStick', 'elec', 10e-6, 10e-6, 2e-6, 300e-6,
↪→50]],

spineProto = [['makePassiveSpine()', 'spine']],
spineDistrib = [['spine', '#dend#', '3e-6', '-1e-6', '1+p*2e4', '0

↪→', 'p*6.28e7', '0']],
stimList = [['soma', '1', '.', 'inject', '(t>0.02) * 1e-9']],
moogList = [['#', '1', '.', 'Vm', 'Soma potential']]

)
rdes.buildModel()
moose.reinit()
rdes.displayMoogli(0.0002, 0.025, 0.02)

Note that the uniform spacing of spines is signified by the negative minSpacing term, the
fourth argument to spineDistrib.

spineDistrib = [[‘spine’, ‘#dend#’, ‘3e-6’, ‘-1e-6’, ‘1+p*2e4’, ‘0’, ‘p*6.28e7’, ‘0’]]

Suggestions:

• Play with expressions for spine size and angular placement.

• See what happens if the segment size gets smaller than the spine spacing.

132 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

user/py/rdesigneur/../../../../images/ex9.3_spiral_spines.png

Fig. 40: 3-D display of spines in a spiral

5.1.4 Rdesigneur command reference

Rdesigneur is a Python class used to build multiscale neuronal models involving Reaction-
Diffusion and Electrical SIGnaling in NEURons. The stages in its use are illustrated in the
following dummy code snippet:

1. Load in the libraries
import moose
import rdesigneur as rd

2. Define the arguments. This does most of the model setup
rdes = rd.rdesigneur(args)

3. Tweak parameters of model building-blocks, for example:
a = moose.element('/library/chem/kinetics/a')
a.diffConst = 0

4. Build the model
rdes.buildModel()

5. Tweak values in the constructed model, for example
bv = moose.vec('/model/chem/dend/b')
bv[0].concInit *= 2

6. Run the model
moose.reinit()
moose.start(runtime)

7. Display and/or save model output
rdes.dispay()

The rdesigneur arguments are provided in the standard Python keyword-argument format.
For example:

rdes = rd.rdesigneur(
turnOffElec = True,
chemDt = 0.05,
...
chemProto = [['makeChemOscillator()', 'osc']],
...
plotList = [rd.rplot(relpath = 'dend/a', field = 'conc', title

↪→= '[a] (uM)')],
...

)

Each argument has a default, hence even building rdesigneur without arguments (page 62) will
produce a correct, if not very interesting model.

5.1. Rdesigneur: Building multiscale models 133

MOOSE User Manual, Release chennapoda (3.2.rc)

Rdesigneur and Prototypes: Rdesigneur assembles models by taking prototype objects and
replicating them into the model. These prototypes can be chemical reaction systems, ion chan-
nels, spines, or entire neurons. All the prototypes are placed under the MOOSE object /library.
When building the model, it looks up prototypes by name and places them into the resulting
model. The rdesigneur constructor (step 2 above) builds all these prototypes. Once they are in
place, the BuildModel() method (step 4 above) performs the assembly.

Below we provide the usage of the argument list to rdesigneur, which does most of the model
specification.

turnO�Elec

Type: bool

Default: False

Use: Turns off electrical calculations. It is a good idea to set this flag True if the model doesn’t
use electrical calculations, it can make the calculations many times faster.

useGssa

Type: bool

Default: True

Use: Turns on the use of the Gillespie Stochastic Simulation Algorithm (GSSA) in dendritic
spines. Advisable in models where you worry about stochasticity. Also it typically makes the
simulations run faster.

combineSegments

Type: bool

Default: True

Use: Flag to pass on to the NeuroML loader to tell it to combine segments.

stealCellFromLibrary

Type: bool

Default: False

Use: Use the prototype loaded-in neuron itself for the main simulation run, removing it from
the available prototypes. It is advisable to set this to True if the model is large and complicated.
It saves memory and in some cases runs more reliably.

verbose

Type: bool

Default: True

Use: Tell rdesigneur to be garrulous when loading and reporting status and errors.

134 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

addSomaChemCompt

Type: bool

Default: False

Use: Specify that the largest chemical compartment (by volume) should be assigned to the
cell soma. Most multiscale models don’t bother with a soma chemical compartment, and are
happy with dendrite and possibly spines, so this defaults to False.

addEndoChemCompt

Type: bool

Default: False

Use: Specify that each of the chemical compartments should contain an internal endo-
compartment. This is typically used for the endoplasmic reticulum in models of calcium-induced
calcium release (page 90) (CICR), however, the EndoCompartments are quite general and can
be used for defining chemistry and transport involving any membrane-bound organelle. In
MOOSE, when you create an EndoCompartment it must be surrounded by a regular compart-
ment, and a voxel of the EndoCompartment appears within every voxel of the surrounding
compartment.

di�usionLength

Type: double

Default: 2e-6 (2 microns)

Use: This sets the spatial discretization length of reaction-diffusion models. If the diffusion
constant is D (in micron^2/sec), then the diffusionLength should be less than D microns for
signaling events that take 1 second. If the signaling is faster, diffusionLength should be smaller.

temperature

Type: double

Default: 32 degrees Celsius

Use: ChannelML definitions of ion channels use this value to modulate their kinetics.

chemDt

Type: double

Default: 0.1 s

Use: Specify timestep for chemical computations. Note that internally the MOOSE solver
will probably use finer or adaptive timesteps. The chemDt just ensures that all the chemical
values in different solvers will be synchronized at this interval. You will want to make this
somewhat smaller (0.01 to 0.001 s) in the case of multiscale simulations with tight coupling
between electrical and signaling events.

5.1. Rdesigneur: Building multiscale models 135

MOOSE User Manual, Release chennapoda (3.2.rc)

di�Dt

Type: double

Default: 0.01 s

Use: Specify timestep for diffusion computations, as well as cross-compartment reactions and
molecular transport across membrane pores. This timestep does not apply to voltage-gated
and synaptic channels handled by the electrical solver, for that use elecDt. You will want to
make this somewhat smaller (0.01 to 0.001 s) in the case of multiscale simulations with tight
coupling between electrical and signaling events.

elecDt

Type: double

Default: 50e-6 s

Use: Specify timestep for electrical calculations, used by the HSolver in MOOSE to carry out
calculations using Gaussian Elimination and the Crank- Nicolson method for ion channels.
This works well for slower channels, but if you have particularly fast channel kinetics you
may wish to use elecDt of 10 to 20 us.

chemPlotDt

Type: double

Default: 1 s

Use: Timestep for storing and plotting chemical values.

elecPlotDt

Type: double

Default: 100e-6 s

Use: Timestep for storing and plotting electrical values.

funcDt

Type: double

Default: 100e-6 s

Use: Timestep for performing Function calculations for inputs and stimuli, for electrical mod-
els. Only used for electrical models, i.e., when turnOffElec (page 134) is False. Otherwise the
system uses a funcDt equal to the chemDt.

136 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

cellProto

Type: List of lists

Default: [] (empty list). This generates the Hodgkin-Huxley configuration where length and
diameter are 500 microns, RM = 0.333, RA = 3000, and CM = 0.01 F/m^2, but no active chan-
nels.

Use: This defines which neuronal model specification to use. There are many options here:

1. zero args: make standard soma corresponding to the Hodgkin-Huxley model. length
and diameter are both 500 um.

2. [name, library_proto_name]: uses library prototype object.

3. [fname.suffix, cellname]: Loads cell from file. The file type is identified by the suffix,
and can be :

• .nml: NeuroML

• .xml: NeuroML

• .swc: NeuroMorpho.org format for cellular morphology

• .p: Genesis format

4. [moose<Classname>, cellname]: Makes prototype from MOOSE class.

5. [funcname, cellname]: Calls named function with specified name of cell to be made.

6. [path, cellname]: Copies path to library as proto

7. [libraryName, cellname]: Renames library entry as prototype.

8. [somaProto, name, somaDia=5e-4, somaLen=5e-4] Creates a soma with optional speci-
fied diameter and length. Defaults as shown.

9. [ballAndStick,name, somaDia=10e-6, somaLen=10e-6, dendDia=4e-6, dendLen=200e-6,
numDendSeg=1] Creates a ball-and-stick with required type and name arguments. The
remaining arguments are optional. Defaults as shown.

spineProto

Type: List of lists

Default: [] (empty list). This does not define any spines.

Use: Each list entry should be a list containing two strings: source and destination. The source
defines how to build the prototype. The destination specifies its name. If the requested destina-
tion is an object that already exists in the library, the system doesn’t do anything.

The source can be any of:

• functionName(): Call specified Python function, with the destination as the argument.
The function is expected to build a prototype of the requested name on ‘/library’. The
following utility functions are built-in:

– makePassiveSpine(): Makes a 2-compartment spine with the following parameters:

* shaft name: shaft

* shaft length = 1 micron

5.1. Rdesigneur: Building multiscale models 137

MOOSE User Manual, Release chennapoda (3.2.rc)

* shaft diameter = 0.2 micron

* head name: head

* head length = 0.5 micron

* head diameter = 0.5 micron

* RM = 1.0

* RA = 1.0

* CM = 0.01

– makeExcSpine(): Same as above but adds in glutamate and NMDA receptors and
a calcium pool. The calcium pool has a pumping tau of 13.333 ms, and is present
in the volume of the spine head. Both receptors have conductances in the form
of dual-exponential alpha functions, with a separate opening and closing tau. The
glutamate receptor has the following parameters:

* name: glu

* opening tau: 2 ms

* closing tau: 9 ms

* Gbar, ie, conductance per unit area: 200 Siemens/m^2

The NMDA receptor has the following parameters:

* name: NMDA

* opening tau: 20 ms

* closing tau: 20 ms

* Gbar, ie, conductance per unit area: 80 Siemens/m^2

– makeActiveSpine(): Same as above, but also adds in a voltage-gated calcium chan-
nel with Gbar = 10 Siemens/m^2 into the spine head.

• Path of existing object in memory, such as /library/source. In this case rdesigneur renames
the object to /library/destination.

• A filename, with any of the suffices:

– .nml: NeuroML

– .xml: NeuroML

– .swc: NeuroMorpho.org format for cellular morphology

– .p: Genesis format

• moose::SymCompartment: Make a SymCompartment for the spine. Deprecated.

• moose::Compartment: Make a Compartment for the spine. Deprecated.

chanProto

Type: List of lists

Default: [] (empty list). The empty list does not define any channels.

138 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Use: Each list entry must have a string for the source. It can optionally have a second string
for the destination, which is the name to give to the source channel when it is constructed on
/library.

The following options are available for specifying the source for making channel prototypes:

• Filepath. This is relative to the working directory. The following file types are
known:

– xml: ChannelML, which is a subset of NeuroML

– nml: ChannelML, which is a subset of NeuroML

Channels in thse formats are available from Open Source Brain
(http://www.opensourcebrain.org/),

• Predefined channel prototypes, available as functions within rdesigneur. This
is indicated by the use of braces after the name. The following prototypes are
currently available:

– make_HH_Na(): Make the classical Hodgkin-Huxley Na channel, with
kinetics scaled to SI units.

– make_HH_K(): Classical HH delayed rectifier K channel.

– make_Na(): Hippocampal pyramidal Na channel from Traub 1991.

– make_K_DR(): Hippocampal pyramidal K delayed rectifier channel from
Traub 1991.

– make_K_A(): Hippocampal pyramidal A-type K channel from Traub
1991.

– make_Ca_conc(): A calcium pool with tau 13.333 ms. This is required for
the calcium dynamics of several channels.

– make_Ca(): Voltage-gated Calcium channel, based on Traub 1991. It re-
quires the Ca_conc.

– make_K_AHP: Voltage and calcium-gated afterhyperpolarization- acti-
vated K channel, from Traub 1991. Note that this channel requires the
presence of the Ca_conc.

– make_K_C: Voltage and calcium-dependent K channel from Traub 1991.
This channel requires the presence of the Ca_conc.

– make_glu(): Glutamate receptor in the form of dual-exponential alpha
functions, with a separate opening (2ms) and closing (9ms) tau. Reversal
potential = 0 mV.

– make_GABA(): GABA receptor in the form of dual-exponential alpha
functions, with a separate opening (4ms) and closing (9ms) tau. Rever-
sal potential = -65 mV.

• User-defined channel definition functions. These can be from external Python
files, using the full path to the file name minus the suffix. The specific function
within it is then specified. For example,

5.1. Rdesigneur: Building multiscale models 139

http://www.opensourcebrain.org/

MOOSE User Manual, Release chennapoda (3.2.rc)

chanProto = [
['/home/user/models/channelProtos.make_K_AHP()', 'K_

↪→AHP']
]

chemProto

Type: List of lists

Default: [] (empty list). The empty list does not define any chemical systems.

Use: Each list entry must have a string for the source. It can optionally have a second string for
the destination, which is the name to give to the source chemical system when it is constructed
on /library.

The following options are available for specifying the source for making channel prototypes:

• Filepath. This is relative to the working directory. The following file types are known:

– xml: SBML

– sbml: SBML

– .g: GENESIS Kinetikit (kkit.g) format.

Channels in thse formats are available from the DOQCS (https://doqcs.ncbs.res.in/)
database, and from the BioModels (https://www.ebi.ac.uk/biomodels-main/) database,

• Predefined functions. At present only one such function is available, makeChemOscil-
lator()

• User-defined functions. These can be from external Python files, using the full path to
the file name minus the suffix. The specific function within it is then specified. For
example,

chemProto = [
['/home/user/models/chemProtos.make_Osc()', 'osc']

]

• Pool objects. These are created on the fly using the form

chemProto = [['moose:Pool', 'a']]

passiveDistrib

Type: List of lists

Default: [] (empty list). Does nothing.

Use; This is for adjusting the passive properties of the neuron. Each list entry is a list of strings,
of the form:

[path, field, expr, [field, expr]...]

Here the path is a MOOSE wildcard path, which defines one or more objects. Briefly, the ‘#’
character specifies any string, and the double ‘##’ specifies any string at any level in the tree.

140 Chapter 5. Rdesignuer

https://doqcs.ncbs.res.in/
https://www.ebi.ac.uk/biomodels-main/

MOOSE User Manual, Release chennapoda (3.2.rc)

For example, to specify any compartment with the string ‘dend’ you would use ‘#dend#’ and
to specify any object anywhere in the tree you would use ‘##’.

The field can be any one of the following:

• RM: Membrane resistivity, in ohms.m^2

• RA: Axial resistivity, in ohms.m

• CM: Membrane specific capacitance, in Farads/m^2

• Rm: Absolute membrane resistance of that segment, in ohms.

• Ra: Absolute axial resistance of that segment, in ohms.

• Cm: Absolute membrane capacitance of that segment, in Farads.

• Em: Membrane resting potential, in Volts.

• initVm: Initial value to set the membrane potential, in Volts.

The expr is an expression string that is evaluated to give the desired value for the field. This
can be as simple as the value itself, but can be a much more interesting function of geometrical
properties of the cell. The geometry arguments available to the expr include:

• p: Path length in metres from the soma, measured along the dendrite.

• g: Geometrical distance from the soma.

• L: Number of electronic length constants from the soma

• len: length of the segment of dendrite

• dia: diameter of the segment of dendrite

• maxP: Maximum path length of any dendrite in the cell.

• maxG: Maximum geometrical distance of any dendrite from soma

• maxL: Maximum electrotonic distance of any dendrite from the soma

Putting these together, here is an example of using the passiveDistrib:

passiveDistrib = [
['soma', 'RM', '1.0', 'CM', '0.02'],
['#dend#', 'RM', '1.5 + 0.5*(p>200e-6)', 'CM', '0.01'],

]

This means set the soma RM to 1.0, and CM to 0.02, leaving the RA as the default. The scaled
value for Rm, Ra, and Cm are computed by scaling these terms according to the soma dimen-
sions. For all dendrite compartments, set the RM to 1.5 provided it is closer than 200 microns
dendritic path length from the soma, and set the RM to 2.0 for all dendritic compartments
further than this. Finally, for all dendrite compartments, set CM to 0.01. Note that again the
absolute Rm and Cm will be scaled according to the local compartment dimensions.

spineDistrib

Type: List of lists

Default: [] (empty list). Does nothing.

5.1. Rdesigneur: Building multiscale models 141

MOOSE User Manual, Release chennapoda (3.2.rc)

Use: This is for inserting dendritic spines onto the neuron. Each entry is a list of strings, of the
form:

[proto, path, [spacing, minSpacing, size, sizeDistrib, angle,
↪→angleDistrib]]

Of these, the name and the path are required entries, and the remainder can be provided in
pairs. The defaults for these entries are:

['spine', '#dend#,#apical#', '10e-6', '1e-6', '1', '0.5', '0', '6.2832
↪→']

The interpretation of the arguments is as follows:

• name: This is the name of the spine prototype (page 137).

• path: The wildcard path of compartments on which to insert the spines. In the example
above, ‘#dend#,#apical#’ means all compartments with the strings dend or apical in their
names.

• spacing: The mean spacing between spines. At present the spines are placed with a
Poisson distribution. This is a math expression with the same terms as used for the
passive distribution, so that the spine spacing can be a function of spine position along
the dendritic tree. The form of this expression is shown again below.

• minSpacing: The minimum spacing, and the increment along which the Poisson samples
are taken to decide if a spine should be added. In case minSpacing is negative, the system
places spines with uniform spacing along the dendritic segment. If segment length
< 0.5 * spacing then the system falls back onto Poisson samples so that finely
subdivided dendrites don’t miss out on spines altogether.

• size: Scale factor for size from the prototype spine. All dimension of the spine are scaled
by this number: shaft length, shaft diameter, head length and head diameter. This is a
math expression, as shown below.

• sizeDistrib: The range of distribution of sizes. This is a linear distribution centered
around the defined size.

• angle: The initial angle of the first spine on each dendrite compartment, in radians. This
is a math expression, as shown below.

• angleDistrib: The range of of angles around this initial angle. The angle will be chosen
from a linear distribution centered around the centre angle, +/- angleDistrib.

The expression used for spacing, size, and angle is of the form of an an expression string that
is evaluated to give the desired value for the field. This can be as simple as the value itself, but
can be a much more interesting function of geometrical properties of the cell. The geometry
arguments available to the expr include:

• p: Path length in metres from the soma, measured along the dendrite.

• g: Geometrical distance from the soma.

• L: Number of electronic length constants from the soma

• len: length of the segment of dendrite

• dia: diameter of the segment of dendrite

• maxP: Maximum path length of any dendrite in the cell.

142 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

• maxG: Maximum geometrical distance of any dendrite from soma

• maxL: Maximum electrotonic distance of any dendrite from the soma

For example:

['spine', '#dend#', '1e-6 + (dia<2e-6)*10', '1e-7', '1', '0.5', '6.
↪→28*p/maxP', '0']

proto: The prototype spine by the name of spine is used.

path: All compartments with the string dend in their name are used.

Spacing: The spines are only placed on branches smaller than 2 microns (otherwise the spine
spacing is 10 metres). On these small branches the spacing is, on average, 1 micron.

Size: The size is anything from 50% to 150% of the prototype spine size.

Angle: The angle is proportional to the distance from the soma, such that the spines make a
complete spiral (2pi) around the dendrite over its length.

chanDistrib

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This is for inserting ion channels onto the neuron. Each entry is a list of strings, of the
form:

[proto, path, field, expr, [field, expr]...]

The entries here are of the form:

• proto: Specifies the name of the prototype channel to insert

• path: Wildcard path of compartments in which to insert the channel

• field: Field to assign to channel, almost always Gbar, to set its channel density.

• expr: Expression evaluated to obtain value to assign to field. This is a mathematical
expression of various geometrical properties of the cell, as listed below.

The expr can be as simple as the value itself, but can be a much more interesting function of
geometrical properties of the cell. The geometry arguments available to the expr include:

• p: Path length in metres from the soma, measured along the dendrite.

• g: Geometrical distance from the soma.

• L: Number of electronic length constants from the soma

• len: length of the segment of dendrite

• dia: diameter of the segment of dendrite

• maxP: Maximum path length of any dendrite in the cell.

• maxG: Maximum geometrical distance of any dendrite from soma

• maxL: Maximum electrotonic distance of any dendrite from the soma

5.1. Rdesigneur: Building multiscale models 143

MOOSE User Manual, Release chennapoda (3.2.rc)

A typical channel distribution entry is:

["kdr", "#", "Gbar", "p < 50e-6 ? 500 : 100"]

Here the kdr channel is inserted throughout the cell, and its conductance is at 500 Siemens/m^2
for all regions closer than 50 microns, and 100 S/m^2 for the rest of the cell. Basically there is
lots of the channel on and near the soma.

chemDistrib

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This is for inserting a chemical system into the neuron Each entry is a list of strings, of the
form:

[proto, path, 'install', expr]

The entries here are of the form:

• proto: Specifies the name of the prototype chemical system to insert

• path: Wildcard path of compartments in which to insert the channel

• ‘install’: Default string.

• expr: Expression evaluated to decide whether to install the chemical system. This is the
usual function (page 143) of geometrical properties of the cell. It is usually ‘1’, to tell the
system to install throughout the path.

The chemical distribution is handled specially for assignment to the neuronal morphology.
This is because a given chemical system will have reactions between dendrite, ER, spines and
PSD, as well as diffusion between these zones. Thus, though it would be convenient, we cannot
simply define separate chemical systems for each cellular compartment. Instead we use one of
two conventions for doing the assignment.

1. Volume based. If the model format does not permit explicit naming of the chemical
compartments in the model, then the assignment is inferred from the volume of each
compartment. This limitation applies for the legacy Genesis/kkit .g format. It may also
apply to SBML models that do not assign suitable names for their chemical compart-
ments. In this case the largest chemical compartment is assigned to the dendrite, the
next (if present) to the spine head, and the smallest (if present) to the spine PSD.

This is modified in one of two ways by the flags addSomaChemCompt (page 135) and
addEndoChemCompt (page 135).

addSomaChemCompt instructs rdesigneur to use the largest compartment for the soma.
The remaining compartments follow in the usual order.

addEndoChemCompt instructs rdesigneur to insert an EndoCompartment in each neuronal
compartment. The volume order is now dend, dend_endo, spine-head, spine-head-endo
and so on.

2. Name based. This works for recent SBML models, which can assign a compartment
name to each of the chemical compartments. Here the expectation is that the names are

144 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

one of soma, soma_endo, dend, dend_endo, spine, spine_endo, psd, psd_endo. Note that the last
one, though permitted, doesn’t make much biological sense.

adaptorList

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This is for implementing an adaptor between chemical and electrical, or chemical and
structural quantities. Adaptors handle the conversion between distinct concepts in chemical
and electrical models. For example, Calcium concentration as computed electrically in the
Ca_conc objects, can map to the calcium concentration of the ion as a molecule, where it can
react, diffuse, and undergo other calcium dynamics. Another common use is to map the con-
centration of the molecular state of an ion channel, to its conductance. The adaptor applies the
conversion equation y = mx + c where y is the target value, x is the source value, m is the slope
of the conversion, and c is the offset.

Adaptors automatically average over multiple inputs if the mapping requires. Typically elec-
trical segments each contain many chemical voxels, so the adaptor averages all the source
chemical quantities to apply to the corresponding electrical quantity. Similarly, each chemi-
cal timestep is typically much longer than the electrical timestep, so the adaptor averages the
electrical quantity over the entire duration of the chemical timestep.

Each entry is a list of strings, of the form:

[source, source_field, dest, dest_field, offset, scaling]

The entries here are:

• source: Specifies the path of the objects whose quantities need to be converted. In the
case of chemical quantities, the path starts with the compartment name, one of dend,
spine, or psd. So the molecule Ca in the dendrite would be identified as dend/Ca.

• source_field: The field on the source object whose value is to be used.

• dest: Path of destination object, whose quantities will be assigned. As above, chemical
quantities are prefixed by their compartment name.

• dest_field: Field to be assigned on the destination object.

• offset: Double. In the conversion, what is the value of the dest_field when the source
value is zero?. In other words, the quantity c in the conversion equation y = mx + c

• scaling: Double. The slope m.

stimList

Type: List of lists

Default: [] (empty list). Does nothing.

Use: Each entry is a list of strings, as follows:

[path, geometry_expr, dest, dest_field, time_expr]

The entries here are:

5.1. Rdesigneur: Building multiscale models 145

MOOSE User Manual, Release chennapoda (3.2.rc)

• path: The usual MOOSE wildcard path to identify electrical compartments over
which the stimulus will extend. Note that the stimulus may be to a chemical entity,
but the spatial location is specified in terms of the electrical compartments in which
the chemical system is embedded.

• geometry_expr. This is the usual function (page 143) of geometrical properties of the
cell. If it is non-zero, then the stimulus will apply. There is a special case for synaptic
inputs in which the geometry_expr is repaced with the synaptic weight, recorded as
a string.

• dest. This is the destination object for the stimulus.

• dest_field. This is the field on the destination object to be assigned. There is a
special case for synaptic inputs, where the field can be periodicsyn or randsyn,
representing periodic and random synaptic input respectively.

• time_expr: This is the time expression of the value of the stimulus. Unlike the ge-
ometry_expr, the time_expr can take the predefined variable t which is the current
simulation time. The time_expr does not have access to the geometry arguments.

Example 1:

['head#', '0.5','glu', 'periodicsyn', '1 + 40*(t>10 && t<11)']

This acts on all glutamate receptors on the spine heads. It delivers periodic synaptic input with
weight 0.5 at a basal rate of 1 Hz, rising by 40Hz in the interval between 10 and 11 seconds.

Example 2:

['soma', '1', '.', 'inject', '(1+cos(t/10))*(t>31.4 && t<94)* 0.5e-9'
↪→]

This acts to deliver a current injection on the soma. It delivers cosine input of angular fre-
quency 1/10 radians/s, between times 31.4 and 94 seconds, with a peak amplitude of 0.5 nA.

Rdesigneur also supports keyword-based argument lists for the stimList. Here each entry is
an rstim function as follows:

rd.rstim(elecpath, geom_expr, relpath, field, expr)

The default values of the arguments are

rd.rstim(elecpath='soma', geom_expr='1', relpath='.', field='inject',
↪→expr='0')

Example 3: To get the same outcome as example 2, one could use:

rd.rstim(expr=(1+cos(t/10))*(t>31.4 && t<94)* 0.5e-9')

because most of the arguments are the same as the defaults.

plotList

Type: List of lists

Default: [] (empty list). Does nothing.

146 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

Use: This displays a line plot of cellular activity. Each entry is a list as follows:

[path, geom_expr, relpath, field, title,
[mode, ymin, ymax,saveFile, saveResolution, showFlag]

]

The entries here are:

• path: string. The usual MOOSE wildcard path to identify electrical compartments
over which the plots will be sampled. Note that the stimulus may be to a chemical
entity, but the spatial location is specified in terms of the electrical compartments in
which the chemical system is embedded.

• geom_expr: string. This is the usual function (page 143) of geometrical properties
of the cell. If it is non-zero, then the stimulus will apply. There is a special case
for synaptic inputs in which the geometry_expr is repaced with the synaptic weight,
recorded as a string.

• replath: string. Relative path to object whose value is being monitored.

• field: string. The field to monitor on the source object.

• title: Title string for the generated plot.

• mode: Optional. String to decide what kind of plot to make. Options are:

– ‘time’: Default. Plot time-series

– ‘wave’: Generate wave-plot with compartment/voxel number as x axis, value
as y axis, and run through a series of frames for different time-points durign
simulation.

• ymin: Double. Optional. Minimum value for y axis. Default = 0.

• ymax: Double. Optional. Maximum value for y axis. Default = 0. If ymin==ymax
then the plot autoscales.

• saveFile: string. Optional. File in which to save plot contents. Default = “”, to
indicate that the file is not saved. Currently it can save in csv and xml formats. nsdf
will be implemented soon.

• show: Bool. Optional. Flag to decide if the plot should be displayed. Default=True.

Rdesigneur also supports keyword-based argument lists for the plotList, having the same en-
tries as above. Here are two plotList entries with identical outcomes.

['soma', '1', '.', 'Vm', 'Soma membrane potential'],
[rd.rplot(field='Vm', title= 'Soma membrane potential')],

moogList

Type: List of lists

Default: [] (empty list). Does nothing.

Use: This displays a 3-D plot of cellular activity. Each entry is a list as follows:

[path, geom_expr, relpath, field, title, [ymin, ymax]]

5.1. Rdesigneur: Building multiscale models 147

MOOSE User Manual, Release chennapoda (3.2.rc)

The entries here are:

• path: string. The usual MOOSE wildcard path to identify electrical compartments
over which the display will be sampled. Note that the stimulus may be to a chemical
entity, but the spatial location is specified in terms of the electrical compartments in
which the chemical system is embedded.

• geom_expr: string. This is the usual function (page 143) of geometrical properties
of the cell. If it is non-zero, then the stimulus will apply. There is a special case
for synaptic inputs in which the geometry_expr is repaced with the synaptic weight,
recorded as a string.

• replath: string. Relative path to object whose value is being monitored.

• field: string. The field to monitor on the source object.

• title: Title string for the generated display.

• ymin: Double. Minimum value for y axis. Default = 0.

• ymax: Double. Maximum value for y axis. Default = 0. If ymin==ymax then the
plot autoscales.

• show: Bool. Flag to decide if it should be displayed. Default=True.

Rdesigneur also supports keyword-based argument lists for the moogList, having the same
entries as above. Here are two moogList entries with identical outcomes.

['soma', '1', 'dend/a', 'conc', 'a Conc', 0, 600],
[rd.rmoog(relpath='dend/a', field='conc', title = 'a Conc', ymax=600)]

To run and display moogli, one replaces the moose.start() and the rdes.display() functions with
the line:

rdes.displayMoogli(dt, runtime, rotation, fullscreen, block, azim,
↪→elev)

in which the first two arguments are required and the rest are optional and can be assigned by
keywords.

The arguments are as follows:

• dt: double. Time interval between frames on the moogli display

• runtime: double. Simulation runtime.

• rotation: double. How much to rotate the display per frame. Defaults to pi/500.

• fullscreen: bool. Flag to do display on the full screen. Defaults to False.

• azim: double. Azimuth setting. Defaults to 0.0

• elev: double. Elevation setting. Defaults to 0.0

The moogli primer (page 88) explains how to use the 3-D display.

148 Chapter 5. Rdesignuer

MOOSE User Manual, Release chennapoda (3.2.rc)

5.2 Rdesigneur Examples

Each of the following examples can be run by clicking on the green
↪→source button

on the right side of each example, and running from within a .py
↪→python file

on a computer where moose is installed.

Alternatively, all the files mentioned on this page can be found in
↪→the main

moose directory. They can be found under

(...)/moose/moose-examples/snippets

They can be run by typing

$ python filename.py

in your command line, where filename.py is the python file you want
↪→to run.

All of the following examples show one or more methods within each
↪→python file.

For example, in the cubeMeshSigNeur section, there are two blue tabs
describing the cubeMeshSigNeur.createSquid() and cubeMeshSigNeur.
↪→main()

methods.

The filename is the bit that comes before the . in the blue boxes,
↪→with

.py added at the end of it. In this case, the file name would be
cubeMeshSigNeur.py.

5.2.1 Building Chemical-Electrical Signalling Models

Building a compartment

Inserting Spines and viewing

Proceeding with Spines

5.2. Rdesigneur Examples 149

MOOSE User Manual, Release chennapoda (3.2.rc)

150 Chapter 5. Rdesignuer

CHAPTER 6

Teaching Tutorials

To see interactive and executable versions of ChemicalBistables and ChemicalOscillators,
please click the following link:

(https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2FIndex.ipynb)
These tutorials use the moose simulation environment to illustrate various scientific concepts,
phenomena, and research. As such the materials in this section are useful for both teaching
and learning about these topics.

6.1 Chemical Bistables

A bistable system (https://en.wikipedia.org/wiki/Bistability) is a dynamic system that has
two stable equilibrium states. The following examples can be used to teach and demonstrate
different aspects of bistable systems or to learn how to model them using moose. Each example
contains a short description, the model’s code, and the output with default settings.

Each example can be found as a python file within the main moose folder under

(...)/moose/moose-examples/tutorials/ChemicalBistables

In order to run the example, run the script

python filename.py

in command line, where filename.py is the name of the python file you would like to run.
The filenames of each example are written in bold at the beginning of their respective sections,
and the files themselves can be found in the aformentioned directory.

In chemical bistable models that use solvers, there are optional arguments that allow you to
specify which solver you would like to use.

python filename.py [gsl | gssa | ee]

Where:

151

https://mybinder.org/v2/gh/BhallaLab/moose-binder/master?filepath=home%2Fmooser%2FIndex.ipynb
https://en.wikipedia.org/wiki/Bistability

MOOSE User Manual, Release chennapoda (3.2.rc)

• gsl: This is the Runge-Kutta-Fehlberg implementation from the GNU Scientific Library
(GSL). It is a fifth order variable timestep explicit method. Works well for most reaction
systems except if they have very stiff reactions.

• gssl: Optimized Gillespie stochastic systems algorithm, custom implementation. This
uses variable timesteps internally. Note that it slows down with increasing numbers of
molecules in each pool. It also slows down, but not so badly, if the number of reactions
goes up.

• Exponential Euler:This methods computes the solution of partial and ordinary differen-
tial equations.

All the following examples can be run with either of the three solvers, each of which has dif-
ferent advantages and disadvantages and each of which might produce a slightly different
outcome.

Simply running the file without the optional argument will by default use the gsl solver.
These gsl outputs are the ones shown below.

6.1.1 Simple Bistables

Filename: simpleBis.py

This example shows the key property of a chemical bistable system: it has two stable states.
Here we start out with the system settling rather quickly to the first stable state, where
molecule A is high (blue) and the complementary molecule B (green) is low. At t = 100s, we
deliver a perturbation, which is to move 90% of the A molecules into B. This triggers a state
flip, which settles into a distinct stable state where there is more of B than of A. At t = 200s we
reverse the flip by moving 99% of B molecules back to A.

If we run the simulation with the gssa option python simpleBis.py gssa

we see exactly the same sequence of events, except now the switch is noisy. The calculations are
now run with the Gillespie Stochastic Systems Algorithm (gssa) which incorporates probabilis-
tic reaction events. The switch still switches but one can see that it might flip spontaneously
once in a while.

Things to do:

1. Open a copy of the script file in an editor, and around line 124 and 129 you will see how
the state flip is implemented while maintaining mass conservation. What happens if you flip
over fewer molecules? What is the threshold for a successful flip? Why are these thresholds
different for the different states?

2. Try different volumes in line 31, and rerun using the gssa. Will you see more or less noise
if you increase the volume to 1e-20 m^3?

Code:

152 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2013 Upinder S. Bhalla. and NCBS
5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 # This example illustrates how to set up a kinetic solver and kinetic
↪→model

11 # using the scripting interface. Normally this would be done using the
12 # Shell::doLoadModel command, and normally would be coordinated by the
13 # SimManager as the base of the entire model.
14 # This example creates a bistable model having two enzymes and a

↪→reaction.
15 # One of the enzymes is autocatalytic.
16 # The model is set up to run using deterministic integration.
17 # If you pass in the argument 'gssa' it will run with the stochastic
18 # solver instead
19 # You may also find it interesting to change the volume.
20

21 import math
22 import pylab
23 import numpy
24 import moose
25 import sys
26

27 def makeModel():
28 # create container for model
29 model = moose.Neutral('model')
30 compartment = moose.CubeMesh('/model/compartment')
31 compartment.volume = 1e-21 # m^3
32 # the mesh is created automatically by the compartment
33 mesh = moose.element('/model/compartment/mesh')
34

35 # create molecules and reactions
36 a = moose.Pool('/model/compartment/a')
37 b = moose.Pool('/model/compartment/b')
38 c = moose.Pool('/model/compartment/c')
39 enz1 = moose.Enz('/model/compartment/b/enz1')
40 enz2 = moose.Enz('/model/compartment/c/enz2')
41 cplx1 = moose.Pool('/model/compartment/b/enz1/cplx')
42 cplx2 = moose.Pool('/model/compartment/c/enz2/cplx')
43 reac = moose.Reac('/model/compartment/reac')
44

45 # connect them up for reactions
46 moose.connect(enz1, 'sub', a, 'reac')
47 moose.connect(enz1, 'prd', b, 'reac')
48 moose.connect(enz1, 'enz', b, 'reac')
49 moose.connect(enz1, 'cplx', cplx1, 'reac')
50

51 moose.connect(enz2, 'sub', b, 'reac')
52 moose.connect(enz2, 'prd', a, 'reac')

(continues on next page)

6.1. Chemical Bistables 153

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

53 moose.connect(enz2, 'enz', c, 'reac')
54 moose.connect(enz2, 'cplx', cplx2, 'reac')
55

56 moose.connect(reac, 'sub', a, 'reac')
57 moose.connect(reac, 'prd', b, 'reac')
58

59 # connect them up to the compartment for volumes
60 #for x in (a, b, c, cplx1, cplx2):
61 # moose.connect(x, 'mesh',

↪→mesh, 'mesh')
62

63 # Assign parameters
64 a.concInit = 1
65 b.concInit = 0
66 c.concInit = 0.01
67 enz1.kcat = 0.4
68 enz1.Km = 4
69 enz2.kcat = 0.6
70 enz2.Km = 0.01
71 reac.Kf = 0.001
72 reac.Kb = 0.01
73

74 # Create the output tables
75 graphs = moose.Neutral('/model/graphs')
76 outputA = moose.Table ('/model/graphs/concA')
77 outputB = moose.Table ('/model/graphs/concB')
78

79 # connect up the tables
80 moose.connect(outputA, 'requestOut', a, 'getConc');
81 moose.connect(outputB, 'requestOut', b, 'getConc');
82

83 # Schedule the whole lot
84 moose.setClock(4, 0.01) # for the computational

↪→objects
85 moose.setClock(8, 1.0) # for the plots
86 # The wildcard uses # for single level, and ## for

↪→recursive.
87 moose.useClock(4, '/model/compartment/##', 'process'

↪→)
88 moose.useClock(8, '/model/graphs/#', 'process')
89

90 def displayPlots():
91 for x in moose.wildcardFind('/model/graphs/conc#'):
92 t = numpy.arange(0, x.vector.size, 1

↪→) #sec
93 pylab.plot(t, x.vector, label=x.name

↪→)
94 pylab.legend()
95 pylab.show()
96

97 def main():
98 solver = "gsl"
99 makeModel()

100 if (len (sys.argv) == 2):
101 solver = sys.argv[1]
102 stoich = moose.Stoich('/model/compartment/stoich')

(continues on next page)

154 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

103 stoich.compartment = moose.element('/model/
↪→compartment')

104 if (solver == 'gssa'):
105 gsolve = moose.Gsolve('/model/compartment/ksolve

↪→')
106 stoich.ksolve = gsolve
107 else:
108 ksolve = moose.Ksolve('/model/compartment/ksolve

↪→')
109 stoich.ksolve = ksolve
110 stoich.path = "/model/compartment/##"
111 #solver.method = "rk5"
112 #mesh = moose.element("/model/compartment/mesh")
113 #moose.connect(mesh, "remesh", solver, "remesh")
114 moose.setClock(5, 1.0) # clock for the solver
115 moose.useClock(5, '/model/compartment/ksolve',

↪→'process')
116

117 moose.reinit()
118 moose.start(100.0) # Run the model for 100 seconds.
119

120 a = moose.element('/model/compartment/a')
121 b = moose.element('/model/compartment/b')
122

123 # move most molecules over to b
124 b.conc = b.conc + a.conc * 0.9
125 a.conc = a.conc * 0.1
126 moose.start(100.0) # Run the model for 100 seconds.
127

128 # move most molecules back to a
129 a.conc = a.conc + b.conc * 0.99
130 b.conc = b.conc * 0.01
131 moose.start(100.0) # Run the model for 100 seconds.
132

133 # Iterate through all plots, dump their contents to
↪→data.plot.

134 displayPlots()
135

136 quit()
137

138 # Run the 'main' if this script is executed standalone.
139 if __name__ == '__main__':
140 main()

Output:

6.1. Chemical Bistables 155

MOOSE User Manual, Release chennapoda (3.2.rc)

6.1.2 Scale Volumes

File name: scaleVolumes.py

This script runs exactly the same model as in simpleBis.py, but it automatically scales the
volumes from 1e-19 down to smaller values.

Note how the simulation successively becomes noisier, until at very small volumes there are
spontaneous state transitions.

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2013 Upinder S. Bhalla. and NCBS
5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 import math
11 import pylab
12 import numpy
13 import moose
14

15 def makeModel():
16 # create container for model
17 model = moose.Neutral('model')
18 compartment = moose.CubeMesh('/model/compartment')
19 compartment.volume = 1e-20
20 # the mesh is created automatically by the compartment

(continues on next page)

156 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

21 mesh = moose.element('/model/compartment/mesh')
22

23 # create molecules and reactions
24 a = moose.Pool('/model/compartment/a')
25 b = moose.Pool('/model/compartment/b')
26 c = moose.Pool('/model/compartment/c')
27 enz1 = moose.Enz('/model/compartment/b/enz1')
28 enz2 = moose.Enz('/model/compartment/c/enz2')
29 cplx1 = moose.Pool('/model/compartment/b/enz1/cplx')
30 cplx2 = moose.Pool('/model/compartment/c/enz2/cplx')
31 reac = moose.Reac('/model/compartment/reac')
32

33 # connect them up for reactions
34 moose.connect(enz1, 'sub', a, 'reac')
35 moose.connect(enz1, 'prd', b, 'reac')
36 moose.connect(enz1, 'enz', b, 'reac')
37 moose.connect(enz1, 'cplx', cplx1, 'reac')
38

39 moose.connect(enz2, 'sub', b, 'reac')
40 moose.connect(enz2, 'prd', a, 'reac')
41 moose.connect(enz2, 'enz', c, 'reac')
42 moose.connect(enz2, 'cplx', cplx2, 'reac')
43

44 moose.connect(reac, 'sub', a, 'reac')
45 moose.connect(reac, 'prd', b, 'reac')
46

47 # connect them up to the compartment for volumes
48 #for x in (a, b, c, cplx1, cplx2):
49 # moose.connect(x, 'mesh', mesh,

↪→'mesh')
50

51 # Assign parameters
52 a.concInit = 1
53 b.concInit = 0
54 c.concInit = 0.01
55 enz1.kcat = 0.4
56 enz1.Km = 4
57 enz2.kcat = 0.6
58 enz2.Km = 0.01
59 reac.Kf = 0.001
60 reac.Kb = 0.01
61

62 # Create the output tables
63 graphs = moose.Neutral('/model/graphs')
64 outputA = moose.Table ('/model/graphs/concA')
65 outputB = moose.Table ('/model/graphs/concB')
66

67 # connect up the tables
68 moose.connect(outputA, 'requestOut', a, 'getConc');
69 moose.connect(outputB, 'requestOut', b, 'getConc');
70

71 # Schedule the whole lot
72 moose.setClock(4, 0.01) # for the computational objects
73 moose.setClock(8, 1.0) # for the plots
74 # The wildcard uses # for single level, and ## for

↪→recursive.
(continues on next page)

6.1. Chemical Bistables 157

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

75 moose.useClock(4, '/model/compartment/##', 'process')
76 moose.useClock(8, '/model/graphs/#', 'process')
77

78 def displayPlots():
79 for x in moose.wildcardFind('/model/graphs/conc#'):
80 t = numpy.arange(0, x.vector.size, 1)

↪→#sec
81 pylab.plot(t, x.vector, label=x.name)
82

83 def main():
84

85 """
86 This example illustrates how to run a model at different volumes.
87 The key line is just to set the volume of the compartment::
88

89 compt.volume = vol
90

91 If everything
92 else is set up correctly, then this change propagates through to

↪→all
93 reactions molecules.
94

95 For a deterministic reaction one would not see any change in
↪→output

96 concentrations.
97 For a stochastic reaction illustrated here, one sees the level of
98 'noise'
99 changing, even though the concentrations are similar up to a

↪→point.
100 This example creates a bistable model having two enzymes and a

↪→reaction.
101 One of the enzymes is autocatalytic.
102 This model is set up within the script rather than using an

↪→external
103 file.
104 The model is set up to run using the GSSA (Gillespie Stocahstic

↪→systems
105 algorithim) method in MOOSE.
106

107 To run the example, run the script
108

109 python scaleVolumes.py
110

111 and close the plots every cycle to see the outcome of stochastic
112 calculations at ever smaller volumes, keeping concentrations the

↪→same.
113 """
114 makeModel()
115 moose.seed(11111)
116 gsolve = moose.Gsolve('/model/compartment/gsolve')
117 stoich = moose.Stoich('/model/compartment/stoich')
118 compt = moose.element('/model/compartment');
119 stoich.compartment = compt
120 stoich.ksolve = gsolve
121 stoich.path = "/model/compartment/##"
122 moose.setClock(5, 1.0) # clock for the solver

(continues on next page)

158 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

123 moose.useClock(5, '/model/compartment/gsolve', 'process')
124 a = moose.element('/model/compartment/a')
125

126 for vol in (1e-19, 1e-20, 1e-21, 3e-22, 1e-22, 3e-23, 1e-23):
127 # Set the volume
128 compt.volume = vol
129 print('vol = {}, a.concInit = {}, a.nInit = {}'.format(vol,

↪→a.concInit, a.nInit))
130 print('Close graph to go to next plot\n')
131

132 moose.reinit()
133 moose.start(100.0) # Run the model for 100 seconds.
134

135 a = moose.element('/model/compartment/a')
136 b = moose.element('/model/compartment/b')
137

138 # move most molecules over to b
139 b.conc = b.conc + a.conc * 0.9
140 a.conc = a.conc * 0.1
141 moose.start(100.0) # Run the model for 100 seconds.
142

143 # move most molecules back to a
144 a.conc = a.conc + b.conc * 0.99
145 b.conc = b.conc * 0.01
146 moose.start(100.0) # Run the model for 100 seconds.
147

148 # Iterate through all plots, dump their contents to data.plot.
149 displayPlots()
150 pylab.show()
151

152 quit()
153

154 # Run the 'main' if this script is executed standalone.
155 if __name__ == '__main__':
156 main()

Output:

vol = 1e-19, a.concInit = 1.0, a.nInit = 60221.415

6.1. Chemical Bistables 159

MOOSE User Manual, Release chennapoda (3.2.rc)

vol = 1e-20, a.concInit = 1.0, a.nInit = 6022.1415

vol = 1e-21, a.concInit = 1.0, a.nInit = 602.21415

160 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

vol = 3e-22, a.concInit = 1.0, a.nInit = 180.664245

vol = 1e-22, a.concInit = 1.0, a.nInit = 60.221415

6.1. Chemical Bistables 161

MOOSE User Manual, Release chennapoda (3.2.rc)

vol = 3e-23, a.concInit = 1.0, a.nInit = 18.0664245

vol = 1e-23, a.concInit = 1.0, a.nInit = 6.0221415

162 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

6.1.3 Strong Bistable System

File name: strongBis.py

This example illustrates a particularly strong, that is, parametrically robust bistable system.
The model topology is symmetric between molecules b and c. We have both positive feedback
of molecules b and c onto themselves, and also inhibition of b by c and vice versa.

Open the python file to see what is happening. The simulation starts at a symmetric point and

6.1. Chemical Bistables 163

MOOSE User Manual, Release chennapoda (3.2.rc)

the model settles at precisely the balance point where a, b, and c are at the same concentration.
At t= 100 we apply a small molecular ‘tap’ to push it over to a state where c is larger. This is
stable. At t = 210 we apply a moderate push to show that it is now very stably in this state, and
the system rebounds to its original levels. At t = 320 we apply a strong push to take it over to
a state where b is larger. At t = 430 we give it a strong push to take it back to the c dominant
state.

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2014 Upinder S. Bhalla. and NCBS
5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 import moose
11 import matplotlib.pyplot as plt
12 import matplotlib.image as mpimg
13 import pylab
14 import numpy
15 import sys
16

17 def main():
18

19 solver = "gsl" # Pick any of gsl, gssa, ee..
20 #solver = "gssa" # Pick any of gsl, gssa, ee..
21 #moose.seed(1234) # Needed if stochastic.
22 mfile = '../../genesis/M1719.g'
23 runtime = 100.0
24 if (len(sys.argv) >= 2):
25 solver = sys.argv[1]
26 modelId = moose.loadModel(mfile, 'model', solver)
27 # Increase volume so that the stochastic solver gssa
28 # gives an interesting output
29 compt = moose.element('/model/kinetics')
30 compt.volume = 0.2e-19
31 r = moose.element('/model/kinetics/equil')
32

33 moose.reinit()
34 moose.start(runtime)
35 r.Kf *= 1.1 # small tap to break symmetry
36 moose.start(runtime/10)
37 r.Kf = r.Kb
38 moose.start(runtime)
39

40 r.Kb *= 2.0 # Moderate push does not tip it back.
41 moose.start(runtime/10)
42 r.Kb = r.Kf
43 moose.start(runtime)
44

45 r.Kb *= 5.0 # Strong push does tip it over
46 moose.start(runtime/10)

(continues on next page)

164 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

47 r.Kb = r.Kf
48 moose.start(runtime)
49 r.Kf *= 5.0 # Strong push tips it back.
50 moose.start(runtime/10)
51 r.Kf = r.Kb
52 moose.start(runtime)
53

54

55 # Display all plots.
56 img = mpimg.imread('strongBis.png')
57 fig = plt.figure(figsize=(12, 10))
58 png = fig.add_subplot(211)
59 imgplot = plt.imshow(img)
60 ax = fig.add_subplot(212)
61 x = moose.wildcardFind('/model/#graphs/conc#/#')
62 dt = moose.element('/clock').tickDt[18]
63 t = numpy.arange(0, x[0].vector.size, 1) * dt
64 ax.plot(t, x[0].vector, 'r-', label=x[0].name)
65 ax.plot(t, x[1].vector, 'g-', label=x[1].name)
66 ax.plot(t, x[2].vector, 'b-', label=x[2].name)
67 plt.ylabel('Conc (mM)')
68 plt.xlabel('Time (seconds)')
69 pylab.legend()
70 pylab.show()
71

72 # Run the 'main' if this script is executed standalone.
73 if __name__ == '__main__':
74 main()

Output:

6.1.4 MAPK Feedback Model

File name: mapkFB.py

6.1. Chemical Bistables 165

MOOSE User Manual, Release chennapoda (3.2.rc)

This example illustrates loading, and running a kinetic model for a much more complex
bistable positive feedback system, defined in kkit format. This is based on Bhalla, Ram and
Iyengar, Science 2002.

The core of this model is a positive feedback loop comprising of the MAPK cascade, PLA2, and
PKC. It receives PDGF and Ca2+ as inputs.

This model is quite a large one and due to some stiffness in its equations, it takes about 30
seconds to execute. Note that this is still 200 times faster than the events it models.

The simulation illustrated here shows how the model starts out in a state of low activity. It
is induced to ‘turn on’ when a a PDGF stimulus is given for 400 seconds, starting at t = 500s.
After it has settled to the new ‘on’ state, the model is made to ‘turn off’ by setting the system
calcium levels to zero. This inhibition starts at t = 2900 and goes on for 500 s.

Note that this is a somewhat unphysiological manipulation! Following this the model settles
back to the same ‘off’ state it was in originally.

166 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2014 Upinder S. Bhalla. and NCBS
5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 import moose
11 import matplotlib.pyplot as plt
12 import matplotlib.image as mpimg
13 import pylab
14 import numpy
15 import sys
16 import os
17

18 scriptDir = os.path.dirname(os.path.realpath(__file__))
19

20 def main():
21 """
22 This example illustrates loading, and running a kinetic model
23 for a bistable positive feedback system, defined in kkit format.
24 This is based on Bhalla, Ram and Iyengar, Science 2002.
25

26 The core of this model is a positive feedback loop comprising of
27 the MAPK cascade, PLA2, and PKC. It receives PDGF and Ca2+ as
28 inputs.
29

30 This model is quite a large one and due to some stiffness in its
31 equations, it runs somewhat slowly.
32

33 The simulation illustrated here shows how the model starts out in
34 a state of low activity. It is induced to 'turn on' when a
35 a PDGF stimulus is given for 400 seconds.
36 After it has settled to the new 'on' state, model is made to
37 'turn off'
38 by setting the system calcium levels to zero for a while. This
39 is a somewhat unphysiological manipulation!
40

41 """
42

43 solver = "gsl" # Pick any of gsl, gssa, ee..
44 #solver = "gssa" # Pick any of gsl, gssa, ee..
45 mfile = os.path.join(scriptDir, '..', '..', 'genesis' , 'acc35.g

↪→')
46 runtime = 2000.0
47 if (len(sys.argv) == 2):
48 solver = sys.argv[1]
49 modelId = moose.loadModel(mfile, 'model', solver)
50 # Increase volume so that the stochastic solver gssa
51 # gives an interesting output
52 compt = moose.element('/model/kinetics')

(continues on next page)

6.1. Chemical Bistables 167

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

53 compt.volume = 5e-19
54

55 moose.reinit()
56 moose.start(500)
57 moose.element('/model/kinetics/PDGFR/PDGF').concInit = 0.0001
58 moose.start(400)
59 moose.element('/model/kinetics/PDGFR/PDGF').concInit = 0.0
60 moose.start(2000)
61 moose.element('/model/kinetics/Ca').concInit = 0.0
62 moose.start(500)
63 moose.element('/model/kinetics/Ca').concInit = 0.00008
64 moose.start(2000)
65

66 # Display all plots.
67 img = mpimg.imread('mapkFB.png')
68 fig = plt.figure(figsize=(12, 10))
69 png = fig.add_subplot(211)
70 imgplot = plt.imshow(img)
71 ax = fig.add_subplot(212)
72 x = moose.wildcardFind('/model/#graphs/conc#/#')
73 t = numpy.arange(0, x[0].vector.size, 1) * x[0].dt
74 ax.plot(t, x[0].vector, 'b-', label=x[0].name)
75 ax.plot(t, x[1].vector, 'c-', label=x[1].name)
76 ax.plot(t, x[2].vector, 'r-', label=x[2].name)
77 ax.plot(t, x[3].vector, 'm-', label=x[3].name)
78 plt.ylabel('Conc (mM)')
79 plt.xlabel('Time (seconds)')
80 pylab.legend()
81 pylab.show()
82

83 # Run the 'main' if this script is executed standalone.
84 if __name__ == '__main__':
85 main()

Output:

168 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

6.1.5 Propogation of a Bistable System

File name: propagationBis.py

All the above models have been well-mixed, that is point or non-spatial models. Bistables do
interesting things when they are dispersed in space. This is illustrated in this example. Here
we have a tapering cylinder, that is a pseudo 1-dimensional reaction-diffusion system. Every
point in this cylinder has the bistable system from the strongBis example.

The example has two stages. First it starts out with the model in the unstable transition point,
and introduces a small symmetry-breaking perturbation at one end. This rapidly propagates
through the entire length model, leaving molecule b at a higher value than c.

At t = 100 we carry out a different manipulation. We flip the concentrations of molecules b
and c for the left half of the model, and then just let it run. Now we have opposing bistable
states on either half. In the middle, the two systems battle it out. Molecule c from the left
side diffuses over to the right, and tries to inhibit b, and vice versa. However we have a small
asymmetry due to the tapering of the cylinder. As there is a slightly larger volume on the left,
the transition point gradually advances to the right, as molecule b yields to the slightly larger
amounts of molecule c.

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2014 Upinder S. Bhalla. and NCBS

(continues on next page)

6.1. Chemical Bistables 169

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 """
11 This example illustrates propagation of state flips in a
12 linear 1-dimensional reaction-diffusion system. It uses a
13 bistable system loaded in from a kkit definition file, and
14 places this in a tapering cylinder for pseudo 1-dimentionsional
15 diffusion.
16

17 This example illustrates a number of features of reaction-diffusion
18 calculations.
19

20 First, it shows how to set up such systems. Key steps are to create
21 the compartment and define its voxelization, then create the Ksolve,
22 Dsolve, and Stoich. Then we assign stoich.compartment, ksolve and
23 dsolve in that order. Finally we assign the path of the Stoich.
24

25 For running the model, we start by introducing
26 a small symmetry-breaking increment of concInit
27 of the molecule **b** in the last compartment on the cylinder. The

↪→model
28 starts out with molecules at equal concentrations, so that the system

↪→would
29 settle to the unstable fixed point. This symmetry breaking leads
30 to the last compartment moving towards the state with an
31 increased concentration of **b**,
32 and this effect propagates to all other compartments.
33

34 Once the model has settled to the state where **b** is high
↪→throughout,

35 we simply exchange the concentrations of **b** with **c** in the left
36 half of the cylinder. This introduces a brief transient at the

↪→junction,
37 which soon settles to a smooth crossover.
38

39 Finally, as we run the simulation, the tapering geometry comes into
↪→play.

40 Since the left hand side has a larger diameter than the right, the
41 state on the left gradually wins over and the transition point slowly
42 moves to the right.
43

44 """
45

46 import math
47 import numpy
48 import matplotlib.pyplot as plt
49 import matplotlib.image as mpimg
50 import moose
51 import sys
52

53 def makeModel():
54 # create container for model

(continues on next page)

170 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

55 r0 = 1e-6 # m
56 r1 = 0.5e-6 # m. Note taper.
57 num = 200
58 diffLength = 1e-6 # m
59 comptLength = num * diffLength # m
60 diffConst = 20e-12 # m^2/sec
61 concA = 1 # millimolar
62 diffDt = 0.02 # for the diffusion
63 chemDt = 0.2 # for the reaction
64 mfile = '../../genesis/M1719.g'
65

66 model = moose.Neutral('model')
67 compartment = moose.CylMesh('/model/kinetics')
68

69 # load in model
70 modelId = moose.loadModel(mfile, '/model', 'ee')
71 a = moose.element('/model/kinetics/a')
72 b = moose.element('/model/kinetics/b')
73 c = moose.element('/model/kinetics/c')
74

75 ac = a.concInit
76 bc = b.concInit
77 cc = c.concInit
78

79 compartment.r0 = r0
80 compartment.r1 = r1
81 compartment.x0 = 0
82 compartment.x1 = comptLength
83 compartment.diffLength = diffLength
84 assert(compartment.numDiffCompts == num)
85

86 # Assign parameters
87 for x in moose.wildcardFind('/model/kinetics/#

↪→#[ISA=PoolBase]'):
88 #print 'pools: ', x, x.name
89 x.diffConst = diffConst
90

91 # Make solvers
92 ksolve = moose.Ksolve('/model/kinetics/ksolve')
93 dsolve = moose.Dsolve('/model/dsolve')
94 # Set up clocks.
95 moose.setClock(10, diffDt)
96 for i in range(11, 17):
97 moose.setClock(i, chemDt)
98

99 stoich = moose.Stoich('/model/kinetics/stoich')
100 stoich.compartment = compartment
101 stoich.ksolve = ksolve
102 stoich.dsolve = dsolve
103 stoich.path = "/model/kinetics/##"
104 print(('dsolve.numPools, num = ', dsolve.numPools,

↪→num))
105 b.vec[num-1].concInit *= 1.01 # Break symmetry.
106

107 def main():
108 runtime = 100

(continues on next page)

6.1. Chemical Bistables 171

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

109 displayInterval = 2
110 makeModel()
111 dsolve = moose.element('/model/dsolve')
112 moose.reinit()
113 #moose.start(runtime) # Run the model for 10

↪→seconds.
114

115 a = moose.element('/model/kinetics/a')
116 b = moose.element('/model/kinetics/b')
117 c = moose.element('/model/kinetics/c')
118

119 img = mpimg.imread('propBis.png')
120 #imgplot = plt.imshow(img)
121 #plt.show()
122

123 plt.ion()
124 fig = plt.figure(figsize=(12,10))
125 png = fig.add_subplot(211)
126 imgplot = plt.imshow(img)
127 ax = fig.add_subplot(212)
128 ax.set_ylim(0, 0.001)
129 plt.ylabel('Conc (mM)')
130 plt.xlabel('Position along cylinder (microns)')
131 pos = numpy.arange(0, a.vec.conc.size, 1)
132 line1, = ax.plot(pos, a.vec.conc, 'r-', label='a')
133 line2, = ax.plot(pos, b.vec.conc, 'g-', label='b')
134 line3, = ax.plot(pos, c.vec.conc, 'b-', label='c')
135 timeLabel = plt.text(60, 0.0009, 'time = 0')
136 plt.legend()
137 fig.canvas.draw()
138

139 for t in range(displayInterval, runtime,
↪→displayInterval):

140 moose.start(displayInterval)
141 line1.set_ydata(a.vec.conc)
142 line2.set_ydata(b.vec.conc)
143 line3.set_ydata(c.vec.conc)
144 timeLabel.set_text("time = %d" % t)
145 fig.canvas.draw()
146

147 print('Swapping concs of b and c in half the cylinder
↪→')

148 for i in range(b.numData/2):
149 temp = b.vec[i].conc
150 b.vec[i].conc = c.vec[i].conc
151 c.vec[i].conc = temp
152

153 newruntime = 200
154 for t in range(displayInterval, newruntime,

↪→displayInterval):
155 moose.start(displayInterval)
156 line1.set_ydata(a.vec.conc)
157 line2.set_ydata(b.vec.conc)
158 line3.set_ydata(c.vec.conc)
159 timeLabel.set_text("time = %d" % (t + runtime))
160 fig.canvas.draw()

(continues on next page)

172 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

161

162 print("Hit 'enter' to exit")
163 sys.stdin.read(1)
164

165

166

167 # Run the 'main' if this script is executed standalone.
168 if __name__ == '__main__':
169 main()

Output:

propBis-gif-converted-to.png

6.1.6 Steady-state Finder

File name: findSteadyState

This is an example of how to use an internal MOOSE solver to find steady states of a system
very rapidly. The method starts from a random position in state space that obeys mass con-
servation. It then finds the nearest steady state and reports it. If it does this enough times it
should find all the steady states.

We illustrate this process for 50 attempts to find the steady states. It does find all of them. Each
time it plots and prints the values, though the plotting is not necessary.

The printout shows the concentrations of all molecules in the first 5 columns. Then it prints
the type of solution, and the numbers of negative and positive eigenvalues. In all cases the cal-
culations are successful, though it takes different numbers of iterations to arrive at the steady
state. In some models it would be necessary to put a cap on the number of iterations, if the
system is not able to find a steady state.

In this example we run the bistable model using the ODE solver right at the end, and manually
enforce transitions to show where the target steady states are.

For more information on the algorithm used, look in the comments within the main method of
the code below.

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2013 Upinder S. Bhalla. and NCBS

(continues on next page)

6.1. Chemical Bistables 173

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 from __future__ import print_function
11

12 import math
13 import pylab
14 import numpy
15 import moose
16

17 def main():
18 """
19 This example sets up the kinetic solver and steady-state finder,

↪→on
20 a bistable model of a chemical system. The model is set up within

↪→the
21 script.
22 The algorithm calls the steady-state finder 50 times with

↪→different
23 (randomized) initial conditions, as follows:
24

25 * Set up the random initial condition that fits the conservation
↪→laws

26 * Run for 2 seconds. This should not be mathematically necessary,
↪→but

27 for obscure numerical reasons it makes it much more likely that
↪→the

28 steady state solver will succeed in finding a state.
29 * Find the fixed point
30 * Print out the fixed point vector and various diagnostics.
31 * Run for 10 seconds. This is completely unnecessary, and is done

↪→here
32 just so that the resultant graph will show what kind of state

↪→has
33 been found.
34

35 After it does all this, the program runs for 100 more seconds on
↪→the

36 last found fixed point (which turns out to be a saddle node), then
37 is hard-switched in the script to the first attractor basin from

↪→which
38 it runs for another 100 seconds till it settles there, and then
39 is hard-switched yet again to the second attractor and runs for

↪→400
40 seconds.
41

42 Looking at the output you will see many features of note:
43

44 * the first attractor (stable point) and the saddle point
↪→(unstable

45 fixed point) are both found quite often. But the second
46 attractor is found just once.
47 It has a very small basin of attraction.

(continues on next page)

174 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

48 * The values found for each of the fixed points match well with
↪→the

49 values found by running the system to steady-state at the end.
50 * There are a large number of failures to find a fixed point.

↪→These are
51 found and reported in the diagnostics. They show up on the plot
52 as cases where the 10-second runs are not flat.
53

54 If you wanted to find fixed points in a production model, you
↪→would

55 not need to do the 10-second runs, and you would need to
↪→eliminate the

56 cases where the state-finder failed. Then you could identify the
↪→good

57 points and keep track of how many of each were found.
58

59 There is no way to guarantee that all fixed points have been found
60 using this algorithm! If there are points in an obscure corner of

↪→state
61 space (as for the singleton second attractor convergence in this
62 example) you may have to iterate very many times to find them.
63

64 You may wish to sample concentration space logarithmically rather
↪→than

65 linearly.
66 """
67 compartment = makeModel()
68 ksolve = moose.Ksolve('/model/compartment/ksolve')
69 stoich = moose.Stoich('/model/compartment/stoich')
70 stoich.compartment = compartment
71 stoich.ksolve = ksolve
72 stoich.path = "/model/compartment/##"
73 state = moose.SteadyState('/model/compartment/state')
74

75 moose.reinit()
76 state.stoich = stoich
77 state.showMatrices()
78 state.convergenceCriterion = 1e-6
79 moose.seed(111) # Used when generating the samples in state

↪→space
80

81 for i in range(0, 50):
82 getState(ksolve, state)
83

84 # Now display the states of the system at more length to compare.
85 moose.start(100.0) # Run the model for 100 seconds.
86

87 a = moose.element('/model/compartment/a')
88 b = moose.element('/model/compartment/b')
89

90 # move most molecules over to b
91 b.conc = b.conc + a.conc * 0.9
92 a.conc = a.conc * 0.1
93 moose.start(100.0) # Run the model for 100 seconds.
94

95 # move most molecules back to a
(continues on next page)

6.1. Chemical Bistables 175

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

96 a.conc = a.conc + b.conc * 0.99
97 b.conc = b.conc * 0.01
98 moose.start(400.0) # Run the model for 200 seconds.
99

100 # Iterate through all plots, dump their contents to data.plot.
101 displayPlots()
102

103 quit()
104

105 def makeModel():
106 """ This function creates a bistable reaction system using

↪→explicit
107 MOOSE calls rather than load from a file
108 """
109 # create container for model
110 model = moose.Neutral('model')
111 compartment = moose.CubeMesh('/model/compartment')
112 compartment.volume = 1e-15
113 # the mesh is created automatically by the compartment
114 mesh = moose.element('/model/compartment/mesh')
115

116 # create molecules and reactions
117 a = moose.Pool('/model/compartment/a')
118 b = moose.Pool('/model/compartment/b')
119 c = moose.Pool('/model/compartment/c')
120 enz1 = moose.Enz('/model/compartment/b/enz1')
121 enz2 = moose.Enz('/model/compartment/c/enz2')
122 cplx1 = moose.Pool('/model/compartment/b/enz1/cplx')
123 cplx2 = moose.Pool('/model/compartment/c/enz2/cplx')
124 reac = moose.Reac('/model/compartment/reac')
125

126 # connect them up for reactions
127 moose.connect(enz1, 'sub', a, 'reac')
128 moose.connect(enz1, 'prd', b, 'reac')
129 moose.connect(enz1, 'enz', b, 'reac')
130 moose.connect(enz1, 'cplx', cplx1, 'reac')
131

132 moose.connect(enz2, 'sub', b, 'reac')
133 moose.connect(enz2, 'prd', a, 'reac')
134 moose.connect(enz2, 'enz', c, 'reac')
135 moose.connect(enz2, 'cplx', cplx2, 'reac')
136

137 moose.connect(reac, 'sub', a, 'reac')
138 moose.connect(reac, 'prd', b, 'reac')
139

140 # Assign parameters
141 a.concInit = 1
142 b.concInit = 0
143 c.concInit = 0.01
144 enz1.kcat = 0.4
145 enz1.Km = 4
146 enz2.kcat = 0.6
147 enz2.Km = 0.01
148 reac.Kf = 0.001
149 reac.Kb = 0.01
150

(continues on next page)

176 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

151 # Create the output tables
152 graphs = moose.Neutral('/model/graphs')
153 outputA = moose.Table2 ('/model/graphs/concA')
154 outputB = moose.Table2 ('/model/graphs/concB')
155 outputC = moose.Table2 ('/model/graphs/concC')
156 outputCplx1 = moose.Table2 ('/model/graphs/concCplx1')
157 outputCplx2 = moose.Table2 ('/model/graphs/concCplx2')
158

159 # connect up the tables
160 moose.connect(outputA, 'requestOut', a, 'getConc');
161 moose.connect(outputB, 'requestOut', b, 'getConc');
162 moose.connect(outputC, 'requestOut', c, 'getConc');
163 moose.connect(outputCplx1, 'requestOut', cplx1, 'getConc');
164 moose.connect(outputCplx2, 'requestOut', cplx2, 'getConc');
165

166 return compartment
167

168 def displayPlots():
169 for x in moose.wildcardFind('/model/graphs/conc#'):
170 t = numpy.arange(0, x.vector.size, 1) #sec
171 pylab.plot(t, x.vector, label=x.name)
172 pylab.legend()
173 pylab.show()
174

175 def getState(ksolve, state):
176 """ This function finds a steady state starting from a random
177 initial condition that is consistent with the stoichiometry rules
178 and the original model concentrations.
179 """
180 scale = 1.0 / (1e-15 * 6.022e23)
181 state.randomInit() # Randomize init conditions, subject to

↪→stoichiometry
182 moose.start(2.0) # Run the model for 2 seconds.
183 state.settle() # This function finds the steady states.
184 for x in ksolve.nVec[0]:
185 print("{:.2f}".format(x * scale), end=' ')
186

187 print("Type={} NegEig={} PosEig={} status={} {} Iter={:2d}".
↪→format(state.stateType, state.nNegEigenvalues, state.
↪→nPosEigenvalues, state.solutionStatus, state.status, state.nIter))

188 moose.start(10.0) # Run model for 10 seconds, just for display
189

190

191 # Run the 'main' if this script is executed standalone.
192 if __name__ == '__main__':
193 main()

Output:

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=16

(continues on next page)

6.1. Chemical Bistables 177

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=29

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=10

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=26

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=27

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=30

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=12

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=29

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=12

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=41

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=29

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=18

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=27

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=14

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=12

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=19

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter= 6

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=14

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=23

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=25

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=16

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter= 5

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=43

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter= 9

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=43

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=29

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=27

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter= 9

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=12

(continues on next page)

178 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=24

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=26

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=14

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=14

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=10

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=13

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=26

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=21

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=26

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=24

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=24

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=18

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=26

0.18 0.75 0.00 0.03 0.01 Type=5 NegEig=4 PosEig=0 status=0 success
↪→Iter=13

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=23

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=24

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter= 8

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=18

0.18 0.75 0.00 0.03 0.01 Type=0 NegEig=3 PosEig=1 status=0 success
↪→Iter=21

0.99 0.00 0.01 0.00 0.00 Type=0 NegEig=3 PosEig=0 status=0 success
↪→Iter=15

0.92 0.05 0.00 0.01 0.01 Type=2 NegEig=2 PosEig=1 status=0 success
↪→Iter=29

6.1. Chemical Bistables 179

MOOSE User Manual, Release chennapoda (3.2.rc)

6.1.7 Dose Response (Under construction)

File name: doseResponse.py

This example generates a doseResponse plot for a bistable system, against a control parameter
(dose) that takes the system in and out again from the bistable regime. Like the previous
example, it uses the steady-state solver to find the stable points for each value of the control
parameter. Unfortunately it doesn’t work right now. Seems like the kcat scaling isn’t being
registered.

Code:

1 ## Makes and plots the dose response curve for bistable models
2 ## Author: Sahil Moza
3 ## June 26, 2014
4

5 import moose
6 import pylab
7 import numpy as np
8 from matplotlib import pyplot as plt
9

10 def setupSteadyState(simdt,plotDt):
11

12 ksolve = moose.Ksolve('/model/kinetics/ksolve')
13 stoich = moose.Stoich('/model/kinetics/stoich')
14 stoich.compartment = moose.element('/model/kinetics')
15

16 stoich.ksolve = ksolve
17 #ksolve.stoich = stoich
18 stoich.path = "/model/kinetics/##"
19 state = moose.SteadyState('/model/kinetics/state')
20

21 #### Set clocks here
(continues on next page)

180 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

22 #moose.useClock(4, "/model/kinetics/##[]", "process")
23 #moose.setClock(4, float(simdt))
24 #moose.setClock(5, float(simdt))
25 #moose.useClock(5, '/model/kinetics/ksolve', 'process')
26 #moose.useClock(8, '/model/graphs/#', 'process')
27 #moose.setClock(8, float(plotDt))
28

29 moose.reinit()
30

31 state.stoich = stoich
32 state.showMatrices()
33 state.convergenceCriterion = 1e-8
34

35 return ksolve, state
36

37 def parseModelName(fileName):
38 pos1=fileName.rfind('/')
39 pos2=fileName.rfind('.')
40 directory=fileName[:pos1]
41 prefix=fileName[pos1+1:pos2]
42 suffix=fileName[pos2+1:len(fileName)]
43 return directory, prefix, suffix
44

45 # Solve for the steady state
46 def getState(ksolve, state, vol):
47 scale = 1.0 / (vol * 6.022e23)
48 moose.reinit
49 state.randomInit() # Removing random initial condition to

↪→systematically make Dose reponse curves.
50 moose.start(2.0) # Run the model for 2 seconds.
51 state.settle()
52

53 vector = []
54 a = moose.element('/model/kinetics/a').conc
55 for x in ksolve.nVec[0]:
56 vector.append(x * scale)
57 moose.start(10.0) # Run model for 10 seconds, just for display
58 failedSteadyState = any([np.isnan(x) for x in vector])
59

60 if not (failedSteadyState):
61 return state.stateType, state.solutionStatus, a, vector
62

63

64 def main():
65 # Setup parameters for simulation and plotting
66 simdt= 1e-2
67 plotDt= 1
68

69 # Factors to change in the dose concentration in log scale
70 factorExponent = 10 ## Base: ten raised to some power.
71 factorBegin = -20
72 factorEnd = 21
73 factorStepsize = 1
74 factorScale = 10.0 ## To scale up or down the factors
75

76 # Load Model and set up the steady state solver.
(continues on next page)

6.1. Chemical Bistables 181

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

77 # model = sys.argv[1] # To load model from a file.
78 model = './19085.cspace'
79 modelPath, modelName, modelType = parseModelName(model)
80 outputDir = modelPath
81

82 modelId = moose.loadModel(model, 'model', 'ee')
83 dosePath = '/model/kinetics/b/DabX' # The dose entity
84

85 ksolve, state = setupSteadyState(simdt, plotDt)
86 vol = moose.element('/model/kinetics').volume
87 iterInit = 100
88 solutionVector = []
89 factorArr = []
90

91 enz = moose.element(dosePath)
92 init = enz.kcat # Dose parameter
93

94 # Change Dose here to .
95 for factor in range(factorBegin, factorEnd, factorStepsize):
96 scale = factorExponent ** (factor/factorScale)
97 enz.kcat = init * scale
98 print("scale={:.3f}\tkcat={:.3f}".format(scale, enz.kcat))
99 for num in range(iterInit):

100 stateType, solStatus, a, vector = getState(ksolve, state,
↪→ vol)

101 if solStatus == 0:
102 #solutionVector.append(vector[0]/sum(vector))
103 solutionVector.append(a)
104 factorArr.append(scale)
105

106 joint = np.array([factorArr, solutionVector])
107 joint = joint[:,joint[1,:].argsort()]
108

109 # Plot dose response.
110 fig0 = plt.figure()
111 pylab.semilogx(joint[0,:],joint[1,:],marker="o",label = 'concA')
112 pylab.xlabel('Dose')
113 pylab.ylabel('Response')
114 pylab.suptitle('Dose-Reponse Curve for a bistable system')
115

116 pylab.legend(loc=3)
117 #plt.savefig(outputDir + "/" + modelName +"_doseResponse" + ".png

↪→")
118 plt.show()
119 #plt.close(fig0)
120 quit()
121

122

123

124 if __name__ == '__main__':
125 main()

182 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

Output:

scale=0.010 kcat=0.004
scale=0.013 kcat=0.005
scale=0.016 kcat=0.006
scale=0.020 kcat=0.007
scale=0.025 kcat=0.009
scale=0.032 kcat=0.011
scale=0.040 kcat=0.014
scale=0.050 kcat=0.018
scale=0.063 kcat=0.023
scale=0.079 kcat=0.029
scale=0.100 kcat=0.036
scale=0.126 kcat=0.045
scale=0.158 kcat=0.057
scale=0.200 kcat=0.072
scale=0.251 kcat=0.091
scale=0.316 kcat=0.114
scale=0.398 kcat=0.144
scale=0.501 kcat=0.181
scale=0.631 kcat=0.228
scale=0.794 kcat=0.287
scale=1.000 kcat=0.361
scale=1.259 kcat=0.454
scale=1.585 kcat=0.572
scale=1.995 kcat=0.720
scale=2.512 kcat=0.907
scale=3.162 kcat=1.142
scale=3.981 kcat=1.437
scale=5.012 kcat=1.809
scale=6.310 kcat=2.278
scale=7.943 kcat=2.868
scale=10.000 kcat=3.610
scale=12.589 kcat=4.545
scale=15.849 kcat=5.722
scale=19.953 kcat=7.203
scale=25.119 kcat=9.068
scale=31.623 kcat=11.416
scale=39.811 kcat=14.372
scale=50.119 kcat=18.093
scale=63.096 kcat=22.778
scale=79.433 kcat=28.676
scale=100.000 kcat=36.101

6.1. Chemical Bistables 183

MOOSE User Manual, Release chennapoda (3.2.rc)

6.2 Chemical Oscillators

Chemical Oscillators (https://en.wikipedia.org/wiki/Chemical_clock), also known as chem-
ical clocks, are chemical systems in which the concentrations of one or more reactants under-
goes periodic changes.

These Oscillatory reactions can be modelled using moose. The examples below demonstrate
different types of chemical oscillators, as well as how they can be simulated using moose. Each
example has a short description, the code used in the simulation, and the default (gsl solver)
output of the code.

Each example can be found as a python file within the main moose folder under

(...)/moose/moose-examples/tutorials/ChemicalOscillators

In order to run the example, run the script

python filename.py

in command line, where filename.py is the name of the python file you would like to run.
The filenames of each example are written in bold at the beginning of their respective sections,
and the files themselves can be found in the aformentioned directory.

In chemical models that use solvers, there are optional arguments that allow you to specify
which solver you would like to use.

python filename.py [gsl | gssa | ee]

Where:

184 Chapter 6. Teaching Tutorials

https://en.wikipedia.org/wiki/Chemical_clock

MOOSE User Manual, Release chennapoda (3.2.rc)

• gsl: This is the Runge-Kutta-Fehlberg implementation from the GNU Scientific Library
(GSL). It is a fifth order variable timestep explicit method. Works well for most reaction
systems except if they have very stiff reactions.

• gssl: Optimized Gillespie stochastic systems algorithm, custom implementation. This
uses variable timesteps internally. Note that it slows down with increasing numbers of
molecules in each pool. It also slows down, but not so badly, if the number of reactions
goes up.

• Exponential Euler:This methods computes the solution of partial and ordinary differen-
tial equations.

All the following examples can be run with either of the three solvers, each of which has dif-
ferent advantages and disadvantages and each of which might produce a slightly different
outcome.

Simply running the file without the optional argument will by default use the gsl solver.
These gsl outputs are the ones shown below.

6.2.1 Slow Feedback Oscillator

File name: slowFbOsc.py

This example illustrates loading, and running a kinetic model for a delayed -ve feedback os-
cillator, defined in kkit format. The model is one by Boris N. Kholodenko from Eur J Biochem.
(2000) 267(6):1583-8

This model has a high-gain MAPK stage, whose effects are visible whem one looks at the
traces from successive stages in the plots. The upstream pools have small early peaks, and

6.2. Chemical Oscillators 185

MOOSE User Manual, Release chennapoda (3.2.rc)

the downstream pools have large delayed ones. The negative feedback step is mediated by a
simple binding reaction of the end-product of oscillation with an upstream activator.

We use the gsl solver here. The model already defines some plots and sets the runtime to 4000
seconds. The model does not really play nicely with the GSSA solver, since it involves some
really tiny amounts of the MAPKKK.

Things to do with the model:

- Look at model once it is loaded in::

moose.le('/model')
moose.showfields('/model/kinetics/MAPK/MAPK')

- Behold the amplification properties of the cascade. Could do this
↪→by blocking the feedback step and giving a small pulse input.

- Suggest which parameters you would alter to change the period of
↪→the oscillator:

- Concs of various molecules, for example::

ras_MAPKKKK = moose.element('/model/kinetics/MAPK/Ras_dash_
↪→MKKKK')

moose.showfields(ras_MAPKKKK)
ras_MAPKKKK.concInit = 1e-5

- Feedback reaction rates
- Rates of all the enzymes::

for i in moose.wildcardFind('/##[ISA=EnzBase]'):
i.kcat *= 10.0

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2014 Upinder S. Bhalla. and NCBS
5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 import moose
11 import matplotlib.pyplot as plt
12 import matplotlib.image as mpimg
13 import pylab
14 import numpy
15 import sys
16

17 def main():
18

19 solver = "gsl"
20 mfile = '../../genesis/Kholodenko.g'
21 runtime = 5000.0
22 if (len(sys.argv) >= 2):
23 solver = sys.argv[1]

(continues on next page)

186 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

24 modelId = moose.loadModel(mfile, 'model', solver)
25 dt = moose.element('/clock').tickDt[18]
26 moose.reinit()
27 moose.start(runtime)
28

29 # Display all plots.
30 img = mpimg.imread('Kholodenko_tut.png')
31 fig = plt.figure(figsize=(12, 10))
32 png = fig.add_subplot(211)
33 imgplot = plt.imshow(img)
34 ax = fig.add_subplot(212)
35 x = moose.wildcardFind('/model/#graphs/conc#/#')
36 t = numpy.arange(0, x[0].vector.size, 1) * dt
37 ax.plot(t, x[0].vector * 100, 'b-', label='Ras-MKKK * 100')
38 ax.plot(t, x[1].vector, 'y-', label='MKKK-P')
39 ax.plot(t, x[2].vector, 'm-', label='MKK-PP')
40 ax.plot(t, x[3].vector, 'r-', label='MAPK-PP')
41 plt.ylabel('Conc (mM)')
42 plt.xlabel('Time (seconds)')
43 pylab.legend()
44 pylab.show()
45

46 # Run the 'main' if this script is executed standalone.
47 if __name__ == '__main__':
48 main()

Output:

6.2. Chemical Oscillators 187

MOOSE User Manual, Release chennapoda (3.2.rc)

6.2.2 Turing Pa�ern Oscillator in One Dimension

File name: TuringOneDim.py

This example illustrates how to set up a oscillatory Turing pattern in 1-D using reaction diffu-
sion calculations. Reaction system is:

s ---a---> a // s goes to a, catalyzed by a.
s ---a---> b // s goes to b, catalyzed by a.
a ---b---> s // a goes to s, catalyzed by b.
b -------> s // b is degraded irreversibly to s.

in sum, a has a positive feedback onto itself and also forms b. b has a negative feedback onto
a. Finally, the diffusion constant for a is 1/10 that of b.

This chemical system is present in a 1-dimensional (cylindrical) compartment. The entire
reaction-diffusion system is set up within the script.

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2014 Upinder S. Bhalla. and NCBS
5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 import math
11 import numpy
12 import matplotlib.pyplot as plt

(continues on next page)

188 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

13 import matplotlib.image as mpimg
14 import moose
15

16 def makeModel():
17

18 # create container for model
19 r0 = 1e-6 # m
20 r1 = 1e-6 # m
21 num = 100
22 diffLength = 1e-6 # m
23 len = num * diffLength # m
24 diffConst = 5e-12 # m^2/sec
25 motorRate = 1e-6 # m/sec
26 concA = 1 # millimolar
27 dt4 = 0.02 # for the diffusion
28 dt5 = 0.2 # for the reaction
29

30 model = moose.Neutral('model')
31 compartment = moose.CylMesh('/model/compartment')
32 compartment.r0 = r0
33 compartment.r1 = r1
34 compartment.x0 = 0
35 compartment.x1 = len
36 compartment.diffLength = diffLength
37

38 assert(compartment.numDiffCompts == num)
39

40 # create molecules and reactions
41 a = moose.Pool('/model/compartment/a')
42 b = moose.Pool('/model/compartment/b')
43 s = moose.Pool('/model/compartment/s')
44 e1 = moose.MMenz('/model/compartment/e1')
45 e2 = moose.MMenz('/model/compartment/e2')
46 e3 = moose.MMenz('/model/compartment/e3')
47 r1 = moose.Reac('/model/compartment/r1')
48 moose.connect(e1, 'sub', s, 'reac')
49 moose.connect(e1, 'prd', a, 'reac')
50 moose.connect(a, 'nOut', e1, 'enzDest')
51 e1.Km = 1
52 e1.kcat = 1
53

54 moose.connect(e2, 'sub', s, 'reac')
55 moose.connect(e2, 'prd', b, 'reac')
56 moose.connect(a, 'nOut', e2, 'enzDest')
57 e2.Km = 1
58 e2.kcat = 0.5
59

60 moose.connect(e3, 'sub', a, 'reac')
61 moose.connect(e3, 'prd', s, 'reac')
62 moose.connect(b, 'nOut', e3, 'enzDest')
63 e3.Km = 0.1
64 e3.kcat = 1
65

66 moose.connect(r1, 'sub', b, 'reac')
67 moose.connect(r1, 'prd', s, 'reac')
68 r1.Kf = 0.3 # 1/sec

(continues on next page)

6.2. Chemical Oscillators 189

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

69 r1.Kb = 0 # 1/sec
70

71 # Assign parameters
72 a.diffConst = diffConst/10
73 b.diffConst = diffConst
74 s.diffConst = 0
75

76 # Make solvers
77 ksolve = moose.Ksolve('/model/compartment/ksolve')
78 dsolve = moose.Dsolve('/model/dsolve')
79 # Set up clocks. The dsolver to know before assigning stoich
80 moose.setClock(4, dt4)
81 moose.setClock(5, dt5)
82 moose.useClock(4, '/model/dsolve', 'process')
83 # Ksolve must be scheduled after dsolve.
84 moose.useClock(5, '/model/compartment/ksolve', 'process')
85

86 stoich = moose.Stoich('/model/compartment/stoich')
87 stoich.compartment = compartment
88 stoich.ksolve = ksolve
89 stoich.dsolve = dsolve
90 stoich.path = "/model/compartment/##"
91 assert(dsolve.numPools == 3)
92 a.vec.concInit = [0.1]*num
93 a.vec[0].concInit *= 1.2 # slight perturbation at one end.
94 b.vec.concInit = [0.1]*num
95 s.vec.concInit = [1]*num
96

97 def displayPlots():
98 a = moose.element('/model/compartment/a')
99 b = moose.element('/model/compartment/b')

100 pos = numpy.arange(0, a.vec.conc.size, 1)
101 pylab.plot(pos, a.vec.conc, label='a')
102 pylab.plot(pos, b.vec.conc, label='b')
103 pylab.legend()
104 pylab.show()
105

106 def main():
107 runtime = 400
108 displayInterval = 2
109 makeModel()
110 dsolve = moose.element('/model/dsolve')
111 moose.reinit()
112 #moose.start(runtime) # Run the model for 10 seconds.
113

114 a = moose.element('/model/compartment/a')
115 b = moose.element('/model/compartment/b')
116 s = moose.element('/model/compartment/s')
117

118 img = mpimg.imread('turingPatternTut.png')
119 #imgplot = plt.imshow(img)
120 #plt.show()
121

122 plt.ion()
123 fig = plt.figure(figsize=(12,10))
124 png = fig.add_subplot(211)

(continues on next page)

190 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

125 imgplot = plt.imshow(img)
126 ax = fig.add_subplot(212)
127 ax.set_ylim(0, 0.5)
128 plt.ylabel('Conc (mM)')
129 plt.xlabel('Position along cylinder (microns)')
130 pos = numpy.arange(0, a.vec.conc.size, 1)
131 line1, = ax.plot(pos, a.vec.conc, label='a')
132 line2, = ax.plot(pos, b.vec.conc, label='b')
133 timeLabel = plt.text(60, 0.4, 'time = 0')
134 plt.legend()
135 fig.canvas.draw()
136

137 for t in range(displayInterval, runtime, displayInterval):
138 moose.start(displayInterval)
139 line1.set_ydata(a.vec.conc)
140 line2.set_ydata(b.vec.conc)
141 timeLabel.set_text("time = %d" % t)
142 fig.canvas.draw()
143

144 print("Hit 'enter' to exit")
145 raw_input()
146

147

148

149 # Run the 'main' if this script is executed standalone.
150 if __name__ == '__main__':
151 main()

Output:

6.2. Chemical Oscillators 191

MOOSE User Manual, Release chennapoda (3.2.rc)

6.2.3 Relaxation Oscillator

File name: relaxationOsc.py

This example illustrates a Relaxation Oscillator. This is an oscillator built around a switching
reaction, which tends to flip into one or other state and stay there. The relaxation bit comes
in because once it is in state 1, a slow (relaxation) process begins which eventually flips it into
state 2, and vice versa.

The model is based on Bhalla, Biophys J. 2011. It is defined in kkit format. It uses the deter-
ministic gsl solver by default. You can specify the stochastic Gillespie solver on the command
line

python relaxationOsc.py gssa

Things to do with the model:

* Figure out what determines its frequency. You could change
the initial concentrations of various model entities::

ma = moose.element('/model/kinetics/A/M')
ma.concInit *= 1.5

Alternatively, you could scale the rates of molecular traffic
between the compartments::

exo = moose.element('/model/kinetics/exo')
endo = moose.element('/model/kinetics/endo')
exo.Kf *= 1.0
endo.Kf *= 1.0

(continues on next page)

192 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

* Play with stochasticity. The standard thing here is to scale the
volume up and down::

compt.volume = 1e-18
compt.volume = 1e-20
compt.volume = 1e-21

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2014 Upinder S. Bhalla. and NCBS
5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.
8 ##

↪→###
9

10 import moose
11 import matplotlib.pyplot as plt
12 import matplotlib.image as mpimg
13 import pylab
14 import numpy
15 import sys
16

17 def main():
18

19 solver = "gsl" # Pick any of gsl, gssa, ee..
20 #solver = "gssa" # Pick any of gsl, gssa, ee..
21 mfile = '../../genesis/OSC_Cspace.g'
22 runtime = 4000.0
23 if (len(sys.argv) >= 2):
24 solver = sys.argv[1]
25 modelId = moose.loadModel(mfile, 'model', solver)
26 # Increase volume so that the stochastic solver gssa
27 # gives an interesting output
28 compt = moose.element('/model/kinetics')
29 compt.volume = 1e-19
30 dt = moose.element('/clock').tickDt[18] # 18 is the plot clock.
31

32 moose.reinit()
33 moose.start(runtime)
34

35 # Display all plots.
36 img = mpimg.imread('relaxOsc_tut.png')
37 fig = plt.figure(figsize=(12, 10))
38 png = fig.add_subplot(211)
39 imgplot = plt.imshow(img)
40 ax = fig.add_subplot(212)
41 x = moose.wildcardFind('/model/#graphs/conc#/#')
42 t = numpy.arange(0, x[0].vector.size, 1) * dt
43 ax.plot(t, x[0].vector, 'b-', label=x[0].name)
44 ax.plot(t, x[1].vector, 'c-', label=x[1].name)
45 ax.plot(t, x[2].vector, 'r-', label=x[2].name)

(continues on next page)

6.2. Chemical Oscillators 193

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

46 ax.plot(t, x[3].vector, 'm-', label=x[3].name)
47 plt.ylabel('Conc (mM)')
48 plt.xlabel('Time (seconds)')
49 pylab.legend()
50 pylab.show()
51

52 # Run the 'main' if this script is executed standalone.
53 if __name__ == '__main__':
54 main()

Output:

6.2.4 Repressilator

File name: repressilator.py

This example illustrates the classic Repressilator model, based on Elowitz and Liebler, Nature
2000. The model has the basic architecture

194 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

where TetR, Lac, and Lcl are genes whose products repress eachother. The circle symbol indi-
cates inhibition. The model uses the Gillespie (stochastic) method by default but you can run
it using a deterministic method by saying python repressillator.py gsl

Good things to do with this model include:

* Ask what it would take to change period of repressillator:

* Change inhibitor rates::

inhib = moose.element('/model/kinetics/TetR_gene/inhib_reac'
↪→)

moose.showfields(inhib)
inhib.Kf *= 0.1

* Change degradation rates::

degrade = moose.element('/model/kinetics/TetR_gene/TetR_
↪→degradation')

degrade.Kf *= 10.0
* Run in stochastic mode:

* Change volumes, figure out how many molecules are present::

lac = moose.element('/model/kinetics/lac_gene/lac')
print lac.n

* Find when it becomes hopelessly unreliable with small volumes.

Code:

1 ##
↪→###

2 ## This program is part of 'MOOSE', the
3 ## Messaging Object Oriented Simulation Environment.
4 ## Copyright (C) 2014 Upinder S. Bhalla. and NCBS
5 ## It is made available under the terms of the
6 ## GNU Lesser General Public License version 2.1
7 ## See the file COPYING.LIB for the full notice.

(continues on next page)

6.2. Chemical Oscillators 195

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

8 ##
↪→###

9

10 import moose
11 import matplotlib.pyplot as plt
12 import matplotlib.image as mpimg
13 import pylab
14 import numpy
15 import sys
16

17 def main():
18

19 #solver = "gsl" # Pick any of gsl, gssa, ee..
20 solver = "gssa" # Pick any of gsl, gssa, ee..
21 mfile = '../../genesis/Repressillator.g'
22 runtime = 6000.0
23 if (len(sys.argv) >= 2):
24 solver = sys.argv[1]
25 modelId = moose.loadModel(mfile, 'model', solver)
26 # Increase volume so that the stochastic solver gssa
27 # gives an interesting output
28 compt = moose.element('/model/kinetics')
29 compt.volume = 1e-19
30 dt = moose.element('/clock').tickDt[18]
31

32 moose.reinit()
33 moose.start(runtime)
34

35 # Display all plots.
36 img = mpimg.imread('repressillatorOsc.png')
37 fig = plt.figure(figsize=(12, 10))
38 png = fig.add_subplot(211)
39 imgplot = plt.imshow(img)
40 ax = fig.add_subplot(212)
41 x = moose.wildcardFind('/model/#graphs/conc#/#')
42 plt.ylabel('Conc (mM)')
43 plt.xlabel('Time (seconds)')
44 for x in moose.wildcardFind('/model/#graphs/conc#/#'):
45 t = numpy.arange(0, x.vector.size, 1) * dt
46 pylab.plot(t, x.vector, label=x.name)
47 pylab.legend()
48 pylab.show()
49

50 # Run the 'main' if this script is executed standalone.
51 if __name__ == '__main__':
52 main()

Output:

196 Chapter 6. Teaching Tutorials

MOOSE User Manual, Release chennapoda (3.2.rc)

6.3 Squid giant axon

This tutorial is an interactive graphical simulation of a squid giant axon, closely based on the
‘Squid’ demo by Mark Nelson which ran in GENESIS.

The squid giant axon (https://en.wikipedia.org/wiki/Squid_giant_axon) is a very large axon
that plays a role in the water jet propulsion systems of squid.

Alan Hodgkin, Andrew Huxley, and John Eccles won the nobel prize in physiology or
medicine for their pioneering work on the squid axon. Hodgin and Huxley were the first
to qualitatively describe action potentials within neurons. The large diameter of the squid gi-
ant axon (0.5 mm to 1 mm) allowed them to affix electrodes and voltage clamps to precisely
measure the action potential as it travelled through the axon. They later went on to mathemat-
ically describe this in an equation that paved the road for mathematical and computational
biology’s development.

This tutorial models the Hodglin-Huxley equation within a neat graphical interface that allows
one to change different parameters and see how it affects the resulting action potential.

The tutorial can be run from within the .../moose/moose-examples/squid directory
by running

python squid_demo.py

in command line from within the directory.

Once the model loads, you can access the inbuilt documentation by clicking on Help run-
ning in the top right of the window as shown below

The page that pops up will take you through using the GUI, changing the parameters and
understanding the model.

For more details on the biophysics behind the model, you can click on Help biophysics
tab to the immediate right of the Help running tab (note that for smaller default window
sizes, the tab might not be visible and can be accessed by clicking the >> on the top right corner
of the GUI).

6.3. Squid giant axon 197

https://en.wikipedia.org/wiki/Squid_giant_axon

MOOSE User Manual, Release chennapoda (3.2.rc)

Fig. 1: The GUI of the simulation.

Fig. 2: The “Help running” tab is highlighted in red

198 Chapter 6. Teaching Tutorials

CHAPTER 7

Graphics

7.1 MOOGLI

7.1.1 Use Moogli for plo�ing

7.2 MatPlotLib

7.2.1 Displaying time-series plots

7.2.2 Animation of values along axis

199

MOOSE User Manual, Release chennapoda (3.2.rc)

200 Chapter 7. Graphics

CHAPTER 8

References

8.1 How to use the documentation

MOOSE documentation is split into Python documentation and builtin documentation. The
functions and classes that are only part of the Python interface can be viewed via Python’s
builtin help function:

>>> help(moose.connect)

The documentation built into main C++ code of MOOSE can be accessed via the module func-
tion doc:

>>> moose.doc('Neutral')

To get documentation about a particular field:

>>> moose.doc('Neutral.childMsg')

8.1.1 MOOSE Functions

element

moose.element(arg) -> moose object

Convert a path or an object to the appropriate builtin moose class instance.

arg [str/vec/moose object] path of the moose element to be converted or another element
(possibly available as a superclass instance).

Returns - melement MOOSE element (object) corresponding to the arg converted to write sub-
class.

201

MOOSE User Manual, Release chennapoda (3.2.rc)

getFieldNames

moose.getFieldNames(className, finfoType=’valueFinfo’) -> tuple

Get a tuple containing the name of all the fields of finfoType kind.

className [string] Name of the class to look up.

finfoType [string] The kind of field - valueFinfo - srcFinfo - destFinfo - lookupFinfo- fieldEle-
mentFinfo -

Returns - tuple Names of the fields of type finfoType in class className.

copy

moose.copy(src, dest, name, n, toGlobal, copyExtMsg) -> bool

Make copies of a moose object.

src [vec, element or str] source object.

dest [vec, element or str] Destination object to copy into.

name [str] Name of the new object. If omitted, name of the original will be used.

n [int] Number of copies to make.

toGlobal [int] Relevant for parallel environments only. If false, the copies will reside on local
node, otherwise all nodes get the copies.

copyExtMsg [int] If true, messages to/from external objects are also copied.

Returns - vec newly copied vec

move

moose.move(. . .) Move a vec object to a destination.

delete

moose.delete(. . .) delete(obj)->None

Delete the underlying moose object. This does not delete any of the Python objects referring to
this vec but does invalidate them. Any attempt to access them will raise a ValueError.

id [vec] vec of the object to be deleted.

Returns - None

useClock

moose.useClock(tick, path, fn)

schedule fn function of every object that matches path on tick no. tick.

202 Chapter 8. References

MOOSE User Manual, Release chennapoda (3.2.rc)

Most commonly the function is ‘process’. NOTE: unlike earlier versions, now autoschedule is
not available. You have to call useClock for every element that should be updated during the
simulation.

The sequence of clockticks with the same dt is according to their number. This is utilized for
controlling the order of updates in various objects where it matters. The following convention
should be observed when assigning clockticks to various components of a model:

Clock ticks 0-3 are for electrical (biophysical) components, 4 and 5 are for chemical kinetics, 6
and 7 are for lookup tables and stimulus, 8 and 9 are for recording tables.

Generally, process is the method to be assigned a clock tick. Notable exception is init method of
Compartment class which is assigned tick 0.

• 0 : Compartment: init

• 1 : Compartment: process

• 2 : HHChannel and other channels: process

• 3 : CaConc : process

• 4,5 : Elements for chemical kinetics : process

• 6,7 : Lookup (tables), stimulus : process

• 8,9 : Tables for plotting : process

tick [int] tick number on which the targets should be scheduled.

path [str] path of the target element(s). This can be a wildcard also.

fn [str] name of the function to be called on each tick. Commonly process.

Examples -

In multi-compartmental neuron model a compartment’s membrane potential (Vm) is depen-
dent on its neighbours’ membrane potential. Thus it must get the neighbour’s present Vm
before computing its own Vm in next time step. This ordering is achieved by scheduling the
init function, which communicates membrane potential, on tick 0 and process function on tick
1.:

>>> moose.useClock(0, '/model/compartment_1', 'init')
>>> moose.useClock(1, '/model/compartment_1', 'process')

setClock

moose.setClock(tick, dt)

set the ticking interval of tick to dt.

A tick with interval dt will call the functions scheduled on that tick every dt timestep.

tick [int] tick number

dt [double] ticking interval

8.1. How to use the documentation 203

MOOSE User Manual, Release chennapoda (3.2.rc)

start

moose.start(time, notify = False) -> None

Run simulation for t time. Advances the simulator clock by t time. If ‘notify = True’, a message
is written to terminal whenever 10% of simulation time is over.

After setting up a simulation, YOU MUST CALL MOOSE.REINIT() before CALLING
MOOSE.START() TO EXECUTE THE SIMULATION. Otherwise, the simulator behaviour will
be undefined. Once moose.reinit() has been called, you can call moose.start(t) as many time as
you like. This will continue the simulation from the last state for t time.

t [float] duration of simulation.

notify [bool] default False. If True, notify user whenever 10% of simultion is over.

Returns - None

reinit

moose.reinit() -> None

Reinitialize simulation.

This function (re)initializes moose simulation. It must be called before you start the simulation
(see moose.start). If you want to continue simulation after you have called moose.reinit() and
moose.start(), you must NOT call moose.reinit() again. Calling moose.reinit() again will take
the system back to initial setting (like clear out all data recording tables, set state variables to
their initial values, etc.

stop

moose.stop(. . .) Stop simulation

isRunning

moose.isRunning(. . .) True if the simulation is currently running.

exists

moose.exists(. . .) True if there is an object with specified path.

loadModel

moose.loadModel(. . .) loadModel(filename, modelpath, solverclass) -> vec

Load model from a file to a specified path.

filename [str] model description file.

modelpath [str] moose path for the top level element of the model to be created.

solverclass [str, optional] solver type to be used for simulating the model.

204 Chapter 8. References

MOOSE User Manual, Release chennapoda (3.2.rc)

Returns - vec loaded model container vec.

connect

moose.connect(src, srcfield, destobj, destfield[,msgtype]) -> bool

Create a message between src_field on src object to dest_field on dest object. This
function is used mainly, to say, connect two entities, and to denote what kind of
give-and-take relationship they share.It enables the ‘destfield’ (of the ‘destobj’) to
acquire the data, from ‘srcfield’(of the ‘src’).

src [element/vec/string] the source object (or its path) (the one that provides information)

srcfield [str] source field on self.(type of the information)

destobj [element] Destination object to connect to. (The one that need to get information)

destfield [str] field to connect to on destobj.

msgtype [str] type of the message. Can be Single - OneToAll - AllToOne - OneToOne - Reduce -
Sparse - Default: Single.

Returns - msgmanager [melement] message-manager for the newly created message.

Examples - Connect the output of a pulse generator to the input of a spike generator:

>>> pulsegen = moose.PulseGen('pulsegen')
>>> spikegen = moose.SpikeGen('spikegen')
>>> pulsegen.connect('output', spikegen, 'Vm')

getCwe

moose.getCwe(. . .) Get the current working element. ‘pwe’ is an alias of this function.

setCwe

moose.setCwe(. . .) Set the current working element. ‘ce’ is an alias of this function

getFieldDict

moose.getFieldDict(className, finfoType) -> dict

Get dictionary of field names and types for specified class.

className [str] MOOSE class to find the fields of.

finfoType [str (optional)] Finfo type of the fields to find. If empty or not specified, all fields
will be retrieved.

Returns - dict field names and their types.

Notes - This behaviour is different from getFieldNames where only valueFinfo‘s are returned
when ‘finfoType remains unspecified.

Examples - List all the source fields on class Neutral:

8.1. How to use the documentation 205

MOOSE User Manual, Release chennapoda (3.2.rc)

>>> moose.getFieldDict('Neutral', 'srcFinfo')
>>> {'childMsg': 'int'}

getField

moose.getField(. . .) getField(element, field, fieldtype) – Get specified field of specified type
from object vec.

seed

moose.seed(. . .) moose.seed(seedvalue) -> seed

Reseed MOOSE random number generator.

seed [int] Value to use for seeding. All RNGs in moose except rand functions in
moose.Function expression use this seed. By default (when this function is not called)
seed is initializecd to some random value using system random device (if available).

default: random number generated using system random device

Returns - None

rand

moose.rand(. . .) moose.rand() -> [0,1)

Returns - float in [0, 1) real interval generated by MT19937.

Notes - MOOSE does not automatically seed the random number generator. You must
explicitly call moose.seed() to create a new sequence of random numbers each time.

wildcardFind

moose.wildcardFind(expression) -> tuple of melements.

Find an object by wildcard.

expression [str] MOOSE allows wildcard expressions of the form:

{PATH}/{WILDCARD}[{CONDITION}]

where {PATH} is valid path in the element tree. {WILDCARD} can be # or ##.

causes the search to be restricted to the children of the element specified by {PATH}.

makes the search to recursively go through all the descendants of the {PATH} element.
{CONDITION} can be:

TYPE={CLASSNAME} : an element satisfies this condition if it is of
class {CLASSNAME}.
ISA={CLASSNAME} : alias for TYPE={CLASSNAME}
CLASS={CLASSNAME} : alias for TYPE={CLASSNAME}
FIELD({FIELDNAME}){OPERATOR}{VALUE} : compare field {FIELDNAME}
↪→with

(continues on next page)

206 Chapter 8. References

MOOSE User Manual, Release chennapoda (3.2.rc)

(continued from previous page)

{VALUE} by {OPERATOR} where {OPERATOR} is a comparison operator
↪→(=,

!=, >, <, >=, <=).

For example, /mymodel/##[FIELD(Vm)>=-65] will return a list of all the objects under
/mymodel whose Vm field is >= -65.

Returns - tuple all elements that match the wildcard.

quit

Finalize MOOSE threads and quit MOOSE. This is made available for debugging
purpose only. It will automatically get called when moose module is unloaded.
End user should not use this function.

moose.quit(. . .) Finalize MOOSE threads and quit MOOSE. This is made available for debug-
ging purpose only. It will automatically get called when moose module is unloaded. End
user should not use this function.

8.1.2 Class Hierarchy

• __builtin__.object - Melement

– Neutral

* Adaptor

* Annotator

* Arith

* CaConcBase

· CaConc

· ZombieCaConc

* ChanBase

· HHChannel2D

· HHChannelBase

HHChannel

ZombieHChannel

· Leakage

· MarkovChannel

· MgBlock

· SynChan

NMDAChan

* ChemCompt

8.1. How to use the documentation 207

MOOSE User Manual, Release chennapoda (3.2.rc)

· CubeMesh

· CylMesh

· NeuroMesh

· PsdMesh

· SpineMesh

* Cinfo

* Clock

* CompartmentBase

· Compartment

IntFireBase

AdThreshIF

ExIF

AdExIF

IzhIF

LIF

QIF

SymCompartment

ZombieCompartment

· DifBufferBase

DifBuffer

· DifShellBase

DifShell

· DiffAmp

· Dsolve

· EnzBase

CplxEnzBase

Enz

ZombieEnz

MMenz

ZombieMMenz

· Finfo

· Func

· Function

ZombieFunction

208 Chapter 8. References

MOOSE User Manual, Release chennapoda (3.2.rc)

· GapJunction

· Group

· Gsolve

· HDF5WriterBase

HDF5DataWriter

NSDFWriter

· HHGate

· HHGate2D

· HSolve

· IntFire

· Interpol2D

· IzhikevichNrn

· Ksolve

· MMPump

· MarkovGslSolver

· MarkovRateTable

· MarkovSolverBase

MarkovSolver

· MeshEntry

· Msg

DiagonalMsg

OneToAllMsg

OneToOneDataIndexMsg

OneToOneMsg

SingleMsg

SparseMsg

· Mstring

· Nernst

· Neuron

· PIDController

· PoolBase

Pool

BufPool

ZombiePool

8.1. How to use the documentation 209

MOOSE User Manual, Release chennapoda (3.2.rc)

ZombieBufPool

· PostMaster

· PulseGen

· PyRun

· RC

· RandGenerator

BinomialRng

ExponentialRng

GammaRng

NormalRng

PoissonRng

UniformRng

· RandSpike

· ReacBase

Reac

ZombieReac

· Shell

· Species

· SpikeGen

· Spine

· Stats

Spike

· SteadyState

· Stoich

· SynHandlerBase

GraupnerBrunel2012CaPlasticitySynHandler

STDPSynHandler

SeqSynHandler

SimpleSynHandler

· Synapse

STDPSynapse

· TableBase

Interpol

StimulusTable

210 Chapter 8. References

MOOSE User Manual, Release chennapoda (3.2.rc)

Streamer

Table

Table2

TimeTable

· VClamp

· Variable

InputVariable

· VectorTable

* testSched

– vec

– Moose_BuiltIn

8.1. How to use the documentation 211

MOOSE User Manual, Release chennapoda (3.2.rc)

212 Chapter 8. References

CHAPTER 9

Doxygen

Here you can find all the references necessary for MOOSE.

Click here

213

../../../source/doxygen/cpp/html/index.html

MOOSE User Manual, Release chennapoda (3.2.rc)

214 Chapter 9. Doxygen

CHAPTER 10

Release Notes

Todo: Collect release notes from github.

215

MOOSE User Manual, Release chennapoda (3.2.rc)

216 Chapter 10. Release Notes

CHAPTER 11

Series chennapoda

11.1 Version 3.2.0

• Improved SBML support.

• NeuroML2 support (Thanks to Padraig Glesson)

• Various bugfixes.

217

MOOSE User Manual, Release chennapoda (3.2.rc)

218 Chapter 11. Series chennapoda

CHAPTER 12

Series chamcham

12.1 Version 3.1.3

219

MOOSE User Manual, Release chennapoda (3.2.rc)

220 Chapter 12. Series chamcham

CHAPTER 13

Known issues

Full report can be found at the following places

• Related to build, packages and documentation (https://github.com/BhallaLab/moose/issues)

• Related to moose-core (https://github.com/BhallaLab/moose-core/issues)

• Related to MOOSE-GUI (https://github.com/BhallaLab/moose-gui/issues)

• Related to moogli (https://github.com/BhallaLab/moogli/issues)

221

https://github.com/BhallaLab/moose/issues
https://github.com/BhallaLab/moose-core/issues
https://github.com/BhallaLab/moose-gui/issues
https://github.com/BhallaLab/moogli/issues

MOOSE User Manual, Release chennapoda (3.2.rc)

222 Chapter 13. Known issues

CHAPTER 14

Indices and tables

• genindex

• modindex

• search

223

	What is MOOSE and what is it good for?
	Installation
	Use pre-built packages
	Building MOOSE
	Graphical User Interface (GUI)
	Building moogli

	Quick Start
	Interactive Tutorials
	MOOSE GUI: Graphical interface for MOOSE
	Getting started with python scripting for MOOSE
	Demonstration of basic functionalities
	MOOSE Classes

	Cook Book
	Single Neuron Electrical Aspects (BioPhysics)
	Chemical Aspects
	Networking
	MultiScale Modeling

	Rdesignuer
	Rdesigneur: Building multiscale models
	Rdesigneur Examples

	Teaching Tutorials
	Chemical Bistables
	Chemical Oscillators
	Squid giant axon

	Graphics
	MOOGLI
	MatPlotLib

	References
	How to use the documentation

	Doxygen
	Release Notes
	Series chennapoda
	Version 3.2.0

	Series chamcham
	Version 3.1.3

	Known issues
	Indices and tables

