

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Monte 0.1 documentation

Monte is Serious Business

Monte is a programming language inspired by the E [http://erights.org/] and Python [https://www.python.org/] programming
languages. Monte aims to be:

	A reliable scaffold for secure distributed computing

	An example of capability-safe programming language design

	A model for misuse-resistant programming

	Introduction
	Why Monte?

	Object Capability Discipline

	Why not Monte?

	Getting Started

	Acknowledgements

	A Taste of Monte: Hello Web
	Expressions

	Objects and Message Passing

	Cooperation Without Vulerability

	Practical Security: The Mafia game
	Objects

	Traditional Datatypes and Operators

	String Interpolation with quasi-literals

	Dynamic “type checking” with guards

	Final, Var, and DeepFrozen

	Assignment and Equality

	Data Structures for Game Play

	Destructuring with Patterns

	Monte Idioms Quick Reference
	Simple Statements

	Basic Flow

	File I/O and Modules

	Web Applications

	Data Structures

	Eventual Sends

	Python-Monte Idioms
	Iteration

	Objects

	The Type System
	Untyped

	Dynamic

	Strong

	Nominal

	Manifest

	Optional

	Misuse-Resistant Language Design
	Unicode Identifers

	Parenthesized Sub-Expressions

Secure Distributed Computing

	Practical Security II: The Mafia IRC Bot (WIP)
	Networking

	Distributed Systems

	Principle of Least Authority

	Ejectors & Escape Expressions
	Ejector-based Control Flow
	Conditional Definitions

	throw.eject

	Vats
	Quickstart

	What’s in a Vat?
	The Browser Analogy

	Vats, Formally and Informally

	Vat Interface

	FAQ
	So, no threads?

	Are vats parallel or concurrent?

	How do I perform parallel computations today?

	How do I perform concurrent operations?

	Why should we ever make synchronous calls?
	No, you misunderstood; why doesn’t Monte have only eventual sends?

	Brands
	Up & Down

	Promises
	Basic Promises

	When-expressions and Delayed Actions

	Streamcaps
	Quick Overview

	Object Protocol
	Pumps

	Sinks
	Sink Semantics

	Sources

	Patterns
	Flow

	Working with Packages

Language Reference

	Modules
	Why Modules?

	Module Declaration Syntax

	Entrypoints

	Unit Testing and Benchmarking

	Block Expressions
	Nested Block

	The if Expression

	The switch Expression

	The try Expression

	The escape Expression

	The while Loop

	The for Loops

	The when Expression

	The fn Expression

	Defining Objects

	Defining Interfaces

	Guards and Data
	Basic Data Guards

	Data Structure Guards

	Other Builtin Guards

	Primitive Expressions
	Noun

	Literal Expression

	Quasi-Literal Expression

	List Expression

	Map Expression

	Collections
	Sets

	Operators
	Sequence

	Assignment and Definition

	Conditional-Or

	Conditional-And

	Comparisons and Bitwise/Logical Operators

	Partial Ordering

	Interval

	Shift

	Additive

	Multiplicative

	Exponentiation

	Unary Prefix

	Unary Postfix

	Call

	Pattern matching
	The Such-That Pattern

	List, Map Patterns

	The Same and Not Same Patterns

	The Quasi-Literal Pattern

	The via Pattern

	Final Pattern (kernel)

	The var Pattern (kernel)

	Bind Pattern

	Slot Pattern

	Binding Pattern (kernel)

	Ignore Pattern (kernel)

	Lexical Grammar (Tokens)
	Brackets, Indentation, and Blocks

	Operators

	Other Punctuation

	Keywords

	Identifiers

	Literals

	Quasi-Literals

	Quasiliterals
	What’s a Quasiliteral?

	How to Use QLs

	Builtin Quasiparsers

	Custom Quasiparsers

	Interfaces

	Miranda Protocol
	Safety

	Methods

	Named Arguments

	Loops and the Iteration Protocol
	for loops

	while loops

	Advanced Looping

	Writing Your Own Iterables

	Guard Protocol
	The Basics

	Unretractable Guards

	Controllers
	How to Implement a Controller

	Slots
	Final Slots

	Var Slots

	Auditors
	Stamps

	DeepFrozen

	Selfless

	Transparent

	Bindings (WIP)

	Semantics of Monte
	Kernel-Monte

	Monte as a Tree

	Scope Introduction & Dismissal

	Names: Nouns, Slots, and References

	Exceptions

	Expressions

	Patterns

	Categorial Semantics
	DF-Mont-Mess

	DF-Mont

Appendixes, Indices and Tables

	Monte Grammar

	Roadmap: Montefesto
	2015

	2016

	2017

	2018

	Contributing

	safeScope
	Basic guards

	Guard utilities

	Primitive values

	Data Constructors

	Tracing

	Brands

	Quasiparsers

	Flow control

	Evaluation

	Reference/object operations

	Abstract Syntax

	Utilities for syntax expansions

	Interface constructors

	Entrypoint Arguments
	Time

	I/O

	Networking

	Runtime

	Processes and Vats

	Colophon: Monte Documentation Build Tools
	Restructured text

	Sphinx
	Syntax Railroad Diagrams and Haskell Parser

	Doctests

	TODO List

	Glossary

	Index

	Module Index

	Search Page

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Introduction

Why Monte?

Don’t we have enough languages already? This is a fair question. Here we’ll
explain why we created Monte and what’s interesting about it.

Because Security Matters

Secure distributed computing should not be hard. Computers are getting
faster, smaller, more connected, and more capable, but when it comes to
security, everything is broken [https://medium.com/message/everything-is-broken-81e5f33a24e1]. A major cause is the “water balloon”
design philosophy of contemporary languages and frameworks: Security is only
enforced at the edges of programs, and not within the structure of programs
themselves. Monte takes the object-capability paradigm of E [1] and
expands on the approach, delivering a powerful and expressive language.

Can we reuse existing languages?

Disciplined use of existing languages such as Java and ECMAScript can be
used to build object capability systems, but the standard practices and
libraries are not compatible with this discipline. We believe that nothing
short of a capability-safe-by-construction language can enforce capability
discipline.

Monte, like E before it, has dramatic advantages for secure distributed
systems:

	Capability-based security enables the concise composition of powerful
patterns of interoperation–patterns that enable extensive cooperation
even in the presence of severely limited trust.

	Monte promises benefit from a promise-pipelining architecture which
ensures that most deadlocks cannot occur. [*]

	Monte offers cryptographic services directly to its users, easing the use
of good cryptographic primitives.

Because Readability Matters

The origin of Monte’s name

The Monte language has its roots in the E and Python languages. We
took “Monty” from “Monty Python”, and put an “e” in there. Thus,
“Monte”.

Monte wraps its strengths in a Python-like syntax to make it quickly
comfortable for a large number of software engineers.

Monte is a pure object-based language in the Smalltalk tradition, making it
easy to write modular, readable, maintainable software using the strategies
familiar from Python, JavaScript, Ruby, Java, and other object-based
languages. All values are objects and all computation is done by sending
messages to objects. It has the kind of powerful string handling that will be
recognized and seized upon by the Perl hacker.

Because Stability Matters

Monte is dynamically typed [2], like Smalltalk, rather than
statically typed, like Java. Users of Perl and Python will immediately
recognize this is an advantage; Java and C++ programmers may not be so
sure. Fortunately, Monte inherits two forms of contract-based programming from
E: guards and interfaces.

Monte is dynamic in three ways:

	Dynamic Typing

	The type of a variable might not be known until runtime, and “types are
open”.

	Dynamic Binding

	It is possible to pass a message to an object that will never able to
handle that message. This provides a late-binding sort of polymorphism.

	Dynamic Compiling

	Monte can compile and run Monte code at runtime, as part of its core
runtime.

While “arbitrary code execution” is a notorious security vulnerability, Monte
enables the fearless yet powerful use of multi-party limited-trust mobile
code.

Object Capability Discipline

A capability is a reference to an object and represents authority to
invoke methods on the object. The key to supporting dynamic code execution
without vulnerability is object capability discipline, which consists
of:

	Memory safety and encapsulation

	There is no way to get a reference to an object except by creating one or
being given one at creation or via a message; no casting integers to
pointers, for example.

From outside an object, there is no way to access the internal state of the
object without the object’s consent (where consent is expressed by
responding to messages).

	Primitive effects only via references

	The only way an object can affect the world outside itself is via references
to other objects. All primitives for interacting with the external world are
embodied by primitive objects and anything globally accessible is immutable
data. There is no open(filename) function in the global namespace, nor
can such a function be imported. The runtime passes all such objects to an
entrypoint, which then explicitly delegates to other
objects.

We’ll demonstrate how this leads to natural expression of the Principle of
Least Power briefly in A Taste of Monte: Hello Web and in more detail in
Secure Distributed Computing.

Why not Monte?

Monte assumes automatic memory management; the current reference
implementation uses the PyPy garbage collector, and any other implementation
will have to choose a similar scheme. As such, it is not a good language for
low level machine manipulation. So do not try to use Monte for writing device
drivers.

Monte’s performance is currently quite unfavorable compared to raw C, and
additionally, Monte’s target niches are largely occupied by other dynamic
languages with JIT-compiler-based runtimes, so it is not a design goal to
compete with C or other memory-unsafe languages.

Note

While Monte’s usable and most architectural issues are resolved, it
is still undergoing rapid development. See Roadmap: Montefesto for
details.

Getting Started

Quick Start Docker Image

If you have Docker installed, the quickest way to get to an interactive prompt
to run some Monte code is docker run -it montelang/repl. This container
provides the essentials needed for most examples in this documentation.

A container with a shell and the full set of Monte development tools is
available on Docker Hub as well, montelang/monte-dev.

Installation

If you don’t want to use Docker, the other supported environment requires the
packaging/build tool Nix [http://nixos.org/nix/]. It can be installed on Linux and OSX from their
installer script:

curl https://nixos.org/nix/install | sh

Alternately, you can install it manually [http://nixos.org/releases/nix/latest/] from tarball, DEB, RPM, etc.

From Source

Builds of Monte from source are straightforward, using Nix:

git clone https://github.com/monte-language/typhon/
nix-env -f typhon -iA monte

From Cachix

One of our community members maintains a Cachix [https://cachix.org/] instance. Instructions are
at the Monte Cachix [https://monte.cachix.org/] page.

Once that’s set up, you can install Monte by running:

nix-env -i monte

Interacting with the Monte REPL

Monte has a traditional “Read - Evaluate - Print Loop”, or REPL, for
exploration. Invoke it as monte repl. For example:

>>> 1 + 1
2

>>> "abc".size()
3

Getting Help about an Object

Monte strives to provide useful error messages and self-documenting objects:

▲> help(Ref)
Result: Object type: RefOps
Ref management and utilities.
Method: broken/1
Method: isBroken/1
Method: isDeepFrozen/1
...

Editor Syntax Highlighting

Emacs and Flycheck

The monte-emacs repository [https://github.com/monte-language/monte-emacs] provides emacs syntax highlighting
on-the-fly syntax checking with flycheck [http://www.flycheck.org/].

Vim

The monte-vim repository [https://github.com/monte-language/monte-vim] provides vim syntax highlighting, and linter
integration is available via a private Syntastic repository [https://github.com/mostawesomedude/syntastic].

Atom

Use Atom to install the package language-monte [https://atom.io/packages/language-monte].

Support and Feedback

	We welcome feedback:

	
	issues in monte pypy vm implementation (typhon) [https://github.com/monte-language/monte/issues]

	issues in monte documentation [https://github.com/monte-language/typhon/issues]

Or come say hi on IRC, in #monte on irc.freenode.net!

Acknowledgements

Monte design and documentation borrow heavily from E in a Walnut [http://wiki.erights.org/wiki/Walnut]
by Marc Stiegler and The E Language [http://erights.org/elang/index.html] and ELib [http://erights.org/elib/index.html] by Mark Miller.

Notes

	[1]	Miller, M.S.: Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control [http://erights.org/talks/thesis/index.html]. PhD thesis, Johns
Hopkins University, Baltimore, Maryland, USA (May 2006)

See also a history of E’s ideas [http://www.erights.org/history/index.html].

	[*]	As with all sufficiently complex concurrency systems, deadlock is
possible. That said, it has not been observed outside of
specially-constructed pathological object graphs.

	[2]	in formal type theory, Monte is unityped.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

A Taste of Monte: Hello Web

Let’s see what a simple web server looks like in Monte:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16

	import "lib/http/server" =~ [=> makeHTTPEndpoint]
exports (main)

def helloWeb(_request) as DeepFrozen:
 "Build a simple HTML response."

 return [200, ["Content-Type" => "text/html"], b`<p>Hello!</p>`]

def main(argv, => makeTCP4ServerEndpoint) :Int as DeepFrozen:
 "Obtain a port and create an HTTP server on that port."

 def portNum :Int := _makeInt(argv.last())
 def ep := makeHTTPEndpoint(makeTCP4ServerEndpoint(portNum))
 traceln(`serving on port $portNum`)
 ep.listen(helloWeb)
 return 0

The makeHTTPEndpoint import reads much like Python’s from
http.server import makeHTTPEndpoint, though the mechanics of a
module declaration in monte are a bit different:
it uses pattern matching to bind names to objects
imported from modules.

DeepFrozen Module Exports

One of the constraints of object capability discipline is
that there is no global mutable state, so exported objects must be
DeepFrozen; that is, transitively immutable. Since main calls
helloWeb, helloWeb must be DeepFrozen as well. We’ll discuss
this and other static properties of Monte code in the Auditors
section.

We declare that this module exports its main function, as is
conventional for executable programs.

Todo

Document how to compile and run such a script.

Blocks in Monte are typically written with indentation, like Python,
though blocks in general may be written with
curly-braces as well.

Note

Tabs are a syntax error in Monte.

Expressions

The def-expr for defining the helloWeb function is similar to
Python’s syntax for defining functions.

Expression Languages

Unlike Python and C, which use a mix of statements and expressions, Monte
is an expression language, like Scheme. So def body := … is an
expression with a value, just like string literals and method calls.

The expression inside the call to traceln(…) does string interpolation,
similar to Perl, Ruby, and bash. It is a quasiliteral
expression:

▲> def portNum := 8080
▲> `serving on port $portNum`
"serving on port 8080"

Another quasiliteral is b`<p>Hello!</p>`, which denotes a Bytes object
rather than a character string.

Objects and Message Passing

Monte is a pure object language, which means that all values in Monte are
objects. All operations on objects are done by passing
messages. This includes ordinary method calls like
argv.last() as well as function calls such as
traceln(portNum) and even syntax for constructing lists
like [200, [], body] and maps like ["C" => "t"].

Cooperation Without Vulerability

Suppose our server takes an arbitrary expression from the web client and
evaluates it:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

	import "lib/http/server" =~ [=> makeHTTPEndpoint]
import "lib/http/tag" =~ [=> tag]
import "formData" =~ [=> fieldMap]
exports (main)

object calculator as DeepFrozen:
 to run(request):
 return switch (request.getVerb()):
 match =="GET":
 calculator.get(request)
 match =="POST":
 calculator.post(request)

 to get(_request):
 def body := b`
 <form method="POST">
 <label>Arbitrary code to execute:<input name="code" /></label>
 </form>
 `
 return [200, ["Content-Type" => "text/html"], body]

 to post(request):
 def code := fieldMap(request.getBody())["code"]
 def result := eval(code, safeScope)
 # NB: The `tag` object does automatic HTML escaping. No extra effort
 # is required to prevent XSS. ~ C.
 def html := tag.pre(M.toString(result))
 return [200, ["Content-Type" => "text/plain"], b`$html`]

def main(argv, => makeTCP4ServerEndpoint) :Int as DeepFrozen:
 def portNum := _makeInt(argv.last())
 def ep := makeHTTPEndpoint(makeTCP4ServerEndpoint(portNum))
 traceln(`serving $calculator on port $portNum`)
 ep.listen(calculator)
 return 0

With conventional languages and frameworks, this would be injection [https://www.owasp.org/index.php/Top_10_2013-A1-Injection], #1 on
the list of top 10 web application security flaws:

Injection can result in data loss or corruption, lack of accountability, or
denial of access. Injection can sometimes lead to complete host takeover.

But using object capability discipline, untrusted code has only the authority
that we explicitly give it. This rich form of cooperation comes with
dramatically less vulnerability [1]. The environment in this example is
safeScope, which is the same environment modules are evaluated in – it
provides basic runtime services such as constructors for lists, maps, and
other structures, but no “powerful” objects. In particular,
makeTCP4ServerEndpoint is not in scope when the remote code is executed,
so the code cannot use it to access the network. Neither does the code have
any access to read from nor write to files, clobber global state, nor launch
missiles.

Notes

	[1]	We implicitly grant authority to compute indefinitely. Object
capability discipline does not address denial of service. Monte’s
vats include a conventional mechanism to put a finite limit on
computation.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Practical Security: The Mafia game

Let’s look a bit deeper at Monte, working up to an implementation of
the Mafia party game [https://en.wikipedia.org/wiki/Mafia_%28party_game%29].

Objects

Monte has a simpler approach to object composition and inheritance than many
other object-based and object-oriented languages.

A Singleton Object

We will start our exploration of objects with a simple singleton
object. Methods can be attached to objects with the to keyword:

>>> object origin:
... to getX():
... return 0
... to getY():
... return 0
... # Now invoke the methods
... origin.getY()
0

Unlike Java or Python, Monte objects are not constructed from classes.
Unlike JavaScript, Monte objects are not constructed from prototypes. As a
result, it might not be obvious at first how to build multiple objects which
are similar in behavior.

Functions are objects too

Functions are simply objects with a run method. There is no
difference between this function:

>>> def square(x):
... return x * x
... square.run(4)
16

... and this object:

>>> object square:
... to run(x):
... return x * x
... square(4)
16

Warning

Python programmers beware, methods are not
functions. Methods are just the public hooks to the
object that receive messages; functions are standalone
objects.

Todo

document docstrings

Todo

document named args, defaults

Object constructors and encapsulation

Monte has a very simple idiom for class-like constructs:

>>> def makeCounter(var value :Int):
... return object counter:
... to increment() :Int:
... return value += 1
... to makeOffsetCounter(delta :Int):
... return makeCounter(value + delta)
...
... def c1 := makeCounter(1)
... c1.increment()
... def c2 := c1.makeOffsetCounter(10)
... c1.increment()
... c2.increment()
... [c1.increment(), c2.increment()]
[4, 14]

And that’s it. No declarations of object contents or special
references to this or self.

Assignment Expressions

Monte is an expression language. The expression value += 1 returns the
resulting sum. That’s why return value += 1 works.

Inside the function makeCounter, we simply define an object called
counter and return it. Each time we call makeCounter(), we get
a new counter object. As demonstrated by the makeOffsetCounter
method, the function (makeCounter) can be referenced from within
its own body. (Similarly, our counter object could refer to itself in
any of its methods as counter.)

The lack of a this or self keyword may be
surprising. But this straightforward use of lexical scoping saves us
the often tedious business in python or Java of copying the arguments
from the parameter list into instance variables: value is already
an instance variable.

The value passed into the function is not an ephemeral parameter
that goes out of existence when the function exits. Rather, it is a
true variable, and it persists as long as any of the objects that uses
it persist. Since the counter uses this variable, value will exist
as long as the counter exists.

Augmented Assignment

Just as you would read x += 1 short-hand for x := x + 1,
read the augmented assignment
players without= (victim) as players :=
players.without(victim) .

A natural result is the complete encapsulation required for object
capability discipline: value is not visible outside of
makeCounter(); this means that no other object can directly observe nor
modify it. Monte objects have no public attributes or fields or even a notion
of public and private. Instead, all names are private: if a name is not
visible (i.e. in scope), there is no way to use it.

We refer to an object-making function such as makeCounter as a
“Maker”. As a more serious example, let’s make a sketch of our game:

>>> def makeMafia(var players :Set):
... def mafiosoCount :Int := players.size() // 3
... var mafiosos :Set := players.slice(0, mafiosoCount)
... var innocents :Set := players.slice(mafiosoCount)
...
... return object mafia:
... to getWinner():
... if (mafiosos.size() == 0):
... return "village"
... if (mafiosos.size() >= innocents.size()):
... return "mafia"
... return null
...
... to lynch(victim):
... players without= (victim)
... mafiosos without= (victim)
... innocents without= (victim)
...
... def game1 := makeMafia(["Alice", "Bob", "Charlie"].asSet())
... game1.lynch("Bob")
... game1.lynch("Charlie")
... game1.getWinner()
"mafia"

Traditional Datatypes and Operators

Monte includes basic data types such as Int,
Double, Str, Char, and Bool. All integer arithmetic is
unlimited precision, like in Python.

The operators +, -, and * have their traditional meanings
for Int and Double. The normal division operator / always
gives you a Double result. The floor divide operator // always
gives you an Int, truncated towards negative infinity. So:

>>> -3.5 // 1
-4

Comments

Monte uses the same # ... syntax for comments as Python and bash.

Strings are enclosed in double quotes. Characters are enclosed in
single quotes.

The function traceln sends diagnostic output to the console. The if
and while constructs look much like their Python equivalents, as do lists
such as [4, 14].

Operator precedence is generally the same as in Java, Python, or C. In
a few cases, Monte will throw a syntax error and require the use of
parentheses.

With that, let’s set aside our game sketch and look at a more complete
rendition, mafia.mt:

	 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123

	# An implementation of the Mafia party game state machine.

import "lib/enum" =~ [=> makeEnum]
exports (makeMafia, DAY, NIGHT)

def [MafiaState :DeepFrozen,
 DAY :DeepFrozen,
 NIGHT :DeepFrozen] := makeEnum(["day", "night"])

def makeMafia(var players :Set, rng) as DeepFrozen:
 # Intial mafioso count.
 def mafiosoCount :Int := players.size() // 3

 def sample(population :List, k :(Int <= population.size())) :List:
 def n := population.size()
 def ixs := [].diverge()
 while (ixs.size() < k):
 if (!ixs.contains(def ix := rng.nextInt(n))):
 ixs.push(ix)
 return [for ix in (ixs) population[ix]]

 var mafiosos :Set := sample(players.asList(), mafiosoCount).asSet()
 var innocents :Set := players - mafiosos

 var state :MafiaState := NIGHT
 var day := 0
 var votes :Map := [].asMap()

 object mafia:
 to _printOn(out) :Void:
 def mafiaSize :Int := mafiosos.size()
 def playerSize :Int := players.size()
 out.print(`<Mafia: $playerSize players, `)
 def winner := mafia.getWinner()
 if (winner == null):
 out.print(`$state $day>`)
 else:
 out.print(`winner $winner>`)

 to getState() :MafiaState:
 return state

 to getQuorum() :Int:
 return switch (state) {
 match ==DAY { (mafiosos.size() + innocents.size() + 1) // 2}
 match ==NIGHT {mafiosos.size()}
 }

 to getMafiaCount() :Int:
 return mafiosoCount

 to getWinner():
 if (mafiosos.size() == 0):
 return "village"
 if (mafiosos.size() >= innocents.size()):
 return "mafia"
 return null

 to advance() :Str:
 if (mafia.getWinner() =~ outcome ? (outcome != null)):
 return outcome
 if ([state, day] == [NIGHT, 0]) {
 state := DAY
 day += 1
 return "It's morning on the first day."
 }
 if (mafia.lynch() =~ note ? (note != null)):
 state := switch (state) {
 match ==DAY {NIGHT}
 match ==NIGHT { day += 1; DAY}
 }
 votes := [].asMap()
 return note
 return `${votes.size()} votes cast.`

 to vote(player ? (players.contains(player)),
 choice ? (players.contains(choice))) :Void:
 switch (state):
 match ==DAY:
 votes with= (player, choice)
 match ==NIGHT:
 if (mafiosos.contains(player)):
 votes with= (player, choice)

 to lynch() :NullOk[Str]:
 def quorum :Int := mafia.getQuorum()
 def counter := [].asMap().diverge()
 for _ => v in (votes):
 if (counter.contains(v)):
 counter[v] += 1
 else:
 counter[v] := 1
 traceln(`Counted votes as $counter`)

 escape ej:
 def [victim] exit ej := [for k => v in (counter) ? (v >= quorum) k]
 def count := counter[victim]
 def side := mafiosos.contains(victim).pick(
 "mafioso", "innocent")
 players without= (victim)
 mafiosos without= (victim)
 innocents without= (victim)
 return `With $count votes, $side $victim was killed.`
 catch _:
 return null

 return ["game" => mafia, "mafiosos" => mafiosos]

Unit Testing

This module also uses Monte’s unit test facilities to capture a simulated
game:

	18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

	import "unittest" =~ [=> unittest]
import "lib/entropy/entropy" =~ [=> makeEntropy :DeepFrozen]
import "lib/entropy/pcg" =~ [=> makePCG :DeepFrozen]

def sim1(assert):
 def names := ["Alice", "Bob", "Charlie",
 "Doris", "Eileen", "Frank",
 "Gary"]
 def rng := makeEntropy(makePCG(731, 0))
 def randName := fn { names[rng.nextInt(names.size())] }
 def [=> game, =>mafiosos] := makeMafia(names.asSet(), rng)
 assert.equal(`$game`, "<Mafia: 7 players, night 0>")
 assert.equal(mafiosos, ["Eileen", "Frank"].asSet())

 def steps := [game.advance()].diverge()
 while (game.getWinner() == null):
 # Rather than keep track of who is still in the game,
 # just catch the guard failure.
 try:
 game.vote(randName(), randName())
 catch _:
 continue
 def step := game.advance()
 if (step !~ `@n votes cast.`):
 steps.push(step)
 steps.push(`$game`)

 assert.equal(steps.snapshot(),
 ["It's morning on the first day.",
 "With 4 votes, innocent Alice was killed.",
 "<Mafia: 6 players, night 1>",
 "With 2 votes, mafioso Eileen was killed.",
 "<Mafia: 5 players, day 2>",
 "With 3 votes, mafioso Frank was killed.",
 "<Mafia: 4 players, winner village>"])
unittest([sim1])

We still cannot import access to a true source of entropy; makePCG
constructs a pseudo-random number generator given an initial seed, and
makeEntropy makes an object that takes the resulting sequence of bytes and
packages them up conveniently as integers etc. In
Secure Distributed Computing, we will develop the part of the game that
provides a truly random seed. But for unit testing, the seed is an arbitrarily
chosen constant.

Additional flow of control

Other traditional structures include:

	try{...} catch errorVariable {...} finally {...}

	throw(ExceptionExpressionThatCanBeAString)

	break, continue

	switch (expression) {match pattern1 {...} match pattern2 {...}
... match _ {defaultAction}}

String Interpolation with quasi-literals

Monte’s quasi-literals enable the easy processing
of complex strings as described in detail later;
out.print(`currently $state>`) is a simple example wherein the
back-ticks denote a quasi-literal, and the dollar sign denotes a
variable whose value is to be embedded in the string.

Dynamic “type checking” with guards

Monte guards perform many of the functions usually thought of
as type checking, though they are so flexible that they also work as concise
assertions. Guards can be placed on variables (such as mafiososCount
:Int), parameters (such as players :Set), and return values (such as
getState() :MafiaState).

Guards are not checked during compilation. They are checked during
execution and will throw exceptions if the value cannot be coerced to
pass the guard.

Optimizing Monte Compilers

Monte does not specify a compilation model. Some guards can be optimized
away by intelligent Monte compilers, and linters may warn about
statically-detectable guard failures.

Monte features strong types; monte values resist automatic coercion. As an
example of strong typing in Monte, consider the following statement:

def x := 42 + true

This statement will result in an error, because true is a boolean value
and cannot be automatically transformed into an integer, float, or other value
which integers will accept for addition.

We can also build guards at runtime. The call to makeEnum returns
a list where the first item is a new guard and the remaining items are
distinct new objects that pass the guard. No other objects pass the
guard.

Todo

show: Guards play a key role in protecting security
properties.

Final, Var, and DeepFrozen

Bindings in Monte are immutable by default.

The DeepFrozen guard ensures that an object and everything
it refers to are immutable. The def makeMafia(…) as DeepFrozen expression
results in this sort of binding as well as patterns such as DAY
:DeepFrozen.

Using a var pattern in a definition (such as mafiosos) or parameter
(such as players) lets you assign to that variable again later.

There are no (mutable) global variables, however. We cannot import a random
number generator. Rather, the random number generator argument rng is
passed to the makeMafia maker function explicitly.

Assignment and Equality

Assignment uses the := operator, as in Pascal. The single equal
sign = is never legal in Monte; use := for assignment and
== for testing equality.

== and != are the boolean tests for sameness. For any pair
of refs x and y, “x == y” will tell whether these refs designate
the same object. The sameness test is monotonic, meaning that the
answer it returns will not change for any given pair of objects.
Chars, booleans, integers, and floating point numbers are all
compared by their contents, as are Strings, ConstLists, and ConstMaps.
Other objects only compare same with themselves, unless their
definition declares them:ref:Transparent<selfless>, which lets them
expose their contents and have them compared for sameness.

Data Structures for Game Play

Monte has Set, List, and Map data structures that let us
express the rules of the game concisely.

A game of mafia has some finite number of players. They don’t come in
any particular order, though, so we write var players :Set to
ensure that players is always bound to a Set,
though it may be assigned to different sets at different times.

We use .size() to get the number of players, and once we get the
mafiosos subset (using a sample function), the set of innocents is
the difference of players - mafiosos.

We initialize votes to the empty Map, written [].asMap()
and add to it using votes with= (player, choice).

To lynch, we use counter as a map from player to votes cast
against that player. We initialize it to an empty mutable map with
[].asMap().diverge() and then iterate over the votes with for _
=> v in votes:.

Functional Features (WIP)

Monte has support for the various language features required for programming
in the so-called “functional” style. Monte supports closing over values (by
reference and by binding), and Monte also supports creating new function
objects at runtime. This combination of features enables functional
programming patterns.

Monte also has several features similar to those found in languages in the
Lisp and ML families which are often conflated with the functional style, like
strict lexical scoping, immutable builtin value types, comprehension syntax,
and currying for message passing.

Comprehensions in Monte are written similarly to Python’s, but in keeping with
Monte’s style, the syntax elements are placed in evaluation order:
[for KEY_PATTERN => VALUE_PATTERN in (ITERABLE) if (FILTER_EXPR) ELEMENT_EXPR].
Just as Python has dict comprehensions, Monte provides map comprehensions –
to produce a map, ELEMENT_EXPR would be replaced with KEY_EXPR => VALUE_EXPR.

A list of players that got more than a quorum of votes is written
[for k => v in (counter) ? (v >= quorum) k]. Provided there
is one such player, we remove the player from the
game with players without= (victim).

Destructuring with Patterns

Pattern matching is used in the following ways in
Monte:

	The left-hand side of a def expression has a pattern.

A single name is typical, but the first def expression above
binds MafiaState, DAY, and NIGHT to the items from
makeEnum using a list pattern.

If the match fails, an ejector is fired, if
provided; otherwise, an exception is raised.

	Parameters to methods are patterns which are matched against
arguments. Match failure raises an exception.

A final pattern such as to _printOn(out) or with a
guard to sample(population :List) should look familiar, but the
such-that patterns in to vote(player ?
(players.contains(player)), ...) are somewhat novel. The pattern
matches only if the expression after the ? evaluates to true; at
the same time, player is usable in the such-that expression.

	Each matcher in a switch expression has a pattern.

In the advance method, if state matches the ==DAY
pattern–that is, if state == DAY–then NIGHT is assigned
to state. Likewise for the pattern ==NIGHT and the
expression DAY.

An exception would be raised if neither pattern matched, but that
can’t happen because we have state :MafiaState.

	Match-bind comparisons such as
"<p>" =~ `<@tag>` test the value on the left against
the pattern on the right, and return whether the pattern matched
or not.

	Matchers in object expressions provide flexible handlers for
message passing.

The [=> makeEnum] pattern syntax is short for ["makeEnum" =>
makeEnum], which picks out the value corresponding to the key
"makeEnum". The Module Syntax Expansion section explains how
imports turn out to be a special case of method parameters.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Monte Idioms Quick Reference

These examples show Monte syntax for conventional constructs as
well as workhorse idioms that are somewhat novel to Monte.

Simple Statements

>>> def a := 2 + 3
... var a2 := 4
... a2 += 1
... def b := `answer: $a`
... traceln(b)
... b
"answer: 5"

Basic Flow

>>> if ('a' == 'b'):
... "match"
... else:
... "no match"
"no match"

>>> var a := 0; def b := 4
... while (a < b):
... a += 1
... a
4

>>> var resource := "reserved"
... try:
... 3 // 0
... catch err:
... `error!`
... finally:
... resource := "released"
... resource
"released"

>>> def x := [].diverge()
... for next in (1..3):
... x.push([next, next])
... x.snapshot()
[[1, 1], [2, 2], [3, 3]]

>>> def map := ['a' => 65, 'b' => 66]
... var sum := 0
... for key => value in (map):
... sum += value
... sum
131

Function

>>> def addTwoPrint(number):
... traceln(number + 2)
... return number + 2
...
... def twoPlusThree := addTwoPrint(3)
... twoPlusThree
5

Singleton Object (stateless)

>>> object adder:
... to add1(number):
... return number + 1
... to add2(number):
... return number + 2
... def result := adder.add1(3)
... result
4

Objects with state

>>> def makeOperator(baseNum):
... def instanceValue := 3
... object operator:
... to addBase(number):
... return baseNum + number
... to multiplyBase(number):
... return baseNum * number
... return operator
... def threeHandler := makeOperator(3)
... def threeTimes2 := threeHandler.multiplyBase(2)
... threeTimes2
6

Objects self-referencing during construction

>>> def makeRadio(car):
... `radio for $car`
... def makeCar(name):
... var x := 0
... var y := 0
... def car # using def with no assignment
... def myWeatherRadio := makeRadio(car)
... bind car:
... to receiveWeatherAlert():
... #process the weather report....
... traceln(myWeatherRadio)
... to getX():
... return x
... to getY():
... return y
... #list the rest of the car methods....
... return car
... makeCar("ferrari").getX()
0

Delegation

>>> def makeExtendedFile(myFile):
... return object extendedFile extends myFile:
... to append(text):
... var current := myFile.getText()
... current := current + text
... myFile.setText(current)
...
... makeExtendedFile(object _ {})._respondsTo("append", 1)
true

File I/O and Modules

Access to files is given to the main entry point:

>>> def main(argv, => makeFileResource):
... def fileA := makeFileResource("fileA")
... fileA <- setContents(b`abc\ndef`)
... def contents := fileA <- getContents()
... when (contents) ->
... for line in (contents.split("\n")):
... traceln(line)
...
... main._respondsTo("run", 1)
true

Web Applications

Access to TCP/IP networking is also given to the main entry point. The
http/server module builds an HTTP server from a TCP/IP listener:

import "http/server" =~ [=> makeHTTPEndpoint :DeepFrozen]
exports (main)

def hello(request) as DeepFrozen:
 return [200, ["Content-Type" => "text/plain"], b`hello`]

def main(argv, => makeTCP4ServerEndpoint) as DeepFrozen:
 def tcpListener := makeTCP4ServerEndpoint(8080)
 def httpServer := makeHTTPEndpoint(tcpListener)
 httpServer.listen(hello)

Data Structures

ConstList

>>> var a := [8, 6, "a"]
... a[2]
"a"

>>> var a := [8, 6, "a"]
... a.size()
3

>>> var a := [8, 6, "a"]
... for i in (a):
... traceln(i)
... a := a + ["b"]
... a.slice(0, 2)
[8, 6]

ConstMap

>>> def m := ["c" => 5]
... m["c"]
5

>>> ["c" => 5].size()
1

>>> def m := ["c" => 5]
... for key => value in (m):
... traceln(value)
... def flexM := m.diverge()
... flexM["d"] := 6
... flexM.size()
2

FlexList

>>> def flexA := [8, 6, "a", "b"].diverge()
... flexA.extend(["b"])
... flexA.push("b")
... def constA := flexA.snapshot()
[8, 6, "a", "b", "b", "b"]

FlexMap

>>> def m := ["c" => 5]
... def flexM := m.diverge()
... flexM["b"] := 2
... flexM.removeKey("b")
... def constM := flexM.snapshot()
["c" => 5]

Eventual Sends

>>> def abacus := object mock { to add(x, y) { return x + y } }
... var out := null
...
... abacus <- add(1, 2)
3

>>> def makeCarRcvr := fn autoMake { `shiny $autoMake` }
...
... def carRcvr := makeCarRcvr <- ("Mercedes")
... Ref.whenBroken(carRcvr, def lost(brokenRef) {
... traceln("Lost connection to carRcvr")
... })
... carRcvr
"shiny Mercedes"

>>> def [resultVow, resolver] := Ref.promise()
...
... when (resultVow) ->
... traceln(resultVow)
... catch prob:
... traceln(`oops: $prob`)
...
... resolver.resolve("this text is the answer")
... resultVow
"this text is the answer"

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Python-Monte Idioms

This is a collection of common Python idioms and their equivalent Monte
idioms.

Iteration

Comprehensions

Python features list, set, and dict comprehensions. Monte has list and map
comprehensions, although efficient set comprehensions are missing.

The main difference between Python and Monte here is that Monte puts the
for-loop construction at the beginning of the comprehension.

Python:

squares = [x**2 for x in range(10)]

more_squares = {x: x**2 for x in (2, 4, 6)}

Monte:

def squares := [for x in (0..!10) x ** 2]

def moreSquares := [for x in ([2, 4, 6]) x => x ** 2]

Enumeration

Python’s enumerate is usually not necessary in Monte, because Monte has
two-valued iteration and iterates over key-value pairs.

Python:

for i, x in enumerate(xs):
 f(i, x)

Monte:

for i => x in xs:
 f(i, x)

Objects

Classes

Monte does not have classes, but the maker pattern is equivalent.

Python:

class ClassName(object):
 def __init__(self, param, namedParam=defaultValue):
 self._param = param
 self._namedParam = namedParam

 def meth(self, arg):
 return self._param(self._namedParam, arg)

Monte:

def makeClassName(param, => namedParam := defaultValue):
 return object objectName:
 to meth(arg):
 return param(namedParam, arg)

Inheritance

Monte doesn’t have class-based inheritance. Instead, we have composition-based
inheritance. This means that there is not a parent class, but a parent object.

Python:

class Parent(object):
 def meth(self, arg):
 return arg * 2

 def overridden(self, arg):
 return arg + 2

class Child(Parent):
 def overridden(self, arg):
 return arg + 3

child = Child()

Monte, styled like Python:

def makeParent():
 return object parent:
 to meth(arg):
 return arg * 2

 to overridden(arg):
 return arg + 2

def makeChild(parent):
 return object child extends parent:
 to overridden(arg):
 return arg + 3

def child := makeChild(makeParent())

Monte, styled like Monte:

object parent:
 to meth(arg):
 return arg * 2

 to overridden(arg):
 return arg + 2

object child extends parent:
 to overridden(arg):
 return arg + 3

Private Methods

Neither Python nor Monte have private methods. Python has a naming convention
for methods which should not be called from outside the class. Monte has an
idiom for functions which cannot be called from outside the class.

Python:

class ClassName(object):

 _state = 42

 def _private(self):
 return self._state

 def public(self):
 return self._private()

Monte, styled like Python:

def makeClassName():
 var state := 42

 def private():
 return state

 return object objectName:
 to public():
 return private()

Monte, styled like Monte:

def makeClassName():
 var state := 42

 return object objectName:
 to public():
 return state

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

The Type System

This is a brief overview of Monte’s type system.

Monte does not have a type system, in the type-theoretic sense. Instead, Monte
features Guards and Data. However, we cannot deny that guards both syntactically
and semantically resemble types, so we are happy to call our guard system our
“type system” and compare it to other type systems.

We use the Smallshire [https://vimeo.com/74354480] classification of type system features to explain
Monte’s typing features in a high-level overview.

Untyped

A language is untyped if there is only one type of value in the
language. There are two common definitions here; one is used by Smallshire,
and one is used by Harper [https://existentialtype.wordpress.com/2011/03/19/dynamic-languages-are-static-languages/]. Both are worth considering, since Monte straddles
the edge.

Smallshire gives Ruby as an example of a typed language. Ruby is a close
relative of Monte, and by Smallshire’s definition, Monte is also a typed
language, in this view, because objects still have innate distinct behaviors.

In constrast, Harper equates untyped and unityped languages. This would mark
Ruby, and Monte too, as untyped.

We say that Monte is untyped, for reasons similar to Harper’s. Monte has a
uniform calling interface, which means that any message can be sent to any
object, and rejection is always done inside the object’s message-receiving
code at runtime.

Dynamic

Monte is dynamic; it is possible to have a name for a value without
restrictions on the type of the value.

Strong

Monte values have strong types which resist coercion. Indeed, in Monte,
coercion is a reified object protocol. Objects do not have to be coercible,
and most builtin objects cannot be coerced.

Nominal

A language has nominal typing if types are identifiable, comparable,
substitutable, etc. only if they are identical. Monte guards and interfaces
have this property; in particular, Monte interfaces are not equal just by
having the same declared names and methods.

Manifest

Monte guards are manifest type annotations, which means that they are
never inferred by canonical expansion.

Optional

Guards are optional and do not have to be specified. Indeed, Monte
boasts gradual typing, which means that a Monte program can have any
mix of guarded and unguarded names without affecting the correctness of
guards.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Misuse-Resistant Language Design

Several of Monte’s design decisions are based on the concept of
misuse-resistant tools which are designed to frustrate attempts to write
faulty code, whether accidentally or intentionally.

Unicode Identifers

Monte has Unicode identifiers, like many contemporary languages. However,
Monte generally rejects bare identifiers which other languages would accept.
Instead, we require arbitrary Unicode identifiers to be wrapped with a slight
decoration which serves as warning plumage.

Here are the examples from Unicode TR39 [http://www.unicode.org/reports/tr39/] as valid Monte identifiers:

::"pаypаl"
::"toys-я-us"
::"1iνе"

None of these examples are valid bare identifiers in Monte.

Other Languages

Haskell has had Unicode identifiers since Haskell 98. Haskell support for
Unicode identifiers is detailed in the Haskell 98 Report Lexical Structure [https://www.haskell.org/onlinereport/lexemes.html].
Haskell accepts “pаypаl” as a bare identifier for names.

Python 3 added Unicode identifiers in PEP 3131 [https://www.python.org/dev/peps/pep-3131/]. Python 3 accepts “pаypаl”
as a bare identifier for names and attributes.

Parenthesized Sub-Expressions

Whenever an expression is syntactically contained within another expression,
it must be parenthesized, with the sole exception of common guard-exprs used
in patterns. This feature, explained in more detail in The Power of
Irrelevance [http://erights.org/data/irrelevance.html], improves readability by clearly distinguishing patterns from
expressions.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Practical Security II: The Mafia IRC Bot (WIP)

To demonstrate secure distributed programming in Monte, let’s take the
mafia game code developed earlier and make it
into an IRC bot.

The mafiabot.mt module begins by importing the
mafia module, an irc/client library, and the same modules for dealing
with entropy that we saw before:

	1
2
3
4
5
6

	import "mafia" =~ [=> makeMafia :DeepFrozen]
import "irc/client" =~ [=> makeIRCClient :DeepFrozen,
 => connectIRCClient :DeepFrozen]
import "lib/entropy/entropy" =~ [=> makeEntropy :DeepFrozen]
import "lib/entropy/pcg" =~ [=> makePCG :DeepFrozen]
exports (main)

The main entry point is provided with a number of powerful references as
named arguments:

	To seed our random number generator, we use currentRuntime to get a
source of true randomness, i.e. secure entropy.

	To give makeIRCService access to TCP/IP networking and event
scheduling, we use makeTPC4ClientEndPoint, getAddrInfo, and
Timer.

	192
193
194
195
196
197
198
199
200
201
202

	def main(argv,
 => makeTCP4ClientEndpoint,
 => Timer,
 => currentRuntime,
 => getAddrInfo) as DeepFrozen:
 def [_, seed] := currentRuntime.getCrypt().makeSecureEntropy().getEntropy()
 def rng := makeEntropy(makePCG(seed, 0))
 def [hostname] := argv
 def irc := makeIRCService(makeTCP4ClientEndpoint, getAddrInfo, Timer,
 hostname)
 irc.connect(makeMafiaBot(rng))

We can go ahead and run this code from a file by using the monte commandline
tool:

monte eval mafiabot.mt chat.freenode.net

Everything after the source filename is passed to main in argv as a list of
strings.

Networking

Unlike many other contemporary programming languages, Monte does not need an
additional networking library to provide solid primitive and high-level
networking operations. This is because Monte was designed to handle networking
as easily as any other kind of input or output.

	 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

	def makeIRCService(makeTCP4ClientEndpoint, getAddrInfo, Timer,
 hostname :Str) as DeepFrozen:
 def port := 6667 # TODO: named arg with default value

 return object IRC:
 to _printOn(out):
 out.print(`IRC($hostname)`)

 to connect(handler):
 def client := makeIRCClient(handler, Timer)

 def addrs := getAddrInfo(b`$hostname`, b``)
 return when (addrs) ->
 def choices := [
 for addr in (addrs)
 ? (addr.getFamily() == "INET" &&
 addr.getSocketType() == "stream") addr.getAddress()]
 def [address] + _ := choices
 def ep := makeTCP4ClientEndpoint(address, port)
 connectIRCClient(client, ep)
 client

Distributed Systems

Monte comes with builtin explicit parallelism suitable for scaling to
arbitrary numbers of processes or machines, and a well-defined concurrency
system that simplifies and streamlines the task of writing event-driven code.

Monte has one concurrent operation. Monte permits messages to be passed as
eventual sends. An eventually-sent message will be passed to the target
object at a later time, generating a promise which can have more messages
sent to it. Unlike similar mechanisms in Twisted, Node.js, etc., Monte builds
promises and eventual sending directly into the language and runtime, removing
the need for extraneous libraries.

Monte also has a single primitive for combining isolation and parallelism, the
vat. Each vat isolates a collection of objects from objects in
other vats. Each eventual send in a vat becomes a distinct turn of
execution, and vats execute concurrently with one another. During a turn, a
vat delivers a single queued send, which could result in more sends being
queued up for subsequent turns.

	30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

	def makeChannelVow(client, name) as DeepFrozen:
 "Return a vow because say() won't work until we have joined."
 def [wait, done] := Ref.promise()
 var waitingFor :NullOk[Set[Str]]:= null

 object chan:
 to _printOn(out):
 out.print(`<channel $name>`)
 to getName():
 return name
 to hasJoined():
 return client.hasJoined(name)
 to say(message) :Void:
 client.say(name, message)
 to getUsers(notReady):
 return client.getUsers(name, notReady)
 to waitFor(them :Set[Str]):
 waitingFor := them
 return wait
 to notify():
 if (waitingFor != null):
 escape oops:
 def present := chan.getUsers(oops).getKeys().asSet()
 traceln("notify present:", present, waitingFor,
 waitingFor - present)
 if ((waitingFor - present).size() == 0):
 waitingFor := null
 done.resolve(present)
 to tell(whom, what, notInChannel):
 if (chan.getUsers(notInChannel).contains(whom)):
 client.say(whom, what)
 else:
 notInChannel(`cannot tell $whom: not in $name`)
 to part(message):
 client.part(name, message)
 return when(chan.hasJoined()) ->
 chan

Principle of Least Authority

Straightforward object-oriented design results in each object having the least
authority it needs:

	makeIRCService provides the full range of IRC client behavior

	makeChannelVow provides access to one channel

	makeModerator encapsulates the play of one game

	makePlayer represents the role of one player in one game

	makeMafiaBot starts games on request, routes messages to the relevant
moderator during game play, and disposes of moderators when games end.

Even if one of these components is buggy or compromised, its ability to
corrupt the system is limited to using the capabilities in its static scope.

Contrast this with traditional identity-based systems, where programs execute
with all privileges granted to a user or role. In such a system, any
compromise lets the attacker do anything that the user could do. A simple game
such as solitaire executes with all authority necessary to corrupt,
exfiltrate, or ransom the user’s files.

With object capability discipline, when the time comes for a security
inspection, we do not have to consider the possibility that any compromise in
any part of our program leaves the whole system wide open in this way. Each
component in the system can be reviewed independently and auditing a system
for security becomes cost-effective to an extent that is infeasible with other
approaches [1].

	 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

	def makeModerator(playerNames :Set[Str], rng,
 chan :Near, mafiaChan) as DeepFrozen:
 def [=> game, => mafiosos] := makeMafia(playerNames, rng)
 var night0 := true

 def makePlayer(me :Str):
 return object player:
 to _printOn(out):
 out.print(`<player $me>`)
 to voteFor(nominee :Str):
 try:
 game.vote(me, nominee)
 catch _:
 # nominee is not (any longer) a player
 return
 chan.say(game.advance())

 def toPlayer := [for nick in (playerNames) nick => makePlayer(nick)]

 return object moderator:
 to _printOn(out):
 out.print(`<moderator in $chan>`)

 to begin():
 # Night 0
 chan.say(`$game`)
 when (mafiaChan) ->
 escape notHere:
 for maf in (mafiosos):
 chan.tell(
 maf, `You're a mafioso in $chan.`, notHere)
 chan.tell(
 maf, `Join $mafiaChan to meet the others.`, notHere)
 traceln("waiting for", mafiosos, "in", mafiaChan)
 when (mafiaChan.waitFor(mafiosos)) ->
 traceln("done waiting for", mafiosos)
 night0 := false
 # Morning of day 1...
 chan.say(game.advance())

 to said(who :Str, message :Str) :Bool:
 "Return true to contine, false if game over."
 mafiaChan.notify()
 traceln("notifying", mafiaChan)
 if (night0):
 return true
 if (message =~ `lynch @whom!`):
 escape notPlaying:
 def p := moderator.getPlayer(who, notPlaying)
 p.voteFor(whom)
 traceln("lynch", who, whom)

 if (game.getWinner() =~ winner ? (winner != null)):
 moderator.end()

 return game.getWinner() == null

 to getPlayer(name, notPlaying):
 return toPlayer.fetch(name, notPlaying)

 to end():
 chan.say(`$game`)
 chan.part("Good game!")
 mafiaChan.part("bye bye")

Note the way makeMafiaBot provides a secret channel for the mafiosos to
collude at night:

	133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189

	def makeMafiaBot(rng) as DeepFrozen:
 def nick := "mafiaBot"
 def chanMod := [].asMap().diverge()
 def keys := [].asMap().diverge()

 return object mafiaBot:
 to getNick():
 return nick

 to loggedIn(client):
 return null

 to privmsg(client, user, channel, message):
 # traceln("mafiaBot got", message, "on", channel, "from", user,
 # "channels", chanMod.getKeys())
 def who := user.getNick()

 if (message =~ `join @dest` &&
 channel == nick &&
 !keys.contains(dest)):
 mafiaBot.join(client, who, dest)
 else if (message == "start" &&
 !keys.contains(channel)):
 when(def chan := makeChannelVow(client, channel)) ->
 mafiaBot.startGame(client, chan, channel)
 else if (chanMod.snapshot() =~ [(channel) => m] | _):
 if (!m.said(who, message)):
 def chKey := keys[channel]
 chanMod.removeKey(channel)
 chanMod.removeKey(chKey)
 keys.removeKey(channel)
 keys.removeKey(chKey)
 traceln("removed", channel, chKey)

 to join(client, who :Str, channel :Str):
 when(client.hasJoined(channel)) ->
 client.say(channel, `Thank you for inviting me, $who.`)
 client.say(channel, `Say "start" to begin.`)

 to startGame(client, chan :Near, channel :Str):
 def secret := `$channel-${rng.nextInt(2 ** 32)}`
 def secretChan := makeChannelVow(client, secret)
 escape notReady:
 def users := chan.getUsers(notReady)
 def playerNames := [
 for name => _ in (users)
 ? (name != nick)
 # @chanop -> chanop
 (if (name =~ `@@@op`) { op } else { name })]
 traceln("players:", playerNames, users)

 def m := makeModerator(playerNames.asSet(), rng,
 chan, secretChan)
 chanMod[channel] := chanMod[secret] := m
 keys[channel] := secret
 keys[secret] := channel
 m.begin()

Notes

	[1]	As documented in the DarpaBrowser report [http://www.combex.com/papers/darpa-report/index.html]

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Ejectors & Escape Expressions

Ejectors can be hard to explain with words alone, so we will start with code:

42
escape ej { 42 }

42
escape ej { ej(42) }

null
escape ej { ej() }

What’s in a Name?

Ejectors are traditionally named ej, from the E programming language,
but other names are common too. k is a traditional name from Scheme
meaning “continuation”, referring to the technical definition of ejectors
as single-use delimited continuations. For catch clauses, the traditional
name problem (or p for short) is common.

An escape expression creates an ejector, which is an
ordinary-looking object, and then evaluates its body. Calling .run() on an
ejector will change the return value from the body’s return value to whatever
is passed, or null by default.

We can also optionally catch the value and manipulate it. However, any
catch clause will only be run if the ejector is called:

42
escape ej { 42 } catch p { 5 }

5
escape ej { ej() } catch p { 5 }

7
escape ej { ej(42) } catch p { p // 6 }

Ejector-based Control Flow

The first major use for ejectors is in implementing several common kinds of
control flow. By themselves, ejectors can be used to prematurely end or
‘short-circuit’ a computation; calling an ejector prevents any future
computation:

42, no exception
escape ej { ej(42); 5 // 0 }

Ejectors even work when called by other objects:

6
def f(x, ej):
 return ej(x) * 7
escape ej { f(6, ej) }

Conditional Definitions

0
escape ej {
 def x :Int exit ej := "five"
 x
} catch problem { 0 }

throw.eject

Often we might want to ensure that the object we are calling will actually
alter control flow. We will see many motivating examples shortly. In these
cases, we can use throw.eject/2 to ensure that we will not continue
computation:

if (weAreFinished):
 throw.eject(ej, "finished")
launchMissiles<-()

This is equivalent to ej("finished") but will only launch missiles
conditionally. We might imagine a simple implementation of this method:

def throwEject(ej, problem):
 ej(problem)
 throw(problem)

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Vats

Vats are Monte’s response to the vagaries of traditional
operating-system-supported threads of control. Vats extend a modicum of
parallelism and concurrency to Monte programs while removing the difficult
data races and lock management that threads classically require.

Quickstart

From an entrypoint, the currentVat named argument will refer to the “top”
or “first” vat:

▲> currentVat
Result: <vat(pa, immortal, 2 turns pending)>

Note

This vat is named “pa”, is “immortal”, which means that it will never
terminate computation abruptly, and has two turns of computation pending in
its turn queue. All of this diagnostic information is Typhon-specific and
may not be available in all implementations.

We can sprout a new vat at any time from an existing vat. The two vats will
be distinct:

▲> def newVat := currentVat.sprout("re")
Result: <vat(re, immortal, 0 turns pending)>
▲> newVat == currentVat
Result: false

We can also seed a vat with a computation. The computation must be DeepFrozen, but otherwise any object can be used as a seed. This example is a bit dry but shows off the possibilities:

▲> newVat
Result: <vat(re, immortal, 0 turns pending)>
▲> def seed() as DeepFrozen { traceln("Seeding!"); return fn x { traceln(`I was sent $x`) } }
Result: <seed>
▲> def seeded := newVat.seed(seed)
TRACE: From vat re
 ~ "Seeding!"
Result: <promise>
▲> seeded<-(42)
Result: <promise>
TRACE: From vat re
 ~ "I was sent 42"
▲> seeded<-(object popsicle as DeepFrozen {})
Result: <promise>
TRACE: From vat re
 ~ "I was sent <popsicle>"
▲> seeded<-(object uncopyable {})
Result: <promise>
TRACE: From vat re
 ~ "I was sent <promise>"

Seeding produces a far reference to the result of the seed’s call, which might
not be itself DeepFrozen. To interact with this reference, send messages to
it. Note how sending popsicle caused the seeded object to receive a near
(and thus printable) reference to it; this is because DeepFrozen objects
travel between near vats directly.

What’s in a Vat?

The Browser Analogy

A vat, by analogy, is like a tab in a modern Web browser. It contains some
objects, which may have near references between themselves, and a queue of
pending messages to deliver to some of those objects. A browser tab might have
some JavaScript to run; a vat might choose to take a turn, delivering a
message to an object within the vat and letting the object pass any subsequent
messages to its referents. Vats can be managed just like browser tabs, with
vats being spawned and destroyed according to the whims of anybody with
references to those vats. Indeed, vats can be managed just like any other
object, and vats are correct with regards to capability security.

Vats, Formally and Informally

This is all confusing. What, precisely, is a vat?

Formally, a vat is just a container of objects. Vats have a turn queue, a
list of messages yet to be delivered to objects within the vat, along with an
optional resolver for each message. Vats compute by repeatedly delivering
individual messages in the turn queue; each delivery is called a turn.
Turns are taken in the order that they are enqueued, FIFO.

If a resolver is provided for a turn, then the resolver is resolved with the
result of delivery. If delivery causes an exception, then the vat catches the
exception, sealing it, and smashes the resolver with the exception instead. In
either case, a membrane is applied to all objects which come into or leave
the vat, including the result of delivery; this membrane replaces all
non-DeepFrozen values with far references.

Informally, a vat isolates an object graph. Objects inside the vat can only
refer to things outside the vat by far reference; there is no way to perform
an immediate call across a vat boundary.

Whenever an object sends a message into a vat, the vat prepares to take a
turn, whence the message will be delivered to the correct object inside
the vat. Sends out of the vat produce promises for references to results of
those sends, and the promises have normal error-handling behavior; if you send
a message to another vat, and an exception happens in that other vat, then
you’ll get a broken promise.

Vat Interface

Vats have two methods, .sprout/1 and .seed/1.

Why is .sprout/1 synchronous?

A common theme in Monte’s vat design is implicit and convenient
asynchronous computation. So why is vat sprouting synchronous? Well,
Monte’s guiding philosophy is to never block. But producing a vat is a
non-blocking operation, since a sprouted vat starts out empty, and vats are
isolated, so the new vat cannot affect the current vat’s current turn.

In general, vats queue up work to do later. Since adding things to turn
queues is non-blocking, vats return promises for the work to be done later.

However, this isn’t the whole story. It’s true that vats aren’t totally
empty; they generally acquire a safe scope as a result of pass-by-copy
semantics. A Monte implementation which supports many small vats is
expected to implement a copy-on-write semantics for objects in vats. This
is one of the compelling use cases for DeepFrozen; a DeepFrozen
object graph, like the safe scope or a vat seed, can live on a shared heap
and be zero-copy shared between all vats.

To sprout a new vat, call vat.sprout(name :Str) :Any, which returns a new vat.
The new vat starts out empty, with an empty turn queue.

To put computation into a vat, call vat.seed(seed :DeepFrozen) :Vow, which
does several things. First, the seeded vat copies the seed and its object
graph into itself, isolating them from the calling vat. Then, the vat adds
seed<-() to its turn queue, and returns a promise for that pending turn.

FAQ

Vats are one of the more confusing parts of Monte, and some questions occur
frequently.

So, no threads?

Correct. Monte does not have any way to block on I/O, so there is no need for
threads at the application level.

Are vats parallel or concurrent?

It is implementation-dependent. Currently, Typhon is designed for an M:N
threading model where up to M vats may take N turns in parallel on N distinct
threads. However, Typhon currently only takes 1 turn in parallel. Other
implementations may choose to do different parallelism models.

A key insight with vats is that a computation that is broken up into
concurrent pieces on distinct vats can be transformed into parallel
execution with maximal parallelism just by altering the underlying
interpreter. The correctness of the computation does not change. This concept
is from the actor model [https://en.wikipedia.org/wiki/Actor_model], which forms the theoretical basis for vats.

How do I perform parallel computations today?

Today, using Typhon, use the makeProcess entrypoint capability to run
multiple processes to get node-level parallelism. We recognize that this is a
very unsatisfactory solution for all involved, and we plan to eventually
implement automatic parallel vats in Typhon.

For the future… Try to structure your code into modules; Typhon may
parallelize module loading in the future. Also try to structure your code into
vats, since we expect most interpreters to eventually implement parallel vat
execution.

How do I perform concurrent operations?

Spawn more vats. All vats are concurrently turning. A vat will only ever lie
fallow when it has no turns queued.

Why should we ever make synchronous calls?

In a nutshell, always make calls unless you intentionally want to create an
asynchronous “edge” where your control flow stops, only to resume later. And
also when you’re working with promises and far references, since you can’t
make calls on those values!

Synchronous calls are very common. There are many kind of objects on which
synchronous calls work, because they are near references. For example, all
literals are near, and so is all operator syntax:

def lue := 6 * 7

There are many objects in the safe scope which are perfectly fine to use
with either calls or sends.

Here are some handy idioms. To check whether a value is near:

Ref.isNear(value)

A variant that might be more useful in the future:

value =~ n :Near

No, you misunderstood; why doesn’t Monte have only eventual sends?

Ah! There are several reasons, to be taken together as a measure of how
difficult such a system would be to work with.

Some edges of Monte’s interaction with the external world are much
better-modeled with calls than sends. A chauvanist argument can be made about
how arithmetic should at least occasionally be lowered to a sequence of CPU
instructions. However, we have found that a trickier and more important
problem is dealing with object graph recursion, since Monte object graphs
already can be quite treacherous. In Monte, object graphs can be cyclical and
can hold delayed or eventual values. This poses a serious challenge, since
sends for traversal can end up interleaved with sends which alter the
structure or contents of the graph being traversed. Concretely:

	Equality testing: x == y is a question that can, if they are
Transparent, traverse the full transitive closures of both x and
y.

	Serialization: Pretty-printing, databases, RPC, DOT files, and all other
serialization must traverse the full object graph as-is in order to not
write out corrupted snapshots.

	Hashing: Implementations may choose to define internal object hashes to
speed up sets and maps. Application-level probabalistic data structures
also often perform hashing. Like serialization, but just different enough
to justify three sentences and a bullet point.

	Garbage collection: GCs in the current state of the art are increasingly
concurrent, running alongside mutators or only performing collections on
per-mutator heaps. Nonetheless, when the GC would like to perform a
collection, it often does need to traverse the object graph without
worrying that an object will not race its own impending deletion with an
incoming message delivery. This could be dealt with by requiring all sends
to go through the vat turn queue, and pausing the vat in-between turns to
collect. But then speed concerns pop up, and really this is a very deep
rabbit hole…

So, for these reasons, we distinguish promises at the edges of our object
graphs, and we implement these traversals using calls. As a practical
consequence, uncalls are calls and must return near values.
This also influenced the design of printers, which serialize by
pretty-printing, and vats, which could optionally be implemented with per-vat
GC.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Brands

The brand pattern divides the capability of establishing a secure
communication channel into two facets, called a sealer and unsealer.

def [ana, cata] := makeBrandPair("finney")
def box := ana.seal(42)
cata.unseal(box)

The resulting channel has the following properties:

	Authentic and Unforgeable: Boxes created by the sealer cannot be
unsealed by any object other than the unsealer; to the contrapositive, any
object that the unsealer unseals must have been sealed with the
corresponding sealer.

	Asynchronous: Boxes created by the sealer can be unwrapped on any
subsequent turn.

	Untyped: Any object can be transmitted along the channel.

Up & Down

To create a new brand, call makeBrandPair(nickname :Str). The nickname is
purely cosmetic, to aid readability and debugging; it does not have to be
unique.

Make a sealer named `ana` and an unsealer named `cata`.
def [ana, cata] := makeBrandPair("finney")

The brand itself is an opaque object which proves that a sealer and unsealer
are paired with each other. It is accessible via the .getBrand/0 method:

Hey, these two are a pair!
ana.getBrand() == cata.getBrand() # should be true

Brands are usable as map keys:

def brandMap := [ana.getBrand() => [ana, cata]]
brandMap[cata.getBrand()] # should be `[ana, cata]`

The fundamental operation of a sealer is to .seal/1 an object into a box:

def box := ana.seal(42)
box # <box sealed by finney>

The unsealer, unsurprisingly, provides .unseal/1, which opens a box and
returns its contents:

cata.unseal(box) # should be 42

The box is opaque and yields only one useful method, .getBrand/0, which
can be useful for determining which unsealer might be the correct one to use
for unsealing:

brandMap[box.getBrand()] # should be `[ana, cata]`

Note

The implementation of makeBrandPair in the Typhon prelude has other
methods defined on boxes, but they do not affect the security guarantees
of the implementation.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Promises

Promises are a great way of dealing with eventual values, allowing one to
compose and synchronise processes that depend on values that are computed
asynchronously.

Quil [http://robotlolita.me/2015/11/15/how-do-promises-work.html]

Monte provides user-controllable transparent proxy objects, promises, for
highly customized asynchronous workflows.

Basic Promises

The basic usage of promises is to create a pair of objects, called the promise
and the resolver:

Traditionally, promises are named "p" and resolvers are named "r".
def [p, r] := Ref.promise()

The Ref object in the safe scope can produce promise/resolver pairs. It
also has many utility methods for manipulating promises.

A promise is a transparent proxy; it does not expose its own behavior via
message passing, but instead forwards all received messages to another object.
Instead, the resolver and Ref object coordinate to control the behavior of
the promise:

This next line will throw an exception; the promise isn't yet resolved,
so it can't deliver this immediate call.
p.add(5)
We can resolve the promise, at which point the promise will forward
immediate calls to its resolved value.
r.resolve(7)
And now we succeed!
p.add(12)

Promises do not just resolve; they can also break. A broken promise
will never resolve, but instead refers to a problem, which is an object
(often a string) describing a failure.

Here we create a promise...
def [p, r] := Ref.promise()
And now we break the promise!
r.smash(`Promise was broken, sorry!`)
Referencing or using the promise will throw...
p.add(12)
...but some operations are still safe.
Ref.optProblem(p)

When-expressions and Delayed Actions

Promises are commonly used to perform delayed actions which will execute at
some later time.

To queue an action, use an eventual send:

This message will be delivered on some later turn.
def q := p<-add(5)

What is q? q is another promise. It will be resolved automatically,
sometime after p resolves, with the value that p returned from its
sent message; in this case, if p was 7, then q would be 12.

Suppose that the action that we want to enqueue is more complex than a single
passed message. In that case, Monte provides the when-expression:

When the promise resolves, notify the user and start the next section.
when (p) ->
 traceln(`Attention user: The promise $p has resolved.`)
 # This funny-looking syntax means to use the default verb of "run",
 # just like with a normal call.
 nextSection<-()
catch problem:
 # Something went wrong. Better notify the user.
 traceln(`Attention user: There was a problem: $problem`)
 nextSection<-failed()

The when-expression consists of a when-block and an optional catch-block. When
the promise given to the when-expression becomes resolved, the when-block will
run on its own turn; if the promise is broken, then the catch-block will run
instead.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Streamcaps

Stream capabilities (“streamcaps”) are objects which implement a protocol for
streaming data. Monte directly supports the streamcap protocol with unsafe
objects and standard library tooling. The protocol is designed to be simple to
implement and easy to reason about.

Quick Overview

There are three interfaces to the streamcap protocol, called sources,
sinks, and pumps. Objects may only implement one interface at a time.
Sources generate data, sinks consume data, and pumps transform data.

The simplest usage is delivering a single datum from a source to a sink:

source(sink)

We can enqueue an action to execute after delivery has succeeded:

when (source(sink)) -> { action() }

We can also handle errors in case of failed delivery:

when (source(sink)) -> { action() } catch problem { rescue(problem) }

Hand-delivering data to a sink is easy:

for datum in (data) { sink(datum) }

To receive data from a source, write an inline sink object:

object sink:
 to run(datum):
 return process<-(datum)
 to complete():
 success()
 to abort(problem):
 throw(problem)
source(sink)

In the standard library, the “lib/streams” module has tools for manipulating
streamcaps. To deliver all (zero or more) data from a source to a sink, we can
use the flow helper:

import "lib/streams" =~ [=> flow]
when (flow(source, sink)) -> { done() }

Object Protocol

Pumps

Pumps are transformers of data. A pump does not participate in any sort of
flow control, but merely operates on data passing through.

The sole method of pumps is run/1, which takes a single datum and returns
a list of zero or more data.

var acc :Int := 0
def accumulatingPump(i :Int) :List[Int] as Pump:
 "Accumulate a sum of integers."
 acc += i
 return [acc]

Warning

Unlike the rest of the streamcap protocol, pumps must currently be
synchronous; they must return List. In the future, pumps should be
able to return Vow[List].

Sinks

Sinks are data consumers. A sink receives data and returns asynchronous
signals indicating the fate of each received datum.

Sinks have three methods: run/1, complete/0, and abort/1.
run/1 is for delivering data to the sink, and returns a Vow[Void]
which succeeds when delivery completes, or breaks when delivery fails:

when (sink(datum)) ->
 traceln("Delivery complete!")
catch problem:
 traceln("Delivery failed:")
 traceln.exception(problem)

The complete/0 and abort/1 methods inform the sink that no more data
will be delivered. complete/0 is for successful termination, and
abort/1 is for failed termination, with a problem. After a sink has
terminated, further deliveries may behave in arbitrary ways. In general, sinks
will usually raise exceptions or return broken promises if data is delivered
after termination.

Sink Semantics

What does “delivery” really mean? A sink could decide that data is delivered
when it is enqueued in an internal buffer, or sent onward to a remote
resource. A sink should not indicate that delivery has succeeded until the
sink is ready to receive more data, in order to provide implicit backpressure.

Aborting a sink may alter the behavior of the sink with regards to enqueued or
processing data. In particular, TCP connections and streaming file handles may
close uncleanly after being aborted. Sinks are allowed to have this behavior
because sinks are only required to flush upon being cleanly terminated.

Sources

Sources are data emitters. A source receives sinks and delivers data to those
sinks.

Sources only have one method, run/1, which takes a sink:

source(sink)

Just like run/1 of sinks, sources return a Vow[Void] indicating
whether the sink was called successfully:

when (source(sink)) -> { success() }

A typical source will return the sink’s delivery notification directly:

def cat():
 return "meow"

def catSource(sink) as Source:
 return sink(cat)

Patterns

Flow

The most common pattern for streamcaps is flowing all data from a source to
a sink. Use the flow helper from “lib/streams” to make this easy. Here’s a
complete TCP echo server:

import "lib/streams" =~ [=> flow :DeepFrozen]
exports (main)

def main([via (_makeInt) port], => makeTCP4ServerEndpoint) as DeepFrozen:
 def handler(source, sink):
 return flow(source, sink)
 def ep := makeTCP4ServerEndpoint(port)
 ep.listenStream(handler)
 return 0

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Working with Packages

The source code for the Mafia game and IRC bot are in their own git repository,
https://github.com/monte-language/mt-mafia . Let’s download and run it:

git clone https://github.com/monte-language/mt-mafia
cd mt-mafia
monte test mafiabot
monte run mafiabot chat.freenode.net

This should result in the bot connecting to IRC and being ready to receive commands.

Monte packages are defined by a file in the project root directory named
mt.json. This file includes package metadata and a list of dependencies. Previous to the first run, a Nix package is built from the project and its dependencies (currently these can either be from a local directory or a Git repository). The monte test command collects all unit tests in the project and starts the test runner, whereas monte run invokes the main function in mafiabot.mt. (The build step can be invoked directly using monte build.)

The format for mt.json is a JSON file with the following keys:

	name

	A name for the package.

	paths

	A list of paths relative to the project root that contain Monte code. ”.” is acceptable if it’s in the root.

	entrypoint

	The name of the module with the main function to invoke. Optional.

	dependencies

	An object with package names as keys and dependency descriptions as values. Dependency descriptions are objects with url keys naming a location to fetch the dependency from, and optionally type (either “git” or “local” – defaults to git if omitted) and commit (describing the git revision to fetch) keys.

Building the Nix package involves first creating an mt-lock.json file with a full list of all dependencies and their versions. You may keep this file to pin your builds to specific versions or get rid of it to re-run the dependency discovery process.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Modules

Modules are units of compilation. They are single files of Monte source code
which can be compiled on a per-file basis. Modules are relatively
self-contained, declaring both their imported and exported names with special
module syntax.

Why Modules?

Some languages don’t have modules. Instead, they have inclusion, where
source code is literally or semantically transposed from one source file into
another. Our primary goal in providing modules is encapsulation, allowing
modules to keep some of their design and layout private.

Some other languages have modules that alter global state. These languages
typically evaluate when importing, applying each module’s code to the global
state. Our module system abstracts this behavior, parameterizing inputs to
modules and allowing for isolated modules that can be evaluated multiple times
without side effects.

Module Declaration Syntax

Module files start with a module header, which is a declaration of the
form:

import "namespace/name" =~ [=> first, => second]
exports (maker, main)

with zero or more import lines and exactly one exports line.

Imports

Each import line declares that the module depends on a named
dependency, which is known inside the module by its pet name. In
this example, the pet name is “namespace/name”. The dependency is matched
against the pattern on the right-hand side of the =~ operator, called the
import pattern, and the resulting names are available for use
throughout the body of the module.

By convention, pet names have two pieces: The module namespace and the
module’s name.

Todo

When new packaging efforts are ready, update this to mention that module
namespaces are either the stdlib or a package name.

As a convenience, if the import pattern is a map-pattern, then an automatic
ignore-pattern tail will be attached by the expander. This makes forward
compatibility easier, as unknown names in imported modules will not throw
exceptions.

Exports

A single exports line follows the import declarations. This line declares a
list of nouns which will be exported from the module’s scope. Exported names
will be available to other modules which import this module.

All exports must pass DeepFrozen:

exports (f)

def f() as DeepFrozen:
 return 42

Which means that exports can only depend on DeepFrozen imports:

import "unittest" =~ [=> unittest :Any] # not DeepFrozen!
exports (f)

def f() as DeepFrozen: # Exception: `unittest` in the scope of `f` isn't DeepFrozen!
 return unittest

module_header

imports

StrExpr

=~

pattern

exports

exports

exports

(

name

,

)

Conventions

Each import pattern, by convention, should be a named parameter mapping a
Str key to a noun. This mirrors exported names, so that a name exported
from one module can be imported by another easily.

Imports can have guards on them:

import "fries/victor" =~ [=> diamonds :DeepFrozen]
exports (freezeRay, oneLiners)

In fact, by default, imported names are automatically guarded with
DeepFrozen. This allows those imported names to be used in exported
objects.

Module Syntax Expansion

Kernel-Monte and Expansion

The Monte language as seen by the programmer has the rich set of
syntactic conveniences expected of a modern scripting language.
However, to avoid complexity that so often hampers security, the
semantics of Monte is primarily defined over a
smaller language called Kernel-Monte. The rest of Monte,
called Full-Monte, is defined by syntactic expansion
to this subset. For example:

>>> m`1 + 1`.expand()
m`1.add(1)`

m is a quasiparser that parses
Monte source code. It is part of the runtime Monte compiler.

Under the hood, modules are compiled to be singleton objects which accept
a mapping of imported objects, and return a mapping of exported names.

Entrypoints

The export name “main”, when present, denotes the entrypoint of
the module. The entrypoint should take named parameters corresponding
to unsafe capabilities from the unsafe scope, and return an Int or
a promise for an Int.

exports (main)

def main(_argv, => currentProcess) :Int as DeepFrozen:
 traceln(`Current process: $currentProcess`)
 return 0

Unit Testing and Benchmarking

The package loader provides a few Miranda import pet names to all modules.

	“unittest”

	A unit test collector. It is not DeepFrozen, so unit tests are
confined to their module:

import "unittest" =~ [=> unittest :Any]

	“bench”

	A benchmark collector. It is not DeepFrozen:

import "bench" =~ [=> bench :Any]

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Block Expressions

blockExpr

FunctionExpr

ObjectExpr

bind

def

InterfaceExpr

IfExpr

ForExpr

WhileExpr

SwitchExpr

EscapeExpr

TryExpr

WhenExpr

LambdaExpr

MetaExpr

block

{

sequence

pass

}

Nested Block

HideExpr

{

expr

;

}

The if Expression

IfExpr

if

(

expr

)

block

else

IfExpr

block

>>> if (2 < 3) { "expected" } else { "unexpected" }
"expected"

>>> def x := 5
... def y := 10
... if (x < y) { "less" } else if (x > y) { "greater" } else { "neither" }
"less"

The switch Expression

SwitchExpr

switch

(

expr

)

{

matchers

}

matchers

match

pattern

block

>>> def state := "day"
...
... switch (state) {
... match =="day" {"night"}
... match =="night" {"day"}
... }
"night"

Default matcher

Switch expressions expand to a tree of possibilities, with each matcher being
tried in turn until one matches. If none of them match, then an exception is
thrown with a short description of the failing specimen.

To override this behavior, specify a matcher that cannot fail. Examples of
patterns that cannot fail include final and var patterns without guards, and
ignore patterns:

switch (specimen):
 match ==x:
 traceln(`$specimen was just like $x`)
 match i :Int:
 traceln(`$i is an Int`)
 match _:
 traceln(`Default matcher!`)

In this example, since the final matcher always succeeds, the default behavior
of throwing an exception is effectively overridden.

When Monte expands switch expressions into Kernel-Monte, the
entire expression becomes a long series of if expressions. The final
else throws an exception using the _switchFailed helper object. If the
penultimate if test cannot fail, then the final else is unreachable,
and it will be pruned by the optimizer during compilation.

Switch Expansion

>>> m`switch (specimen) { match pat1 { expr1 } }`.expand()
m`{ def specimen_1 := specimen; escape ej_2 { def pat1 exit ej_2 := specimen_1; expr1 } catch failure_3 { _switchFailed.run(specimen_1, failure_3) } }`

The try Expression

TryExpr

try

block

catchers

catchers

catch

pattern

block

finally

block

>>> try { 3 < "3" } catch _ { "ouch! no order defined" }
"ouch! no order defined"

Todo

expansion of various forms of try

The escape Expression

EscapeExpr

escape

pattern

blockCatch

If hatch is called during expr, complete with hatch‘s argument:

>>> escape hatch { def x :Int exit hatch := 1.0 }
"1.000000 does not conform to Int"

The while Loop

WhileExpr

while

(

expr

)

blockCatch

while (test) { body }
while (test) { body } catch p { catchblock }

Todo

while doctests, expansion

The for Loops

ForExpr

for

pattern

=>

pattern

in

comp

blockCatch

blockCatch

block

catch

pattern

block

for valuePatt in iterableExpression { body }
for keyPatt => valuePatt in iterableExpression { body }
for valuePatt in iterableExpression { body } catch p { catchblock }

Todo

for doctests, expansion

The when Expression

WhenExpr

when

(

expr

,

)

->

block

catchers

when (x, y) -> { whenblock } catch p { catchblock }

The fn Expression

LambdaExpr

fn

pattern

,

block

/** docstring */ fn p, q { body }

Todo

doctest /** docstring */

Defining Objects

def

def

bind

name

guard

name

objectFunction@@

assign

assign

bind

bind

name

guard

objectExpr

ObjectExpr

object

bind

name

_

name

objectExpr

objectExpr

extends

order

auditors

{

objectScript

;

}

objectScript

doco

pass

@@meth

pass

matchers

matchers

match

pattern

block

doco

.String.

FunctionExpr

def

.

verb

(

pattern

,

)

block

object foo {
 "A docstring for this object."

 to someMethod(p, q) {
 return methBody
 }

 method rawMethod(p, q) {
 methBody
 }

 match [verb, args, namedArgs] {
 matcherBody
 }
}
object foo as someAuditor { ... }
object foo implements firstAuditor, secondAuditor { ... }
object foo extends baz { ... }

object foo as someAuditor implements firstAuditor, secondAuditor extends baz:
 "A docstring."

def fun(p, q) :optionalGuard { body }

Defining Interfaces

InterfaceExpr

interface

namePatt

guards

pattern

extends

order

,

implements_@@

msgs@@

Todo

interface syntax diagram @@s

interface Foo { to interfaceMethod(p, q) { ... } }
interface Foo guards FooStamp { ... }

Todo

various items marked “@@” in railroad diagrams.
Also, finish re-organizing them around precedence (use
haskell codegen to test).

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Guards and Data

Guards are used constrain pattern bindings and method return values:

>>> def x :Int := 1
... x
1

>>> def halves(s) :Pair[Str, Str]:
... return s.split(",")
... halves("A,B")
["A", "B"]

>>> def y := -5
... escape oops {
... def x :(Int > 0) exit oops := y
... }
"-5 is not in <(0, ∞) Int region>"

guardOpt

:

guard

guard

IDENTIFIER

[

expr

,

]

IDENTIFIER

(

expr

)

Basic Data Guards

Guards for basic data include the following; no object passes more
than one of these guards:

	Void for null, the only value of its type

	Bool for the Boolean values true and false

	Int for integers

	Double for IEEE 754 floating-point numbers

	Char for characters, each with its own Unicode code point

	Str for strings of characters

	Bytes for sequences of bytes

These guards have useful features for more precisely asserting that the
guarded values are within certain ranges. The Char, Double, Int,
and Str guards support subranges of values via comparison expressions:

>>> def x :('a'..'z' | 'A'..'Z') := 'c'
... def y :(Double >= 4.2) := 7.0
... def z :(Int < 5) := 3
... [x, y, z]
['c', 7.0, 3]

Note

See Literals for syntax details for IntExpr, DoubleExpr,
CharExpr, and StrExpr.

Data Structure Guards

We also have guards for basic data structures:

	List for lists of objects

	Map for maps from keys to values

	Set for sets

These guards can be specialized on subguards on their elements:

>>> def ints :List[Int] := [1, 2, 4, 6, 8]
... def setOfUppercaseChars :Set['A'..'Z'] := ['A', 'C', 'E', 'D', 'E', 'C', 'A', 'D', 'E'].asSet()
... def scores :Map[Str, Int] := ["Alice" => 10, "Bob" => 5]
...
... [ints.contains(4), setOfUppercaseChars.contains('B'), scores.contains("Bob")]
[true, false, true]

Other Builtin Guards

Some other builtin guards are worth mentioning:

	Any is a guard that accepts anything.

	NullOk accepts null. Specializing it creates a guard that accepts
null or whatever the subguard accepts.

	Same must be specialized, returning a guard which only accepts values
that are == to the value on which it was specialized.

	Near test that an object is in the same vat and hence available for
synchronous calls

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Primitive Expressions

prim

(

expr

)

LiteralExpr

quasiliteral

NounExpr

HideExpr

MapComprehensionExpr

ListComprehensionExpr

ListExpr

MapExpr

expr

assign

continue

break

return

(

)

;

blockExpr

Parentheses, braces, and square brackets set off primitive expressions.

Parentheses override normal precedence rules:

>>> 4 + 2 * 3
10
>>> (4 + 2) * 3
18

Noun

NounExpr

name

name

IDENTIFIER

::

stringLiteral

A noun is a reference to a final or variable slot:

>>> Int
Int

>>> _equalizer
_equalizer

Any string literal prefixed by :: can be used as an identifier:

>>> { def ::"hello, world" := 1; ::"hello, world" }
1

Literal Expression

LiteralExpr

StrExpr

IntExpr

DoubleExpr

CharExpr

Quasi-Literal Expression

quasiliteral

IDENTIFIER

`

QUASI_TEXT

DOLLAR_IDENT

${

expr

}

`

See also

quasiliteral,

List Expression

ListExpr

[

expr

,

]

comprehension

pattern

in

iter

expr

pattern

=>

pattern

in

iter

expr

=>

expr

iter

order

if

comp

Among Monte’s collection types, the list is a very common type. Lists are
heterogenous ordered unsorted collections with sequencing and indexing, and
have the performance characteristics of arrays in C, vectors in C++, or lists
in Python:

>>> ['I', "love", "Monte", 42, 0.5][3]
42

A list expression evaluates to a ConstList:

▲> { def l := ['I', "love", "Monte", 42, 0.5]; l[3] := 0 }
...
Message refused: ([I, love, Monte, 42, 0.500000], Atom(put/2), [3, 0])

Use diverge and snapshot to go from ConstList to mutable
FlexList and back:

>>> { def l := ['I', "love", "Monte", 42, 0.5].diverge(); l[3] := 0 }
0

See also

comprehension

Expansion:

>>> m`[]`.expand()
m`_makeList.run()`

Map Expression

MapExpr

[

mapItem

,

]

mapItem

expr

=>

expr

=>

SlotExpr

BindingExpr

NounExpr

Monte uses the “fat arrow”, => for map syntax:

>>> { def m := ["roses" => "red", "violets" => "blue"]; m["roses"] }
"red"

Like list expressions, a map expressions evaluates to an immutable
data structures, a ConstMap:

▲> { def m := ["roses" => "red", "violets" => "blue"]; m["roses"] := 3 }
...
Message refused: ([roses => red, violets => blue], Atom(put/2), ["roses", 3])

Use diverge and snapshot similarly:

>>> { def m := ["roses" => "red", "violets" => "blue"].diverge(); m["roses"] := 3 }
3

Warning

Maps in monte are ordered:

>>> ["a" => 1, "b" => 2] == ["b" => 2, "a" => 1]
false

To compare without regard to order, use sortKeys:

>>> ["a" => 1, "b" => 2].sortKeys() == ["b" => 2, "a" => 1].sortKeys()
true

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Collections

Monte has three builtin types of collections, each of which come in “const”
(immutable) and “flex” (mutable) flavors.

Sets

Monte’s sets are ordered containers with the standard assortment of
set-theoretic tools, like membership testing, iteration, union, and
intersection. Members are stored based on the sameness test; two members
overlap if, and only if, they are the same.

Sets support syntactic comparison using the <=> and related operators. The
comparison takes the form of a subset test. Two sets s and t are
equivalent, s <=> t, if, and only if, they contain the same members and are
the same size.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Operators

Corporate accounts payable, Nina speaking! Just a moment!

Nina, corporate accounts payable, Office Space

The expression subset of the Monte grammar is presented here in
operator precedence order, meaning that later constructs bind tighter
than earlier constructs. For example, expr “+” expr is presented
before expr “*” expr, so * binds tighter than +. Therefore,
a + b * c + d is equivalent to a + (b * c) + d. All the
constructs in presented in the same section have the same precedence.

Monte has a rich set of operators above and beyond those in Kernel-Monte. All
operators are overloadable, but overloading follows a very simple set of
rules: Operators expand to message passing, and the message is generally
passed to the left-hand operand, except for a few cases where the message is
passed to a helper object which implements the operation. In object
capability shorthand, we are asking the object on the left what it thinks of
the object on the right.

There are some special rules about the behavior of the basic operators
because of E’s distributed security.

Todo

special operator rules because of security

Sequence

sequence

blockExpr

expr

;

A sequence expressions evaluates to the value of its last item:

>>> { 4; "x"; "y" }
"y"

Assignment and Definition

assign

def

pattern

exit

order

:=

assign

VarPatt

BindPatt

:=

assign

lval

:=

assign

VerbAssignExpr

order

lval

order

[

expr

,

]

name

Assignment is right associative. The list update on the right happens
before the definition on the left:

>>> def color := ["red", "green", "blue"].diverge()
... def c := color[1] := "yellow"
... c
"yellow"

Indexed Update Expansion

An indexed update expands to a call to put:

>>> m`x[i] := 1`.expand()
m`x.put(i, def ares_1 := 1); ares_1`

Augmented Assignment Expansion

VerbAssignExpr

lval

VERB_ASSIGN

assign

All binary operators which pass a message to the left-hand operand can be used
as augmented assignment operators. For example, augmented addition is legal:

>>> { var x := "augmenting "; x += "addition!"; x }
"augmenting addition!"

Behind the scenes, the compiler transforms augmented operators:

>>> m`x += "addition!"`.expand()
m`x := x.add("addition!")`

Monte permits this augmented construction for any verb, not just those used by
operators. For example, the with verb of lists can be used to
incrementally build a list:

>>> { var l := []; for i in (1..10) { l with= (i) }; l }
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

And even non-unary messages can get in on the fun, with a properly placed pair
of parentheses:

>>> { var x := 7; x modPow= (129, 3) }
1

Todo

VERB_ASSIGN lexical details

Assignment operators

>>> var x := 5; [x += 2, x -= 1, x *= 2, x **= 3]
[7, 6, 12, 1728]
>>> var x := 50; [x //= 3, x %= 7, x /= 4]
[16, 2, 0.500000]
>>> var x := 5; [x ^= 3, x |= 15, x &= 7, x <<= 3, x >>= 2]
[6, 15, 7, 56, 14]

Conditional-Or

logical_or

logical_and

||

logical_or

Monte uses C syntax for the basic logical operators:

>>> false || true
true

Evaluates left to right until it finds a true condition.

>>> {((1 =~ x) || (2 =~ x)); x}
1
>>> {((1 =~ [x, y]) || (2 =~ x)); x}
2

Conditional-And

logical_and

comp

&&

logical_and

Logical Expansion

Boolean conditionals expand to if expressions:

>>> m`a || b`.expand()
m`if (a) { true } else if (b) { true } else { false }`

>>> m`a && b`.expand()
m`if (a) { if (b) { true } else { false } } else { false }`

Comparisons and Bitwise/Logical Operators

comp

order

=~

!~

==

!=

&!

^

&

|

comp

order

order

CompareExpr

RangeExpr

BinaryExpr

prefix

These are non-associative: x == y == z is a syntax error.

>>> false == true
false

>>> false != true
true

You can compare with a pattern and use the resulting bindings:

>>> [1, "x"] =~ [_ :Int, _ :Str]
true

>>> [1, 2] =~ [a, b]; b
2

>>> "<p>" =~ `<@tag>`; tag
"p"

>>> "<p>" !~ `</@tag>`
true

Comparison is more strict than you might expect:

>>> 3 == "3"
false

>>> 1 + 1 == 2.0
false

We also have negated implication operator:

>>> true &! false
true

Boolean Comparisons (non-associative):

>>> false & true
false

>>> false | true
true

>>> false ^ true
true

Comparison Expansion

Comparisons expand to use of a helper object:

::

>>> m`x == y`.expand()
m`_equalizer.sameEver(x, y)`
>>> m`x != y`.expand()
m`_equalizer.sameEver(x, y).not()`

>>> m`"value" =~ pattern`.expand()
m`def sp_1 := "value"; def [ok_2, &&pattern] := escape fail_3 { def pattern exit fail_3 := sp_1; _makeList.run(true, &&pattern) } catch problem_4 { def via (_slotToBinding) &&broken_5 := Ref.broken(problem_4); _makeList.run(false, &&broken_5) }; ok_2`
>>> m`"value" !~ pattern`.expand()
m`(def sp_1 := "value"; def [ok_2, &&pattern] := escape fail_3 { def pattern exit fail_3 := sp_1; _makeList.run(true, &&pattern) } catch problem_4 { def via (_slotToBinding) &&broken_5 := Ref.broken(problem_4); _makeList.run(false, &&broken_5) }; ok_2).not()`

>>> m`x ^ y`.expand()
m`x.xor(y)`
>>> m`x & y`.expand()
m`x.and(y)`
>>> m`x | y`.expand()
m`x.or(y)`
>>> m`x &! y`.expand()
m`x.butNot(y)`

Partial Ordering

CompareExpr

prefix

>

<

>=

<=

<=>

order

Monte has the usual ordering operators:

>>> 3 < 2
false
>>> 3 > 2
true
>>> 3 < 3
false
>>> 3 <= 3
true

They are non-associative and only partial:

>>> try { 3 < "3" } catch _ { "ouch! no order defined" }
"ouch! no order defined"

Use <=> aka asBigAs to compare magnitudes:

>>> 2.0 <=> 1 + 1
true

>>> 2 + 1 <=> 3.0
true

Ordering Expansion

Ordering operators expand to use of a helper object:

>>> m`3 < 2`.expand()
m`_comparer.lessThan(3, 2)`

>>> m`2.0 <=> 1 + 1`.expand()
m`_comparer.asBigAs(2.000000, 1.add(1))`

Interval

RangeExpr

prefix

..

..!

order

Non-associative.

We can build a half-open interval with the range operator:

>>> [for x in (1..!4) x * 2]
[2, 4, 6]

Or we can build closed intervals with the inclusive range operator:

>>> [for x in (1..4) x * 2]
[2, 4, 6, 8]

Half-open intervals are more typical, though they are in most ways
equivalent to closed intervals:

>>> (0..!10) <=> (0..9)
true

Expansion:

>>> m`lo..hi`.expand()
m`_makeOrderedSpace.op__thru(lo, hi)`

>>> m`lo..!hi`.expand()
m`_makeOrderedSpace.op__till(lo, hi)`

Shift

shift

prefix

<<

>>

order

Left associative.

Among built-in data types, this is only defined on integers, and has the
traditional meaning but with no precision limit.

Expansion:

>>> m`i << bits`.expand()
m`i.shiftLeft(bits)`

>>> m`i >> bits`.expand()
m`i.shiftRight(bits)`

Additive

additiveExpr

multiplicativeExpr

+

-

additiveExpr

Left associative.

	::

	>>> [1, 2] + [3, 4]
[1, 2, 3, 4]

>>> "abc" + "def"
"abcdef"

>>> ["square" => 4] | ["triangle" => 3]
["square" => 4, "triangle" => 3]

>>> def sides := ["square" => 4, "triangle" => 3]
... sides.without("square")
["triangle" => 3]

Expansion:

>>> m`x + y`.expand()
m`x.add(y)`

>>> m`x - y`.expand()
m`x.subtract(y)`

Multiplicative

multiplicativeExpr

exponentiationExpr

*

/

//

%

order

Left associative.

>>> 2 * 3
6

Modular exponentiation:

>>> 5 ** 3 % 13
8

expansion:

>>> m`base ** exp % mod`.expand()
m`base.modPow(exp, mod)`

Exponentiation

exponentiationExpr

prefix

**

order

Non-associative.

>>> 2 ** 3
8

Expansion:

>>> m`2 ** 3`.expand()
m`2.pow(3)`

Unary Prefix

prefix

-

prim

~

!

calls

SlotExpr

BindingExpr

CoerceExpr

calls

SlotExpr

&

name

BindingExpr

&&

name

Monte has logical, bitwise, and arithmetic negation operators:

>>> - (1 + 3)
-4
>>> ~ 0xff
-256
>>> ! true
false

Todo

discuss, doctest SlotExpression &x, BindingExpression &&x

Expansions:

>>> m`! false`.expand()
m`false.not()`

Unary Postfix

MetaExpr

meta

.

context

(

)

getState

(

)

CoerceExpr

calls

:

guard

meta.getState()
meta.context()

A guard can be used as an operator to coerce a value:

>>> 1 :Int
1

Call

calls

prim

call

send

index

curryTail

call

.

verb

argList

send

<-

verb

argList

curryTail

.

verb

<-

verb

index

[

expr

,

]

verb

IDENTIFIER

.String.

argList

(

expr

,

)

Todo

named args in argList

There are two ways to pass a message. First, the immediate call:

>>> { def x := 2; def result := x.add(3) }
5

And, second, the eventual send:

>>> { def x; def prom := x<-message(3); null }
null

Calls may be curried:

>>> { def x := 2; def xplus := x.add; xplus(4) }
6

Todo

discuss matchers in object expressions

Call Expansion

Function call syntax elaborates to a call to run (
and likewise vice-versa):

>>> m`f(x)`.expand()
m`f.run(x)`

Indexing elaborates to a call to get:

>>> { object parity { to get(n) { return n % 2 }}; parity[3] }
1

M is a helper object that provides several runtime services. It can pass
messages on behalf of other objects and quote strings.

Eventual send syntax expands to calls to M:

>>> m`target<-verb(args)`.expand()
m`M.send(target, "verb", _makeList.run(args), _makeMap.fromPairs(_makeList.run()))`

>>> m`target<-verb(args, "name" := namedArg)`.expand()
m`M.send(target, "verb", _makeList.run(args), _makeMap.fromPairs(_makeList.run()))`

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Pattern matching

Monte comes with a powerful and extensible subsystem for destructuring
and viewing objects. A pattern is a rule which conditionally
matches objects and binds parts of the matched objects to names.

pattern

postfixPatt

postfixPatt

SuchThatPatt

prefixPatt

prefixPatt

MapPatt

ListPatt

SamePatt

NotSamePatt

QuasiliteralPatt

ViaPatt

IgnorePatt

namePatt

namePatt

FinalPatt

VarPatt

BindPatt

SlotPatt

BindingPatt

The Such-That Pattern

SuchThatPatt

prefixPatt

?

(

expr

)

Non associative.

The such-that pattern contains a subpattern and a condition, not unlike
the condition expression in an if expression. The such-that pattern first
speculatively performs the pattern match in its subpattern, and then succeeds
or fails based on whether the condition evaluates to true or false:

>>> def players := [object alice{}, object bob{}]
...
... object game:
... to vote(player ? (players.contains(player)),
... choice ? (players.contains(choice))) :
... return "voted"
...
... def t1 := game.vote(players[0], players[1])
... def t2 := try { game.vote(object alice{}, "bob") } catch _ { "BZZT!" }
... [t1, t2]
["voted", "BZZT!"]

SuchThat Expansion

>>> m`def patt ? (condition) := value`.expand()
m`def via (_suchThat) [patt, via (_suchThat.run(condition)) _] := value`

List, Map Patterns

ListPatt

[

pattern

,

]

+

pattern

MapPatt

[

mapPattItem

,

]

|

pattern

mapPattItem

LiteralExpr

(

expr

)

=>

pattern

=>

namePatt

:=

order

List patterns match lists, matching each subpattern against the items
in the list:

>>> def [x, y] := [5, 10]; x
5

If + rest is used, a list pattern of size N is matched
against the first N items in the list, and the rest pattern is
matched against the remaining items.:

>>> def [first] + rest := [1, 2, 3, 4]
... rest
[2, 3, 4]

If + is not used, the list pattern only matches lists of the same size

Map patterns match maps. Keys are either literal strings or
expressions in parentheses. The subpatterns are matched against the
values for the keys:

>>> def sides := ["square" => 4, "triangle" => 3]
... def shape := "triangle"
...
... def ["square" => squareSides, (shape) => qty1] := sides
...
... def ["triangle" => qty2] | _ := sides
...
... [squareSides, shape, qty1, qty2]
[4, "triangle", 3, 3]

‘:=’ may be used to specify a default value to match a subpattern
against if the key is absent:

>>> def sides := ["square" => 4, "triangle" => 3]
...
... def ["octogon" => octoSides := 8] | _ := sides
... octoSides
8

The importer syntax without keys is a shortcut for binding names
identical to string keys in a map:

>>> def sides := ["square" => 4, "triangle" => 3]
...
... def [=> triangle, => square] := sides
... [triangle, square]
[3, 4]

List Pattern Expansion

>>> m`def [item1, item2] + rest := stuff`.expand()
m`def via (_splitList.run(2)) [item1, item2, rest] := stuff`

Map Pattern Expansion

>>> m`def ["key" => patt] := data`.expand()
m`def via (_mapExtract.run("key")) [patt, _ :_mapEmpty] := data`

>>> m`def ["key1" => patt1] | rest := data`.expand()
m`def via (_mapExtract.run("key1")) [patt1, rest] := data`

>>> m`def ["key1" => patt1 := fallback] := data`.expand()
m`def via (_mapExtract.withDefault("key1", fallback)) [patt1, _ :_mapEmpty] := data`

The Same and Not Same Patterns

Non-associative.

SamePatt

==

prim

NotSamePatt

!=

prim

Same patterns match objects that compare same to their value.

>>> def state := "night"
...
... switch (state) {
... match =="day" {"night"}
... match =="night" {"day"}
... }
"day"

Not-same patterns match objects that do not compare same to their value:

.. todo:: test "bigMoney" =~ !="bankrupt"

Exact Pattern Expansion

>>> m`def ==specimen := value`.expand()
m`def via (_matchSame.run(specimen)) _ := value`

>>> m`def !=specimen := value`.expand()
m`def via (_matchSame.different(specimen)) _ := value`

The Quasi-Literal Pattern

Non-associative.

QuasiliteralPatt

IDENTIFIER

`

QUASI_TEXT

AT_IDENT

@{

pattern

}

`

Quasiliteral patterns invoke a quasiparser with text containing
pattern holes. The resulting matcher object is invoked with the object
to be matched, and the patterns in the holes are matched against the
specimens it extracts:

>>> "The cat and the hat." =~ `The cat and the @what.`
true

>>> "The cat and the hat." =~ `The cat and the @{what :Str}.`; what
"hat"

>>> "The cat and the hat." =~ `The cat and the @{what :Int}.`
false

Quasi-Literal Pattern Expansion

>>> m`def ``quasi @@patt`` := value`.expand()
m`def via (_quasiMatcher.run(::"````".matchMaker(_makeList.run("quasi ", ::"````".patternHole(0), "")), _makeList.run())) [patt] := value`

The via Pattern

ViaPatt

via

(

expr

)

pattern

Via patterns contain a view (sometimes called a
transformation) and a subpattern. The view is an expression
which takes a specimen and ejector and returns a transformed specimen
on success or ejects on failure. This is similar to a guard but
permits much richer transformations in addition to simple tests:

>>> def via (_splitList.run(1)) [x, xs] := [1, 2, 3]
... [x, xs]
[1, [2, 3]]

Final Pattern (kernel)

FinalPatt

name

guardOpt

Final patterns match an object and bind a name to them, optionally
testing them for guard conformance. One of the most ubiquitous
patterns. Binds a name unconditionally to a final
slot, which prohibits reassignment:

>>> def x := 1
... x
1

Again, any string can be used as an identifier:

>>> def ::"hello, world" := [1, 2]
... ::"hello, world"
[1, 2]

The var Pattern (kernel)

VarPatt

var

name

guardOpt

Var patterns match an object and bind a mutable name to them,
optionally testing them for guard conformance. Guard
conformance failure causes pattern match failure. Later assignments to
‘x’ will be tested for guard conformance as well.

var name := value
var name :Guard := value

Like a final pattern, but with VarSlot as the slot, which permits
reassignment to the name later on using an assign expression.

Note

While var can be used to introduce a var pattern, the overall
expression is still a def expression, and it can alternatively be
expressed as:

def var name := value

This is useful for nesting var patterns within other patterns:

def [first, var second] := value

Bind Pattern

BindPatt

bind

name

guardOpt

Bind patterns match an object and bind it to a forward-declared name,
optionally testing for guard conformance.

bind x
bind x ::"hello, world"
bind x :G

Expansion

>>> m`def bind x := 2`.expand()
m`def via (_bind.run(x_Resolver, null)) _ := 2`

Slot Pattern

SlotPatt

&

name

guardOpt

Slot patterns match an object and bind them to the slot of the
pattern’s name, optionally testing the object for guard conformance.

def &name := slot

Slot Pattern Expansion

>>> m`def &x := 1`.expand()
m`def via (_slotToBinding) &&x := 1`

Binding Pattern (kernel)

BindingPatt

&&

name

Binding patterns match an object and use it as the binding for the
given name.

&&x
&&::"hello, world"

A bind pattern does not bind a name, but binds a binding.

def &&name := binding

Ignore Pattern (kernel)

IgnorePatt

_

guardOpt

_
_ :G

IgnorePattern matches an object, optionally requiring conformance to a
guard.

def _ := value

Equivalent to value. Does nothing.

def _ :Guard := value

Performs guard coercion and discards the result.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Lexical Grammar (Tokens)

Monte source consists of a sequence of characters. Before parsing into
expressions, it is separated into lexical tokens.

Excerpts from the lib/monte/monte_lexer [https://github.com/monte-language/typhon/blob/master/mast/lib/monte/monte_lexer.mt] implementation provide
a reasonably clear, if somewhat circular, definition of Monte lexical
syntax.

Brackets, Indentation, and Blocks

Opening and closing bracket tokens must be balanced:

def closers :DeepFrozen := ['(' => ')', '[' => ']', '{' => '}']

A colon (:) token begins an indented block.

Todo

specify canStartIndentedBlock, braceStack exactly

Like Python, Monte’s blocks are usually indentation-delimited:

def f(x):
 g()
 return x + 1

Monte also permits curly braces instead of colons for marking blocks:

def f(x) {
 g()
 return x + 1
}

And, finally, Monte allows sequences to be separated by semicolons:

def f(x) { g(); return x + 1 }

Idiomatic Monte can take on any of these styles. Typical Monte code prefers
the colon-indented-block style.

Braces are required only if the surrounding block uses braces. For example,
this is legal Monte:

def f(x):
 def g(y):
 return x + y
 return g

And so is this:

def f(x):
 def g(y) { return x + y }
 return g

Note

Tabs are a syntax error in Monte.

Important

Monte code should always uses four spaces for each indentation level.

Operators

Many binary operators have corresponding assignment operators:

	xor: ^ , ^=

	add: + , +=

	subtract: - , -=

	shiftLeft: << , <<=

	shiftRight: >> , >>=

	pow: ** , **=

	multiply: * , *=

	floorDivide: // , //=

	approxDivide: / , /=

	mod: % , %=

	and: & , &=

	or: | , |=

The remaining operator tokens are:

	complement: ~

	inclusive range: ..

	exclusive range: ..!

	assign: :=

	as big as: <=>

	less: <

	greater: >

	less or equal: <=

	great or equal: >=

	equal: ==

	not equal: !=

	match bind: =~

	not match bind: !~

	not: !

	logical and: &&

	logical or: ||

	but not: &!

	sequence: ;

Other Punctuation

	,

	treat a string as a noun: ::

	such that: ?

	ignore pattern: _

	call: .

	send: <-

	when: ->

	maps to: =>

Keywords

The Monte keywords are given as:

def MONTE_KEYWORDS :DeepFrozen := [
 "as", "bind", "break", "catch", "continue", "def", "else", "escape",
 "exit", "extends", "exports", "finally", "fn", "for", "guards", "if",
 "implements", "import", "in", "interface", "match", "meta", "method",
 "object", "pass", "pragma", "return", "switch", "to", "try", "var",
 "via", "when", "while"].asSet()

Monte keywords are case insensitive:

>>> DEF x := 1
1

Identifiers

Identifers start with an element of idStart followed by any number of
elements of idPart:

def decimalDigits :DeepFrozen := regionToSet('0'..'9')

def idStart :DeepFrozen := regionToSet('a'..'z' | 'A'..'Z' | '_'..'_')
def idPart :DeepFrozen := idStart | decimalDigits

Literals

In the syntax railroad diagrams and in monte_lexer.mt, the
literal tokens are tagged:

	.int. (guard; Int)

	.float64. (Double)

	.char. (Chr)

	.String. (Str)

Note

Monte has no booleans literals; rather, the nouns true and
false are pre-defined primitive values.

Int

IntExpr

hexLiteral

decLiteral

decLiteral

digits

digits

digit

digit

_

digit

one of: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

hexLiteral

0

x

X

hexDigits

hexDigits

hexDigit

hexDigit

_

hexDigit

one of: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F

Monte integer literals are written as usual:

>>> 5
5

>>> 0xF
15

Integers may be arbitrarily large, à la Python’s long or Haskell’s
Integer:

>>> 128 ** 20
1393796574908163946345982392040522594123776

Integers respond to a variety of mathematical methods,
and operators provide traditional syntax:

▲> help(5)
Result: Object type: IntObject
A numeric value in ℤ.
Method: op__cmp/1
Method: aboveZero/0
...
Method: add/1
...

>>> 5 + 2
7

Double

DoubleExpr

floatLiteral

floatLiteral

digits

.

digits

floatExpn

floatExpn

floatExpn

one of: e, E

one of: -, +

digits

Monte has floating point numbers as well:

▲> help(1.2)
Result: Object type: DoubleObject
A numeric value in ℝ, with IEEE 754 semantics and at least double
precision.
Method: op__cmp/1
Method: abs/0
Method: add/1
...

Note that integers do not automatically coerce to doubles:

▲> def x :Double := 1
...
Parse error: [Failed guard (Double):, 1]

>>> def x :Double := 1.0
1.000000

To convert:

>>> 4.0.floor()
4

>>> 4 * 1.0
4.000000

Char

CharExpr

'

charConstant

'

charConstant

\

newline

none of: ', \, tab

\

U

8 x

hexDigit

u

4 x

hexDigit

x

2 x

hexDigit

one of: b, t, n, f, r, \, ', "

Monte’s character type represents Unicode characters; it is distinct
from the string type. Character literals are always delimited by
apostrophes (').

Warning

In Python, you may be accustomed to ‘single’ and “double” quotes
functioning interchangeably. In Monte, double quotes can contain any
number of letters, but single quotes can only hold a single character.

Characters are permitted to be adorable:

>>> '☃'
'☃'
>>> '\u23b6'
'⎶'

String

StrExpr

stringLiteral

stringLiteral

"

charConstant

"

Strings are objects with built-in methods and capabilities, rather than
character arrays. Monte’s strings are always Unicode, like Python 3 (but
unlike Python 2). String literals are always delimited by
double-quotes ("):

>>> "Hello World!".replace("World", "Monte hackers")
"Hello Monte hackers!"
>>> "¿Dónde aquí habla Monte o español?".size()
34

String Escapes

Monte has string escape syntax much like Python or Java:

	Escape Sequence
	Meaning

	\\
	Backslash (\)

	\'
	Single quote (')

	\"
	Double quote (")

	\b
	ASCII Backspace (BS)

	\f
	ASCII Formfeed (FF)

	\n
	ASCII Linefeed (LF)

	\r
	ASCII Carriage Return (CR)

	\t
	ASCII Horizontal Tab (TAB)

	\xhh
	Character with 8-bit hex value
hh (Unicode code point)

	\uxxxx
	Character with 16-bit hex value
xxxx (Unicode code point)

	\Uxxxxxxxx
	Character with 32-bit hex value
xxxxxxxx (Unicode code point)

(table mostly from the Python docs [https://docs.python.org/2/_sources/reference/lexical_analysis.txt])

Warning

Monte intentionally avoids providing escape notation for ASCII vertical
tabs (\v) and octal values (\o00). These are rare enough that we
chose to omit them from the grammar. Hexadecimal escapes are still valid
for vertical tabs; use \x0b.

“Because [Monte] is a language of the future, and in the future, nobody
uses [vertical tabs].” ~ Allen

Note

As with Python, a backslash (\) as the final character of a line
escapes the newline and causes that line and its successor to be
interpereted as one:

▲ def c := 1 + 2 \
... + 3 + 4
Result: 10

As in Python, + when used with strings is a concatenation operator
. Unlike Java, it does not automatically coerce other types on the
right-hand if the left-hand operand is a string.

Quasi-Literals

A quasif-literal is somewhat like a string delimited by back-ticks
(“`”), but inside, ${ ... } is parsed as an expression and @{
... } is parsed as a pattern; the curly-braces may be omitted in the
case of simple noun expressions $ident or @ident.

To escape delimiter characters within a quasi-literal, double them:

>>> def price := 10.00
... `The price is $$$price.`
"The price is $10.000000."

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Quasiliterals

Quasiliterals, or QLs, are an important part of Monte syntax which allows us
to embed arbitrary DSLs into Monte. With the power of QLs, Monte can be
extended into new territory in a very neat way.

What’s a Quasiliteral?

This is a quasiliteral:

`Backticks start and end quasiliterals`

A quasiliteral can have values mixed into it with $. A value can be a
name:

def name :Str := "Todd"
`Hello, $name!`

A value can also be an expression, using brackets:

`2 + 2 = ${2 + 2}`

Quasiliterals can be used as patterns:

Equivalent to: def =="self" := "self"
def `self` := "self"

Quasiliteral patterns also permit pattern-matching with @ to retrieve
single names:

def `(@first, @second)` := "(42, 5)"

And any pattern can be used with brackets:

def `x := @{var x}` := "x := 7"
x += "-11" # What? I like slushies!

Finally, there are different quasiparsers, or QPs, which each have different
behavior:

`` makes strings
`def x := 42` :Str
b`` makes bytestrings
b`def x := 42` :Bytes
m`` makes Monte AST objects
m`def x := 42` :(astBuilder.getAstGuard())

How to Use QLs

A quasiliteral expression starts with the name of a quasiparser (which can be
empty) followed by a backtick. Then, a mixture of strings and holes are
allowed, followed by a final backtick. The holes can either be
expression-holes, with $, or pattern-holes, with @.

Warning

Pattern-holes cannot be used in QL expressions, only in QL patterns. Using
a pattern-hole in a QL expression is a syntax error!

Builtin Quasiparsers

There are three common QPs included in Monte’s safe scope.

Simple

Did You Know?

Monte originally used the same name as E for ::”``”:
simple__quasiParser. That’s why we call ::”``” the
“simple” quasiparser.

The simple or empty QP builds strings:

`string` == "string" # true

It can mix any value into a string, even values that don’t pass Str:

`${7}` == "7" # true

The simple QP does this by calling M.toString/1 on the values.
Correspondingly, the value’s _printOn/1 is called, and can be customized:

object shirt { to _printOn(out) { out.print("tye-dye shirt") } }
def description :Str := `I am wearing a $shirt.`

When used as a pattern, the simple QP performs very simple but straightforward
and powerful string parsing:

def container := "glass"
def `a $container of @drink` := "a glass of lemonade"

Bytes

The bytes QP builds bytestrings:

b`asdf`

The encoding of characters is unconditionally Latin-1. Non-Latin-1 characters
cause errors to be thrown at runtime:

b`ErrorRaiser™`

Other than that quirk, the bytes QP behaves much like the simple QP, including
parsing:

def b`@header:@value` := b`x:12`

Monte

Finally, the Monte QP builds Monte ASTs from literal Monte source:

m`def x := 42`

The Monte QP can be used for code generation, since it evaluates to objects
usable with eval/2:

eval(m`2 + 2`, [].asMap())

Custom Quasiparsers

Anybody can write their own quasiparser.

Parsing with Values

The first half of the QP API deals with building the initial structure and
including values.

.valueHole(index :Int) should create a value marker which can be used in
place of some value which will be included later. .valueMaker(pieces
:List) will be called with a list of pieces, which can be either strings or
value markers, and it should return a partial structure. That structure can be
completed with its .substitute(values :List), which provides a list of
values that can be swapped with the value markers.

To see how this API all comes together, let’s look at the kernel expansion of
a simple QP call:

`Just another $day for this humble $string.`

What Monte actually does is call .valueMaker/1, like so:

::"``".valueMaker(["Just another ", ::"``".valueHole(0),
 " for this humble ", ::"``".valueHole(1),
 "."]).substitute([day, string])

Parsing Patterns

The pattern API is similar and builds upon the expression API.

First, the .patternHole/1 method allows pattern hole markers to be built,
just like with value holes. Then, the structure is built with
.matchMaker/1 instead of .valueMaker/1. This structure should have a
completion method, .matchBind(values :List, specimen, ej) which attempts
to unify the specimen with the structure completed by the values or eject on
failure.

Here’s a simple pattern:

def `how ${hard} could it be to match @this?` := "not hard, just complex"

And its expansion:

def via (_quasiMatcher.run(::"``".matchMaker(["how ", ::"``".valueHole(0),
 " could it be to match ",
 ::"``".patternHole(0),
 "?"]),
 [hard])) [this] := "not hard, just complex"

Note how the _quasiMatcher helper in the safe scope takes care of the
extra runtime plumbing.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Interfaces

An interface is a syntactic expression which defines an object
protocol. An interface has zero or more method signatures, and can be
implemented by any object which has methods with equivalent signatures to the
interface.

Let’s jump right in:

interface Trivial:
 "A trivial interface."

This interface comes with a docstring, which is not required but certainly a
good idea, and nothing else. Any object could implement this interface:

object trivia implements Trivial:
 "A trivial object implementing a trivial interface."

When an object implements an interface, the interface behaves like any
other auditor and examines the object for compliance with the object protocol.
As with other auditors, the difference between the “implements” and “as”
keywords is whether the object is required to pass the auditor:

object levity as Trivial:
 "A trivial object which is proven to implement Trivial."

Let’s look at a new interface. This interface carries some method
signatures.

interface GetPut:
 "Getting and putting."
 to get()
 to put(value)

object getAndPut as GetPut:
 "A poor getter and putter."

 to get():
 return "get"

 to put(_):
 null

We can see that getAndPut implements the GetPut interface, but it
isn’t very faithful to that interface. Interfaces cannot enforce behavior,
only signatures.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Miranda Protocol

If you cannot afford a method, one will be appointed for you.

Monte objects, left to their own devices, are black boxes; one cannot perform
any sort of introspection on them. However, there are some powers granted to
anybody who can refer to an object. The runtime grants these powers
automatically, and we refer to them as the Miranda protocol.

The Miranda protocol grants powers in the form of methods, called Miranda
methods, which all objects automatically possess. An object may provide its
own Miranda methods, but does not have to; objects are automatically granted
default Miranda methods with correct behavior. Or, as stated above, “if an
object does not have a Miranda method, one will be provided.”

Additionally, the Miranda protocol contains Miranda named arguments, which
are named arguments passed alongside every message to every object from the
runtime.

Safety

Methods

Miranda methods should be safe to call. The default definitions will always
respond without throwing exceptions. It is rude but permissible for an object
to provide a custom Miranda method implementation which can throw or eject, or
return incorrect or misleading information. Therefore, be aware of situations
in which Miranda methods are being used.

Warning

Special mention goes here to the most commonly-called Miranda method,
_printOn/1. Any time that an object is being turned into a string, it
almost certainly involves a little bit of _printOn/1, so be careful.

Named Arguments

See FAIL.

Methods

	_conformTo/1

	_conformTo takes a guard and coerces this object to that guard, if
possible. The default implementation returns null for all guards.
Overriding this method lets an object become other objects when under
scrutiny by guards.

	_getAllegedInterface/0

	_getAllegedInterface returns an interface describing this object. If
not specified, an interface which represents the object faithfully will be
created and returned.

The allegedness of the interface hinges on the ability to override this
method; the returned interface can be just as untrustworthy as the object
that returns it.

	_printOn/1

	_printOn writes text representing this object onto the printer passed
as an argument.

Customizing _printOn lets an object change how it is pretty-printed.
The default pretty-printing algorithm is readable but does not divulge the
internal state of an object.

	_respondsTo/2

	_respondsTo(verb, arity) returns a Boolean value indicating whether
this object will respond to a message with the given verb and arity. The
default implementation indicates whether the object’s source code listed a
method with the given verb and arity.

Warning

Determining whether a given object responds to a given message is
undecidable. Therefore, there are times when _respondsTo/2 is
unavoidably wrong, both with false positives and false negatives.

	_sealedDispatch/1

	_sealedDispatch permits this object to discriminate its responses to
messages based on the capabilities of the calling object.

Occasionally, a calling object will wish to prove its capabilities by
passing some sort of key or token to a receiving object. The receiving
object may then examine the key, and return an object based on the
identity or value of the key.

We provide _sealedDispatch/1 for a specific subset of these cases. The
caller should pass a brand, and the receiver dispatches on the brand,
returning either a sealed box guarded by the passed-in brand, or null
if the brand wasn’t recognized.

By default, _sealedDispatch returns null. This makes it impossible
to determine whether an object actually has a customized
_sealedDispatch.

A popular analogy for sealed dispatch is the story of the “Red Phone,” a
direct line of communication between certain governments in the past. The
Red Phone doesn’t ring often, but when it does, you generally know who’s
calling. They’ll identify themselves, and if you can confirm that it’s
the correct caller, then you can have discussions with them that you
wouldn’t have over an ordinary phone.

	_uncall/0

	_uncall undoes the call that created this object. The default
implementation returns null, because objects are, by default, not
uncallable. A good implementation of _uncall will return a list
containing [maker, verb :Str, args :List, namedArgs :Map] such that
M.call(maker, verb, args, namedArgs) will produce a new object which
is equal to this object. Promises or other far references may not be
returned. (No, you misunderstood; why doesn’t Monte have only eventual sends?)

Providing an instance of _uncall makes an object eligible for
uncall-based catamorphisms (fold, reduce, ...). In particular, uncallable
objects are comparable by value using Transparent.

Note

In order to be eligible for value comparisons, you’ll need to both
implement _uncall and also pass an audition proving that your
uncall is correct. See Selfless and Transparent for details.

	_whenMoreResolved/1

	_whenMoreResolved, by default, does nothing on near objects and sends
notifications of partial fulfillment through references. It is not
interesting.

Named Arguments

	FAIL

	FAIL is an object which can be used in place of throw.eject when
an error should propagate beyond the current turn. During asynchronous
callbacks, objects might unwittingly be called as part of a subsequent
turn’s callback, and their errors should propagate to their original
callers. FAIL is throw.eject in synchronous contexts and a wrapper
for some resolver’s .smash/1 in callbacks or other asynchronous
contexts.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Loops and the Iteration Protocol

Monte has only two kinds of looping constructs: for loops, which consume
iterators to process a series of elements, and while loops, which
repeatedly consider a predicate before doing work. Both should be familiar to
any experienced programmer; let’s explore them in greater detail.

for loops

A for loop is a simple structure that takes an iterable object and loops
over it:

var x := 0
for i in (1..10):
 x += i

Here, we can clearly see the three elements of the for loop, the
pattern, x; the iterable, 1..10, and the loop’s body,
x += i. For each element in the iterable, the iterable is matched against
the pattern, which is available within the body.

Within a for loop, the continue keyword will skip the current
iteration of the loop, and break keyword will exit the loop altogether:

Skip the even elements, and give up if we find multiples of three.
for i in (1..10):
 if (i % 2 == 0):
 continue
 if (i % 3 == 0):
 break
 x -= i

Pair Patterns

All iterables yield not just one element, but a pair of elements on every
iteration. To access both elements at once, we can use a pair pattern:

def names := ["Scooby", "Shaggy", "Velma"]
for i => name in (names):
 traceln(`Name $i: $name`)

For a list, like in the previous example, the right-hand side of the pair
matches the current element, and the left-hand side matches that element’s
index. When iterating over a map, the pair will match the key and value:

def animals := [
 "Bagira" => "panther",
 "Baloo" => "bear",
 "Shere Khan" => "tiger",
]
for animal => species in (animals):
 traceln(`Animal $animal is a $species`)

while loops

In addition to the for loop, Monte provides a while loop:

var x := 1
while (x < 402):
 x *= 2

The while loop admits continue and break, just like in for
loops.

Advanced Looping

The Secret Lives of Flow Control Structures

Flow control structures actually return values. For example, the if-else returns the last value in the executed clause:

def a := 3
def b := 4
def max := if (a > b) {a} else {b}

This behavior is most useful when used with the when-catch construct described in the When-expressions and Delayed Actions section.
The break statement, when used in a for or a while loop, can be followed by an expression, in which case the loop returns the value of that expression.

ternary conditional expression

While monte does not have the c ? x : y ternary conditional
operator, the if expression works just as well. For example, to
tests whether i is even:

>>> { def c := 'c'; if (c < 'e') { "Yay!" } else { "Nope" } }
"Yay!"

Loops as Expressions

Like all structures in Monte, for loops are expressions; they return
values:

def result := for value in (0..10) { value }

Here, result is null, which is the default return value for for
loops. To override that value, use break:

def result := for value in (0..10) { break value }

Since break was used, the loop exits on its first iteration, returning
value, which was 0. So result is 0.

List & Map Comprehensions

for loops aren’t the only way to consume iterable objects. Monte also has
comprehensions, which generate new collections from iterables:

[for value in (iterable) transform(value)]

This will build and return a list. Maps can also be built with pair syntax:

[for key in (keyList) key => makeValue(key)]

And, of course, pair syntax can be used for both the pattern and expression in
a comprehension:

[for key => value in (reverseMap) value => key]

Additionally, just like in Python and Haskell, comprehensions support
filtering with a predicate; this is called the for-such comprehension:

>>> def evens := [for number in (1..10) ? (number % 2 == 0) number]
... evens
[2, 4, 6, 8, 10]

Just like the such-that pattern, this such-that clause is evaluated for
every iteration, and iterations where the clause returns false are
skipped. Also, just like the such-that pattern, and unlike some other
languages’ comprehension syntax, the predicate must return a Bool; if it
doesn’t, then the entire comprehension will fail with an exception.

Writing Your Own Iterables

Monte has an iteration protocol which defines iterable and iterator objects.
By implementing this protocol, it is possible for user-created objects to be
used in for loops and comprehensions.

Iterables need to have to _makeIterator(), which returns an iterator.
Iterators need to have to next(ej), which takes an ejector and either
returns a list of [key, value] or fires the ejector with any value to end
iteration. Guards do not matter but can be helpful for clarity.

As an example, let’s look at an iterable that counts upward from zero to
infinity:

object countingIterable:
 to _makeIterator():
 var i := 0
 return object counter:
 to next(_):
 def rv := [i, i]
 i += 1
 return rv

Since the iterators ignore their ejectors, iteration will never terminate.

For another example, let’s look at an iterator that wraps another iterator and
only lets even values through:

def onlyEvens(iterator):
 return object evens:
 to next(ej):
 var rv := iterator.next(ej)
 while (rv[1] % 2 != 0):
 rv := iterator.next(ej)
 return rv

Note that the ejector is threaded through to next(ej) into the inner
iterator in order to allow iteration to terminate if/when the inner iterator
becomes exhausted.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Guard Protocol

Like many other subsystems in Monte, guards can be made from any ordinary
object which implements the correct methods.

Are Guards Slow?

Since guards are Monte objects and can be user-defined, concerns about
performance are reasonable.

According to Semantics of Monte, every assignment acts as if its
guard were executed; that is: once for every def, at
definition, and for var, once at definition and once for every
re-assignment.

But if an implementation can determine statically that the specimen
will always pass (e.g. def x :Int := 1) then the check can be
optimized away. An ahead-of-time compiler might use type inference
to prove that all specimens at a definition site might be of a
certain type. A just-in-time compiler might recognize at runtime
that a guard’s code is redundant with unboxing, and elide both the
unboxing and the guard.

The Typhon virtual machine almost always can skip typical basic
guards like Int and Bool.

The Basics

The main method for a guard is coerce/2, which takes an object to examine,
called the specimen, and an ejector. If the specimen conforms to the
guard, then the guard returns the conformed value; otherwise, the ejector is
used to abort the computation.

object Any:
 to coerce(specimen, _):
 return specimen

object Void:
 to coerce(_, _):
 return null

Here are two example guards, Any and Void. Any passes all
specimens through as-is, and Void ignores the specimen entirely, always
returning null.

Here’s an actual test. The Empty guard checks its specimen, which is a
container, for emptiness and ejects on failure:

object Empty:
 to coerce(specimen, ej):
 if (specimen.size() != 0):
 throw.eject(ej, `$specimen was not empty`)

The ejector does not need to have a meaningful object (nor even a string) as
its payload, but the payload may be used for diagnostic purposes by the
runtime. For example, a debugger might display them to a developer, or a
debugging feature of the runtime might record them to a log.

Unretractable Guards

Informally, an unretractable guard cannot be fooled by impostor
objects that only pretend to be guarded, and it also will not change
its mind about an object on two different coercions.

Formally, an unretractable guard Un is a guard such that for
all Monte objects o, if o is successfully coerced by Un, then it
will always be successfully coerced by Un, regardless of the
internal state of Un or o.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Controllers

Sometimes, when designing an API, we want to be able to customize Monte’s
behavior while retaining the general Monte idioms for values and layouts.
Controller syntax lets us change behavior of code blocks in a safe and
coherent fashion.

How to Implement a Controller

Controller Expansion

Suppose that we have a standard if-expression:

if (cond()) {
 advance()
} else {
 fallback()
}

Now, suppose that we wished to customize this. We could define a controller
named ifController, and then call it with very similar syntax:

ifController (cond()) do {
 advance()
} else {
 fallback()
}

This expands roughly to the following:

(ifController :DeepFrozen).control("do", 1, 0, fn {
 [[cond()], fn { advance() }]
}).control("else", 0, 0, fn {
 [[], fn { fallback() }]
}).controlRun()

We see that controllers must be DeepFrozen, and that each code block, which
we’ll call a “lambda-block”, corresponds to a .control/4 call, with a
.controlRun() to indicate the end of blocks.

Control with Lambda-Blocks

The power of controllers is locked within the lambda-blocks. Each block is a
function which returns an [args, lambda] pair. The controller can choose
how many times it wants to call the block, and similarly, the block can return
new arguments every time it is called. Indeed, note above that cond() is
called every time its containing lambda-block is called.

What are the other arguments to .control(verb :Str, argCount :Int, paramCount
:Int, block)? The control verb is the bare word preceding each block. The
argument count specifies how many arguments will be returned by the block.
Where are the parameters?

Let us imagine another hypothetical controller:

m (action) do x { f(x) }

In this situation, x is the one and only parameter, and so the controller
receives a parameter count of 1.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Slots

Monte’s values are stored in slots, which are also values. This nested
structure permits some flexibility.

The slot of a value is accessed using the & unary operator:

def slot := &value

Final Slots

Final slots are created by final definitions:

def finalValue := 42
def finalSlot := &finalValue

Lazy Slots

Lazy slots are a convenient and elegant tool in the safe scope for creating
simple lazy values. A lazy slot is constructed with a thunk which will be
transparently evaluated once (and only once) to compute the slot’s value.

def fib(i :Int) :Int:
 return if (i > 1) {fib(i - 1) + fib(i - 2)} else {i}
def &lazySlot := makeLazySlot(fn {fib(30)}) # or fib(40) for more drama
traceln(`$lazySlot`) # this will take a few moments
traceln(`$lazySlot`) # but this will be instantaneous

Note

Lazy slots can be constructed with a var slot, and it can be an
enlightening exercise. makeLazySlot is provided as a courtesy since it
acts like a final slot for auditions with DeepFrozen.

Var Slots

Var slots are created by var definitions:

var varValue := 7
def varSlot := &varValue

A var slot’s value can be assigned to, and the slot’s identity will not
change:

varValue := 5
varSlot == &varValue # Still true after assignment

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Auditors

The auditor subsystem allows objects to certify themselves as having certain
properties. In order to gain certification, specimen objects must pass
audition, a process in which the source code of the specimen object is
revealed to an auditor, another object which examines the structure of the
specimen and indicates whether it qualifies.

Stamps

Some auditors will admit any object which requests an audition. These auditors
are called stamps. An object with a stamp is advertising behavior that is
not necessarily reflected in the object’s structure. Stamps can be used to
indicate that an object should be preferentially treated; additionally, a
stamp with limited availability can be used to indicate that an object belongs
to a privileged set of objects.

A Showing of Common Auditors

DeepFrozen

The DeepFrozen auditor proves that objects are immutable and that the
objects they refer to are also DeepFrozen.

▲> DeepFrozen
DeepFrozen

Note

The specific property proven by DeepFrozen: For any DeepFrozen
object, all bindings referenced by the object are also DeepFrozen.

Selfless

The Selfless auditor is a stamp. Any object bearing Selfless can also
bear other stamps to indicate that equality comparisons with that object
should be done in a customized way.

▲> Selfless
Selfless

Transparent

The Transparent auditor proves that an object implements a custom
_uncall/0 Miranda method with certain properties. Any Transparent
object can be compared by comparing the contents of its uncalled
representation.

To prove an object Transparent, a small kit of facet objects must be
obtained and attached to the maker definition:

def [makerAuditor :DeepFrozen, &&valueAuditor, &&serializer] := Transparent.makeAuditorKit()

Then the maker and object must both submit to audition. The maker must be
DeepFrozen and the inner object Selfless:

def makeSwatch(color) as DeepFrozen implements makerAuditor:
 return object swatch implements Selfless, valueAuditor:
 to _uncall():
 return serializer(makeSwatch, [color])

The resulting maker will produce objects that can be compared as if by value:

▲> def red := makeSwatch("red")
▲> def xunre := makeSwatch("red")
▲> red == xunre
Result: true
▲> def blue := makeSwatch("blue")
▲> red == blue
Result: false

Note

Using the Transparent auditor as a guard is legal and works as
expected, but is not required to obtain correct comparison behavior.

Note

Specifically, the property proven by Transparent is that uncalling the
object is the inverse of calling the maker, and vice versa.

Bindings (WIP)

Todo

discuss bindings. Expand this section to “slots and
bindings”? or discuss bindings under auditors?

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Semantics of Monte

This is a brief specification of the evaluation semantics of Monte.

Monte is an object-based expression language which computes by delivering
messages to objects. During computation, expressions
are evaulated, resulting in either success or failure; successful evaluation
yields an object, while failing evaluation yields an exceptional state.

Kernel-Monte

The Monte language as seen by the programmer has the rich set of syntactic
conveniences expected of a modern scripting language. However, to be secure,
Monte must have a simple analyzable semantics. We reconcile these by defining
a subset of the full language called Kernel-Monte, and only this subset
need be given a rigorous semantics. The rest of Monte is defined by syntactic
expansion to this subset.

Full-Monte

We define Full-Monte as the complete AST of Monte, and canonical
expansion as the syntactic expansion which expands Full-Monte to Kernel-Monte
while preserving the intended semantics.

Note

Full-Monte should get its own page and have all of its rich semantics
spelled out in gory detail.

Monte as a Tree

Left-to-Right Rule

The left-to-right rule states that evaluation proceeds lexically
from left to right. This rule is violated only rarely:

	At the kernel level, DefExpr evaluates both its RHS and exit before
any expressions buried in the LHS pattern. Canonical expansion from
Full-Monte to Kernel-Monte resolves any recursively-defined names in
order to make this less unintuitive.

	Object literals have their auditors evaluated before object creation and
their patterns are unified after object creation.

Kernel-Monte is specified as an AST. Each node
in the tree is either an expression or a pattern. Expressions
can be evaluated to product an object; patterns do not produce values but
unify with values (i.e. objects) to introduce names into scopes.

Along with every node, there is a static scope, a compile-time constant
mapping of names to declaration and usage sites. For every expression, it is
known which names are visible and whether they were declared with def or
var.

Computation proceeds by tree evaluation; the root of the tree is evaluated,
which in turn can provoke evaluation of various branch and leaf nodes as
required.

Recursion in a Monte AST is possible via self-reference; all object patterns
are visible within their corresponding script’s scope.

Scope Introduction & Dismissal

No Stale Stack Frames Rule

The no stale stack frames rule states that A Monte expression must
dismiss any scope which it introduces.

A stale stack frame is one that isn’t currently running; it is neither the
current stack frame nor below the current stack frame.

Monte forbids suspending computation mid-frame. There are no coroutines or
undelimited continuations in Monte. Monte also does not have an
“async/await” syntax, since there is no way to implement this syntax
without stale stack frames. As a direct result, no partial execution can
ever require a Monte implementation to reify stack frames for suspended
computation.

The policy is justified by readability concerns. Since Monte permits
mutable state, one author’s code’s behavior could be affected by another
author’s code running further up the frame stack. Stale frames make
comprehension of code much harder as a result.

Many expressions, during evaluation, introduce scopes. When this is done,
names declared after scope introduction are said to be visible within
the scope. An expression must pair every scope introduction with a scope
dismissal. After a scope has been dismissed, the names declared within the
scope are no longer visible.

Note

This scoping rule is often called “lexical scoping” and should be familiar
to users of other lexically-scoped languages.

Names: Nouns, Slots, and References

Monte has a complex system underlying names.

A noun is an identifier which refers to a value (an object). There are
three senses of reference from nouns to values, each at a different level of
abstraction.

At the simplest level, nouns refer directly to values. Identifiers in patterns
match values, and nouns in expressions evaluate to the values to which they
were matched.

To represent mutable state, we indirect via slots. Slots are objects
that contain values and may be updated over time (much like pointers in
C). Slots can be accessed and manipulated with slot patterns and slot
expressions. A final slot acts as though nouns refer directly to values, while
a var slot has a put operation that updates its value.

A binding is a slot along with a guard that constrains the values in
the slot. Bindings are essential to auditors.

To allow references across turns and vats, we indirect via references.

Exceptions

A Monte expression can yield either a successful result or an exceptional
state. Exceptional states are intentionally vague; they are usually
represented as panics in virtual machines or stack unwinders in interpreters.

While in an exceptional state, most expressions evaluate to that same
exceptional state. A TryExpr can replace an exceptional state with a
successful result. A FinallyExpr can perform some side computation despite
an exceptional state.

When an error is thrown, the computation switches to an exceptional state and
the thrown error is sealed in an implementation-dependent manner.

Expressions

Literals

Null

Produces null.

Char

Produces an object which passes Char and corresponds to the Unicode
codepoint of the CharExpr.

Double

Produces an object which passes Double and corresponds to the IEEE 754
double-precision floating-point number of the DoubleExpr.

Note

Implementations may, at their discretion, substitute any higher-precision
IEEE 754 number for the given one.

Int

Produces an object which passes Int and corresponds to the integer of the
IntExpr.

Str

Produces an object which passes Str and corresponds to the sequence of
Unicode codepoints of the StrExpr. .

The string of codepoints is not normalized; it corresponds one-to-one with the
codepoints in the Monte source literal.

Names

Binding

Produces the binding for the given noun.

Todo

discuss SlotExpr

Noun

Produces the value in the slot of the given noun.

Assign

An AssignExpr has a name and an expression. The expression is evaluated and
the result is both assigned to the name as a noun in the current scope and the
produced value.

If the name’s slot is not assignable, an error is thrown.

Def

A DefExpr has a pattern, an (optional) exit expression, and a specimen
expression. The specimen is evaluated, followed by the exit (if present). The
specimen is unified with the pattern, defining names into the surrounding
scope. The produced value is the specimen.

If unification fails, the result of the exit expression is used as an ejector
to escape; if ejecting fails, then an error is thrown.

Hide

A HideExpr has a single subexpression which is evaluated in a fresh scope.
The produced value of the subexpression is used as the produced value.

Message Passing

Call

A CallExpr has a receiver expression, a verb (string), some argument
expressions, and some named argument expressions. The receiver is evaluated,
then each argument, and then each named argument. Then, a message
consisting of the verb, arguments, and named arguments is passed to the
receiver. The value returned from the receiver is the produced value.

Todo

discuss sameness and doctest _equalizer

Control Flow

Escape

Ejectors

An ejector is an object whose run method aborts the current
computation and returns to where the ejector was created.

Monte implements the return, break, and continue
expressions with ejectors.

Ejectors are so-called single-use, delimited continuations:
their dynamic scope is delimited to downward method calls only,
and any use after the first will fail.

An EscapeExpr has a pattern and inner expression and, optionally, a catch
pattern and catch expression (not to be confused with Try/catch
expressions).

An ejector is created and a scope is introduced. The ejector is unified with
the pattern and then the inner expression is evaluated.

If the ejector was not called during evaluation of the inner expression, the
scope is then dismissed and the produced value from the inner expression is
used as the produced value of the entire EscapeExpr.

If the ejector is called within the inner expression, then control immediately
leaves the inner expression and the scope is dismissed; if there is no catch
pattern/expression, then the value passed to the ejector is immediately used
as the produced value. Otherwise, the value passed to the ejector is used as a
specimen and unified with the catch pattern in a freshly-introduced scope, and
then the catch expression is evaluated. Finally, the catch scope is dismissed
and the produced value from the catch expression is used as the produced value
of the escape-expr.

Finally

A FinallyExpr contain two expressions. The first expression is evaluated in
a fresh scope and its resulting object or failing state is retained. Then, the
second expression is evaluated in a fresh scope. Finally, the retained state
from the first expression, success or failure, is the produced value of the
entire finally-expr.

The second expression is evaluated regardless of whether the first expression
returns an exceptional state; its state is discarded. It is
implementation-dependent whether exceptional states are chained together.

Chained Exceptions

Why doesn’t Monte require chained exceptions? In many languages, the
exception from the first part of a finally-expr would have a chain
including the exception from the second part of the finally-expr. This
faciliates debugging.

Since Monte doesn’t offer tools for digging into exceptional states beyond
catching them as a reified but opaque value, there is little point in
mandating implementation details for that value. Instead, one might expect
unsafe names like unsealException to have standard behavior, and that
behavior might include exposing a possibly-empty list of chained
exceptions. This isn’t currently the case, but it might be in the future.

This table shows the possible states:

	try
	finally
	result

	success
	success
	success

	error
	success
	error

	success
	error
	error

	error
	error
	error

If

An IfExpr has a test expression, a consequent expression, and an alternative
expression. A scope is introduced, and then the test expression is evaluated,
producing a value which passes Bool. Either the consequent or the
alternative is evaluated and used as the produced value, depending on whether
the test produced true or false. Finally, the scope is dismissed.

If the test’s produced value does not conform to Bool, an error is thrown.

Sequence

A SequenceExpr contains zero or more expressions.

If a SequenceExpr contains zero expressions, then it evaluates to null.

Otherwise, a SequenceExpr evaluates each of its inner expressions in
sequential order, using the final expression’s produced value as the produced
value of the entire sequence.

Try

A TryExpr has an expression and a catch pattern and expression. The first
expression is evaluated in a fresh scope and used as the produced value.

If an error is thrown in the first expression, then the scope is dismissed, a
new scope is introduced, the error is unified with the catch pattern, and the
catch expression is evaluated and used as the produced value.

Objects

Evaluation of a message sent to an object proceeds as follows.

Matcher

A matcher has a pattern and an expression. A scope is introduced and incoming
messages are unified with the pattern. If the unification succeeds, the
expression is evaluated and its produced value is returned to the caller.

Method

A method has a verb, a list of argument patterns, a list of named argument
patterns, a guard expression, and a body expression. When a message matches
the verb of the method, a scope is introduced and each pattern is unified
against the message. Each argument pattern is unified against each argument,
and then each named argument pattern is unified against each named argument.

If the number of arguments in the message differs from the number of argument
patterns in the method, an error is thrown. Informally, the method and message
must have the same arity.

If unification fails, an error is thrown.

After unification, the guard expression is evaluated and its produced value is
stored for return value guarding. The body expression is evaluated and its
produced value is given as a specimen to the return value guard. The returned
prize from the guard is returned to the caller.

If the return value guard fails, an error is thrown.

Note

The return value guard is evaluated before the body, but called after the
body.

Object

An ObjectExpr has a pattern, a list of auditor expressions, a list of
methods, and a list of matchers. When evaluated, a new object with the methods
and matchers is created. That object is audited by each auditor in sequential
order. Finally, the object is unified with its pattern in the surrounding
scope, and the first auditor, if present, is used as the guard for the
binding.

Objects close over all of the names which are visible in their scope.
Additionally, objects close over the names defined in the pattern of the
ObjectExpr.

Patterns

Pattern evaluation is a process of unification. During unification,
patterns are given a specimen and an ejector. Patterns examine the specimens
and create names in the surrounding scope. When patterns fail to unify, the
ejector is fired. If the ejector fails to leave control, then an error is
thrown.

Pattern Nodes

Ignore

An IgnorePatt coerces its specimen with a guard.

Binding

A BindingPatt coerces its specimen with the Binding guard and binds the
resulting prize as a binding.

Final

A FinalPatt coerces its specimen with a guard and binds the resulting prize
into a final slot.

Var

A VarPatt coerces its specimen with a guard and binds the resulting prize
into a var slot.

List

A ListPatt has a list of subpatterns. It coerces its specimen to a List
and matches the elements of the specimen to each subpattern, in sequential
order.

If the ListPatt and specimen are different lengths, then unification fails.

Via

A ViaPatt contains an expression and a subpattern. The specimen and ejector
are passed to the expression’s produced value, and the result is unified with
the subpattern.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Categorial Semantics

DF-Mont-Mess

Let DF-Mont-Mess be the category whose objects are DeepFrozen messages and
whose arrows are DeepFrozen Monte objects. For our diagrams, we will
follow the convention that arrows are arrows and objects are encircled.

Since DF-Mont-Mess is a category, it must have an identity arrow for all
messages.

[image: digraph identity { message [label="[\"run\", [42], [].asMap()]"]; message -> message [label="id"]; }]

In Monte, this object simply repeats messages delivered to it:

object id {
 match message {
 message
 }
}

DF-Mont

Let DF-Mont be the category whose objects are DeepFrozen values, not
just messages, and whose arrows are DeepFrozen objects, as well as several
primitives. The most important primitive is likely the ability to perform a
call.

[image: digraph call { tuple [label="[1, \"add\", [1], [].asMap()]"]; tuple -> 2 [label="call"]; }]

This is like the Monte expression 1 + 1, or (1).add(1). It is also
like the Monte expression 2. In DF-Mont, Monte execution is
represented by diagrams which commute, and the direction of computation is
indicated by the direction of arrows.

Initial Object

We can formalize the statement that every object in DF-Mont is
DeepFrozen by showing that there is a unique arrow (up to isomorphism)
! from DeepFrozen to any other object obj in the category.

[image: digraph DeepFrozenInitial { message [label="[DeepFrozen, \"coerce\", [obj, null], [].asMap()]"]; DeepFrozen -> message -> obj; DeepFrozen -> obj [label="!"]; }]

This diagram commutes. The up-to-isomorphism limitation comes from null in
coerce/2; we may replace it in this diagram with any other object.

Products

Lists act as our products. We can either use calls to do work on lists, or we
can use categorical logic. The arrow [[1, 2], [3, 4]] → [[1, 2], "add",
[[3, 4]], [].asMap()] is a member of a family of list-building arrows.

[image: digraph listAdd { pair [label="[[1, 2], [3, 4]]"]; sum [label="[1, 2, 3, 4]"]; pair -> sum [label="listAdd"]; pairCall [label="[[1, 2], \"add\", [[3, 4]], [].asMap()]"]; pair -> pairCall [label="listMake"]; pairCall -> sum [label="call"]; }]

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Monte Grammar

Note

Lexical details such as indented blocks are
not captured in this grammar.

Todo

finish grammar productions marked @@.
Meanwhile, see monte_parser.mt [https://github.com/monte-language/typhon/blob/master/mast/lib/monte/monte_parser.mt] for details.

blockExpr ::= FunctionExpr
 | ObjectExpr
 | bind
 | def
 | InterfaceExpr
 | IfExpr
 | ForExpr
 | WhileExpr
 | SwitchExpr
 | EscapeExpr
 | TryExpr
 | WhenExpr
 | LambdaExpr
 | MetaExpr
block ::= "{" (sequence | "pass") "}"
HideExpr ::= "{" ((expr ";")+ | /* empty */) "}"
IfExpr ::= "if" "(" expr ")" block ["else" ("if" /* blockExpr@@ */ | block)]
SwitchExpr ::= "switch" "(" expr ")" "{" matchers "}"
matchers ::= ("match" pattern block)+
TryExpr ::= "try" block catchers
catchers ::= [("catch" pattern block)+] ["finally" block]
EscapeExpr ::= "escape" pattern blockCatch
WhileExpr ::= "while" "(" expr ")" blockCatch
ForExpr ::= "for" pattern ["=>" pattern] "in" comp blockCatch
blockCatch ::= block ["catch" pattern block]
WhenExpr ::= "when" "(" (expr ",")+ ")" "->" block catchers
LambdaExpr ::= "fn" [(pattern ",")+] block
def ::= "def" (("bind" name [guard] | name) (/* objectFunction@@ */ | assign) | assign)
bind ::= "bind" name [guard] objectExpr
ObjectExpr ::= "object" ("bind" name | "_" | name) objectExpr
objectExpr ::= ["extends" order] auditors "{" [(objectScript ";")+] "}"
objectScript ::= [doco] ("pass" | [("@@meth")+]) ("pass" | [(matchers)+])
matchers ::= ("match" pattern block)+
doco ::= .String.
FunctionExpr ::= "def" ["." verb] "(" [(pattern ",")+] ")" block
InterfaceExpr ::= "interface" namePatt ["guards" pattern] ["extends" (order ",")+] /* implements_@@ */ /* msgs@@ */
guardOpt ::= ":" guard
 | /* empty */
guard ::= IDENTIFIER "[" ((expr ",")+ | /* empty */) "]"
 | IDENTIFIER
 | "(" expr ")"
module_header ::= "imports" StrExpr "=~" ((pattern)+) [exports] sequence
exports ::= "exports" "(" ((name ",")+ | /* empty */) ")"
sequence ::= ((blockExpr | expr) ";")+
 | /* empty */
assign ::= "def" pattern ["exit" order] ":=" assign
 | (VarPatt | BindPatt) /* empty */ ":=" assign
 | lval ":=" assign
 | VerbAssignExpr
 | order
lval ::= order "[" ((expr ",")+ | /* empty */) "]"
 | name
VerbAssignExpr ::= lval VERB_ASSIGN assign
logical_or ::= logical_and ["||" logical_or]
logical_and ::= comp ["&&" logical_and]
comp ::= order (("=~" | "!~") | ("==" | "!=") | "&!" | ("^" | "&" | "|")) comp
 | order
order ::= CompareExpr
 | RangeExpr
 | BinaryExpr
 | prefix
CompareExpr ::= prefix (">" | "<" | ">=" | "<=" | "<=>") order
RangeExpr ::= prefix (.. | ..!) order
shift ::= prefix ("<<" | ">>") order
additiveExpr ::= multiplicativeExpr ("+" | "-") additiveExpr
multiplicativeExpr ::= exponentiationExpr ("*" | "/" | "//" | "%") order
exponentiationExpr ::= prefix "**" order
prefix ::= "-" prim
 | ("~" | "!") calls
 | SlotExpr
 | BindingExpr
 | CoerceExpr
 | calls
SlotExpr ::= "&" name
BindingExpr ::= "&&" name
MetaExpr ::= "meta" . ("context" "(" ")" | "getState" "(" ")")
CoerceExpr ::= calls ":" guard
calls ::= prim ((((call | send) | index))+) [curryTail]
call ::= [. verb] argList
send ::= "<-" [verb] argList
curryTail ::= . verb
 | "<-" verb
index ::= "[" ((expr ",")+ | /* empty */) "]"
verb ::= IDENTIFIER
 | .String.
argList ::= "(" ((expr ",")+ | /* empty */) ")"
pattern ::= postfixPatt
postfixPatt ::= SuchThatPatt
 | prefixPatt
prefixPatt ::= MapPatt
 | ListPatt
 | SamePatt
 | NotSamePatt
 | QuasiliteralPatt
 | ViaPatt
 | IgnorePatt
 | namePatt
namePatt ::= FinalPatt
 | VarPatt
 | BindPatt
 | SlotPatt
 | BindingPatt
SuchThatPatt ::= prefixPatt "?" "(" expr ")"
ListPatt ::= "[" ((pattern ",")+ | /* empty */) "]" ["+" pattern]
MapPatt ::= "[" (mapPattItem ",")+ "]" ["|" pattern]
mapPattItem ::= ((LiteralExpr | "(" expr ")") "=>" pattern | "=>" namePatt) [":=" order]
SamePatt ::= "==" prim
NotSamePatt ::= "!=" prim
QuasiliteralPatt ::= [IDENTIFIER] "`" (((QUASI_TEXT | (AT_IDENT | "@{" pattern "}")))+) "`"
ViaPatt ::= "via" "(" expr ")" pattern
FinalPatt ::= name guardOpt
VarPatt ::= "var" name guardOpt
BindPatt ::= "bind" name guardOpt
SlotPatt ::= "&" name guardOpt
BindingPatt ::= "&&" name
IgnorePatt ::= "_" guardOpt
prim ::= "(" expr ")"
 | LiteralExpr
 | quasiliteral
 | NounExpr
 | HideExpr
 | MapComprehensionExpr
 | ListComprehensionExpr
 | ListExpr
 | MapExpr
expr ::= assign
 | ("continue" | "break" | "return") ("(" ")" | ";" | blockExpr)
NounExpr ::= name
name ::= IDENTIFIER
 | "::" stringLiteral
LiteralExpr ::= StrExpr
 | IntExpr
 | DoubleExpr
 | CharExpr
quasiliteral ::= [IDENTIFIER] "`" (((QUASI_TEXT | (DOLLAR_IDENT | "${" expr "}")))+) "`"
ListExpr ::= "[" ((expr ",")+ | /* empty */) "]"
comprehension ::= pattern "in" iter expr
 | pattern "=>" pattern "in" iter expr "=>" expr
iter ::= order ["if" comp]
MapExpr ::= "[" (mapItem ",")+ "]"
mapItem ::= expr "=>" expr
 | "=>" (SlotExpr | BindingExpr | NounExpr)
IntExpr ::= (hexLiteral | decLiteral)
decLiteral ::= digits
digits ::= digit (((digit | "_"))+)+
digit ::= /* one of: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 */
hexLiteral ::= "0" ("x" | X) hexDigits
hexDigits ::= hexDigit (((hexDigit | "_"))+)+
hexDigit ::= /* one of: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f, A, B, C, D, E, F */
DoubleExpr ::= floatLiteral
floatLiteral ::= digits (. digits [floatExpn] | floatExpn)
floatExpn ::= /* one of: e, E */ [/* one of: -, + */] digits
CharExpr ::= "'" charConstant "'"
charConstant ::= (("\" /* newline */)+)+ (/* none of: ', \, tab */ | "\" ((U /* 8 x */ hexDigit | "u" /* 4 x */ hexDigit | "x" /* 2 x */ hexDigit) | /* one of: b, t, n, f, r, \, ', " */))
StrExpr ::= stringLiteral
stringLiteral ::= '"' ((charConstant)+)+ '"'

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Roadmap: Montefesto

.ia lo snura faircu’u kanji ka’e na’e nandu (“Secure distributed computation should not be hard.”)

Corbin, on Monte

This is the roadmap for Monte development according to Allen and Corbin. If
you want to work on anything on this list, let us know; we’re very accepting
of new contributors.

2015

	Finish key language features
	✓ Named arguments

	✓ m``

	✓ Bytes

	✓ Finalize on-disk (on-wire) compiled code format

	✓ Auditors

	Finish key runtime features
	Expose key C libraries to user-level code
	✓ libsodium

	✓ libuv

	Finish key compiler features
	✓ Compiler error messages are informative

	Finish key integration features
	Profiling
	✓ Time (vmprof)

2016

	“Exit stealth mode”; display a sleek and friendly front page to neophytes
and visitors which explains:
	✓ Why Monte exists

	✓ How to get started using Monte

	Have stories for:
	✓ Developing modular Monte codebases

	Finish key language features
	✓ Streamcaps

	✓ Vats

	Finish key integration features
	Initial IDE support
	✓ vim (Corbin)

	✓ emacs (Allen)

	✓ Sublime/Atom (Mike, Justin)

2017

	Make Monte desireable
	✓ Branding

	✓ Object capability community outreach

	Improve the core
	✓ Speed: Nobody should have to wait for code to compile

	Safe objects
	✓ Many method improvements to builtin collections

	✓ Semitransparent

	✓ Vow

	Unsafe objects
	✓ Timers

	✓ Property tests

	Typhon-specific improvements
	✓ Even faster interpreting

	Develop important libraries
	✓ HTTP

	✓ Records

	Monte-related R&D
	✓ Capn Proto

2018

	Advanced safe objects
	PassByCopy

	makeWeakMap

	Twines

	Elusive Eight: Useful numerical analysis methods for doubles

	Production-ready unsafe objects
	FS

	Tamed timers

	Typhon-specific improvements
	Even faster interpreting

	Develop Monte packaging
	✓ Muffins

	Packages

	Environments

	mtpkgs

	Develop important libraries
	Debugger

	Pretty-printers

	Monte-related R&D
	Rationals

	Capn Proto: Message generation, CapTP/VatTP

	kubeless integration

Contributing

If you’d like to get involved with developing or using the Monte language,
start by getting in touch with us on IRC. It is useful, but not necessary, to
be acquainted with Python [https://docs.python.org/2/tutorial/]‘s syntax and/or the computational concepts of E [http://www.skyhunter.com/marcs/ewalnut.html].

Then clone the repo [https://github.com/monte-language/monte] and follow the directions below to begin running Monte
code. If you have problems, join us in #monte on irc.freenode.net, ask your
question (use a pastebin [https://bpaste.net/] to share any errors, rather than pasting into the
channel), and wait a few hours if nobody is around.

If you’d like to contribute to Monte, check out the Monte [https://github.com/monte-language/monte/issues] and Typhon [https://github.com/monte-language/typhon/issues] issue
trackers. It’s also worth grepping for TODO in the source of both
projects.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

safeScope

Bindings in the safe scope are available to modules by
default. They are all DeepFrozen.

Todo

Fix the module.name notation
resulting from abuse of sphinx python support.

Todo

When Bool is fixed to reveal its interface,
re-run mtDocStrings to document and, or, xor, not, butNot, pick, op__cmp.

Basic guards

	
class safeScope.Bool

	The set of Boolean values: [true, false].asSet()

This guard is unretractable.

	
static coerce(_, _)

	no docstring

	
static getDocstring()

	no docstring

	
static getMethods()

	no docstring

	
static supersetOf(_)

	no docstring

	
class safeScope.Str

	An ordered vector space.

As a guard, this object admits any value in the set of objects in
the space. Comparison operators may be used on this object to
create subguards which only admit a partition of the set.

	
static _printOn(_)

	no docstring

	
static _uncall()

	no docstring

	
static add(_)

	no docstring

	
static coerce(_, _)

	no docstring

	
static makeEmptyRegion()

	no docstring

	
static makeRegion(_, _, _, _)

	no docstring

	
static op__cmp(_)

	no docstring

	
static subtract(_)

	no docstring

	
_makeIterator()

	no docstring

	
add(_)

	no docstring

	
asList()

	no docstring

	
asSet()

	no docstring

	
contains(_)

	no docstring

	
endsWith(_)

	no docstring

	
get(_)

	no docstring

	
getSpan()

	no docstring

	
indexOf(_, _)

	no docstring

	
isEmpty()

	no docstring

	
join(_)

	no docstring

	
lastIndexOf(_)

	no docstring

	
multiply(_)

	no docstring

	
op__cmp(_)

	no docstring

	
quote()

	no docstring

	
replace(_, _)

	no docstring

	
size()

	no docstring

	
slice(_)

	no docstring

	
split(_, _)

	no docstring

	
startsWith(_)

	Whether this string has s as a prefix.

	
toLowerCase()

	no docstring

	
toUpperCase()

	no docstring

	
trim()

	no docstring

	
with(_)

	no docstring

	
class safeScope.Char

	An ordered vector space.

As a guard, this object admits any value in the set of objects in
the space. Comparison operators may be used on this object to
create subguards which only admit a partition of the set.

	
static _printOn(_)

	no docstring

	
static _uncall()

	no docstring

	
static add(_)

	no docstring

	
static coerce(_, _)

	no docstring

	
static makeEmptyRegion()

	no docstring

	
static makeRegion(_, _, _, _)

	no docstring

	
static op__cmp(_)

	no docstring

	
static subtract(_)

	no docstring

	
add(_)

	no docstring

	
asInteger()

	no docstring

	
asString()

	no docstring

	
getCategory()

	no docstring

	
max(_)

	no docstring

	
min(_)

	no docstring

	
next()

	no docstring

	
op__cmp(_)

	no docstring

	
previous()

	no docstring

	
quote()

	no docstring

	
subtract(_)

	no docstring

	
class safeScope.Double

	An ordered vector space.

As a guard, this object admits any value in the set of objects in
the space. Comparison operators may be used on this object to
create subguards which only admit a partition of the set.

	
static _printOn(_)

	no docstring

	
static _uncall()

	no docstring

	
static add(_)

	no docstring

	
static coerce(_, _)

	no docstring

	
static makeEmptyRegion()

	no docstring

	
static makeRegion(_, _, _, _)

	no docstring

	
static op__cmp(_)

	no docstring

	
static subtract(_)

	no docstring

	
aboveZero()

	no docstring

	
abs()

	no docstring

	
add(_)

	no docstring

	
approxDivide(_)

	no docstring

	
atLeastZero()

	no docstring

	
atMostZero()

	no docstring

	
belowZero()

	no docstring

	
cos()

	no docstring

	
floor()

	no docstring

	
floorDivide(_)

	no docstring

	
isZero()

	no docstring

	
log()

	no docstring

	
multiply(_)

	no docstring

	
negate()

	no docstring

	
op__cmp(_)

	no docstring

	
pow(_)

	no docstring

	
sin()

	no docstring

	
sqrt()

	no docstring

	
subtract(_)

	no docstring

	
tan()

	no docstring

	
toBytes()

	no docstring

	
class safeScope.Int

	An ordered vector space.

As a guard, this object admits any value in the set of objects in
the space. Comparison operators may be used on this object to
create subguards which only admit a partition of the set.

	
static _printOn(_)

	no docstring

	
static _uncall()

	no docstring

	
static add(_)

	no docstring

	
static coerce(_, _)

	no docstring

	
static makeEmptyRegion()

	no docstring

	
static makeRegion(_, _, _, _)

	no docstring

	
static op__cmp(_)

	no docstring

	
static subtract(_)

	no docstring

	
aboveZero()

	no docstring

	
abs()

	no docstring

	
add(_)

	no docstring

	
and(_)

	no docstring

	
approxDivide(_)

	no docstring

	
asDouble()

	no docstring

	
atLeastZero()

	no docstring

	
atMostZero()

	no docstring

	
belowZero()

	no docstring

	
bitLength()

	no docstring

	
complement()

	no docstring

	
floorDivide(_)

	no docstring

	
isZero()

	no docstring

	
max(_)

	no docstring

	
min(_)

	no docstring

	
mod(_)

	no docstring

	
modPow(_, _)

	no docstring

	
multiply(_)

	no docstring

	
negate()

	no docstring

	
next()

	no docstring

	
op__cmp(_)

	no docstring

	
or(_)

	no docstring

	
pow(_)

	no docstring

	
previous()

	no docstring

	
shiftLeft(_)

	no docstring

	
shiftRight(_)

	no docstring

	
subtract(_)

	no docstring

	
xor(_)

	no docstring

	
class safeScope.Bytes

	An ordered vector space.

As a guard, this object admits any value in the set of objects in
the space. Comparison operators may be used on this object to
create subguards which only admit a partition of the set.

	
static _printOn(_)

	no docstring

	
static _uncall()

	no docstring

	
static add(_)

	no docstring

	
static coerce(_, _)

	no docstring

	
static makeEmptyRegion()

	no docstring

	
static makeRegion(_, _, _, _)

	no docstring

	
static op__cmp(_)

	no docstring

	
static subtract(_)

	no docstring

	
_makeIterator()

	no docstring

	
_uncall()

	no docstring

	
add(_)

	no docstring

	
asList()

	no docstring

	
asSet()

	no docstring

	
contains(_)

	no docstring

	
get(_)

	no docstring

	
indexOf(_)

	no docstring

	
isEmpty()

	no docstring

	
join(_)

	no docstring

	
lastIndexOf(_)

	no docstring

	
multiply(_)

	no docstring

	
op__cmp(_)

	no docstring

	
replace(_, _)

	no docstring

	
size()

	no docstring

	
slice(_)

	no docstring

	
split(_, _)

	no docstring

	
toLowerCase()

	no docstring

	
toUpperCase()

	no docstring

	
trim()

	no docstring

	
with(_)

	no docstring

	
class safeScope.List

	A guard which admits lists.

Only immutable lists are admitted by this object. Mutable lists created
with diverge/0 will not be admitted; freeze them first with
snapshot/0.

	
static _printOn(_)

	no docstring

	
static coerce(_, _)

	no docstring

	
static extractGuard(_, _)

	no docstring

	
static get(_)

	no docstring

	
_makeIterator()

	no docstring

	
printOn()

	no docstring

	
_uncall()

	no docstring

	
add(_)

	no docstring

	
asMap()

	no docstring

	
asSet()

	no docstring

	
contains(_)

	no docstring

	
diverge()

	no docstring

	
empty()

	no docstring

	
get(_)

	no docstring

	
indexOf(_)

	no docstring

	
isEmpty()

	no docstring

	
join(_)

	no docstring

	
last()

	no docstring

	
multiply(_)

	no docstring

	
op__cmp(_)

	no docstring

	
put(_, _)

	no docstring

	
reverse()

	no docstring

	
size()

	no docstring

	
slice(_)

	no docstring

	
snapshot()

	no docstring

	
sort()

	no docstring

	
startOf(_, _)

	no docstring

	
with(_, _)

	no docstring

	
class safeScope.Map

	A guard which admits maps.

Only immutable maps are admitted by this object. Mutable maps created
with diverge/0 will not be admitted; freeze them first with
snapshot/0.

	
static _printOn(_)

	no docstring

	
static coerce(_, _)

	no docstring

	
static extractGuards(_, _)

	no docstring

	
static get(_, _)

	no docstring

	
_makeIterator()

	no docstring

	
printOn()

	no docstring

	
_uncall()

	no docstring

	
asSet()

	no docstring

	
contains(_)

	no docstring

	
diverge()

	no docstring

	
empty()

	no docstring

	
fetch(_, _)

	no docstring

	
get(_)

	no docstring

	
getKeys()

	no docstring

	
getValues()

	no docstring

	
isEmpty()

	no docstring

	
or(_)

	no docstring

	
reverse()

	no docstring

	
size()

	no docstring

	
slice(_)

	no docstring

	
snapshot()

	no docstring

	
sortKeys()

	no docstring

	
sortValues()

	no docstring

	
with(_, _)

	no docstring

	
without(_)

	no docstring

	
class safeScope.Set

	A guard which admits sets.

Only immutable sets are admitted by this object. Mutable sets created
with diverge/0 will not be admitted; freeze them first with
snapshot/0.

	
static _printOn(_)

	no docstring

	
static coerce(_, _)

	no docstring

	
static extractGuard(_, _)

	no docstring

	
static get(_)

	no docstring

	
_makeIterator()

	no docstring

	
printOn()

	no docstring

	
_uncall()

	no docstring

	
and(_)

	no docstring

	
asList()

	no docstring

	
asSet()

	no docstring

	
butNot(_)

	no docstring

	
contains(_)

	no docstring

	
diverge()

	no docstring

	
empty()

	no docstring

	
isEmpty()

	no docstring

	
op__cmp(_)

	no docstring

	
or(_)

	no docstring

	
size()

	no docstring

	
slice(_, _)

	no docstring

	
snapshot()

	no docstring

	
subtract(_)

	no docstring

	
with(_)

	no docstring

	
without(_)

	no docstring

	
safeScope.Pair

	A guard which admits immutable pairs.

Pairs are merely lists of size two.

	
safeScope._printOn(_)

	no docstring

	
safeScope.coerce(_, _)

	no docstring

	
safeScope.extractGuards(_, _)

	no docstring

	
safeScope.get(_, _)

	no docstring

	
class safeScope.FinalSlot

	A guard which emits makers of FinalSlots.

	
static coerce(_, _)

	no docstring

	
static extractGuard(_, _)

	no docstring

	
static get(_)

	no docstring

	
static getDocstring()

	no docstring

	
static getGuard()

	no docstring

	
static getMethods()

	no docstring

	
static supersetOf(_)

	no docstring

	
class safeScope.VarSlot

	A guard which admits makers of VarSlots.

	
static coerce(_, _)

	no docstring

	
static extractGuard(_, _)

	no docstring

	
static get(_)

	no docstring

	
static getDocstring()

	no docstring

	
static getGuard()

	no docstring

	
static getMethods()

	no docstring

	
static supersetOf(_)

	no docstring

Guard utilities

	
class safeScope.Any

	A guard which admits the universal set.

This object specializes to a guard which admits the union of its
subguards: Any[X, Y, Z] =~ X ∪ Y ∪ Z

This guard is unretractable.

	
static coerce(_, _)

	no docstring

	
static extractGuards(_, _)

	no docstring

	
static getMethods()

	no docstring

	
static supersetOf(_)

	no docstring

	
class safeScope.Void

	The singleton set of null: [null].asSet()

This guard is unretractable.

	
static coerce(_, _)

	no docstring

	
static getDocstring()

	no docstring

	
static getMethods()

	no docstring

	
static supersetOf(_)

	no docstring

	
safeScope.Empty

	An unretractable predicate guard.

This guard admits any object which passes its predicate.

	
safeScope._printOn(_)

	no docstring

	
safeScope.coerce(_, _)

	no docstring

	
safeScope.NullOk

	A guard which admits null.

When specialized, this object returns a guard which admits its subguard
as well as null.

	
safeScope.coerce(_, _)

	no docstring

	
safeScope.extractGuard(_, _)

	no docstring

	
safeScope.get(_)

	no docstring

	
safeScope.Same

	When specialized, this object yields a guard which only admits precisely
the object used to specialize it.

In simpler terms, Same[x] will match only those objects o for which o
== x.

	
safeScope.extractValue(_, _)

	no docstring

	
safeScope.get(_)

	no docstring

	
safeScope.Vow

	A guard which admits promises and their entailments.

Vows admit the union of unfulfilled promises, fulfilled promises, broken
promises, and Near values. The unifying concept is that of a partial
future value to which messages will be sent but that is not Far.

When specialized, this guard returns a guard which ensures that promised
prizes either conform to its subguard or are broken.

	
safeScope._printOn(_)

	no docstring

	
safeScope.coerce(_, _)

	no docstring

	
safeScope.extractGuard(_, _)

	no docstring

	
safeScope.get(_)

	no docstring

	
safeScope.SubrangeGuard

	The maker of subrange guards.

When specialized with a guard, this object produces a auditor for those
guards which admit proper subsets of that guard.

	
safeScope.get(_)

	no docstring

	
safeScope._auditedBy

	Whether an auditor has audited a specimen.

	
safeScope.run(_, _)

	no docstring

Primitive values

	
safeScope.true

	:Bool

	
safeScope.false

	:Bool

	
safeScope.null

	:Void

	
safeScope.NaN

	:Double

	
safeScope.Infinity

	:Double

Data Constructors

	
safeScope._makeInt

	A maker of `Int`s.

This maker can handle radices from 2 to 36:

▲> _makeInt.withRadix(36)(“zxcvasdfqwer1234”)
7942433573816828193485776

	
safeScope.fromBytes(_, _)

	no docstring

	
safeScope.run(_)

	no docstring

	
safeScope.withRadix(_)

	no docstring

	
safeScope._makeDouble

	The maker of `Double`s.

	
safeScope.fromBytes(_, _)

	no docstring

	
safeScope.run(_, _)

	no docstring

	
safeScope._makeStr

	The maker of `Str`s.

	
safeScope.fromChars(_)

	no docstring

	
safeScope.fromStr(_, _)

	no docstring

	
safeScope._makeString

	The maker of `Str`s.

	
safeScope.fromChars(_)

	no docstring

	
safeScope.fromStr(_, _)

	no docstring

	
safeScope._makeBytes

	The maker of Bytes.

	
safeScope.fromInts(_)

	no docstring

	
safeScope.fromStr(_)

	no docstring

	
safeScope._makeList

	The maker of `List`s.

	
safeScope.fromIterable(_)

	no docstring

	
safeScope._makeMap

	Given a List[Pair], produce a Map.

	
safeScope.fromPairs(_)

	no docstring

	
safeScope._makeOrderedSpace

	The maker of ordered vector spaces.

This object implements several Monte operators, including those which
provide ordered space syntax.

	
safeScope.op__thru(_, _)

	no docstring

	
safeScope.op__till(_, _)

	no docstring

	
safeScope.spaceOfGuard(_)

	no docstring

	
safeScope.spaceOfValue(_)

	no docstring

	
safeScope._makeTopSet

	
	
safeScope.run(_, _, _, _, _)

	no docstring

	
safeScope._makeOrderedRegion

	Make regions for sets of objects with total ordering.

	
safeScope.run(_, _, _)

	no docstring

	
safeScope._makeSourceSpan

	no docstring

	
safeScope.run(_, _, _, _, _, _)

	no docstring

	
safeScope._makeFinalSlot

	A maker of final slots.

	
safeScope.asType()

	no docstring

	
safeScope.run(_, _, _)

	no docstring

	
safeScope._makeVarSlot

	A maker of var slots.

	
safeScope.asType()

	no docstring

	
safeScope.run(_, _, _)

	no docstring

	
safeScope.makeLazySlot

	Make a slot that lazily binds its value.

	
safeScope.run(_)

	no docstring

Tracing

	
safeScope.trace

	Write a line to the trace log.

This object is a Typhon standard runtime traceln. It prints prefixed
lines to stderr.

Call .exception(problem) to print a problem to stderr, including
a formatted traceback.

	
safeScope.exception(_)

	no docstring

	
safeScope.traceln

	Write a line to the trace log.

This object is a Typhon standard runtime traceln. It prints prefixed
lines to stderr.

Call .exception(problem) to print a problem to stderr, including
a formatted traceback.

	
safeScope.exception(_)

	no docstring

Brands

	
safeScope.makeBrandPair

	Make a [sealer, unsealer] pair.

	
safeScope.run(_)

	no docstring

Quasiparsers

	
``

	A quasiparser of Unicode strings.

This object is the default quasiparser. It can interpolate any object
into a string by pretty-printing it; in fact, that is one of this
object’s primary uses.

When used as a pattern, this object performs basic text matching.
Patterns always succeed, grabbing zero or more characters non-greedily
until the next segment. When patterns are concatenated in the
quasiliteral, only the rightmost pattern can match any characters; the
other patterns to the left will all match the empty string.

	
safeScope.matchMaker(_)

	no docstring

	
safeScope.patternHole(_)

	no docstring

	
safeScope.valueHole(_)

	no docstring

	
safeScope.valueMaker(_)

	no docstring

	
b``

	A quasiparser for Bytes.

This object behaves like simple__quasiParser; it takes some textual
descriptions of bytes and returns a bytestring. It can interpolate
objects which coerce to Bytes and Str.

As a pattern, this object performs slicing of bytestrings. Semantics
mirror simple__quasiParser with respect to concatenated patterns and
greediness.

	
safeScope.matchMaker(_)

	no docstring

	
safeScope.patternHole(_)

	no docstring

	
safeScope.valueHole(_)

	no docstring

	
safeScope.valueMaker(_)

	no docstring

	
m``

	A quasiparser for the Monte programming language.

This object will parse any Monte expression and return an opaque
value. In the near future, this object will instead return a translucent
view into a Monte compiler and optimizer.

	
safeScope.fromStr(_)

	no docstring

	
safeScope.getAstBuilder()

	no docstring

	
safeScope.matchMaker(_)

	no docstring

	
safeScope.patternHole(_)

	no docstring

	
safeScope.valueHole(_)

	no docstring

	
safeScope.valueMaker(_)

	no docstring

	
mpatt``

	A quasiparser for the Monte programming language’s patterns.

This object is like m``, but for patterns.

	
safeScope.fromStr(_)

	no docstring

	
safeScope.getAstBuilder()

	no docstring

	
safeScope.matchMaker(_)

	no docstring

	
safeScope.patternHole(_)

	no docstring

	
safeScope.valueHole(_)

	no docstring

	
safeScope.valueMaker(_)

	no docstring

Flow control

	
safeScope.M

	Miscellaneous vat management and quoting services.

	
safeScope.call(_, _, _, _)

	no docstring

	
safeScope.callWithMessage(_, _)

	no docstring

	
safeScope.send(_, _, _, _)

	no docstring

	
safeScope.sendOnly(_, _, _, _)

	no docstring

	
safeScope.toQuote(_)

	no docstring

	
safeScope.toString(_)

	no docstring

	
safeScope.throw

	no docstring

	
safeScope.eject(_, _)

	no docstring

	
safeScope.run(_)

	no docstring

	
safeScope._loop

	Perform an iterative loop.

	
safeScope.run(_, _)

	no docstring

	
safeScope._iterForever

	Implementation of while-expression syntax.

	
safeScope._makeIterator()

	no docstring

	
safeScope.next(_)

	no docstring

Evaluation

	
safeScope.eval

	Evaluate Monte source.

This object respects POLA and grants no privileges whatsoever to
evaluated code. To grant a safe scope, pass safeScope.

	
safeScope.evalToPair(_, _)

	no docstring

	
safeScope.run(_, _)

	no docstring

	
safeScope.astEval

	no docstring

	
safeScope.evalToPair(_, _)

	no docstring

	
safeScope.run(_, _)

	no docstring

Reference/object operations

	
safeScope.Ref

	Ref management and utilities.

	
safeScope.broken(_)

	no docstring

	
safeScope.fulfillment(_)

	no docstring

	
safeScope.isBroken(_)

	no docstring

	
safeScope.isDeepFrozen(_)

	no docstring

	
safeScope.isEventual(_)

	no docstring

	
safeScope.isFar(_)

	no docstring

	
safeScope.isNear(_)

	no docstring

	
safeScope.isResolved(_)

	no docstring

	
safeScope.isSelfish(_)

	no docstring

	
safeScope.isSelfless(_)

	no docstring

	
safeScope.makeProxy(_, _, _)

	no docstring

	
safeScope.optProblem(_)

	no docstring

	
safeScope.promise()

	no docstring

	
safeScope.state(_)

	no docstring

	
safeScope.whenBroken(_, _)

	no docstring

	
safeScope.whenBrokenOnly(_, _)

	no docstring

	
safeScope.whenResolved(_, _)

	no docstring

	
safeScope.whenResolvedOnly(_, _)

	no docstring

	
safeScope.promiseAllFulfilled

	
	
safeScope.run(_)

	no docstring

	
safeScope.DeepFrozen

	Auditor and guard for transitive immutability.

	
safeScope.audit(_)

	no docstring

	
safeScope.coerce(_, _)

	no docstring

	
safeScope.supersetOf(_)

	no docstring

	
safeScope.Selfless

	A stamp for incomparable objects.

Selfless objects are generally not equal to any objects but themselves.
They may choose to implement alternative comparison protocols such as
Transparent.

	
safeScope.audit(_)

	no docstring

	
safeScope.coerce(_, _)

	no docstring

	
safeScope.passes(_)

	no docstring

	
safeScope.Transparent

	Objects that Transparent admits have reliable ._uncall() methods, in the sense
that they correctly identify their maker and their entire state, and that
invoking the maker with the given args will produce an object with the same
state. Objects that are both Selfless and Transparent are compared for sameness
by comparing their uncalls.

	
safeScope.coerce(_, _)

	no docstring

	
safeScope.makeAuditorKit()

	no docstring

	
safeScope.Near

	A guard over references to near values.

This guard admits any near value, as well as any resolved reference to any
near value.

This guard is unretractable.

	
safeScope.coerce(_, _)

	no docstring

	
class safeScope.Binding

	A guard which admits bindings.

	
static coerce(_, _)

	no docstring

	
static getDocstring()

	no docstring

	
static getMethods()

	no docstring

	
static supersetOf(_)

	no docstring

Abstract Syntax

	
safeScope.astBuilder

	
	
safeScope.AndExpr(_, _, _)

	no docstring

	
safeScope.AssignExpr(_, _, _)

	no docstring

	
safeScope.AugAssignExpr(_, _, _, _)

	no docstring

	
safeScope.BinaryExpr(_, _, _, _)

	no docstring

	
safeScope.BindPattern(_, _, _)

	no docstring

	
safeScope.BindingExpr(_, _)

	no docstring

	
safeScope.BindingPattern(_, _)

	no docstring

	
safeScope.CatchExpr(_, _, _, _)

	no docstring

	
safeScope.Catcher(_, _, _)

	no docstring

	
safeScope.CoerceExpr(_, _, _)

	no docstring

	
safeScope.CompareExpr(_, _, _, _)

	no docstring

	
safeScope.CurryExpr(_, _, _, _)

	no docstring

	
safeScope.DefExpr(_, _, _, _)

	no docstring

	
safeScope.EscapeExpr(_, _, _, _, _)

	no docstring

	
safeScope.ExitExpr(_, _, _)

	no docstring

	
safeScope.FinalPattern(_, _, _)

	no docstring

	
safeScope.FinallyExpr(_, _, _)

	no docstring

	
safeScope.ForExpr(_, _, _, _, _, _, _)

	no docstring

	
safeScope.ForwardExpr(_, _)

	no docstring

	
safeScope.FunCallExpr(_, _, _, _)

	no docstring

	
safeScope.FunSendExpr(_, _, _, _)

	no docstring

	
safeScope.FunctionExpr(_, _, _, _)

	no docstring

	
safeScope.FunctionInterfaceExpr(_, _, _, _, _, _, _)

	no docstring

	
safeScope.FunctionScript(_, _, _, _, _)

	no docstring

	
safeScope.GetExpr(_, _, _)

	no docstring

	
safeScope.HideExpr(_, _)

	no docstring

	
safeScope.IfExpr(_, _, _, _)

	no docstring

	
safeScope.IgnorePattern(_, _)

	no docstring

	
safeScope.InterfaceExpr(_, _, _, _, _, _, _)

	no docstring

	
safeScope.ListComprehensionExpr(_, _, _, _, _, _)

	no docstring

	
safeScope.ListExpr(_, _)

	no docstring

	
safeScope.ListPattern(_, _, _)

	no docstring

	
safeScope.LiteralExpr(_, _)

	no docstring

	
safeScope.MapComprehensionExpr(_, _, _, _, _, _, _)

	no docstring

	
safeScope.MapExpr(_, _)

	no docstring

	
safeScope.MapExprAssoc(_, _, _)

	no docstring

	
safeScope.MapExprExport(_, _)

	no docstring

	
safeScope.MapPattern(_, _, _)

	no docstring

	
safeScope.MapPatternAssoc(_, _, _, _)

	no docstring

	
safeScope.MapPatternImport(_, _, _)

	no docstring

	
safeScope.MatchBindExpr(_, _, _)

	no docstring

	
safeScope.Matcher(_, _, _)

	no docstring

	
safeScope.MessageDesc(_, _, _, _, _)

	no docstring

	
safeScope.MetaContextExpr(_)

	no docstring

	
safeScope.MetaStateExpr(_)

	no docstring

	
safeScope.Method(_, _, _, _, _, _, _)

	no docstring

	
safeScope.MethodCallExpr(_, _, _, _, _)

	no docstring

	
safeScope.MismatchExpr(_, _, _)

	no docstring

	
safeScope.Module(_, _, _, _)

	no docstring

	
safeScope.NamedArg(_, _, _)

	no docstring

	
safeScope.NamedArgExport(_, _)

	no docstring

	
safeScope.NamedParam(_, _, _, _)

	no docstring

	
safeScope.NamedParamImport(_, _, _)

	no docstring

	
safeScope.NounExpr(_, _)

	no docstring

	
safeScope.ObjectExpr(_, _, _, _, _, _)

	no docstring

	
safeScope.OrExpr(_, _, _)

	no docstring

	
safeScope.ParamDesc(_, _, _)

	no docstring

	
safeScope.PatternHoleExpr(_, _)

	no docstring

	
safeScope.PatternHolePattern(_, _)

	no docstring

	
safeScope.PrefixExpr(_, _, _)

	no docstring

	
safeScope.QuasiExprHole(_, _)

	no docstring

	
safeScope.QuasiParserExpr(_, _, _)

	no docstring

	
safeScope.QuasiParserPattern(_, _, _)

	no docstring

	
safeScope.QuasiPatternHole(_, _)

	no docstring

	
safeScope.QuasiText(_, _)

	no docstring

	
safeScope.RangeExpr(_, _, _, _)

	no docstring

	
safeScope.SameExpr(_, _, _, _)

	no docstring

	
safeScope.SamePattern(_, _, _)

	no docstring

	
safeScope.Script(_, _, _, _)

	no docstring

	
safeScope.SendExpr(_, _, _, _, _)

	no docstring

	
safeScope.SeqExpr(_, _)

	no docstring

	
safeScope.SlotExpr(_, _)

	no docstring

	
safeScope.SlotPattern(_, _, _)

	no docstring

	
safeScope.SuchThatPattern(_, _, _)

	no docstring

	
safeScope.SwitchExpr(_, _, _)

	no docstring

	
safeScope.TempNounExpr(_, _)

	no docstring

	
safeScope.To(_, _, _, _, _, _, _)

	no docstring

	
safeScope.TryExpr(_, _, _, _)

	no docstring

	
safeScope.ValueHoleExpr(_, _)

	no docstring

	
safeScope.ValueHolePattern(_, _)

	no docstring

	
safeScope.VarPattern(_, _, _)

	no docstring

	
safeScope.VerbAssignExpr(_, _, _, _)

	no docstring

	
safeScope.ViaPattern(_, _, _)

	no docstring

	
safeScope.WhenExpr(_, _, _, _, _)

	no docstring

	
safeScope.WhileExpr(_, _, _, _)

	no docstring

	
safeScope.getAstGuard()

	no docstring

	
safeScope.getExprGuard()

	no docstring

	
safeScope.getNamePatternGuard()

	no docstring

	
safeScope.getNounGuard()

	no docstring

	
safeScope.getPatternGuard()

	no docstring

Utilities for syntax expansions

	
safeScope._accumulateList

	Implementation of list comprehension syntax.

	
safeScope.run(_, _)

	no docstring

	
safeScope._accumulateMap

	Implementation of map comprehension syntax.

	
safeScope.run(_, _)

	no docstring

	
safeScope._bind

	Resolve a forward declaration.

	
safeScope.run(_, _)

	no docstring

	
safeScope._booleanFlow

	Implementation of implicit breakage semantics in conditionally-defined
names.

	
safeScope.broken()

	no docstring

	
safeScope.failureList(_)

	no docstring

	
safeScope._comparer

	A comparison helper.

This object implements the various comparison operators.

	
safeScope.asBigAs(_, _)

	no docstring

	
safeScope.geq(_, _)

	no docstring

	
safeScope.greaterThan(_, _)

	no docstring

	
safeScope.leq(_, _)

	no docstring

	
safeScope.lessThan(_, _)

	no docstring

	
safeScope._equalizer

	A perceiver of identity.

This object can discern whether any two objects are distinct from each
other.

	
safeScope.isSettled(_)

	no docstring

	
safeScope.makeTraversalKey(_)

	no docstring

	
safeScope.optSame(_, _)

	no docstring

	
safeScope.sameEver(_, _)

	no docstring

	
safeScope.sameYet(_, _)

	no docstring

	
safeScope._makeVerbFacet

	The operator obj.`method`.

	
safeScope.curryCall(_, _)

	no docstring

	
safeScope.currySend(_, _)

	no docstring

	
safeScope._mapEmpty

	An unretractable predicate guard.

This guard admits any object which passes its predicate.

	
safeScope._printOn(_)

	no docstring

	
safeScope.coerce(_, _)

	no docstring

	
safeScope._mapExtract

	Implementation of key pattern-matching syntax in map patterns.

	
safeScope.run(_)

	no docstring

	
safeScope.withDefault(_, _)

	no docstring

	
safeScope._matchSame

	
	
safeScope.different(_)

	no docstring

	
safeScope.run(_)

	no docstring

	
safeScope._quasiMatcher

	Implementation of quasiliteral pattern syntax.

	
safeScope.run(_, _)

	no docstring

	
safeScope._slotToBinding

	Implementation of bind-pattern syntax for forward declarations.

	
safeScope.run(_, _)

	no docstring

	
safeScope._splitList

	Implementation of tail pattern-matching syntax in list patterns.

m`def [x] + xs := l`.expand() == m`def via (_splitList.run(1)) [x, xs] := l`

	
safeScope.run(_)

	no docstring

	
safeScope._suchThat

	The pattern patt ? (expr).

	
safeScope.run(_, _)

	no docstring

	
safeScope._switchFailed

	The implicit default matcher in a switch expression.

This object throws an exception.

	
safeScope._validateFor

	Ensure that flag is true.

This object is a safeguard against malicious loop objects. A flag is set
to true and closed over by a loop body; once the loop is finished, the
flag is set to false and the loop cannot be reëntered.

	
safeScope.run(_)

	no docstring

Interface constructors

	
safeScope._makeMessageDesc

	Describe a message.

	
safeScope.run(_, _, _, _)

	no docstring

	
safeScope._makeParamDesc

	Describe a parameter.

	
safeScope.run(_, _)

	no docstring

	
safeScope._makeProtocolDesc

	Produce an interface.

	
safeScope.makePair(_, _, _, _, _)

	no docstring

	
safeScope.run(_, _, _, _, _)

	no docstring

Entrypoint Arguments

Todo

Fix the module.name notation
resulting from abuse of sphinx python support.

Time

	
__entrypoint_io__.Timer

	An unsafe nondeterministic clock.

This object provides a useful collection of time-related methods:
* fromNow(delay :Double): Produce a promise which will fully resolve
after at least delay seconds have elapsed in the runtime. The promise
will resolve to a Double representing the precise amount of time
elapsed, in seconds.
* sendTimestamp(callable): Send a Double representing the runtime’s
clock to callable.

There is extremely unsafe functionality as well:
* unsafeNow(): The current system time.

Use with caution.

	
__entrypoint_io__.fromNow(_)

	no docstring

	
__entrypoint_io__.sendTimestamp(_)

	no docstring

	
__entrypoint_io__.unsafeNow()

	no docstring

I/O

	
__entrypoint_io__.stdio

	A producer of streamcaps for the ancient standard I/O bytestreams.

	
__entrypoint_io__.stderr()

	no docstring

	
__entrypoint_io__.stdin()

	no docstring

	
__entrypoint_io__.stdout()

	no docstring

	
__entrypoint_io__.makeStdErr

	no docstring

	
__entrypoint_io__.run()

	no docstring

	
__entrypoint_io__.makeStdIn

	no docstring

	
__entrypoint_io__.run()

	no docstring

	
__entrypoint_io__.makeStdOut

	no docstring

	
__entrypoint_io__.run()

	no docstring

	
__entrypoint_io__.makeFileResource

	Make a file Resource.

	
__entrypoint_io__.run(_)

	no docstring

Networking

	
__entrypoint_io__.makeTCP4ClientEndpoint

	Make a TCPv4 client endpoint.

	
__entrypoint_io__.run(_, _)

	no docstring

	
__entrypoint_io__.makeTCP4ServerEndpoint

	Make a TCPv4 server endpoint.

	
__entrypoint_io__.run(_)

	no docstring

	
__entrypoint_io__.makeTCP6ClientEndpoint

	Make a TCPv6 client endpoint.

	
__entrypoint_io__.run(_, _)

	no docstring

	
__entrypoint_io__.makeTCP6ServerEndpoint

	Make a TCPv4 server endpoint.

	
__entrypoint_io__.run(_)

	no docstring

	
__entrypoint_io__.getAddrInfo

	no docstring

	
__entrypoint_io__.run(_, _)

	no docstring

Runtime

	
__entrypoint_io__.currentRuntime

	The Typhon runtime.

This object is a platform-specific view into the configuration and
performance of the current runtime in the current process.

This object is necessarily unsafe and nondeterministic.

	
__entrypoint_io__.getCrypt()

	no docstring

	
__entrypoint_io__.getHeapStatistics()

	no docstring

	
__entrypoint_io__.getReactorStatistics()

	no docstring

	
__entrypoint_io__.unsealException

	Unseal a specimen.

	
__entrypoint_io__.run(_, _)

	no docstring

Processes and Vats

	
__entrypoint_io__.currentProcess

	The current process on the local node.

	
__entrypoint_io__.getArguments()

	no docstring

	
__entrypoint_io__.getEnvironment()

	no docstring

	
__entrypoint_io__.getPID()

	no docstring

	
__entrypoint_io__.interrupt()

	no docstring

	
__entrypoint_io__.makeProcess

	Create a subordinate process on the current node from the given
executable, arguments, and environment.

=> stdin, => stdout, and => stderr control the same-named methods on
the resulting process object, which will return a sink, source, and source
respectively. If any of these named arguments are true, then the
corresponding method on the process will return a live streamcap which
is connected to the process; otherwise, the returned streamcap will be a
no-op.

=> stdinFount, if not null, will be treated as a fount and it will be
flowed to a drain representing stdin. => stdoutDrain and
=> stderrDrain are similar but should be drains which will have founts
flowed to them.

	
__entrypoint_io__.run(_, _, _)

	no docstring

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monte 0.1 documentation

Colophon: Monte Documentation Build Tools

Restructured text

The docs are written in restructured text [http://docutils.sourceforge.net/docs/user/rst/quickref.html].

Sphinx

The docs are built with Sphinx [http://sphinx-doc.org/] and hosted on readthedocs [https://readthedocs.org/projects/monte/].

The virtualenv for building the docs is separate from the main Monte
virtualenv. Create a separate virtualenv and pip install -r
docs_requirements.txt, then make html to make the docs. Locally built
docs will show up in the docs/build directory.

Syntax Railroad Diagrams and Haskell Parser

rr_ext.py is an extension that integrates the
railroad-diagrams [https://github.com/tabatkins/railroad-diagrams] library by Tab Atkins into the build process.
It provides a custom .. syntax:: directive.

If syntax_dest is set in conf.py, the syntax diagram info
is written to a file in JSON format. download:rr_grammar.py converts
this format to a sphinx grammar production display [http://www.sphinx-doc.org/en/stable/markup/para.html#grammar-production-displays].

download:rr_happy.py is work-in-progress to generate a haskell monadic
parser.

Doctests

Use make doctest to extract the source/docs_examples.mt test suite
from the documentation. Then run it a la typhon loader test
docs_examples.

TODO List

Todo

discuss bindings. Expand this section to “slots and
bindings”? or discuss bindings under auditors?

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/auditors.rst, line 101.)

Todo

expansion of various forms of try

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-expr.rst, line 147.)

Todo

while doctests, expansion

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-expr.rst, line 176.)

Todo

for doctests, expansion

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-expr.rst, line 204.)

Todo

doctest /** docstring */

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-expr.rst, line 235.)

Todo

interface syntax diagram @@s

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-expr.rst, line 342.)

Todo

various items marked “@@” in railroad diagrams.
Also, finish re-organizing them around precedence (use
haskell codegen to test).

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/block-expr.rst, line 349.)

Todo

finish grammar productions marked @@.
Meanwhile, see monte_parser.mt [https://github.com/monte-language/typhon/blob/master/mast/lib/monte/monte_parser.mt] for details.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/grammar.rst, line 8.)

Todo

When new packaging efforts are ready, update this to mention that module
namespaces are either the stdlib or a package name.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/modules.rst, line 55.)

Todo

special operator rules because of security

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst, line 30.)

Todo

VERB_ASSIGN lexical details

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst, line 128.)

Todo

discuss, doctest SlotExpression &x, BindingExpression &&x

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst, line 490.)

Todo

named args in argList

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst, line 567.)

Todo

discuss matchers in object expressions

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/operators.rst, line 584.)

Todo

document docstrings

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/ordinary-programming.rst, line 59.)

Todo

document named args, defaults

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/ordinary-programming.rst, line 61.)

Todo

show: Guards play a key role in protecting security
properties.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/ordinary-programming.rst, line 268.)

Todo

Fix the module.name notation
resulting from abuse of sphinx python support.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/runtime.rst, line 9.)

Todo

When Bool is fixed to reveal its interface,
re-run mtDocStrings to document and, or, xor, not, butNot, pick, op__cmp.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/runtime.rst, line 13.)

Todo

Fix the module.name notation
resulting from abuse of sphinx python support.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/runtime.rst, line 2599.)

Todo

discuss SlotExpr

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/semantics.rst, line 208.)

Todo

discuss sameness and doctest _equalizer

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/semantics.rst, line 256.)

Todo

specify canStartIndentedBlock, braceStack exactly

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/symbols.rst, line 26.)

Todo

Document how to compile and run such a script.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/monte/checkouts/latest/docs/source/taste.rst, line 33.)

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Monte 0.1 documentation

Glossary

	ejector : Coercion

	An object which can be called once to prematurely end control flow.

	guard : Coercion

	An object which provides the coercion protocol.

	message

	An object of the form [verb :Str, args :List, namedArgs :Map]
which is passed from calling objects to target objects to faciliate
computation.

	prize : Coercion

	The result of a successful coercion.

	quasiliteral
QL

	An literal expression or pattern which is composed of both literal and
variable pieces.

	quasiparser
QP

	An object which provides the Quasiliterals protocol.

	verb

	A string which forms the first element of a message.

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Monte 0.1 documentation

 Python Module Index

 _ |
 s

 			

 		
 _	

 	
 	
 __entrypoint_io__	

 			

 		
 s	

 	
 	
 safeScope	

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	Monte 0.1 documentation

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W
 | X

_

 	

 	__entrypoint_io__ (module)

 	_accumulateList (in module safeScope)

 	_accumulateMap (in module safeScope)

 	_auditedBy (in module safeScope)

 	_bind (in module safeScope)

 	_booleanFlow (in module safeScope)

 	_comparer (in module safeScope)

 	_equalizer (in module safeScope)

 	_iterForever (in module safeScope)

 	_loop (in module safeScope)

 	_makeBytes (in module safeScope)

 	_makeDouble (in module safeScope)

 	_makeFinalSlot (in module safeScope)

 	_makeInt (in module safeScope)

 	_makeIterator() (in module safeScope)

 	

 	(safeScope.Bytes method)

 	(safeScope.List method)

 	(safeScope.Map method)

 	(safeScope.Set method)

 	(safeScope.Str method)

 	_makeList (in module safeScope)

 	_makeMap (in module safeScope)

 	_makeMessageDesc (in module safeScope)

 	_makeOrderedRegion (in module safeScope)

 	_makeOrderedSpace (in module safeScope)

 	

 	_makeParamDesc (in module safeScope)

 	_makeProtocolDesc (in module safeScope)

 	_makeSourceSpan (in module safeScope)

 	_makeStr (in module safeScope)

 	_makeString (in module safeScope)

 	_makeTopSet (in module safeScope)

 	_makeVarSlot (in module safeScope)

 	_makeVerbFacet (in module safeScope)

 	_mapEmpty (in module safeScope)

 	_mapExtract (in module safeScope)

 	_matchSame (in module safeScope)

 	_printOn() (in module safeScope), [1], [2], [3]

 	

 	(safeScope.Bytes static method)

 	(safeScope.Char static method)

 	(safeScope.Double static method)

 	(safeScope.Int static method)

 	(safeScope.List method)

 	(safeScope.List static method)

 	(safeScope.Map method)

 	(safeScope.Map static method)

 	(safeScope.Set method)

 	(safeScope.Set static method)

 	(safeScope.Str static method)

 	_quasiMatcher (in module safeScope)

 	_slotToBinding (in module safeScope)

 	_splitList (in module safeScope)

 	_suchThat (in module safeScope)

 	_switchFailed (in module safeScope)

 	_uncall() (safeScope.Bytes method)

 	

 	(safeScope.Bytes static method)

 	(safeScope.Char static method)

 	(safeScope.Double static method)

 	(safeScope.Int static method)

 	(safeScope.List method)

 	(safeScope.Map method)

 	(safeScope.Set method)

 	(safeScope.Str static method)

 	_validateFor (in module safeScope)

A

 	

 	aboveZero() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	abs() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	abstract syntax

 	add() (safeScope.Bytes method)

 	

 	(safeScope.Bytes static method)

 	(safeScope.Char method)

 	(safeScope.Char static method)

 	(safeScope.Double method)

 	(safeScope.Double static method)

 	(safeScope.Int method)

 	(safeScope.Int static method)

 	(safeScope.List method)

 	(safeScope.Str method)

 	(safeScope.Str static method)

 	and() (safeScope.Int method)

 	

 	(safeScope.Set method)

 	AndExpr() (in module safeScope)

 	Any (class in safeScope)

 	approxDivide() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	asBigAs() (in module safeScope)

 	asDouble() (safeScope.Int method)

 	asInteger() (safeScope.Char method)

 	asList() (safeScope.Bytes method)

 	

 	(safeScope.Set method)

 	(safeScope.Str method)

 	

 	asMap() (safeScope.List method)

 	asSet() (safeScope.Bytes method)

 	

 	(safeScope.List method)

 	(safeScope.Map method)

 	(safeScope.Set method)

 	(safeScope.Str method)

 	AssignExpr() (in module safeScope)

 	asString() (safeScope.Char method)

 	astBuilder (in module safeScope)

 	astEval (in module safeScope)

 	asType() (in module safeScope), [1]

 	atLeastZero() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	atMostZero() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	audit() (in module safeScope), [1]

 	AugAssignExpr() (in module safeScope)

B

 	

 	belowZero() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	BinaryExpr() (in module safeScope)

 	binding

 	Binding (class in safeScope)

 	BindingExpr() (in module safeScope)

 	BindingPattern() (in module safeScope)

 	BindPattern() (in module safeScope)

 	

 	bitLength() (safeScope.Int method)

 	block

 	Bool (class in safeScope)

 	broken() (in module safeScope), [1]

 	butNot() (safeScope.Set method)

 	Bytes (class in safeScope)

C

 	

 	call() (in module safeScope)

 	callWithMessage() (in module safeScope)

 	Catcher() (in module safeScope)

 	CatchExpr() (in module safeScope)

 	Char (class in safeScope)

 	coerce() (in module safeScope), [1], [2], [3], [4], [5], [6], [7], [8]

 	

 	(safeScope.Any static method)

 	(safeScope.Binding static method)

 	(safeScope.Bool static method)

 	(safeScope.Bytes static method)

 	(safeScope.Char static method)

 	(safeScope.Double static method)

 	(safeScope.FinalSlot static method)

 	(safeScope.Int static method)

 	(safeScope.List static method)

 	(safeScope.Map static method)

 	(safeScope.Set static method)

 	(safeScope.Str static method)

 	(safeScope.VarSlot static method)

 	(safeScope.Void static method)

 	CoerceExpr() (in module safeScope)

 	CompareExpr() (in module safeScope)

 	

 	complement() (safeScope.Int method)

 	contains() (safeScope.Bytes method)

 	

 	(safeScope.List method)

 	(safeScope.Map method)

 	(safeScope.Set method)

 	(safeScope.Str method)

 	cos() (safeScope.Double method)

 	currentProcess (in module __entrypoint_io__)

 	currentRuntime (in module __entrypoint_io__)

 	curryCall() (in module safeScope)

 	CurryExpr() (in module safeScope)

 	currySend() (in module safeScope)

D

 	

 	DeepFrozen (in module safeScope)

 	DefExpr() (in module safeScope)

 	dependency

 	

 	different() (in module safeScope)

 	diverge() (safeScope.List method)

 	

 	(safeScope.Map method)

 	(safeScope.Set method)

 	Double (class in safeScope)

E

 	

 	eject() (in module safeScope)

 	ejector

 	ejector : Coercion

 	Empty (in module safeScope)

 	empty() (safeScope.List method)

 	

 	(safeScope.Map method)

 	(safeScope.Set method)

 	endsWith() (safeScope.Str method)

 	entrypoint

 	EscapeExpr() (in module safeScope)

 	eval (in module safeScope)

 	

 	evalToPair() (in module safeScope), [1]

 	evaluation semantics

 	exception() (in module safeScope), [1]

 	ExitExpr() (in module safeScope)

 	expansion

 	expression

 	extractGuard() (in module safeScope), [1]

 	

 	(safeScope.FinalSlot static method)

 	(safeScope.List static method)

 	(safeScope.Set static method)

 	(safeScope.VarSlot static method)

 	extractGuards() (in module safeScope)

 	

 	(safeScope.Any static method)

 	(safeScope.Map static method)

 	extractValue() (in module safeScope)

F

 	

 	failureList() (in module safeScope)

 	false (in module safeScope)

 	fetch() (safeScope.Map method)

 	FinallyExpr() (in module safeScope)

 	FinalPattern() (in module safeScope)

 	FinalSlot (class in safeScope)

 	floor() (safeScope.Double method)

 	floorDivide() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	ForExpr() (in module safeScope)

 	ForwardExpr() (in module safeScope)

 	fromBytes() (in module safeScope), [1]

 	fromChars() (in module safeScope), [1]

 	

 	fromInts() (in module safeScope)

 	fromIterable() (in module safeScope)

 	fromNow() (in module __entrypoint_io__)

 	fromPairs() (in module safeScope)

 	fromStr() (in module safeScope), [1], [2], [3], [4]

 	fulfillment() (in module safeScope)

 	FunCallExpr() (in module safeScope)

 	FunctionExpr() (in module safeScope)

 	FunctionInterfaceExpr() (in module safeScope)

 	FunctionScript() (in module safeScope)

 	FunSendExpr() (in module safeScope)

G

 	

 	geq() (in module safeScope)

 	get() (in module safeScope), [1], [2], [3], [4]

 	

 	(safeScope.Bytes method)

 	(safeScope.FinalSlot static method)

 	(safeScope.List method)

 	(safeScope.List static method)

 	(safeScope.Map method)

 	(safeScope.Map static method)

 	(safeScope.Set static method)

 	(safeScope.Str method)

 	(safeScope.VarSlot static method)

 	getAddrInfo (in module __entrypoint_io__)

 	getArguments() (in module __entrypoint_io__)

 	getAstBuilder() (in module safeScope), [1]

 	getAstGuard() (in module safeScope)

 	getCategory() (safeScope.Char method)

 	getCrypt() (in module __entrypoint_io__)

 	getDocstring() (safeScope.Binding static method)

 	

 	(safeScope.Bool static method)

 	(safeScope.FinalSlot static method)

 	(safeScope.VarSlot static method)

 	(safeScope.Void static method)

 	getEnvironment() (in module __entrypoint_io__)

 	GetExpr() (in module safeScope)

 	getExprGuard() (in module safeScope)

 	getGuard() (safeScope.FinalSlot static method)

 	

 	(safeScope.VarSlot static method)

 	

 	getHeapStatistics() (in module __entrypoint_io__)

 	getKeys() (safeScope.Map method)

 	getMethods() (safeScope.Any static method)

 	

 	(safeScope.Binding static method)

 	(safeScope.Bool static method)

 	(safeScope.FinalSlot static method)

 	(safeScope.VarSlot static method)

 	(safeScope.Void static method)

 	getNamePatternGuard() (in module safeScope)

 	getNounGuard() (in module safeScope)

 	getPatternGuard() (in module safeScope)

 	getPID() (in module __entrypoint_io__)

 	getReactorStatistics() (in module __entrypoint_io__)

 	getSpan() (safeScope.Str method)

 	getValues() (safeScope.Map method)

 	greaterThan() (in module safeScope)

 	guard : Coercion

H

 	

 	HideExpr() (in module safeScope)

I

 	

 	IfExpr() (in module safeScope)

 	IgnorePattern() (in module safeScope)

 	import pattern

 	importer

 	indentation

 	indexOf() (safeScope.Bytes method)

 	

 	(safeScope.List method)

 	(safeScope.Str method)

 	Infinity (in module safeScope)

 	Int (class in safeScope)

 	InterfaceExpr() (in module safeScope)

 	interrupt() (in module __entrypoint_io__)

 	isBroken() (in module safeScope)

 	

 	isDeepFrozen() (in module safeScope)

 	isEmpty() (safeScope.Bytes method)

 	

 	(safeScope.List method)

 	(safeScope.Map method)

 	(safeScope.Set method)

 	(safeScope.Str method)

 	isEventual() (in module safeScope)

 	isFar() (in module safeScope)

 	isNear() (in module safeScope)

 	isResolved() (in module safeScope)

 	isSelfish() (in module safeScope)

 	isSelfless() (in module safeScope)

 	isSettled() (in module safeScope)

 	isZero() (safeScope.Double method)

 	

 	(safeScope.Int method)

J

 	

 	join() (safeScope.Bytes method)

 	

 	(safeScope.List method)

 	(safeScope.Str method)

K

 	

 	Kernel-Monte

L

 	

 	last() (safeScope.List method)

 	lastIndexOf() (safeScope.Bytes method)

 	

 	(safeScope.Str method)

 	leq() (in module safeScope)

 	lessThan() (in module safeScope)

 	lexical scoping

 	List (class in safeScope)

 	

 	ListComprehensionExpr() (in module safeScope)

 	ListExpr() (in module safeScope)

 	ListPattern() (in module safeScope)

 	LiteralExpr() (in module safeScope)

 	log() (safeScope.Double method)

M

 	

 	M (in module safeScope)

 	main

 	makeAuditorKit() (in module safeScope)

 	makeBrandPair (in module safeScope)

 	makeEmptyRegion() (safeScope.Bytes static method)

 	

 	(safeScope.Char static method)

 	(safeScope.Double static method)

 	(safeScope.Int static method)

 	(safeScope.Str static method)

 	makeFileResource (in module __entrypoint_io__)

 	makeLazySlot (in module safeScope)

 	makePair() (in module safeScope)

 	makeProcess (in module __entrypoint_io__)

 	makeProxy() (in module safeScope)

 	makeRegion() (safeScope.Bytes static method)

 	

 	(safeScope.Char static method)

 	(safeScope.Double static method)

 	(safeScope.Int static method)

 	(safeScope.Str static method)

 	makeStdErr (in module __entrypoint_io__)

 	makeStdIn (in module __entrypoint_io__)

 	makeStdOut (in module __entrypoint_io__)

 	makeTCP4ClientEndpoint (in module __entrypoint_io__)

 	makeTCP4ServerEndpoint (in module __entrypoint_io__)

 	makeTCP6ClientEndpoint (in module __entrypoint_io__)

 	makeTCP6ServerEndpoint (in module __entrypoint_io__)

 	makeTraversalKey() (in module safeScope)

 	Map (class in safeScope)

 	MapComprehensionExpr() (in module safeScope)

 	MapExpr() (in module safeScope)

 	

 	MapExprAssoc() (in module safeScope)

 	MapExprExport() (in module safeScope)

 	MapPattern() (in module safeScope)

 	MapPatternAssoc() (in module safeScope)

 	MapPatternImport() (in module safeScope)

 	MatchBindExpr() (in module safeScope)

 	Matcher() (in module safeScope)

 	matchMaker() (in module safeScope), [1], [2], [3]

 	max() (safeScope.Char method)

 	

 	(safeScope.Int method)

 	message, [1]

 	MessageDesc() (in module safeScope)

 	MetaContextExpr() (in module safeScope)

 	MetaStateExpr() (in module safeScope)

 	Method() (in module safeScope)

 	MethodCallExpr() (in module safeScope)

 	min() (safeScope.Char method)

 	

 	(safeScope.Int method)

 	MismatchExpr() (in module safeScope)

 	mod() (safeScope.Int method)

 	modPow() (safeScope.Int method)

 	Module() (in module safeScope)

 	multiply() (safeScope.Bytes method)

 	

 	(safeScope.Double method)

 	(safeScope.Int method)

 	(safeScope.List method)

 	(safeScope.Str method)

N

 	

 	name

 	NamedArg() (in module safeScope)

 	NamedArgExport() (in module safeScope)

 	NamedParam() (in module safeScope)

 	NamedParamImport() (in module safeScope)

 	NaN (in module safeScope)

 	Near (in module safeScope)

 	

 	negate() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	next() (in module safeScope)

 	

 	(safeScope.Char method)

 	(safeScope.Int method)

 	noun

 	NounExpr() (in module safeScope)

 	null (in module safeScope)

 	NullOk (in module safeScope)

O

 	

 	object

 	ObjectExpr() (in module safeScope)

 	op__cmp() (safeScope.Bytes method)

 	

 	(safeScope.Bytes static method)

 	(safeScope.Char method)

 	(safeScope.Char static method)

 	(safeScope.Double method)

 	(safeScope.Double static method)

 	(safeScope.Int method)

 	(safeScope.Int static method)

 	(safeScope.List method)

 	(safeScope.Set method)

 	(safeScope.Str method)

 	(safeScope.Str static method)

 	op__thru() (in module safeScope)

 	op__till() (in module safeScope)

 	

 	optProblem() (in module safeScope)

 	optSame() (in module safeScope)

 	or() (safeScope.Int method)

 	

 	(safeScope.Map method)

 	(safeScope.Set method)

 	OrExpr() (in module safeScope)

P

 	

 	Pair (in module safeScope)

 	ParamDesc() (in module safeScope)

 	passes() (in module safeScope)

 	pattern

 	patternHole() (in module safeScope), [1], [2], [3]

 	PatternHoleExpr() (in module safeScope)

 	PatternHolePattern() (in module safeScope)

 	pet name

 	

 	pow() (safeScope.Double method)

 	

 	(safeScope.Int method)

 	PrefixExpr() (in module safeScope)

 	previous() (safeScope.Char method)

 	

 	(safeScope.Int method)

 	prize : Coercion

 	promise() (in module safeScope)

 	promiseAllFulfilled (in module safeScope)

 	put() (safeScope.List method)

Q

 	

 	QL

 	QP

 	QuasiExprHole() (in module safeScope)

 	quasiliteral

 	quasiparser

 	

 	QuasiParserExpr() (in module safeScope)

 	QuasiParserPattern() (in module safeScope)

 	QuasiPatternHole() (in module safeScope)

 	QuasiText() (in module safeScope)

 	quote() (safeScope.Char method)

 	

 	(safeScope.Str method)

R

 	

 	RangeExpr() (in module safeScope)

 	Ref (in module safeScope)

 	replace() (safeScope.Bytes method)

 	

 	(safeScope.Str method)

 	

 	reverse() (safeScope.List method)

 	

 	(safeScope.Map method)

 	run() (in module __entrypoint_io__), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]

 	

 	(in module safeScope), [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15], [16], [17], [18], [19], [20], [21], [22], [23], [24], [25], [26], [27]

S

 	

 	safeScope (module)

 	Same (in module safeScope)

 	sameEver() (in module safeScope)

 	SameExpr() (in module safeScope)

 	SamePattern() (in module safeScope)

 	sameYet() (in module safeScope)

 	scope

 	Script() (in module safeScope)

 	Selfless (in module safeScope)

 	semantics

 	send() (in module safeScope)

 	SendExpr() (in module safeScope)

 	sendOnly() (in module safeScope)

 	sendTimestamp() (in module __entrypoint_io__)

 	SeqExpr() (in module safeScope)

 	Set (class in safeScope)

 	shiftLeft() (safeScope.Int method)

 	shiftRight() (safeScope.Int method)

 	sin() (safeScope.Double method)

 	size() (safeScope.Bytes method)

 	

 	(safeScope.List method)

 	(safeScope.Map method)

 	(safeScope.Set method)

 	(safeScope.Str method)

 	slice() (safeScope.Bytes method)

 	

 	(safeScope.List method)

 	(safeScope.Map method)

 	(safeScope.Set method)

 	(safeScope.Str method)

 	slot, [1]

 	slot object

 	SlotExpr() (in module safeScope)

 	SlotPattern() (in module safeScope)

 	

 	snapshot() (safeScope.List method)

 	

 	(safeScope.Map method)

 	(safeScope.Set method)

 	sort() (safeScope.List method)

 	sortKeys() (safeScope.Map method)

 	sortValues() (safeScope.Map method)

 	spaceOfGuard() (in module safeScope)

 	spaceOfValue() (in module safeScope)

 	split() (safeScope.Bytes method)

 	

 	(safeScope.Str method)

 	sqrt() (safeScope.Double method)

 	stale stack frames

 	startOf() (safeScope.List method)

 	startsWith() (safeScope.Str method)

 	state() (in module safeScope)

 	static scope

 	stderr() (in module __entrypoint_io__)

 	stdin() (in module __entrypoint_io__)

 	stdio (in module __entrypoint_io__)

 	stdout() (in module __entrypoint_io__)

 	Str (class in safeScope)

 	SubrangeGuard (in module safeScope)

 	subtract() (safeScope.Bytes static method)

 	

 	(safeScope.Char method)

 	(safeScope.Char static method)

 	(safeScope.Double method)

 	(safeScope.Double static method)

 	(safeScope.Int method)

 	(safeScope.Int static method)

 	(safeScope.Set method)

 	(safeScope.Str static method)

 	SuchThatPattern() (in module safeScope)

 	supersetOf() (in module safeScope)

 	

 	(safeScope.Any static method)

 	(safeScope.Binding static method)

 	(safeScope.Bool static method)

 	(safeScope.FinalSlot static method)

 	(safeScope.VarSlot static method)

 	(safeScope.Void static method)

 	SwitchExpr() (in module safeScope)

 	syntactic expansion, [1]

 	
 syntax

 	

 	BindPatt

 	BindingExpr

 	BindingPatt

 	CharExpr

 	CoerceExpr

 	CompareExpr

 	DoubleExpr

 	EscapeExpr

 	FinalPatt

 	ForExpr

 	FunctionExpr

 	HideExpr

 	IfExpr

 	IgnorePatt

 	IntExpr

 	InterfaceExpr

 	LambdaExpr

 	ListExpr

 	ListPatt

 	LiteralExpr

 	MapExpr

 	MapPatt

 	MetaExpr

 	NotSamePatt

 	NounExpr

 	ObjectExpr

 	QuasiliteralPatt

 	RangeExpr

 	SamePatt

 	SlotExpr

 	SlotPatt

 	StrExpr

 	SuchThatPatt

 	SwitchExpr

 	TryExpr

 	VarPatt

 	VerbAssignExpr

 	ViaPatt

 	WhenExpr

 	WhileExpr

 	additiveExpr

 	argList

 	assign

 	bind

 	block

 	blockCatch

 	blockExpr

 	call

 	calls

 	catchers

 	charConstant

 	comp

 	comprehension

 	curryTail

 	decLiteral

 	def

 	digit

 	digits

 	doco

 	exponentiationExpr

 	exports

 	expr

 	floatExpn

 	floatLiteral

 	guard

 	guardOpt

 	hexDigit

 	hexDigits

 	hexLiteral

 	index

 	iter

 	logical_and

 	logical_or

 	lval

 	mapItem

 	mapPattItem

 	matchers, [1]

 	module_header

 	multiplicativeExpr

 	name

 	namePatt

 	objectExpr

 	objectScript

 	order

 	pattern

 	postfixPatt

 	prefix

 	prefixPatt

 	prim

 	quasiliteral

 	send

 	sequence

 	shift

 	stringLiteral

 	verb

T

 	

 	tab

 	tan() (safeScope.Double method)

 	TempNounExpr() (in module safeScope)

 	throw (in module safeScope)

 	Timer (in module __entrypoint_io__)

 	To() (in module safeScope)

 	toBytes() (safeScope.Double method)

 	toLowerCase() (safeScope.Bytes method)

 	

 	(safeScope.Str method)

 	toQuote() (in module safeScope)

 	

 	toString() (in module safeScope)

 	toUpperCase() (safeScope.Bytes method)

 	

 	(safeScope.Str method)

 	trace (in module safeScope)

 	traceln (in module safeScope)

 	transformation

 	Transparent (in module safeScope)

 	trim() (safeScope.Bytes method)

 	

 	(safeScope.Str method)

 	true (in module safeScope)

 	TryExpr() (in module safeScope)

U

 	

 	unification

 	unsafe capabilities

 	

 	unsafeNow() (in module __entrypoint_io__)

 	unsealException (in module __entrypoint_io__)

V

 	

 	valueHole() (in module safeScope), [1], [2], [3]

 	ValueHoleExpr() (in module safeScope)

 	ValueHolePattern() (in module safeScope)

 	valueMaker() (in module safeScope), [1], [2], [3]

 	VarPattern() (in module safeScope)

 	VarSlot (class in safeScope)

 	

 	verb

 	VerbAssignExpr() (in module safeScope)

 	ViaPattern() (in module safeScope)

 	view

 	Void (class in safeScope)

 	Vow (in module safeScope)

W

 	

 	whenBroken() (in module safeScope)

 	whenBrokenOnly() (in module safeScope)

 	WhenExpr() (in module safeScope)

 	whenResolved() (in module safeScope)

 	whenResolvedOnly() (in module safeScope)

 	

 	WhileExpr() (in module safeScope)

 	with() (safeScope.Bytes method)

 	

 	(safeScope.List method)

 	(safeScope.Map method)

 	(safeScope.Set method)

 	(safeScope.Str method)

 	withDefault() (in module safeScope)

 	without() (safeScope.Map method)

 	

 	(safeScope.Set method)

 	withRadix() (in module safeScope)

X

 	

 	xor() (safeScope.Int method)

 Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/comment.png

_static/plus.png

_static/down.png

_static/minus.png

_static/up-pressed.png

_static/comment-bright.png

_static/down-pressed.png

_static/ajax-loader.gif

search.html

 Navigation

 		
 index

 		
 modules |

 		Monte 0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2014, Monte Project.
 Created using Sphinx 1.3.5.

_images/graphviz-bc7c0389df8ab6f43d4b31ba29854a3574a83ef9.png

_images/graphviz-637f99ab5841ab6151ba922e257127abc0d047df.png
[DeepFrozen, "coerce", [obj, null], [].asMap(D

_static/up.png

_images/graphviz-e9c3efa91b516f7189bba39a63c405587e11ea54.png

_images/graphviz-d6544d376391e27176785a8c60b8063db5425d79.png

_static/file.png

