

 Navigation

 	
 index

 	
 next |

 	Code@Montage

Montage Developer Guide

This guide outlines how we write code at Montage, covering topics such as
coding style and git workflow.

Read it. Know it. Use it. Thanks!

Contents

	Coding style
	General guidelines

	Python

	Javascript

	Git workflow
	Commit messages

	Branching model

	Testing
	Testing in Python

	Testing in Javascript

	Bugs and issues
	Writing a useful bug report

	Effectively organizing tickets

	Triaging tickets

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Code@Montage

Coding style

Reability counts!

Programs must be written for people to read, and only incidentally for machines to execute.

-- Abelson & Sussman, Structure and Interpretation of Computer Programs

Please follow these guidelines when writing new code.

	General guidelines
	Whitespace

	Braces

	EditorConfig

	The Zen of Python

	Python
	PEP 8: Style guide for Python code

	Django's style guide

	The Hitchhiker's Guide to Python

	Javascript
	Checking code with ESLint

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Code@Montage

 	Coding style

General guidelines

These are our general guidelines to be used throughout the codebase. Not all of
these will apply to every language we use, but they cover a lot of the overlap.

Whitespace

	Indentation should use spaces, not tabs

	No extra spacing between arguments and expressions

	Delete all trailing whitespace

	End files with a trailing new line

Braces

	One True Brace Style [https://en.wikipedia.org/wiki/Indent_style#Variant:_1TBS]

	Never omit braces for single-statement blocks

EditorConfig

EditorConfig [http://editorconfig.org/] helps define and maintain consistent coding styles. You would
do very well to install the plugin for your editor of choice.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

	# http://editorconfig.org

root = true

[*]
indent_style = space
indent_size = 4
insert_final_newline = true
trim_trailing_whitespace = true
end_of_line = lf
charset = utf-8

Docstrings and comments use max_line_length = 79
[*.py]
max_line_length = 119

Use 2 spaces for the HTML files
[*.html]
indent_size = 2

The JSON files contain newlines inconsistently
[*.json]
indent_size = 2
insert_final_newline = ignore

Minified JavaScript files shouldn't be changed
[**.min.js]
indent_style = ignore
insert_final_newline = ignore

Makefiles always use tabs for indentation
[Makefile]
indent_style = tab

Batch files use tabs for indentation
[*.bat]
indent_style = tab

The Zen of Python

Also known as PEP 20 [https://www.python.org/dev/peps/pep-0020], these are the guiding principals of Python's design
and are generally good advice for any software developer.

>>> import this
The Zen of Python, by Tim Peters

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Flat is better than nested.
Sparse is better than dense.
Readability counts.
Special cases aren't special enough to break the rules.
Although practicality beats purity.
Errors should never pass silently.
Unless explicitly silenced.
In the face of ambiguity, refuse the temptation to guess.
There should be one-- and preferably only one --obvious way to do it.
Although that way may not be obvious at first unless you're Dutch.
Now is better than never.
Although never is often better than *right* now.
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
Namespaces are one honking great idea -- let's do more of those!

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Code@Montage

 	Coding style

Python

PEP 8: Style guide for Python code

PEP 8 [http://www.python.org/dev/peps/pep-0008/] provides coding conventions for the the Python code in the standard
library, and has been widely adopted by the community. All code should be
checked for PEP 8 conformity.

http://www.python.org/dev/peps/pep-0008/

Checking code with pycodestyle

You can use pycodestyle [https://pypi.python.org/pypi/pycodestyle] to verify that your code conforms to PEP 8 standards:

$ pycodestyle montage/

Or if you just want an overview of PEP 8 violations:

$ pycodestyle montage/ -qq --statistics

Django's style guide

The Django project builds on top of PEP 8, and includes a number of useful
guidelines.

https://docs.djangoproject.com/en/dev/internals/contributing/writing-code/coding-style/

The Hitchhiker's Guide to Python

Written by Kenneth Reitz, of requests [http://python-requests.org] fame, The Hitchhiker's Guide to Python [http://docs.python-guide.org/en/latest/]
is an opinionated guide to code style, best practices, and common idioms. It's
a good guide on how to write code that is Pythonic.

http://docs.python-guide.org/en/latest/

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Code@Montage

 	Coding style

Javascript

TBD, but build from this:

https://github.com/Seravo/js-winning-style

Checking code with ESLint

TBD.

http://eslint.org/

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Code@Montage

Git workflow

Commit messages

Karma commits.

http://karma-runner.github.io/1.0/dev/git-commit-msg.html

Karma says 70 characters for the first line, but Github wraps at 50. Let's
go with 50.

Branching model

Our workflow is based on Vincent Driessen's "successful git branching model" [http://nvie.com/posts/a-successful-git-branching-model/],
with some minor adjustments. We still utilize develop, master, and
various types of feature branches, however we do not tag releases and there are
no release branches.

git-flow [https://github.com/nvie/gitflow] is a git plugin that helps facilitate this branching strategy. It's
not required, but can help make things a bit easier to manage. There is also a
good write up on using git-flow [http://jeffkreeftmeijer.com/2010/why-arent-you-using-git-flow/].

Feature branching

All development happens in a feature branch. Feature branches are named as
type/branch-slug, where type can be one of:

	feature -- New features, both major and minor, in development

	bugfix -- Fixing a specific bug or regression in the code

	refactor -- Re-writing or re-architecting parts of the system

	hotfix -- Patches applied directly to the master branch and deployed to live

Important

Feature branches are not considered complete until they include all of the
following:

	Code that conforms to our coding style.

	Unit tests that pass locally and in our CI environment.

	Documentation updates, as needed.

When a feature branch has been merged into develop, it is the responsiblity of
that branches main developer to ensure it is deleted from Github.

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Code@Montage

Testing

[image: TEST ALL THE THINGS!!]

	Testing in Python
	Defining test cases with unittest

	Running tests with pytest

	Automating tests with tox

	Continuous Integration with CircleCI

	Testing in Javascript

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Code@Montage

 	Testing

Testing in Python

Defining test cases with unittest

Tests cases should be defined with the built-in unittest [https://docs.python.org/3/library/unittest.html] module. This allows
for tests to be easily structured, and related tests can be grouped together.

Test assertions should be made with the assert statement, not the
assertFoo methods provided by unittest [https://docs.python.org/3/library/unittest.html]; it's cleaner and easier to
parse, and pytest [https://pypi.python.org/pypi/pytest] understands it just fine.

	1
2
3
4
5

	import unittest

class YourModuleTests(unittest.TestCase):
 def test_add(self):
 assert 2 + 2 == 4

Running tests with pytest

Use pytest [https://pypi.python.org/pypi/pytest] to run the tests. It integrates well with unittest [https://docs.python.org/3/library/unittest.html], and there
are a ton of useful plugins [https://pypi.python.org/pypi?:action=search&term=pytest-].

There are two plugins that every project should use:

	pytest-pep8 [https://pypi.python.org/pypi/pytest-pep8] to check code style against PEP 8 [https://www.python.org/dev/peps/pep-0008/]

	pytest-cov [https://pypi.python.org/pypi/pytest-cov] to measure test coverage

When all is said and done, the command to run your tests should look something
like this:

py.test tests/ --cov your_module --cov-append --cov-report term-missing --pep8

Automating tests with tox

tox [https://pypi.python.org/pypi/tox] is a tool that aims to automate and standardize tests. It's especially
useful when you need to test code in different environments (i.e., multiple
versions of Python).

tox is a much simpler command to remember than a long py.test command,
so it's good to use even if you're only targeting a single environment.

A simple tox.ini looks like this:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	[tox]
envlist = py27,py35

[testenv]
commands=py.test tests/ --cov your_module --cov-append --cov-report term-missing --pep8
deps =
 pytest
 pytest-cov
 pytest-pep8
 -rrequirements.txt

Now when you run tox, you should see something like this:

$ tox

... a whole lot of output, including test output and coverage summary ...

_______________ summary _______________
 py27: commands succeeded
 py35: commands succeeded
 congratulations :)

Continuous Integration with CircleCI

Getting tests to run with tox [https://pypi.python.org/pypi/tox] on CircleCI [https://circleci.com/gh/Montage-Inc] requires the use of
tox-pyenv [https://pypi.python.org/pypi/tox-pyenv] to make different Python versions available.

In this example circle.yml, we'll run our tests and upload the coverage
results to Codecov [https://codecov.io/]:

	1
2
3
4
5
6
7
8
9

	dependencies:
 override:
 - pip install tox tox-pyenv codecov
 - pyenv local 2.7.10 3.5.0

test:
 override:
 - tox
 - codecov

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Code@Montage

 	Testing

Testing in Javascript

TBD.

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	
 previous |

 	Code@Montage

Bugs and issues

Please follow these guidelines when creating new issues in Github.

Writing a useful bug report

Useful bug reports are ones that get bugs fixed. A useful bug report normally
has two qualities:

	Reproducible. If your bug is not reproducible it will never get fixed.
You should clearly mention the steps to reproduce the bug. Do not assume or
skip any reproducing step. Described the issue, step-by-step, so that it is
easy to reproduce and fix.

	Specific. Do not write a essay about the problem. Be Specific and to the
point. Try to summarize the problem in minimum words yet in effective way.
Do not combine multiple problems even they seem to be similar. Write
different reports for each problem.

Bug report template

Environment
===========

* **OS**: Operating System and version (Windows 7, OS X 10.8, Ubuntu 13.04)
* **Browser**: Browser name and version (IE 10, Firefox 27, Google Chrome 30)

Steps to Reproduce
==================

1. Step-by-step instructions that detail how to reproduce the bug.
2. Don't leave steps out or make any assumptions.
3. If screenshots are called for, provide them here.
4. Make sure these steps reliably reproduce the issue.

Actual Result
=============

Describe what happens when the above steps were followed. If there is any
relevent information in the developer tools window, make note of it here.

Expected Result
===============

Explain what should have happened -- or what you expected to happen -- when
the above steps were followed.

Workaround
==========

If you have a way to work around the problem, describe it here.

Effectively organizing tickets

Properly labeling tickets is essential to keeping our tracker organized. Some
labels stand by themselves, while others are organized into group:value
pairs.

When creating a new ticker, it should, at the very minimum, have a label from
each of these groups:

The env group specifies which environment (or site) the issue occurred on.

	env:dev

	env:prod

The severity group specifies how severe the issue is, ranging from trivial
to catastrophic. Feature requests also fall under this group.

	severity:minor -- Minor loss of function, trivial UI problem

	severity:major -- Major loss of function

	severity:critical -- Application crash, loss of data

	severity:blocking -- The issue is preventing further testing or work from being done

Triaging tickets

When a ticket is first created, it is considered unreviewed. Unreviewed
tickets will be evaluated by a member of the development team or anyone else
qualified to make a judgement on the validity of the ticket.

If the ticket is deemed to contain a valid issue or viable feature, the triager
should apply the accepted label and leave a comment describing the action
to be taken or provide any other information necessary to get the issue
resolved.

When closing a ticket, you should always leave a comment providing the reason.

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 Navigation

 	
 index

 	Code@Montage

Index

 D
 | G

D

 	

 	deploying

G

 	

 	git-flow

 Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

 _static/down.png

_static/up.png

_static/up-pressed.png

_static/comment-close.png

_static/favicon.png

_static/test-all-the-things.jpg
TESTH
ALLTHETHINGS !

_static/comment-bright.png

_images/test-all-the-things.jpg
TESTH
ALLTHETHINGS !

_images/seqdiag-bde782e05bc46262470330a0487309c95a5c5feb.png
master

it branch
git merge

hoteix/ooc

aevelop

git merge

seature oo

_static/minus.png

search.html

 Navigation

 		
 index

 		Code@Montage »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Montage, Inc.
 Created using Sphinx 1.4.5.

_static/file.png

_static/comment.png

_static/montage-logo-blue.png
Qontage

_static/ajax-loader.gif

_static/plus.png

_static/montage-logo.png

_static/down-pressed.png

