monolith Documentation
Release 0.3.3

Lukasz Balcerzak

December 16, 2013

Contents

1 Usage
.1 EXecution Manager ¢ v v vt vt e e e e e e e e e e e e e e e e e e
1.2 Creatingcommands i i e e e e e e e e e e e e e e e e e e
1.3 Registering commands e e e e e e e e e e e e
1.4 Commands eXeCUtiON v v v v vt e e e e e e e e e e e e e e e e e
1.5 Completeexample L e e e e e e e
1.6 Simple eXecution ManAZer+« « ot v vt e e e e e e e e e e e e e e
2 Installation
3 Development
31 Testing . . . o o e e e e e e e e e e e e e
3.2 TOX o v e e e e e e
3.3 ISSUES .« . o v e e e e e e e e e e e e e e e
4 License
5 API Reference
5.1 monolith.cli. L. e e
6 Indices and tables
Python Module Index

DA AW W W W

2

O O O &

11

13
13

17

19

monolith Documentation, Release 0.3.3

Date December 16, 2013
Version 0.3.3
Documentation:

monolith is simple framwork for creating command line tools. Subcommands are class based (approach and part of
implementation was inspired by Django management commands, however monolith uses argparse instead of opt-
parse).

Supported Python versions are 2.6/2.7, 3.2+ and PyPy.

Contents 1

monolith Documentation, Release 0.3.3

2 Contents

CHAPTER 1

Usage

Firstly, we need to build an entry point for our command line application. In monolith itis called ExecutionMan-
ager.

1.1 Execution manager

Create our execution manager

>>> from monolith.cli import ExecutionManager, BaseCommand
>>> manager = ExecutionManager ()

1.2 Creating commands

Now let’s create simple commands:

>>> class FooCommand (BaseCommand) :
def handle(self, namespace):
print (' foo’, file=self.stdout)

>>> class BarCommand (BaseCommand) :
def handle(self, namespace):
print ('bar’, file=self.stdout)

Note: Commands should write to specific stream explicitly or use file keyword argument of print function, but this
would require to add following in Python 2.X:

from _ future import print_function

1.3 Registering commands

Now register defined commands:

monolith Documentation, Release 0.3.3

>>> manager.register (' foo’, FooCommand)
>>> manager.register ('bar’, BarCommand)

1.4 Commands execution

... and finally run them:

>>> manager.execute ([’ foo’])
foo
>>> manager.execute (['bar’])
bar

Note: Normally, in your program you would call execute method without any parameters - this would default to

sys.argv.

1.5 Complete example

#!/usr/bin/env python

mmn

Example of how to create git-like execution manager with monolith.
This is completely fake command.

mmn

from _ future import print_function

from _ future import unicode_literals
from monolith.cli import ExecutionManager
from monolith.cli import LabelCommand

from monolith.cli import SingleLabelCommand
from monolith.cli import arg

from monolith.cli import CompletionCommand

class AddCommand (LabelCommand) :

def handle_label (self, label, namespace):
print ("A $s" % label, file=self.stdout)

class InitCommand (SingleLabelCommand) :
label = ’"directory’
label_required = False
label_default_value = " .’
args = SingleLabelCommand.args + [
arg(’——bare’, help=’'Create a bare repository.’, default=False,
action=’store_true’),

def handle_label (self, label, namespace):
print ("Initialized empty Git repository in %s.git" % label,
file=self.stdout)

def get_manager (x+xkwargs) :

Chapter 1. Usage

monolith Documentation, Release 0.3.3

manager = ExecutionManager (*+kwargs)
manager.register (’add’, AddCommand)
manager.register (’init’, InitCommand)
manager.register (' completion’, CompletionCommand),
return manager

def main () :
manager = get_manager ()
manager.execute ()

if name == '__main_ ’:
main ()

1.6 Simple execution manager

New in version 0.2. There is also possibility to use simple execution manager for more complex programs, i.e. if
we create a package and put our commands in separate modules we can use string fo classes instead of importing all
command classes (you can still use imported commands too)

>>> manager = SimpleExecutionManager (program='foobar’, commands={’sub-command’: 'monolith.tests.test.
>>> manager.get_commands_to_register ()
{’ sub-command’ : <class 'monolith.tests.test_cli.DummyCommand’>, ’another-sub-command’: <class ’‘monol:

1.6. Simple execution manager 5

monolith Documentation, Release 0.3.3

6 Chapter 1. Usage

CHAPTER 2

Installation

monolith runs on Python 2.6+/3.X. In order to install it simply use easy_install:

easy_install monolith

or pip:

pip install monolith

Note: As Python 2.6 was not yet shipped with argparse package, distutils would install it if installation is run
under older Python version.

monolith Documentation, Release 0.3.3

8 Chapter 2. Installation

CHAPTER 3

Development

3.1 Testing

To run tests use nose:

$ nosetests

3.2 Tox

In order to run full test suite for all supported Python versions please use tox:

$ tox

3.3 Issues

Please file issues at https://github.com/lukaszb/monolith/issues. Also, if you fix something, please use pull request
github’s feature. Preferably, use separate branches per issue (in case there would be extra work needed, it’s much
easier to work locally at sepearate branch).

http://pypi.python.org/pypi/nose
http://pypi.python.org/pypi/tox
https://github.com/lukaszb/monolith/issues

monolith Documentation, Release 0.3.3

10 Chapter 3. Development

CHAPTER 4

License

Copyright (c) 2010-2013 Lukasz Balcerzak <lukaszbalcerzak@gmail.com>
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

+ Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

+ Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

11

monolith Documentation, Release 0.3.3

12 Chapter 4. License

CHAPTER 5

API| Reference

5.1 monolith.cli

classmonolith.cli.Parser (*args, **kwargs)
Subclass of argparse.ArgumentParser providing more control over output stream.

5.1.1 SimpleExecutionManager

class monolith.cli.SimpleExecutionManager (program, commands)
Parameters

* program — name of the program under which commands would be executed (usually name
of the program).

* commands — dictionary mapping subcommands to proper command classes. Values can be
string - in that case proper command class would be importer and used. Example:

" subcommandl’ : SomeCommand,
" subcommand2’ : ‘myprogram.commands.another.AnotherCommand’,

}

get_commands_to_register ()
Returns dictionary with commands given during construction. If value is a string, it would be converted
into proper class pointer.

5.1.2 ExecutionManager

class monolith.cli.ExecutionManager (argv=None, stderr=None, stdout=None)

autocomplete ()
If completion is enabled, this method would write to self.stdout completion words separated with
space.

call_command (cmd, *argv)
Runs a command.

13

monolith Documentation, Release 0.3.3

Parameters
* cmd — command to run (key at the registry)
e argv — arguments that would be passed to the command

execute (argv=None)
Executes command based on given arguments.

get_commands ()
Returns commands stored in the registry (sorted by name).

get_commands_to_register ()
Returns dictionary (name / Command or string pointing at the command class.

get_parser ()
Returns monolith.cli.Parser instance for this ExecutionManager.

get_usage ()
Returns usage text of the main application parser.

parser_cls
alias of Parser

register (name, Command, force=False)
Registers given Command (as given name) at this ExecutionManager‘s registry.

Parameters
* name — name in the registry under which given Command should be stored.
¢ Command — should be subclass of :class:monolith.cli.base.BaseCommand

* force — Forces registration if set to True - even if another command was already regis-
tered, it would be overridden and no execption would be raised. Defaults to False.

Raises AlreadyRegistered If another command was already registered under given name.

5.1.3 BaseCommand

class monolith.cli.BaseCommand (prog_name=None, stdout=None)

Base command class that should be subclassed by concrete commands.
Attributes
*help: Help description for this command. Defaults to empty string.
eargs: List of Argument instances. Defaults to empty list.
*prog_name: Program name of ExecutionManager within which this command is run. Defaults to None.
estdout: File-like object. Command should write to it. Defaults to sys . stdout.

get_args ()
Returns list of Argument instances for the parser. By default, it returns self.args.

handle (namespace)

Handles given name space and executes command. Should be overridden at subclass.
post_register (manager)

Performs actions once this command is registered within given manager. By default it does nothing.

14

Chapter 5. API Reference

monolith Documentation, Release 0.3.3

setup_parser (parser, cmdparser)
This would be called when command is registered by ExecutionManager after arguments from get_args
are processed.

Default implementation does nothing.
Parameters
 parser — Global argparser.ArgumentParser

* cmdparser — Subparser related with this command

5.1.4 LabelCommand

class monolith.cli.LabelCommand (prog_name=None, stdout=None)
Command that works on given position arguments (labels). By default, at least one label is required. This is
controlled by labels_required attribute.

Extra attributes:

*labels_required: If True, at least one label is required, otherwise no positional arguments could be
given. Defaults to True.

get_labels_arg /()
Returns argument for labels.

handle (namespace)
Handles given namespace by calling handle_label method for each given label.

handle_1label (label, namespace)
Handles single label. Should be overridden at subclass.

handle_no_labels (namespace)
Performs some action if no lables were given. By default it does nothing.

5.1.5 SingleLabelCommand

class monolith.cli.SingleLabelCommand (prog_name=None, stdout=None)
Command that works on given positional argument (label).
Extra arguments:

elabel_default_value: If no label were given, this would be default value that would be passed to
namespace. Defaults to None.

get_label arg()
Returns argument for label.

handle (namespace)
Calls handle_1label method for given label.

handle_1label (label, namespace)
Handles label. Should be overridden at subclass.

5.1. monolith.cli 15

monolith Documentation, Release 0.3.3

16 Chapter 5. API Reference

CHAPTER 6

Indices and tables

* genindex
* modindex

e search

17

monolith Documentation, Release 0.3.3

18 Chapter 6. Indices and tables

Python Module Index

m

monolith.cli, 13

19

	Usage
	Execution manager
	Creating commands
	Registering commands
	Commands execution
	Complete example
	Simple execution manager

	Installation
	Development
	Testing
	Tox
	Issues

	License
	API Reference
	monolith.cli

	Indices and tables
	Python Module Index

