
Mono Developer Documentation
Documentation

Release alpha

Monolit ApS

Jan 13, 2017

Contents

1 What to find here? 3

2 Content 5

i

ii

Mono Developer Documentation Documentation, Release alpha

Hi, and welcome to our developer documentation site. We imagine you want to create your own mono applications?
Well, you can skip all the talking and just start off with: Getting started installing the framework, and you are
already half way.

Contents 1

Mono Developer Documentation Documentation, Release alpha

2 Contents

CHAPTER 1

What to find here?

Here on our developer site, we will collect all learning resources about mono. You will find initial getting started
guides, followed by tutorials on specific topics, in-depth articles and last (but not least) the API reference docs.

Right now we are in the process of writing the documentation, so you might encounter broken links, typos, bad gramma
and a lot of misspellings.

We prioritize to get as much text published fast, instead of keeping our cards close. We hope you like our desicion.
Anyway - should you encounter anything you would like to correct - see: Contributing

3

Mono Developer Documentation Documentation, Release alpha

4 Chapter 1. What to find here?

CHAPTER 2

Content

2.1 Getting Started

These guides will help you get started on creating your first mono app. We begin with guides that help you setup the
toolchain and environment.

2.1.1 Lets start: Installing Mono Framework

In this guide we go through the steps of installing the Mono toolchain on your computer.

Download

First we begin with downloading the installer package, that will install the framework on your computer:

Download the installer package that fits your OS. Run the installer and follow the steps to install Mono’s developing
tools on your system.

The installer contains all you need to install apps on mono, and to develop your own apps. The installer package
contains:

• Mono Framework code: The software library

• GCC for embedded ARM: Compiler

• Binutils (Windows only): The make tool

• monoprog: Tool that uploads apps to Mono via USB

• monomake: Tool that creates new mono application projects for you

Check installation

When the installer package has finished, you should check that have the toolchain installed. Open a terminal:

5

Mono Developer Documentation Documentation, Release alpha

Mac & Linux

Open the Terminal application, and type this into it:

$ monomake

If you have installed the toolchain successfully in your path, the monomake tool should respond this:

ERR: No command argument given! You must provide a command
Usage:
monomake COMMAND [options]
Commands:

project [name] Create a new project folder. Default name is: new_mono_project
version Display the current version of monomake
path Display the path to the Mono Environment installation dir

Congratulations, you have the tool chain running! Now, you are ready to crate your first Hello World project in the
next tutorial.

Any problems?

If you do not get the excepted response, but instead something like:

-bash: monomake: command not found

It means monomake is not in your PATH. Check if you can see a mono reference in your PATH, by typing:

$ echo $PATH

Look for references to something like /usr/local/openmono/bin. If you cannot find this, please restart the
Terminal application to reload bash profile.

Windows

Open the Run command window (press Windows-key + R), type cmd and press Enter. The Command Prompt window
should open. Check that the toolchain is correctly installed by typing:

Microsoft Windows [Version 6.3.9600]
(c) 2013 Microsoft Corporation. All rights reserved.

C:\Users\stoffer> monomake

Like on Mac and Linux, monomake should respond with:

ERR: No command argument given! You must provide a command
Usage:
monomake COMMAND [options]
Commands:

project [name] Create a new project folder. Default name is: new_mono_project
version Display the current version of monomake
path Display the path to the Mono Environment installation dir

If you get this: Congratulations! You have the toolchain installed, and you can go ahead with creating your first Hello
World app, in the next tutorial.

6 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Any problems?

On the other hand, if you get:

'monomake' is not recognized as an internal or external command,
operable program or batch file.

It means monomake is not in the environment variable PATH. Check that you really did install the tool chain, and that
your system environment variable PATH does indeed contain a path like this:

C:\Program Files\OpenMono\bin

You can see your PATH environment variable by typing:

C:\Users\stoffer> echo %PATH%

2.1.2 The Hello World project

Now, let us create the obligatory Hello World project, that does not do anything else than verify your installation
works.

Prerequisites

By now I expexct you have installed the Mono tool chain, as decribed in the previous tutorial. Also, it is best if you
are familiar with object oriented programming. If you are not, then you might find yourself thinking “what the heck is
a class and inheritance!” But read on anyways, but I will recommend to read our Object oriented guide to C++.

Create a new project

Mono comes with a tool called monomake, that does one thing - and one thing only: creating new mono projects.
Let’s try it!

Open a terminal

• Mac/Linux: Open the Terminal application

• Window: Press Windows-key + R, and type cmd then hit Enter

Create project

In the terminal, navigate to the directory where you would like to create the project. Then:

$ monomake project hello_world

Hit Enter and monomake will create a new folder called hello_world with 3 files inside:

• app_controller.h

• app_controller.cpp

• Makefile

2.1. Getting Started 7

Mono Developer Documentation Documentation, Release alpha

These 3 files are required for all mono applications. I will not go into too many details here, but just tell you
that app_controller.h defines the class AppController, that is the application entry point. It replaces the
main() function.

Now, cd into the project folder hello_world:

$ cd hello_world

Compile

The project already contains code that compiles, so the only thing you need to do is:

$ make

Now the tool chain compiles the application:

Compiling C++: app_controller.cpp
Compiling C++: System default mono_default_main
Linking hello_world.elf

Voila, your mono application compiled and the executable is hello_world.elf. This is the file that can be
uploaded to Mono.

If you already have mono connected via USB, you can upload your new application to it by:

$ make install

The install command will search to any connected Mono’s, reboot it and upload the application. If everything
went smoothly you should see the text Hi, I’m Mono on the display.

The code

Okay, we got the code running on Mono - but what really happens in the code? In this section we sill look at the
template code in AppController.

First, let just describe what the application does. It creates a text on the screen that says: “Hi, I’m Mono”. That’s it.
More specific, it creates a TextLabel that gets the text content, and renders on the screen. I have includes at picture of
the application below:

8 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Header file

As said, all Mono applications needs an AppController, because it is the entry point for all mono applications. Let’s
take a look at the code in app_controller.h:

#include <mono.h> // 1

using namespace mono; // 2
using namespace mono::ui;

class AppController : public mono::IApplication { // 3

TextLabelView helloLabel; // 4

public:

AppController(); // 5

void monoWakeFromReset(); // 6

void monoWillGotoSleep(); // 7

void monoWakeFromSleep(); // 8

};

I have added numbers to the interresting code lines in comments. Let’s go through each of the lines, and see what it
does:

1. We include the framework. This header file, is an umbrella that include all the classes in Mono framework.
Every mono application need this include.

2. All mono framework classes exists inside a namespace called mono. We include namespace in the context, to
make the code less verbose. This allows us to write String(), instead of mono::String(). (And yes,
mono has its own string class!)

2.1. Getting Started 9

Mono Developer Documentation Documentation, Release alpha

3. Here we define the AppController class itself. It inherits from the abstract interface called
IApplication. This interface defines the 3 methods the AppController must have. We shall exam-
ine them shortly.

4. Here we define the TextLabel object that will display our text on the screen. It is defined as a member of the
AppController class.

5. We overwrite the default contructor for our AppController class, to allow us to do custom initialization.
You will see later why.

6. This is a required overwrite from the IApplicationinterface. It is a method that is called when mono is
reset.

7. Also a requirement from IApplication. It defines a method that is called just before mono is put into sleep
mode.

8. As required by IApplication, this method is called when mono wake up from sleep mode.

All AppController‘s are required to implement 6,7 and 8, but you may just leave them blank.

Implementation

Now, the contents of: app_controller.cpp file:

#include "app_controller.h"

using namespace mono::geo;

AppController::AppController() :
helloLabel(Rect(0,100,176,20), "Hi, I'm Mono!") // 1

{

helloLabel.setAlignment(TextLabelView::ALIGN_CENTER); // 2

helloLabel.setTextColor(display::TurquoiseColor); // 3
}

void AppController::monoWakeFromReset()
{

helloLabel.show(); // 4
}

void AppController::monoWillGotoSleep()
{

}

void AppController::monoWakeFromSleep()
{

helloLabel.scheduleRepaint(); // 5
}

Again, I have numbered the most interesting code lines:

1. This the default constructor overwrite. We overwrite the contructor to construct the TextLabel object with
specific parameters. (See TextLabelView reference) We set the labels position and size on the screen (using the
Rect class), and its text content.

10 Chapter 2. Content

https://en.wikipedia.org/wiki/Default_constructor

Mono Developer Documentation Documentation, Release alpha

2. In (1) we defined the text labels width to be the entire screen (176 pixels). We want to center the text on the
screen, therefore we tell the label to center align its text content.

3. To make application look fancy, we set the text color to be an artzy turquoise color.

4. The method monoWakeFromReset is automatically called upon reset. Inside here we tell the text label to be
visible. All UI widgets are hidden by default. You must call show() to render them.

5. monoWakeFromSleep is called when Mono wakes from sleep mode. Here we tell the label to repaint (render)
itself on the screen. Sleep mode might have cleared the display memory, so we need to render the label again.
scheduleRepaint will render the text, when the display signals its time to update.

That is all the code you need to draw on the screen. Notice that we left the method monoWillGotoSleep empty.
We do not need any clean up code, before mono goes to sleep.

Sleep mode

But how and when will Mono go into sleep mode? Easy: By default the side-button on Mono will trigger sleep and
wake. You do not have do anything! Sleep mode will turn off all peripherals and halt the CPU execution. Only a
button press will wake it. Sleep mode is only way you can turn off Mono!

Further reading

• Your first App : Build a Tic Tac Toe game (Part 1)

• Archectural Overview : Learn more about sleep/wake and IApplication

• Display System Architecture : An in-depth look on details of the display system.

2.1.3 Tic-tac-toe for Mono

In this tutorial I will teach you how to program Mono’s display and touch device by creating a tiny game.

Anatomy of a Mono application

Mono apps can be written inside the Arduino IDE, but if you really want be a pro, you can write Mono apps directly
in C++. For that you will need to implement an AppController with at least three functions. So I will start there,
with my app_controller.h header file:

#include <mono.h>

class AppController
:

public mono::IApplication
{
public:

AppController ();
void monoWakeFromReset ();
void monoWillGotoSleep ();
void monoWakeFromSleep ();

};

My matching app_controller.cpp implementation file will start out as this:

2.1. Getting Started 11

Mono Developer Documentation Documentation, Release alpha

#include "app_controller.h"

AppController::AppController ()
{
}

void AppController::monoWakeFromReset ()
{
}

void AppController::monoWakeFromSleep ()
{
}

void AppController::monoWillGotoSleep ()
{
}

Now I have a fully functional Mono application! It does not do much, but hey, there it is.

Screen and Touch

Tic Tac Toe is played on a 3-by-3 board, so let me sketch out the layout something like this:

Tic Tac Toe
+---+ +---+ +---+
| | | | | |
+---+ +---+ +---+
+---+ +---+ +---+
| | | | | |
+---+ +---+ +---+
+---+ +---+ +---+
| | | | | |
+---+ +---+ +---+

I will make the AppController hold the board as an array of arrays holding the tokens X and O, and also a token
_ for an empty field:

class AppController
...

{
...
enum Token { _, X, O };
Token board[3][3];

};

For simplicity, I do not want Mono to make any moves by itself (yet); I just want two players to take turns by touching
the board. So I need to show the board on the screen, and I want each field of the board to respond to touch.

This kind of input and output can in Mono be controlled by the ResponderView. It is a class that offers a lot of
functionality out of the box, and in my case I only need to override two methods, repaint for generating the output
and TouchBegin for receiving input:

class TouchField
:

public mono::ui::ResponderView
{

12 Chapter 2. Content

https://en.wikipedia.org/wiki/Tic-tac-toe
http://developer.openmono.com/en/latest/reference/mono_ui_ResponderView.html

Mono Developer Documentation Documentation, Release alpha

void TouchBegin (mono::TouchEvent &);
void repaint ();

};

class AppController
...

{
...
TouchField fields[3][3];

};

Above I have given AppController nine touch fields, one for each coordinate on the board. To make a
TouchField able to paint itself, it needs to know how to get hold of the token it has to draw:

class TouchField
...

{
...

public:
AppController * app;
uint8_t boardX, boardY;

};

With the above information, I can make a TouchField draw a circle or a cross on the screen using the geometric
classes Point, Rect, and the underlying functionality it inherits from ResponderView. The ResponderView
is a subclass of View, and all Views have a DisplayPainter named painter that takes care of actually putting pixel
on the screen:

using mono::geo::Point;
using mono::geo::Rect;

void TouchField::repaint ()
{

// Clear background.
painter.drawFillRect(viewRect,true);
// Show box around touch area.
painter.drawRect(viewRect);
// Draw the game piece.
switch (app->board[boardY][boardX])
{

case AppController::X:
{

painter.drawLine(Position(),Point(viewRect.X2(),viewRect.Y2()));
painter.drawLine(Point(viewRect.X2(),viewRect.Y()),Point(viewRect.X(),

→˓viewRect.Y2()));
break;

}
case AppController::O:
{

uint16_t radius = viewRect.Size().Width() / 2;
painter.drawCircle(viewRect.X()+radius,viewRect.Y()+radius,radius);
break;

}
default:

// Draw nothing.
break;

}
}

2.1. Getting Started 13

http://developer.openmono.com/en/latest/reference/mono_geo_Point.html
http://developer.openmono.com/en/latest/reference/mono_geo_Rect.html
http://developer.openmono.com/en/latest/reference/mono_ui_View.html
http://developer.openmono.com/en/latest/reference/mono_display_DisplayPainter.html

Mono Developer Documentation Documentation, Release alpha

Above, I use the View’s viewRect to figure out where to draw. The viewRect defines the View’s position and size
on the screen, and its methods X(), Y(), X2(), and Y2() give me the screen coordinates of the View. The method
Position() is just a shortcut to get X() and Y() as a Point.

With respect to the board, I index multidimensional arrays by row-major order to please you old-school C coders out
there. So it is board[y][x], thank you very much.

Well, now that each field can draw itself, we need the AppController to setup the board and actually initialise
each field when a game is started:

using mono::ui::View;

void AppController::startNewGame ()
{

// Clear the board.
for (uint8_t x = 0; x < 3; ++x)

for (uint8_t y = 0; y < 3; ++y)
board[y][x] = _;

// Setup touch fields.
const uint8_t width = View::DisplayWidth();
const uint8_t height = View::DisplayHeight();
const uint8_t fieldSize = 50;
const uint8_t fieldSeparation = 8;
const uint8_t screenMargin = (width-(3*fieldSize+2*fieldSeparation))/2;
uint8_t yOffset = height-width-(fieldSeparation-screenMargin);
for (uint8_t y = 0; y < 3; ++y)
{

yOffset += fieldSeparation;
uint8_t xOffset = screenMargin;
for (uint8_t x = 0; x < 3; ++x)
{

// Give each touch field enough info to paint itself.
TouchField & field = fields[y][x];
field.app = this;
field.boardX = x;
field.boardY = y;
// Tell the view & touch system where the field is on the screen.
field.setRect(Rect(xOffset,yOffset,fieldSize,fieldSize));
// Next x position.
xOffset += fieldSize + fieldSeparation;

}
// Next y position.
yOffset += fieldSize;

}
continueGame();

}

Above I space out the fields evenly on the bottom part of the screen, using the DisplayWidth() and
DisplayHeight() to get the full size of the screen, and while telling each field where it should draw itself, I
also tell the field which board coordinate it represents.

Before we talk about the game control and implement the function continueGame, let us hook up each field so that
it responds to touch events:

using mono::TouchEvent;

void TouchField::TouchBegin (TouchEvent & event)

14 Chapter 2. Content

https://en.wikipedia.org/wiki/Row-major_order

Mono Developer Documentation Documentation, Release alpha

{
app->humanMoved(boardX,boardY);

}

Above the touch event is implicitly translated to a board coordinate (because each field knows its own board coordinate)
and passed to the AppController that holds the board and controls the game play.

Game status display

To inform the players what is going on, I want the top of the display to show a status message. And I also want to keep
track of which player is next:

class AppController
...

{
...
mono::ui::TextLabelView topLabel;
Token nextToMove;

};

using mono::ui::TextLabelView;

AppController::AppController ()
:

topLabel(Rect(0,10,View::DisplayWidth(),20),"Tic Tac Toe")
{

topLabel.setAlignment(TextLabelView::ALIGN_CENTER);
}

A TextLabelView is a View that holds a piece of text and displays this text in inside its viewRect. I can now
change the label at the top of the screen depending on the state of the game after each move by using setText(),
followed by a call to show() to force the TextLabelView to repaint:

void AppController::continueGame ()
{

updateView();
whosMove();
if (hasWinner())
{

if (winner() == X) topLabel.setText("X wins!");
else topLabel.setText("O wins!");

}
else if (nextToMove == _) topLabel.setText("Tie!");
else if (nextToMove == X) topLabel.setText("X to move");
else topLabel.setText("O to move");
topLabel.show();

}

The updateView() function simply forces all the fields to repaint:

void AppController::updateView ()
{

for (uint8_t y = 0; y < 3; ++y)
for (uint8_t x = 0; x < 3; ++x)

fields[y][x].show();
}

2.1. Getting Started 15

http://developer.openmono.com/en/latest/reference/mono_ui_TextLabelView.html

Mono Developer Documentation Documentation, Release alpha

Game control

I now need to implement functionality that decides which player should move next and whether there is a winner.
First, I can figure out who’s turn it is by counting the number of game pieces for both players, and placing the result
in nextToMove. If nextToMove gets the value _, then it means that the board is full:

void AppController::whosMove ()
{

uint8_t xPieces = 0;
uint8_t oPieces = 0;
for (uint8_t y = 0; y < 3; ++y)

for (uint8_t x = 0; x < 3; ++x)
if (board[y][x] == X) ++xPieces;
else if (board[y][x] == O) ++oPieces;

if (xPieces + oPieces >= 9) nextToMove = _;
else if (xPieces <= oPieces) nextToMove = X;
else nextToMove = O;

}

Finding out whether there is a winner is just plain grunt work, checking the board for three-in-a-row:

bool AppController::hasThreeInRow (Token token)
{

// Check columns.
for (uint8_t x = 0; x < 3; ++x)

if (board[0][x] == token &&
board[1][x] == token &&
board[2][x] == token

) return true;
// Check rows.
for (uint8_t y = 0; y < 3; ++y)

if (board[y][0] == token &&
board[y][1] == token &&
board[y][2] == token

) return true;
// Check diagonal.
if (board[0][0] == token &&

board[1][1] == token &&
board[2][2] == token

) return true;
// Check other diagonal.
if (board[0][2] == token &&

board[1][1] == token &&
board[2][0] == token

) return true;
return false;

}

AppController::Token AppController::winner ()
{

if (hasThreeInRow(X)) return X;
if (hasThreeInRow(O)) return O;
return _;

}

bool AppController::hasWinner ()
{

return winner() != _;

16 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

}

Lastly, I need to figure out what to do when a player touches a field. If the game has ended, one way or the other, then
I want to start a new game, no matter which field is touched; If the player touches a field that is already occupied, then
I ignore the touch; Otherwise, I place the proper piece on the board:

void AppController::humanMoved (uint8_t x, uint8_t y)
{

if (nextToMove == _ || hasWinner()) return startNewGame();
else if (board[y][x] != _) return;
else board[y][x] = nextToMove;
continueGame();

}

Fallen asleep?

To wrap things up, I want Mono to start a new game whenever it comes out of a reset or sleep:

void AppController::monoWakeFromReset ()
{

startNewGame();
}

void AppController::monoWakeFromSleep ()
{

startNewGame();
}

Well there you have it: An astonishing, revolutionary, new game has been born! Now your job is to type it all in.

2.1.4 Tic-tac-toe for Mono, part II

In the first part, you saw how to get Mono to draw on the screen and how to react to touch input.

In this second part, I will show you how to use timers to turn Mono into an intelligent opponent!

Growing smart

To get Mono to play Tic Tac Toe, I will need to give it a strategy. A very simple strategy could be the following:

1. Place a token on an empty field if it makes Mono win.

2. Place a token on an empty field if it blocks the human opponent from winning.

3. Place a token arbitrarily on an empty field.

Well, it is not exactly Skynet, but it will at least make Mono appear to have some brains. In code it translates to the
following.

void AppController::autoMove ()
{

timer.Stop();
// Play to win, if possible.
for (uint8_t x = 0; x < 3; ++x)

for (uint8_t y = 0; y < 3; ++y)

2.1. Getting Started 17

Mono Developer Documentation Documentation, Release alpha

if (board[y][x] == _)
{

board[y][x] = O;
if (hasWinner()) return continueGame();
else board[y][x] = _;

}
// Play to not loose.
for (uint8_t x = 0; x < 3; ++x)

for (uint8_t y = 0; y < 3; ++y)
if (board[y][x] == _)
{

board[y][x] = X;
if (hasWinner())
{

board[y][x] = O;
return continueGame();

}
else board[y][x] = _;

}
// Play where free.
for (uint8_t x = 0; x < 3; ++x)

for (uint8_t y = 0; y < 3; ++y)
if (board[y][x] == _)
{

board[y][x] = O;
return continueGame();

}
}

}

The timer is what controls when Mono should make its move; it is a Mono framework Timer that can be told to
trigger repeatedly at given number of milliseconds. I will make the application fire the timer with 1.5 second intervals:

class AppController
...

{
...

private:
mono::Timer timer;
void autoMove ();
void prepareNewGame ();

};

AppController::AppController ()
:

timer(1500)
{

...
}

I will control the application by telling timer to call various functions when it triggers, and then stop and start the
timer where appropriate. Conceptually, I can simply tell timer to call a function autoMove by

timer.setCallBack(autoMove);

but because autoMove is a C++ class member-function, I need to help out the poor old C++ compiler by giving it
information about which object has the autoMove function, so the incantation will actually be

18 Chapter 2. Content

http://developer.openmono.com/en/latest/reference/mono_Timer.html

Mono Developer Documentation Documentation, Release alpha

timer.setCallback<AppController>(this,&AppController::autoMove);

With that cleared up, I can place the bulk of the control in the continueGame function:

void AppController::continueGame ()
{

updateView();
whosMove();
if (hasWinner())
{

if (winner() == X) topLabel.setText("You win!");
else topLabel.setText("Mono wins!");
timer.setCallback<AppController>(this,&AppController::prepareNewGame);
timer.Start();

}
else if (nextToMove == _)
{

topLabel.setText("Tie!");
timer.setCallback<AppController>(this,&AppController::prepareNewGame);
timer.Start();

}
else if (nextToMove == X)
{

topLabel.setText("Your move");
topLabel.show();

}
else
{

topLabel.setText("Thinking...");
timer.setCallback<AppController>(this,&AppController::autoMove);
timer.Start();

}
}

All that is missing now is a prepareNewGame function that prompts for a new game:

void AppController::prepareNewGame ()
{

timer.Stop();
topLabel.setText("Play again?");

}

And that is it! Now you can let your friends try to beat Mono, and when they fail, you can tell them that you created
this master mind.

2.1.5 Tic-tac-toe for Mono, part III

In the first part, you saw how to get Mono to draw on the screen and how to react to touch input.

In the second part, you saw how to use timers to turn Mono into an intelligent opponent.

In this third part, I will show you how to extend battery life and how to calibrate the touch system.

2.1. Getting Started 19

Mono Developer Documentation Documentation, Release alpha

Getting a Good Night’s Sleep

It is important to automatically put Mono to sleep if you want to conserve your battery. The battery lasts less than
a day if the screen is permanently turned on. On the other hand, if Mono only wakes up every second to make a
measurement of some sort, then the battery will last a year or thereabouts. What I will do in this app, is something in
between these two extremes.

In it’s simplest form, an auto-sleeper looks like this:

class AppController
...

{
...

private:
mono::Timer sleeper;
...

};

AppController::AppController ()
:

sleeper(30*1000,true),
...

{
sleeper.setCallback(mono::IApplicationContext::EnterSleepMode);
...

}

void AppController::continueGame ()
{

sleeper.Start();
...

}

The sleeper is a single-shot Timer, which means that it will only fire once. And by calling Start on sleeper
every time the game proceeds in continueGame, I ensure that timer is restarted whenever something happens in the
game, so that EnterSleepMode is only called after 30 seconds of inactivity.

It is Better to Fade Out than to Black Out

Abruptly putting Mono to sleep without warning, as done above, is not very considerate to the indecisive user. And
there is room for everyone here in Mono world.

So how about slowly fading down the screen to warn about an imminent termination of the exiting game?

Here I only start the sleeper timer after the display has been dimmed:

class AppController
...

{
...

private:
mono::Timer dimmer;
void dim ();
...

};

using mono::display::IDisplayController;

20 Chapter 2. Content

http://developer.openmono.com/en/latest/reference/mono_Timer.html

Mono Developer Documentation Documentation, Release alpha

AppController::AppController ()
:

dimmer(30*1000,true),
...

{
dimmer.setCallback<AppController>(this,&AppController::dim);
...

}

void AppController::dim ()
{

dimmer.Stop();
IDisplayController * display = IApplicationContext::Instance->DisplayController;
for (int i = display->Brightness(); i >= 50; --i)
{

display->setBrightness(i);
wait_ms(2);

}
sleeper.Start();

}

The dimmer timer is started whenever there is progress in the game, and when dimmer times out, the dim method
turns down the brightness from the max value of 255 down to 50, one step at a time.

Oh, I almost forgot, I need to turn up the brightness again when the the dimmer resets:

void AppController::continueGame ()
{

IApplicationContext::Instance->DisplayController->setBrightness(255);
sleeper.Stop();
dimmer.Start();
...

}

So there you have it, saving the environment and your battery at the same time!

2.1.6 Mono for Arduino Hackers

You can use the familiar Arduino IDE to build Mono applications. This guide will take you through the steps.

Prerequisites

First I expect you are familiar with Arduino, its coding IDE and the API’s like pinMode() etc. I also assume that
you have the IDE installed, and it is version 1.6.7 or above. You do not have to follow any other of the getting started
guides. Arduino IDE development for Mono is completely independed. If this is the first Mono guide you read, it is
all good.

Overview

You can code Mono using 2 approaches: Native Mono or the Arduino IDE. The difference is the tools you use, and
the way you structure your code. In the Arduino approach you get the familiar setup() and loop() functions, and
you use the Arduino IDE editor to code, compile and upload applications to Mono.

Under the hood we still use the native Mono API’s and build system, we just encapsulate it in the Arduino IDE.

2.1. Getting Started 21

http://developer.openmono.com/en/latest/reference/mono_display_IDisplayController.html

Mono Developer Documentation Documentation, Release alpha

Installation

The Arduino IDE has a plugin system, where you can add support for third-party boards. We use such a plugin, that
adds Mono as a target board. To install the plugin we use the Board Manager, that can install new target boards.

Note: You need Arduino IDE version 1.6 or above to utilize the Board Manager feature. You can download Arduino
IDE here: arduino.cc

Add Mono as a board source

To make the Board Manager aware of Mono’s existence, you must add a source URL to the manager. You do this by
opening the preferences window in Ardiono IDE. Below is a screenshot of the window:

In the text field called Additional Boards Manager URLs type in the URL for Mono board package:

https://github.com/getopenmono/arduino_comp/releases/download/current/package_
→˓openmono_index.json

And press OK.

22 Chapter 2. Content

https://www.arduino.cc/en/Main/Software

Mono Developer Documentation Documentation, Release alpha

Install the board package

Now, open the Board Manager by selecting the menu: Tools -> Boards -> Board Manager:

The Board Manager appears, and query the source URLs for new board types. It will discover a new board type
OpenMono. Select the type Contributed, in top left corner:

Now click on the Install button to download and install all the needed tools to build mono applications. This might
take a few minutes.

When the installation is done, you can close the Board Manager and return the main window. Now select Mono from
the list of available target boards:

2.1. Getting Started 23

Mono Developer Documentation Documentation, Release alpha

Install the USB Serial Port Driver

If you run Windows, there is an additional step. (Mac users, you can skip this section.) Windows need to detect the
Mono hardware as an USB CDC device and create an ol’ fashion COM port. So download the USB device definition
driver by right clicking the link and choosing Save file as:

24 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Download Windows Serial Port Driver

Run the installer, and you are ready to use Mono.

Limitations

The standard Arduino boards are much simpler than Mono. For example: They can be turned off and they have
bare pin headers. Arduino API are made to make digital and analog communication simple. You have functions like
digitalWrite and analogRead. While you have these functions available, you do not have any pin headers
sticking out of Mono chassis! You need the Arduino Shield Adaptor or to build your own hardware to really take
advantage of the Arduino API.

Mono’s API is much more high-level, meaning that you have functions like Render text on the screen, and the software
library (Mono Framework) will handle all the communication for you. Luckily you can still do this from inside the
Arduino IDE.

Our additions to the default Arduino sketch

There are some key differences between Arduino and Mono, most important the power supply. You can always turn
off an Arduino by pulling its power supply, but that is not true for mono. Here power is controlled by software.

By default we have added some code to the Arduino sketch template, so it will power on/off when pressing the User
button. Also, we added the text Arduino to the display, such that you know your Mono is turned on.

Hello World

Let us build a Hello World application, similar to the one in the The obligatory Hello World project guide. We start
out with the default Arduino project template:

void setup() {
// put your setup code here, to run once:

}

void loop() {
// put your main code here, to run repeatedly:

}

We will use the class TextLabelView to displat text on the screen. A TextLabel has a size and a position on the screen,
which is defined by the class Rect that represents a rectangle.

Context issue

You might think we just create the TextLabel in the setup() function like this:

void setup() {
// put your setup code here, to run once:

mono::ui::TextLabelView helloLbl;

}

2.1. Getting Started 25

https://github.com/getopenmono/arduino_comp/releases/download/1.1/OpenMonoSerialDriverSetup-v1.0.exe

Mono Developer Documentation Documentation, Release alpha

But this approach will deallocate the textlabel as soon as the setup() function returns. This means it cannot be rendered
to the screen, because it have to be present in memory when screen repaints occur.

The correct approach here is to create a class (say MyClass), and let the TextLabel be a member of that class. We than
create an object of the class in te global context. (Outside the setup() and loop() functions.) But all this will be
out of scope with this tutorial, so we will do it the ugly way . Just know that having many global context objects, is a
bad thing programmatically.

Adding the TextLabel

The complete code added to the project global context and in the setup() function:

#include <mono.h> // 1
#include <app_controller.h> // 2

mono::ui::TextLabelView textLbl(mono::geo::Rect(0,73,176,20),"Hi, I'm Mono"); // 3

void setup() {
// put your setup code here, to run once:

//Remove the existing _Arduino_ text label
AppController::ArduinoAppController->ard.hide(); //3

textLbl.setTextColor(mono::display::WhiteColor); // 4
textLbl.show(); // 5

}

I have numbered the interesting source code lines, let go through them one by one:

1. We include the Mono Framework, to have access to Mono’s API.

2. Include refences to the default AppController object

3. Here we define the global TextLabel object called textLbl. Because it is global it will stick around and not be
deallocated.

• In TextLabelView‘s contructor we create a rectangle object (Rect), and give the position (0, 73) and dimen-
sion (176, 20).

• In the constructors second parameters we set the text content on the TextLabel. This is the text that will be
displayed on the screen.

4. Get the default AppController object, and tells its ard TextLabel to be hidden.

5. Because the screen on the Arduino template app is black, we need to tell the label to use a White text color.

6. We tell the TextLabel to render itself on the screen. All UI widgets are hidden by default. You must call show()
to render them.

Now you can press the compile button () and see the code compiles. If you have Mono connected you can upload the
application by pressing the button.

Notice that we did not need to put any code inside the loop() function.

Enhancing the look and feel

To make our Hello World exactly like the The obligatory Hello World project guide, we need to add some refinements
to it. We need to center the text on the screen and to color it a fancy red color. But that easy, just two calls added to
the setup() function:

26 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

textLbl.setAlignment(mono::ui::TextLabelView::ALIGN_CENTER);

textLbl.setTextColor(mono::display::AlizarinColor);

Now, if you build and run the application the text will be a fancy color and centered on the screen:

A quick note on namespaces

If find yourself wondering about what this is: mono::ui::, then read on. Everybody else - you can skip this section.

C++ uses namespaces to encapsulate class names, minimizing the risk of conflicting names. If you for example define
a class called Stream, you like likely get a compiler error. This is because Arduino already have a class called
Stream - the name is already taken.

To avoid this situation we defined all Mono classes inside a namespace, meaning that we exists inside a enclosed
context:

namespace mono {
class String;
class Stream;
class WhatEver;

}

You access classes inside a namespace by prepending the namespace to the class name like this: mono::String.
Namespaces can be nested like this:

namespace mono {
namespace display {

class Color;
}

namespace ui {
class TextLabelView;

}
}

2.1. Getting Started 27

Mono Developer Documentation Documentation, Release alpha

Importing into global context

You can import a namespace into the global context, to avoid prepending all mono classes with mono::, by the
using keyword:

using namespace mono;

Now, instead of accessing classe by mono::String, you just write String, the mono:: has become implcit. You
can import multiple namespaces into the global context by:

using namespace mono;
using namespace mono::ui;
using namespace mono::display;

Now you can implicit access classes from 3 different namespaces!

Note: The classes are not imported or loaded into the global context (like in Python), C++ does not work that way. It
is just a short hand convenience feature, to make the code less verbose.

Further reading

Now you know how to build mono applications from the Arduino IDE. You might what dive into the native API and
build system, or reading one of the in-depth articles:

• Install the native framework : Install the native mono build system

• Architectural Overview : About application lifecycles and structure.

Happy hacking.

2.1.7 Common Misconceptions & Worst Practice

To clear out, what we imagine will be common mistakes, let’s go through some senarios that you should avoid - at
least!

Who should read this?

Mono API and application structure might be new to you, if you previously programmed only for Arduino or similar
embedded devices. We are aware of our framework might be quite unfamiliar to bare metal developers, who expect to
have full access and control, from main() to return 0.

Mono Framework is advanced and its good performance depends on you, following the best practice guide lines. Read
this, and you can avoid the most basic mistakes that degrade Mono’s functionality.

No while(1)‘s

First, never ever create your own run loop! Never do this:

void AppController::monoWakeFromReset()
{

// do one time setups ...

// now lets do repetitive tasks, that I want to control myself

28 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

while(1)
{

//check status of button

// check something else

// maybe update the screen

// increment some counter
}
// we will never return here

}

Try to do this, and you will find Mono completely unresponsive. The USB port will not work, the programmer
(monoprog) will not work, along with a whole bunch of other stuff.

Like other applications in modern platforms, Mono applications uses an internal run loop. If you create your own, the
internal run loop will not progress. All features that depend on the run loop will not work. Timers will not run, display
system will not work, and worst monoprog cannot reset mono, to upload a new app.

If you want to do repetitive tasks, that should run always (like while(1)), you should instead utilize the run loop.
You can inject jobs into the run loop by implementing an interface called IRunLoopTask. This will allow you to define
a method that gets called on each run loop iteration. That’s how you do it. We shall not go into more details here, but
just refer to the tutorial Using the Run Loop

No busy waits

Many API’s (including Mono’s), allows you to do busy waits like this:

// do something
wait_ms(500); // wait here for 0.5 secs

// do something else

It is really covenient to make code like this, but it is bad for performance! For half a second you just halt the CPU - it
does nothing. The application run loop is halted, so all background tasks must wait as well. The CPU runs at 66 Mhz,
imagine all code it could have executed in that half second!

Instead of halting the CPU like this, you should use callbacks to allow the CPU to do other stuff, while you wait:

// do someting
mono::Timer::callOnce<MyClass>(500, this, &MyClass::doSomethingElse); // do

→˓something else in 0.5 secs

By using the Timer class, and encapsulating the “do something else” functionality in a method - you free the CPU to
do useful stuff while you wait. To learn more about callbacks see the tutorial: Callbacks in C++.

Extensive use of new or malloc

The C++ new operator uses the stdlib function malloc to allocate memory on the heap. And it is very easy and
convenient to use the heap:

// object allocation on the heap - because Qt and Obj-C Cocoa uses this scheme!
mono::geo::Rect *bounds = new mono::geo::Rect(0,0,100,20);
mono::ui::TextLabelView *txtLbl = new mono::ui:TextLabelview(*bounds, "I'm on the

→˓heap!");

2.1. Getting Started 29

Mono Developer Documentation Documentation, Release alpha

//pass the pointer around
return txtLbl;

What happened to the bounds pointer, that had a reference to a Rect object? Nothing happened, the object is still on
the heap and we just lost the reference to it. Our application is leaking memory. And that is one issue with using the
heap. We do not have a Garbage Collector , so you must be careful to always free your objects on the heap.

And it gets worse, the heap on Mono PSoC5 MCU is not big - it is just 16 Kb. You might run out of heap quicker than
you expect. At that point malloc will start providing you with NULL pointers.

Use heap for Asynchronous tasks

There are some cases where you must use the heap, for example this will not work:

void getTemp()
{

// say we got this variable from the temperature sensor
int celcius = 22;

char tempStr[100]; // make a local buffer variable to hold our text

// format a string of max 100 chars, that shows the temperature
snprintf(tempStr, 100, "the temperature is: %i C",celcius);

renderOnDisplayAsync(tempStr);
}

Here we have an integer and want to present its value nicely wrapped in a string. It is a pretty common thing to do
in applications. The issue here is that display rendering is asynchronous. The call to renderOnDisplayAsync
will just put our request in a queue, and then return. This means our buffer is removed (deallocated) as soon as the
getTemp() returns, because it is on the stack.

Then, when its time to render the display there is no longer a tempStr around. We could make the string buffer
object global, but that will take up memory - especially when we do not need the string.

In this case you should the heap! And luckily we made a String class that does this for you. It store its content on
the heap, and keeps track of references to the content. As soon as you discard the last reference to the content, it is
automatically freed - no leaks!

The code from above becomes:

int celcius = 22; // from the temp. sensor

// lets use mono's string class to keep track of our text
mono:String tempStr = mono::String::Format("the temperature is: %i C",celcius);

renderOnDisplayAsync(tempStr);

That’s it. Always use Mono’s String class when handling text strings. It is lightweight, uses data de-duplication and
do not leak.

(The method renderOnDisplayAsync is not a Mono Framework method, it is just for demonstration.)

30 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Avoid using the Global Context

If you write code that defines variables in the global context, you might encounter strange behaviours. Avoid code like
this:

// I really need this timer in reach of all my code
mono::Timer importantTimer;

// some object I need available from everywhere
SomeClass myGlobalObject;

class AppController : public mono::IApplication
{

// ...
};

If you use Mono classes inside SomeClass or reference myGlobalTimer from it, when you will likely run into
problems! The reason is Mono’s initialization scheme. A Mono application’s start procedure is quite advanced,
because many things must be setup and ready. Some hardware components depend on other components, and so on.

When you define global variables (that are classes) they are put into C++’s global initializer lists. This means
they are defined before monoWakeFromReset() is executed. You can not expect periphrals to work before
monoWakeFromReset has been called. When it is called, the system and all its features is ready. If you inter-
act with Mono classes in code you execute before, it is not guaranteed to work properly.

If you would like to know more about the startup procedures of mono applications and how application code actually
loads on the CPU, see the Boot and Startup procedures in-depth article.

Direct H/W Interrupts

If you are an exerienced embedded developer, you know interrupts and what the requirements to their ISR’s are. If
you are thinking more like: “What is ISR’s?” Or, “ISR’s they relate to IRQ’s right?” - then read on because you might
make mistakes when using interrupts.

First, let’s see some code that only noobs would write:

// H/W calls this function on pin state change, for example
void interruptServiceRoutine()
{

flag = true;
counter += 1;

//debounce?
wait_ms(200);

}

With the wait_ms() call, this interrupt handler (or ISR) will always take 200 ms to complete. Which is bad. A rule
of thumb is that ISR’s should be fast. You should avoid doing any real work inside them, least of all do busy waits.

Mono Framework is build on top of mbed, that provides classes for H/W Timer interrupts and input triggered interrupts.
But because you should never do real work inside interrupt handlers, you normally just set a flag and then check that
flag every run loop iteration.

We have includes classes that does all this for you. We call them Queued Interrupts, and we have an in-depth article
about the topic: Queued callbacks and interrupts. There are the QueuedInterrupt class, that trigger a queued (run
loop based) interrupt handler when an input pin changes state. And the Timer class, that provides a queued version of
hardware timer interrupts.

2.1. Getting Started 31

Mono Developer Documentation Documentation, Release alpha

Caution: We strongly encourage you to use the queued versions of timers and interrupts, since you avoid all the
issues related to real H/W interrupts like: reentrancy, race-conditions, volatile variable, dead-locks and more.

2.1.8 Monokiosk

Using Monokiosk

If you want to install an existing app from Monokiosk, on to your Mono device - this guide is for you!

In this guide we will show you how to download and install a pre-built application on Mono. Monokiosk is the app
store where you can browse and download mono applications, built by makers from around the world.

Note: In this early phase the number of applications on monokiosk is quite limited. We plan to add more applications
to the kiosk ourselves, and hope that our community will submit their own creations to the site.

But until then, let us focus on the few apps we have in the kiosk right now. In this guide we shall install the Tic Tac
Toe sample app.

Visit monokiosk.com

First order of business, direct your favorite browser to monokiosk.com, and you will see this page like this:

32 Chapter 2. Content

https://monokiosk.com

Mono Developer Documentation Documentation, Release alpha

Currently there are a simple Clock app and and a Tic Tac Toe app. But before you franticly click on one of these crazy
mind blowing apps, you first need to install a tool called monoprog.

Monoprog is a programmer. A programmer is an application that transfers application files to mono, using the USB
port. You need this tool to get the application from the computer to your Mono device. When you install applications
from Monokiosk, the overall procedure is:

1. Download the application from monokiosk. (An application is a file with the extension: .elf)

2. Use monoprog to transfer the downloaded .elf file to Mono.

3. There is no step 3!

First you must download monoprog itself, so click on Get Started in the menu bar. Nowyou will see this page:

2.1. Getting Started 33

Mono Developer Documentation Documentation, Release alpha

Choose the option that fits you or your OS. The downloads are installers that will install monoprog on your system.

Windows 8 and 10 Users:

We are working on a signed driver package to be a part of the installer, but until then Window 8 and 10 users must
disable the driver signing requirement. If the device driver is not installed, Windows will not detect Mono’s serial port
as a COM device. See Sparkfuns tutorial on How to Disable Signing Checks

Linux Users:

We have compiled a debian package for you. You need to use the dpkg tool to install the package, and then run apt-get
install to install any dependencies. Non-debian users: You are skilled enough to compile monoprog from source.

34 Chapter 2. Content

https://learn.sparkfun.com/tutorials/disabling-driver-signature-on-windows-8/disabling-signed-driver-enforcement-on-windows-8
https://github.com/getopenmono/monoprog

Mono Developer Documentation Documentation, Release alpha

Download Tic Tac Toe

Now, go back to the frontpage and click on the Tic Tac Toe app. You will now see this page, where you need to scroll
down to the download link at the bottom right:

When you click the link, the file ttt.elf will be downloaded to your computer. This file is the application binary
file and it is compatible with all present Mono models. Save the file in a folder, that you can easily reach from a
terminal. Yes, now we must use terminal or command prompt.

Transfer the app to Mono

Attention: Since this is the first version of monoprog, it is a command line application. We have plan to wrap it
inside a nice GUI - but for now bear with us.

2.1. Getting Started 35

Mono Developer Documentation Documentation, Release alpha

Open a terminal window:

• On Mac / Ubuntu: Open the Terminal application.

• On Windows: Press Window-key + R, type cmd and hit Enter.

Type type this in the console, to verify monoprog is installed:

$ monoprog
Usage: monoprog [options]
Bootloadable Programmer for Mono board.

Options:
-h, --help Displays this help.
-V, --version Displays version information.
--license Displays licenses of software components.
-d, --detect Detects whether a Mono is connected via USB.
--mock <type> Simulates device to be in <type>.
-p, --program <app> Transfers <app> to Mono.
-v, --verbose <level> Set output verbosity level (default is 1).
-q, --quiet, --silent Set output verbosity level to 0.

If you see a message similar to this one, then everything is awesome! If your console brags about unknown command
or application, then please run the installer again.

Connect Mono to your computer using a standard microUSB cable. Then, (from the terminal) navigate to the directory
where you placed the file ttt.elf. Then write this monoprog command:

$ monoprog -d

Monoprog will now try to find any connected Mono devices. If your device is found it returns: Mono device detected.

Note: If monoprog does not detect any connected Mono device, please force Mono into bootloader with help from
this guide.

To transfer (program) the app to Mono write:

$ monoprog -p ttt.elf

Now, monoprog programs the application binary code to Mono’s internal flash memory. If everything goes well Mono
will wake up and display the Tic Tac Toe app. Next, you can find a friend to play Tic Tac Toe with, you can download
the other app or you could consider creating your own!

2.2 Tutorials

2.2.1 Essentials

Resetting Mono

Like most Wifi routers and alike, Mono has a reset switch hidden inside a cavity.

If you have gotten stuck and need to force reboot Mono, this guide will help you in resetting Mono. If you have made
a coding mistake that might have caused Mono to freeze - then we shall later look at how force Mono into bootloader
mode.

36 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Hardware Reset

If you just need to trigger a hardware reset, follow these steps:

1. Find a small tool like a small pen, steel wire or paper clip

2. Insert the tool into the reset cavity, as displayed in the picture above. Be aware not to insert it into the buzzer
opening.

3. Push down gently to the toggle the reset switch, and lift up the tool.

Mono will reset. It will load the bootloader that waits for 1 sec, before loading the application programmed in memory.

Force load Bootloader

If you need to install an app from Monokiosk or likewise, it might be nice to force Mono to stay in bootloader - and not
load the programmed application. You can do this by pressing the User button, when releasing the reset switch. Then
Mono will stay in Bootloader and not load any application. You will be able to upload a new app to it with monoprog.

To force Mono to stay in bootloader:

1. Press and hold the User button

2. Gently press and release the reset switch

2.2. Tutorials 37

Mono Developer Documentation Documentation, Release alpha

3. Release the User button

The stay in bootloader mode is only triggered by the pressed User button, then awaking from reset. There are no
timeouts. To exit from bootloader, you must do an ordinary hardware reset.

Caution: Do not leave Mono in bootloader mode, since this will drain the battery. If you are in doubt, just do an
extra normal reset.

Monoprog can detect the Bootloader

If you have connected Mono to your computer, you can use the Monoprog-tool to detect if Mono is in bootloader.
Open a console / terminal and type:

$ monoprog -d

Monoprog will tell you if it could detect Mono. If it can, it is in bootloader!

Software Resets

You can programmaticly trigger a reset from code! What happens is the CPU will reset itself if you explicitly tell it to
do so. (That it, writing to a specific register.) In Mono Framework there are 3 functions you can use to trigger a reset:

• Ordinary Reset, where bootloader runs for 1 sec.

• Reset To Application, where bootloader is skipped.

• Reset To Bootloader, where Mono stays in bootloader.

The 3 functions are static (or class methods) on IApplicationContext, and can be used like this:

// Ordinary Reset
mono::IApplicationContext::SoftwareReset();

// Reset to Application
mono::IApplicationContext::SoftwareResetToApplication();

// Reset to Bootloader
mono::IApplicationContext::SoftwareResetToBootloader();

Note that these functions will never return, since they cause the CPU to reset. So any code beneath the reset functions,
will get be reached, just take up memory!

Using Mono’s Serial port

Let us examine how to use Mono’s built in USB Serial port, and how to monitor it from your computer

By default when you plug in Mono’s USB cable to a computer, Mono will appear as a USB CDC device. If you run
Windows you have to install a driver, please goto this section to see how.

Get a Serial Terminal

First you need a serial terminal on your computer. Back in the old Windows XP days there was Hyper Terminal, but I
guess it got retired at some point. So both Mac/Linux and Windows folks need to go fetch a serial terminal application

38 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

from the internet.

Windows Serial apps:

Mac / Linux Serial apps

• CoolTerm

• Minicom (What we are using!)

• ZTerm (Mac only)

• SerialTools (Mac only)

We are very happy with minicom, since it has a feature that makes it really great with Mono. More about that later!
Unfortunately minicom does not run on Windows, so we are considering making our own serial terminal client for
Windows - that is similar to minicom.

If you use Linux / Mac, you should properly install minicom now. But you do not have to, you can also use any of the
other choices.

Installing minicom

To install minicom on a Debian based Linux you should just use aptitude or apt-get:

$ sudo aptitude install minicom

On Mac you need the package manager called Homebrew. If you don’t have it, go get it from their homepage. When
you are ready type:

$ brew install minicom

Sending data from Mono

Transferring text or binary data from Mono is really easy. In fact we have standard I/O from the standard C library
available! To write some text to the serial port just do:

printf("Hello Serial port!!\t\n");

Notice that we ended the line with \t\n and not only \n. That is because the serial terminal standard is quite old,
therfore many serial terminals expects both a carriage return and a line feed character.

To capture output from Mono in a terminal, we need to continuesly output text. Therefore we need to call the print
function periodicly.

In app_controller.h:

class AppController : mono::IApplication
{
public:

//Add a timer object to our appController
mono::Timer timer;

// just a counter variable - for fun
int counter;

// class contructor

2.2. Tutorials 39

http://freeware.the-meiers.org
https://alioth.debian.org/projects/minicom/
http://www.dalverson.com/zterm/
http://www.w7ay.net/site/Applications/Serial%20Tools/
http://brew.sh
https://en.wikipedia.org/wiki/Carriage_return#Computers
https://en.wikipedia.org/w/index.php?title=Linefeed

Mono Developer Documentation Documentation, Release alpha

AppController();

// add this method to print to the serial port
void outputSomething();

// ...

Then in app_controller.cpp:

AppController::AppController()
{

// in the contructor we setup the timer to fire periodicly (every half second)
timer.setInterval(500);

// we tell it which function to call when it fires
timer.setCallback<AppController>(this, &AppController::outputSomething);

// set the counter to zero
counter = 0;

//start the timer
timer.Start();

}

void AppController::outputSomething()
{

printf("I can count to: %i",counter++);
}

Compile and upload the app to Mono.

Note: We are following best practice here. We could also have created a loop and a wait_ms() and printf()
statement inside. But that would have broken serial port I/O!

Connecting to Mono

When Mono is plugged in to the USB port, you should see a serial device on your computer. In Windows a COM port
should be present in Device manager. On Linux / Mac there should exist a I/O device in the folder /dev. On Mac it
would be named something like /dev/cu.usbmodem1246. On Linux the name could be /dev/ttyACM0.

If you use minicom you connect to the serial port with the -D flag, like this:

$ minicom -D /dev/cu.usbmodem1246

With PuTTY on Windows you should check the COM port number in Device Manager and type the this number in
the Serial line text box:

40 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Now you should be connected to the Mono serial output:

I can count to: 3
I can count to: 4
I can count to: 5
I can count to: 6

Because Mono does not wait for you to open the serial port, you might loose some output. That is why you properly
will not see I can count to 0 and I can count to 1. At some point we might change this behaviour and add a larger
output buffer on Mono.

Note: You can also read from the serial port using the standard getc stdio function. Avoid using scanf since this
will block until the formatted input has been read from the serial port.

2.2. Tutorials 41

Mono Developer Documentation Documentation, Release alpha

Reconnects and Resets

You will soon discover that every time Mono resets, when uploading new apps or likewise, the serial port disappears.
If you are not using minicom, you will have to manually connect to the port again. That is why we prefer to use
minicom, because it automatically connects again when the port re-appears.

If you are not using minicom you will get pretty tired of reconnecting over and over again. At some point you might
even consider helping us out with a .NET based serial tool to resolve the issue :-)

Why does the serial port disappear?

Unlike Arduino, Mono does not have a dedicated serial port to USB chip. We use the CPU’s built-in USB component
to create the serial port. This means that when the CPU is reset, the USB port is reset. That efficiently ends the serial
connection. There is no way around this issue, expect using a dedicated USB chip.

Reset over the USB

Like Arduino we also use the Serial connection to trigger resets. Before a new application can be uploaded to Mono,
we have to put it into bootloader. This is done by a reset, just like Arduino does. We use the serial port’s DTR line to
trigger a reset. Mono continuously monitors the DTR line, ready to trigger a software reset on itself.

If you do not follow the coding best practice convention and do something ugly, like this:

while(1)
{

// I just wanna stay here for the rest of time ...
}

You have effectively cut off the possibility of resetting using the DTR, to trigger a software reset.

Serial Port Windows Driver

Windows do not support mapping USB CDC devices to Serial ports (COM devices) out of the box. It needs an .
inf file to tell it to do so. You can download an installer for this INF file here, but it should have been installed
automatically. The driver is included in both the Monokiosk based installer and the SDK toolchain.

Sleep Mode

In this tutorial we will quickly demonstrate how to put Mono into sleep mode.

Mono has no physical on/off switch, so you cannot cut the power from the system. This means you must always
provide a way for Mono to goto to sleep. Sleep mode is the closest we come to being powered off. Mono’s power
consumption in sleep mode is around 50 µA (micro amperes), which is really close to no consumption at all.

Default behaviour

Because it is crusial to be able to turn off Mono (goto sleep mode), we provide this functionality by default. When
you create a new project with:

$ monomake project MyNewProject

42 Chapter 2. Content

https://github.com/getopenmono/arduino_comp/releases/download/1.1/OpenMonoSerialDriverSetup-v1.0.exe
https://monokiosk.com/get-started
http://developer.openmono.com/en/latest/getting-started/install.html

Mono Developer Documentation Documentation, Release alpha

The SDK predefines the behaviour of the User button, to toggle sleep mode. This is important because controlling
on/off functionality, is not what is first on your mind when developing new mono apps. So you dont’t have to consider
it too much, unless to wish to use the User button for something else.

Sleep and USB

In our v1.1 release of our SDK, we enabled sleep mode while connected to the USB. This means that triggering sleep
will power-down Mono’s USB port. Therefore our computer will loose connection to Mono if it goes to sleep.

When you wake up Mono, it will be enumerated once again.

Sleep and external power

Mono has the ability to provide power for components mounted either on the Mono Shield Adaptor or attached through
the 3.5mm jack connector. By default Mono provides 3.3V on this external power rail (called VAUX). To safe battery
life, the VAUX power if turned off in sleep mode. This is the default behaviour, but you can change it if you need to.

In the 3.5mm jack connector the power on J_TIP in sleep mode depends on the USB state. If USB is connected the
voltage on J_TIP is 1.7V, because of leakage currents from VBUS. With no USB attached, the J_TIP voltage is 0.0V
in sleep mode.

Warning: We have introducted this behaviour in Release 1.4. Before this version the VAUX line was not limited
to 3.3V! Especially in sleep mode, the voltage rises to the battery’s current voltage level. In Release 1.4 we fixed
this issue, by turning off auxillary power in sleep mode.

You can consult the schematics to see how the power system is configured.

Triggering sleep mode

Say we have an application that utilizes the User button to do something else, than toggling sleep mode. Now we need
another way of going to sleep, so lets create a button on the touch screen to toggle sleep. First in our app_controller.h
we add the ButtonView object to the class:

class AppController : public mono::IApplication {

// we add our button view here
mono::ui::ButtonView sleepBtn;

// ... rest of appcontroller.h ...

In the implementation file (app_controller.cpp) we initialize the button, setting its position and dimensions on the
screen. We also define the text label on the button:

AppController::AppController() :

//first we call the button constructor with a Rect object and a string
sleepBtn(Rect(10,175,150,40), "Enter Sleep"),

// here comes the project template code...
// Call the TextLabel's constructor, with a Rect and a static text
helloLabel(Rect(0,100,176,20), "Hi, I'm Mono!")

{

2.2. Tutorials 43

Mono Developer Documentation Documentation, Release alpha

Now, we need to tie a function to the button’s click handler. That means when the button is clicked, it automatically
triggers a function to be called. We can call the standard static function for going to sleep, that is defined in the global
IApplicationContext object. The function is:

mono::IApplicationContext::EnterSleepMode();

Normally, we could just add this function directly to the button’s callback handler, but in this particular case it is not
possible! The callback handler always expects a member function, not a static class function like EnterSleepMode.
So we need to define a member function on our AppController and wrap the call inside that.

Inside app_controller.h add:

public:

// The default constructor
AppController();

// we add our sleep method here:
void gotoSleep();

// Called automaticlly by Mono on device reset
void monoWakeFromReset();

Then in the implementation file (app_controller.cpp), we define the body of the function to:

void AppController::gotoSleep()
{

mono::IApplicationContext::EnterSleepMode();
}

Lastly, we tell the sleepBtn object to call our function, when it gets clicked - we do this from AppController‘s
constructor:

// set another text color
helloLabel.setTextColor(display::TurquoiseColor);

// tell the button to call our gotoSleep function
sleepBtn.setClickCallback<AppController>(this, &AppController::gotoSleep);

// tell the button to show itself on the screen
sleepBtn.show();

Okay, go compile and install the app on Mono - and you should see this on the screen:

44 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Try to press the button and you will see Mono goto sleep and turning off the display. In this example you wake Mono
again just by pressing the User button.

Danger: Be aware that if you overwrite the User Button functionality, you are responsible for ensuring that Mono
has a wake up source. A wake source is always a physical input pin interrupt. In most cases you should use the
User button.

In another tutorial we shall see how you overwrite the User button functionality.

Complete sample code

For reference, here is the complete sample code of the tutorial:

app_controller.h:

#ifndef app_controller_h
#define app_controller_h

// Include the Mono Framework
#include <mono.h>

// Import the mono and mono::ui namespaces into the context
// to avoid writing long type names, like mono::ui::TextLabel
using namespace mono;
using namespace mono::ui;

// The App main controller object.
// This template app will show a "hello" text in the screen
class AppController : public mono::IApplication {

// we add our button view here
mono::ui::ButtonView sleepBtn;

// This is the text label object that will displayed
TextLabelView helloLabel;

2.2. Tutorials 45

Mono Developer Documentation Documentation, Release alpha

public:

// The default constructor
AppController();

// we add our sleep method here:
void gotoSleep();

// Called automaticlly by Mono on device reset
void monoWakeFromReset();

// Called automatically by Mono just before it enters sleep mode
void monoWillGotoSleep();

// Called automatically by Mono right after after it wakes from sleep
void monoWakeFromSleep();

};

#endif /* app_controller_h */

app_controller.cpp:

#include "app_controller.h"

using namespace mono::geo;

// Contructor
// initializes the label object with position and text content
// You should init data here, since I/O is not setup yet.
AppController::AppController() :

//first we call the button constructor with a Rect object and a string
sleepBtn(Rect(10,175,150,40), "Enter Sleep"),

// Call the TextLabel's constructor, with a Rect and a static text
helloLabel(Rect(0,100,176,20), "Hi, I'm Mono!")

{

// the label is the full width of screen, set it to be center aligned
helloLabel.setAlignment(TextLabelView::ALIGN_CENTER);

// set another text color
helloLabel.setTextColor(display::TurquoiseColor);

// tell the button to call our gotoSleep function
sleepBtn.setClickCallback<AppController>(this, &AppController::gotoSleep);

// tell the button to show itself on the screen
sleepBtn.show();

}

void AppController::gotoSleep()
{

mono::IApplicationContext::EnterSleepMode();
}

46 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void AppController::monoWakeFromReset()
{

// At this point after reset we can safely expect all peripherals and
// I/O to be setup & ready.

// tell the label to show itself on the screen
helloLabel.show();

}

void AppController::monoWillGotoSleep()
{

// Do any clean up here, before system goes to sleep and power
// off peripherals.

}

void AppController::monoWakeFromSleep()
{

// Due to a software bug in the wake-up routines, we need to reset here!
// If not, Mono will go into an infinite loop!
mono::IApplicationContext::SoftwareResetToApplication();
// We never reach this point in the code, CPU has reset!

// (Normally) after sleep, the screen memory has been cleared - tell the label to
// draw itself again
helloLabel.scheduleRepaint();

}

2.2.2 Coding

Using Wifi

Let us walk through the steps required to connect Mono to a Wifi access point, and download the content of a web
page

Note: The network abstraction layer in Mono Framework is not implemented at this point. We will use the hardware
layers directly, so this tutorial will be simpler in the future.

The Goal

We shall create a small mono application that connects to a Wifi access point and downloads a website. To achieve
this, we need to accomplish the following steps:

1. Initialize the SPI communication to te Wifi module

2. Initialize the Wifi module

3. Connect to an access point, using either hardcoded credentials or read the credentials from SD card.

4. Using DHCP to get an IP address from the access point

5. Create a HTTP Get request to a URL and display the response

2.2. Tutorials 47

Mono Developer Documentation Documentation, Release alpha

Setting up the project

First order of business is to create a new mono application project. I assume you already have installed the developer
tool chain.

Open a terminal (or command prompt) and fire up this command:

$ monomake project wifi_tutorial

monomake will now create an application project template for us. Open the two source files (app_controller.h and
app_controller.cpp) in your favorite code editor. In the header file (.h) we need to add 2 includes, to import the wireless
module definitions:

#include <mono.h>
#include <wireless/module_communication.h>
#include <wireless/redpine_module.h>

using namespace mono;
using namespace mono::ui;

Also, in the header file we need to add member variables for the module to the AppController class definition. Two
for the SPI communication and one the HTTP client class.

Note: The class HttpClient is a quick’n’dirty implementation, and is likely to be phased out to future releases of
Mono Framework.

Therefore we extend the class members with:

class AppController : public mono::IApplication {

// This is the text label object that will displayed
TextLabelView helloLabel;

// The hardware SPI port
mbed::SPI spi;
// The spi based communication interface for the module
redpine::ModuleSPICommunication spiComm;

// The http client object variable
network::HttpClient client;

// a console view to display html data
mono::ui::ConsoleView<176, 110> console;

public:

AppController();

// ...
}

Now, we have imported the objects we are going to need, the next step is to initialize them properly.

48 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Initializing the Communication channel

The wifi module is connected to Mono’s MCU by a dedicated SPI. In the initial release of Mono Framework there is
no abstraction layer for the Wifi module, so we have to initialize this SPI explicitly.

First we need to add the raw mbed SPI object to the AppController‘s constructor list. Therefore we add two new lines
next to the existing initialization of helloLabel object:

// You should init data here, since I/O is not setup yet.
AppController::AppController() :

helloLabel(Rect(0,150,176,20), "Hi, I'm Mono!"),
spi(RP_SPI_MOSI, RP_SPI_MISO, RP_SPI_CLK),
spiComm(spi, NC, RP_nRESET, RP_INTERRUPT)

{
// ...

So what is happening here? We are setting up two objects: the basic SPI port and a SPI based communication channel
to the module (spiComm). The module uses a few additional hardware signals, like the reset and interrupt signals.
Now we have initialized the communication to the module, so we are ready to send commands to it!

The first thing we wanna do is tell the module to boot up and begin listening for commands. But we can not
do that from the constructor, because the module might not be powered yet. We need to initialize it from the
monoWakeFromReset() method:

void AppController::monoWakeFromReset()
{

//initialize the wifi module
redpine::Module::initialize(&spiComm);

//show the console view
console.show();

Now the module will boot, so next we will tell it to connect to an access point.

Connecting to an Access Point

Let us begin with a hardcoded SSID and passphrase. (Still from inside the monoWakeFromReset() method.) Add
this code line:

redpine::Module::setupWifiOnly("MY_SSID", "MY_PASSPHRASE");

// print something in the console
console.WriteLine("Connecting...");

Now the module will try to connect to the given access point, and expect to get a DHCP configured IP address. The
setupWifiOnly function has a third parameter that defines the security setting. The default value is WPA/WPA2
Personal. Other supported options are: No security, WEP and Enterprise WPA/WPA2.

Caution: Almost all calls to the Wifi module are asynchronous. This means they add commands to a queue. The
function call returns immediately and the commands will be processed by the applications run loop. So when the
method returns, the network is not connected and ready yet.

2.2. Tutorials 49

Mono Developer Documentation Documentation, Release alpha

Because the connecting process is running in the background, we would like to be notified when the network is actually
ready. Therefore, we need to setup a callback method. To do that we add a new method to our AppController class.
We add the method definition in the header file:

class AppController : mono::IApplication
{
// ...

public:

void networkReadyHandler();

// ...

Next, we add the method body in the implementation file:

void AppController::networkReadyHandler()
{

helloLabel.setText("Network Ready");
}

Notice that we use the existing helloLabel to display the network state on the screen.

Now, we need to tell the module to call our method, when the network is connected. We append this line to
monoWakeFromReset():

redpine::Module::setNetworkReadyCallback<AppController>(this, &
→˓AppController::networkReadyHandler);

This sets up the callback function, such that the module will call the networkReadyHandler() method, on our
AppController instance.

Tip: Callback functions are an important part of using the network on Mono. If you wish to familiarize yourself with
the concept, please see the in-depth article: Queued callbacks and interrupts

If you feel for it, tryout the code we have written so far. If you monitor the serial port, you should see the Wifi module
emitting debug information. Hopefully you should see the Network Ready text in screen after ~20 secs. If not, consult
the serial terminal for any clue to what went wrong.

Download a website

Now that we have connected to an access point with DHCP, I take the freedom to assume that Mono now has internet
access! So lets go ahead and download: this webpage!

To download a website means doing a HTTP GET request from a HTTP client, and here our HttpClient class
member from earlier, comes into action.

Like the process of connecting to an access point was asynchrounous, (happening in the background), the process of
downloading websites is asynchrounous. That means we are going to need another callback function, so lets define
another method on AppController.h:

// ...

public:

50 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void networkReadyHandler();

void httpHandleData(const network::HttpClient::HttpResponseData &data);

// ...

Notice the ampersand (&) symbol that define the data parameter as a reference. In the implementation file we add
the function body:

void AppController::httpHandleData(const network::HttpClient::HttpResponseData &
→˓data)

{
helloLabel.setText("loading");
console.WriteLine(data.bodyChunk);

if (data.Finished)
{

helloLabel.setText("Downloaded");
}

}

HttpClient will return the HTML content in multiple calls, and you use the Finished member to see when all data
has arrived. Here we just set the label content to the HTML chunk, so it is not so pretty to look at. When the response
has been downloaded, we set the text label to display Downloaded.

Now, we are ready to setup the http client and fetch the webpage. We can use HttpClient only after the network is
ready. So in the implementation file, add this to networkReadyHandler():

void AppController::networkReadyHandler()
{

helloLabel.setText("Network Ready");

//fetch a webpage
client = mono::network::HttpClient("http://developer.openmono.com/en/latest/

→˓");

//now the client will be fetching the web page
// let setup the data callback
client.setDataReadyCallback<AppController>(this, &

→˓AppController::httpHandleData);
}

Using file I/O

In this tutorial we will see how to read and write files on an SD card.

Mono has a Micro SD Card slot and currently supports communicating with an SD card using an SPI interface. We
have included both SD card I/O and FAT32 file system I/O in our framework. As soon as you have setup the SD card
I/O you can use the familiar stdio.h file I/O.

Get an SD Card

First order of business is for you to obtain a MicroSD Card and format in good ol’ FAT32. Then insert the card into
Mono’s slot and fire up a new project:

2.2. Tutorials 51

http://elm-chan.org/docs/mmc/mmc_e.html

Mono Developer Documentation Documentation, Release alpha

$ monomake project fileIO --bare
Creating new bare mono project: fileIO...

* fileIO/app_controller.h

* fileIO/app_controller.cpp
Writing Makefile: fileIO/Makefile...
Atom Project Settings: Writing Auto complete includes...

Note: Notice that we use the switch --bare when we created the project. This option strips all comments from the
template code. This way you have a less verbose starting point.

Now cd into the fileIO directory and open the code files in your favourite code editor.

Initalizing the SD Card

At this time we have yet to create a real abstraction layer for the file system initialization. Until we do, you need to
initialize the SD card communication yourself. Therefore open app_controller.h and add these lines:

#include <mono.h>
// import the SD and FS definitions
#include <SDFileSystem.h>
#include <stdio.h>

class AppController : public mono::IApplication {
public:

SDFileSystem fs; // create an instance of the FS I/O

AppController();

Here we include the definitions for the both the SD card I/O and the file I/O. Next, we need to contruct the fs object
in AppController‘s constructor. Go to app_controller.cpp:

AppController::AppController() :
fs(SD_SPI_MOSI, SD_SPI_MISO, SD_SPI_CLK, SD_SPI_CS, "sd")

{
}

Here we initialize the file system and provide the library with the SPI lines for communicating with the SD Card. The
last parameter "sd" is the mount point. This means the SD Card is mounted at /sd.

Writing to a file

Let us write a file in the SD card. We use the standard C library functions fopen and fwrite, that you might know
- if you ever coded in C.

So, to write some data to a file we insert the following code in the monoWakeFromReset method:

void AppController::monoWakeFromReset()
{

FILE *file = fopen("/sd/new_file.txt", "w");

if (file == 0) {
printf("Could not open write file!\r\n");

52 Chapter 2. Content

http://www.cplusplus.com/reference/cstdio/fopen
http://www.cplusplus.com/reference/cstdio/fwrite

Mono Developer Documentation Documentation, Release alpha

return;
}
else {

const char *str = "Hello file system!\nRemember coding in C?";
int written = fwrite(str, 1, strlen(str), file);
printf("Wrote %d bytes\r\n",written);
fclose(file);

}
}

Here we open/create a file on the SD card called new_file.txt. The fopen function returns a file descriptor
(FILE*) that is 0 if an error occurs.

If file is not 0 we write some text to it and finally close (fclose) the file to flush the written data to the disk. You
should always close files when you are done writing to them. If you don’t, you risk losing your written data.

Reading from a file

So we just written to a file, now let us read what we just wrote. Append the following to the monoWakeFromReset
method:

FILE *rFile = fopen("/sd/new_file.txt", "r");
if (rFile == 0) {

printf("Could not open read file!\r\n");
return;

}

char buffer[100];
memset(buffer, 0, 100);
int read = fread(buffer, 1, 100, rFile);
printf("Read %d bytes from file\r\n", read);
printf("%s\r\n", buffer);
fclose(rFile);

Here we first open the file we previously written. Then, we create a byte buffer to hold the data we read from the file.
Because the initial content of buffer is nondeterministic, we zero its contents with the memset call.

Note: We do this because printf needs a string terminator. A string terminator is a 0 character. Upon accounting
a 0 printf will know that the end of the string has been reached.

The fread function reads the data from the file. It reads the first 100 bytes or until EOF is reached. Then we just
print the contents of buffer, which is the content of the file.

Standard C Library

As mentioned earlier, you have access to the file I/O of stdlib. This means you can use the familiar stdlib file I/O
API’s.

These include:

• fprintf

• fscanf

• fseek

2.2. Tutorials 53

http://www.cplusplus.com/reference/cstdio/fclose
http://www.cplusplus.com/reference/cstdio/fread
https://en.wikipedia.org/wiki/End-of-file

Mono Developer Documentation Documentation, Release alpha

• ftell

• fflush

• fgetc

• fputc

• etc.

When you for example read or write from the serial port (using printf), you in fact just use the stdout and stdin
global pointers. (stderr just maps to stdout.)

See the API for the stdlib file I/O here: www.cplusplus.com/reference/cstdio

SD Card and sleep

Currently the SD card file system library do not support sleep mode. When you wake from sleep the SD card have
been reset, since its power source has been off while in sleep.

This means you cannot do any file I/O after waking from sleep. Until we fix this you need to reset Mono to re-enable
file I/O.

Custom Views

In this tutorial we shall create our own custom view, that utilizes the drawing commands to display content on
the screen.

Our software framework contains a selection of common View classes. These include TextLabels, Buttons and things
like progress and state indicators. But you also have the ability to create your own views, to display custom content.
Before we begin it is useful to know a little bit about views. Also, you should see the Display System Architecture
article.

About Views

We have stolen the concept of a View from almost all other existing GUI frameworks. A view is a rectangular frame
where you can draw primitives inside. All views define a width and height, along with a x,y position. These properties
position all views on Mono’s display - with respect to the display coordinates.

As you can see on the figure, the display coordinates have a origo at the top left corner of the screen. The positive Y
direction is downward. In contrast to modern GUI frameworks Mono views cannot be nested and does not define their
own internal coordinate system. All coordinates given to the drawing command are in display coordinates. It is your
hassle to correct for the view’s x,y offsets.

Views can be Invisible and Dirty

All views has a visibility state. This state is used by the display system to know if it can render views to the screen.
Only visible views are painted. By convention all views must be created in the invisible state. Further, views can also
be dirty. This means that the view has changes that need to be rendered on the screen. Only dirty views are rendered.
You can mark a view as dirty by calling the method: scheduleRepaint().

54 Chapter 2. Content

http://www.cplusplus.com/reference/cstdio/

Mono Developer Documentation Documentation, Release alpha

Painting views

When you create your own views, you must subclass the View class and you are required to overwrite 1 method:
repaint(). This is the method that paints the view on the screen. The method is automatically called by the display
system - you should never call it manually!

All views share a common DisplayPainter object that can draw primitives. You should draw primitives only
from inside the repaint() method. If you draw primitives from outside the method, you might see artifacts on the
screen.

The Goal

In this tutorial I will show you how to create a custom view that displays two crossing lines and a circle. To accomplish
this we use the DisplayPainter routines drawLine() and drawCircle(), along with other routines to make
our view robust. This means it does not make any assumptions about the screen state.

We want the cross and circle to fill the views entire view rectangle, so we use the view dimensions as parameters for
the drawing functions.

Creating the project

First go ahead and create a new project:

$ monomake project customView --bare

Note: We use the –bare option to create an empty project without any example code.

It is good practice to create our custom view in separate files. Create two new files:

• custom_view.h

• custom_view.cpp

In the header file we define our new custom view class:

class CustomView : public mono::ui::View {
public:

CustomView(const mono::geo::Rect &rect);

void repaint();
};

We overwrite only the constructor and the repaint function. The default constructor for views takes a Rect that defines
the views position and dimensions.

In the implementation file (custom_view.cpp) we add the implementation of the two methods:

// Constructor
CustomView::CustomView(const mono::geo::Rect &rect) : mono::ui::View(rect)
{

}

// and the repaint function

2.2. Tutorials 55

Mono Developer Documentation Documentation, Release alpha

void CustomView::repaint()
{

// enable anti-aliased line painting (slower but prettier)
this->painter.useAntialiasedDrawing();

// setup the view background color to pitch black
painter.setBackgroundColor(mono::display::BlackColor);

//draw the black background: a filled rect
painter.drawFillRect(this->ViewRect(), true);

// set the foreground color to a deep blue color
painter.setForegroundColor(mono::display::MidnightBlueColor);

// draw an outline rect around the view rectangle
painter.drawRect(this->ViewRect());

//set a new foreground color to red
painter.setForegroundColor(mono::display::RedColor);

//draw the first line in the cross
painter.drawLine(this->ViewRect().UpperLeft(), this->ViewRect().LowerRight());

//draw the second line in the cross
painter.drawLine(this->ViewRect().LowerLeft(), this->ViewRect().UpperRight());

//now we will draw the circle, with a radius that is the either width
// or height - which ever is smallest.
int radius;
if (this->ViewRect().Width() < this->ViewRect().Height())

radius = this->ViewRect().Width()/2;
else

radius = this->ViewRect().Height()/2;

// create a circle object with center inside the views rectangle
mono::geo::Circle c(this->ViewRect().Center(), radius - 1);

//set the foreground color
painter.setForegroundColor(mono::display::WhiteColor);

//draw the circle
painter.drawCircle(c);

// disable anti-aliasing to make drawing fast for any other view
painter.useAntialiasedDrawing(false);

}

Now, this code snippet is a mouthful. Let me break it down to pieces:

The constructor

Our constructor simply forwards the provided Rect object to the parent (View) constructor. The parent constructor
will take care of initializing the our views properties. In our implementation we simply call the parent constructor and
leave the methods body empty.

56 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

The repainting

This is here we actually paint the view. As mentioned earlier all views share a global DisplayPainter object.
This object holds a set of properties like paint brush colors and anti-aliasing settings. Therefore, to be sure about what
colors you are painting, you should always set the colors in your repaint() method.

We start by enabling anti-aliased drawing of lines. This slows down the painting process a bit, but the lines looks
much smoother. Next, we set the painters background brush color to black. With the black color set, we draw a filled
rectangle clearing the entire area of the view. This is important because there might be some old graphics present on
the screen.

To highlight the views boundary rectangle we draw an outlined rectangle with the dimension of the views own rectan-
gle. You can say we give the view a border.

Next, we begin to draw the crossing lines - one at the time. The drawLine routine take the begin and end points of
the line. We use a set of convenience methods on the Rect class to get the positions of the view rectangle‘s corners.

The Circle class defines circles by a center and a radius. We can get the view rectangles center using another
convenient method on the Rect object. But we need to do a little bit of calculations to get the radius. We use the
smallest of the width and height, to keep the circle within the view boundaries. (And subtract 1 to not overwrite the
border.)

Lastly, we disable the anti-aliased drawing. To leave the DisplayPainter as we found it.

The Result

Now, we must add our CustomView to our application. This means we must use it from the AppController. Therefore,
include the header file in app_controller.h, and add our CustomView as a member variable:

#include "custom_view.h"

class AppController : public mono::IApplication {
public:

CustomView cv;

AppController();
//...

Finally, we need to initialize our view correctly in AppController‘s constructor and set the views visibility state by
calling the show() method.

In app_controller.cpp add:

AppController::AppController() :
cv(mono::geo::Rect(20,30,136,70))

{
}

void AppController::monoWakeFromReset()
{

cv.show();
}

Notice that we set the views position and dimensions in the constructor, by defining a Rect \((20, 30, 136, 70)\).

Do a make install and our custom should look like this on your Mono:

2.2. Tutorials 57

Mono Developer Documentation Documentation, Release alpha

Because we use the views own dimensions to draw the primitives, the view will paint correctly for all dimensions and
positions.

Humidty app

Humidity harware setup

The purpose of this tutorial is to build a humidity app.

Sensor

To get humidity readings into my Mono, I will need a humidity sensor. For this app I will use the relatively low cost
sensors DHT11 and DHT22. Their underlying hardware communication protocol is the same, but the interpretation of

58 Chapter 2. Content

https://www.adafruit.com/products/386
https://www.adafruit.com/products/385

Mono Developer Documentation Documentation, Release alpha

the readings differ slightly (DHT22 has better resolution).

Connecting the sensor to Mono

The sensor uses a single wire to transmit data, and it must get power through two additional wires (3.3V and 0V).

So I need three wires in total from Mono to the sensor. Mono’s mini-jack accomodates a total of four wires, so I will
use a mini-jack connector and solder a set of wires to it. For this particular application, I could use a regular three-wire
mini-jack, but the mini-jack connector I have has four connections, so I will solder all four wires and reserve the fourth
wire for future experiments.

Here I have put a red wire on the tip, a white wire on ring 1 (the one next to the tip), a black wire on the sleeve. The
green wire is connectred to ring 2, but it is not used in the app.

2.2. Tutorials 59

Mono Developer Documentation Documentation, Release alpha

With that taken care of, I can connect the sensor to my Mono and start pulling out data from the sensor.

Data communication

To sanity check the connection, I will make the simplest possible app that can request a reading from the sensor, and
then view the result on an oscilloscope. You do not need to do this, of course, but I will need to do that to show you
what the sensor communication looks like.

An application to get the sensor talking must put 3.3V on the tip (red wire), and then alternate the data line (white
wire) between 3.3V and 0V to tell the sensor that it needs a reading. The sleeve (black wire) is by default set to 0V, so
nothing needs to be setup there.

More specificly, the data line must be configured to be an output pin with pullup. To request a reading from the sensor,
the data line needs to be pulled down to 0V for 18ms, and then set back to 1. After that, the sensor will start talking.

The following program makes such a request every 3 seconds.

#include <mono.h>
#include <mbed.h>

class AppController
:

public mono::IApplication
{

mono::Timer measure;
mbed::Ticker ticker;
mono::io::DigitalOut out;

public:
AppController()
:

measure(3*1000),
out(J_RING1,1,PullUp),

{
measure.setCallback<AppController>(this,&AppController::requestSensorReading);

}
void monoWakeFromReset ()
{

put3V3onTip();
measure.Start();

}
void monoWillGotoSleep ()
{

turnOffTip();
}
void monoWakeFromSleep () {}
void put3V3onTip ()
{

DigitalOut(VAUX_EN,1);
DigitalOut(VAUX_SEL,1);
DigitalOut(JPO_nEN,0);

}
void turnOffTip ()
{

DigitalOut(JPO_nEN,1);
}
void requestSensorReading ()
{

out = 0;

60 Chapter 2. Content

https://learn.sparkfun.com/tutorials/pull-up-resistors

Mono Developer Documentation Documentation, Release alpha

ticker.attach_us(this,&AppController::IRQ_letGoOfWire,18*1000);
}
void IRQ_letGoOfWire ()
{

out = 1;
}

};

Side note: I use the IRQ_ prefix on functions that are invoked by interrupts to remind myself that such functions
should not do any heavy lifting.

When I connect Mono to the sensor, and hook up an oscilloscope to the data and ground wires, then I get the following
picture of the communication when I run the app.

To the left you can see a tiny bit of the end of the 18ms period, ending in a rising edge (the transition from 0V to 3.3V)
marked by T (the trigger point). From there on, the sensor takes over and starts alternating the data line between 3.3V
and 0V.

The first 3.3V period is just a handshake, and after that the length of each 3.3V period determines whether data sent
from the sensor is a logical 1 or a logical 0. For the screenshot above, the visible part of data is 0000000110.

What exactly does that mean? Well, I will tell you in the next part.

2.2. Tutorials 61

Mono Developer Documentation Documentation, Release alpha

Humidity app

In the first part of this Humidity app tutorial, I showed how to connect a humidity sensor to Mono. Now, I will show
how to get and display humidity and temperature readings.

Displaying readings

The humidity sensor measures both humidity and temperature, and I want these readings shown in a nice big font and
funky colours.

#include <mono.h>
#include <ptmono30.h>
using mono::geo::Rect;
using mono::ui::TextLabelView;

class AppController
:

public mono::IApplication
{

TextLabelView humidityLabel;
TextLabelView humidityValueLabel;
TextLabelView temperatureLabel;
TextLabelView temperatureValueLabel;

public:
AppController()
:

humidityLabel(Rect(0,10,176,20),"humidity"),
humidityValueLabel(Rect(0,30,176,42),"--.--"),
temperatureLabel(Rect(0,80,176,20),"temperature"),
temperatureValueLabel(Rect(0,100,176,42),"--.--")

{
}
void monoWakeFromReset ()
{

humidityLabel.setAlignment(TextLabelView::ALIGN_CENTER);
humidityLabel.setTextColor(TurquoiseColor);
humidityValueLabel.setAlignment(TextLabelView::ALIGN_CENTER);
humidityValueLabel.setFont(PT_Mono_30);
humidityValueLabel.setTextColor(AlizarinColor);
temperatureLabel.setAlignment(TextLabelView::ALIGN_CENTER);
temperatureLabel.setTextColor(TurquoiseColor);
temperatureLabel.setAlignment(TextLabelView::ALIGN_CENTER);
temperatureValueLabel.setAlignment(TextLabelView::ALIGN_CENTER);
temperatureValueLabel.setFont(PT_Mono_30);
temperatureValueLabel.setTextColor(AlizarinColor);
humidityLabel.show();
humidityValueLabel.show();
temperatureLabel.show();
temperatureValueLabel.show();

}
void monoWillGotoSleep () {}
void monoWakeFromSleep () {}

};

62 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Getting data from the sensor

From the first part of this tutorial, you know how to start a reading from the sensor, but it gets somewhat more
complicated to capture and interpret the data from the sensor.

The data from the sensor is a series of bits, where each bit value is determined by the length of each wave. So I can
make my app to trigger on the start of each new wave and then record the time that has passed since the the last wave
started. The triggering can be done by attaching an interrupt handler to the data wire, which is done by using the
InterruptIn class from the mbed library.

Compared to the first version, I now have an array bits and an index bitIndex into this array so that I can collect
the bits I read from the sensor. The requestSensorReading function now resets bitIndex before requesting
a new reading, and IRQ_letGoOfWireAndListen sets up the function IRQ_falling to get called every time
there is a falling edge on the data line from the sensor:

#include <mono.h>
#include <mbed.h>
using mono::io::DigitalOut;

#define LEADBITS 3
#define TOTALBITS LEADBITS+5*8

class AppController
:

public mono::IApplication
{

mono::Timer measure;
mbed::Ticker ticker;
mbed::InterruptIn in;
DigitalOut out;
uint8_t bits [TOTALBITS];
size_t bitIndex;
uint32_t usLastTimeStamp;

public:
AppController()
:

measure(3*1000),
/// It is important that InterruptIn in initialised...
in(J_RING1),
/// ...before DigitalOut because they use the same pin, and the initialisation
/// sets the pin mode, which must be pull-up.
out(J_RING1,1,PullUp)

{
measure.setCallback<AppController>(this,&AppController::requestSensorReading);

}
void monoWakeFromReset ()
{

put3V3onTip();
measure.Start();

}
void monoWillGotoSleep ()
{

turnOffTip();
}
void monoWakeFromSleep () {}
void put3V3onTip ()
{

DigitalOut(VAUX_EN,1);

2.2. Tutorials 63

https://developer.mbed.org/handbook/InterruptIn
https://en.wikipedia.org/wiki/Signal_edge

Mono Developer Documentation Documentation, Release alpha

DigitalOut(VAUX_SEL,1);
DigitalOut(JPO_nEN,0);

}
void turnOffTip ()
{

DigitalOut(JPO_nEN,1);
}
void requestSensorReading ()
{

bitIndex = 0;
out = 0;
ticker.attach_us(this,&AppController::IRQ_letGoOfWireAndListen,18*1000);

}
void IRQ_letGoOfWireAndListen ()
{

out = 1;
usLastTimeStamp = us_ticker_read();
in.fall(this,&AppController::IRQ_falling);

}
void IRQ_falling ()
{

uint32_t usNow = us_ticker_read();
uint32_t usInterval = usNow - usLastTimeStamp;
usLastTimeStamp = usNow;
uint8_t bit = (usInterval < 100) ? 0 : 1;
bits[bitIndex] = bit;
++bitIndex;
if (bitIndex >= TOTALBITS)
{

in.disable_irq();
// TODO:
//async(this,&AppController::collectReadings);

}
}

};

The IRQ_falling function calculates the time difference between the last falling edge on the data from the sensor,
and if that interval is less that 100 µs, then the received bit is a 0; otherwise it is a 1. When enough bits have been
received, the interrupt is turn off so that I will stop receiving calls to IRQ_falling.

I use the IRQ_ prefix on functions that are invoked by interrupts to remind myself that such functions should not do
any heavy lifting. That is also why the (to be done) processing of the received bits is wrapped in an async call.

Interpreting the data from the sensor

Up until now, it has made no difference whether I was using a DHT11 or DHT22 sensor. But now I want to implement
the collectReadings function to interpret the bits I get back from the sensor, and then the type of sensor matters.

I will start with the DHT11 sensor, which only gives me the integral part of the humidity and temperature value. So
I need to go through the array of bits, skip the initial handshakes, dig out the humidity, dig out the temperature, and
finally update the display with the new values:

// DHT11
void collectReadings ()
{

uint16_t humidity = 0;
for (size_t i = LEADBITS; i < LEADBITS + 8; ++i)

64 Chapter 2. Content

https://community.openmono.com/topic/57/mono-sdk-1-2-released
http://www.micropik.com/PDF/dht11.pdf

Mono Developer Documentation Documentation, Release alpha

{
size_t index = 7 - (i - LEADBITS);
if (1 == bits[i])

humidity |= (1 << index);
}
uint16_t temperature = 0;
for (size_t i = LEADBITS + 16; i < LEADBITS + 24; ++i)
{

size_t index = 7 - (i - LEADBITS - 16);
if (1 == bits[i])

temperature |= (1 << index);
}
humidityValueLabel.setText(String::Format("%d%%",humidity)());
humidityValueLabel.scheduleRepaint();
temperatureValueLabel.setText(String::Format("%dC",temperature)());
temperatureValueLabel.scheduleRepaint();

}

For the DHT22 sensor, the values have one decimal of resolution. So I need to do a little bit more manipulation to
display the reading, because the Mono framework do not support formatting of floating point:

// DHT22
void collectReadings ()
{

uint16_t humidityX10 = 0;
for (size_t i = LEAD; i < LEAD + 16; ++i)
{

size_t index = 15 - (i - LEAD);
if (1 == bits[i])

humidityX10 |= (1 << index);
}
int humiWhole = humidityX10 / 10;
int humiDecimals = humidityX10 - humiWhole*10;
uint16_t temperatureX10 = 0;
for (size_t i = LEAD + 16; i < LEAD + 32; ++i)
{

size_t index = 15 - (i - LEAD - 16);
if (1 == bits[i])

temperatureX10 |= (1 << index);
}
int tempWhole = temperatureX10 / 10;
int tempDecimals = temperatureX10 - tempWhole*10;
humidityValueLabel.setText(String::Format("%d.%0d%%",humiWhole,

→˓humiDecimals)());
humidityValueLabel.scheduleRepaint();
temperatureValueLabel.setText(String::Format("%d.%0dC",tempWhole,

→˓tempDecimals)());
temperatureValueLabel.scheduleRepaint();

}

What is still missing is detecting negative temperatures, unit conversion and auto sleep, but I will leave that as an
excercise. Of course, you could cheat and look at the full app in MonoKiosk.

2.2. Tutorials 65

https://www.sparkfun.com/datasheets/Sensors/Temperature/DHT22.pdf
http://developer.openmono.com/en/latest/tutorials/sleep-mode.html
http://monokiosk.com/app/com-openmono-humidity

Mono Developer Documentation Documentation, Release alpha

Quick Examples

Counting variable on mono’s screen.

This is a small example of how to show a counting variable on mono’s screen.

Warning: This is a draft article, that is work in progress. It still needs some work, therefore you might stumble
upon missing words, typos and unclear passages.

When mono (and some Arduino’s) runs a program there is more going on than what you can see in the setup() and
main() loop. Every time the main loop is starting over, mono will do some housekeeping. This includes tasks as
updating the screen and servicing the serial port. This means that if you use wait functions or do long intensive tasks
in the main loop, mono will never have time for updating the screen or listening to the serial port. This will also affect
monos ability to receive a reset announcement, which is important every time you are uploading a new sketch.

If you are running into this you can always put mono into bootloader manually

1. press and hold down the user button on the side.

2. press and release the reset switch with a clips.

3. release the user button.

To avoid doing this every time the following example uses an alternative to the wait function. To slow down the
counting, we here use a variable to count loop iterations and an if() to detect when it reaches 1000 and then increment
the counter and update the label on the screen.

Warning: When using this method the timing will be highly dependent on what mono is doing for housekeeping.

For the time being the housekeeping is not optimized, we will work on this in near future. This means that the timing
in your program will change when we update the framework. We are working on making a tutorial that shows how to
make time-critical applications.

/***
*
* This is a small example of how to show a counting variable on mono's screen.

*
* Instead of using a delay function to slow down the counting, I here use a

→˓variable to count loop iterations

* and an if() to detect when it reaches 1000 and then increment the counter and
→˓update the label on the screen.

*
***/

#include <mono.h>

mono::ui::TextLabelView textLbl(mono::geo::Rect(0,20,176,20),"Hi, I'm Mono");

int loopItererations;
int counter;

void setup()
{

textLbl.setTextColor(mono::display::WhiteColor);
textLbl.show();

66 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

// to prevent the framework from dimming the light
CY_SET_REG8(CYREG_PRT5_BYP, 0); // attention:

→˓this will affect all pins in port 5
CyPins_SetPinDriveMode(CYREG_PRT5_PC1, CY_PINS_DM_STRONG); // set drivemode

→˓to strong for TFT LED backlight
CyPins_SetPin(CYREG_PRT5_PC1); // set pin high

→˓for TFT LED backlight

}

void loop()
{

loopItererations++;

if(loopItererations >= 1000)
{

loopItererations = 0;
counter++;
textLbl.setText(mono::String::Format("count: %i", counter));

}
}

Attention: This example uses a hack to prevent dimmer of the display. This is only a temporary solution, and is
not recommended. You should replace any use of the code when we release a best-practice method.

Adding a Button to the Screen

In this quick tutorial we shall see how to add a set of push buttons to the screen.

The SDK comes this standard classes for screen drawing and listening for touch input. One of these classes are
ButtonView. ButtonView display a simple push button and accepts touch input.

Reacting to clicks

Let us go create a new Mono project, fire up your terminal and:

$ monomake project buttonExample

To create a button on the screen we first add a ButtonView object to AppController. Insert this into
app_controller.h:

class AppController : public mono::IApplication {

// This is the text label object that will displayed
TextLabelView helloLabel;

// We add this: our button object
ButtonView btn;

public:

// The default constructor
AppController();

2.2. Tutorials 67

Mono Developer Documentation Documentation, Release alpha

// We also add this callback function for button clicks
void buttonClick();

We added a member object for the button itself and a member method for its callback. This callback is a function that
is called, then the button is clicked.

Now, in the implementation file (app_controller.cpp), we add the button the contructor initializer list:

AppController::AppController() :

// Call the TextLabel's constructor, with a Rect and a static text
helloLabel(Rect(0,100,176,20), "Hi, I'm Mono!"),

// Here we initialize the button
btn(Rect(20, 175, 136, 40), "Click me!")

{

The button’s constructor takes 2 arguments: position and dimension rectangle and its text label. The first argument is
a Rect object, it defines the rectangle where the Button lives. This means it will draw itself in the rectangle and listen
for touch input in this rectangle:

The second argument is the text label that is displayed inside the button. In this example it is just the text Click me!

To trigger a response when we click the button, we need to implement the function body for the buttonClick
method. In app_controller.cpp add this method:

void AppController::buttonClick()
{

helloLabel.setText("Button clicked!");
}

This method changes the content of the project templates existing helloLabel to a new text. Lastly, we connect the
button click handler to call our function. From inside the monoWakeFromReset method, we append:

// tell the label to show itself on the screen
helloLabel.show();

// set the callback for the button click handler
btn.setClickCallback<AppController>(this, &AppController::buttonClick);
// set the button to be shown
btn.show();

That’s it! Run make install and see the example run on Mono:

68 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Periodically call a Function

In this quick example we will see how to use a Timer to repetitively call a function

A big part of developing apps is do tasks at regular intervals. Mono employs a timer architecture that allows you to
schedule single or recurring function calls, ahead of time. The semantics are “call this function 3 minutes from now”,
or “call this method every 45 second”.

Timers

The timer system on Mono is very powerful, you can schedule as many timers as of like! (Okay, you are limited by
the amount of RAM). The timers are instances of the class Timer and they are built upon the bed::Ticker class.
This architecture leverages the versatility of the mbed timers and adds thread safety from Mono’s own Timer class.

You can schedule a method to be called 5 minutes from now, by a single line of code:

mono::Timer::callOnce<MyClass>(5*60*1000, this, &MyClass::MyCallbackMethod);

This will create a timer instance on the heap, and it will deallocate itself after it has fired. Because we use C++
methods, and not C functions as callbacks, you must provide the this pointer and the type definition of the context.
(MyClass in the example above.) The last parameter is the pointer to the actual method on the class. This makes the
call a bit more verbose, compared to C function pointers, but being able define callback methods in C++ is extremely
powerful.

Note: In recent versions of C++ (C++11 and C++14), lambda functions has been added. These achieve the same goal
with a cleaner syntax. However, we cannot use C++11 or 14 on Mono, the runtime is simply too large!

Call a function every second

Now, let us see how to repeatedly call a function every second. First, we create a new project from the console /
terminal:

2.2. Tutorials 69

https://developer.mbed.org/handbook/Ticker

Mono Developer Documentation Documentation, Release alpha

$ monomake project timerExample

Open the app_controller.h file and add a Timer as a member on the AppController class, and define the method
we want to be called:

class AppController : public mono::IApplication {

// This is the text label object that will displayed
TextLabelView helloLabel;

// this is our timer object
Timer timer;

public:

//this is our method we want the timer to call
void timerFire();

Because we want to repetitively call a function, we need the timer to stick around and not get deallocated. Therefore,
it is declared as a member variable on AppController. In the implementation file (app_controller.cpp) we need to
initialize it, in the constructors initialization list:

AppController::AppController() :

// Call the TextLabel's constructor, with a Rect and a static text
helloLabel(Rect(0,100,176,20), "Hi, I'm Mono!"),
// set our timers interval to 1000 ms
timer(1000)

{

Let us add the body of the timerFire method to the implementation file, also:

void AppController::timerFire()
{

printf("Timer did fire!\t\n");
}

Lastly, we tie the timer callback handler to out method. This is done from inside the monoWakeFromReset method:

void AppController::monoWakeFromReset()
{

// tell the label to show itself on the screen
helloLabel.show();

// set the timers callback handler
timer.setCallback<AppController>(this, &AppController::timerFire);
// start the timer
timer.Start();

}

All right, go to the console and run make install and our app should compile and upload to mono. Open a serial
terminal and you should see:

Timer did fire!
Timer did fire!
Timer did fire!
Timer did fire!

70 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Arriving with 1 second intervals.

Timing the UI

Now, let us step it up a bit. We want to toggle a UI element with our timer function. The SDK includes a class called
StatusIndicatorView, it mimics a LED that just is on or off. Lets add it as a member on our AppController:

class AppController : public mono::IApplication {

// This is the text label object that will displayed
TextLabelView helloLabel;

Timer timer;

StatusIndicatorView stView;

We also need to initialize with position and dimension in the initializer list:

AppController::AppController() :

// Call the TextLabel's constructor, with a Rect and a static text
helloLabel(Rect(0,100,176,20), "Hi, I'm Mono!"),
// set our timers interval to 1000 ms
timer(1000),

stView(Rect(75,55,25,25))
{

Then, in the monoWakeFromReset method we must set its *visibility state *to shown:

// tell the label to show itself on the screen
helloLabel.show();

// set the timers callback handler
timer.setCallback<AppController>(this, &AppController::timerFire);
// start the timer
timer.Start();

stView.show();

Last we insert code to toggle its state in the timerFire method:

void AppController::timerFire()
{

printf("Timer did fire!\t\n");

stView.setState(!stView.State());
}

Go compile and run the modified code. You should see this on your mono:

2.2. Tutorials 71

Mono Developer Documentation Documentation, Release alpha

Sample code

Here is the full source code for reference:

app_controller.h:

#ifndef app_controller_h
#define app_controller_h

// Include the Mono Framework
#include <mono.h>

// Import the mono and mono::ui namespaces into the context
// to avoid writing long type names, like mono::ui::TextLabel
using namespace mono;
using namespace mono::ui;

// The App main controller object.
// This template app will show a "hello" text in the screen
class AppController : public mono::IApplication {

// This is the text label object that will displayed
TextLabelView helloLabel;

Timer timer;

StatusIndicatorView stView;

public:

//this is our method we want the timer to call
void timerFire();

// The default constructor
AppController();

72 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

// Called automaticlly by Mono on device reset
void monoWakeFromReset();

// Called automatically by Mono just before it enters sleep mode
void monoWillGotoSleep();

// Called automatically by Mono right after after it wakes from sleep
void monoWakeFromSleep();

};

#endif /* app_controller_h */

app_controller.cpp:

#include "app_controller.h"

using namespace mono::geo;

// Contructor
// initializes the label object with position and text content
// You should init data here, since I/O is not setup yet.
AppController::AppController() :

// Call the TextLabel's constructor, with a Rect and a static text
helloLabel(Rect(0,100,176,20), "Hi, I'm Mono!"),
// set our timers interval to 1000 ms
timer(1000),

stView(Rect(88,55,25,25))
{

// the label is the full width of screen, set it to be center aligned
helloLabel.setAlignment(TextLabelView::ALIGN_CENTER);

// set another text color
helloLabel.setTextColor(display::TurquoiseColor);

}

void AppController::timerFire()
{

printf("Timer did fire!\t\n");

stView.setState(!stView.State());
}

void AppController::monoWakeFromReset()
{

// At this point after reset we can safely expect all peripherals and
// I/O to be setup & ready.

// tell the label to show itself on the screen
helloLabel.show();

// set the timers callback handler
timer.setCallback<AppController>(this, &AppController::timerFire);
// start the timer
timer.Start();

2.2. Tutorials 73

Mono Developer Documentation Documentation, Release alpha

stView.show();
}

void AppController::monoWillGotoSleep()
{

// Do any clean up here, before system goes to sleep and power
// off peripherals.

}

void AppController::monoWakeFromSleep()
{

// Due to a software bug in the wake-up routines, we need to reset here!
// If not, Mono will go into an infinite loop!
mono::IApplicationContext::SoftwareResetToApplication();
// We never reach this point in the code, CPU has reset!

// (Normally) after sleep, the screen memory has been cleared - tell the label to
// draw itself again
helloLabel.scheduleRepaint();

}

Measuring the Temperature

This quick tutorial will demonstrate how you measure the temperature, by using the standard temperature
sensor API

Mono has a built-in thermometer that is situated on the PCB under the SD Card connector. We have a standard API
for getting the temperature in degrees Celcius. If you wish to get convert to Fahrenheit, use this formula: \(^{\circ}F
= ^{\circ}C \cdot 1.8 + 32 \)

Example

Let us try to fetch the temperature! The Mono SDK uses a standard interface for getting the temperature, that abstracts
away the hardware. The interface contains of only two functions:

• Read() To get the temperature in celcius (as an integer)

• ReadMilliCelcius() To get the temperature in an integer that is 1000th of a celcius. \(1 ^{\circ}C = 1000
^{\circ}mC\)

You acquire a reference (a pointer) to the interface through the global IApplicationContext variable:

sensor::ITemperature *temp = IApplicationContext::Instance->Temperature;
int mcel = temp->ReadMilliCelcius();

Now the variable mcel hold the temperature in millicelcius. Divide by 1000 to get the value in celcius. You can easily
print the temperature on the serial port by using printf:

printf("%d.%d",mcel/1000,mcel%1000);

74 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Caution: Please observe that we cannot use the %f format specifier in the printf function! To make the
application binary smaller, it is not linked with printf‘s floating point formatting. If you wish to add floating
point I/O, then you should add -u _printf_float in the linker command!

That is it. You can now read the temperature! Go hack or keep reading, for a little more on temperature measurements.

Temperature measuring Caveats

Measuring the temperature seems like a simple operation, but you should know that it is actually quite difficult to get
it right. First for all, unless you really invest money and time in advanced equipment and in calibrating this equipment,
then you will not get a precise measurement. But then, what is a precise measurement?

First let us visit the terms: absolute and relative measurements. An absolute temperature measurement is a temperature
measured againts a fixed global reference. At the summer the sea temperature at the beaches reach \(25 ^{\circ}C\) or
\(77 ^{\circ}F\). This is an absolute measurement. In contrast if I say: The sea temperature has rised by \(2 ^{\circ}C\)
or \(3,5 ^{\circ}F\), rise in temperature is a reltive measurement.

When measuring temperature you should know that absolute measurements are hard, and relative measurements
are easy in comparison. Normal household thermometers do not achieve a precision below \(1 ^{\circ}C\) or \(1.8
^{\circ}F\), in absolute measurements. But their relative precision can be far better - like \(0.1 ^{\circ}C\) or \(0.18
^{\circ}F\).

Mono’s built-in thermometer share the same characteristics. However, be aware that the thermometer is mounted on
the PCB which get heated by the electronics inside the device. You are measuring the temperature of the PCB - not
the air temperature. To overcome this you can put mono in sleep mode for some time, and then wake up and measure
the temperature. When Mono is in sleep, the PCB will (over time) get the same temperature as the air around it.

Using the Buzzer

In this quick tutorial I will demonstrate how to make Mono buzz, using the simple API in the SDK

Mono has a built-in buzz speaker. The speaker is directly connected to a GPIO on Mono’s MCU. We have configured
the MCU such that the GPIO pin is used by a hardware PWM. This means the speaker is driven by a square pulse
signal generated by the MCU hardware. The software only has to turn the PWM on and off.

Simple Example

Let us begin with a code snippet that beeps for 0.5 sec:

void AppController::monoWakeFromReset() {

// Get a pointer to the buzzer object
mono::sensor::IBuzzer *buzzer = mono::IApplicationContext::Instance->Buzzer;

// make a beep for 0.5 sec
buzzer->buzzAsync(500);

}

First we get a pointer to the current buzzer object that has been created by the global ApplicationContext object.
All buzz-speaker objects must implement the IBuzzer interface, that defines methods to emit buzzing sounds.

2.2. Tutorials 75

Mono Developer Documentation Documentation, Release alpha

Then we use the method buzzAsync that turns on the speaker. The important thing here is to note that the buzzing
is asynchronous. The signal sent to the speaker is hardware generated, so the software does not need to do anything.
When buzzAsync returns, the buzzing is still going on - and will it do so for the next 0.5 sec.

Multiple Beeps

If you what to make, say 3 beeps in a row, you need to use callbacks. This is due to the asynchonous behaviour of the
IBuzzer interface. Luckily there is a similar method called: buzzAsync(void (*callback)(void)). This
method takes a callback function, that gets called when the buzzing has ended. We can use this function to chain the
buzzing, thereby making multiple beeps.

To do this, we use the built-in Timer class to control the delay between beeps.

Note: This is the best practice approach. The lazy ones might choose to use several wait_ms() calls. But this approach
will stall the CPU, making it unresponsive.

In our AppController we declare an integer count variable. We also add a callback function for the buzz
(buzzEnded()) and one for the delay (pauseEnded()).

wakeFromReset:

void AppController::monoWakeFromReset() {

// init the count to 0
count = 0;

mono::sensor:IBuzzer *buzzer = mono::IApplicationContext::Instance->Buzzer;

// begin the buzzing (for 0.5 sec)
buzzer->buzzAsync<AppController>(500, this, &AppController::buzzEnded);

}

buzzEnded:

void AppController::buzzEnded() {

// increment the buzz beep count
count++;

// If we have buzzed less the 3 times, start a delay timer
if (count < 3)

mono::Timer::callOnce<AppController>(500, this, &AppController::buzzEnded);
}

pauseEnded:

void AppController::buzzEnded() {

//the delay timed out - begin buzzing again

// get the buzzer pointer
mono::sensor:IBuzzer *buzzer = mono::IApplicationContext::Instance->Buzzer;

// begin buzzing again (for 0.5 sec)
buzzer->buzzAsync<AppController>(500, this, &AppController::buzzEnded);

}

76 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Now, since we use Timers and async buzzing, Mono will stay responsive during both the buzzing and the pauses
in between. This means it will keep sampling the touch input, updating display and running other timers in the
background.

Killing a buzz

Say you might have called buzzAsync(60000), which is a one minute long buzz tone. After some seconds you
regret the decision and wish cancel the buzzing. To do that you use the buzzKill() method! Calling this method
will immediate stop any buzzing started earlier.

Note: If you have installed a callback at the end of your buzz - the callback will still get called.

2.3 In-Depth Articles

In this chapter we shall take a dive into the structure and workings of Mono Framekwork. The purpose of each article
is to give you an understanding of how mono internals works. You do not have to read these articles, but knowledge
of the framework design and workings will definately help you. Especially if (when) you bump into problems.

2.3.1 Architectural Overview

In this article we take a quick tour of the complete framework, its classes and features. We will visit the most
important topics and requirements for developing Mono applications.

Who should read this?

If you wish to understand the concepts and thoughts behind the frameworks structure, this article is for you. Or if you
should choose to read only one in-depth article, it should definitely be this one!

Warning: This is a draft article, that is work in progress. It still needs some work, therefore you might stumble
upon missing words, typos and unclear passages.

Overview

Mono Framework is a collection of C++ classes, all build on top of the mbed library created by ARM. The complete
Mono software stack consists of 3 levels of abstractions, which are separate libraries:

1. Mono layer (C++): All high-level classes

2. mbed layer (C++/C): Hardware level I/O and functions (including most of stdlib)

3. Cypress layer (C): Hardware dependent code, generated by PSoC Creator

In this article we focus mainly on the Mono layer. Mono is an open system, so you have access to the underlying
layers from your application. However, you should use only layer 3 (and some of mbed), if you really can not avoid
it. Using these layers might break compatibility with future hardware releases and the to-be-released simulator.

2.3. In-Depth Articles 77

http://developer.mbed.org

Mono Developer Documentation Documentation, Release alpha

API Overview

Below is a diagram of the features provided by Mono Framework. These are the high-level interfaces that makes it
fast and easy, for you to take advantage of all Mono’s features.

As you can see in the diagram, the features can be grouped by their function. Some framework classes are generic,
like the String class. Other serves a specific purpose, like providing the accelerometer interface (IAccelerometer).

Core Concepts

Since there is no operating system, your application will run on bare metal, meaning it interfaces the hardware di-
rectly. On a versatile platform, such as Mono, it means that your application must deal with some critical events and
concepts. In the next sections we shall take a look at the key functions and requirements of all applications targeting
the OpenMono platform.

Application lifecycle

The application lifecycle is the time from execution of the first instruction to the last. In conventional environments
this is from main() gets called, until it returns:

// This is a normal familiar C++ application main function:
int main(char *argv[], int argc)
{

// Application lifecycle begins

// do stuff

// Application lifecycle ends
return 0;

}

This is the case when you are inside an operating system. Mono is an embedded platform, so here the lifecycle is quite
different and determined by the power on and power off events.

When the CPU powers up, it will immediately start executing your application. And it will not stop before you cut the
CPU’s power source - literally! There is no return 0 that stops your application.

Mono is Always on

Mono’s hardware is always powered, because there is just no power switch! You can not simply cut the power to the
CPU, when you what to turn off Mono. The “turn off ” feature needs to be the software that throttles down the CPU
and puts all peripherals into a low power state. We call this state: sleep mode.

Mono Framework helps you with handling sleep mode. By default Mono’s side-button will toggle sleep mode. It will
put Mono to sleep, and wake Mono up again if pressed during sleep. You do not need to do anything to support sleep
mode, it is provided to you by the framework. Only if you need to make use of the side-button for you own purpose, you
must provide a way of going to sleep. This is done by calling the IApplicationContext::EnterSleepMode
method:

// put mono into sleep mode:
mono::IApplicationContext::EnterSleepMode(); // execution halts here until wake-up

// only after wake-up will EnterSleepMode return
printf("Mono has awaken!");

78 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Because power is never cut from the CPU, it rarely resets. The application state is preserved across sleep cycles,
meaning that your application lifespan will be long. Even significantly longer when compared to desktop applications.
The long lifespan makes the application more vulnerable to errors, such as memory leaks, corrupting memory or stack
overflows. The point is: it is a tough job to be an embedded developer .

Power On Reset

The term Power On Reset or POR means the initial reset that occurs when the CPU powers on. This is when the power
supply is first asserted or the physical H/W reset line is de-asserted. On Mono a POR is the same as a hardware reset.

A POR can be triggered in a number of different ways:

• Pressing Mono’s reset button

• If Mono’s battery is drained, the power control software will halt the CPU’s. When Mono is charged, the system
will wake the CPU and a software triggered POR happens.

• Uploading a new application to Mono, using monoprog.

• Your application can trigger a SoftwareReset, that results in a POR.

Every Mono application is required to handle the POR event. It is here your application must setup all needed periph-
erals, such as temperature sensor or SD Card file I/O. If you use any UI Widgets, you need to initialize them on POR
as well.

Later in the Required virtual methods section, we shall see how you handle the POR event.

Sleep and Wake-up

When Mono goes to sleep mode it turns off all peripherals to minimize power consumption.

You have the option to handle the go to sleep and wake from sleep events, as we shall see in the section about the The
AppController. We imagine you might need to do some book-keeping or I/O flushing before entering sleep. Likewise,
you may need some setup after waking from sleep. If you use the display, you will need to take repaint actions when
waking from sleep.

However, it you are lazy could could just trigger a SoftwareReset upon wake from sleep, but you would loose any state
that is not serialized.

The run loop

Like most modern application runtimes, Mono has an internal run loop (also called an event loop). The loop han-
dles periodic tasks, like sampling the touch system, updating the display, processing Timers and handling any other
asynchronous task. You can inject your own tasks into the run loop, and there by achieve the Arduino-like loop()
functionality.

The run loop is started right after your POR handler returns, and runs for the entire length of the application lifecycle.

Callback functions

Because we have a run loop we can make tasks asynchronous. This does not mean your code will run concurrently, it
means that you can put tasks in the background. You do not need to think about race-conditions and other rough topics
related to parallelism.

You use callback functions to handle events that arrive, and require your action. For example you can schedule a
function call in the future. The Timer class can schedule a function getting called 5 secs from now:

2.3. In-Depth Articles 79

Mono Developer Documentation Documentation, Release alpha

mono::Timer::callOnce<MyClass>(5000, this, &MyClass::futureFunction);

Notice the syntax here. We use C++ templates and function pointers. Reason is the complexity of context and function
pointers in C++. In C you create function pointers with ease:

void MyFunction() {}

mono::Timer::callOnce(5000, &MyFunction);

C functions has no context (do not belong to a class), and can be identified by a pointer. Functions (methods to be
precise) in C++ exists as attributes on object instances. When we use these as callback handlers, we need to define 3
parameters:

1. The type of class where the method is defined

2. Provide a pointer to an instance of the class (the object)

3. Provide the actual function (method) pointer

Note: That we can have callback methods in old C++98 is a kind of hack. In more modern C++ version, lambda
functions achieve the same - but less verbose. Unfortunately Mono do not have enough memory to contain the runtime
libraries for either C++11 or C++14.

Timers

• Timers trigger a periodic event handler callback

• Real-Time apps might update its state/content on a regular interval

• Timers can also be used to call a function at some point in the future (as soon as possible).

Queued interrupts

• in embedded environment interrupts are hardware triggers, that call a C function (the ISR)

• the ISR should be fast and return very quickly - a lot of concurrency issues arise when using ISR.

• mono uses Queued interrupt, where the ISR is handled in the run loop.

• no concurrency issues

• you can longer lived ISR’s

• they can debounce your hardware input signals, to create more robust handling of button or switches

The AppController

All application must have a app controller - this is there entry point

80 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Required virtual methods

Application Entry Point & Startup

1. static inits

2. main func

3. app ctrl POR method

4. run loop

The Bootloader

Crashes and Exceptions

Best Pratice

some do and dont’s

Further reading

in depth articles:

• Boot and Startup procedures

• Queued callbacks and interrupts

• [[Display System Architecture|display_system_architecture]]

• Touch System Architecture

• Wifi & networking

• Power Management Overview

• Memory Management: Stack vs heap objects?

• Coding C++ for bare metal

• The Build System

2.3.2 Display System Architecture

Mono display system is makes it easy and fast to create graphical user interfaces (GUIs). You can take advan-
tage of the many high-level classes, that display controls or text in the screen.

Who should read this?

In this article we will take an in-depth look at Mono’s display system. You should read this if you wish to create your
own User Interface elements or if you experience issues related to displaying graphics. Also, if you simply would
like to know more about how the software works under the hood. I presume you already are familiar with other GUI
system programming, like iOS or Qt.

2.3. In-Depth Articles 81

Mono Developer Documentation Documentation, Release alpha

Overview

The Mono framework implements a display stack that closely assembles the first computer GUI systems, like the first
Mac OS or Atari TOS. It is a single display buffer that your application paints in. The buffer is placed in the display
chip, and is therefore not a part of the MCU systems internal RAM. This means writing (and reading) to the display
buffer is expensive operations, and should only be done in an efficient way.

To paint on the display the view stack has 3 distinct layers:

1. The Display controller: An object that communicates with the hardware display chip, and can read and write
to the display buffer. The display controller objects can write pixels in an file I/O like manner. It does not have
any notion of text glyphs or graphical shapes.

2. The Display Painter: The painter object can translate geometrical shapes into pixels. It utilizes the Display
Controller as a pixels drawing target. The painter can also draw individual text glyphs, and works with colors
too.

3. The Views: A view is an abstract class that represents a User Interface element, like a button. It uses the Display
Painter to composite a complete element from a series of shape painting routines. Some views also works with
touch input.

We shall only visit the last layer (Views) in this tutorial.

The Views

All UI element classes inherit from the View class. The view class defines the properties and behaviors shared by
all UI elements. The mono framework comes with a set of predefined UI views that comprises different UI elements.
They all in inherit from the View class, as seen on the figure below:

If you need learn about the specific UI classes can their usage, please see the reference documentation or the Drawing
UI Elements tutorial.

As all classes inherit from the parent View class, they all define these central properties:

• The View Rect: A rectangle that defines the boundaries of the view. This is the views width and height, but also
its X,Y position on the display.

• Standard Colors: All views share a palette of standard/default colors for borders, text, backgrounds and high-
lights. Changing one of these will affect all view subclasses.

• Dirty state: Views can be dirty, meaning that they need to be repainted on the screen. You might change the
content of a TextLabelView, and the view will need to be repainted - therefore it is dirty. When the view
has been repainted, the dirty state is cleared.

• Repainting: All View subclasses must define the protected method repaint(). Dirty views are scheduled
for repaint by the display system, meaning that the repaint()method is automatically called to actually draw
the view. If you create your own custom views, all your shape painting must happen inside the repaint()
routine.

• Visibility state: Views can be visible or invisible. When first created, a view is always invisible. This means it
will not be scheduled for repaints at all. To make a view appear on the display, you must first call the show()
method. This will set its state to visible.

Since all views share a single global display buffer, you can (by mistake or on purpose) position one view overlapping
another. The display system does not have any notion of a Z-axis. To the top-most view will be the one that gets its
repaint() method called last. The display system keeps dirty views in a queue, so they are repainted in a FIFO
style manner.

When you create your own views, it is your responsibility to respect the views boundaries. Say, a view with the
dimensions 100x100, must not draw any shapes outside its 100x100 rectangle. Shape drawing inside the repaint()

82 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

method is not automatically clipped to the views bounding rectangle. It is perfectly possible to create a view, that
completely ignores its bounding rectangle.

In contrast to many modern GUI systems, mono views cannot contain nested views. However, this does
not mean a view cannot contain another. It just has to manually manage it.

Display Coordinate System

All views and painted shapes exists in the painter’s coordinate system. This coordinate system is cartesian with origin
in the top left corner. The positive Y direction is downward, while positive X is left to right. The coordinates are in
pixels, meaning they are integers.

An example of the used coordinate system is seen in the figure above. Notice how the pixel’s coordinate references
the upper left corner of the pixel area - not the center.

Because views cannot be nested, we use only one global coordinate system. It is called the absolute coordinate system,
and all shapes and views are painted relative to that. This means that if you position views with the offset coordinate
\((20,20)\), you must offset all shape painting with \((20,20)\).

Rotations

Mono includes an accelerometer, that enables you to detect orientation changes. You can create an application that
layout its content differently in landscape and portrait modes.

Unfortunately, at this time, I have yet to implement an automatic coordinate system rotation, that uses the accelerom-
eter. I plan to augment the Display Painter class with the ability to rotate the coordinate system, to account for
mono physical orientation. This will mean the coordinate system’s origin will always be the upper left corner relative
to gravity, and independent on the physical orientation.

Pixel Blitting

The display painter class takes commands like drawRect(x,y,w,h), that paints an outlined rectangle on the
display. It handles conversion from geometric shape parameters, into a series of pixels. These pixels are written to the
display through the Display Controller object.

The pixel color is determined by the state of the painter. The painter has foreground and background color, that can be
set before the calls to shape drawing routines. Shapes are painted using the foreground color by default, but you can
explicitly tell the routines to use the background color instead.

The text glyphs drawing routine uses both the foreground and background colors, to draw the text glyphs against the
background color.

Bitmaps & Colors

The display painter cannot take pixels as input. If you need to draw raw pixels or bitmaps from a file or memory,
you need to interface the Display Controller directly. The display controller has a cursor that points to a location on
the display. When you write a pixel, the cursor increments. The incrementation is from left to right, and downward.
(Normal western reading direction.)

Basically you need only to use 2 methods: write(color) and setCursor(x,y). You can see how if you
take a look at the source code for the class ImageView. It blit pixels using the display controller, from within its
repaint() method.

If you plan to use bitmaps, keep in mind that Mono’s memory is very limited. Therefore I will encourage you not to
use large in-memory pixel buffers. Instead use the SD Card file I/O, as done by the ImageView class.

2.3. In-Depth Articles 83

Mono Developer Documentation Documentation, Release alpha

When you write raw pixels, you must use the correct pixel color format. For mono this is 16 bit, 5-6-5 RGB colors.
Note that Mono’s CPU architecture is little endian, and the display uses big endian. If you define a color like this:

uint16_t color = 0x07E0; // I think this might be a green color?

The color will be interpreted by the display as: 0xE007. For convenience you should use the Color class, that has a
constructor that takes RGB components as separate values.

V-Sync and refreshes

The display hardware periodically refreshes the LCD. If you change the display buffer during a refresh, you will see
weird artifacts. Especially animations are prone to such artifacts.

To counter this mono uses tearing effect interrupts. This interrupt works like the v-sync signal on RGB interfaced
displays. It occurs the moment after a display refresh. After the interrupt there is a time window, where the display
buffer can be changed, before the display refreshes again.

Modern systems uses a technique called double buffering, where two separate display buffers exists. This means that
one can be modified while the other is shown. When all changes has been written, the buffer that is displayed are
changed to the other one. This technique makes it possible is to (slowly) write a lot of changes to the display, and have
them appear instantly.

Unfortunately we do not have this facility in Mono. There is only one display buffer. This means all drawing must
have finished, by the time the display is refreshed again. To not exceed the time window between display refreshes,
all painting routines must be very efficient and optimized. If you create your own view subclasses, keep in mind that
your drawing must be highly efficient. It is best only to paint changes, and not the entire view again.

The display system automatically handle this tearing effect timing, and skips repainting, should the CPU be too busy
at the moment of the interrupt.

2.3.3 Bare Metal C++: A Practical Guide

If you what to be an embedded coding champ, you should really read Alex Robenko’s book: Practical Guide to
Bare Metal C++ (and I mean: really!)

Alex’ book goes through very interesting topics of getting C++ runnning on embedded devices. It covers important
shortcomings and advantages of C++ in an embedded environment.

If you know C++ you might want to use Exceptions and RTTI features, before you do: Read the book! In contrast, if
you do not know C++ you might (will) make mistakes that can take hours to recover from. Again: Read the book!

Here is a short list of most interesting chapters of the book:

• Dynamic Memory Allocation

• Exceptions

• RTTI

• Removing Standard library

• Static objects

• Abstract classes

• Templates

• Event loops

84 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

As a Mono developer you will face most of these topics.

Read the Book

• Queued callbacks and interrupts

• Touch System Architecture

• Wifi & networking

• Boot and Startup procedures

• Power Management Overview

• Memory Management: Stack vs heap objects?

• The Build System

2.4 Schematics

This is the schematics for our hardware. These are meant to help you develop our own extensions to Mono, go
create!

If you need more specific schematics than what is shown here, please consider posting a request on our community.

2.4.1 Mono (Maker + Basic)

If you have a Mono Basic, it is the same as Maker, just without the Wifi / Bluetooth component mounted.

2.4.2 Mono Shield Adapter

2.5 MonoKiosk

Mono apps are distributed through the Kiosk, and you can get your app into the Kiosk by following the recipe below.

2.5.1 GitHub

If your source code is hosted on GitHub, you will need to make a GitHub release and attach three types of files to the
release, namely

• The app description.

• A set of screenshots.

• The binary app itself.

2.4. Schematics 85

https://community.openmono.com
http://monokiosk.com
https://github.com
https://help.github.com/articles/creating-releases/

Mono Developer Documentation Documentation, Release alpha

App description

The release must contain a file named app.json that contains the metadata about your app, for example

{ "id":"com.openmono.tictactoe"
, "name":"Tic Tac Toe"
, "author":"Jens Peter Secher"
, "authorwebsite":"http://developer.openmono.com"
, "license":"MIT"
, "headline":"The classic 3x3 board game."
, "description":

["Play with a fun and exciting game with against another player."
, "Can you beat your best friend in the most classic of board games?"
]

, "binary":"ttt.elf"
, "sourceurl":"https://github.com/getopenmono/ttt"
, "required":["display","touch"]
, "optional":[]
, "screenshots":

["tic-tac-toe-part1.png"
, "tic-tac-toe-part2.png"
, "tic-tac-toe-part3.png"
]

, "cover": "tic-tac-toe-part2.png"
, "kioskapi": 1
}

As you can see, app.json refers to three distinct images (tic-tac-toe-part1.png,
tic-tac-toe-part2.png,tic-tac-toe-part3.png) to be used on the app’s page in MonoKiosk,
so these three files must also be attached to the GitHub release. The metadata also refers to the app itself (ttt.elf),
the result of you building the application, so that file must also be attached to the release.

The format of the metadata needs to be very strict, because it is used to automatically create an entry for your app in
MonoKiosk. The metadata must be in JSON format, and the file must be named app.json. In the following, we
will describe the format in detail.

id

The id must be unique within the Kiosk, so you should use reverse domain name notation like uk.homebrewers.
brewcenter.

name

The name of the app as it should appear to people browsing the Kiosk.

author

Your name or Organisation, as it should appear to people browsing the Kiosk.

authorwebsite

An optional URL to your (organisation’s) website.

86 Chapter 2. Content

http://json.org
https://en.wikipedia.org/wiki/Reverse_domain_name_notation

Mono Developer Documentation Documentation, Release alpha

license

How other people can use your app and the source code. We acknowledges the following licenses:

If you feel that you need another license supported, take it up in the community.

headline

Your headline that accompanies the app on the Kiosk.

description

A list of paragraphs that give other people a detailed desription of the app, such as why they would need it and what it
does.

binary

The name of the ELF file which has been produced by your compiler, and which you have attached to the release.

sourceurl

An URL to the source code of the app.

required

A list of hardware that must be present in a particular Mono to run the app. The acknowledged hardware is as follows.

• accelerometer

• buzzer

• clock

• display

• jack

• temperature

• touch

• wifi

• bluetooth

optional

A list of Mono hardware that the app will make use of if present. The acknowledged hardware is the same as for the
required list.

2.5. MonoKiosk 87

http://community.openmono.com
https://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Mono Developer Documentation Documentation, Release alpha

screenshots

A list of images that will be presented in the Kiosk alongside the app description.

All images must be either 176x220 or 220x176 pixes, and they must be attached to the release.

cover

One of the screenshots that you want as cover for app in the Kiosk.

kioskapi

The format of the metadata. The format described here is version 1.

2.5.2 How to get your app included

When you have created a new (version) of your app, you can contact us at kiosk@openmono.com with the URL of
your release (eg. https://api.github.com/repos/getopenmono/ttt/releases/tags/v0.1.0),
and we will do a sanity check of the app and add to the official list used by the Kiosk.

For GitHub, the url for a release is https://api.github.com/repos/:owner/:repo/releases/tags/:tag

2.6 Datasheets

If you need to dive a little deeper into the inner workings of Mono, we have collected the datasheets for the
components in Mono

You might need to consult specific datasheets for the components in Mono, if you are debugging or just need some
advanced features not provided by the API.

2.6.1 Accelerometer

Mono’s accelerometer is a MMA8652FC chip by Freescale. It is connected to Mono’s I2C bus.

The accelerometer is handled by the MonoAccelerometer class in the software framework. If you need specific
features, or just wish to play with the component directly, you should consult the datasheet.

2.6.2 MCU

Mono’s Micro Controller Unit (MCU) is a Cypress PSoC5LP, that is an Arm Cortex-M3 CPU. You can use all its
registers and functions for your application, the SDK includes headers for all pins and registers. (You must explicitly
include the project.h file.)

The MCU model we use has 64 Kb SRAM, 256 Kb Flash RAM and runs at 66 Mhz.

The software framework encapsulates most MCU features in the mbed layer, such as GPIO, interrupts and timers.
Power modes is also controlled by the registers in the MCU and utilized by the PowerManagement class.

88 Chapter 2. Content

https://github.com/getopenmono/mono_framework/blob/master/src/mono_accelerometer.h
https://github.com/getopenmono/mono_framework/blob/master/src/mono_power_management.h

Mono Developer Documentation Documentation, Release alpha

2.6.3 Display Chip

The display is driven by an ILITEK 9225G chip. On mono we have hardwired the interface to 16 bit 5-6-5 color space
and the data transfer to be 9-bit dedicated SPI, where the 9th bit selects data/command registers. (This should make
sense, when you study the datasheet.)

In the framework the display controller class ILI9225G utilizes the communication and pixel blitting to the display
chip.

2.6.4 Wireless

Mono uses the Redpine Wifi chip to achieve wireless communication. (The same chip includes Bluetooth for the
Maker model, also.) The chip is connected via a dedicated SPI interface, and has a interrupt line connected as well.

The communication interface is quite advanced, including many data package layers. You can find our implementation
of the communication in the ModuleSPICommunication class. This class utilizes the SPI communication from
and to the module, it does not know anything about the semantics of the commands sent.

2.6.5 Temperature Sensor

The temperature sensor is an Amtel AT30TS74 chip, connected via the internal I2C bus.

The temperature interface is used in the AT30TS74Temperature class.

2.7 API Reference

2.7.1 Core Classes

AppRunLoop

class This is the event run-loop for all mono applications. This class is instantiated and used inside the IAp-
plicationContext interface. You should not interact with this class directly. The run loop handles non-critical
periodicly tasks. Classes can install tasks in the run-loop. Such classes are usually repetitive timers or lazy
interrupt handlers. Some standard system tasks are handled staticly inside the loop, like the USB serial reads.
Public Functions

void AppRunLoop::exec()
Start executing the run loop.

void AppRunLoop::CheckUsbDtr()
Do a single check of the DTR on the virtual UART.

bool AppRunLoop::addDynamicTask(IRunLoopTask *task)
Add a task to the dynamic task queue. This task is repeated over and over, until it reports that its should
not be scheduled.

The task is added to a linked list, runtime is n.

Return Always true at this point

bool AppRunLoop::removeDynamicTask(IRunLoopTask *task)
Remove a task from the dynamic task queue. This will search the queue for he pointer provided, and
remove it.

2.7. API Reference 89

https://github.com/getopenmono/mono_framework/blob/master/src/display/ili9225g/ili9225g.h
https://github.com/getopenmono/mono_framework/blob/master/src/wireless/module_communication.h#L275
https://github.com/getopenmono/mono_framework/blob/master/src/at30ts74_temperature.h

Mono Developer Documentation Documentation, Release alpha

Return true if the object was found and removed, false otherwise.

Parameters

• task: A pointer to the object, that should be removed

void AppRunLoop::setResetOnUserButton(bool roub)
Sets the Reset on User Button mode.

If true the run loop will check the user button, and if pressed it will trigger a software reset.

Parameters

• roub: true will reset on user button, false is normal functionality.

void AppRunLoop::quit()
Terminate the run loop. Application events and more will stop working

You should use this, if you use your own embedded run loops.

Public Members

bool mono::AppRunLoop::resetOnDTR
As default behaviour the run loop will force a reset on high-to-low transition on the serial ports DTR (Data
Terminal Ready) line.

This property controls this feature, setting it to true will enable software reset via the serial connection.
This means the monoprog programmer can reset the device and connect to the bootloader.

Setting this to false means monoprog cannot automatically reset into the bootloader, you must press the
reset button yourself.

uint32_t mono::AppRunLoop::TouchSystemTime
The CPU time used on proccessing touch input. This includes:

•ADC sampling (approx 16 samples)

•Touch value evaluation, and possible convertion into events

•Traversing the responder chain

•Handling TouchBegin, TouchEnd & TouchMove, and any function they call

This time includes the execution of your code if you have any button handlers or touch based event call-
backs.

uint32_t mono::AppRunLoop::DynamicTaskQueueTime
The CPU time used on processing the dynamic task queue The time spend here include all queued tasks
and callbacks. these could be:

•Timer callback

•Any QueueInterrupt you might have in use

•All display painting routines (repainting of views subclasses)

•Any custom active IRunLoopTask you might use

Nearly all callbacks are executed with origin inside the dynamic task queue. Expect that the majority of
your code are executed here.

90 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Protected Functions

void AppRunLoop::processDynamicTaskQueue()
Execute all tasks in the dynamic task queue

void AppRunLoop::removeTaskInQueue(IRunLoopTask *task)
Internal method to sow together neightbourghs in the linked list

void AppRunLoop::process()
Process a single iteratio of the run loop

void AppRunLoop::checkUsbUartState()
read the UART DTR state if possible

Protected Attributes

bool mono::AppRunLoop::runLoopActive
As long as this i true the stadard run loop will run

If set to false, the run loop will exit, and mono might will enter a low power state. TODO: power safe
modes and run loops?

bool mono::AppRunLoop::lastDtrValue
The last seen serial DTR value. Reset can only happen in transitions.

bool mono::AppRunLoop::resetOnUserButton
Set to true if you want the run loop to call software reset when pressing the user button. Initial value is
false

IRunLoopTask *mono::AppRunLoop::taskQueueHead
A pointer to the head task of the dynamic task queue. If no task are in the queue, this is NULL

DateTime

class A Date and time representation in the Gregorian calendar. This class represents a point in time, defined
in the gregorian calendar. Such a timestamp are given in year, month, day of month, hours since midnight,
minutes and seconds. This class also defined if the timestamp is in UTC / GMT or a defined local time zone.
The class handles leap years and the varying length of months. You can add seconds, minutes, hours and days
to a DateTime object and get the result as a new DateTime object. When you create DateTime objects they
are created in the local time zone by default. The local time zone is defined as a offset in hours relative to
UTC. There is no notion of IANA Time Zone names of alike - just an offset to the UTC time. There are two
convenient method to print DateTime as readable strings. The toString method print a human readable (MySql
compatible) timestamp. The other toISO8601 returns a string formatted in the ISO 8601 standard format used
in JSON objects. When printing DateTime objects, they are returned in the time zone that they are created in.
System Wall Clock This class also has a global DateTime object reserved for use by a RTC feature. A subsystem
manages the RTC and increments the global system DateTime object. You can get the current DateTime time by
using the static method now To set the system clock use the static method setSystemClock Public Types

enum type mono::DateTime::TimeTypes
DateTime timestamps can be one of three types

Values:
The DateTime is specified in local time zone
The DateTime is specified in UTC / GMT time zone

2.7. API Reference 91

Mono Developer Documentation Documentation, Release alpha

The DateTime do not have a specified time zone

Public Functions

DateTime::DateTime()
Construct an empty / invalid DateTime object.

DateTime::DateTime(uint16_t years, uint8_t months, uint8_t days, uint8_t hours = 0, uint8_t min-
utes = 0, uint8_t seconds = 0, TimeTypes zone = LOCAL_TIME_ZONE)

Construct a DateTime object with a given date and time.

Parameters

• years: The Year component of the date, for example 2016

• months: The month component of the date from 1 to 12, May is 5

• days: The day component of the date, 1-indexed, from 1 to 31

• hours: Optional: The hour component of the timestamp, range is 0 to 23

• minutes: The minute component of the timestamp, range is 0 to 59

• seconds: The seconds component of the timestamp, range is 0 to 59

• zone: The timezone where this DateTime define its time, default is the local timezone

String DateTime::toString() const
Return the DateTime object as a huamn readable string.

Return A mono string on the format: yyyy-MM-dd hh:mm:ss

String DateTime::toISO8601() const
Return an ISO8601 formatted timestamp as a string.

This returned string is on the format: yyyy-MM-ddTHH:mm:ss+tt:00 if not UTC or yyyy-MM-
ddTHH:mm:ssZ

String DateTime::toTimeString() const
Return only a time string from the DateTime.

The format is: HH:mm:ss

String DateTime::toDateString() const
Return only a date string from the DateTime.

The format is: yyyy-MM-dd

bool DateTime::isValid() const
Return true if the DateTime is valid.

Invalid date object is contructed by the default constructor

DateTime DateTime::toUtcTime() const
Convert this DateTime to UTC time.

DateTime DateTime::addSeconds(int seconds) const
Return a new object with a number of seconds added.

This method increments the timestamp for the given second interval

92 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Return The new DateTime object with seconds added

Parameters

• seconds: The seconds to add

DateTime DateTime::addMinutes(int minutes) const
Return a new object with a number of minutes added.

This method increments the timestamp for the given minute interval

Return The new DateTime object with minutes added

Parameters

• minutes: The minutes to add

DateTime DateTime::addHours(int hours) const
Return a new object with a number of hours added.

This method increments the timestamp for the given hour interval

Return The new DateTime object with hours added

Parameters

• hours: The hours to add

DateTime DateTime::addDays(int days) const
Return a new object with a number of days added.

This method increments the timestamp for the given day interval

Return The new DateTime object with days added

Parameters

• days: The days to add

Public Static Functions

static DateTime mono::DateTime::maxValue()
Get the maximum possible DateTime value (far in the future)

static DateTime mono::DateTime::minValue()
Get the lowest possible DateTime value (the distant past)

bool DateTime::isLeapYear(uint16_t year)
Check is a year is a leap year.

DateTime DateTime::fromISO8601(String date)
Parse a subset of ISO 8601 compatible date time representations.

This static method takes a ISO 8601 formatted string, and creates a DateTime object from that. This
method only parses a subset of the possible date representations allowed in ISO 8601. Specifically it can
handle dates in these format:

•yyyy-MM-ddTHH:mm:ssZ

•yyyy-MM-ddTHH:mm:ss+01:00 or other time zones

•yyyy-MM-dd HH:mm:ssZ

2.7. API Reference 93

Mono Developer Documentation Documentation, Release alpha

•yyyy-MM-dd HH:mm:ss

Return The parsed DateTime object, that might be valid or invalid

void DateTime::setSystemDateTime(DateTime dt)
Set a new system DateTime.

DateTime DateTime::now()
Get the current DateTime from the system RTC clock.

void DateTime::incrementSystemClock()
Internal method used by the RTC system to increment the system DateTime. You should not call this
manually.

Public Static Attributes

int DateTime::LocalTimeZoneHourOffset
The systems current TimeZone setting.

MARK: STATIC SYSTEM DATETIME.

The timezone is just an hour-offset from the UTC / GMT time

GenericQueue

template <typename Item>
class A templated Queue, where template defines the queue element type.

This class is identical to Queue, but it uses templating to preserve type information.

See Queue

Inherits from mono::Queue

IApplication

class Entry point for all mono applications, abstract interface. Every mono application must implement this
interface. This is the starting point of the your application code, you must call it after the runtime initalization.
You do this from inside the main() function. Your main function should look like this:

int main()
{

// Construct you IApplication subclass
MyIApplicationSubclass appCtrl;

// Tell the IApplicationContext of your existance
IApplicationContext::Instance->setMonoApplication(&appCtrl);

// Start the run loop... - and never come back! (Gollum!, Gollum!)
return appCtrl.enterRunLoop();

}
Your mono applications entry point must be your own subclass of IApplication. And you must initalize it inside
(not outside) the main() function. This is strictly nessesary, because the IApplicationContext must be ready
when the IApplication is executed.

94 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Also you must call the enterRunLoop method from main, to enter the event loop and prevent main() from
returning.

Public Functions

mono::IApplication::IApplication()
Construct the global Application class.

Constructor for the global Application Controller. See IApplication for a describtion on when to call this
constructor.

virtual void mono::IApplication::monoWakeFromReset()
= 0Called when mono boot after having been power off or after a reset This method is only called once,
you should use it to do inital data and object setup.

When this method returns mono will enter in an event loop, so use this method to setup event listeners for
your code.

Do not call this method yourself, it is intended only to be called by the mono framework runtime.

virtual void mono::IApplication::monoWillGotoSleep()
= 0The runtime library calls this function when the MCU will go into standby or sleep mode. Use this
method to disconnect from networks or last-minute clean ups.

When you return from this method the system will goto sleep, and at wakeup the monoWakeFromSleep()
method will be called automatically.

Do not call this method yourself, it is ontended only to be called by the mono framework runtime.

virtual void mono::IApplication::monoWakeFromSleep()
= 0Called when mono comes out of a standby or sleep state, where the MCU instruction execution has
been paused.

Use this method to reestablish I/O connections and refresh data objects.

You should not call this method your self, it is intended only to be called by the mono framework runtime.

int mono::IApplication::enterRunLoop()
Start the mono application run loop.

Start the main run loop for your mono application. This method calls the global IApplicationContext run
loop.

The last line in the main.cpp file must be a call to this function:

int main()
{

MyIApplicationSubclass appCtrl;

// Some app ctrl setup code here perhaps?

return appCtrl.enterRunLoop();
}

Return The run loop never returns, the return type is only for comformaty.

2.7. API Reference 95

Mono Developer Documentation Documentation, Release alpha

IApplicationContext

class The Application context class is a singleton class that is automatically instanciated by the framework. You
should not need to interact with it directly. It is allocated on the stack, with its member objects. The application
context controls the application event loop at hardware event inputs. It is essential for communicating with
Serial-USB and the display. Depending on the execution context (hardware mono device or simulator), different
subclasses of this interface it used. This interface is provided to give your application code a pointer to the
concrete implementation of the application context. Regardless of running on a simulator or the actual device.
Subclassed by mono::ApplicationContext Public Functions

virtual int mono::IApplicationContext::exec()
= 0Start the application run loop.

This method starts the global run/event loop for the mono application. The method never returns, so a call
to this function should be the last line in your main() function.

The event loop automatically schedules the sub system, such as the network, inputs and the display.

virtual void mono::IApplicationContext::setMonoApplication(mono::IApplication
*app)

= 0Sets a pointer to the mono application object

Public Members

power::IPowerManagement *mono::IApplicationContext::PowerManager
A pointer the power management system.

Pointer to the global power management object, that controls power related events and functions. Use this
pointer to go into sleep mode’ or get the current battery voltage level.

AppRunLoop *mono::IApplicationContext::RunLoop
A reference to the main run loop of the application. This pointer must be instanciated be subclasses

display::IDisplayController *mono::IApplicationContext::DisplayController
Pointer to the display interface controller object. The object itself should be initialized differntly depending
on the ApplicationContext

ITouchSystem *mono::IApplicationContext::TouchSystem
Pointer to the touch system controller object.

The touch system handles touch input from the display or other input device. It must be initialized by an
ApplicationContext implementation.

The touch system is the source of TouchEvent and delegate these to the TouchResponder classes. It is
the ITouchSystem holds the current touch calibration. To re-calibrate the touch system, you can use this
reference.

See ITouchSystem

QueueInterrupt *mono::IApplicationContext::UserButton
The User Button queued interrupt handler.

Here you add your application handler function for mono user button. To handle button presses you can
set a callback function for the button push.

The callback function is handled in the AppRunLoop, see the QueueInterrupt documentation for more
information.

96 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Note that the default initialized callback handler will toggle sleep mode. This means that if you do not
set your own handler, the user button will put mono into sleep mode. The default callback is set on the
.fall(...) handler.

Example for replacing the user button handler, with a reset handler:

// the button callback function
void MyApp::handlerMethod()
{

IApplicationContext::SoftwareReset();
}

// on reset install our own button handler callback
void MyApp::monoWakeFromReset()
{

IApplicationContext::Instance->UserButton->fall<MyApp>(this, &MyApp::handlerMethod);
}

sensor::ITemperature *mono::IApplicationContext::Temperature
A pointer to the Temperatrure sensor, if present in hardware.

This is an automatically initialized pointer to the temperature object, that is automatically created by the
framework.

sensor::IAccelerometer *mono::IApplicationContext::Accelerometer
A pointer to the Accelerometer, if present in hardware.

This is an automatically initialized pointer to the accelerometer object, that is automatically created by the
framework.

sensor::IBuzzer *mono::IApplicationContext::Buzzer
A pointer to the buzzer, if present in hardware.

This is an automatically initialized pointer to the buzzer object, that is automatically created by the frame-
work.

IRTCSystem *mono::IApplicationContext::RTC
A Pointer to the current RTC interface, if such exists.

Mono has a RTC clock, that can control a system date time clock, that is accessed by the DateTime class

You can start or stop the RTC using this interface. Note that this pointer might be NULL

Public Static Functions

static void mono::IApplicationContext::EnterSleepMode()
The mono application controller should call this to give the Application Context a reference to itself.

This will ensure the Application Controllers methods gets called. Call this method to make mono goto
sleep.

In sleep mode the CPU does not excute instruction and powers down into a low power state. The power
system will turn off dynamically powered peripherals.

NOTE: Before you call this method make sure that you configured a way to go out of sleep.

static void mono::IApplicationContext::ResetOnUserButton()
Enable Reset On User Button mode, where user button resets mono.

2.7. API Reference 97

Mono Developer Documentation Documentation, Release alpha

If your application encounters unmet dependencies (missing SD Card) or gracefully handles any runtime
errors, you can call this method. When called, the run loop will reset mono if the user button (USER_SW)
is activated.

This method allows you to reset mono using the user button, instead of the reset button.

static void mono::IApplicationContext::SleepForMs(uint32_t ms)
Enter MCU sleep mode for a short time only. Sets a wake-up timer us the preferred interval, and calls the
EnterSleepMode method.

Parameters

• ms: The number of milli-second to sleep

static void mono::IApplicationContext::SoftwareReset()
Trigger a software reset of Mono’s MCU.

Calls the MCU’s reset exception, which will reset the system. When reset the bootloader will run again,
before entering the application.

static void mono::IApplicationContext::SoftwareResetToApplication()
Trigger a software reset of MOno’s MCU, that does not load the bootloader.

Use this to do a fast reset of the MCU.

static void mono::IApplicationContext::SoftwareResetToBootloader()
Trigger a software reset, and stay in bootloader.

Calls the MCU reset exception, which resets the system. This method sets bootloader parameters to stay
in bootloader mode.

CAUTION: To get out of bootloader mode you must do a hard reset (by the reset button) or program
mono using monoprog.

Public Static Attributes

IApplicationContext *IApplicationContext::Instance
Get a pointer to the global application context

Protected Functions

virtual void mono::IApplicationContext::enterSleepMode()
= 0Subclasses should overirde this method to make the sysetm goto sleep

virtual void mono::IApplicationContext::sleepForMs(uint32_t ms)
= 0Subclasses should override this to enable sleep mode for a specefic interval only.

virtual void mono::IApplicationContext::resetOnUserButton()
= 0Subclasses must implement this to enable the “Reset On User Button” behaviour. See ResetOnUser-
Button

virtual void mono::IApplicationContext::_softwareReset()
= 0Subclasses must implement this method to enable software resets. See SoftwareReset

virtual void mono::IApplicationContext::_softwareResetToApplication()
= 0Subclasses must implement this to enable software reset to application See SoftwareResetToApplication

98 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

virtual void mono::IApplicationContext::_softwareResetToBootloader()
= 0Subclasses must implement this method to allow reset to bootloader See SoftwareResetToBootloader

mono::IApplicationContext::IApplicationContext(power::IPowerManagement
*pwr, AppRunLoop *runLp,
display::IDisplayController *dis-
pCtrl, ITouchSystem *tchSys,
QueueInterrupt *userBtn, sen-
sor::ITemperature *temp = 0,
sensor::IAccelerometer *accel =
0, sensor::IBuzzer *buzzer = 0,
IRTCSystem *irtc = 0)

Protected constructor that must be called by the sub class. It sets up needed pointers for the required
subsystems. This ensure the pointers are available when class members’ constructors are executed.

If this contructor did not setup the pointers, the PowerManagement constructor would see the Instance
global equal null.

IRunLoopTask

class THis interface defines tasks or functions that can be inserted into the ApplicationRunLoop. The interface
defines a method that implements the actual logic. Also, the interface defines the pointers previousTask
and nextTask. These define the previous and next task to be run, in the run loops task queue. To
avoid dynamic memory allocation of linked lists and queues in the run loop, the run loop handler func-
tions, are themselves items in a linked list. All classes that that want to use the run loop, must inherit
this interface. NOTE that tasks in the run loop do not have any contraints on how often or how rare
they are executed. If you need a function called at fixes intervals, use a Ticker or timer. Subclassed
by mono::display::ILI9225G, mono::power::MonoPowerManagement, mono::QueueInterrupt, mono::Timer,
mono::ui::Animator Protected Functions

virtual void mono::IRunLoopTask::taskHandler()
= 0This is the method that gets called by the run loop.

NOTE that this is not an interrupt function, you can do stuff that take some time.

Protected Attributes

IRunLoopTask *mono::IRunLoopTask::previousTask
A pointer to the previous task in the run loop The the task is the first in queue, this is NULL

IRunLoopTask *mono::IRunLoopTask::nextTask
A pointer to the next task to be run, after this one. If this task is the last in queue, this is NULL

bool mono::IRunLoopTask::singleShot
Tasks are expected to be repetative. They are scheduled over and over again. Set this property to true
and the task will not scheduled again, when handled.

ITouchSystem

class Interface for the Touch sub-system Subclassed by mono::MonoTouchSystem Public Functions

virtual void mono::ITouchSystem::init()
= 0Initialize the touch system controller.

2.7. API Reference 99

Mono Developer Documentation Documentation, Release alpha

<# description #>

virtual void mono::ITouchSystem::processTouchInput()
= 0<# brief desc #>

<# description #>

Protected Functions

void mono::ITouchSystem::runTouchBegin(geo::Point &pos)
<# brief desc #>

<# description #>

Parameters

• : param desc #>

void mono::ITouchSystem::runTouchMove(geo::Point &pos)
<# brief desc #>

<# description #>

Parameters

• : param desc #>

void mono::ITouchSystem::runTouchEnd(geo::Point &pos)
<# brief desc #>

<# description #>

Parameters

• : param desc #>

ManagedPointer

template <typename ContentClass>
class Pointer to a heap object, that keeps track of memory references.

The managed pointer is an object designed to live on the stack, but point to memory cobntent that live on the
heap. The ManagedPointer keeps track of memory references, such that the it can be shared across multiple
objects in your code.

It maintains an internal reference count, to keep track of how many objects holds a reference to itself. If the
count reaches zero, then the content is deallocated.

With ManagedPointer you can prevent memory leaks, by ensuring un-references memory gets freed.

Public Functions

mono::ManagedPointer::ManagedPointer()
Create an empty pointer

100 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void mono::ManagedPointer::Surrender()
Give up this ManagedPointers refrences to the content object, by setting its pointer to NULL.

This means that if the Reference count is 1, this pointer is the only existing, and it will not dealloc the
content memory upon deletion of the ManagedPointer.

We Reference count is > 1, then other ManagedPointers might dealloc the content memory.

Queue

class A pointer based FIFO style Queue.GenericQueue

Subclassed by mono::GenericQueue< mono::redpine::ManagementFrame >, mono::GenericQueue<
mono::TouchResponder >, mono::GenericQueue< mono::ui::View >, mono::GenericQueue< Item >

Public Functions

Seevoid Queue::Enqueue(IQueueItem *item)
Add a new element to the back of the queue Insert a pointer to an element on the back of the queue.

IQueueItem *Queue::Dequeue()
Returns and removes the oldest element in the queue.

IQueueItem *Queue::Peek()
Return the oldest element in the queue, without removing it.

IQueueItem *Queue::Next(IQueueItem *item)
Get the next element in the queue, after the one you provide.

NOTE: There is no check if the item belongs in the parent queue at all!

Return The next element in the queue, after the item you provided.

Parameters

• item: A pointer to an item in the queue

bool Queue::Exists(IQueueItem *item)
Check that an object already exists in the queue. Because of the stack based nature of this queue, all objects
can only exist one replace in the queue. You cannot add the same object to two different positions in the
queue.

Parameters

• item: The element to search for in the queue

2.7. API Reference 101

Mono Developer Documentation Documentation, Release alpha

QueueInterrupt

class An queued input pin interrupt function callback handler This class represents an input pin on mono, and
provides up to 3 different callback handler functions. You can installed callback function for rising, falling or
both edges. Queued interrupts In Mono framework a queued interrupt is handled inside the normal execution
context, and not the hardware interrupt routine. In embedded programming it is good practice not to do any real
work, inside the hardware interrupt routine. Instead the best practice method is to set a signal flag, and handled
the event in a run loop. QueueInterrupt does this for you. The rise, fall and change callback are all executed by
the default mono run loop (AppRunLoop) You can safely do heavy calculations or use slow I/O in the callback
routines you assign to QueueInterrupt! Latency The run loop might handle the interrupt callback some time
after it occur, if it is busy doing other stuff. THerefore you cannot expect to have your callback executed the
instant the interrupt fires. (If you need that use DirectInterrupt) QueueInterrupt holds the latest interrupt
trigger timestamp, to help you determine the latency between the actual interrupt and you callback. Also, many
interrupt triggering signal edges might occur, before the run loop executes you handler. The timestamp only
shows the latest one. Inherits from InterruptIn, mono::IRunLoopTask Public Functions

QueueInterrupt::QueueInterrupt(PinName inputPinName = NC, PinMode mode = Pull-
None)

Assign a queued inetrrupt handler to a physical pin

Parameters

• inputPinName: The actual pin to listen on (must be PORT0 - PORT15)

• mode: OPTIONAL: The pin mode, default is Hi-Impedance input.

void QueueInterrupt::DeactivateUntilHandled(bool deactive = true)
Set this property to true, to turn off incoming interrupts while waiting for the run loop to finish process
a pending interrupt.

If you want to do heavy calculations or loading in your interrupt function, you might want to not queue up
new interrupts while you process a previous one.

Parameters

• deactive: OPTIONAL: Set this to false, to not disable interrupts while processing. Default is
true

bool QueueInterrupt::IsInterruptsWhilePendingActive() const
Get the state of the DeactivateUntilHandled property. If true the hardware interrupt is deactivated until
the handler has run. If false (the default when constructing the object), all interrupt are intercepted, and
will be handled. This means the handler can be executed two times in row.

Return true if incomming interrupt are displaed, until previous is handled.

void QueueInterrupt::setDebouncing(bool active)
Enable/Disable interrupt de-bounce.

Switches state change might cause multiple interrupts to fire, or electrostatic discharges might cause nano
seconds changes to I/O lines. The debounce ensures the interrupt will only be triggered, on sane button
presses.

void QueueInterrupt::setDebounceTimeout(int timeUs)
Change the timeout for the debounce mechanism.

Parameters

• timeUs: The time from interrupt to the signal is considered stable, in micro-seconds

102 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void mono::QueueInterrupt::rise(void (*fptr))void
Attach a function to call when a rising edge occurs on the input

Parameters

• fptr: A pointer to a void function, or 0 to set as none

template <typename T>
void mono::QueueInterrupt::rise(T * tptr, void(T::*)(void) mptr)

Attach a member function to call when a rising edge occurs on the input

Parameters

• tptr: pointer to the object to call the member function on

• mptr: pointer to the member function to be called

void mono::QueueInterrupt::fall(void (*fptr))void
Attach a function to call when a falling edge occurs on the input

Parameters

• fptr: A pointer to a void function, or 0 to set as none

template <typename T>
void mono::QueueInterrupt::fall(T * tptr, void(T::*)(void) mptr)

Attach a member function to call when a falling edge occurs on the input

Parameters

• tptr: pointer to the object to call the member function on

• mptr: pointer to the member function to be called

uint32_t QueueInterrupt::FallTimeStamp()
On fall interrupts, this is the µSec. ticker timestamp for the falling edge inetrrupt. You can use this to
calculate the time passed from the interrupt occured, to the time you process it in the application run loop.

Return The ticker time of the falling edge in micro seconds

uint32_t QueueInterrupt::RiseTimeStamp()
On rise interrupts, this is the µSec. ticker timestamp for the rising edge inetrrupt. You can use this to
calculate the time passed from the interrupt occured, to the time you process it in the application run loop.

Return The ticker time of the rising edge in micro seconds

bool QueueInterrupt::Snapshot()
The pin value at the moment the H/W interrupt triggered The callback might be executed some time after
the actual inetrrupt occured. THis method return the pin state at the moment of the interrupt.

Return The pin state, at the time of the interrupt

bool QueueInterrupt::willInterruptSleep() const
Interrupt will abort sleep mode to run handler.

If interrupt fires during sleep mode, Mono will wake up to service the handler in the run loop

2.7. API Reference 103

Mono Developer Documentation Documentation, Release alpha

void QueueInterrupt::setInterruptsSleep(bool wake)
Set if this interrupt will wake Mono from sleep.

Set to true to wake from sleep and continue the run loop upon interrupts.

Parameters

• wake: true to enabled wake-from-sleep

template <typename T>
void mono::QueueInterrupt::change(T * tptr, void(T::*)(void) mptr)

Attach a member function to call when a rising or falling edge occurs on the input

Parameters

• tptr: pointer to the object to call the member function on

• mptr: pointer to the member function to be called

Protected Functions

void QueueInterrupt::taskHandler()
This is the method that gets called by the run loop.

NOTE that this is not an interrupt function, you can do stuff that take some time.

Regex

class This class is a C++ wrapper around the C library called SLRE (Super Lightweight Regular Expressions)
Pattern syntax (?i) Must be at the beginning of the regex. Makes match case-insensitive ^ Match beginning
of a buffer $ Match end of a buffer () Grouping and substring capturing \s Match whitespace \S Match
non-whitespace \d Match decimal digit \n Match new line character \r Match line feed character \f Match
form feed character \v Match vertical tab character \t Match horizontal tab character \b Match backspace
character + Match one or more times (greedy) +? Match one or more times (non-greedy) * Match zero or more
times (greedy) *? Match zero or more times (non-greedy) ? Match zero or once (non-greedy) x|y Match x or
y (alternation operator) \meta Match one of the meta character: ^$().[]*+?|\ \xHH Match byte with hex value
0xHH, e.g. [...] Match any character from set. Ranges like [a-z] are supported [^...] Match any character
but ones from set https://github.com/cesanta/slre Public Types

typedef Regex Match capture object holding the first match captureRegex

Public Functions

SeeRegex::Regex(String pattern)
Create a regular expression object from a pattern string

bool Regex::IsMatch(String matchStr)
Test if a string matches the regex pattern

Return true on match, false otherwise

bool Regex::Match(String matchStr, Capture *captureArray, uint32_t capArraySize)
Get a the first capture group match from a string

The Regex class does not allocate any capure objects, so you must supply all needed objects for captures.

104 Chapter 2. Content

https://github.com/cesanta/slre

Mono Developer Documentation Documentation, Release alpha

Regex::Capure caps[3];
Regex reg(``(..) (..) (..)'');
bool success = reg.Match(``test my regex'', caps, 3);

Return true on match, false otherwise

Parameters

• matchStr: The string to match against the regex pattern

• captureArray: A pointer to a array of Capture objects

• capArraySize: The size of the provided capture array

String Regex::Value(Capture &cap)
Return the string value from a match capture object

String

class High level string class, that is allocated on the HEAP or rodata The mono framework has it own string
class, that either reside on the HEAP or inside the read-only data segment (.rodata). We use this string class
to pass string data to async routines like the View ‘s scheduleRepaint method. Because views might be repainted
at any point in time, we cannot have view data reside on the stack. This string class hold its data on the HEAP,
but behaves as it would reside on the stack. THis string class takes care of all alloc and dealloc of memory. It is
a referenced based string class. You should not pass pointers of C++ references to this class, but instead normal
assignment or pass the full class to functions. The efficient copy / assignment operator methods on the class
ensure only data references are passed, behind the scenes. For example:

String str = String::Format(``Hello World, number: %i'', 1);
String str2 = str;
String str3 = str2;
In the code only 1 copy of the string data is present in memory. And only references are passed to the objects
str2 and str3. Only as the last object is deallocated is the data disposed from the HEAP.

These features makes the class very lightweight and safe to pass around functions and objects.

Timer

class A queued Timer class, recurring or single shot. A timer can call a function at regular intervals or after
a defined delay. You can use the timer to do periodic tasks, like house-keeping functions or display updates.
Queued callback The timer uses the Application Run Loop to schedule the callback handler function. This
means your callback are not executed inside a hardware interrupt context. This is very convenient since your
can do any kind of heavy lifting in your callback handler, and your code is not pre-empted. Presicion You should
note that the timer are not guaranteed to be precisely accurate, it might fire later than your defined interval (or
delay). The timer will not fire before your defined interval though. If you use any blocking wait statements
in your code, you might contribute to loss in precision for timers. If you want precise hardware timer interrupts
consider the mbed Ticker class, but you should be aware of the hazards when using hardware interrupts. Example
Create a reocurring timer that fires each second:

Timer timr(1000);
timr.setCallback<MyClass>(this, &MyClass::callback);
timr.Start();
The member function callback will now be called every second. If you want to use a single shot callback
with a delay, Timer has a convenience static function:
Timer delay = Timer::callOnce<MyClass>(100, this, &MyClass::callback);

2.7. API Reference 105

Mono Developer Documentation Documentation, Release alpha

Now delay is a running timer that calls callback only one time. Note that the timer object (delay) should
not be deallocated. Deallocating the object will cause the timer to shut down.

Time slices

Say you set an interval of 1000 ms, and your callback takes 300 ms to execute. Then timer will delay for 700 ms
and not 1000 ms. It is up to you to ensure your callback do not take longer to execute, than the timer interval.

Inherits from mono::IRunLoopTask

Public Functions

Timer::Timer()
Contruct an empty (zero-timeout) re-occurring timer.

After calling this contructor, you must set the time out and callback function. Then start the timer.

Timer::Timer(uint32_t intervalOrTimeoutMs, bool snglShot = false)
Create a new timer with with an interval or timeout time.

All newly created timers are stopped as default. You must also attach callback handler to the timer, before
it can start.

Parameters

• intervalOrTimeoutMs: The timers time interval before it fires, in milliseconds

• snglShot: Set this to true if the timer should only fire once. Default false

void Timer::Start()
Start the timer and put into running state.

Note: You must set a callback handler, before starting the timer.

void Timer::Stop()
Stop the timer, any pending callback will not be executed.

bool Timer::SingleShot()
See if the timer is single shot.

bool Timer::Running()
See if the timer is currently running

void Timer::setInterval(uint32_t newIntervalMs)
Set a new timer interval.

Parameters

• newIntervalMs: The timer interval in milliseconds

template <typename Owner>
void mono::Timer::setCallback(Owner * obj, void(Owner::*)(void) memPtr)

Sets a C++ callback member function to the timer.

Parameters

• obj: A pointer to the callback member function context (the this pointer)

• memPtr: A pointer to the member function, that is the callback

106 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void mono::Timer::setCallback(void (*cFunction))void
Sets a callback handler C function to the timer.

Parameters

• cFunction: A pointer to the C function, that is the callback

Public Static Functions

template <typename Owner>
static Timer* mono::Timer::callOnce(uint32_t delayMs, Owner * obj, void(Owner::*)(void) memPtr)

Create a single shot timer with a delay and callback function.

The timer object is created on the HEAP, which allows it to exists across stack frame contexts. You can
safely create a callOnce(...) timer, and return from a function. Even if you do not have a reference
to the timer object, it will still run and fire. The timer deallocates itself after it has fired. It cannot be
reused.

Return A pointer to the single shot timer

Parameters

• delayMs: Delay time before the timer fires, in milliseconds.

• obj: A pointer to the callbacks function member context (the this pointer)

• memPtr: A pointer to the callback member function

static Timer *mono::Timer::callOnce(uint32_t delayMs, void (*memPtr))void
Create a single shot timer with a delay and callback function.

The timer object is created on the HEAP, which allows it to exists across stack frame contexts. You can
safely create a callOnce(...) timer, and return from a function. Even if you do not have a reference
to the timer object, it will still run and fire. The timer deallocates itself after it has fired. It cannot be
reused.

Return A pointer to the single shot timer

Parameters

• delayMs: Delay time before the timer fires, in milliseconds.

• memPtr: A pointer to the callback C function

Protected Functions

void Timer::taskHandler()
This is the method that gets called by the run loop.

NOTE that this is not an interrupt function, you can do stuff that take some time.

TouchEvent

class Public Members

TouchEvent *mono::TouchEvent::TouchBeginEvent
If

2.7. API Reference 107

Mono Developer Documentation Documentation, Release alpha

TouchResponder

class The TouchReponder handles incoming touch events. The TouchResponder is an interface that classes
and inherit from to receive touch input events. This class also defined global static method used by Mono’s
hardware dependend touch system. These static methods receives the touch events and delegates them to all
objects in the responder chain. You can make any object a receiver of touch events if you inherit from this
interface. You need to override 3 methods: RespondTouchBegin RespondTouchMove RespondTouchEnd

These methods are called on any subclass when touch input events are received. Note that your subclass will
receive all incoming events not handled by other responders.

If you want to make touch enabled graphical elements, you should use the interface ResponderView. This class
is the parent class for all touch enabled views.

•••See ResponderView

ITouchSystem

Inherits from mono::IQueueItem

Subclassed by mono::PowerSaver, mono::ui::ResponderView

Public Functions

TouchResponder::TouchResponder()
Create a new responder object that receives touch input.

Upon creation, this object is automatically inserted into the responder chain, to receive touch input events.

void TouchResponder::Activate()
Add this responder to the responder chain

void TouchResponder::Deactivate()
Remove this responder from the responder chain

2.7.2 UI Widgets

View

class Abstract interface for all UI Views, parent class for all views. Abstract View class/interface. All
UI view/widgets that paint to the screen must inherit from this class. Views handle repaint queues, touch
input and painting to the display buffer automatically. All views have a width and height, along with an
absolute x,y coordinate that defines the upper left corner of the view rectangle. Views must not contain
any state. They only draw data to the display. Therefore views might contain or have references to objects
holding the actual state information. Some simple views, like TextLabelView, are exceptions to this rule,
since it is highly convenient to let them hold some state. (Like text content.) Something on dependence of
AppContext and Appctrl design patternResponderView

Inherits from mono::IQueueItem

Subclassed by mono::ui::BackgroundView, mono::ui::ConsoleView< W, H >,
mono::ui::GraphView, mono::ui::ImageView, mono::ui::ProgressBarView, mono::ui::ResponderView,
mono::ui::StatusIndicatorView, mono::ui::TextLabelView

108 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Public Types

Seeenum type mono::ui::View::Orientation
Define the 4 dirrerent orientations the of display. The display controller apply the orientation transfor-
mation to real display. For the UI Views the coordinate system remains the same, it just changes width
and height. The origo is always the top left corner (defined relative to gravity), no matter the physical
orientation of mono’s display.

Values:

= 0Expected standard orientation of mono, where the thick edge is at the bottom
=1Upside-down of PORTRAIT , where the thick edge is at the top
= 2PORTRAIT rotated 90 degrees clock-wise
= 3PORTRAIT rotated 90 degrees counter clock-wise

Public Functions

View::View()
Construct an empty view, you should not do this! You should not use View directly, subclass it instead.

View::View(geo::Rect rect)
Construct a view with dimensions, you should not do this! You should not use View directly, subclass it
instead.

void View::setPosition(geo::Point pos)
Change the view’s position on the screens coordinate system.

Changes the view’s position on the screen. Note that changing the position does not implicitly redraw the
view. This means you will need to update the screen the affected areas to make the change visible.

Parameters

• pos: The new position of the view

void View::setSize(geo::Size siz)
Change the size (width, height) of the view.

Changes the view’s dimensions. The effect of size changes might depend on the specefic view subclass.
Some views might use their size to calculate their internal layout - others might only support fixed size.

Note that changing the size here does not redraw the view. The screen needs to be redrawn to make the
size change visible.

Parameters

• siz: The new size of the view

void View::setRect(geo::Rect rect)
Set the view’s position and size, by providing a rectangle object.

Note that this method does not repaint the view, you must do that explicitly.

Parameters

• rect: The view rectangle, containing size and position

2.7. API Reference 109

Mono Developer Documentation Documentation, Release alpha

mono::geo::Point &View::Position()
Get the current position of the view’s upper left corner.

Return A reference to the current position

mono::geo::Size &View::Size()
Get the view’s current size rectangle.

Return A reference to the view’s size rectangle

const mono::geo::Rect &View::ViewRect() const
Get the views view rect

This method returns a reference to the views current view rect.

void View::scheduleRepaint()
Schedule this view for repaint at next display refresh.

This method add the view to the display systems re-paint queue. The queue is executed right after a display
refresh. This helps prevent graphical artifacts, when running on a single display buffer system.

Because views have no state information, they do not know when to repaint themselves. You, or classes
using views, must call this repaint method when the view is ready to be repainted.

bool View::Visible() const
Returns the view’s visibility.

Get the view visible state. Non-visible view are ignored by the method scheduleRepaint. You change the
visibility state by using the methods show and hide

Return true if the view can/should be painted on the screen, false otherwise.

See show

hide

void View::show()
Set the view to visible, and paint it.

Change the view’s visibility state to visible. This means it can be scheduled for repaint by scheduleRepaint.
This method automatically schedules the view for repaint.

See hide

Visible

void View::hide()
Set the view to be invisible.

Change the view’s state to invisible. This method will remove the view from the dirtyQueue, if it has
already been scheduled for repaint.

Any calls to scheduleRepaint will be ignored, until the view is set visible again.

See show

Visible

110 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Public Static Functions

uint16_t View::DisplayWidth()
Returns the horizontal (X-axis) width of the display canvas, in pixels. The width is always defined as
perpendicular to gravity

uint16_t View::DisplayHeight()
Returns the vertical (Y-axis) height of the display canvas, in pixels. The height axis is meant to be parallel
to the gravitational axis.

View::Orientation View::DisplayOrientation()
Returns the current physical display orientation of the display The orientation is controlled by the IDis-
playController

Public Static Attributes

uint32_t View::RepaintScheduledViewsTime
The CPU time used to repaint the latest set of dirty views. This measure includes both the painting
algorithms and the transfer time used to comminicate with the disdplay hardware.

Protected Functions

void View::callRepaintScheduledViews()
A member method to call the static method repaintScheduledViews.

See repaintScheduledViews

virtual void mono::ui::View::repaint()
= 0Repaint the view content, using the View::painter.

Re-paint the view content. This method should be called when the view content has changed. You can
call this method directly, but it might cause graphics artifacts because the display is not double buffered.
Instead you should schedule a repaint by calling the scheduleRepaint() method. This method will schedule
the repaint, right after the next display update.

The display system will not schedule any repaints automatically. The view does not contain any state
information, so you or other classes utilizing view must schedule repaints.

In subclasses of View, this method must be overwritten.

Protected Attributes

geo::Rect mono::ui::View::viewRect
The rect defines the position and size of this view on the screen. This defines where the view rectangles
upper left corner is situated, and the width and height in pixels.

bool mono::ui::View::isDirty
Indicate is this view should be repainted on next display refresh.

2.7. API Reference 111

Mono Developer Documentation Documentation, Release alpha

bool mono::ui::View::visible
Views can be visible of non-visisble (hidden). When a view is not visible scheduleRepaint will ignore
requests.

You should use the methods show and hide is toggle visibility.

See show

hide

Visible

Protected Static Functions

void View::repaintScheduledViews()
This class method will run through the scheduled re-paints queue and call the repaint method on all of
them.

This method is called automatically be the display system, you do not need to call it yourself.

Protected Static Attributes

mono::display::DisplayPainter View::painter
Global View painter object. Once the first View is included in the code, this painter is initialized on the
stack. Every view object uses this painter to paint itself.

The painter is initialized with the display controller of the application context. If you want views to
draw themselv on another display, you must subclass or change the current display controller of the
mono::ApplicationContext object.

mono::GenericQueue<View> View::dirtyQueue
The global re-paint queue.

When you call the scheduleRepaint method, your views is added to the re-paint queue.

TextLabelView

class A Text Label displays text strings on the display. Use this UI view whenever you need to display text on
the screen. A text label renders text strings on the display. As all views the label lives inside a defined rectangle
(viewRect), where the text is rendered. If the rectangle is smaller than the length of the text content, the content
will cropped. If the rectangle is larger, then you can align the text inside the rectangle (left, center or right).
Example You can mix and match mono strings with standard C strings when constructing TextLabels. Create a
label using a C string:

TextLabelView lbl(``This is a contant string'');
Also you can use C strings allocated on the stack:
char text[4] = {`m', `o', `n', `o'};
TextLabelView lbl(text);
Above the TextLabel will take a copy of the input string, to ensure it can be accessed asynchronously.

Content

The text view contains it content (a String object), and therefore has a state. You get and set the content to
update the rendered text on the display.When you set new text content the label automatically re-renders itself.
(By calling scheduleRepaint)

112 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Because the view is rendered asynchronously, its text content must be allocated on the heap. Therefore it uses
the String as text storage. You can provide it with C strings, but these must allocated inside the .rodata segment
of your binary. (Meaning they are static const.)

Text Format

Currently there are only one font type. But the text color and font can changed. You change these for parameters:

•Text font (including size)

•Text color

•Text background color (the color behind the characters)

Getting text dimensions

To help you layout your views, you can query the TextLabel of the current width and height of its contents.
The methods TextPixelWidth and TextPixelHeight, will return the texts dimensions in pixels

•regardless of view rectangle. Also, you can use these methods before the view has been rendered.

Inherits from mono::ui::View

Public Types

enum type mono::ui::TextLabelView::TextAlignment
Three ways of justifing text inside the TextLabel.

Values:

Align text to the left
Align text in the center
Align text to the right

Public Functions

mono::ui::TextLabelView::TextLabelView(String txt = String ())
Construct a text label with defined content, but no dimensions.

Before you can render the label you still need to set the view dimensions. This constructor take the String
object as defined in the mono framework.

Parameters

• txt: The labels text content (as a mono lightweight string)

TextLabelView::TextLabelView(const char *txt)
Construct a text label with defined content, but no dimensions.

Before you can render the label you still need to set the view dimensions. This constructor takes a static
const C string pointer that must not exist on the stack! (It must live inside the .rodata segment.

Parameters

• txt: A pointer to the static const C string (.rodata based)

2.7. API Reference 113

Mono Developer Documentation Documentation, Release alpha

TextLabelView::TextLabelView(geo::Rect rct, String txt)
Construct a label in a defined rectangle and with a string.

You provide the position and size of the label, along with its text content. You can call this constructor
using a mono type string or a stack based C string - and it is automatically converted to a mono string:

int celcius = 22;

// char array (string) on the stack
char strArray[50];

// format the string content
sprintf(strArray,``%i celcius'', celcius);

// construct the label with our stack based string
TextLabelView lbl(geo::Rect(0,0,100,100), strArray);

TextLabelView::TextLabelView(geo::Rect rct, const char *txt)
Construct a label in a defined rectangle and with a string.

You provide the position and size of the label, along with its text content. You can call this constructor
using static const C string:

// construct the label with our stack based string
TextLabelView lbl(geo::Rect(0,0,100,100), ``I am a .rodata string!'');

uint8_t TextLabelView::TextSize() const
MARK: Getters.

The text size will be phased out in coming releases. You control text by changing the font.

void TextLabelView::setTextSize(uint8_t newSize)
MARK: Setters.

We will phase out this attribute in the coming releases. To change the font size you should rely on the font
face.

If you set this to 1 the old font (very bulky) font will be used. Any other value will load the new default
font.

void TextLabelView::setTextColor(display::Color col)

void TextLabelView::setBackgroundColor(display::Color col)

void TextLabelView::setText(display::Color col)
Set the text color

void TextLabelView::setBackground(display::Color col)
Set the color behind the text

void TextLabelView::setAlignment(TextAlignment align)
Controls text justification: center, right, left

void TextLabelView::setFont(MonoFont const &newFont)
Set a new font face on the label.

You can pass any MonoFont to the label to change its appearence. Fonts are header files that you must
include youself. Each header file defines a font in a specific size.

The header file defines a gloabl const variable that you pass to to this method.

114 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void TextLabelView::scheduleRepaint()
MARK: Aux Functions.

void TextLabelView::repaint()
Repaint the view content, using the View::painter.

Re-paint the view content. This method should be called when the view content has changed. You can
call this method directly, but it might cause graphics artifacts because the display is not double buffered.
Instead you should schedule a repaint by calling the scheduleRepaint() method. This method will schedule
the repaint, right after the next display update.

The display system will not schedule any repaints automatically. The view does not contain any state
information, so you or other classes utilizing view must schedule repaints.

In subclasses of View, this method must be overwritten.

Public Static Attributes

const MonoFont *mono::ui::TextLabelView::StandardTextFont
This is the default font for all TextLabelView‘s.

This points to the default Textlabel font. You can overwrite this in your own code to change the default
appearence of all TextLabels.

You can also overwrite it to use a less memory expensive (lower quality) font face.

ButtonView

class A Push Button UI Widget. This is a common state-less push button. It is basicaaly a bordered text label.
This button reacts to touch input (pushes) and can call a function when it is pushed. You provide the button with
a callback function, that gets called when the button is pushed. A valid button push is a touch that begins and
ends within the button boundaries. If a touch begins inside the buttons boudaries, but ends outside - the button
click callback is not triggered. You define the button dimensions by the Rect you provide in the constructor.
Note that the resistive touch panel is not that precise, you should not create buttons smaller than 40x35 pixels.
Also note that buttons do not automatically scale, when you set their text content. Example

// Create the button (should normally be defined as a class member)
mono::ui::ButtonView btn(mono::geo::Rect(10,10,100,35), ``Push Here'')

// Setup a click handler
btn.setClickCallback<MyClass>(this, &MyClass::MyClickHandler);

// show the button on the screen
btn.show();
Inherits from mono::ui::ResponderView

Public Functions

ButtonView::ButtonView()
Construct an empty button.

The button will have zero dimensions and no text.

ButtonView::ButtonView(geo::Rect rect, String text)
Construct a button with dimensions and text.

2.7. API Reference 115

Mono Developer Documentation Documentation, Release alpha

Creates a button with the provided dimensions and text to display. You still need to setup a callback and
call show.

Parameters

• rect: The view rect, where the button is displayed

• text: The text that is showed on the button

ButtonView::ButtonView(geo::Rect rect, const char *text)
Construct a button with dimensions and text.

Creates a button with the provided dimensions and text to display. You still need to setup a callback and
call show.

Parameters

• rect: The view rect, where the button is displayed

• text: The text that is showed on the button

void ButtonView::setText(String txt)
Set the text content.

MARK: Accessors.

Sets the text that is displayed on the button. Note that the width and height of the button is not changed.
You must change the buttons viewRect if your text is larger than the buttons dimensions.

When you set new text content, the button is automatically repainted

Parameters

• txt: The new text content

void ButtonView::setFont(MonoFont const &newFont)
Change the button fontface (font family and size)

You can change the buttons font to use a larger (or smaller) font.

void ButtonView::setBorder(Color c)
Sets the border and text color.

This method will not schedule repaint! You must scheduleRepaint manually.

Parameters

• c: The new border and text color

void ButtonView::setHighlight(Color c)
Sets the highlight color (border & text)

The highlight color is the color used to represented a button that is currently being pushed. This means
that a touch event has started inside its boundaries. The highlight color is applied to both border and text.

This method will not schedule repaint! You must scheduleRepaint manually.

Parameters

• c: The new highlight color

116 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void ButtonView::setBackground(Color c)
Sets the background color.

The background color of the fill color inside the button bounding rectangle.

This method will not schedule repaint! You must scheduleRepaint manually.

Parameters

• c: The new border and text color

const TextLabelView &ButtonView::TextLabel() const
Get a reference to the internal TextLabel object.

You get a const reference to the button internal TextLabelView

template <typename Owner>
void mono::ui::ButtonView::setClickCallback(Owner * obj, void(Owner::*)(void) memPtr)

Attach a member function as the button click handler.

Provide the callback member function you ewant to be called when the button is clicked.

NOTE: THere can only be one callback function

Parameters

• obj: A pointer to the object where the callback method exists

• memPtr: A pointer to the callback method itself

void mono::ui::ButtonView::setClickCallback(void (*memPtr))void
Attach a C function pointeras the button click handler.

Provide a pointer to the callback C function, you ewant to be called when the button is clicked.

NOTE: THere can only be one callback function.

Parameters

• memPtr: A pointer to the C function callback

void ButtonView::repaint()
Painters.

Protected Functions

void ButtonView::TouchBegin(TouchEvent &event)
MARK: Touch Handlers.

void ButtonView::initButton()
MARK: Conructors.

2.7. API Reference 117

Mono Developer Documentation Documentation, Release alpha

ProgressBarView

class A UI widget displaying a common progress bar. This progressbar is simply a rectangle with a line (progress
indicator) inside. The indicator value is (by default) a value between 0 and 100, but you can set your own
minimum and maximum points. The progress value’s minimum and maximum is automtically calculated into
the correct pixel value, scaled to the pixel width of the progressbar. Example

// Create the progressbar object
mono::ui::ProgressBarView prgs(mono::geo::Rect(10,10,156,100));

// set the progressbars indicator value to 50%
prgs.setValue(50);

// display it
prgs.show();
A common mistake

Be aware that the progressbar is painted asynchronously. This means you cannot increment its value inside a
for-loop or alike.

This code will not work:
for (int i=0; i<100; i++) {

prgs.setValue(i);
}
Even if the loop ran veeery slow, you will not see a moving progress indicator. The reason is that the view is
only painted in the run-loop, so no screen updates can happen from inside the for-loop!

You should use a continous timer, with a callback that increments the progress indicator:

void updateProgress(){
prgs.setValue(i++);

}

mono::Timer tim(500);
tim.setCallback(&updateProgress);

This code inject a continous task to the run loop that can increment the progressbar. This is the correct way to
animate a progressbar.

Inherits from mono::ui::View

Public Functions

ProgressBarView::ProgressBarView()
Create a ProgressBar with a zero view rect (0,0,0,0)

ProgressBarView::ProgressBarView(geo::Rect rect)
Create a ProgressBarView with values from 0 to 100.

Create a new ProgressBarView, with a defined view rect and default progress value span: 0 to 100, with a
current value of 0.

Parameters

• rect: The view rect where the ProgressBar is painted

118 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void ProgressBarView::setValue(int newValue)
Set a new progress value.

Set a new current value for the progress bar. The value is truncated to the existing value span (min and
max values).

Changes to the value will trigger the value changed callback and cause the view to schedule itself for
repaint.

Parameters

• newValue: The new value

void ProgressBarView::setMaximum(int max)
Define a new minimum value for the progress indicator.

SETTERS.

void ProgressBarView::setMinimum(int min)
define a new maximum value for the progress indicator

template <typename Owner>
void mono::ui::ProgressBarView::setValueChangedCallback(Owner * cnxt, void(Owner::*)(void) memPtr)

Set a progress value change callback function.

Get notification callback everytime this progressbar changes its value

Parameters

• cnxt: A pointer to the callback member context (the this pointer)

• memPtr: A pointer to the callback member function

int ProgressBarView::Minimum() const
GETTERS.

int ProgressBarView::Maximum() const
GETTERS.

Protected Functions

void ProgressBarView::init()
convenience initializer

void ProgressBarView::repaint()
MISC.

StatusIndicatorView

class Indicate a boolean status, true/false, on/off or red/green. The status indicator displays a circular LED like
widget, that is red and green by default. (Green is true, red is false) You use the method setState to change the
current state of the indicator. This you change the state, the view automatically repaints itself on the screen.
Example

// Initialize the view (you should make it a class member)
mono::ui::StatusIndicatorView indicate(mono::geo::Rect(10,10,20,20), false);

2.7. API Reference 119

Mono Developer Documentation Documentation, Release alpha

// Change the default off color from red to to white
indicator.setOnStateColor(mono::display::WhiteColor);

// set the state to be On
indicator.setState(true);

// make the view visible
indicator.show();
Inherits from mono::ui::View

Public Functions

StatusIndicatorView::StatusIndicatorView()
contruct a StatusIndicator with default parameters

this view will be initialized in an empty viewRect, that is (0,0,0,0)

StatusIndicatorView::StatusIndicatorView(geo::Rect vRct)
Construct a Indicator and provide a View rect.

This create a view rect the exists in the provided Rect and has the default state false

Note: You need to call show before the view can be rendered

Parameters

• vRct: The bounding view rectangle, where the indicator is displayed

StatusIndicatorView::StatusIndicatorView(geo::Rect vRct, bool status)
Construct a Indicator and provide a View rect and a initial state.

This create a view rect the exists in the provided Rect

Note: You need to call show before the view can be rendered

Parameters

• vRct: The bounding view rectangle, where the indicator is displayed

• status: The initial state of the indicator

void StatusIndicatorView::setOnStateColor(display::Color col)
Sets the on state color.

If you change the color, you must call scheduleRepaint to make the change have effect.

Parameters

• col: The color of the indicator when it is on

void StatusIndicatorView::setOffStateColor(display::Color col)
Sets the off state color.

MARK: SETTERS.

If you change the color, you must call scheduleRepaint to make the change have effect.

Parameters

120 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

• col: The color of the indicator when it is off

void StatusIndicatorView::setState(bool newState)
Sets a new on/off state.

Note that the view repaints itself if the new state differs from the old.

Parameters

• newState: The value of the new state (true is on)

bool StatusIndicatorView::State() const
Gets the state of the indicator.

MARK: GETTERS.

Return trueif the state if on, false otherwise.

Protected Functions

void StatusIndicatorView::initializer()
MARK: Constructors.

void StatusIndicatorView::repaint()
MARK: Auxilliaries.

BackgroundView

class A full screen solid colored background. Use this view to paint the background any color you like. This
view is by default the same size as Mono’s display. It can be used a solid colored background for your GUI. To
save memory you should only have one background view per app. Painting on top of the background To ensure
that the background is behind all other UI widgets on the screen, it has to be rendered first. Then all other views
will apepear on top of the background. To achieve this, it is important to keep track of your repaint order. All
paint calls must begin with a scheduleRepaint to the background view. Example

// Construct the view (should alwaus be a class member)
mono::ui::BackgroundView bg;

// set an exiting new background color
bg.setBackgroundColor(mono::display::RedColor);

//show the background
bg.show();

// show all my other views, after the call to bg.show()
Inherits from mono::ui::View

Public Functions

BackgroundView::BackgroundView(display::Color color = StandardBackgroundColor)
Construct a Background view on the entire screen.

This contructor takes a optional color to use for the background. If no argument is provided the color
default to the View::StandardBackgroundColor

2.7. API Reference 121

Mono Developer Documentation Documentation, Release alpha

Also be default the view dimension is the entire display, meaning it has a bounding rect (vireRect) that is
(0,0,176,220).

Note: Remember to all show to make the view visible.

Parameters

• color: An optional bckground color

void BackgroundView::setBackgroundColor(display::Color color)
Sets a new background color on the view.

Set a new background color on the view. If the view is shared between multiple UI scenes, you can use
this method to change the background color.

When changing the background color the view is not automatically repainted. You must call scheduleRe-
paint yourself.

mono::display::Color BackgroundView::Color() const
Gets the current background color.

void BackgroundView::repaint()
Repaint the view content, using the View::painter.

Re-paint the view content. This method should be called when the view content has changed. You can
call this method directly, but it might cause graphics artifacts because the display is not double buffered.
Instead you should schedule a repaint by calling the scheduleRepaint() method. This method will schedule
the repaint, right after the next display update.

The display system will not schedule any repaints automatically. The view does not contain any state
information, so you or other classes utilizing view must schedule repaints.

In subclasses of View, this method must be overwritten.

ConsoleView

template <uint16_t W, uint16_t H>
class Inherits from mono::ui::View

Public Functions

mono::ui::ConsoleView::ConsoleView(geo::Point pos)
Construct a new ConsoleView, for viewing console output on the screen.

void mono::ui::ConsoleView::WriteLine(String txt)
Write a string to the console, and append a new line.

Parameters

• txt: The string to write to the console

void mono::ui::ConsoleView::repaint()
Repaint the view content, using the View::painter.

Re-paint the view content. This method should be called when the view content has changed. You can
call this method directly, but it might cause graphics artifacts because the display is not double buffered.

122 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Instead you should schedule a repaint by calling the scheduleRepaint() method. This method will schedule
the repaint, right after the next display update.

The display system will not schedule any repaints automatically. The view does not contain any state
information, so you or other classes utilizing view must schedule repaints.

In subclasses of View, this method must be overwritten.

void mono::ui::ConsoleView::setCursor(geo::Point pos)
MARK: Auxilliary methods.

int mono::ui::ConsoleView::lineLength()
Get the width of a line in characters.

<# description #>

Return Number of characters in one line

int mono::ui::ConsoleView::consoleLines()
Get the number lines in the console.

<# description #>

Return Numeber of text lines on the console view.

Protected Attributes

TextBuffer<(W-4)/5, (H-4)/9> mono::ui::ConsoleView::textBuffer
Text buffer that hold the visible text in the console. When the console scrolls, the text in the buffer is
overwritten.

bool mono::ui::ConsoleView::scrolls
Becomes true when the console text has reached the bottom line of its view rectangle. And all text append-
ing from now on, causes the console to scroll.

GraphView

class Visualizes a data series as a graph, based on a associated data source. This class can visualize an array
of samples on a graph. You provide the data by subclasseing the IGraphViewDataSource to deliver to data to
display. This class only display the data, it does not hold or buffer it. In this sense the GraphView contains no
state. Example To demonstrate a simple example of using the GraphView we must also create a data source. For
an associated data source, let us wrap a simple C array as a IGraphViewDataSource subclass:

// Subclass the IGraphViewDataSource interface
class DataSource : public IGraphViewDataSource
{
private:

// Use an internal array as data store
uint8_t data[100];

public:

// Override the method that provide data samples
int DataPoint(int index) { return data[index]; }

2.7. API Reference 123

Mono Developer Documentation Documentation, Release alpha

// Override the method that return the total length of the data set
int BufferLenght() { return 100; }

// Override the method that return the valid value range of the data
// samples.
int MaxSampleValueSpan() { return 256; }

};
The class DataSource is just an array with a length of 100. Note that we only store 8-bit data samples
(uint_t), therefore the valid data range is 256. The GraphView expects the data values to be signed, meaning
the valid range is from -127 to +127.

We have not provided any methods for putting data into the data source, but we will skip that for this example.

Now, we can create a GraphView that displays data from the array:

// Crate the data source object
DataSource ds;

// The view rectangle, where the graph is displayed
mono::geo::Rect vRect(0,0,150,100);

// create the graph view, providing the display rect and data
mono::ui::GraphView graph(vRect, ds);

//tell the graph view to be visible
graph.show();

Update Cursor

If you IGraphViewDataSource subclass overrides the method: NewestSampleIndex(), the GraphView can
show an update cursor. The cursor is a vertical line drawn next to the latest or newest sample. The cursor is
hidden by default, but you can activate it by overiding the data source method and calling setCursorActive.

Note that if you time span across the x-axis is less than 100 ms, the cursor might be annoying. I would recom-
mend only using the cursor when your graph updates slowly.

Scaling and Zooming

the graoh view will automatically scale down the data samples to be display inside its graph area. It displays the
complete data set from the data source, and does not support displaying ranges of the data set.

If you wish to apply zooming (either on x or Y axis), you must do that by scaling transforming the data in the
data source. You can use an intermediate data source object, that scales the data samples, before sending them
to the view.

See IGraphViewDataSource

Inherits from mono::ui::View

Public Functions

GraphView::GraphView()
Construct a GraphView with no viewRect and data source.

This contructor creates a GraphView object that needs a viewRect and source to be set manually.

You cannot display view objects that have a null-viewRect

124 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

See setDataSource

setRect

GraphView::GraphView(geo::Rect rect)
Construct a GraphView with a defined viewRect.

This constructor takes a viewRect, that defines the space where graph is displayed.

No data will be displayed before you set a valid source

See setDataSource

Parameters

• rect: The viewRect where the graph is displayed

GraphView::GraphView(geo::Rect rect, const IGraphViewDataSource &dSource)
Construct a GraphView with viewRect and a data source.

Parameters

• @param:

Protected Functions

void GraphView::repaint()
Repaint the view content, using the View::painter.

Re-paint the view content. This method should be called when the view content has changed. You can
call this method directly, but it might cause graphics artifacts because the display is not double buffered.
Instead you should schedule a repaint by calling the scheduleRepaint() method. This method will schedule
the repaint, right after the next display update.

The display system will not schedule any repaints automatically. The view does not contain any state
information, so you or other classes utilizing view must schedule repaints.

In subclasses of View, this method must be overwritten.

IGraphViewDataSource

class Data provider interface for the GraphView class. This interface defines the DataSource for
GraphView objects. The graph view queries an associated data source object for the data to display. All
GraphView objects must have a data source object that hold the data to be displayed. The data source
interface exposes an array-like scheme for providing data to the GraphView. This interface forces you to
expose your data sample as an array, where all samples has an index. The index starts at index 0 and has
variable length. You must subclass this interface and override at least 3 virtual methods. These 3 methods
are: DataPoint(int) : Return individual data samples BufferLength() : Return the full length of the data
source MaxSampleValueSpan() : Return the full range of the data sample values

By providing the methods for retreiving data, getting the total length of the data buffer and defining the valid
value range of the data samples.

If your subclass is representing a casual signal buffer, where samples are continuesly written, you might override
the method:

••••NewestSampleIndex()

2.7. API Reference 125

Mono Developer Documentation Documentation, Release alpha

This method should return the index to the newest sample in the buffer. This enables the GraphView to display
a scrolling cursor, that moves as the buffer data gets updates.

Note: You are in charge of notifying the associated GraphView‘s when the data source content changes.

See GraphView

Public Functions

virtual int mono::ui::IGraphViewDataSource::DataPoint(int index)
= 0Override this to return data point samples to the view.

Provides a sample from the data source. You must override this method to return samples at any given
index.

Return the sample value at the given index

Parameters

• index: The 0-indexed sample position, that should be returned

virtual int mono::ui::IGraphViewDataSource::BufferLenght()
= 0Override this to return the data sample buffer length to the view.

Returns the length / the total number of data samples in the data source. You must override this method to
return the total number of data sample in your data source implementation.

Return the size / length of the data source

virtual int mono::ui::IGraphViewDataSource::MaxSampleValueSpan()
= 0The value span for the data samples. üsed to map the buffer samples to the screen (view height)

virtual int mono::ui::IGraphViewDataSource::NewestSampleIndex()
Return the position / index of the newest sample in the buffer.

Override this method to get a scrolling pointer on the GraphView , a pointer that is drawn at this index
position.

Return Position of newest sample

ImageView

class Displays a bitmap image on the display. The ImageView can render a bitmap image on the display. It
needs a image data source, that delivers the actual bitmap. (See BMPImage) You provide the image data and a
bounding rect where the ImageView is painted. If you wish to use the class BMPImage as a image source, you
must initialize the SD Card Filesystem first! ## Example

// init the SD card before accessing the file system

// Open and prepare the BMP file to display
mono::media::BMPImage img(``/sd/my_pic.bmp'');

// create the view and provide the image source
mono::ui::ImageView imgView(&img);

// tell the image to be showed

126 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

imgView.show();
It is your responsibility to make sure the source image data object is staying around, and do not get deallocated.
Preferreably you should make both the image source and the view class members.

Cropping

The image view can crop the source image, thereby only showing a selected portion. The default crop is defined
by the views bounding rect. Naturally images larger than the view’s rect will be cropped with repect to the upper
left corner.

The default cropping Rect is therefore *(0, 0, imageWidth, imageHeight)*

Inherits from mono::ui::View

Public Functions

ImageView::ImageView()
Construct an empty image view, where no image is displayed To display an image you need to call setImage
later.

ImageView::ImageView(media::Image *img)
Construct an UI image from an image file

At the moment only BMP images are supported! Remember to initialize the mbed class object before
calling this consructor!

The image viewRect is set to the full screen size. Use setRect to adjust size and position.

Parameters

• img: The image data slurce to show

void ImageView::setImage(media::Image *img)
Set a new image source object Note: This method also resets the current cropping rectangle!

Parameters

• img: A pointer to the new image to display

void ImageView::setCrop(geo::Rect crp)
Set image cropping.

Define switch portion for the image should be display inside the view own bounding rectangle. By default
as much as the original image as possible, will be showed.

By defining a cropping rectangle you can define an offset and size to display from thesource image.

The source image has the same coordinate system as the display. That is (0,0) is the upper left corner.

Parameters

• crp: A cropping rectangle

const mono::geo::Rect &ImageView::Crop() const
Get the current cropping rectangle Get the current used cropping rectangle for the source image.

2.7. API Reference 127

Mono Developer Documentation Documentation, Release alpha

void ImageView::repaint()
Repaint the view content, using the View::painter.

Re-paint the view content. This method should be called when the view content has changed. You can
call this method directly, but it might cause graphics artifacts because the display is not double buffered.
Instead you should schedule a repaint by calling the scheduleRepaint() method. This method will schedule
the repaint, right after the next display update.

The display system will not schedule any repaints automatically. The view does not contain any state
information, so you or other classes utilizing view must schedule repaints.

In subclasses of View, this method must be overwritten.

Protected Attributes

media::Image *mono::ui::ImageView::image
A pointer to the Image object that is to be displayed in the screen.

geo::Rect mono::ui::ImageView::crop
Image crop rectangle. Setting this rect will crop the source image (non destructive).

ISettings

Warning: doxygenclass: Cannot find class “mono::ui::ISettings” in doxygen xml output for project “monoapi”
from directory: xml

ResponderView

class Inherits from mono::ui::View, mono::TouchResponder Subclassed by mono::ui::AbstractButtonView,
mono::ui::ButtonView, mono::ui::TouchCalibrateView Public Functions

void ResponderView::show()
Shows (repaints) the view and insert into the responder chain.

See View::show

void ResponderView::hide()
hides the view, and remove from the responder chain

See View::hide

Protected Functions

void ResponderView::RespondTouchBegin(TouchEvent &event)
Internal touch handler, you should not overwrite this

void ResponderView::RespondTouchMove(TouchEvent &event)
Internal touch handler, you should not overwrite this

void ResponderView::RespondTouchEnd(TouchEvent &event)
Internal touch handler, you should not overwrite this

128 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

TouchCalibrator

Warning: doxygenclass: Cannot find class “mono::ui::TouchCalibrator” in doxygen xml output for project
“monoapi” from directory: xml

2.7.3 Drawing

Color

class A RGB color representation, generic for display devices. This class implements a 16-bit RGB 5-6-5
color model. It support methods for calculating color blendings and more. The class definition also define
a set of global constant predefined colors, like white, red, green, blue and black. Further, it includes a
set of the FlatUI colors that Mono uses: Clouds WetAsphalt Concrete Silver Asbestos BelizeHole
MidnightBlue Alizarin Turquoise Emerald

Public Functions

••••••••••Color::Color()
MARK: Constructors.

MARK: Public contructors.

uint8_t Color::Red() const
MARK: Getters.

Return 8-bit red color component

uint8_t Color::Green() const
Return 8-bit green color component

uint8_t Color::Blue() const
Return 8-bit blue color component

Color Color::scale(uint8_t factor) const
Misc.

Multiply each RGB channel by a factor from 0-255

Return the scaled color

Color Color::blendMultiply(Color other) const
Return the product of two colors

Return the multiply blended color

Color Color::blendAdditive(Color other) const
Add this color with another

Color Color::invert() const
Return the inverse

uint8_t *Color::BytePointer()
MARK: Misc.

2.7. API Reference 129

Mono Developer Documentation Documentation, Release alpha

mono::String Color::toString() const
Get a human readable string representatio of the color.

Returns a string of the form: (RR, GG, BB)

Return a color string

uint16_t Color::operator=(Color col)
MARK: Operator overloads.

DisplayPainter

class The DisplayPainter draws shapes on a display, using the DisplayController interface. You should use this
class to draw shapes on the screen, and use it from inside view only. The standard view class has a reference
to to an instance of this class. The coordinate system used by the painter is the same as used by the display
interface. This means all shape coords are relative to the display origo at the top left corner for the screen, when
screen is in portrait mode. A painter keeps track of an active foreground and background color. You can set
new colors at any time, and the succeeding draw calls will paint in that color. The standard draw color is the
active foreground color, but some draw routines might use the background color also. An example is the font
drawing routines. Like colors, the painter object keeps a active line width and textsize. When drawing shapes
based on lines drawLine, drawPolygon, drawRect and drawEllipse, the line width used is the currently active
line width property of the painter object. When painting text characters the character size is dependend on the
textsize property. Text painting is not affected by the current line width. Public Functions

DisplayPainter::DisplayPainter(IDisplayController *displayController, bool assignRefresh-
Handler = true)

Construct a new painter object that are attached to a display. A painter object is automatically initialized
by the view/UI system and shared among the view classes.

In most cases you should not have to initialize your own display painter.

Parameters

• displayController: A pointer to the display controller of the active display

• Take: ownership of the DisplayControllers refresh callback handler

template <typename Owner>
void mono::display::DisplayPainter::setRefreshCallback(Owner * obj, void(Owner::*)(void) memPtr)

Set/Overwrite the display tearing effect / refresh callback.

Set the Painters display refresh callback handler. The display refreshes the screen at a regular interval. To
avoid graphical artifacts, you should restrict your paint calls to right after this callback gets triggered.

The default View painter already has a callback installed, that triggers the View’s re-paint queue. If you
create you own painter object you can safely overwrite this callback.

Parameters

• obj: The this pointer for the object who shoould have its member function called

• memPtr: A pointer the the class’ member function.

void DisplayPainter::setForegroundColor(Color color)
MARK: Color Accessors.

Set the painters foreground pencil color

130 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Parameters

• color: The new foreground color

void DisplayPainter::setBackgroundColor(Color color)
Sets the painters background pencil color.

Parameters

• color: the new background color

Color DisplayPainter::ForegroundColor() const
Gets the painters current foreground pencil color.

Return The current foreground color

Color DisplayPainter::BackgroundColor() const
Gets the painters current background pencil color.

Return The current foreground color

void DisplayPainter::useAntialiasedDrawing(bool enable = true)
Turn on/off anti-aliased line drawing.

MARK: Anti-aliasing Accessors.

You can enable or disable anti-aliased drawing if you need nicer graphics or faster rendering. Anti-aliasing
smoothes lines edges, that can otherwise appear jagged.

Parameters

• enable: Optional: Switch to turn on/off anti-aliasing. Deafult is enabled.

bool DisplayPainter::IsAntialiasedDrawing()
Returns true if anti-aliased drawing is enabled.

See useAntialiasedDrawing

Return true if enabled, false otherwise.

uint8_t DisplayPainter::LineWidth() const
MARK: Pencil Property Accessors.

uint16_t DisplayPainter::CanvasWidth() const
MARK: Painting Canvas Info Accessors.

Get the canvas width in pixels. This is the display display width as well.

Return The canvas/display width in pixels

uint16_t DisplayPainter::CanvasHeight() const
Get the canvas height in pixels. This is the display display height as well.

Return The canvas/display height in pixels

2.7. API Reference 131

Mono Developer Documentation Documentation, Release alpha

IDisplayController *DisplayPainter::DisplayController() const
Get a pointer to the painters current display controller You can use this method to obtain the display
controller interface if you need to blit pixels directly to the display.

Return A pointer to an object implementing the IDisplayController interface

void DisplayPainter::drawPixel(uint16_t x, uint16_t y, bool background = false)
MARK: Drawing methods.

Draw a single pixel on a specific position on the display.

The pixel will be the active foreground color, unless you set the third parameter to true.

Parameters

• x: The X-coordinate

• y: The Y coordinate

• background: Optional: Set to true to paint with active background color.

void DisplayPainter::drawPixel(uint16_t x, uint16_t y, uint8_t intensity, bool background =
false)

Draw a pixel and blend it with the background/foreground color.

Use this method to draw transparent pixels. You define an intensity of the pixel, that corrosponds to its
Alpha value or opacity. 0 is totally transparent and 255 is fully opaque.

Only the foreground is influenced by the alpha value, the background is always treated as fully opaque.

Parameters

• x: The pixels x coordinate

• y: The puxels y coordinate

• intensity: The alpha value, 0 to 255 where 0 is transparent.

• Optionaluse: the background color as foreground and vice versa

void DisplayPainter::drawFillRect(uint16_t x, uint16_t y, uint16_t width, uint16_t height,
bool background = false)

Draw a filled rectangle.

Paints a filled rectangle in the actuive foreground color. Coordinates a defining the point of the rectangles
upper left corner and are given in screen coordinates. (Absolute coordinates)

Parameters

• x: X coordinate of upper left corner, in screen coordinates.

• y: Y coordinate of upper left corner, in screen coordinates.

• width: The width of the rectangle

• height: The height of the rectangle

• background: Optional: Set to true to paint in active background color

132 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

void DisplayPainter::drawLine(uint16_t x1, uint16_t y1, uint16_t x2, uint16_t y2, bool back-
ground = false)

Draw a straight line between two points.

MARK: Lines.

Draw a line on the display. The line is defined by its two end points. End point coordinates are in absolute
screen coordinates.

The line is not anti-aliased.

Based on Bresenham’s algorithm. But If the line you intend to draw is horizontal of vertical, this method
will usemore efficient routines specialized for these cases.

Parameters

• x1: The X coordinate of the lines first endpoint

• y1: The Y coordinate of the lines first endpoint

• x2: The X coordinate of the lines second endpoint

• y2: The Y coordinate of the lines second endpoint

• background: Optional: Set this to true to paint in active background color

void DisplayPainter::drawRect(uint16_t x, uint16_t y, uint16_t width, uint16_t height, bool
background = false)

Draw a outlined rectangle.

MARK: Rects.

Draw an outlined rectangle with the current line width and the active color.

Parameters

• x: Top left corner X coordinate

• x: Top left corner X coordinate

• width: The rectangles width

• height: The rectangles height

• background: Optional: Set this to true to paint in active background color

void DisplayPainter::drawChar(uint16_t x, uint16_t y, char character)
Draw a single character on the display.

MARK: Simple Characters.

Paint a single ASCII character on the display. Characters are always painted in the foreground color, with
the background color as background fill.

The character is painted in the currently selected text size. The text is a monospaced font, width a minimum
size of (5,3) per character. The origo of a character is the upper left corner of the (5,3) rectangle.

If you want write text on the screen, you should use the TextLabel view, or the Console view.

Parameters

• x: The X coordinate of the characters upper left corner

• y: The Y coordinate of the characters upper left corner

2.7. API Reference 133

Mono Developer Documentation Documentation, Release alpha

• character: The text character to draw

void DisplayPainter::drawVLine(uint16_t x, uint16_t y1, uint16_t y2, bool background = false)
Helper function to draw a vertical line very fast. This method uses much less communication with the
display.

This method is automatically called by drawLine

Parameters

• x: The lines X coordinate (same for both end points)

• y1: The first end points Y coordinate

• y2: The second end points Y coordinate

• background: Optional: Set this to true to paint in active background color

void DisplayPainter::drawHLine(uint16_t x1, uint16_t x2, uint16_t y, bool background = false)
Helper function to draw a horizontal line very fast. This method uses much less communication with the
display.

This method is automatically called by drawLine

Parameters

• x1: The first end points X coordinate

• x2: The second end points X coordinate

• y: The lines Y coordinate (same for both end points)

• background: Optional: Set this to true to paint in active background color

void DisplayPainter::drawCircle(uint16_t x0, uint16_t y0, uint16_t r, bool background =
false)

Paint an outlined circle.

MARK: Circles.

Protected Functions

void DisplayPainter::swap(uint16_t &a, uint16_t &b)
MARK: Simple Helper Methods.

Inline swap of two numbers.

Protected Attributes

mbed::FunctionPointer mono::display::DisplayPainter::displayRefreshHandler
Handler for the DisplayControllers action queue, that gets triggered when the display refreshes.

This handler is normally used by the first View that gets contructed, to enable the re-paint queue.

134 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

IDisplayController

class Abstract Interface for display controllers like ILITEK chip etc. This interface a simple set of function
that display interface must implement. Mono dislpay system build upon this interface, and all drawing is
done through these functions. You must override all the defined methods in this interface. The interface
does not define or depend on a communication protocol, like parrallel or SPI.Kristoffer Andersen

Subclassed by mono::display::HX8340, mono::display::ILI9225G

Public Functions

Authormono::display::IDisplayController::IDisplayController(int width, int height)
Setup the display controller object, init vaiables and the screen size. The width is the horizontal measure,
when mono is held in portrait mode.

This constructor should not transfer any data or initialize the display. You must do that in the init method.

Return The display controller instance.

Parameters

• width: The display width (horizontal) in pixels

• height: The display height (vertical) in pixels

virtual void mono::display::IDisplayController::init()
= 0Initializes the hardware display controller.

Initalizing the hardware display controller means setting up the power, gamma control and sync options.
The display should be ready to draw graphics when this method returns.

It is not nessasary to do any draw commands from this method, other classes will take care of clearing the
screen to black, etc.

virtual void mono::display::IDisplayController::setWindow(int x, int y, int width, int
height)

= 0Changes the current active window to a new rectangle.

The display controller must support windowing in software or in hardware. The window is the acrtive
painting area of the screen, where you can paint. Upon drawing a single pixel the dispay cursor increments
inside the window. This means you can sometime skip calls to the setCursor method.

Parameters

• x: X-coordinate of the new windows upper left corner

• y: Y-coordinate of the new windows upper left corner

• width: The window width

• height: The window height

void mono::display::IDisplayController::setRefreshHandler(mbed::FunctionPointer
*handler)

Set the callback for display refreshes.

Set the callback function, that is called whenever the display has just repainted itself. This means it is time
to repaint any dirty views, that needs to be updated.

IMPORTANT: You should re-paint graphics from within this callback, since it might run inside a hardware
interrupt. It is better to just schedule the repaint from here.

2.7. API Reference 135

Mono Developer Documentation Documentation, Release alpha

Parameters

• obj: The owner object of the callback method (the this context)

• memPtr: A pointer to the owner objects callback member function

virtual void mono::display::IDisplayController::setCursor(int x, int y)
= 0Set the drawing cursor to a new absolute position.

Sets the current drawing cursor to a new position (must be within the cuurently active window).

When setting the cursor you must use absolute coordinates (screen coordinates), not coordinates inside the
active window.

Parameters

• x: The new X position (screen coordinates)

• y: The new X position (screen coordinates)

virtual void mono::display::IDisplayController::write(Color pixelColor)
= 0Draw a pixel with the given color, at cursor position.

Write a pixel color to the display, at the cursor position. This method will automatically increment the
cursor position.

If the increment happens automatically in hardware, the controller implementation must keep its own
cursor in sync.

Parameters

• pixelColor: The 16-bit 5-6-5 RGB color to draw

virtual void mono::display::IDisplayController::setBrightness(uint8_t value)
= 0Set the display backlight brightness. Higher values means more brightness. The display controller
implementation might use a PWM to switch backlight LED’s.

Parameters

• value: The brightness 0: off, 255: max brightness

virtual void mono::display::IDisplayController::setBrightnessPercent(float
per-
cent)

Set the display backlight brightness. Higher values means more brightness. The display controller imple-
mentation might use a PWM to switch backlight LED’s.

Parameters

• percent: The brightness percentage, 0.00: off, 1.00: max brightness

virtual uint8_t mono::display::IDisplayController::Brightness() const
= 0Gets the current LES backlight brightness The display controller implementation might use a PWM to
dim the display, this method returns the PWM duty cycle.

Return The current brightness level in 8-bit format: 0: off, 255: max brightness

136 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Public Members

uint32_t mono::display::IDisplayController::LastTearningEffectTime
The last tearning effect interrupt time (us_ticker_read())

To calculate the time since the last tearning effect interrupt (display refresh), you can use this member
variable. On each interrupt this value is updated.

If too much time has passed between the interrupt occured and you handle the painting, you might want to
skip the painting. THis is to avoid artifacts, when drawing on a refreshing display.

Any implementation of the IDisplayController must update this value in its tearning effect interrupt
handler.

TextRender

class Text Render class to paint Text paragraphs on a DisplayController. This is a Text glyph and paragraph
render. It uses a bitmap based fonts and typesets the text to provide. You need to provide the text render with
either a DisplayPainter or IDisplayController that serves as a target for the text rendering. The TextRender does
not include any Font definitions. When you render your text, you need to provide a pointer to the MonoFont
structure, that should by used as the rendered font. This renderer has a palette like DisplayPainter, and uses it
the blend the semi-transparent pixels in the font anti-aliasing. The font bitmap defines pixel intensities, that are
the foreground opacity. The Font defines the text size and the anti-aliasing quality. Some fonts has 2 bit pixels,
others have 4 bit pixels. Public Functions

TextRender::TextRender(IDisplayController *displayCtrl = 0)
Construct a TextRender that renders to a DisplayController Text Colors default to View::Standard colors.

Parameters

• displayCtrl: A pointer to the display controller that is the render target

TextRender::TextRender(IDisplayController *displayCtrl, Color foreground, Color background)
Construct a TextRender that renders to a DisplayController You provide explicit text colors.

Parameters

• displayCtrl: A pointer to the display controller that is the render target

• foreground: The text color

• background: the background color

TextRender::TextRender(const DisplayPainter &painter)
Construct a TextRender that renders to the DisplayController provided by a DisplayPainter. The painter
current pencil colors are used for the text color.

Parameters

• painter: The display painter to copy DisplayController and color palette from

void TextRender::drawInRect(geo::Rect rect, String text, const MonoFont &fontFace)
Renders a text string in a provided Rectangle.

THis method paints / renders the text in bounding rectangle. The text is always rendered with origin in the
rectangles top left corner. If the provided Rect is not large enough, the text is clipped!

2.7. API Reference 137

Mono Developer Documentation Documentation, Release alpha

Parameters

• rect: The rectangle to render in

• text: The text string to render

• fontFace: A pointer the fontface to use

mono::geo::Size TextRender::renderDimension(String text, const MonoFont &fontFace)
Return the resulting dimension / size of some rendered text.

The final width and height of a rendered text, with the defined font face.

void TextRender::setForeground(Color fg)
MARK: Accessors.

Set the text color

void TextRender::setBackground(Color bg)
Set the background color. Transparent pixels will be blended with this color.

Color mono::display::TextRender::Foreground() const
Get the current text color.

Color mono::display::TextRender::Background() const
Get the current text background color.

Protected Functions

void TextRender::drawChar(geo::Point position, char character, const MonoFont &font, geo::Rect
const &boundingRect)

Render a single character

void TextRender::writePixel(uint8_t intensity, bool bg = false)
Blend and emit a single pixel to the DisplayController.

MonoFont

struct Bitmap based Monospaced Font Structure. This struct defines the attributes and properties of a system
font. All types are const such that the compiler are able to place them in the .rodata section, which reside
in the flash memory. Public Members

const uint8_t *MonoFont::bitmap
A pointer the the font bitmap

const char *MonoFont::fontName
The human name of the font face

const uint16_t MonoFont::bitmapHeight
The total height of the complete bitmap

const uint16_t MonoFont::bitmapWidth
The total width of the complete bitmap

const uint16_t MonoFont::glyphHeight
The glyph height

138 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

const uint16_t MonoFont::glyphWidth
The glyph width

const uint8_t MonoFont::bitrate
The number of bits per pixel

const uint8_t MonoFont::characterOffset
Offset of the bitmaps first ASCII character

const uint8_t MonoFont::baselineOffset
The number of excess pixels below the fonts baseline

2.7.4 Geometry

Circle

class Inherits from mono::geo::Point Public Functions

Circle::Circle()
MARK: Contructors.

uint32_t Circle::Radius() const
MARK: GETTERS.

Point

class Class representing a point in a 2D cartisian coordinate system The point has no width or height, omly an
x-coordinate and a y-coordinate This class defines the coordinates, as well as method to manipulate the point.
Also functions for geometrical calculus is present. Subclassed by mono::geo::Circle, mono::geo::Rect

Rect

class A Rectangle in a Cartesian coordinate system, having a size and position. This class defines a
geometric rectangle. It exists in a std. cartesian coordinate system. It is defined by its upper left corner
(X,Y), and a width and height. The rectangle cannot be rotated, its sides a parallel to the coordinate
system axis. It defines helper methods to calculate different positions and properties. You can also extract
interpolation information.Size Point

Inherits from mono::geo::Point, mono::geo::Size

Public Functions

SeeRect::Rect(int x, int y, int width, int height)
Construct a rectangle from position coordinates and size.

Rect::Rect(Point &p, Size &s)
Construct a rectangle from Point and Size objects.

Rect::Rect()
COnstruct an empty rectangle having position (0,0) and size (0,0)

Point Rect::UpperLeft() const
Reutrn the position of the upper left corner.

This method is the same as casting the Rect to a Point

2.7. API Reference 139

Mono Developer Documentation Documentation, Release alpha

Return The point of the upper left corner

Point Rect::LowerRight() const
Reutrn the position of the lower right corner.

Return The point of the lower right corner

Point Rect::UpperRight() const
Reutrn the position of the upper right corner.

Return The point of the upper right corner

Point Rect::LowerLeft() const
Reutrn the position of the lower left corner.

Return The point of the lower left corner

class Point Rect::Center() const
Return the position of the Rectangles center.

void Rect::setPoint(class Point p)
Move (translate) the rectangle by its upper left corner.

void Rect::setSize(class Size s)
Set a new size (width/height) of the rectangle.

bool Rect::contains(class Point &p) const
Check whether or not a Point is inside this rectangle.

Rect Rect::crop(Rect const &other) const
Return this Rect cropped by the baundaries of another rect

mono::String Rect::ToString() const
Return a string representation of the ractangle.

Return A string of the form Rect(x, y, w, h)

Size

class Class to represent a rectangular size, meaning something that has a width and a height. A size class does
not have any position in space, it only defines dimensions. Subclassed by mono::geo::Rect Public Functions

Size::Size()
Construct a NULL size. A size that has no width or height.

Size::Size(int w, int h)
Construct a size with defined dimenstions

Size::Size(const Size &s)
Construct a size based on another size

140 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

2.7.5 Sensors

IAccelerometer

class Abstract inteface for interacting with the accelerometer. Subclassed by
mono::sensor::MMAAccelerometer Public Functions

virtual void mono::sensor::IAccelerometer::Start()
Start the accelerometer.

Before you can sample any acceleration, you must start the accelerometer. When the accelerometer is
running its power consumption will likely increase. Remember to Stop the accelerometer, when you are
done sampling the acceleration.

virtual void mono::sensor::IAccelerometer::Stop()
Stops the accelerometer.

A stopped accelerometer can not sample acceleration. Start the accelerometer before you sample any axis.

virtual bool mono::sensor::IAccelerometer::IsActive()
= 0Return the current Start/Stop state of the accelerometer.

Return true only if the accelerometer is started and sampling data

virtual int16_t mono::sensor::IAccelerometer::rawXAxis(bool monoOrientation = true)
= 0<# brief desc #>

Return <# return desc #>

virtual int16_t mono::sensor::IAccelerometer::rawYAxis(bool monoOrientation = true)
= 0<# brief desc #>

Return <# return desc #>

virtual int16_t mono::sensor::IAccelerometer::rawZAxis(bool monoOrientation = true)
= 0<# brief desc #>

Return <# return desc #>

IBuzzer

class Generic Buzzer interface. This interface defines a generic API for buzzers used in the framework. You
should not construct any subclass of this interface yourself. The system automatically creates a buzzer object
for you, that you can obtain through the IApplicationContext: Example

mono::sensor::IBuzzer *buzz = mono::IApplicationContext::Instance->Buzzer;
To make a short buzz sound do:
mono::IApplicationContext::Instance->Buzzer->buzzAsync(100);
Subclassed by mono::sensor::MonoBuzzer

2.7. API Reference 141

Mono Developer Documentation Documentation, Release alpha

Public Functions

virtual void mono::sensor::IBuzzer::buzzAsync(uint32_t timeMs)
= 0Buzz for a given period of time, then stop.

Sets the buzzer to emit a buzz for a defined number of milliseconds. Then stop. This method is asyn-
chronous, so it return immediately. It relies on the run loop to mute the buzzer later in time.

You should not call it multiple times in a row, since it behaves asynchronously. Instread use Timer to
schedule multiple beeps.

Parameters

• timeMs: The time window where the buzzer buzzes, in milliseconds

virtual void mono::sensor::IBuzzer::buzzKill()
= 0Stop any running buzz.

Use this method to cancel a buzz immediately. This method will not have any impact on callback functions.
They will still be called, when the buzz was suppose to end.

template <typename Object>
void mono::sensor::IBuzzer::buzzAsync(uint32_t timeMs, Object * self, void(Object::*)(void) member)

Buzz for some time, and when done call a C++ member function.

Sets the buzzer to emit a buzz for a defined number of milliseconds. Then stop. This method is asyn-
chronous, so it return immediately. It relies on the run loop to mute the buzzer later in time. You also
provide a callback function, that gets called when the buzz is finished.

You should not call it multiple times in a row, since it behaves asynchronously. Instead you should use the
callback function to make a new beep.

Example
buzzAsync<AppController>(100, this, &AppController::buzzDone);
This will buzz for 100 ms, then call buzzDone.

Parameters

• timeMs: The time window where the buzzer buzzes, in milliseconds

• self: The this pointer for the member function

• member: A pointer to the member function to call

void mono::sensor::IBuzzer::buzzAsync(uint32_t timeMs, void (*function))void
Buzz for some time, and when done call a C function.

Sets the buzzer to emit a buzz for a defined number of milliseconds. Then stop. This method is asyn-
chronous, so it return immediately. It relies on the run loop to mute the buzzer later in time. You also
provide a callback function, that gets called when the buzz is finished.

You should not call it multiple times in a row, since it behaves asynchronously. Instead you should use the
callback function to make a new beep.

Example
buzzAsync(100, &buzzDone);
This will buzz for 100 ms, then call global C function buzzDone.

Parameters

142 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

• timeMs: The time window where the buzzer buzzes, in milliseconds

• function: A pointer to the global C function to call

ITemperature

class Abstract Interface for temperature sensors. This interface creates a hardware-independent abstraction layer
for interacting with temperature sensors. Any hardware temperature sensor in Mono must subclass this interface.
In Mono Framework these is only initialized one global temperature sensor object. To obtain a reference to the
temperature sensor, use the IApplicationContext object:

ITemperature *temp = mono::IApplicationContext::Instance->Temperature;
This object is automatically initialized by the IApplicationContext and the current ITemperature subclass.
IT is the IApplicationContext‘s job to initialize the temperature sensor.

Subclassed by mono::sensor::AT30TS74Temperature, mono::sensor::PCT2075Temperature

Public Functions

virtual int mono::sensor::ITemperature::Read()
= 0Reads the current temperature from the temperature sensor

Return the temperature in Celcius

virtual int mono::sensor::ITemperature::ReadMilliCelcius()
Reads the temperature in fixed point milli-Celcius.

To get a higher precision output, this method will return milliCelcius such that: 22,5 Celcius == 22500
mCelcius

Return The temperature in mCelcius

2.7.6 Power

IPowerManagement

class Generic abstract interface for the power management system. A PowerManagement implementation
class handles power related events and sets up the system. The ApplicationContext object initializes an
instance of this class automatically. Use can find a pointer to the PowerManagement object in the static
IApplicationContext class. Depending on the system (mono device or simulator), the concrete sub-class
implementation of this interface varies. The active IApplicationContext initializes this class and calls its
POR initialization functions. Implementations of this class then calls and initializes any nessasary related
classes, like the power supply IC sub-system (IPowerSubSystem). This interface defines queues of objects
that implement the IPowerAware interface. This interface lets classes handle critical power events like:
Power-On-Reset (POR): Called when the chip powers up after a reset Enter Sleep Mode: Called before
system goes in to low power sleep mode Awake From Sleep: Called when nornal mode is restored after
sleep

Power Awareness

Classes that handle components like I2C, Display, etc can use the PowerAware interface to receive these type of
events. Its the PowerManagement object task to call these IPowerAware objects.

The interface defines a protected member object powerAwarenessQueue that is a pointer to the first object in
the queue. The Power Awareness Queue is a list of objects that implment the IpowerAware interface and have
added themselves to the queue by calling AppendToPowerAwareQueue

2.7. API Reference 143

Mono Developer Documentation Documentation, Release alpha

Objects in the queue receive power aware notifications on event like enter sleep mode, wake from sleep and
battery low. You can add your own objects to the queue to make them “power aware” or you remove the system
components that gets added by default. (But why would you do that?)

Subclassed by mono::power::MonoPowerManagement

Public Functions

•••virtual void mono::power::IPowerManagement::EnterSleep()
= 0Send Mono to sleep mode, and stop CPU execution. In sleep mode the CPU does not excute instruction
and powers down into a low power state. The power system will turn off dynamically powered peripherals.

Any power aware objects (IPowerAware), that has registered itself in the powerAwarenessQueuemust have
its onSystemEnterSleep method called.

NOTE: Before you call this method, make sure you have configured a way to go out of sleep.

virtual void mono::power::IPowerManagement::AppendToPowerAwareQueue(IPowerAware
*object)

Add a IPowerAware object to the awareness queue

By added object to the Power Awareness Queue they receive callbacks on power related events, such as
reset and sleep.

Parameters

• object: A pointer to the object that is power aware

virtual bool mono::power::IPowerManagement::RemoveFromPowerAwareQueue(IPowerAware
*ob-
ject)

Remove an object from the Power Awareness Queue.

Searches the Power Awareness Queue for the object and removes it, if it is found. This object will no
longer receive power related notifications.

Return true if object was removed, false if the object was not in the queue

Parameters

• object: A pointer to the object that should be removed from the queue

Public Members

IPowerSubSystem *mono::power::IPowerManagement::PowerSystem
A pointer to the initialized power sub-system. This is initialize automatically and depends on compiled
environment. The power system to used to control power supply to periphirals and to give interrupt on
power related events.

WARNING: Use this class with extreme caution! Wrong power settings can fry the MCU and other
peripherals!

144 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

Public Static Attributes

bool IPowerManagement::__shouldWakeUp
This variable must be true before sleep mode is aborted.

EnterSleep() must set this to false, you should set it to true to abort sleep mode and re-enter the run
loop execution. EnterSleep() will not return before this is set to true.

Note: The class QueuedInterrupt will set this automatically!

Protected Functions

virtual void mono::power::IPowerManagement::processResetAwarenessQueue()
Call all the power aware objects right after Power-On-Reset The singleton power management object must
call this method on reset

Protected Attributes

IPowerAware *mono::power::IPowerManagement::powerAwarenessQueue
A pointer to the top object in the Power Awareness Queue

The Power Awareness queue is realized by having the power object themselves hold references to the next
and previous object in the queue. This eliminates the need for dynamic memory allocation a runtime.

The IPowerAware interface defines the next and previous pointers for the object in the linked list. This
class only holds a reference to the first object in the queue.

IPowerSubSystem

class Abstract interface for the power sub-system. It defines 3 basic methods related to reset, enter sleep
and exit sleep modes. This interface is sub-classed by implementations of the different power supply IC’s
on mono or an emulator. Subclasses of this interface should only conduct routines related to a power
sub-system - not to any CPU specific operations! This means setting up voltage levels and enabling power
fencing to peripherals. This power supply sub-system interface also defines callbacks that are called then
the battery events occur. These are: Battery low warning

You can listen to these events by supplying a callback handler function

Power to MCU internal modules are controller by the abstract interface for power management IPowerManage-
ment

Subclassed by mono::power::ACT8600PowerSystem

Public Types

•enum type mono::power::IPowerSubSystem::ChargeState
Battery charing states

See ChargeStatus

Values:

Chip does not support charging or dont disclore it
Charging has just begun (pre-condition)

2.7. API Reference 145

Mono Developer Documentation Documentation, Release alpha

Fast Charging in constant current mode
Slower charging, in Constant Voltage mode
Charge ended of cycle, battery is full
No battery attached or wrong battery voltage levels

Public Functions

virtual void mono::power::IPowerSubSystem::onSystemPowerOnReset()
= 0Called by the application as first thing after power-on or system reset.

The function must set up the default power configuration of the system, peripherals, voltages etc.

virtual void mono::power::IPowerSubSystem::onSystemEnterSleep()
= 0Called before the system enter a sleep mode, where the CPU is not excuting instructions. To enable the
lowest possible power consumption subclasses can turn off selected periphrals here.

virtual void mono::power::IPowerSubSystem::onSystemWakeFromSleep()
= 0Called after the system has woken from a sleep mode. This is only called after an call to onSyste-
mEnterSleep has occured. Use this method to turn on any disabled peripheral.

virtual bool mono::power::IPowerSubSystem::IsPowerFenced()
Return the current status of the Power Fence.

The power fence cuts power to specific peripherals. Each peripheral driver should know whether or not it
is behind the fence.

Return true if the power fence is active (power is not present), false if power is ON.

virtual void mono::power::IPowerSubSystem::setPowerFence(bool active)
Turn on/off the power fence.

Some peripherals are behind a power fence, that can cut their power. You can control this power, and
remove their supply upon going to sleep mode, to safe battery.

Parameters

• active: true will cut the power, false will power the peripherals

virtual ChargeState mono::power::IPowerSubSystem::ChargeStatus()
Get the current charge status for the attached battery.

The Subsystem implememtation might be able to monitor the current charging state of the battery. If no
battery exists the state will be SUSPENDED. If the implementation does not support charge states this
method will always return UNKNOWN.

The different states is explained by the ChargeState enum.

Return The current charge state integer

See ChargeState

virtual bool mono::power::IPowerSubSystem::IsUSBCharging()
Get the USB charging state (True if charging now)

This methods default implementation uses the ChargeStatus method to check the CHARGE_* enum and
true if it is not SUSPENDED or UNKNOWN.

146 Chapter 2. Content

Mono Developer Documentation Documentation, Release alpha

PowerSubsystem subclasses might override this method do their own checks.

virtual bool mono::power::IPowerSubSystem::IsPowerOk()
= 0Return true is the battery voltage is OK, false is empty.

This method query the system power state, to see if the battery is OK. In case this return , the system
should enter low-power sleep immediately!

Public Members

mbed::FunctionPointer mono::power::IPowerSubSystem::BatteryLowHandler
Function handler that must be called when the PowerSystem detect low battery

mbed::FunctionPointer mono::power::IPowerSubSystem::BatteryEmptyHandler
Function handler that must be called when battery is empty

2.7.7 mbed API

If you need to interact with the GPIO, Hardware interrupts, SPI, I2C, etc. you should use the mbed layer in the SDK.
Take a look at the documentation for mbed:

mbed documentation

2.8 Implementation status

As with this site, the software is also being finished right now. The current status page include a list of all the planned
features of the framework - and their implementation status:

• Current Status

2.9 Contribute

The source to this documentation is available publicly on our GitHub. Please just fork it, correct all our bad engrish -
and submit a pull request. We would just loooove that!

You can contribute to this documentation through the GitHub repository. Note that everything you contribute will be
free for anyone to use because it falls under the site license.

2.10 What is Mono anyway?

Haven’t you heard the word? Mono is an embedded hardware platform that brings all the goods from Arduino and
mbed to a whole new level! No fiddling with voltage levels, open-drain vs pull-up configurations. We take care of all
this low-level stuff for you. You just focus on building your application, taking advantage of all the build-in hardware
functionalities - like:

• Arm Cortex-M3 MCU

• Touch display

• Battery

2.8. Implementation status 147

https://developer.mbed.org/handbook/Homepage
https://github.com/getopenmono/monodocs
http://www.arduino.cc
http://developer.mbed.org

Mono Developer Documentation Documentation, Release alpha

• Wifi

• Bluetooth

• Accelerometer

• Temperature Sensor

• SD Card

• General Purpose 3.5mm jack connector

On this developer documentation site, you learn how to use all these features through our high-level API.

148 Chapter 2. Content

Index

A
AppRunLoop::addDynamicTask (C++ function), 89
AppRunLoop::CheckUsbDtr (C++ function), 89
AppRunLoop::checkUsbUartState (C++ function), 91
AppRunLoop::exec (C++ function), 89
AppRunLoop::process (C++ function), 91
AppRunLoop::processDynamicTaskQueue (C++ func-

tion), 91
AppRunLoop::quit (C++ function), 90
AppRunLoop::removeDynamicTask (C++ function), 89
AppRunLoop::removeTaskInQueue (C++ function), 91
AppRunLoop::setResetOnUserButton (C++ function), 90

B
BackgroundView::BackgroundView (C++ function), 121
BackgroundView::Color (C++ function), 122
BackgroundView::repaint (C++ function), 122
BackgroundView::setBackgroundColor (C++ function),

122
ButtonView::ButtonView (C++ function), 115, 116
ButtonView::initButton (C++ function), 117
ButtonView::repaint (C++ function), 117
ButtonView::setBackground (C++ function), 116
ButtonView::setBorder (C++ function), 116
ButtonView::setFont (C++ function), 116
ButtonView::setHighlight (C++ function), 116
ButtonView::setText (C++ function), 116
ButtonView::TextLabel (C++ function), 117
ButtonView::TouchBegin (C++ function), 117

C
Circle::Circle (C++ function), 139
Circle::Radius (C++ function), 139
Color::blendAdditive (C++ function), 129
Color::blendMultiply (C++ function), 129
Color::Blue (C++ function), 129
Color::BytePointer (C++ function), 129
Color::Color (C++ function), 129
Color::Green (C++ function), 129

Color::invert (C++ function), 129
Color::operator= (C++ function), 130
Color::Red (C++ function), 129
Color::scale (C++ function), 129
Color::toString (C++ function), 129

D
DateTime::addDays (C++ function), 93
DateTime::addHours (C++ function), 93
DateTime::addMinutes (C++ function), 93
DateTime::addSeconds (C++ function), 92
DateTime::DateTime (C++ function), 92
DateTime::fromISO8601 (C++ function), 93
DateTime::incrementSystemClock (C++ function), 94
DateTime::isLeapYear (C++ function), 93
DateTime::isValid (C++ function), 92
DateTime::LocalTimeZoneHourOffset (C++ member),

94
DateTime::now (C++ function), 94
DateTime::setSystemDateTime (C++ function), 94
DateTime::toDateString (C++ function), 92
DateTime::toISO8601 (C++ function), 92
DateTime::toString (C++ function), 92
DateTime::toTimeString (C++ function), 92
DateTime::toUtcTime (C++ function), 92
DisplayPainter::BackgroundColor (C++ function), 131
DisplayPainter::CanvasHeight (C++ function), 131
DisplayPainter::CanvasWidth (C++ function), 131
DisplayPainter::DisplayController (C++ function), 131
DisplayPainter::DisplayPainter (C++ function), 130
DisplayPainter::drawChar (C++ function), 133
DisplayPainter::drawCircle (C++ function), 134
DisplayPainter::drawFillRect (C++ function), 132
DisplayPainter::drawHLine (C++ function), 134
DisplayPainter::drawLine (C++ function), 132
DisplayPainter::drawPixel (C++ function), 132
DisplayPainter::drawRect (C++ function), 133
DisplayPainter::drawVLine (C++ function), 134
DisplayPainter::ForegroundColor (C++ function), 131

149

Mono Developer Documentation Documentation, Release alpha

DisplayPainter::IsAntialiasedDrawing (C++ function),
131

DisplayPainter::LineWidth (C++ function), 131
DisplayPainter::setBackgroundColor (C++ function), 131
DisplayPainter::setForegroundColor (C++ function), 130
DisplayPainter::swap (C++ function), 134
DisplayPainter::useAntialiasedDrawing (C++ function),

131

G
GraphView::GraphView (C++ function), 124, 125
GraphView::repaint (C++ function), 125

I
IApplicationContext::Instance (C++ member), 98
ImageView::Crop (C++ function), 127
ImageView::ImageView (C++ function), 127
ImageView::repaint (C++ function), 127
ImageView::setCrop (C++ function), 127
ImageView::setImage (C++ function), 127
IPowerManagement::__shouldWakeUp (C++ member),

145

M
mono::AppRunLoop (C++ class), 89
mono::AppRunLoop::DynamicTaskQueueTime (C++

member), 90
mono::AppRunLoop::lastDtrValue (C++ member), 91
mono::AppRunLoop::resetOnDTR (C++ member), 90
mono::AppRunLoop::resetOnUserButton (C++ member),

91
mono::AppRunLoop::runLoopActive (C++ member), 91
mono::AppRunLoop::taskQueueHead (C++ member), 91
mono::AppRunLoop::TouchSystemTime (C++ member),

90
mono::DateTime (C++ class), 91
mono::DateTime::LOCAL_TIME_ZONE (C++ class),

91
mono::DateTime::maxValue (C++ function), 93
mono::DateTime::minValue (C++ function), 93
mono::DateTime::TimeTypes (C++ type), 91
mono::DateTime::UNKNOWN_TIME_ZONE (C++

class), 92
mono::DateTime::UTC_TIME_ZONE (C++ class), 91
mono::display::Color (C++ class), 129
mono::display::DisplayPainter (C++ class), 130
mono::display::DisplayPainter::displayRefreshHandler

(C++ member), 134
mono::display::IDisplayController (C++ class), 135
mono::display::IDisplayController::Brightness (C++

function), 136
mono::display::IDisplayController::IDisplayController

(C++ function), 135

mono::display::IDisplayController::init (C++ function),
135

mono::display::IDisplayController::LastTearningEffectTime
(C++ member), 137

mono::display::IDisplayController::setBrightness (C++
function), 136

mono::display::IDisplayController::setBrightnessPercent
(C++ function), 136

mono::display::IDisplayController::setCursor (C++ func-
tion), 136

mono::display::IDisplayController::setRefreshHandler
(C++ function), 135

mono::display::IDisplayController::setWindow (C++
function), 135

mono::display::IDisplayController::write (C++ function),
136

mono::display::TextRender (C++ class), 137
mono::display::TextRender::Background (C++ function),

138
mono::display::TextRender::Foreground (C++ function),

138
mono::GenericQueue (C++ class), 94
mono::geo::Circle (C++ class), 139
mono::geo::Point (C++ class), 139
mono::geo::Rect (C++ class), 139
mono::geo::Size (C++ class), 140
mono::IApplication (C++ class), 94
mono::IApplication::enterRunLoop (C++ function), 95
mono::IApplication::IApplication (C++ function), 95
mono::IApplication::monoWakeFromReset (C++ func-

tion), 95
mono::IApplication::monoWakeFromSleep (C++ func-

tion), 95
mono::IApplication::monoWillGotoSleep (C++ func-

tion), 95
mono::IApplicationContext (C++ class), 96
mono::IApplicationContext::_softwareReset (C++ func-

tion), 98
mono::IApplicationContext::_softwareResetToApplication

(C++ function), 98
mono::IApplicationContext::_softwareResetToBootloader

(C++ function), 98
mono::IApplicationContext::Accelerometer (C++ mem-

ber), 97
mono::IApplicationContext::Buzzer (C++ member), 97
mono::IApplicationContext::DisplayController (C++

member), 96
mono::IApplicationContext::EnterSleepMode (C++ func-

tion), 97
mono::IApplicationContext::enterSleepMode (C++ func-

tion), 98
mono::IApplicationContext::exec (C++ function), 96
mono::IApplicationContext::IApplicationContext (C++

function), 99

150 Index

Mono Developer Documentation Documentation, Release alpha

mono::IApplicationContext::PowerManager (C++ mem-
ber), 96

mono::IApplicationContext::ResetOnUserButton (C++
function), 97

mono::IApplicationContext::resetOnUserButton (C++
function), 98

mono::IApplicationContext::RTC (C++ member), 97
mono::IApplicationContext::RunLoop (C++ member), 96
mono::IApplicationContext::setMonoApplication (C++

function), 96
mono::IApplicationContext::SleepForMs (C++ function),

98
mono::IApplicationContext::sleepForMs (C++ function),

98
mono::IApplicationContext::SoftwareReset (C++ func-

tion), 98
mono::IApplicationContext::SoftwareResetToApplication

(C++ function), 98
mono::IApplicationContext::SoftwareResetToBootloader

(C++ function), 98
mono::IApplicationContext::Temperature (C++ mem-

ber), 97
mono::IApplicationContext::TouchSystem (C++ mem-

ber), 96
mono::IApplicationContext::UserButton (C++ member),

96
mono::IRunLoopTask (C++ class), 99
mono::IRunLoopTask::nextTask (C++ member), 99
mono::IRunLoopTask::previousTask (C++ member), 99
mono::IRunLoopTask::singleShot (C++ member), 99
mono::IRunLoopTask::taskHandler (C++ function), 99
mono::ITouchSystem (C++ class), 99
mono::ITouchSystem::init (C++ function), 99
mono::ITouchSystem::processTouchInput (C++ func-

tion), 100
mono::ITouchSystem::runTouchBegin (C++ function),

100
mono::ITouchSystem::runTouchEnd (C++ function), 100
mono::ITouchSystem::runTouchMove (C++ function),

100
mono::ManagedPointer (C++ class), 100
mono::ManagedPointer::ManagedPointer (C++ func-

tion), 100
mono::ManagedPointer::Surrender (C++ function), 100
mono::power::IPowerManagement (C++ class), 143
mono::power::IPowerManagement::AppendToPowerAwareQueue

(C++ function), 144
mono::power::IPowerManagement::EnterSleep (C++

function), 144
mono::power::IPowerManagement::powerAwarenessQueue

(C++ member), 145
mono::power::IPowerManagement::PowerSystem (C++

member), 144

mono::power::IPowerManagement::processResetAwarenessQueue
(C++ function), 145

mono::power::IPowerManagement::RemoveFromPowerAwareQueue
(C++ function), 144

mono::power::IPowerSubSystem (C++ class), 145
mono::power::IPowerSubSystem::BatteryEmptyHandler

(C++ member), 147
mono::power::IPowerSubSystem::BatteryLowHandler

(C++ member), 147
mono::power::IPowerSubSystem::CHARGE_ENDED

(C++ class), 146
mono::power::IPowerSubSystem::CHARGE_FAST

(C++ class), 146
mono::power::IPowerSubSystem::CHARGE_PRECONDITION

(C++ class), 145
mono::power::IPowerSubSystem::CHARGE_SLOW

(C++ class), 146
mono::power::IPowerSubSystem::CHARGE_SUSPENDED

(C++ class), 146
mono::power::IPowerSubSystem::ChargeState (C++

type), 145
mono::power::IPowerSubSystem::ChargeStatus (C++

function), 146
mono::power::IPowerSubSystem::IsPowerFenced (C++

function), 146
mono::power::IPowerSubSystem::IsPowerOk (C++ func-

tion), 147
mono::power::IPowerSubSystem::IsUSBCharging (C++

function), 146
mono::power::IPowerSubSystem::onSystemEnterSleep

(C++ function), 146
mono::power::IPowerSubSystem::onSystemPowerOnReset

(C++ function), 146
mono::power::IPowerSubSystem::onSystemWakeFromSleep

(C++ function), 146
mono::power::IPowerSubSystem::setPowerFence (C++

function), 146
mono::power::IPowerSubSystem::UNKNOWN (C++

class), 145
mono::Queue (C++ class), 101
mono::QueueInterrupt (C++ class), 102
mono::QueueInterrupt::fall (C++ function), 103
mono::QueueInterrupt::rise (C++ function), 102
mono::Regex (C++ class), 104
mono::Regex::Capture (C++ type), 104
mono::sensor::IAccelerometer (C++ class), 141
mono::sensor::IAccelerometer::IsActive (C++ function),

141
mono::sensor::IAccelerometer::rawXAxis (C++ func-

tion), 141
mono::sensor::IAccelerometer::rawYAxis (C++ func-

tion), 141
mono::sensor::IAccelerometer::rawZAxis (C++ func-

tion), 141

Index 151

Mono Developer Documentation Documentation, Release alpha

mono::sensor::IAccelerometer::Start (C++ function), 141
mono::sensor::IAccelerometer::Stop (C++ function), 141
mono::sensor::IBuzzer (C++ class), 141
mono::sensor::IBuzzer::buzzAsync (C++ function), 142
mono::sensor::IBuzzer::buzzKill (C++ function), 142
mono::sensor::ITemperature (C++ class), 143
mono::sensor::ITemperature::Read (C++ function), 143
mono::sensor::ITemperature::ReadMilliCelcius (C++

function), 143
mono::String (C++ class), 105
mono::Timer (C++ class), 105
mono::Timer::callOnce (C++ function), 107
mono::Timer::setCallback (C++ function), 106
mono::TouchEvent (C++ class), 107
mono::TouchEvent::TouchBeginEvent (C++ member),

107
mono::TouchResponder (C++ class), 108
mono::ui::BackgroundView (C++ class), 121
mono::ui::ButtonView (C++ class), 115
mono::ui::ButtonView::setClickCallback (C++ function),

117
mono::ui::ConsoleView (C++ class), 122
mono::ui::ConsoleView::consoleLines (C++ function),

123
mono::ui::ConsoleView::ConsoleView (C++ function),

122
mono::ui::ConsoleView::lineLength (C++ function), 123
mono::ui::ConsoleView::repaint (C++ function), 122
mono::ui::ConsoleView::scrolls (C++ member), 123
mono::ui::ConsoleView::setCursor (C++ function), 123
mono::ui::ConsoleView::textBuffer (C++ member), 123
mono::ui::ConsoleView::WriteLine (C++ function), 122
mono::ui::GraphView (C++ class), 123
mono::ui::IGraphViewDataSource (C++ class), 125
mono::ui::IGraphViewDataSource::BufferLenght (C++

function), 126
mono::ui::IGraphViewDataSource::DataPoint (C++ func-

tion), 126
mono::ui::IGraphViewDataSource::MaxSampleValueSpan

(C++ function), 126
mono::ui::IGraphViewDataSource::NewestSampleIndex

(C++ function), 126
mono::ui::ImageView (C++ class), 126
mono::ui::ImageView::crop (C++ member), 128
mono::ui::ImageView::image (C++ member), 128
mono::ui::ProgressBarView (C++ class), 118
mono::ui::ResponderView (C++ class), 128
mono::ui::StatusIndicatorView (C++ class), 119
mono::ui::TextLabelView (C++ class), 112
mono::ui::TextLabelView::ALIGN_CENTER (C++

class), 113
mono::ui::TextLabelView::ALIGN_LEFT (C++ class),

113

mono::ui::TextLabelView::ALIGN_RIGHT (C++ class),
113

mono::ui::TextLabelView::StandardTextFont (C++ mem-
ber), 115

mono::ui::TextLabelView::TextAlignment (C++ type),
113

mono::ui::TextLabelView::TextLabelView (C++ func-
tion), 113

mono::ui::View (C++ class), 108
mono::ui::View::isDirty (C++ member), 111
mono::ui::View::LANDSCAPE_LEFT (C++ class), 109
mono::ui::View::LANDSCAPE_RIGHT (C++ class), 109
mono::ui::View::Orientation (C++ type), 109
mono::ui::View::PORTRAIT (C++ class), 109
mono::ui::View::PORTRAIT_BOTTOMUP (C++ class),

109
mono::ui::View::repaint (C++ function), 111
mono::ui::View::viewRect (C++ member), 111
mono::ui::View::visible (C++ member), 111
MonoFont (C++ class), 138
MonoFont::baselineOffset (C++ member), 139
MonoFont::bitmap (C++ member), 138
MonoFont::bitmapHeight (C++ member), 138
MonoFont::bitmapWidth (C++ member), 138
MonoFont::bitrate (C++ member), 139
MonoFont::characterOffset (C++ member), 139
MonoFont::fontName (C++ member), 138
MonoFont::glyphHeight (C++ member), 138
MonoFont::glyphWidth (C++ member), 138

P
ProgressBarView::init (C++ function), 119
ProgressBarView::Maximum (C++ function), 119
ProgressBarView::Minimum (C++ function), 119
ProgressBarView::ProgressBarView (C++ function), 118
ProgressBarView::repaint (C++ function), 119
ProgressBarView::setMaximum (C++ function), 119
ProgressBarView::setMinimum (C++ function), 119
ProgressBarView::setValue (C++ function), 118

Q
Queue::Dequeue (C++ function), 101
Queue::Enqueue (C++ function), 101
Queue::Exists (C++ function), 101
Queue::Next (C++ function), 101
Queue::Peek (C++ function), 101
QueueInterrupt::DeactivateUntilHandled (C++ function),

102
QueueInterrupt::FallTimeStamp (C++ function), 103
QueueInterrupt::IsInterruptsWhilePendingActive (C++

function), 102
QueueInterrupt::QueueInterrupt (C++ function), 102
QueueInterrupt::RiseTimeStamp (C++ function), 103

152 Index

Mono Developer Documentation Documentation, Release alpha

QueueInterrupt::setDebounceTimeout (C++ function),
102

QueueInterrupt::setDebouncing (C++ function), 102
QueueInterrupt::setInterruptsSleep (C++ function), 103
QueueInterrupt::Snapshot (C++ function), 103
QueueInterrupt::taskHandler (C++ function), 104
QueueInterrupt::willInterruptSleep (C++ function), 103

R
Rect::Center (C++ function), 140
Rect::contains (C++ function), 140
Rect::crop (C++ function), 140
Rect::LowerLeft (C++ function), 140
Rect::LowerRight (C++ function), 140
Rect::Rect (C++ function), 139
Rect::setPoint (C++ function), 140
Rect::setSize (C++ function), 140
Rect::ToString (C++ function), 140
Rect::UpperLeft (C++ function), 139
Rect::UpperRight (C++ function), 140
Regex::IsMatch (C++ function), 104
Regex::Match (C++ function), 104
Regex::Regex (C++ function), 104
Regex::Value (C++ function), 105
ResponderView::hide (C++ function), 128
ResponderView::RespondTouchBegin (C++ function),

128
ResponderView::RespondTouchEnd (C++ function), 128
ResponderView::RespondTouchMove (C++ function),

128
ResponderView::show (C++ function), 128

S
Size::Size (C++ function), 140
StatusIndicatorView::initializer (C++ function), 121
StatusIndicatorView::repaint (C++ function), 121
StatusIndicatorView::setOffStateColor (C++ function),

120
StatusIndicatorView::setOnStateColor (C++ function),

120
StatusIndicatorView::setState (C++ function), 121
StatusIndicatorView::State (C++ function), 121
StatusIndicatorView::StatusIndicatorView (C++ func-

tion), 120

T
TextLabelView::repaint (C++ function), 115
TextLabelView::scheduleRepaint (C++ function), 114
TextLabelView::setAlignment (C++ function), 114
TextLabelView::setBackground (C++ function), 114
TextLabelView::setBackgroundColor (C++ function),

114
TextLabelView::setFont (C++ function), 114
TextLabelView::setText (C++ function), 114

TextLabelView::setTextColor (C++ function), 114
TextLabelView::setTextSize (C++ function), 114
TextLabelView::TextLabelView (C++ function), 113, 114
TextLabelView::TextSize (C++ function), 114
TextRender::drawChar (C++ function), 138
TextRender::drawInRect (C++ function), 137
TextRender::renderDimension (C++ function), 138
TextRender::setBackground (C++ function), 138
TextRender::setForeground (C++ function), 138
TextRender::TextRender (C++ function), 137
TextRender::writePixel (C++ function), 138
Timer::Running (C++ function), 106
Timer::setInterval (C++ function), 106
Timer::SingleShot (C++ function), 106
Timer::Start (C++ function), 106
Timer::Stop (C++ function), 106
Timer::taskHandler (C++ function), 107
Timer::Timer (C++ function), 106
TouchResponder::Activate (C++ function), 108
TouchResponder::Deactivate (C++ function), 108
TouchResponder::TouchResponder (C++ function), 108

V
View::callRepaintScheduledViews (C++ function), 111
View::dirtyQueue (C++ member), 112
View::DisplayHeight (C++ function), 111
View::DisplayOrientation (C++ function), 111
View::DisplayWidth (C++ function), 111
View::hide (C++ function), 110
View::painter (C++ member), 112
View::Position (C++ function), 109
View::repaintScheduledViews (C++ function), 112
View::RepaintScheduledViewsTime (C++ member), 111
View::scheduleRepaint (C++ function), 110
View::setPosition (C++ function), 109
View::setRect (C++ function), 109
View::setSize (C++ function), 109
View::show (C++ function), 110
View::Size (C++ function), 110
View::View (C++ function), 109
View::ViewRect (C++ function), 110
View::Visible (C++ function), 110

Index 153

	What to find here?
	Content

