

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Monkeysign ??? documentation

Monkeysign: OpenPGP Key Exchange for Humans

Monkeysign is a tool to overhaul the OpenPGP keysigning experience and
bring it closer to something that most primates can understand.

The project makes use of cheap digital cameras and the type of bar code
known as a QRcode to provide a human-friendly yet still-secure
keysigning experience.

No more reciting tedious strings of hexadecimal characters. And, you can
build a little rogue’s gallery of the people that you have met and
exchanged keys with! (Well, not yet, but it’s part of the plan.)

Monkeysign also features a user-friendly commandline tool, similar to
caff, to sign OpenPGP keys following the current best practices.

Monkeysign was written by Jerome Charaoui and Antoine Beaupre and is
licensed under GPLv3.

Features

	commandline and GUI interface

	GUI supports exchanging fingerprints with qrcodes

	print your OpenPGP fingerprint on a QRcode

	key signature done on a separate keyring

	signature sent in an encrypted email to ensure:

	the signee controls the signed email

	the signee controls the private key

	the signee decides what to do with the signature

	local (“non-exportable”) signatures

	send through local email server, arbitrary SMTP server or other
programs

For usage instructions, see Usage section, for install
instructions, see Install section and for support, see the
Contribute section.

Similar projects

	OpenKeychain [https://www.openkeychain.org/], a fork of
APG [http://www.thialfihar.org/projects/apg/], has support for
exporting and importing fingerprints in QRcode and NFC. It uses
similar strings for QRcodes exchanges and is compatible with
Monkeysign. (Github
project [https://github.com/open-keychain/open-keychain])

	GPG for Android [https://guardianproject.info/code/gnupg/] (of
the Guardian project [https://guardianproject.info/]) will import
public keys in your device’s keyring when they are found in QRcodes,
so it should be able to talk with Monkeysign, but this remains to be
tested. (Github
project [https://github.com/guardianproject/gnupg-for-android])

	Gibberbot [https://guardianproject.info/apps/gibber/] (also of
the Guardian project [https://guardianproject.info/]) can
exchange OTR fingerprints using QRcodes. (Github
project [https://github.com/guardianproject/Gibberbot])

	Install
	Using packages

	Using PIP

	From source

	Usage
	Monkeysign

	Monkeyscan

	Sending signed key material

	Configuration files

	Support
	Troubleshooting

	Mailing list

	Chat

	Bug reports

	Contribute
	Code of conduct

	Support schedule

	Documentation

	Translation

	Bug reports

	Patches

	Unit tests

	Debian packaging

	Release process

	History
	Detailed changelog

	API documentation
	GnuPG API

	CLI Interface

	GTK Interface

	UI mockups and design
	Signing interface

	Key sharing interface

	Terminology

	Credits

	Index

	Module Index

	Search Page

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monkeysign ??? documentation

Install

Monkeysign can be installed in various ways, depending on which
platform you are using. You can install Monkeysign:

	Using packages, recommended if you are running a distribution
that has native packages for Monkeysign

	Using PIP, recommended if you are on another distribution
that doesn’t have native packages of Monkeysign or you want to run
the latest version without upgrading the whole operating system

	From source, if the above doesn’t work, if you need to
test unreleased code, or if you want to contribute to Monkeysign

Using packages

Some distributions offer ready-to-use packages for Monkeysign which
can be easily installed with a package manager. Below is a table of
distributions that have packages for Monkeysign.

Important

Those packages may not be up to date with the latest
releases. Before submitting a bug report, check the
package version and compare that to our latest release
then review the changelog [https://0xacab.org/monkeysphere/monkeysign/blob/HEAD/debian/changelog]
to see if the bug has been fixed. Report bugs to the
package maintainer rather than directly to Monkeysign
if the package is out of date in the distribution.

Also consider that the packages below (apart from the
Debian packages) have not been reviewed by the
Monkeysign team.

	Distribution
	Source
	Command

	Arch Linux
	AUR [https://aur.archlinux.org/packages/monkeysign/] [1]
	pacman -S monkeysign

	Debian
	jessie [https://packages.debian.org/jessie/monkeysign], stretch [https://packages.debian.org/stretch/monkeysign], sid [https://packages.debian.org/sid/monkeysign], ... [2]
	apt-get install monkeysign

	Gentoo
	ebuild [https://packages.gentoo.org/packages/app-crypt/monkeysign]
	emerge monkeysign

	openSUSE
	openSUSE official repository [http://software.opensuse.org/package/python-monkeysign]
	zypper in python-monkeysign

	Raspbian
	Raspbian pool [http://archive.raspbian.org/raspbian/pool/main/m/monkeysign/]
	apt-get install monkeysign

	Ubuntu
	14.04 [https://launchpad.net/ubuntu/trusty/+source/monkeysign], 15.04 [https://launchpad.net/ubuntu/vivid/+source/monkeysign], 15.10 [https://launchpad.net/ubuntu/wily/+source/monkeysign], 16.04 [https://launchpad.net/ubuntu/xenial/+source/monkeysign], ...
	apt-get install monkeysign

	[1]	The AUR package ships with patches that have not been reviewed
by the Monkeysign team.

	[2]	Monkeysign has been in Debian since Debian 6
(squeeze-backports-sloppy) and is maintained there as a
native package.

Tip

Please ask package maintainers to build a package for your
platform if it is missing above or, if you can package /
submit it yourself, please help us with that! If you package
Monkeysign, please let us know by filing an issue [https://0xacab.org/monkeysphere/monkeysign/issues/new]
detailing the distribution name, a link to the package and a
command to install it.

Using PIP

You can install Monkeysign with PIP, with the following command:

pip install monkeysign

Important

Note that 2.1.0 is the first release of Monkeysign
published this way. It has not received as much testing
as the other methods.

From source

Installing Monkeysign from source is harder, and shouldn’t generally
be necessary. You may be asked, however, to do that in order to test
if your bug is still present in the current release.

Requirements

The following Python packages are required for the GUI to work:

python-qrencode python-gtk2 python-zbar python-zbarpygtk

If they are not available, the commandline signing tool should still
work but doesn’t recognize QR codes.

Monkeysign requires a working GnuPG installation.

Downloading

You can fetch Monkeysign with git:

git clone https://0xacab.org/monkeysphere/monkeysign.git

Tarballs are also automatically generated on the 0xACAB site for the
main branch [https://0xacab.org/monkeysphere/monkeysign/repository/archive.tar.gz?ref=HEAD]
or you can download tarballs for every past release [https://0xacab.org/monkeysphere/monkeysign/tags] as well.

You can also find a source tarball from the Debian mirrors here:

http://cdn.debian.net/debian/pool/main/m/monkeysign/

The .tar.gz file has a checksum, cryptographically signed, in the
.dsc file.

Installing

To install monkeysign from source, run:

sudo ./setup.py install --record=install.log

Running

It is also be possible to run Monkeysign without installing it,
directly from the source tree, with:

./scripts/monkeysign

and:

./scripts/monkeyscan

See the Usage section for more information on how to use Monkeysign.

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monkeysign ??? documentation

Usage

Monkeysign comes in two different interfaces: a commandline interface
named monkeysign and a graphical interface named monkeyscan.

Monkeysign creates a temporary keyring to sign keys, and then
encrypts and sends the signature by email to the owner of the key.
This makes possible to verify that the holder of the private key (used to
decrypt the signature) has also access to the mailbox mentioned in the key.

Note

Make sure you have your email credentials in hand and read
the Sending signed key material section before starting, as
Monkeysign may not know, by default, how to send email.

Tip

If you have problems using Monkeysign, please do report
issues and bugs about it, it’s a great way of contributing!
We also welcome documentation, translation and patches, see
Contribute for more information.

Monkeysign

The commandline interface should provide you with a complete help file
when called with --help:

monkeysign --help

For example, to sign the Monkeysign test key:

monkeysign 3F94 240C 918E 6359 0B04 152E 86E4 E70A 96F4 7C6A

This will fetch the key from your keyring (or a keyserver) and sign it
in a temporary keyring, then encrypt the signature and send it in an
email to the owner of the key. Emails can be sent in different ways,
documented in Sending signed key material.

If the wrong secret key is chosen to sign the key, you can override it
with the --user option.

Caution

It is important to use Monkeysign with the fingerprint,
and not with the key id, specially when using it
through the Tor network, as a key id can be duplicated
easily, unlike fingerprints.

Monkeyscan

The graphical interface (GUI) should be self-explanatory, it should
be in your regular application menus, or you can call start it form
the commandline with:

monkeyscan

The GUI will show you a bar code representing the fingerprint
of what Monkeysign thinks is your primary key. You can change that in
the Identity menu, or by customizing the default-key parameter
in your gpg.conf file.

On the left side, you should see the output of your camera. You can
change cameras (if you have more than one) in the Video device menu,
where you can also turn off the camera altogether.

To exchange fingerprints, you should point the camera at another
user’s bar code. Monkeysign will detect that user’s key fingerprint,
fetch the key over the network from keyservers, then ask you for
confirmation before signing and sending the email, just like the
command line interface. See Sending signed key material for more information
about how email is sent in Monkeysign in general.

There is a very crude preferences window available in the Edit
menu. There is work underway to improve it (see 0xACAB issue #41 [https://0xacab.org/monkeysphere/monkeysign/issues/41]), but it
should allow you to create a configuration file with your personal
settings. See Configuration files for more information about
this as well.

Sending signed key material

Monkeysign will attempt to send the signed key by email, unless the
--no-mail argument is specified. In this case, the encrypted key
material is shown on the terminal and can then be copy-pasted in the
medium of your choice. This is useful, for example, if you use a
web email client like Roundcube, Google Mail or similar.

Monkeysign supports many ways of sending emails:

	Using the system email software (MTA) (e.g. sendmail or Postfix)

	Using your normal email client (MUA) (e.g. Thunderbird or Mutt)

	Using SMTP (e.g. connecting directly to your provider)

Also note that the --tor option affects how email will be sent,
but only when using the SMTP method, as Monkeysign has no way to
handle how your MUA or MTA will talk to the network.

Using the system email software (MTA)

Monkeysign, by default, assumes you have a local MTA installed
as sendmail. If it is not, you can specify the path to a
sendmail compatible program with the --mta option. Such a
program should accept the complete message on standard input, and the
recipient is passed on the commandline in place of the %(to)s
argument.

Note that it is uncommon for workstations and laptops to have a
working MTA installed: this is more commonly done on servers,
and unless you know what you are doing, you are more likely to want to
talk to your existing email client, your MUA.

Using your normal email client (MUA)

Therefore, to properly send email on your workstation, you may need to
tell Monkeysign how to use your regular email client, your
MUA. For this, you can use the --mua option.

By default, Monkeysign will try to figure out your default email
client when you use the --mua flag is used without argument. This
will in turn call the xdg-email command which automatically uses
your configured email client correctly:

monkeysign --mua [...]

Your default mail client can be modified in your desktop environment
control panel, or with the xdg-mime command, for example this will
set Thunderbird as your default email client:

xdg-mime default thunderbird.desktop x-scheme-handler/mailto

You can also specify your own email client on the fly. Here are few
examples of known working configurations.

	Thunderbird:

monkeysign --mua "thunderbird -compose to=%(to)s,subject=%(subject)s,body=%(body)s,attachment=%(attach)s" [...]

	Mutt:

monkeysign --mua "mutt -a %(attach)s -s %(subject)s -i %(body)s %(to)s" [...]

Finally, note that you need to confirm when you are finished writing
the actual email. This is because we cannot tell when the email is
sent, because a lot of software (especially Thunderbird) return before
the email is sent, see Debian BTS #677430 [https://bugs.debian.org/677430] for more information about this
issue.

Note

Essentially, the difference between --mta and --mua
is that the complete message is piped through the
MTA command whereas it is passed as an argument on
the commandline for MUA commands. Also, the
--mta command expands only the %(to)s parameter,
whereas the --mua command expands %(attach)s,
%(subject)s, %(body)s and %(to)s.

Note that when a --mua is used, only the key material is
encrypted: the body of the email is sent in the clear. This
is because Monkeysign cannot control how the attachment
layout in the MUA in a standard way.

Furthermore, it may be more difficult for the end-user to
import the key when it was sent with a MUA, as the
recipient’s own MUA may not know how to both decrypt
and import the key at the same time. The MTA
method doesn’t have this problem because of MIME
encapsulation. See also 0xACAB issue #7 [https://0xacab.org/monkeysphere/monkeysign/issues/7] for a broader technical
discussion about the --mua implementation.

Using SMTP

Note that you can also send email using your provider’s SMTP server
directly, turning Monkeysign into a MUA itself. For example:

monkeysign --smtp=mail.example.com:587 --smtpuser=john [fingerprint of OpenPGP key to sign]

In the above, Monkeysign will attempt to connect to the
mail.example.com SMTP server over the submission port (587),
attempt to upgrade the connection securely (using STARTTLS) and
use the john username. Password will be prompted securely.

Tip

To use a raw TLS connection, you can also use the
--tls flag.

Tip

You can also try to deliver email over Tor [https://www.torproject.org/] network with the --tor
option. Be be aware that a lot of email providers block Tor
exit nodes for spam control. You may need to use your
provider’s hidden service to workaround those issues. Ask
your email provider for Tor support if you have problems with
the SMTP method.

Configuration files

Monkeysign will read /etc/monkeysign.conf and
~/.config/monkeysign.conf (in that order) for configuration
options. Each option can be specified on its own line. Lines starting
with the pound sign (#) are ignored as comments. A configuration
file can be generated with the --save option, or through the
preferences window in the GUI. Here is a sample configuration file:

use my SMTP server to send email
smtpserver=smtp.example.com:587
this is my username, password is securely prompted interactively
smtpuser=john
be more verbose
verbose

As you can see, flags like --verbose are simply specified on their
own, while options with arguments need to be seperated with an equal
(=) sign.

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monkeysign ??? documentation

Support

If you have problems or question using Monkeysign, there are several
options at your disposal:

	Try to troubleshoot the issue yourself

	Write to the mailing list

	Chat on IRC

	File bug reports

We of course welcome other contributions like documentation,
translations and patches, see the Contribute guide for more
information on how to contribute to the project.

Troubleshooting

The basic way to troubleshoot Monkeysign is to run the same command as
you did when you had an error with the --verbose or, if that
doesn’t yield satisfactory results, with the --debug output.

Note

The debug output outputs a lot of information, as it shows
the OpenPGP key material as it is exchanged with GnuPG. It
may be confusing for new users.

If you suspect there is a bug in Monkeysign specific to your
environment, you can also try to see if it is reproducible within the
test suite with monkeysign --test. From there, you can either file
a bug report or try to fix the issue yourself, see the
Contribute section for more information.

Otherwise, see below for more options to get support.

Mailing list

Anyone can write to the mailing list at
monkeysphere@lists.riseup.net. You can browse the archives [https://lists.riseup.net/www/arc/monkeysphere] before posting to
see if your question has already been answered. Thanks to Riseup.net [https://riseup.net/] for graciously hosting our mailing list.

Tip

We encourage you to donate to Riseup [https://riseup.net/en/donate] to support the Monkeysign
project, as we use several parts of their infrastructure to
develop Monkeysign.

Note that the mailing list is for the larger Monkeysphere project [http://web.monkeysphere.info/] so if you subscribe, you should
expect discussions to go beyond only Monkeysign. Furthermore, when you
write to the mailing list, you should explicitly mention that you are
talking about Monkeysign.

Chat

We are often present in realtime in the #monkeysphere channel of
the OFTC network [https://www.oftc.net/]. You can join the channel
using this link or this web
interface [http://webchat.oftc.net/?nick=monkey.&channels=monkeysphere&prompt=1].

 Contribute

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monkeysign ??? documentation

Contribute

This section explains the various ways users can participate in the
development of Monkeysign, or get support when they find problems.

Code of conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting one of the persons listed below individually. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. Project maintainers are
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Project maintainers are encouraged to follow the spirit of the Django
Code of Conduct Enforcement Manual [https://www.djangoproject.com/conduct/enforcement-manual/] when receiving
reports.

Contacts

The following people have volunteered to be available to respond to
Code of Conduct reports. They have reviewed existing literature and
agree to follow the aforementioned process in good faith. They also
accept OpenPGP-encrypted email:

	Antoine Beaupré <anarcat@debian.org>

	Daniel Kahn Gillmor <dkg@fifthhorseman.net>

Attribution

This Code of Conduct is adapted from the Contributor Covenant [http://contributor-covenant.org], version 1.4,
available at http://contributor-covenant.org/version/1/4.

Changes

The Code of Conduct was modified to refer to project maintainers
instead of project team and small paragraph was added to refer to
the Django enforcement manual.

Note

We have so far determined that writing an explicit
enforcement policy is not necessary, considering the
available literature already available online and the
relatively small size of the Monkeysign community. This may
change in the future if the community grows larger.

This code of conduct was adopted in 2016 by the Monkeysign
maintainers, see 0xACAB issue #54 [https://0xacab.org/monkeysphere/monkeysign/issues/54] for more details about the
discussion.

Support schedule

First, to know a bit more about the version you are using, understand
that we adhere to Semantic Versioning [http://semver.org/], which is:

Given a version number MAJOR.MINOR.PATCH, increment the:

	MAJOR version when you make incompatible API changes,

	MINOR version when you add functionality in a
backwards-compatible manner, and

	PATCH version when you make backwards-compatible bug fixes.

Additional labels for pre-release and build metadata are available
as extensions to the MAJOR.MINOR.PATCH format.

The 2.0.x branch is featured in Debian Jessie and Ubuntu Xenial and is
therefore be maintained for security fixes for the lifetime of those
releases or of any other distribution that picks it up.

Most development and major bug fixes are done directly in the 2.x branch
and published as part of minor releases, which in turn become supported
branches.

Major, API-changing development will happen on the 3.x branch.

Those
milestones [https://0xacab.org/monkeysphere/monkeysign/milestones]
are collaboratively tracked on 0xACAB [https://0xacab.org/monkeysphere/monkeysign/].

Branches status

Each branch may be in one of those states:

	Development: the development branch is where most of the new
features are implemented. Consequently, new features and changes may
inadvertently break things.

	Supported: The branch is supported, but no further development will
be made on the branch. Only critical issues and security fixes are
performed.

	Deprecated: users are strongly encouraged to upgrade to later
versions. No further updates perform except for critical
security issues.

	Abandoned: the branch is completely abandoned. No further updates
will ever be performed on the branch, security or otherwise.

	Branch
	Status
	Notes

	0.x
	Abandoned
	explicitly unsupported.

	1.x
	Deprecated
	supported until the release of Debian jessie, now only in Debian LTS

	2.0.x
	Supported
	supported until the end of Debian jessie

	2.1.x
	Abandoned
	short lived support branch, superseded by 2.2.x

	2.2.x
	Supported
	supported until the end of Debian stretch

	2.x
	Development
	new releases performed here, schedule to be clarified

We try to keep the number of “supported” and “deprecated” branches to
two each, which means it is likely a “deprecated” branch gets
abandoned when a “supported” branch gets “deprecated”.

If you are interested in supporting one of those branches beyond the
current state, we would be glad to welcome you on the
team. Contact us!

See also History for more information on past releases.

Documentation

We love documentation!

We maintain the documentation in the Git repository, in RST [https://en.wikipedia.org/wiki/ReStructuredText]
format. Documentation can be edited directly on the website [https://0xacab.org/monkeysphere/monkeysign/tree/HEAD] and
built locally with Sphinx [http://www.sphinx-doc.org/] with:

cd doc ; make html

The Sphinx project has a good tutorial [http://www.sphinx-doc.org/en/stable/rest.html] on RST online. Documentation
is automatically generated on RTD.io [https://monkeysign.readthedocs.io/].

Translation

Monkeysign is translated using the standard Gettext [https://en.wikipedia.org/wiki/Gettetx] translation
system. Translation files are located in the source tree, in the
po/ subdirectory and can be edited using standard translation
tools [https://www.gnu.org/software/gettext/manual/html_node/Editing.html#Editing]
or even a regular text editor. A new translation for your locale can
be created with the msginit command, see the gettext manual [https://www.gnu.org/software/gettext/manual/] for more information
about how to use gettext directly.

You can also use the Weblate web interface [https://hosted.weblate.org/projects/monkeysphere/monkeysign/] to
translate Monkeysign directly in your browser, without having to
install any special software. New translations from Weblate need to be
updated in our source tree by hand, so do let us know if you make a
new translation, by filing an issue in our online issue tracker [https://0xacab.org/monkeysphere/monkeysign/issues].

Note

We have chosen Weblate [http://weblate.org/] instead of
other solutions because it integrates well with our
git-based workflow: translations on the site are stored as
commits in the git repository, and the server is just
another remote that we can merge directly. It also merges
our changes automatically and so requires minimal work on
our part. We have also considered tools like Transifex [https://en.wikipedia.org/wiki/Transifex] (proprietary)
and Pootle [https://en.wikipedia.org/wiki/Pootle] (no
public instance, requires us to run our own).

Tip

We encourage our users and developers to support Weblate’s
development [https://weblate.org/en/donate/]. Thank you to
Weblate’s people for hosting our project for free!.

Bug reports

We want you to report bugs you find in Monkeysign. It’s an important
part of contributing to a project, and all bug reports will be read and
replied to politely and professionally. See the Support section
for more information about troubleshooting and bug reporting.

Bug triage

Bug triage is a very useful contribution as well. You can review the
issues on 0xACAB [https://0xacab.org/monkeysphere/monkeysign/issues]
or in the Debian BTS for Monkeysign [http://bugs.debian.org/monkeysign]. What needs to be done
is, for every issue:

	try to reproduce the bug, if it is not reproducible, tag it with
unreproducible

	if information is missing, tag it with moreinfo

	if a patch is provided, tag it with patch and test it

	if the patch is incomplete, tag it with help (this is often the
case when unit tests are missing)

	if the patch is not working, remove the patch tag

	if the patch gets merged into the git repository, tag it with
pending

	if the feature request is not within the scope of the project or
should be refused for other reasons, use the wontfix tag and
close the bug (with the close command or by CC’ing
NNNN-done@bugs.debian.org)

	feature requests should have a wishlist severity

Those directives apply mostly to the Debian BTS, but some tags are also
useful in the 0xACAB site. See also the more complete directives on how
to use the Debian BTS [https://www.debian.org/Bugs/Developer].

Patches

Patches can be submitted through merge requests [https://0xacab.org/monkeysphere/monkeysign/merge_requests] on the Gitlab
site [https://0xacab.org/monkeysphere/monkeysign/]. You will need to contact the 0xACAB staff [https://0xacab.org/riseup/0xacab/issues/new?issue%5Bassignee_id%5D=&issue%5Btitle=fork%20permission%20request&issue%5Bdescription=I%20need%20permission%20to%20fork%20the%20Monkeysign%20repository%20to%20contribute%20to%20the%20project.%20Please%20grant%20me%20fork%20access.%20Thank%20you.] to request access
before you can create a fork and a merge request.

If you prefer old school, offline email systems, you can also use the
Debian BTS, as described above, or send patches to the mailing list for
discussion.

Some guidelines for patches:

	A patch should be a minimal and accurate answer to exactly one
identified and agreed problem.

	A patch must compile cleanly and pass project self-tests on at least
the principle target platform.

	A patch commit message must consist of a single short (less than 50
characters) line stating the a summary of the change, followed by a
blank line and then a description of the problem being solved and
its solution, or a reason for the change. Write more information,
not less, in the commit log.

Maintainers should not merge their own patches unless there is no
response from other maintainers within a reasonable time frame (1-2
days).

Note

Those guidelines were inspired by the Collective Code
Construct Contract [https://rfc.zeromq.org/spec:42/C4/]. The document was found to be a little
too complex and hard to read and wasn’t adopted in its
entirety. See those discussions [https://github.com/zeromq/rfc/issues?utf8=%E2%9C%93&q=author%3Aanarcat%20]
for more information.

Unit tests

Unit tests should be ran before sending patches. They can be ran with
monkeysign --test (starting from Monkeysign 2.1.4, previously it
was ./test.py and only from the source tree).

The tests expect a unicode locale, so if you do not have that configured
already, set one like this, otherwise a part of the test suite will be
skipped:

export LANG=C.UTF-8
monkeysign --test

It is possible that some keys used in the tests expire. The built-in
keys do not have specific expiry dates, but some keys are provided to
test some corner cases and those keys may have new expiration
dates. Those tests should be skipped when the key expire, but the keys
should eventually be renewed.

To renew the keys, try:

mkdir ~/.gpg-tmp
chmod 700 ~/.gpg-tmp
gpg --homedir ~/.gpg-tmp --import 7B75921E.asc
gpg --homedir ~/.gpg-tmp --refresh-keys 8DC901CE64146C048AD50FBB792152527B75921E
gpg --homedir ~/.gpg-tmp --export-options export-minimal --armor --export 8DC901CE64146C048AD50FBB792152527B75921E > 7B75921E.asc

It is also possible the key is just expired and there is no replacement.
In this case the solution is to try and find a similar test case and
replace the key, or simply skip that test.

Debian packaging

The Debian package requires backports of dh-python to operate
properly, otherwise you will get errors like Debian BTS #839687 [https://bugs.debian.org/839687]:

LookupError: setuptools-scm was unable to detect version for '/tmp/buildd-...'.

A workaround is to hardcode the version with:

SETUPTOOLS_SCM_PRETEND_VERSION=x.y.z

Release process

To build a Monkeysign release, you will need to have a few tools
already installed, namely the Python packages wheel,
setuptools and setuptools-scm. We also assume you use the
following Debian packages, although you may be able to work around
those: devscripts, git, git-buildpackage, pip and
twine. In Debian, this should get you started:

sudo apt install python-wheel python-setuptools python-setuptools-scm devscripts git git-buildpackage python-pip twine

	make sure tests pass:

./scripts/monkeysign --test

	create release notes with:

git-dch
dch -D unstable

	commit the results:

git commit -m"prepare new release" -a

	create a signed and annotated tag:

git tag -s x.y.z

	build and test Debian package:

git-buildpackage
dpkg -i ../monkeysign_*.deb
monkeysign --version
monkeysign --test
monkeyscan

	build and test Python “wheel”:

dpkg --remove monkeysign
python setup.py bdist_wheel
pip install dist/*.whl
monkeysign --version
monkeysign --test
monkeyscan
pip uninstall monkeysign

	push commits and tags to the git repository:

git push
git push --tags

	publish Python “wheel” on PyPI:

twine upload dist/*

	upload Debian package:

dput ../monkeysign*.changes

	add announcement on website, IRC channel and mailing list:
monkeysphere@lists.riseup.net

	on 0xACAB: close the current milestone [https://0xacab.org/monkeysphere/monkeysign/milestones], create the next one and
edit the release notes on the tag [https://0xacab.org/monkeysphere/monkeysign/tags]

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 History

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monkeysign ??? documentation

History

A first prototype of Monkeysign was created during the 2010 The Next
HOPE [http://www.thenexthope.org/] in New York City by Jérôme
Charaoui, after a discussion with Daniel Kahn Gillmor and Antoine
Beaupré.

During the following HOPE conference [http://hopenumbernine.net/]
in 2012, the happy group met again and this time Antoine pushed the
project much further. On the train ride back home, he implementing a
complete GnuPG compatibility layer that imported keys, signed UIDs and
so on, unaware of the existence of the python-gnupg project. This
led to the publication of the first 0.1 release, which was already a
good caff replacement, with a GUI and qr-code support.

After one more year of development and testing, Antoine released the
first stable 1.0 release in 2013 with SMTP support, unitests and most
features we now take for granted in Monkeysign. The 1.x branch was
fairly short-lived, a 2.0.0 release was published in 2014 with
simplified interface, image files support and more improvements. This
release was the first long term support branch, issued to coincide
with the Debian Jessie release.

Since then, a 2.1.x series was published to support GnuPG 2.1, and
2.2.x was released with support for Tor.

See Support schedule for more information about supported branches.

Detailed changelog

Here is the complete historical record of all known Monkeysign
releases at the time of writing. More details about changes is also
available in the git repository.

monkeysign (2.2.3) unstable; urgency=medium

 [Simon Fondrie-Teitler]
 * Don't escape percent signs that are actually required in default mua command

 [Antoine Beaupré]
 * some small improvements to the bug issue template
 * create 2.2.x branch officially
 * silence errors in test suite with GnuPG 2

 -- Antoine Beaupré <anarcat@debian.org> Tue, 24 Jan 2017 15:40:35 -0500

monkeysign (2.2.2) unstable; urgency=medium

 [Antoine Beaupré]
 * explicitly depend on socks, seems like pybuild doesn't puck up the
 depends (Closes: #847716)
 * forgot some future tests failures (Closes: #841115)
 * properly redirect version information
 * mention --test in bug report guidelines
 * clarify support schedule, fix typos
 * abandon 2.1.x, tell people how to support more
 * indicate that you need to request access to create merge requests
 * document the new test skipping features
 * give proper credits to documenters
 * add credits section
 * fix trove classifier
 * output the parsed qrcode data when verbose
 * do not load default config files in tests
 * adopt covenant code of conduct
 * patches merging guidelines
 * refer to modernPGP manuals
 * move code of conducts contacts to a special section

 [Simon Fondrie-Teitler]
 * Add right click menu with print/save to qr code
 * Don't attempt to sign a user's own key
 * Make message more friendly
 * add test for signing one's own key
 * lowercase k in OpenPGPkey __repr__
 * Add Simon to authors file

 [Tobias Mueller]
 * gpg: Use os.path.expanduser instead of the environment variable

 -- Antoine Beaupré <anarcat@debian.org> Thu, 15 Dec 2016 11:04:13 -0500

monkeysign (2.2.1) unstable; urgency=medium

 * fix socks dependency specification: it is a runtime, not just
 build-time, dependency
 * mark as production-ready in python classification
 * skip another test that requires network during build
 * run CI tests with --debug to ease future debugging

 -- Antoine Beaupré <anarcat@debian.org> Sat, 15 Oct 2016 09:18:21 -0400

monkeysign (2.2.0) unstable; urgency=medium

 * fix tests with Debian CI
 * fix FTBS errors in reproducible builds due to test suite failing in
 the future
 * do not STARTTLS on already secure (TLS) connexions
 * enable tor support with --tor flag
 * handle SMTP conversations better
 * add history section to documentation to publish this changelog more
 widely
 * document branches status and deprecate 2.1.x branch
 * improve email usage documentation

 -- Antoine Beaupré <anarcat@debian.org> Tue, 11 Oct 2016 11:29:10 -0400

monkeysign (2.1.4) unstable; urgency=medium

 * --local now implies --no-mail (Closes: #719242)
 * ship tests with program, accessible with --test parameter
 * stop hardcoding version numbers in code, use setuptools-scm instead
 * enable tests at build time and Debian CI (autopkgtest)
 * complete GnuPG 2.1 support: test suite now passes!

 -- Antoine Beaupré <anarcat@debian.org> Mon, 03 Oct 2016 16:18:07 -0400

monkeysign (2.1.3) unstable; urgency=medium

 * add explicit build-dep on gnupg (Closes: #839355)

 -- Antoine Beaupré <anarcat@debian.org> Sun, 02 Oct 2016 17:17:03 -0400

monkeysign (2.1.2) unstable; urgency=medium

 * reroll release: forgot to bump version number in ode
 * upload to pypi before debian, which will notice those errors in the future

 -- Antoine Beaupré <anarcat@debian.org> Wed, 28 Sep 2016 09:17:20 -0400

monkeysign (2.1.1) unstable; urgency=medium

 * properly transition monkeysign-doc packages to ensure upgrades work
 (Closes: #839043)
 * add monkeysign-doc to Suggests
 * remove obsolete BUILD_TIMESTAMP, especially now that the manpage
 generation was rewritten without timestamps
 * improve release process and install documentation, remove presentation
 * forgot to close a bunch of issues in 2.1.0 release:
 * Monkeyscan fails at launch (Closes: #773970)
 * expiry date in epoch time is not human readable (Closes: #760139)
 * make builds reproducible (Closes: #784602)

 -- Antoine Beaupré <anarcat@debian.org> Wed, 28 Sep 2016 08:18:24 -0400

monkeysign (2.1.0) unstable; urgency=medium

 * new minor release for new features and lots of bugfixes, outline:
 * GnuPG 2.1 support
 * better handling of corner cases (revoked or expired key material,
 large webcams) and better error messages)
 * better SMTP support (no cleartext, SSMTP)
 * move everything to 0xACAB.org to ease collaboration
 * expand and convert documentation to reStructured Text and ship it in
 a -doc package
 * command to sendmail customizable through --mta (message piped
 through stdin) or --mua (encrypted key attached on the commandline)
 * space-separated fingerprints allowed for -u, which means -u needs to
 be separated from the signed fingerprint with -- now
 * configuration file support, which is written with --save
 * crude preferences window in GUI
 * detailed changelog below - this is the result of 2 years of work!

 [Antoine Beaupré]
 * import my personal key renewal to unbreak tests
 * import zack's key renewal
 * forbid sending passphrase in cleartext
 * better explain that STARTTLS is used
 * SSMTP support
 * port to argparse, which somewhat broke the manpages
 * allow space-separated fingerprints for -u (Closes: #720050)
 * MUA support
 * make sendmail command customizable through --mta
 * make copy-paste message encrypted (Closes: #833605)
 * handle improperly encoded UIDs (Closes: #736629)
 * copy public keys for all secret keys found (Closes: #721599)
 * skip keys without uids (Closes: #723152)
 * set a size for the webcam to avoid too large videos (Closes: #723154)
 * add more tests for signing revoked uids
 * add unit test for expired subkeys
 * accommodate gitlab's naming conventions
 * move to 0xacab.org for issues, removing bugs-everywhere
 * convert markdown documents to RST
 * merge the website in the main documentation
 * expand documentation: support schedule, semantic versioning, PyPI, etc
 * update urls for openkeychain, mark as compatible
 * reshuffle test suite so we make sure it tests the local code
 * style fixes
 * fix a transient error in unit tests
 * mention tests need a unicode locale
 * fix monkeysign detection in source dir
 * detect revoked keys and do not use them to sign keys
 (Closes: #766129, #773896)
 * fix lintian warning by specifying copyright version
 * don't try to remove non-existent video device, and clarify error message
 * output --version to stdout and don't make it an error
 * properly raise exceptions when copying gpg.conf fails
 * make sure ui calling sequence is correct in sign_key
 * use ttyname instead of the tty command
 * fix potential vulnerability in msgfmt parser
 * review code for security issues with bandit
 * handle missing MTA better, see 0xACAB #39
 * use full path to sendmail, see 0xACAB #39
 * clarify that without smtp, we use the default --mta
 * fix whitespace issues in revoked patches
 * add new trust state, `empty`
 * properly fetch secret key material everywhere
 * seek out secret keys first
 * properly show output of runtime errors
 * include standard debugging information on backtrace
 * add hook to show detailed version information in reportbug (see 0xACAB #39)
 * always enable --verbose when --debug is enabled
 * configuration file support, which is written with --save
 * crude preferences window in GUI

 [Kristian Fiskerstrand]
 * ui.py: Make sure to use smtplib namespace

 [Tobias Mueller]
 * Calculated whether a key has expired based on the parsed expiry
 * gpg: Added a __repr__ for UIDs
 * gpg: Added a __repr__ for OpenPGPKeys
 * Added GnuPG 2.1 compatibility reg. its colon output
 * gpg: Fixed up the key parsing for secret keys
 * gpg: Make a full datetime, instead of epoch, for expiry
 * msgfmt: Increase Python3 compatibility by removing "L" suffix
 * translation: Use print() for increased python3 compatibility
 * gpg: Implemented revoked for OpenPGP Keys
 * gpg: Implemented revoked for OpenPGP UIDs

 [Daniel Kahn Gillmor]
 * use new-style gbp.conf
 * make monkeysign build reproducibly

 [Michael R. Lawrence]
 * Translated using Weblate (Italian)
 * Translated using Weblate (French)

 [Michal Čihař]
 * Translated using Weblate (Czech)

 [Ahmed El Azzabi]
 * Translated using Weblate (French)

 [Gonzalo Exequiel Pedone]
 * Translated using Weblate (Spanish)

 [Jerome Charaoui]
 * Remove bugseverwhere data and migrate issues to 0xacab.org
 * Ignore irrelevant gpg errors (Closes: #736548)

 [Ramakrishnan Muthukrishnan]
 * Improve the error message when signing an already signed key.
 * improve unit tests for already signed keys and keep previous check

 [emma peel]
 * various improvements to the documentation

 -- Antoine Beaupré <anarcat@debian.org> Tue, 13 Sep 2016 13:37:50 -0400

monkeysign (2.0.2) unstable; urgency=medium

 * this patch releases fixes critical issues...
 * reported in the Debian BTS:
 * encode prompt properly before prompting (closes: #771032)
 * try to handle error when import actually works in GTK UI
 (closes: #770900)
 * improve debugging by wrapping all writes to gnupg in debug
 * use the proper index when selecting key to sign
 (closes: #771034)
 * reported on the Monkeysphere mailing list:
 * hotfix: properly verify the image signature file
 * hotfix: disable scrolling in qrcode window
 * don't try to remove non-existent video device, and clarify error
 message
 * output --version to stdout and don't make it an error
 * those fix FTBS issues:
 * fix tests after cd4e18c: guess encoding properly
 * update zack's key so tests succeed again

 * and this makes sure this package will be easier to support for the
 lifetime of jessie
 * improve error handling again: distinguish different failure cases
 and clearly transmit GPG errors

 -- Antoine Beaupré <anarcat@debian.org> Mon, 01 Dec 2014 21:03:56 -0500

monkeysign (2.0.1) unstable; urgency=medium

 * hot patch release while we still can before jessie:
 * fix tests under GnuPG 2.x
 * improve usage to clarify -u, --cert-level and --to
 * fix version number to include patch release

 -- Antoine Beaupré <anarcat@debian.org> Mon, 20 Oct 2014 22:24:37 -0400

monkeysign (2.0.0) unstable; urgency=medium

 * new features:
 * implement qrcode image import, to allow people without webcams to
 import pictures from a trusted camera - the images must be signed with
 a detached signature on pain of a ugly warning with instructions.
 * move to bugs-everywhere instead of that crazy TODO file
 * udate french translation
 * usability improvements:
 * interface simplified: only the qrcode and webcam with instructions
 * all options moved to menus, including the print/save buttons, the
 video and identity dropdowns
 * properly handle exceptions in gtk UI
 * avoid duplicate camera listing and display nicer name (Closes: #718796)
 * create a set of mockups for a UI redesign and API documentation
 rendered at http://monkeysign.readthedocs.org/
 * bug fixes:
 * fix "Content-description" to be more useful (Closes: #723677)
 * support monkeysign --version", thanks to Gabriel Fillion (Closes: #725113)
 * add debugging info from smtp connection, thanks to Gabriel Filion
 (Closes: #756540)
 * some improvements were done in the GnuPG library to work around
 certain GnuPG corner cases and describe problems better
 * install monkeyscan command as a symlink properly (Closes: #743150)
 * switch to long term support strategy for the 2.0.x release in
 preparation for Debian Jessie

 -- Antoine Beaupré <anarcat@debian.org> Sat, 18 Oct 2014 13:25:54 -0400

monkeysign (1.2) unstable; urgency=medium

 * improve python 3 compatibility, partially (Closes: #725059)
 * update translation strings
 * spanish translation, thanks to lilbit
 * partial french translation
 * Czech translation, thanks to Michal Čihař
 * Bug fix: "build_slides fails of two reasons", thanks to Felix Dreissig
 (Closes: #738731).
 * Bug fix: "build_manpage only works because of PyGTK encoding changes",
 thanks to Felix Dreissig (Closes: #738730).
 * Bug fix: "build_trans fails if called seperately", thanks to Felix
 Dreissig (Closes: #738732).

 -- Antoine Beaupré <anarcat@debian.org> Thu, 28 Aug 2014 20:23:57 -0700

monkeysign (1.1) unstable; urgency=low

 [Antoine Beaupré]
 * improved SMTP support:
 * SMTP username and passwords can be passed as commandline arguments
 * SMTP password is prompted if not specified
 * use STARTTLS if available
 * enable SMTP debugging only debugging is enabled
 * show the unencrypted email with --no-mail (Closes: #720049)
 * warn when gpg-agent is not running or failing (Closes: #723052)
 * set GPG_TTY if it is missing (Closes: #719908)
 * bail out on already signed keys (Closes: #720055)
 * mention monkeyscan in the package description so it can be found more
 easily
 * fix python-pkg-resources dependency
 * don't show backtrace on control-c
 * add missing files to .gitignore (Closes: #724007)
 * ship with a neat little slideshow to make presentations

 [Philip Jägenstedt]
 * fix some typos (Closes: #722964)
 * add --cert-level option (Closes: #722740)

 -- Antoine Beaupré <anarcat@debian.org> Tue, 01 Oct 2013 00:22:30 +0200

monkeysign (1.0) unstable; urgency=low

 * stop copying secrets to the temporary keyring
 * make sure we use the right signing key when specified
 * signatures on multiple UIDs now get properly sent separately
 (Closes: #719241)
 * this includes "deluid" support on the gpg library
 * significantly refactor email creation
 * improve unit tests on commandline scripts, invalid (revoked) keys and
 timeout handling
 * provide manpages (Closes: #716674)
 * avoid showing binary garbage on export when debugging
 * properly fail if password confirmation fails
 * user interfaces now translatable
 * accept space-separated key fingerprints
 * fix single UID key signing
 * proper formatting of UIDs with comments (removed) and spaces (wrapped)
 for emails

 -- Antoine Beaupré <anarcat@debian.org> Wed, 14 Aug 2013 20:51:44 -0400

monkeysign (0.9) unstable; urgency=low

 * refactor unit tests again to optimise UI tests and test mail generation
 * fix error handling in encryption/decryption (Closes: #717622)
 * rename msign-cli to monkeysign and msign to monkeyscan (Closes: #717623)
 * handle interruptions cleanly when choosing user IDs (see: #716675)

 -- Antoine Beaupré <anarcat@debian.org> Tue, 23 Jul 2013 10:56:50 -0400

monkeysign (0.8) unstable; urgency=low

 * refactor unit test suite to allow testing the commandline tool
 interactively
 * don't fail on empty input when choosing uid (Closes: #716675)
 * we also explain how to refuse signing a key better
 * optimise network tests so they timeout (so fail) faster

 -- Antoine Beaupré <anarcat@debian.org> Wed, 17 Jul 2013 22:52:02 -0400

monkeysign (0.7.1) unstable; urgency=low

 * fix binary package dependency on python
 * update to debhelper 9
 * update to standards 3.9.4, no change

 -- Antoine Beaupré <anarcat@debian.org> Sun, 07 Jul 2013 09:58:56 -0400

monkeysign (0.7) unstable; urgency=low

 * fix crash when key not found on keyservers
 * use a proper message in outgoing emails
 * unit tests extended to cover user interface
 * import keys from the local keyring before looking at the keyserver
 * fix print/save exports (thanks Simon!)
 * don't depend on a graphical interface
 * update copyright dates and notices
 * mark as priority: optional instead of extra

 -- Antoine Beaupré <anarcat@debian.org> Sat, 06 Jul 2013 01:07:28 -0400

monkeysign (0.6) unstable; urgency=low

 * fix warnings in the graphical interface
 * make qr-code detection be case-insensitive
 * fix syntax error
 * follow executable renames properly

 -- Antoine Beaupré <anarcat@debian.org> Sat, 06 Oct 2012 16:08:48 +0200

monkeysign (0.5) unstable; urgency=low

 * non-exportable signatures (--local) support
 * simplify the monkeysign-scan UI
 * rename monkeysign-scan to msign and monkeysign-cli to msign-cli to
 avoid tab-completion conflict with monkeysphere executables, at the
 request of Monkeysphere developers
 * usability: make sure arguments are case-insensitive
 * fix email format so it's actually readable

 -- Antoine Beaupré <anarcat@debian.org> Fri, 05 Oct 2012 11:14:37 +0200

monkeysign (0.4) unstable; urgency=low

 * merge display and scanning of qrcodes
 * really remove remaining pyme dependency
 * list key indexes to allow choosing more clearly
 * copy the gpg.conf in temporary keyring
 * fix keyserver operation in GUI
 * implement UID choosing in GUI

 -- Antoine Beaupré <anarcat@debian.org> Wed, 01 Aug 2012 02:33:29 -0400

monkeysign (0.3) unstable; urgency=low

 * allow keyserver to be enabled while not specified
 * do not set an empty keyserver, fixing weird keyserver errors on -scan
 * fix window reference in UI, spotted by dkg
 * mark this as architecture-independent, spotted by dkg
 * make setup executable
 * reference new homepage
 * API change: functions return false instead of raising exceptions
 * fix multiple keys listing support

 -- Antoine Beaupré <anarcat@debian.org> Thu, 26 Jul 2012 12:41:54 -0400

monkeysign (0.2) unstable; urgency=low

 * only load information from private keys when doing key detection
 * add debugging in key choosing algorithm
 * import private keyring even in dry-run
 * properly import re, fixing a crash
 * add usage for monkeysign-scan
 * fixup modules list so that the package actually works
 * make this not crash completely if there's no video
 * improve short description so that it matches 'key signing'
 * fix dependencies
 * fix typo, noticed by micah

 -- Antoine Beaupré <anarcat@debian.org> Sun, 22 Jul 2012 13:38:00 -0400

monkeysign (0.1) unstable; urgency=low

 * Initial Release.

 -- Antoine Beaupré <anarcat@debian.org> Sat, 21 Jul 2012 12:05:59 -0400

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 API documentation

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monkeysign ??? documentation

API documentation

GnuPG API

Native Python / GPG API

This API was written to replace the GPGME bindings because the GPGME
API has a few problems:

	it is arcane and difficult to grasp

	it is very closely bound to the internal GPG data and commandline
structures, which are quite confusing

	GPGME doesn’t actually talk to a GPG library, but interacts with
GPG through the commandline

	GPGME developers are not willing to extend GPGME to cover private
key material management and consider this is outside the scope of
the project.

The latter two points are especially problematic for this project, and
I have therefore started working on a replacement.

Operations are performed mostly through the Keyring or KeyringTmp
class (if you do not want to access your regular keyring but an empty
temporary one).

This is how you can access keys, which are represented by the
OpenPGPkey datastructure, but which will not look in your keyring or
on the keyservers itself without the Keyring class.

It seems that I have missed a similar project that’s been around for
quite a while (2008-2012):

https://code.google.com/p/python-gnupg/

The above project has a lot of similarities with this implementation,
but is better because:

	it actually parses most status outputs from GPG, in a clean way

	uses threads so it doesn’t block

	supports streams

	supports verification, key generation and deletion

	has a cleaner and more complete test suite

However, the implementation here has:

	key signing support

	a cleaner API

Error handling is somewhat inconsistent here. Some functions rely on
exceptions, other on boolean return values. We prefer exceptions as it
allows us to propagate error messages to the UI, but make sure to
generate a RuntimeError, and not a ProtocolError, which are unreadable
to the user.

	
class monkeysign.gpg.Context[source]

	Python wrapper for GnuPG

This wrapper allows for a simpler interface than GPGME or PyME to
GPG, and bypasses completely GPGME to interoperate directly with
GPG as a process.

It uses the gpg-agent to prompt for passphrases and communicates
with GPG over the stdin for commnads (–command-fd) and stdout for
status (–status-fd).

	
build_command(command)[source]

	internal helper to build a proper gpg commandline

this will add relevant arguments around the gpg binary.

like the options arguments, the command is expected to be a
regular gpg command with the – stripped. the – are added
before being called. this is to make the code more readable,
and eventually support other backends that actually make more
sense.

this uses build_command to create a commandline out of the
‘options’ dictionary, and appends the provided command at the
end. this is because order of certain options matter in gpg,
where some options (like –recv-keys) are expected to be at
the end.

it is here that the options dictionary is converted into a
list. the command argument is expected to be a list of
arguments that can be converted to strings. if it is not a
list, it is cast into a list.

	
call_command(command, stdin=None)[source]

	internal wrapper to call a GPG commandline

this will call the command generated by build_command() and
setup a regular pipe to the subcommand.

this assumes that we have the status-fd on stdout and
command-fd on stdin, but could really be used in any other
way.

we pass the stdin argument in the standard input of gpg and we
keep the output in the stdout and stderr array. the exit code
is in the returncode variable.

we can optionnally watch for a confirmation pattern on the
statusfd.

	
debug = False

	

	
expect(fd, pattern)[source]

	look for a specific GNUPG status on the next line of output

this is a stub for expect()

	
expect_pattern(fd, pattern)[source]

	make sure the next line matches the provided pattern

in contrast with seek_pattern(), this will not skip
non-matching lines and instead raise an exception if such a
line is found.

this therefore looks only at the next line, but may also hang
like seek_pattern()

if the beginning of the line matches a pattern which is
being ignored, it will skip it and look at the next line

	
gpg_binary = 'gpg'

	

	
options = {'command-fd': 0, 'fixed-list-mode': None, 'with-fingerprint': None, 'list-options': 'show-sig-subpackets,show-uid-validity,show-unusable-uids,show-unusable-subkeys,show-keyring,show-sig-expire', 'use-agent': None, 'no-tty': None, 'with-colons': None, 'status-fd': 2, 'quiet': None, 'batch': None}

	

	
seek(fd, pattern)[source]

	look for a specific GNUPG status line in the output

this is a stub for seek_pattern()

	
seek_pattern(fd, pattern)[source]

	iterate over file descriptor until certain pattern is found

fd is a file descriptor
pattern a string describing a regular expression to match

this will skip lines not matching pattern until the pattern is
found. it will raise an IOError if the pattern is not found
and EOF is reached.

this may hang for streams that do not send EOF or are waiting
for input.

	
set_option(option, value=None)[source]

	set an option to pass to gpg

this adds the given ‘option’ commandline argument with the
value ‘value’. to pass a flag without an argument, use ‘None’
for value

	
unset_option(option)[source]

	remove an option from the gpg commandline

	
version()[source]

	return the version of the GPG binary

	
write(fd, message)[source]

	write the specified message to gnupg, usually on stdout

but really, the pipes are often setup outside of here so the
fd is hardcoded here

	
exception monkeysign.gpg.GpgProtocolError[source]

	simple exception raised when we have trouble talking with GPG

we try to pass the subprocess.popen.returncode as an errorno and a
significant description string

this error shouldn’t be propagated to the user, because it will
contain mostly “expect” jargon from the DETAILS.txt file. the gpg
module should instead raise a GpgRutimeError with a user-readable
error message (e.g. “key not found”).

	
expected()[source]

	

	
found()[source]

	

	
match()[source]

	

	
exception monkeysign.gpg.GpgRuntimeError[source]

	

	
class monkeysign.gpg.Keyring(homedir=None)[source]

	Keyring functionalities.

This allows various operations (e.g. listing, signing, exporting
data) on a keyring.

Concretely, we talk about a “keyring”, but we really mean a set of
public and private keyrings and their trust databases. In
practice, this is the equivalent of the GNUPGHOME or –homedir in
GPG, and in fact this is implemented by setting a specific homedir
to tell GPG to operate on a specific keyring.

We actually use the –homedir parameter to gpg to set the keyring
we operate upon.

	
context = None

	

	
decrypt_data(data)[source]

	decrypt data using asymetric encryption

returns the plaintext data or raise a GpgRuntimeError if it failed.

	
del_uid(fingerprint, pattern)[source]

	

	
encrypt_data(data, recipient)[source]

	encrypt data using asymetric encryption

returns the encrypted data or raise a GpgRuntimeError if it fails

	
export_data(fpr=None, secret=False)[source]

	Export OpenPGP data blocks from the keyring.

This exports actual OpenPGP data, by default in binary format,
but can also be exported asci-armored by setting the ‘armor’
option.

	
fetch_keys(fpr, keyserver=None)[source]

	Download keys from a keyserver into the local keyring

This expects a fingerprint (or a at least a key id).

Returns true if the command succeeded.

	
get_agent_socket()[source]

	get the location of the gpg-agent socket for this keyring

	
get_keys(pattern=None, secret=False, public=True, keys=None)[source]

	load keys matching a specific patterns

this uses the (rather poor) list-keys API to load keys
information

	
import_data(data)[source]

	Import OpenPGP data blocks into the keyring.

This takes actual OpenPGP data, ascii-armored or not, gpg will
gladly take it. This can be signatures, public, private keys,
etc.

You may need to set import-flags to import non-exportable
signatures, however.

	
sign_key(pattern, signall=False, local=False)[source]

	sign a OpenPGP public key

By default it looks up and signs a specific uid, but it can
also sign all uids in one shot thanks to GPG’s optimization on
that.

The pattern here should be a full user id if we sign a
specific key (default) or any pattern (fingerprint, keyid,
partial user id) that GPG will accept if we sign all uids.

@todo that this currently block if the pattern specifies an
incomplete UID and we do not sign all keys.

	
verify_file(sigfile, filename)[source]

	

	
class monkeysign.gpg.OpenPGPkey(data=None)[source]

	An OpenPGP key.

Some of this datastructure is taken verbatim from GPGME.

	
algo = -1

	

	
creation = 0

	

	
disabled = False

	

	
expired

	

	
expiry

	Returns a datetime from the _expiry field or None if
the key does not expire

	
format_fpr()[source]

	display a clean version of the fingerprint

this is the display we usually see

	
fpr = None

	

	
get_trust()[source]

	

	
invalid = False

	

	
keyid(l=8)[source]

	

	
length = None

	

	
parse_gpg_list(text)[source]

	

	
purpose = {}

	

	
qualified = False

	

	
revoked

	Returns whether GnuPG thinks the key has been revoked

This is the second field of the result of the –list-key –with-colons
call. Note that this information is only present on public keys,
i.e. not on secret keys.

Returns None if it cannot be determined whether this key has
been revoked.

	
secret = False

	

	
subkeys = {}

	

	
trust = None

	

	
trust_map = {'': 'empty', '-': 'unknown', 'e': 'expired', 'd': 'disabled', 'f': 'full', 'i': 'invalid', 'm': 'marginal', 'o': 'new', 'n': 'none', 'q': 'undefined', 'r': 'revoked', 'u': 'ultimate'}

	

	
uids = {}

	

	
class monkeysign.gpg.OpenPGPuid(uid, trust, creation=0, expire=None, uidhash='')[source]

	
	
get_trust()[source]

	

	
revoked

	Whether this UID has been revoked

Note that, due to GnuPG not exporting that information
for secret keys, UIDs of secret keys do not carry that
information.

Return None if it cannot be determined whether this UID
has been revoked. Try again with the public key.

	
class monkeysign.gpg.TempKeyring[source]

	

CLI Interface

GTK Interface

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 UI mockups and design

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monkeysign ??? documentation

UI mockups and design

We are planning significant changes to the graphical user interface of
Monkeysign in the 3.x branch.

Signing interface

[image: ../_images/sign-ui-mockup.png]

Key sharing interface

[image: ../_images/share-ui-mockup.png]

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 Terminology

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Monkeysign ??? documentation

Terminology

In this documentation, the following definitions are used:

	QR-code
QRcode
QR code
Bar code
Barcode

	A “QR code” (abbreviation of Quick Response Code) is sort of
bar code, an optical label that is designed to be
machine-readable. A QR code is faster to read by computers
and contains more information than than regular bar codes,
which is why it is used in Monkeysign to communicate
fingerprints. See Wikipedia article QR code [https://en.wikipedia.org/wiki/QR code] for more information.

	MTA
Message Transfer Agent

	A computer program designed to transfer emails between
different machines, usually running on servers. See
Wikipedia article Message Transfer Agent [https://en.wikipedia.org/wiki/Message Transfer Agent] for more
information.

	MUA
Mail User Agent

	A computer program used to read, compose and send email,
normally ran on user computers. See Wikipedia article Mail User
Agent [https://en.wikipedia.org/wiki/Mail User
Agent] for more information.

We also try to adhere to the Modern PGP [http://modernpgp.org/]
terminology [https://github.com/ModernPGP/terminology] when
possible.

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 Credits

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Monkeysign ??? documentation

Credits

Those people are the ones who made Monkeysign possible.

__authors__ = ['In alphabetical order:',
 '',
 'Antoine Beaupré',
 'Daniel Kahn Gillmor',
 'Gabriel Fillion',
 'Jérôme Charaoui',
 'Kristian Fiskerstrand',
 'Philip Jägenstedt',
 'Ramakrishnan Muthukrishnan',
 'Simon Fondrie-Teitler',
 'Tobias Mueller',
]
__documenters__ = ['In alphabetical order:',
 '',
 'Antoine Beaupré',
 'Emma Peel',
]
__translators__ = ['In alphabetical order:',
 '',
 'Antoine Beaupré',
 'Ahmed El Azzabi',
 'Gonzalo Exequiel Pedone',
 'Michael R. Lawrence',
 'Michal Čihař',
]

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 Python Module Index

 Navigation

 	
 index

 	
 modules |

 	Monkeysign ??? documentation

 Python Module Index

 m

 			

 		
 m	

 	[image: -]
 	
 monkeysign	

 	
 	
 monkeysign.gpg	

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

 Index

 Navigation

 	
 index

 	
 modules |

 	Monkeysign ??? documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | K
 | L
 | M
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	algo (monkeysign.gpg.OpenPGPkey attribute)

B

 	

 	Bar code

 	Barcode

 	

 	build_command() (monkeysign.gpg.Context method)

C

 	

 	call_command() (monkeysign.gpg.Context method)

 	Context (class in monkeysign.gpg)

 	

 	context (monkeysign.gpg.Keyring attribute)

 	creation (monkeysign.gpg.OpenPGPkey attribute)

D

 	

 	debug (monkeysign.gpg.Context attribute)

 	decrypt_data() (monkeysign.gpg.Keyring method)

 	

 	del_uid() (monkeysign.gpg.Keyring method)

 	disabled (monkeysign.gpg.OpenPGPkey attribute)

E

 	

 	encrypt_data() (monkeysign.gpg.Keyring method)

 	expect() (monkeysign.gpg.Context method)

 	expect_pattern() (monkeysign.gpg.Context method)

 	expected() (monkeysign.gpg.GpgProtocolError method)

 	

 	expired (monkeysign.gpg.OpenPGPkey attribute)

 	expiry (monkeysign.gpg.OpenPGPkey attribute)

 	export_data() (monkeysign.gpg.Keyring method)

F

 	

 	fetch_keys() (monkeysign.gpg.Keyring method)

 	format_fpr() (monkeysign.gpg.OpenPGPkey method)

 	

 	found() (monkeysign.gpg.GpgProtocolError method)

 	fpr (monkeysign.gpg.OpenPGPkey attribute)

G

 	

 	get_agent_socket() (monkeysign.gpg.Keyring method)

 	get_keys() (monkeysign.gpg.Keyring method)

 	get_trust() (monkeysign.gpg.OpenPGPkey method)

 	

 	(monkeysign.gpg.OpenPGPuid method)

 	

 	gpg_binary (monkeysign.gpg.Context attribute)

 	GpgProtocolError

 	GpgRuntimeError

I

 	

 	import_data() (monkeysign.gpg.Keyring method)

 	

 	invalid (monkeysign.gpg.OpenPGPkey attribute)

K

 	

 	keyid() (monkeysign.gpg.OpenPGPkey method)

 	

 	Keyring (class in monkeysign.gpg)

L

 	

 	length (monkeysign.gpg.OpenPGPkey attribute)

M

 	

 	Mail User Agent

 	match() (monkeysign.gpg.GpgProtocolError method)

 	Message Transfer Agent

 	

 	monkeysign.gpg (module)

 	MTA

 	MUA

O

 	

 	OpenPGPkey (class in monkeysign.gpg)

 	OpenPGPuid (class in monkeysign.gpg)

 	

 	options (monkeysign.gpg.Context attribute)

P

 	

 	parse_gpg_list() (monkeysign.gpg.OpenPGPkey method)

 	

 	purpose (monkeysign.gpg.OpenPGPkey attribute)

Q

 	

 	QR code

 	QR-code

 	

 	QRcode

 	qualified (monkeysign.gpg.OpenPGPkey attribute)

R

 	

 	revoked (monkeysign.gpg.OpenPGPkey attribute)

 	

 	(monkeysign.gpg.OpenPGPuid attribute)

S

 	

 	secret (monkeysign.gpg.OpenPGPkey attribute)

 	seek() (monkeysign.gpg.Context method)

 	seek_pattern() (monkeysign.gpg.Context method)

 	

 	set_option() (monkeysign.gpg.Context method)

 	sign_key() (monkeysign.gpg.Keyring method)

 	subkeys (monkeysign.gpg.OpenPGPkey attribute)

T

 	

 	TempKeyring (class in monkeysign.gpg)

 	trust (monkeysign.gpg.OpenPGPkey attribute)

 	

 	trust_map (monkeysign.gpg.OpenPGPkey attribute)

U

 	

 	uids (monkeysign.gpg.OpenPGPkey attribute)

 	

 	unset_option() (monkeysign.gpg.Context method)

V

 	

 	verify_file() (monkeysign.gpg.Keyring method)

 	

 	version() (monkeysign.gpg.Context method)

W

 	

 	write() (monkeysign.gpg.Context method)

 Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

_static/down-pressed.png

_static/down.png

_static/up.png

issue_template.html

 Navigation

 		
 index

 		
 modules |

 		Monkeysign ??? documentation »

Please provide a summary of the bug you encountered here.

Expected behavior

What you expected to happen

Actual behavior

What happened instead

Steps to reproduce

Try to reproduce the issue. Please describe every step you took to
reproduce the issue. Make sure to run Monkeysign with --debug when
you reproduce and paste the output below.

		step 1: collect underpants

		step 2: ???

		step 3: profit!

Suggested fixes

If you have ideas about how to fix this, feel free to provide it
here or remove this section.

Testsuite output

Please paste the output of monkeysign --test here:

$ monkeysign --test

Environment details

Run monkeysign --version.If you are running 2.1.0, just paste the
output here. If the monkeysign version is ??, maybe you need to
install python-setuptools-scm.

Otherwise, paste the version number, but also:

		lsb_release -b: operating system name, version and codename
(e.g. Debian GNU/Linux 8.4 (jessie))

		uname -a: kernel version, architecture and build dates (e.g. Linux marcos 3.16.0-4-amd64 #1 SMP Debian 3.16.7-ckt25-1 (2016-03-06) x86_64 GNU/Linux)

		python --version

		gpg --version

If you are using the graphical interface, try to also include the
versions of the following libraries:

		GTK

		PyGTK

		ZBar

		QRencode

		PIL

Also explain how was Monkeysign installed (Debian package, PIP, from git, etc).

Debugging output

When you reproduced the issue, you used the --debug flag, paste
the output here:

$ monkeysign --debug ...

Watch out, personnal information like key fingerprints or key
material may show up in the output. Review the output before
copying it here.

 © Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

_static/up-pressed.png

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Monkeysign ??? documentation »

 All modules for which code is available

		monkeysign.gpg

 © Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

_modules/monkeysign/gpg.html

 Navigation

 		
 index

 		
 modules |

 		Monkeysign ??? documentation »

 		Module code »

 Source code for monkeysign.gpg

-*- coding: utf-8 -*-
#
Copyright (C) 2012-2013 Antoine Beaupré <anarcat@orangeseeds.org>
#
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.

"""
Native Python / GPG API

This API was written to replace the GPGME bindings because the GPGME
API has a few problems:

 1. it is arcane and difficult to grasp
 2. it is very closely bound to the internal GPG data and commandline
 structures, which are quite confusing
 3. GPGME doesn't actually talk to a GPG library, but interacts with
 GPG through the commandline
 4. GPGME developers are not willing to extend GPGME to cover private
 key material management and consider this is outside the scope of
 the project.

The latter two points are especially problematic for this project, and
I have therefore started working on a replacement.

Operations are performed mostly through the Keyring or KeyringTmp
class (if you do not want to access your regular keyring but an empty
temporary one).

This is how you can access keys, which are represented by the
OpenPGPkey datastructure, but which will not look in your keyring or
on the keyservers itself without the Keyring class.

It seems that I have missed a similar project that's been around for
quite a while (2008-2012):

https://code.google.com/p/python-gnupg/

The above project has a lot of similarities with this implementation,
but is better because:

 1. it actually parses most status outputs from GPG, in a clean way
 2. uses threads so it doesn't block
 3. supports streams
 4. supports verification, key generation and deletion
 5. has a cleaner and more complete test suite

However, the implementation here has:

 1. key signing support
 2. a cleaner API

Error handling is somewhat inconsistent here. Some functions rely on
exceptions, other on boolean return values. We prefer exceptions as it
allows us to propagate error messages to the UI, but make sure to
generate a RuntimeError, and not a ProtocolError, which are unreadable
to the user.
"""

import errno
import os, tempfile, shutil, subprocess, re
from datetime import datetime

from StringIO import StringIO

import monkeysign.translation

[docs]class Context():
 """Python wrapper for GnuPG

 This wrapper allows for a simpler interface than GPGME or PyME to
 GPG, and bypasses completely GPGME to interoperate directly with
 GPG as a process.

 It uses the gpg-agent to prompt for passphrases and communicates
 with GPG over the stdin for commnads (--command-fd) and stdout for
 status (--status-fd).
 """

 # the gpg binary to call
 gpg_binary = 'gpg'

 # a list of key => value commandline options
 #
 # to pass a flag without options, use None as the value
 options = { 'status-fd': 2,
 'command-fd': 0,
 'no-tty': None,
 'quiet': None,
 'batch': None,
 'use-agent': None,
 'with-colons': None,
 'with-fingerprint': None,
 'fixed-list-mode': None,
 'list-options': 'show-sig-subpackets,show-uid-validity,show-unusable-uids,show-unusable-subkeys,show-keyring,show-sig-expire',
 }

 # whether to paste output here and there
 # if not false, needs to be a file descriptor
 debug = False

 def __init__(self):
 self.options = dict(Context.options) # copy

[docs] def set_option(self, option, value = None):
 """set an option to pass to gpg

 this adds the given 'option' commandline argument with the
 value 'value'. to pass a flag without an argument, use 'None'
 for value
 """
 self.options[option] = value

[docs] def unset_option(self, option):
 """remove an option from the gpg commandline"""
 if option in self.options:
 del self.options[option]
 else:
 return false

[docs] def build_command(self, command):
 """internal helper to build a proper gpg commandline

 this will add relevant arguments around the gpg binary.

 like the options arguments, the command is expected to be a
 regular gpg command with the -- stripped. the -- are added
 before being called. this is to make the code more readable,
 and eventually support other backends that actually make more
 sense.

 this uses build_command to create a commandline out of the
 'options' dictionary, and appends the provided command at the
 end. this is because order of certain options matter in gpg,
 where some options (like --recv-keys) are expected to be at
 the end.

 it is here that the options dictionary is converted into a
 list. the command argument is expected to be a list of
 arguments that can be converted to strings. if it is not a
 list, it is cast into a list."""
 options = []
 for left, right in self.options.iteritems():
 options += ['--' + left]
 if right is not None:
 options += [str(right)]
 if type(command) is str:
 command = [command]
 if len(command) > 0 and command[0][0:2] != '--':
 command[0] = '--' + command[0]
 return [self.gpg_binary] + options + command

[docs] def call_command(self, command, stdin=None):
 """internal wrapper to call a GPG commandline

 this will call the command generated by build_command() and
 setup a regular pipe to the subcommand.

 this assumes that we have the status-fd on stdout and
 command-fd on stdin, but could really be used in any other
 way.

 we pass the stdin argument in the standard input of gpg and we
 keep the output in the stdout and stderr array. the exit code
 is in the returncode variable.

 we can optionnally watch for a confirmation pattern on the
 statusfd.
 """
 proc = subprocess.Popen(self.build_command(command), # nosec
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)
 (self.stdout, self.stderr) = proc.communicate(stdin)
 self.returncode = proc.returncode
 if self.debug:
 print >>self.debug, 'command:', self.build_command(command)
 print >>self.debug, 'ret:', self.returncode, 'stdout:', self.stdout, 'stderr:', self.stderr
 return proc.returncode == 0

[docs] def seek_pattern(self, fd, pattern):
 """iterate over file descriptor until certain pattern is found

 fd is a file descriptor
 pattern a string describing a regular expression to match

 this will skip lines not matching pattern until the pattern is
 found. it will raise an IOError if the pattern is not found
 and EOF is reached.

 this may hang for streams that do not send EOF or are waiting
 for input.
 """
 line = fd.readline()
 match = re.search(pattern, line)
 while line and not match:
 if self.debug: print >>self.debug, "skipped:", line,
 line = fd.readline()
 match = re.search(pattern, line)
 if match:
 if self.debug: print >>self.debug, "FOUND:", line,
 return match
 else:
 raise GpgProtocolError(self.returncode, _("could not find pattern '%s' in input, last skipped '%s'") % (pattern, line))

[docs] def seek(self, fd, pattern):
 """look for a specific GNUPG status line in the output

 this is a stub for seek_pattern()
 """
 return self.seek_pattern(fd, '^\[GNUPG:\] ' + pattern)

[docs] def expect_pattern(self, fd, pattern):
 """make sure the next line matches the provided pattern

 in contrast with seek_pattern(), this will *not* skip
 non-matching lines and instead raise an exception if such a
 line is found.

 this therefore looks only at the next line, but may also hang
 like seek_pattern()

 if the beginning of the line matches a pattern which is
 being ignored, it will skip it and look at the next line
 """
 line = fd.readline()
 ignored = ('[GNUPG:] KEYEXPIRED', '[GNUPG:] SIGEXPIRED', '[GNUPG:] KEY_CONSIDERED', 'gpg: ')

 while line and line.startswith(ignored):
 if self.debug: print >>self.debug, "IGNORED:", line,
 line = fd.readline()

 match = re.search(pattern, line)

 if self.debug:
 if match: print >>self.debug, "FOUND:", line,
 else: print >>self.debug, "SKIPPED:", line,
 if not match:
 raise GpgProtocolError(self.returncode, 'expected "%s", found "%s"' % (pattern, line))
 return match

[docs] def expect(self, fd, pattern):
 """look for a specific GNUPG status on the next line of output

 this is a stub for expect()
 """
 return self.expect_pattern(fd, '^\[GNUPG:\] ' + pattern)

[docs] def write(self, fd, message):
 """write the specified message to gnupg, usually on stdout

 but really, the pipes are often setup outside of here so the
 fd is hardcoded here
 """
 if self.debug:
 print >>self.debug, "WROTE:", message
 print >>fd, message

[docs] def version(self):
 """return the version of the GPG binary"""
 self.call_command(['version'])
 m = re.search('gpg \(GnuPG\) (\d+.\d+(?:.\d+)*)', self.stdout)
 return m.group(1)

[docs]class Keyring():
 """Keyring functionalities.

 This allows various operations (e.g. listing, signing, exporting
 data) on a keyring.

 Concretely, we talk about a "keyring", but we really mean a set of
 public and private keyrings and their trust databases. In
 practice, this is the equivalent of the GNUPGHOME or --homedir in
 GPG, and in fact this is implemented by setting a specific homedir
 to tell GPG to operate on a specific keyring.

 We actually use the --homedir parameter to gpg to set the keyring
 we operate upon.
 """

 # the context this keyring is associated with
 context = None

 def __init__(self, homedir=None):
 """constructor for the gpg context

 this mostly sets options, and allows passing in a different
 homedir, that will be added to the option right here and
 there.

 by default, we do not create or destroy the keyring, although
 later function calls on the object may modify the keyring (or
 other keyrings, if the homedir option is modified.
 """
 self.context = Context()
 if homedir is not None:
 self.context.set_option('homedir', homedir)
 else:
 homedir = os.path.join(os.path.expanduser("~"), '.gnupg')
 if 'GNUPGHOME' in os.environ:
 homedir = os.environ['GNUPGHOME']
 self.homedir = homedir

[docs] def get_agent_socket(self):
 """get the location of the gpg-agent socket for this keyring"""
 try:
 command = ['gpgconf', '--homedir', self.homedir,
 '--list-dirs', 'agent-socket']
 # silence errors
 conf = subprocess.check_output(command,
 stderr=subprocess.PIPE).rstrip()
 # if we can't find gpgconf at all, assume the agent is in the
 # homedir
 except OSError as e:
 if e.errno == errno.ENOENT:
 conf = self.homedir + '/S.gpg-agent'
 # GnuPG before 2.1.13 doesn't suport --homedir and will exit
 # with an error. assume the agent is in the homedir in that
 # case as well
 except subprocess.CalledProcessError as e:
 conf = self.homedir + '/S.gpg-agent'
 return conf.rstrip()

[docs] def import_data(self, data):
 """Import OpenPGP data blocks into the keyring.

 This takes actual OpenPGP data, ascii-armored or not, gpg will
 gladly take it. This can be signatures, public, private keys,
 etc.

 You may need to set import-flags to import non-exportable
 signatures, however.
 """
 self.context.call_command(['import'], data)
 fd = StringIO(self.context.stderr)
 try:
 self.context.seek(fd, 'IMPORT_OK')
 self.context.seek(fd, 'IMPORT_RES')
 except GpgProtocolError:
 return False
 return True

[docs] def export_data(self, fpr = None, secret = False):
 """Export OpenPGP data blocks from the keyring.

 This exports actual OpenPGP data, by default in binary format,
 but can also be exported asci-armored by setting the 'armor'
 option."""
 self.context.set_option('armor')
 if secret: command = ['export-secret-keys']
 else: command = ['export']
 if fpr: command += [fpr]
 self.context.call_command(command)
 return self.context.stdout

[docs] def verify_file(self, sigfile, filename):
 self.context.call_command(['verify', sigfile, filename])
 fd = StringIO(self.context.stderr)
 try:
 self.context.seek(fd, 'VALIDSIG')
 except GpgProtocolError:
 raise GpgRuntimeError(self.context.returncode, _('verifying file %s failed: %s.') % (filename, self.context.stderr.decode('utf-8')))
 return True

[docs] def fetch_keys(self, fpr, keyserver = None):
 """Download keys from a keyserver into the local keyring

 This expects a fingerprint (or a at least a key id).

 Returns true if the command succeeded.
 """
 if keyserver is not None:
 self.context.set_option('keyserver', keyserver)
 self.context.call_command(['recv-keys', fpr])
 return self.context.returncode == 0

[docs] def get_keys(self, pattern=None, secret=False, public=True, keys=None):
 """load keys matching a specific patterns

 this uses the (rather poor) list-keys API to load keys
 information
 """
 if keys is None:
 keys = {}
 if secret:
 command = ['list-secret-keys']
 if pattern: command += [pattern]
 self.context.call_command(command)
 if self.context.returncode == 0:
 needle = 'sec:'
 for keydata in self.context.stdout.split(needle):
 if not keydata: continue
 keydata = needle + keydata
 key = OpenPGPkey(keydata)
 # check if we already have that key, in which case we
 # add to it instead of adding a new key
 if key.fpr in keys:
 keys[key.fpr].parse_gpg_list(self.context.stdout)
 del key
 else:
 keys[key.fpr] = key
 elif self.context.returncode == 2:
 return None
 else:
 raise GpgProtocolError(self.context.returncode, _('unexpected GPG exit code in list-keys: %d') % self.context.returncode)
 if public:
 command = ['list-keys']
 if pattern: command += [pattern]
 self.context.call_command(command)
 if self.context.returncode == 0:
 # discard trustdb data, first line of output
 self.context.stdout = "\n".join(self.context.stdout.split("\n")[1:])
 for keydata in self.context.stdout.split("pub:"):
 if not keydata: continue
 keydata = "pub:" + keydata
 key = OpenPGPkey(keydata)
 # check if we already have that key, in which case we
 # add to it instead of adding a new key
 if key.fpr in keys:
 keys[key.fpr].parse_gpg_list(self.context.stdout)
 del key
 else:
 keys[key.fpr] = key
 elif self.context.returncode == 2:
 return None
 else:
 raise GpgProtocolError(self.context.returncode, _('unexpected GPG exit code in list-keys: %d') % self.context.returncode)
 if secret:
 # workaround for bug in GPG < 2.1 where revocation
 # information is not correctly populated in
 # --list-secret-keys --with-colons
 for fpr, key in keys.items():
 if key.get_trust() == 'empty':
 self.get_keys(fpr, secret=False, public=True, keys=keys)
 return keys

[docs] def encrypt_data(self, data, recipient):
 """encrypt data using asymetric encryption

 returns the encrypted data or raise a GpgRuntimeError if it fails
 """
 self.context.call_command(['recipient', recipient, '--encrypt'], data)
 if self.context.returncode == 0:
 return self.context.stdout
 else:
 raise GpgRuntimeError(self.context.returncode, _('encryption to %s failed: %s.') % (recipient, self.context.stderr.split("\n")[-2]))

[docs] def decrypt_data(self, data):
 """decrypt data using asymetric encryption

 returns the plaintext data or raise a GpgRuntimeError if it failed.
 """
 self.context.call_command(['--decrypt'], data)
 if self.context.returncode == 0:
 return self.context.stdout
 else:
 raise GpgRuntimeError(self.context.returncode, _('decryption failed: %s') % self.context.stderr.split("\n")[-2])

[docs] def del_uid(self, fingerprint, pattern):
 command = self.context.build_command(['edit-key', fingerprint])
 if self.context.debug:
 print >>self.context.debug, 'command:', command
 proc = subprocess.Popen(command, # nosec
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)
 # start copy-paste from sign_key()
 self.context.expect(proc.stderr, 'GET_LINE keyedit.prompt')
 while True:
 m = self.context.seek_pattern(proc.stdout, '^uid:.::::::::([^:]*):::[^:]*:(\d+),[^:]*:')
 if m and m.group(1) == pattern:
 index = int(m.group(2))
 break
 self.context.write(proc.stdin, str(index))
 self.context.expect(proc.stderr, 'GOT_IT')
 self.context.expect(proc.stderr, 'GET_LINE keyedit.prompt')
 # end of copy-paste from sign_key()
 self.context.write(proc.stdin, 'deluid')
 self.context.expect(proc.stderr, 'GOT_IT')
 self.context.expect(proc.stderr, 'GET_BOOL keyedit.remove.uid.okay')
 self.context.write(proc.stdin, 'y')
 self.context.expect(proc.stderr, 'GOT_IT')
 self.context.expect(proc.stderr, 'GET_LINE keyedit.prompt')
 self.context.write(proc.stdin, 'save')
 self.context.expect(proc.stderr, 'GOT_IT')
 return proc.wait() == 0

[docs] def sign_key(self, pattern, signall = False, local = False):
 """sign a OpenPGP public key

 By default it looks up and signs a specific uid, but it can
 also sign all uids in one shot thanks to GPG's optimization on
 that.

 The pattern here should be a full user id if we sign a
 specific key (default) or any pattern (fingerprint, keyid,
 partial user id) that GPG will accept if we sign all uids.

 @todo that this currently block if the pattern specifies an
 incomplete UID and we do not sign all keys.
 """

 # we iterate over the keys matching the provided
 # keyid, but we should really load those uids from the
 # output of --sign-key
 command = self.context.build_command([['sign-key',
 'lsign-key'][local], pattern])
 if self.context.debug:
 print >>self.context.debug, 'command:', command
 proc = subprocess.Popen(command, # nosec
 stdin=subprocess.PIPE,
 stdout=subprocess.PIPE,
 stderr=subprocess.PIPE)

 # if there are multiple uids to sign, we'll get this point, and a whole other interface
 try:
 multiuid = self.context.expect(proc.stderr, 'GET_BOOL keyedit.sign_all.okay')
 except GpgProtocolError as e:
 if 'sign_uid.okay' in str(e):
 multiuid = False
 else:
 raise GpgRuntimeError(self.context.returncode, _('cannot select uid for signing: %s') % e.found().decode('utf-8'))
 if multiuid:
 if signall: # special case, sign all keys
 self.context.write(proc.stdin, "y")
 self.context.expect(proc.stderr, 'GOT_IT')
 # confirm signature
 try:
 self.context.expect(proc.stderr, 'GET_BOOL sign_uid.okay')
 except GpgProtocolError as e:
 if 'ALREADY_SIGNED' in str(e) or 'sign_uid.dupe_okay' in str(e):
 raise GpgRuntimeError(self.context.returncode, _('you already signed that key'))
 else:
 # propagate gpg error message up
 raise GpgRuntimeError(self.context.returncode, _('unable to confirm key signing: %s') % e.found().decode('utf-8'))
 self.context.write(proc.stdin, 'y')
 self.context.expect(proc.stderr, 'GOT_IT')
 # expect the passphrase confirmation
 # we seek because i have seen a USERID_HINT <keyid> <uid> in some cases
 try:
 self.context.seek(proc.stderr, 'GOOD_PASSPHRASE')
 except GpgProtocolError:
 # GnuPG 2.1 stopped outputing GOOD_PASSPHRASE, so try our luck at just waiting for output
 self.context.returncode = proc.wait()
 if self.context.returncode == 0:
 return True
 else:
 raise GpgRuntimeError(self.context.returncode, _('unable to prompt for passphrase, is gpg-agent running?'))
 return proc.wait() == 0

 # don't sign all uids
 self.context.write(proc.stdin, "n")
 self.context.expect(proc.stderr, 'GOT_IT')
 # select the uid
 self.context.expect(proc.stderr, 'GET_LINE keyedit.prompt')
 while True:
 # XXX: this will hang if the pattern requested is not found, we need a better way!
 m = self.context.seek_pattern(proc.stdout, '^uid:.::::::::([^:]*):::[^:]*:(\d+),[^:]*:')
 if m and m.group(1) == pattern:
 index = int(m.group(2))
 break
 self.context.write(proc.stdin, str(index))
 self.context.expect(proc.stderr, 'GOT_IT')
 # sign the selected uid
 self.context.seek(proc.stderr, 'GET_LINE keyedit.prompt')
 self.context.write(proc.stdin, "sign")
 self.context.expect(proc.stderr, 'GOT_IT')
 # confirm signature
 try:
 self.context.expect(proc.stderr, 'GET_BOOL sign_uid.okay')
 except GpgProtocolError as e:
 # propagate gpg error message up
 raise GpgRuntimeError(self.context.returncode, _('unable to confirm signing one key: %s') % e.found().decode('utf-8'))

 # we fallthrough here if there's only one key to sign
 self.context.write(proc.stdin, 'y')

 try:
 self.context.expect(proc.stderr, 'GOT_IT')
 except GpgProtocolError as e:
 # deal with expired keys
 # XXX: weird that this happens here and not earlier
 if 'EXPIRED' in str(e):
 raise GpgRuntimeError(self.context.returncode, _('key is expired, cannot sign'))
 else:
 raise GpgRuntimeError(self.context.returncode, _('unable to signing a single key: %s') % e.found().decode('utf-8') + proc.stderr.read())
 if multiuid:
 self.context.write(proc.stdin, "save")
 # expect the passphrase confirmation
 try:
 self.context.seek(proc.stderr, 'GOOD_PASSPHRASE')
 except GpgProtocolError:
 # GnuPG 2.1 stopped outputing GOOD_PASSPHRASE, so try our luck at just waiting for output
 self.context.returncode = proc.wait()
 if self.context.returncode == 0:
 return True
 else:
 raise GpgRuntimeError(self.context.returncode, _('password confirmation failed'))
 if multiuid:
 # we save the resulting key in uid selection mode
 self.context.expect(proc.stderr, 'GET_LINE keyedit.prompt')
 self.context.expect(proc.stderr, 'GOT_IT')
 return proc.wait() == 0

[docs]class TempKeyring(Keyring):
 def __init__(self):
 """Override the parent class to generate a temporary GPG home
 that gets destroyed at the end of operations."""
 Keyring.__init__(self, tempfile.mkdtemp(prefix="pygpg-"))

 def __del__(self):
 shutil.rmtree(self.homedir, ignore_errors=True)

[docs]class OpenPGPkey():
 """An OpenPGP key.

 Some of this datastructure is taken verbatim from GPGME.
 """

 @property
 def revoked(self):
 '''Returns whether GnuPG thinks the key has been revoked

 This is the second field of the result of the --list-key --with-colons
 call. Note that this information is only present on public keys,
 i.e. not on secret keys.

 Returns None if it cannot be determined whether this key has
 been revoked.'''
 if self.trust == '':
 # We cannot determine whether this key has been revoked.
 # Locate the public key and try again.
 is_revoked = None
 elif self.trust == 'r':
 is_revoked = True
 else:
 is_revoked = False

 return is_revoked

 @property
 def expired(self):
 if not self.expiry:
 ret = False
 else:
 ret = datetime.now() > self.expiry
 return ret

 # the key has been disabled
 # @todo - not implemented
 disabled = False

 # ?
 invalid = False

 # the various flags on this key
 purpose = {}

 # This is true if the subkey can be used for qualified
 # signatures according to local government regulations.
 # @todo - not implemented
 qualified = False

 # this key has also secret key material
 secret = False

 # This is the public key algorithm supported by this subkey.
 algo = -1

 # This is the length of the subkey (in bits).
 length = None

 # The key fingerprint (a string representation)
 fpr = None

 # The key id (a string representation), only if the fingerprint is unavailable
 # use keyid() instead of this field to find the keyid
 _keyid = None

 # This is the creation timestamp of the subkey. This is -1 if
 # the timestamp is invalid, and 0 if it is not available.
 creation = 0

 # This is the expiration timestamp of the subkey, or 0 if the
 # subkey does not expire.
 _expiry = 0

 @property
 def expiry(self):
 """Returns a datetime from the _expiry field or None if
 the key does not expire"""
 if self._expiry:
 expiry = int(self._expiry)
 if expiry > 0:
 result = datetime.fromtimestamp(expiry)
 else:
 result = None
 elif self._expiry == '':
 result = None
 else:
 raise ValueError("Expiry is %r but we expected an int or string",
 self._expiry)
 return result

 # single-character trust status, see trust_map below for parsing
 trust = None

 # the list of OpenPGPuids associated with this key
 uids = {}

 # the list of subkeys associated with this key
 subkeys = {}

 trust_map = {'o': 'new', # this key is new to the system
 'i': 'invalid', # The key is invalid (e.g. due to a
 # missing self-signature)
 'd': 'disabled', # The key has been disabled
 # (deprecated - use the 'D' in field
 # 12 instead)
 'r': 'revoked', # The key has been revoked
 'e': 'expired', # The key has expired
 '-': 'unknown', # Unknown trust (i.e. no value
 # assigned)
 'q': 'undefined', # Undefined trust, '-' and 'q' may
 # safely be treated as the same
 # value for most purposes
 'n': 'none', # Don't trust this key at all
 'm': 'marginal', # There is marginal trust in this key
 'f': 'full', # The key is fully trusted
 'u': 'ultimate', # The key is ultimately trusted.
 # This often means that the secret
 # key is available, but any key may
 # be marked as ultimately trusted.
 '': 'empty', # trust value was not communicated by gpg
 # this is a bug in gpg 2.1: secret keys do
 # not have trust information attached
 }

 def __init__(self, data=None):
 self.purpose = { 'encrypt': True, # if the public key part can be used to encrypt data
 'sign': True, # if the private key part can be used to sign data
 'certify': True, # if the private key part can be used to sign other keys
 'authenticate': True, # if this key can be used for authentication purposes
 }
 self.uids = {}
 self.subkeys = {}
 if data is not None:
 self.parse_gpg_list(data)

[docs] def keyid(self, l=8):
 if self.fpr is None:
 assert(self._keyid is not None) # nosec
 return self._keyid[-l:]
 return self.fpr[-l:]

[docs] def get_trust(self):
 return OpenPGPkey.trust_map[self.trust]

[docs] def parse_gpg_list(self, text):
 uidslist = []
 for block in text.split("\n"):
 record = block.split(":")
 #for block in record:
 # print >>sys.stderr, block, "|\t",
 #print >>sys.stderr, "\n"
 rectype = record[0]
 if rectype == 'tru':
 (rectype, trust, selflen, algo, keyid, creation, expiry, serial) = record[:8]
 elif rectype == 'fpr':
 if not self.fpr:
 self.fpr = record[9]
 elif rectype == 'pub':
 (null, self.trust, self.length, self.algo, keyid, self.creation, self._expiry, serial, trust, uid, sigclass, purpose, smime) = record[:13]
 for p in self.purpose:
 self.purpose[p] = p[0].lower() in purpose.lower()
 elif rectype == 'uid':
 (rectype, trust, null, null, null, creation, expiry, uidhash, null, uid) = record[:10]
 uid = OpenPGPuid(uid, trust, creation, expiry, uidhash)
 self.uids[uidhash] = uid
 uidslist.append(uid)
 elif rectype == 'sub':
 subkey = OpenPGPkey()
 (rectype, trust, subkey.length, subkey.algo, subkey._keyid, subkey.creation, subkey._expiry, serial, trust, uid, sigclass, purpose, smime) = record[:13]
 for p in subkey.purpose:
 subkey.purpose[p] = p[0].lower() in purpose.lower()
 self.subkeys[subkey._keyid] = subkey
 elif rectype == 'sec':
 (null, self.trust, self.length, self.algo, keyid, self.creation, self._expiry, serial, trust, uid, sigclass, purpose, smime) = record[:13]
 self.secret = True
 elif rectype == 'ssb':
 subkey = OpenPGPkey()
 (rectype, trust, subkey.length, subkey.algo, subkey._keyid, subkey.creation, subkey._expiry, serial, trust, uid, sigclass, purpose, smime) = record[:13]
 if subkey._keyid in self.subkeys:
 # XXX: nothing else to add here?
 self.subkeys[subkey._keyid].secret = True
 else:
 self.subkeys[subkey._keyid] = subkey
 elif rectype == 'uat':
 pass # user attributes, ignore for now
 elif rectype == 'rvk':
 pass # revocation key, ignored for now
 elif rectype == '':
 pass
 else:
 # XXX: need to log this
 #raise NotImplementedError(_("record type '%s' not implemented") % rectype)
 pass # ignore unknown records for forward-compatibilty
 self.uidslist = uidslist

 def __str__(self):
 ret = u'pub [%s] %sR/' % (self.get_trust(), self.length)
 ret += self.keyid(8) + u" " + self.creation
 if self._expiry: ret += u' [expiry: ' + str(self.expiry) + ']'
 ret += u"\n"
 ret += u' Fingerprint = ' + self.format_fpr() + "\n"
 i = 1
 for uid in self.uidslist:
 ret += u"uid %d [%s] %s\n" % (i, uid.get_trust(), uid.uid.decode('utf-8', 'replace'))
 i += 1
 for subkey in self.subkeys.values():
 ret += u"sub " + subkey.length + u"R/" + subkey.keyid(8) + u" " + subkey.creation
 if subkey._expiry: ret += u' [expiry: ' + str(subkey.expiry) + "]"
 ret += u"\n"
 return ret

 def __repr__(self):
 s = '<OpenPGPkey(%s UIDs:%d)>'
 s %= (self.fpr, len(self.uidslist))

 return s

[docs] def format_fpr(self):
 """display a clean version of the fingerprint

 this is the display we usually see
 """
 l = list(self.fpr) # explode
 s = ''
 for i in range(10):
 # output 4 chars
 s += ''.join(l[4*i:4*i+4])
 # add a space, except at the end
 if i < 9: s += ' '
 # add an extra space in the middle
 if i == 4: s += ' '
 return s

 def __eq__(self, other):
 """
 Two keys are equal if their fingerprint matches. If either don't
 have a fingerprint, we can't say for sure that they're equal
 """
 if isinstance(other, self.__class__):
 return (self.fpr and
 self.fpr and other.fpr
 and self.fpr == other.fpr)
 else:
 return NotImplemented

 def __neq__(self, other):
 if isinstance(other, self.__class__):
 return not self.__eq__(other)
 else:
 return NotImplemented

[docs]class OpenPGPuid():
 def __init__(self, uid, trust, creation = 0, expire = None, uidhash = ''):
 self.uid = uid
 self.trust = trust
 self.creation = creation
 self.expire = expire
 self.uidhash = uidhash

 @property
 def revoked(self):
 '''Whether this UID has been revoked

 Note that, due to GnuPG not exporting that information
 for secret keys, UIDs of secret keys do not carry that
 information.

 Return None if it cannot be determined whether this UID
 has been revoked. Try again with the public key.'''
 if self.trust == '':
 is_revoked = None
 elif self.trust == 'r':
 is_revoked = True
 else:
 is_revoked = False
 return is_revoked

[docs] def get_trust(self):
 return OpenPGPkey.trust_map[self.trust]

 def __repr__(self):
 s = '<OpenPGPuid(%s) [%s:%s:%s]>'
 s %= (self.uid, self.trust, self.creation, self.expire)

 return s

[docs]class GpgProtocolError(IOError):
 """simple exception raised when we have trouble talking with GPG

 we try to pass the subprocess.popen.returncode as an errorno and a
 significant description string

 this error shouldn't be propagated to the user, because it will
 contain mostly "expect" jargon from the DETAILS.txt file. the gpg
 module should instead raise a GpgRutimeError with a user-readable
 error message (e.g. "key not found").
 """

[docs] def match(self):
 return re.search(r'(?:\[Errno [0-9]*\])?expected "([^"]*)", found "(.*)\n*"', str(self))

[docs] def found(self):
 if self.match():
 return self.match().group(2)
 else:
 return '<no error found in GPG output>'

[docs] def expected(self):
 if self.match():
 return self.match().group(1)
 else:
 return '<not waiting for pattern>'

[docs]class GpgRuntimeError(IOError):
 pass

 © Copyright 2014-2016, Antoine Beaupré and Emma Peel.
 Created using Sphinx 1.3.5.

_images/sign-ui-mockup.png
Antoine Beaupré (march 12, 2013)
Blahblahblag extra useless stuff

Anarcat at DebConf (march 12, 2013)
Jane from FOSDEM (2012)

1. Main menu : user chooses which of two activities to
undertake. In this mockup, the user clicks "Sign a key"

USB Camera (/devivideo0) s
noneanea |

Enter OpenPGP fingerprint manually

2. Camera off screen : video devices are enumerated in a drop-
down menu at the top of the screen. In the centre, a pictogram
depicting a Monkeycode appears where in place of the video
stream. To proceed, the user must turn on the camera.

USB Camera (/dev/video0) <

3. Camera on screen : a video stream appears in place of the
pictogram. The user is instructed to show the Monkeycode to the
camera. The camera can be turned off at any time.

4. Monkeycode frame and key search : the video stream is
replaced with the still frame in which the Monkeycode was
detected, with a red square around the detected code.
Monkeysign automatically searches the user's keyring, the local
network and the Internet for the public key matching the
Monkeycode.

a0
a0
(]

rem | (S

} 8a. Success dialog : user is h; , clicks finish to go b
Sty 7a. Sending email, autoconfigure success 9 PPy, 9

Sign and send to keyservers main menu
‘Save for later

eromesdoa .

6a. Signing options : the user is offered several options of what
to do with the signature. (Exclusive or not?) The signature is
created and acted upon when the "Sign the key" button is
pressed. Previous returns the user to screen 2. Cancel returns to
main menu.

8b. Error dialog : show the operation that failed includin
debugging information. The user can click Previous to g
the key signing options (screen 6a) or Cancel to go back
main menu.

_images/share-ui-mockup.png
Monkeysign Monkeysign

This is your Monkeycode.

You may ask someone to point their camera device at this screen
and sign your key using Monkeysign.

Options v
Share your OpenPGP key Sign someone's OpenPGP key
using the Monkeycode. using their Monkeycode.
stare mykey p Sign a key
Exit Change identity | Jerome Charaoui <jerome@riseup.net> & Finish
1. Main menu : user chooses which of two activities to 3a. Monkeycode : the Monkeycode is generated and displayed on 4. Finish : After having the Monkeycode scanned, or printed or
undertake. In this mockup, the user clicks "Share my key" the screen, with a hint as to how to use the code. The "Options” saved as an image, the user clicks Finish and is returned to
section is collapsed. The "change identity" dropdown is showed screen 1.
only if multiple secret keys are available.
Monkeysign

This is your Monkeycode.
You may ask someone to point their camera device at this screen
and sign your key using Monkeysign.

{n Options v
Print

save as image

The graphic on the left
contains your OpenPGP
key fingerprint:
40EA 15EC CB36 2510 2E03
8836 9CF9 C308 2D90 F606

Change identity | Jerome Charaoui <jerome@riseup.net> (1970-01-01, expired)

Finish

3b. Monkeycode : the user can expand the Other options
section by clicking on the title. If there is only one valid key, w