MongoEngine Documentation
Release 0.10.5

Ross Lawley

Nov 12, 2017

Contents

3

4

5

Community
Contributing
Changes
Offline Reading

Indices and tables

Python Module Index

929

101

MongoEngine Documentation, Release 0.10.5

MongoEngine is an Object-Document Mapper, written in Python for working with MongoDB. To install it, simply

run

$ pip install -U mongoengine

Tutorial A quick tutorial building a tumblelog to get you up and running with MongoEngine.

User Guide The Full guide to MongoEngine — from modeling documents to storing files, from querying for data
to firing signals and everything between.

API Reference The complete API documentation — the innards of documents, querysets and fields.
Upgrading How to upgrade MongoEngine.
Django Support Using MongoEngine and Django

Contents

MongoEngine Documentation, Release 0.10.5

2 Contents

cHAPTER 1

Community

To get help with using MongoEngine, use the MongoEngine Users mailing list or the ever popular stackoverflow.

http://groups.google.com/group/mongoengine-users
http://www.stackoverflow.com

MongoEngine Documentation, Release 0.10.5

4 Chapter 1. Community

CHAPTER 2

Contributing

Yes please! We are always looking for contributions, additions and improvements.

The source is available on GitHub and contributions are always encouraged. Contributions can be as simple as
minor tweaks to this documentation, the website or the core.

To contribute, fork the project on GitHub and send a pull request.

http://github.com/MongoEngine/mongoengine
http://github.com/MongoEngine/mongoengine

MongoEngine Documentation, Release 0.10.5

6 Chapter 2. Contributing

CHAPTER 3

Changes

See the Changelog for a full list of changes to MongoEngine and Upgrading for upgrade information.

Note: Always read and test the upgrade documentation before putting updates live in production 3)

upgrade

MongoEngine Documentation, Release 0.10.5

8 Chapter 3. Changes

cHAPTER 4

Offline Reading

Download the docs in pdf or epub formats for offline reading.

4.1 Tutorial

This tutorial introduces MongoEngine by means of example — we will walk through how to create a simple
Tumblelog application. A Tumblelog is a type of blog where posts are not constrained to being conventional text-
based posts. As well as text-based entries, users may post images, links, videos, etc. For simplicity’s sake, we’ll
stick to text, image and link entries in our application. As the purpose of this tutorial is to introduce MongoEngine,
we’ll focus on the data-modelling side of the application, leaving out a user interface.

4.1.1 Getting started

Before we start, make sure that a copy of MongoDB is running in an accessible location — running it locally will
be easier, but if that is not an option then it may be run on a remote server. If you haven’t installed mongoengine,
simply use pip to install it like so:

$ pip install mongoengine

Before we can start using MongoEngine, we need to tell it how to connect to our instance of mongod. For this
we use the connect () function. If running locally the only argument we need to provide is the name of the
MongoDB database to use:

from mongoengine import =«

connect ('tumblelog')

There are lots of options for connecting to MongoDB, for more information about them see the Connecting to
MongoDB guide.

4.1.2 Defining our documents

MongoDB is schemaless, which means that no schema is enforced by the database — we may add and remove
fields however we want and MongoDB won’t complain. This makes life a lot easier in many regards, especially
when there is a change to the data model. However, defining schemata for our documents can help to iron out

https://media.readthedocs.org/pdf/mongoengine-odm/latest/mongoengine-odm.pdf
https://media.readthedocs.org/epub/mongoengine-odm/latest/mongoengine-odm.epub

MongoEngine Documentation, Release 0.10.5

bugs involving incorrect types or missing fields, and also allow us to define utility methods on our documents in
the same way that traditional ORMS (Object-Relational Mappers) do.

In our Tumblelog application we need to store several different types of information. We will need to have a
collection of users, so that we may link posts to an individual. We also need to store our different types of posts
(eg: text, image and link) in the database. To aid navigation of our Tumblelog, posts may have tags associated
with them, so that the list of posts shown to the user may be limited to posts that have been assigned a specific
tag. Finally, it would be nice if comments could be added to posts. We’ll start with users, as the other document
models are slightly more involved.

Users

Just as if we were using a relational database with an ORM, we need to define which fields a User may have, and
what types of data they might store:

class User (Document) :
email = StringField(required=True)
first_name = StringField(max_length=50)
last_name = StringField(max_length=50)

This looks similar to how the structure of a table would be defined in a regular ORM. The key difference is that
this schema will never be passed on to MongoDB — this will only be enforced at the application level, making
future changes easy to manage. Also, the User documents will be stored in a MongoDB collection rather than a
table.

Posts, Comments and Tags

Now we’ll think about how to store the rest of the information. If we were using a relational database, we would
most likely have a table of posts, a table of comments and a table of tags. To associate the comments with
individual posts, we would put a column in the comments table that contained a foreign key to the posts table.
We’d also need a link table to provide the many-to-many relationship between posts and tags. Then we’d need to
address the problem of storing the specialised post-types (text, image and link). There are several ways we can
achieve this, but each of them have their problems — none of them stand out as particularly intuitive solutions.

Posts

Happily mongoDB isn’t a relational database, so we’re not going to do it that way. As it turns out, we can use
MongoDB’s schemaless nature to provide us with a much nicer solution. We will store all of the posts in one
collection and each post type will only store the fields it needs. If we later want to add video posts, we don’t
have to modify the collection at all, we just start using the new fields we need to support video posts. This fits
with the Object-Oriented principle of inheritance nicely. We can think of Post as a base class, and TextPost,
ImagePost and LinkPost as subclasses of Post. In fact, MongoEngine supports this kind of modelling out
of the box — all you need do is turn on inheritance by setting allow_inheritance to True in the meta:

class Post (Document) :
title = StringField(max_length=120, required=True)
author = ReferenceField (User)

meta = {'allow_inheritance': True}

class TextPost (Post) :
content StringField()

class ImagePost (Post):
image_path = StringField()

class LinkPost (Post) :
link_url = StringField()

10 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

We are storing a reference to the author of the posts using a ReferenceField object. These are similar to
foreign key fields in traditional ORMs, and are automatically translated into references when they are saved, and
dereferenced when they are loaded.

Tags

Now that we have our Post models figured out, how will we attach tags to them? MongoDB allows us to store
lists of items natively, so rather than having a link table, we can just store a list of tags in each post. So, for
both efficiency and simplicity’s sake, we’ll store the tags as strings directly within the post, rather than storing
references to tags in a separate collection. Especially as tags are generally very short (often even shorter than a
document’s id), this denormalisation won’t impact very strongly on the size of our database. So let’s take a look
that the code our modified Post class:

class Post (Document) :
title = StringField(max_length=120, required=True)
author = ReferenceField (User)
tags = ListField(StringField (max_length=30))

The ListField object that is used to define a Post’s tags takes a field object as its first argument — this means
that you can have lists of any type of field (including lists).

Note: We don’t need to modify the specialised post types as they all inherit from Post.

Comments

A comment is typically associated with one post. In a relational database, to display a post with its comments, we
would have to retrieve the post from the database, then query the database again for the comments associated with
the post. This works, but there is no real reason to be storing the comments separately from their associated posts,
other than to work around the relational model. Using MongoDB we can store the comments as a list of embedded
documents directly on a post document. An embedded document should be treated no differently that a regular
document; it just doesn’t have its own collection in the database. Using MongoEngine, we can define the structure
of embedded documents, along with utility methods, in exactly the same way we do with regular documents:

class Comment (EmbeddedDocument) :
content = StringField()
name = StringField(max_length=120)

We can then store a list of comment documents in our post document:

class Post (Document) :
title = StringField(max_length=120, required=True)
author = ReferenceField (User)
tags = ListField(StringField(max_length=30))
comments = ListField (EmbeddedDocumentField (Comment))

Handling deletions of references

The ReferenceField object takes a keyword reverse_delete_rule for handling deletion rules if the reference
is deleted. To delete all the posts if a user is deleted set the rule:

class Post (Document) :
title = StringField(max_length=120, required=True)
author = ReferenceField (User, reverse_delete_rule=CASCADE)
tags = ListField(StringField (max_length=30))
comments = ListField (EmbeddedDocumentField (Comment))

4.1. Tutorial 11

MongoEngine Documentation, Release 0.10.5

See ReferenceField for more information.

Note: MapFields and DictFields currently don’t support automatic handling of deleted references

4.1.3 Adding data to our Tumblelog

Now that we’ve defined how our documents will be structured, let’s start adding some documents to the database.
Firstly, we’ll need to create a User object:

ross = User (email='rosslexample.com', first_name='Ross', last_name='Lawley') .save ()

Note: We could have also defined our user using attribute syntax:

ross = User (email='rosslexample.com")
ross.first_name = 'Ross'
ross.last_name = 'Lawley'

ross.save ()

Now that we’ve got our user in the database, let’s add a couple of posts:

postl = TextPost (title='Fun with MongoEngine', author=john)
postl.content = 'Took a look at MongoEngine today, looks pretty cool.'
postl.tags = ['mongodb', 'mongoengine']

postl.save ()

post2 = LinkPost (title='MongoEngine Documentation', author=ross)
post2.link_url = 'http://docs.mongoengine.com/"

post2.tags = ['mongoengine']

post2.save ()

Note: If you change a field on a object that has already been saved, then call save () again, the document will
be updated.

4.1.4 Accessing our data

So now we’ve got a couple of posts in our database, how do we display them? Each document class (i.e. any class
that inherits either directly or indirectly from Document) has an ob jects attribute, which is used to access the
documents in the database collection associated with that class. So let’s see how we can get our posts’ titles:

for post in Post.objects:
print post.title

Retrieving type-specific information

This will print the titles of our posts, one on each line. But What if we want to access the type-specific data
(link_url, content, etc.)? One way is simply to use the objects attribute of a subclass of Post:

for post in TextPost.objects:
print post.content

12 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Using TextPost’s ob ject s attribute only returns documents that were created using TextPost. Actually, there
is a more general rule here: the objects attribute of any subclass of Document only looks for documents that
were created using that subclass or one of its subclasses.

So how would we display all of our posts, showing only the information that corresponds to each post’s specific
type? There is a better way than just using each of the subclasses individually. When we used Post ‘s objects
attribute earlier, the objects being returned weren’t actually instances of Post — they were instances of the
subclass of Post that matches the post’s type. Let’s look at how this works in practice:

for post in Post.objects:
print post.title
print '=' x len(post.title)

if isinstance (post, TextPost):
print post.content

if isinstance (post, LinkPost):
print 'Link:', post.link_url

print

This would print the title of each post, followed by the content if it was a text post, and “Link: <url>” if it was a
link post.

Searching our posts by tag

The objects attribute of a Document is actually a QuerySet object. This lazily queries the database only
when you need the data. It may also be filtered to narrow down your query. Let’s adjust our query so that only
posts with the tag “mongodb” are returned:

for post in Post.objects(tags="'mongodb') :
print post.title

There are also methods available on QuerySet objects that allow different results to be returned, for example,
calling first () on the objects attribute will return a single document, the first matched by the query you
provide. Aggregation functions may also be used on QuerySet objects:

num_posts = Post.objects (tags="'mongodb') .count ()

)

print 'Found posts with tag "mongodb"' % num_posts

Learning more about mongoengine

If you got this far you’ve made a great start, so well done! The next step on your mongoengine journey is the full
user guide, where you can learn indepth about how to use mongoengine and mongodb.

4.2 User Guide

4.2.1 Installing MongoEngine

To use MongoEngine, you will need to download MongoDB and ensure it is running in an accessible location.
You will also need PyMongo to use MongoEngine, but if you install MongoEngine using setuptools, then the
dependencies will be handled for you.

MongoEngine is available on PyPI, so to use it you can use pip:

$ pip install mongoengine

4.2. User Guide 13

guide/index.html
guide/index.html
http://mongodb.org/
http://api.mongodb.org/python

MongoEngine Documentation, Release 0.10.5

Alternatively, if you don’t have setuptools installed, download it from PyPi and run

$ python setup.py install

To use the bleeding-edge version of MongoEngine, you can get the source from GitHub and install it as above:

$ git clone git://github.com/mongoengine/mongoengine
$ cd mongoengine
$ python setup.py install

4.2.2 Connecting to MongoDB

To connect to a running instance of mongod, use the connect () function. The first argument is the name of
the database to connect to:

from mongoengine import connect
connect ('projectl")

By default, MongoEngine assumes that the mongod instance is running on localhost on port 27017. If MongoDB
is running elsewhere, you should provide the host and port arguments to connect ():

’connect('projectl', host="'192.168.1.35", port=12345)

If the database requires authentication, username and passwoxrd arguments should be provided:

’connect('projectl', username="'webapp', password='pwdl23")

URI style connections are also supported — just supply the URI as the host to connect ():

’connect('projectl', host="mongodb://localhost/database_name"')

Note: Database, username and password from URI string overrides corresponding parameters in connect ():

connect (
name='test',
username='user',
password="'12345",
host="mongodb://admin:gwerty@localhost/production’

will establish connection to product ion database using admin username and gwerty password.

ReplicaSets

MongoEngine supports MongoReplicaSetClient. To use them, please use an URI style connection and
provide the replicaSet name in the connection kwargs.

Read preferences are supported through the connection or via individual queries by passing the read_preference

Bar.objects () .read_preference (ReadPreference.PRIMARY)
Bar.objects (read_preference=ReadPreference.PRIMARY)

Multiple Databases

Multiple database support was added in MongoEngine 0.6. To use multiple databases you can use connect ()
and provide an alias name for the connection - if no alias is provided then “default” is used.

14 Chapter 4. Offline Reading

http://pypi.python.org/pypi/mongoengine/
http://github.com/mongoengine/mongoengine/

MongoEngine Documentation, Release 0.10.5

In the background this uses register._connection () to store the data and you can register all aliases up
front if required.

Individual documents can also support multiple databases by providing a db_alias in their meta data. This allows
DBRef objects to point across databases and collections. Below is an example schema, using 3 different databases
to store data:

class User (Document) :
name = StringField()

meta = {"db _alias": "user-db"}

class Book (Document) :
name = StringField()

meta = {"db_alias": "book-db"}
class AuthorBooks (Document) :
author = ReferenceField (User)

book = ReferenceField (Book)

meta = {"db_alias": "users-books-db"}

Context Managers

Sometimes you may want to switch the database or collection to query against for a class. For example, archiving
older data into a separate database for performance reasons or writing functions that dynamically choose collec-
tions to write document to.

Switch Database

The switch_db context manager allows you to change the database alias for a given class allowing quick and
easy access the same User document across databases:

from mongoengine.context_managers import switch_db

class User (Document) :

name = StringField()
meta = {"db_alias": "user-db"}
with switch_db (User, 'archive-user-db') as User:
User (name="Ross") .save () # Saves the 'archive-user-db'

Switch Collection

The switch_collection context manager allows you to change the collection for a given class allowing
quick and easy access the same Group document across collection:

from mongoengine.context_managers import switch_collection

class Group (Document) :
name = StringField()

Group (name="test") .save () # Saves 1in the default db
with switch_collection (Group, 'group2000') as Group:

Group (name="hello Group 2000 collection!") .save () # Saves in group2000_
—~collection

4.2. User Guide 15

MongoEngine Documentation, Release 0.10.5

Note: Make sure any aliases have been registered with register_connection () or connect () before
using the context manager.

4.2.3 Defining documents

In MongoDB, a document is roughly equivalent to a row in an RDBMS. When working with relational databases,
rows are stored in tables, which have a strict schema that the rows follow. MongoDB stores documents in
collections rather than tables — the principal difference is that no schema is enforced at a database level.

Defining a document’s schema
MongoEngine allows you to define schemata for documents as this helps to reduce coding errors, and allows for
utility methods to be defined on fields which may be present.

To define a schema for a document, create a class that inherits from Document. Fields are specified by adding
field objects as class attributes to the document class:

from mongoengine import x
import datetime

class Page (Document) :
title = StringField(max_length=200, required=True)
date_modified = DateTimeField(default=datetime.datetime.now)

As BSON (the binary format for storing data in mongodb) is order dependent, documents are serialized based on
their field order.

Dynamic document schemas

One of the benefits of MongoDb is dynamic schemas for a collection, whilst data should be planned and organised
(after all explicit is better than implicit!) there are scenarios where having dynamic / expando style documents is
desirable.

DynamicDocument documents work in the same way as Document but any data / attributes set to them will
also be saved

from mongoengine import =«

class Page (DynamicDocument) :
title = StringField(max_length=200, required=True)

Create a new page and add tags

>>> page = Page(title='Using MongoEngine')
>>> page.tags = ['mongodb', 'mongoengine']
>>> page.save ()

>>> Page.objects (tags='mongoengine') .count ()
>>> 1

Note: There is one caveat on Dynamic Documents: fields cannot start with _

Dynamic fields are stored in creation order after any declared fields.

16 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Fields

By default, fields are not required. To make a field mandatory, set the required keyword argument of a field
to True. Fields also may have validation constraints available (such as max_length in the example above).
Fields may also take default values, which will be used if a value is not provided. Default values may optionally
be a callable, which will be called to retrieve the value (such as in the above example). The field types available
are as follows:

* BinaryField
* BooleanField
* ComplexDateTimeField

e DateTimeField

DecimalField

DictField

* DynamicField

EmailField

EmbeddedDocumentField

FileField

FloatField
* GenericEmbeddedDocumentField
* GenericReferenceField

* GeoPointField

ImageField

IntField

e ListField

MapField

ObjectIdField
* ReferenceField

* SequenceField

SortedListField

StringField

URLField

UUIDField

PointField

LineStringField

* PolygonField

MultiPointField

MultiLineStringField

MultiPolygonField

4.2. User Guide 17

MongoEngine Documentation, Release 0.10.5

Field arguments

Each field type can be customized by keyword arguments. The following keyword arguments can be set on all
fields:

db_field (Default: None) The MongoDB field name.

required (Default: False) If set to True and the field is not set on the document instance, a
ValidationError will be raised when the document is validated.

default (Default: None) A value to use when no value is set for this field.

The definition of default parameters follow the general rules on Python, which means that some care should
be taken when dealing with default mutable objects (like in ListFieldor DictField):

class ExampleFirst (Document) :
Default an empty list
values = ListField(IntField(), default=list)

class ExampleSecond (Document) :
Default a set of values
values ListField (IntField(), default=lambda: [1,2,3])

class ExampleDangerous (Document) :

This can make an .append call to add values to the default (and all the_
—following objects),

instead to just an object
ListField(IntField(), default=[1,2,31)

values

Note: Unsetting a field with a default value will revert back to the default.

unique (Default: False) When True, no documents in the collection will have the same value for this field.

unique_with (Default: None) A field name (or list of field names) that when taken together with this field,
will not have two documents in the collection with the same value.

primary_key (Default: False) When True, use this field as a primary key for the collection. DictField and
EmbeddedDocuments both support being the primary key for a document.

Note: If set, this field is also accessible through the pk field.

choices (Default: None) An iterable (e.g. a list or tuple) of choices to which the value of this field should be
limited.

Can be either be a nested tuples of value (stored in mongo) and a human readable key

SIZE = (('S', 'Small'),
('"M', 'Medium'),
('L', 'Large'),
(!
(

'XL', 'Extra Large'),
'XXL', 'Extra Extra Large'))

class Shirt (Document) :
size = StringField(max_length=3, choices=SIZE)

Or a flat iterable just containing values

SIZE = ('S', 'M', 'L', 'XL', 'XXL')

18 Chapter 4. Offline Reading

http://docs.python.org/reference/compound_stmts.html#function-definitions

MongoEngine Documentation, Release 0.10.5

class Shirt (Document) :
size = StringField(max_length=3, choices=SIZE)

*»xkwargs (Optional) You can supply additional metadata as arbitrary additional keyword arguments. You can
not override existing attributes, however. Common choices include help_text and verbose_name, commonly
used by form and widget libraries.

List fields

MongoDB allows storing lists of items. To add a list of items to a Document, use the ListField field type.
ListField takes another field object as its first argument, which specifies which type elements may be stored
within the list:

class Page (Document) :
tags = ListField(StringField (max_length=50))

Embedded documents

MongoDB has the ability to embed documents within other documents. Schemata may be defined for these
embedded documents, just as they may be for regular documents. To create an embedded document, just define a
document as usual, but inherit from EmbeddedDocument rather than Document:

class Comment (EmbeddedDocument) :
content = StringField()

To embed the document within another document, use the EmbeddedDocumentField field type, providing
the embedded document class as the first argument:

class Page (Document) :

comments = ListField (EmbeddedDocumentField (Comment))
commentl = Comment (content='Good work!")
comment?2 = Comment (content='Nice article!")

page = Page (comments=[commentl, comment2])

Dictionary Fields

Often, an embedded document may be used instead of a dictionary — generally this is recommended as dictionaries
don’t support validation or custom field types. However, sometimes you will not know the structure of what you
want to store; in this situation a DictField is appropriate:

class SurveyResponse (Document) :

date = DateTimeField()

user = ReferenceField (User)

answers = DictField()
survey_response = SurveyResponse (date=datetime.now (), user=request.user)
response_form = ResponseForm(request.POST)
survey_response.answers = response_form.cleaned_data()

survey_response.save ()

Dictionaries can store complex data, other dictionaries, lists, references to other objects, so are the most flexible
field type available.

4.2. User Guide 19

MongoEngine Documentation, Release 0.10.5

Reference fields

References may be stored to other documents in the database using the ReferenceField. Pass in another
document class as the first argument to the constructor, then simply assign document objects to the field:

class User (Document) :
name = StringField()

class Page (Document) :
content = StringField()
author = ReferenceField (User)

john = User (name="John Smith")
john.save ()

post = Page (content="Test Page")
post.author = john
post.save ()

The User object is automatically turned into a reference behind the scenes, and dereferenced when the Page
object is retrieved.

To add a ReferenceField that references the document being defined, use the string ' self' in place of the
document class as the argument to ReferenceField's constructor. To reference a document that has not yet
been defined, use the name of the undefined document as the constructor’s argument:

class Employee (Document) :
name = StringField()
boss = ReferenceField('self')
profile_page = ReferenceField('ProfilePage’)

class ProfilePage (Document) :
content = StringField()

One to Many with ListFields

If you are implementing a one to many relationship via a list of references, then the references are stored as
DBRefs and to query you need to pass an instance of the object to the query:

class User (Document) :
name = StringField()

class Page (Document) :
content = StringField()

authors = ListField (ReferenceField (User))
bob = User (name="Bob Jones") .save ()
john = User (name="John Smith") .save ()
Page (content="Test Page", authors=[bob, Jjohn]) .save()

Page (content="Another Page", authors=[john]) .save/()

Find all pages Bob authored
Page.objects (authors__in=[bob])

Find all pages that both Bob and John have authored
Page.objects (authors__all=[bob, john])

Remove Bob from the authors for a page.
Page.objects (id="...") .update_one (pull__authors=bob)

20 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Add John to the authors for a page.
Page.objects (id="'...") .update_one (push__authors=john)

Dealing with deletion of referred documents

By default, MongoDB doesn’t check the integrity of your data, so deleting documents that other documents still
hold references to will lead to consistency issues. Mongoengine’s ReferenceField adds some functionality to
safeguard against these kinds of database integrity problems, providing each reference with a delete rule specifica-
tion. A delete rule is specified by supplying the reverse_delete_rule attributes onthe ReferenceField
definition, like this:

class ProfilePage (Document) :

employee = ReferenceField('Employee', reverse_delete_rule=mongoengine.CASCADE)

The declaration in this example means that when an Employee object is removed, the ProfilePage that
references that employee is removed as well. If a whole batch of employees is removed, all profile pages that are
linked are removed as well.

Its value can take any of the following constants:

mongoengine.DO_NOTHING This is the default and won’t do anything. Deletes are fast, but may cause
database inconsistency or dangling references.

mongoengine.DENY Deletion is denied if there still exist references to the object being deleted.

mongoengine.NULLIFY Any object’s fields still referring to the object being deleted are removed (using
MongoDB’s “unset” operation), effectively nullifying the relationship.

mongoengine.CASCADE Any object containing fields that are referring to the object being deleted are deleted
first.

mongoengine.PULL Removes the reference to the object (using MongoDB’s “pull” operation) from any ob-
ject’sfields of ListField (ReferenceField).

Warning: A safety note on setting up these delete rules! Since the delete rules are not recorded on the
database level by MongoDB itself, but instead at runtime, in-memory, by the MongoEngine module, it is of
the upmost importance that the module that declares the relationship is loaded BEFORE the delete is invoked.

If, for example, the Emp1loyee object lives in the payrol1l app, and the ProfilePage in the people app,
it is extremely important that the people app is loaded before any employee is removed, because otherwise,
MongoEngine could never know this relationship exists.

In Django, be sure to put all apps that have such delete rule declarations in their models.py in the
INSTALLED_APPS tuple.

Warning: Signals are not triggered when doing cascading updates / deletes - if this is required you must
manually handle the update / delete.

Generic reference fields

A second kind of reference field also exists, GenericReferenceField. This allows you to reference any
kind of Document, and hence doesn’t take a Document subclass as a constructor argument:

class Link (Document) :
url = StringField()

4.2. User Guide 21

MongoEngine Documentation, Release 0.10.5

class Post (Document) :
title = StringField()

class Bookmark (Document) :
bookmark_object = GenericReferenceField()

link = Link(url='http://hmarr.com/mongoengine/")
link.save ()

post = Post (title='Using MongoEngine')
post.save ()

Bookmark (bookmark_object=1ink) .save ()
Bookmark (bookmark_object=post) .save ()

Note: Using GenericReferenceFields is slightly less efficient than the standard Re ferenceFields,
so if you will only be referencing one document type, prefer the standard ReferenceField.

Uniqueness constraints

MongoEngine allows you to specify that a field should be unique across a collection by providing unique=True
to a Field's constructor. If you try to save a document that has the same value for a unique field as a document
that is already in the database, a Not UniqueError will be raised. You may also specify multi-field uniqueness
constraints by using unique_with, which may be either a single field name, or a list or tuple of field names:

class User (Document) :

username = StringField (unique=True)
first_name = StringField()
last_name = StringField(unique_with="'first_ name')

Skipping Document validation on save

You can also skip the whole document validation process by setting validate=False when calling the
save () method:

class Recipient (Document) :

name = StringField()

email = EmailField()
recipient = Recipient (name='admin', email='root@localhost')
recipient.save () # will raise a ValidationError while

recipient.save (validate=False) # won't

Document collections

Document classes that inherit directly from Document will have their own collection in the database. The name
of the collection is by default the name of the class, converted to lowercase (so in the example above, the collection
would be called page). If you need to change the name of the collection (e.g. to use MongoEngine with an existing
database), then create a class dictionary attribute called meta on your document, and set collection to the
name of the collection that you want your document class to use:

class Page (Document) :
title = StringField (max_length=200, required=True)
meta = {'collection': 'cmsPage'}

22 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Capped collections

A Document may use a Capped Collection by specifying max_documents and max_size in the meta
dictionary. max_document s is the maximum number of documents that is allowed to be stored in the collection,
and max_size is the maximum size of the collection in bytes. max_size is rounded up to the next multiple
of 256 by MongoDB internally and mongoengine before. Use also a multiple of 256 to avoid confusions. If
max_size is not specified and max_documents is, max_size defaults to 10485760 bytes (10MB). The
following example shows a Log document that will be limited to 1000 entries and 2MB of disk space:

class Log (Document) :
ip_address = StringField()
meta = {'max_documents': 1000, 'max_size': 2000000}

Indexes

You can specify indexes on collections to make querying faster. This is done by creating a list of index specifica-
tions called indexes in the meta dictionary, where an index specification may either be a single field name, a
tuple containing multiple field names, or a dictionary containing a full index definition.

A direction may be specified on fields by prefixing the field name with a + (for ascending) or a - sign (for descend-
ing). Note that direction only matters on multi-field indexes. Text indexes may be specified by prefixing the field
name with a $. Hashed indexes may be specified by prefixing the field name with a #:

class Page (Document) :
category = IntField()
title = StringField()
rating = StringField()
created = DateTimeField()
meta = {
'indexes': [
'title',
'Stitle', # text index
'#title', # hashed index
('title', '-rating'),
('category', '

{

_cls"),

'fields': ['created'],
'expireAfterSeconds': 3600

If a dictionary is passed then the following options are available:
fields (Default: None) The fields to index. Specified in the same format as described above.

cls (Default: True) If you have polymorphic models that inherit and have allow_inheritance turned on,
you can configure whether the index should have the _c1s field added automatically to the start of the
index.

sparse (Default: False) Whether the index should be sparse.
unique (Default: False) Whether the index should be unique.

expireAfterSeconds (Optional) Allows you to automatically expire data from a collection by setting the
time in seconds to expire the a field.

Note: Inheritance adds extra fields indices see: Document inheritance.

4.2. User Guide 23

MongoEngine Documentation, Release 0.10.5

Global index default options

There are a few top level defaults for all indexes that can be set:

class Page (Document) :
title = StringField()
rating = StringField()

meta = {
'index_options': {},
'index_background': True,
'index_drop_dups': True,

'index_cls': False

index_options (Optional) Set any default index options - see the full options list
index_background (Optional) Set the default value for if an index should be indexed in the background
index_cls (Optional) A way to turn off a specific index for _cls.

index_drop_dups (Optional) Set the default value for if an index should drop duplicates

Note: Since MongoDB 3.0 drop_dups is not supported anymore. Raises a Warning and has no effect

Compound Indexes and Indexing sub documents

Compound indexes can be created by adding the Embedded field or dictionary field name to the index definition.

Sometimes its more efficient to index parts of Embedded / dictionary fields, in this case use ‘dot’ notation to
identify the value to index eg: rank.title

Geospatial indexes

The best geo index for mongodb is the new “2dsphere”, which has an improved spherical model and provides
better performance and more options when querying. The following fields will explicitly add a ‘“2dsphere” index:

* PointField

* LineStringField

* PolygonField

* MultiPointField

e MultiLineStringField
e MultiPolygonField

As “2dsphere” indexes can be part of a compound index, you may not want the automatic index but would pre-
fer a compound index. In this example we turn off auto indexing and explicitly declare a compound index on
location and datetime:

class Log (Document) :
location = PointField(auto_index=False)
datetime = DateTimeField()

meta = {
'indexes': [[("location", "2dsphere"), ("datetime", 1)]]

24 Chapter 4. Offline Reading

http://docs.mongodb.org/manual/reference/method/db.collection.ensureIndex/#db.collection.ensureIndex

MongoEngine Documentation, Release 0.10.5

Pre MongoDB 2.4 Geo

Note: For MongoDB < 2.4 this is still current, however the new 2dsphere index is a big improvement over the
previous 2D model - so upgrading is advised.

Geospatial indexes will be automatically created for all GeoPointFields

It is also possible to explicitly define geospatial indexes. This is useful if you need to define a geospatial index on
a subfield of a DictField or a custom field that contains a point. To create a geospatial index you must prefix
the field with the * sign.

class Place (Document) :
location = DictField()
meta = {
'indexes': [
'xlocation.point’',

i

Time To Live indexes

A special index type that allows you to automatically expire data from a collection after a given period. See the
official ttl documentation for more information. A common usecase might be session data:

class Session (Document) :
created = DateTimeField(default=datetime.now)
meta = {
'indexes': [
{"fields': ['created'], 'expireAfterSeconds': 3600}

Warning: TTL indexes happen on the MongoDB server and not in the application code, therefore no signals
will be fired on document deletion. If you need signals to be fired on deletion, then you must handle the
deletion of Documents in your application code.

Comparing Indexes

Use mongoengine.Document .compare_indexes () to compare actual indexes in the database to those
that your document definitions define. This is useful for maintenance purposes and ensuring you have the correct
indexes for your schema.

Ordering

A default ordering can be specified for your QuerySet using the ordering attribute of meta. Ordering will
be applied when the QuerySet is created, and can be overridden by subsequent calls to order_by ().

from datetime import datetime

class BlogPost (Document) :
title = StringField()
published_date = DateTimeField()

meta = {

4.2. User Guide 25

http://docs.mongodb.org/manual/tutorial/expire-data/#expire-data-from-collections-by-setting-ttl

MongoEngine Documentation, Release 0.10.5

'ordering': ['-published_date']

blog_post_1 = BlogPost (title="Blog Post #1")
blog_post_1l.published_date = datetime (2010, 1, 5, 0, 0 ,0)

blog_post_2 = BlogPost (title="Blog Post #2")
blog_post_2.published_date = datetime (2010, 1, 6, 0, 0 ,0)

blog_post_3 = BlogPost (title="Blog Post #3")
blog_post_3.published_date = datetime (2010, 1, 7, 0, 0 ,0)

blog_post_1l.save()
blog_post_2.save ()
blog_post_3.save()

get the "first" BlogPost using default ordering
from BlogPost.meta.ordering

latest_post = BlogPost.objects.first ()

assert latest_post.title == "Blog Post #3"

override default ordering, order BlogPosts by "published date"
first_post = BlogPost.objects.order_ by ("+published_date").first ()
assert first_post.title == "Blog Post #1"

Shard keys

If your collection is sharded, then you need to specify the shard key as a tuple, using the shard_key attribute of
meta. This ensures that the shard key is sent with the query when calling the save () or update () method on
an existing Document instance:

class LogEntry (Document) :
machine = StringField()
app = StringField()
timestamp = DateTimeField()
data = StringField()

meta = {
'shard_key': ('machine', 'timestamp',)

Document inheritance

To create a specialised type of a Document you have defined, you may subclass it and add any extra fields or
methods you may need. As this is new class is not a direct subclass of Document, it will not be stored in its
own collection; it will use the same collection as its superclass uses. This allows for more convenient and efficient
retrieval of related documents — all you need do is set allow_inheritance to True in the meta data for a
document.:

Stored in a collection named 'page'
class Page (Document) :
title = StringField(max_length=200, required=True)

meta = {'allow_inheritance': True}
Also stored in the collection named 'page'

class DatedPage (Page) :
date = DateTimeField()

26 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Note: From 0.8 onwards allow_inheritance defaults to False, meaning you must set it to True to use
inheritance.

Working with existing data

As MongoEngine no longer defaults to needing _c1s, you can quickly and easily get working with existing data.
Just define the document to match the expected schema in your database

Will work with data in an existing collection named 'cmsPage'
class Page (Document) :
title = StringField (max_length=200, required=True)
meta = {
'collection': 'cmsPage'

If you have wildly varying schemas then using a DynamicDocument might be more appropriate, instead of
defining all possible field types.

If you use Document and the database contains data that isn’t defined then that data will be stored in the docu-
ment._data dictionary.

Abstract classes

If you want to add some extra functionality to a group of Document classes but you don’t need or want the
overhead of inheritance you can use the abstract attribute of meta. This won’t turn on Document inheritance
but will allow you to keep your code DRY:

class BaseDocument (Document) :
meta = {
'abstract': True,
}

def check_permissions (self) :

class User (BaseDocument) :

Now the User class will have access to the inherited check_permissions method and won’t store any of the extra
_cls information.

4.2.4 Documents instances

To create a new document object, create an instance of the relevant document class, providing values for its fields
as constructor keyword arguments. You may provide values for any of the fields on the document:

>>> page = Page(title="Test Page")
>>> page.title
'Test Page'

You may also assign values to the document’s fields using standard object attribute syntax:

>>> page.title = "Example Page"
>>> page.title
'Example Page'

4.2. User Guide 27

MongoEngine Documentation, Release 0.10.5

Saving and deleting documents

MongoEngine tracks changes to documents to provide efficient saving. To save the document to the database, call
the save () method. If the document does not exist in the database, it will be created. If it does already exist,
then any changes will be updated atomically. For example:

>>> page = Page(title="Test Page")

>>> page.save () # Performs an insert

>>> page.title = "My Page"

>>> page.save () # Performs an atomic set on the title field.

Note: Changes to documents are tracked and on the whole perform set operations.
e list_field.push (0) — sets the resulting list
e del (list_field) — unsets whole list

With lists its preferable to use Doc.update (push__list_field=0) as this stops the whole list being
updated — stopping any race conditions.

See also:

Atomic updates

Pre save data validation and cleaning

MongoEngine allows you to create custom cleaning rules for your documents when calling save (). By providing
acustom clean () method you can do any pre validation / data cleaning.

This might be useful if you want to ensure a default value based on other document values for example:

class Essay (Document) :
status = StringField(choices=('Published', 'Draft'), required=True)
pub_date = DateTimeField()

def clean(self):

"""Ensures that only published essays have a ‘pub_date’ and

automatically sets the pub_date if published and not set"""

if self.status == 'Draft' and self.pub_date is not None:
msg = 'Draft entries should not have a publication date.'
raise ValidationError (msg)

Set the pub_date for published items if not set.

if self.status == 'Published' and self.pub_date is None:
self.pub_date = datetime.now ()

Note: Cleaning is only called if validation is turned on and when calling save ().

Cascading Saves

If your document contains ReferenceField or GenericReferenceField objects, then by default the
save () method will not save any changes to those objects. If you want all references to be saved also, noting
each save is a separate query, then passing cascade as True to the save method will cascade any saves.

28 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Deleting documents

To delete a document, call the delete () method. Note that this will only work if the document exists in the
database and has a valid id.

Document IDs

Each document in the database has a unique id. This may be accessed through the id attribute on Document
objects. Usually, the id will be generated automatically by the database server when the object is save, meaning
that you may only access the 1d field once a document has been saved:

>>> page = Page(title="Test Page")
>>> page.id

>>> page.save ()

>>> page.id
ObjectId('123456789%abcdef000000000")

Alternatively, you may define one of your own fields to be the document’s “primary key” by providing
primary_key=True as a keyword argument to a field’s constructor. Under the hood, MongoEngine will use
this field as the id; in fact id is actually aliased to your primary key field so you may still use id to access the
primary key if you want:

>>> class User (Document) :
email = StringField(primary_key=True)
name = StringField()

>>> bob = User (email='bob@example.com', name='Bob')
>>> bob.save ()

>>> bob.id == bob.email == 'boblexample.com'

True

You can also access the document’s “primary key” using the pk field, it’s an alias to id:

>>> page = Page(title="Another Test Page")
>>> page.save ()

>>> page.id == page.pk

True

Note: If you define your own primary key field, the field implicitly becomes required, so a ValidationError
will be thrown if you don’t provide it.

4.2.5 Querying the database

Document classes have an ob ject s attribute, which is used for accessing the objects in the database associated
with the class. The objects attribute is actually a QuerySetManager, which creates and returns a new
QuerySet object on access. The QuerySet object may be iterated over to fetch documents from the database:

Prints out the names of all the users in the database
for user in User.objects:
print user.name

Note: As of MongoEngine 0.8 the querysets utilise a local cache. So iterating it multiple times will only cause a
single query. If this is not the desired behaviour you can call no_cache (version 0.8.3+) to return a non-caching
queryset.

4.2. User Guide 29

MongoEngine Documentation, Release 0.10.5

Filtering queries

The query may be filtered by calling the QuerySet object with field lookup keyword arguments. The keys in the
keyword arguments correspond to fields on the Document you are querying:

This will return a QuerySet that will only iterate over users whose
'country' field is set to 'uk'
uk_users = User.objects (country='uk'")

Fields on embedded documents may also be referred to using field lookup syntax by using a double-underscore in
place of the dot in object attribute access syntax:

This will return a QuerySet that will only iterate over pages that have
been written by a user whose 'country' field is set to 'uk'
uk_pages = Page.objects (author__ country='uk')

Note: (version 0.9.1+) if your field name is like mongodb operator name (for example type, lte, 1t...) and you
want to place it at the end of lookup keyword mongoengine automatically prepend $ to it. To avoid this use __ at
the end of your lookup keyword. For example if your field name is t ype and you want to query by this field you
must use .objects (user__type_ ="admin") instead of .obJjects (user__ _type="admin")

Query operators

Operators other than equality may also be used in queries — just attach the operator name to a key with a double-
underscore:

Only find users whose age is 18 or less
young_users = Users.objects (age__lte=18)

Available operators are as follows:
* ne —not equal to
e 1t —less than
e lte —less than or equal to
* gt — greater than
* gte — greater than or equal to
* not — negate a standard check, may be used before other operators (e.g. Q (age__not__mod=5))
e in —value is in list (a list of values should be provided)
* nin — value is not in list (a list of values should be provided)
e mod-value $ x == y,where x and y are two provided values
e all —every item in list of values provided is in array
* size —the size of the array is

e exists — value for field exists

String queries

The following operators are available as shortcuts to querying with regular expressions:
* exact - string field exactly matches value

* iexact — string field exactly matches value (case insensitive)

30 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

contains — string field contains value

icontains - string field contains value (case insensitive)
startswith — string field starts with value

istartswith — string field starts with value (case insensitive)
endswith — string field ends with value

iendswith — string field ends with value (case insensitive)

match — performs an $elemMatch so you can match an entire document within an array

Geo queries

There are a few special operators for performing geographical queries. The following were added in MongoEngine
0.8 for PointField, LineStringFieldand PolygonField

geo_within — check if a geometry is within a polygon. For ease of use it accepts either a geojson
geometry or just the polygon coordinates eg:

loc.objects (point__geo_within=[[[40, 5], [40, 6], [41, 61, T[40, 5111)
loc.objects (point___geo_within={"type": "Polygon",

"coordinates": [[[40, 51, [40, 6], [41, 61, [40, 5111}
<)
geo_within_box — simplified geo_within searching with a box eg:
loc.objects (point__geo_within_box=[(-125.0, 35.0), (-100.0, 40.0)1)

loc.objects (point__geo_within_box=[<bottom left coordinates>,
—scoordinates>])

<upper right

geo_within_polygon — simplified geo_within searching within a simple polygon eg:

0, 51, 6
<x1l> ,
<x2> ,

<x3> ,

[40,
<yl>
<y2>
<y3>

4 [41I

loc.objects (point__geo_within_polygon=[[] 61,
] r

]

]

loc.objects (point__geo_within_polygon=]|

I4

4
[
[
[1

geo_within_center — simplified geo_within the flat circle radius of a point eg:

loc.objects (point__geo_within_center=[(-125.0,
loc.objects (point__geo_within_center=[[<x>,

35.0),
<y> 1

11)

<radius>

1)

geo_within_sphere — simplified geo_within the spherical circle radius of a point eg:

loc.objects (point__geo_within_sphere=[(-125.0,
[<x>,

35.0),
<y> 1,

11)

loc.objects (point__geo_within_sphere=|[<radius>

1)

geo_intersects — selects all locations that intersect with a geometry eg:

Inferred from provided points lists:
loc.objects (poly__geo_intersects=[40,

loc.objects (poly__geo_intersects=[[40,
loc.objects (poly__geo_intersects=[[[40,

=5111)

6]
5 [4o0,
(40,

)

1, 611)

51, 61, [41,

With geoJson style objects

loc.objects (poly__geo_intersects={"type":

loc.objects (poly__geo_intersects={"type":
"coordinates":

loc.objects (poly__geo_intersects={"type":
"coordinates":

"Point", "coordinates":
"LineString",
[[40,
"Polygon",

(4o,

51y

51,

[41, 51, [40, 571111})

4.2,

User Guide 31

MongoEngine Documentation, Release 0.10.5

[

* near — find all the locations near a given point:

loc.objects (point__near=[40, 5])
loc.objects (point__near={"type": "Point", "coordinates": [40, 51})

You can also set the maximum and/or the minimum distance in meters as well:

loc.objects (point__near=[40, 5], point__max_distance=1000)
loc.objects (point__near=[40, 5], point_ _min_distance=100)

The older 2D indexes are still supported with the GeoPointField:

e within_distance — provide a list containing a point and a maximum distance (e.g. [(41.342, -87.653),

50)

e within_spherical_distance — same as above but using the spherical geo model (e.g. [(41.342,
-87.653), 5/earth_radius])

* near — order the documents by how close they are to a given point
* near_sphere — Same as above but using the spherical geo model
* within_box —filter documents to those within a given bounding box (e.g. [(35.0, -125.0), (40.0, -100.0)])

* within_ polygon - filter documents to those within a given polygon (e.g. [(41.91,-87.69), (41.92,-
87.68), (41.91,-87.65), (41.89,-87.65)]).

Note: Requires Mongo Server 2.0

* max_distance — can be added to your location queries to set a maximum distance.

* min_distance — can be added to your location queries to set a minimum distance.

Querying lists

On most fields, this syntax will look up documents where the field specified matches the given value exactly, but
when the field refers to a ListField, a single item may be provided, in which case lists that contain that item
will be matched:

class Page (Document) :
tags = ListField(StringField())

This will match all pages that have the word 'coding' as an item in the
'tags' list
Page.objects (tags='coding')

It is possible to query by position in a list by using a numerical value as a query operator. So if you wanted to find
all pages whose first tag was db, you could use the following query:

Page.objects (tags__0='db")

If you only want to fetch part of a list eg: you want to paginate a list, then the slice operator is required:

comments - skip 5, 1limit 10
Page.objects.fields (slice__comments=[5, 10])

For updating documents, if you don’t know the position in a list, you can use the $ positional operator

Post.objects (comments__by="7joe") .update (»*{'inc__comments__$__votes': 1})

32 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

However, this doesn’t map well to the syntax so you can also use a capital S instead

Post.objects (comments__by="7joe") .update (inc__comments__S__votes=1)

Note: Due to Mongo, currently the $ operator only applies to the first matched item in the query.

Raw queries

It is possible to provide a raw PyMongo query as a query parameter, which will be integrated directly into the
query. This is done using the __raw___ keyword argument:

Page.objects(__raw__={'tags': 'coding'})

New in version 0.4.

Limiting and skipping results

Just as with traditional ORMs, you may limit the number of results returned or skip a number or results in you
query. 1imit () and skip () and methods are available on QuerySet objects, but the array-slicing syntax is
preferred for achieving this:

Only the first 5 people
users = User.objects[:5]

All except for the first 5 people
users = User.objects[5:]

5 users, starting from the 10th user found
users = User.objects[10:15]

You may also index the query to retrieve a single result. If an item at that index does not exists, an IndexError
will be raised. A shortcut for retrieving the first result and returning None if no result exists is provided
(first ()):

>>> # Make sure there are no users
>>> User.drop_collection()

>>> User.objects[0]

IndexError: list index out of range

>>> User.objects.first () == None

True

>>> User (name="'Test User') .save ()

>>> User.objects[0] == User.objects.first ()
True

Retrieving unique results

To retrieve a result that should be unique in the collection, use get (). This will raise DoesNotExist if
no document matches the query, and MultipleObjectsReturned if more than one document matched the
query. These exceptions are merged into your document definitions eg: MyDoc.DoesNotEXxist

A variation of this method, get_or_create() existed, but it was unsafe. It could not be made safe, because there are
no transactions in mongoDB. Other approaches should be investigated, to ensure you don’t accidentally duplicate
data when using something similar to this method. Therefore it was deprecated in 0.8 and removed in 0.10.

4.2. User Guide 33

MongoEngine Documentation, Release 0.10.5

Default Document queries

By default, the objects ob ject s attribute on a document returns a QuerySet that doesn’t filter the collection
— it returns all objects. This may be changed by defining a method on a document that modifies a queryset. The
method should accept two arguments — doc_cls and queryset. The first argument is the Document class
that the method is defined on (in this sense, the method is more like a classmethod () than a regular method),
and the second argument is the initial queryset. The method needs to be decorated with queryset_manager ()
in order for it to be recognised.

class BlogPost (Document) :
title = StringField()
date = DateTimeField()

@Qqueryset_manager

def objects(doc_cls, queryset):
This may actually also be done by defining a default ordering for
the document, but this illustrates the use of manager methods
return queryset.order_by('-date')

You don’t need to call your method ob ject s — you may define as many custom manager methods as you like:

class BlogPost (Document) :
title = StringField()
published = BooleanField()

@queryset_manager
def live_posts(doc_cls, queryset):
return queryset.filter (published=True)

BlogPost (title="testl', published=False) .save()
BlogPost (title="test2', published=True) .save()
assert len(BlogPost.objects) == 2

assert len(BlogPost.live_posts()) == 1

Custom QuerySets

Should you want to add custom methods for interacting with or filtering documents, extending the QuerySet
class may be the way to go. To use a custom QuerySet class on a document, set queryset_class to the
custom class in a Document ‘s meta dictionary:

class AwesomerQuerySet (QuerySet) :

def get_awesome (self) :
return self.filter (awesome=True)

class Page (Document) :
meta = {'queryset_class': AwesomerQuerySet}

To call:
Page.objects.get_awesome ()

New in version 0.4.

Aggregation

MongoDB provides some aggregation methods out of the box, but there are not as many as you typically get with
an RDBMS. MongoEngine provides a wrapper around the built-in methods and provides some of its own, which
are implemented as Javascript code that is executed on the database server.

34 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Counting results

Just as with limiting and skipping results, there is a method on QuerySet objects — count (), but there is also
a more Pythonic way of achieving this:

num_users = len (User.objects)

Even if len() is the Pythonic way of counting results, keep in mind that if you concerned about performance,
count () is the way to go since it only execute a server side count query, while len() retrieves the results, places
them in cache, and finally counts them. If we compare the performance of the two operations, len() is much slower
than count ().

Further aggregation

You may sum over the values of a specific field on documents using sum () :

yearly_expense = Employee.objects.sum('salary')

Note: If the field isn’t present on a document, that document will be ignored from the sum.

To get the average (mean) of a field on a collection of documents, use average ():

mean_age = User.objects.average ('age')

As MongoDB provides native lists, MongoEngine provides a helper method to get a dictionary of the frequencies
of items in lists across an entire collection— i tem frequencies (). Anexample of its use would be generating
“tag-clouds™:

class Article (Document) :
tag = ListField(StringField())

After adding some tagged articles...
tag_fregs = Article.objects.item_frequencies('tag', normalize=True)

from operator import itemgetter
top_tags = sorted(tag_fregs.items (), key=itemgetter(l), reverse=True) [:10]

Query efficiency and performance

There are a couple of methods to improve efficiency when querying, reducing the information returned by the
query or efficient dereferencing .

Retrieving a subset of fields

Sometimes a subset of fields on a Document is required, and for efficiency only these should be retrieved from
the database. This issue is especially important for MongoDB, as fields may often be extremely large (e.g. a
ListField of EmbeddedDocuments, which represent the comments on a blog post. To select only a subset
of fields, use only (), specifying the fields you want to retrieve as its arguments. Note that if fields that are not
downloaded are accessed, their default value (or None if no default value is provided) will be given:

>>> class Film(Document) :
title = StringField()
year = IntField()
rating = IntField(default=3)

4.2. User Guide 35

MongoEngine Documentation, Release 0.10.5

>>> Film(title='The Shawshank Redemption', year=1994, rating=5) .save ()
>>> f = Film.objects.only('title').first ()

>>> f.title

'The Shawshank Redemption'

>>> f.year # None
>>> f.rating # default value
3

Note: The exclude () is the opposite of only () if you want to exclude a field.

If you later need the missing fields, just call reload () on your document.

Getting related data

When iterating the results of ListField or DictField we automatically dereference any DBRef objects as
efficiently as possible, reducing the number the queries to mongo.

There are times when that efficiency is not enough, documents that have ReferenceField objects or
GenericReferenceField objects at the top level are expensive as the number of queries to MongoDB can
quickly rise.

To limit the number of queries use select_related () which converts the QuerySet to a list and dereferences
as efficiently as possible. By default select_related () only dereferences any references to the depth of 1
level. If you have more complicated documents and want to dereference more of the object at once then increasing
the max_depth will dereference more levels of the document.

Turning off dereferencing

Sometimes for performance reasons you don’t want to automatically dereference data. To turn off dereferencing
of the results of a query use no_dereference () on the queryset like so:

post = Post.objects.no_dereference().first ()
assert (isinstance (post.author, ObjectId))

You can also turn off all dereferencing for a fixed period by using the no_ de re ference context manager:

with no_dereference (Post) as Post:
post = Post.objects.first ()
assert (isinstance (post.author, ObjectId))

Outside the context manager dereferencing occurs.
assert (isinstance (post.author, User))

Advanced queries

Sometimes calling a QuerySet object with keyword arguments can’t fully express the query you want to use — for
example if you need to combine a number of constraints using and and or. This is made possible in MongoEngine
through the Q class. A Q object represents part of a query, and can be initialised using the same keyword-argument
syntax you use to query documents. To build a complex query, you may combine Q objects using the & (and) and
| (or) operators. To use a Q object, pass it in as the first positional argument to Document . ob ject s when you
filter it by calling it with keyword arguments:

Get published posts
Post.objects (Q (published=True) | Q(publish_date__lte=datetime.now()))

36 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Get top posts
Post.objects ((Q(featured=True) & Q(hits__ _gte=1000)) | Q(hits__gte=5000))

Warning: You have to use bitwise operators. You cannot use or, and to combine queries as Q (a=a) or
Q (b=b) isnotthe same as Q (a=a) | Q(b=b).AsQ (a=a) equatestotrue Q (a=a) or Q (b=Db) isthe
same as Q (a=a) .

Atomic updates

Documents may be updated atomically by using the update _one (), update () and modify () methods on
a QuerySet or modify () and save () (with save_condition argument) on a Document. There are
several different “modifiers” that you may use with these methods:

* set —set a particular value

* unset — delete a particular value (since MongoDB v1.3)

e inc —increment a value by a given amount

* dec — decrement a value by a given amount

* push —append a value to a list

e push_all —append several values to a list

* pop —remove the first or last element of a list depending on the value
* pull —remove a value from a list

e pull_all -remove several values from a list

* add_to_set —add value to a list only if its not in the list already

The syntax for atomic updates is similar to the querying syntax, but the modifier comes before the field, not after
it:

>>> post = BlogPost (title='Test', page_views=0, tags=['database'])

>>> post.save()

>>> BlogPost.objects (id=post.id) .update_one (inc__page_views=1)

>>> post.reload() # the document has been changed, so we need to reload it
>>> post.page_views

1

>>> BlogPost.objects (id=post.id) .update_one(set__title="'Example Post')
>>> post.reload()

>>> post.title

'Example Post'

>>> BlogPost.objects (id=post.id) .update_one (push__tags="'nosgl')

>>> post.reload()

>>> post.tags

['database', 'nosqgl']

Note: If no modifier operator is specified the default will be $set. So the following sentences are identical:

>>> BlogPost.objects (id=post.id) .update (title="Example Post')
>>> BlogPost.objects (id=post.id) .update(set__title='Example Post')

Note: In version 0.5 the save () runs atomic updates on changed documents by tracking changes to that
document.

4.2. User Guide 37

http://docs.mongodb.org/manual/reference/operator/update/pop/

MongoEngine Documentation, Release 0.10.5

The positional operator allows you to update list items without knowing the index position, therefore making the
update a single atomic operation. As we cannot use the $ syntax in keyword arguments it has been mapped to S:

>>> post = BlogPost (title='Test', page_views=0, tags=['database', 'mongo'])
>>> post.save()

>>> BlogPost.objects (id=post.id, tags='mongo') .update (set__tags__S="'mongodb')
>>> post.reload()

>>> post.tags

['database', 'mongodb']

Note: Currently only top level lists are handled, future versions of mongodb / pymongo plan to support nested
positional operators. See The $ positional operator.

Server-side javascript execution

Javascript functions may be written and sent to the server for execution. The result of this is the return value of the
Javascript function. This functionality is accessed through the exec_ js () method on QuerySet () objects.
Pass in a string containing a Javascript function as the first argument.

The remaining positional arguments are names of fields that will be passed into you Javascript function as its
arguments. This allows functions to be written that may be executed on any field in a collection (e.g. the sum ()
method, which accepts the name of the field to sum over as its argument). Note that field names passed in in this
manner are automatically translated to the names used on the database (set using the name keyword argument to
a field constructor).

Keyword arguments to exec_ js () are combined into an object called options, which is available in the
Javascript function. This may be used for defining specific parameters for your function.

Some variables are made available in the scope of the Javascript function:

* collection - the name of the collection that corresponds to the Document class that is being used; this
should be used to get the Collection object from db in Javascript code

* query —the query that has been generated by the QuerySet object; this may be passed into the £ind ()
method on a Collection object in the Javascript function

* options — an object containing the keyword arguments passed into exec_ js ()

The following example demonstrates the intended usage of exec_ js () by defining a function that sums over a
field on a document (this functionality is already available through sum () but is shown here for sake of example):

def sum_field(document, field_name, include_negatives=True) :
code = """
function (sumField) {
var total = 0.0;
db[collection].find(query) .forEach (function (doc) {
var val = doc[sumField];
if (val >= 0.0 || options.includeNegatives) {
total += val;

)i

return total;

}

wun

options = {'includeNegatives': include_negatives}
return document.objects.exec_js(code, field_name, *+xoptions)

As fields in MongoEngine may use different names in the database (set using the db_field keyword argu-
ment to a Field constructor), a mechanism exists for replacing MongoEngine field names with the database
field names in Javascript code. When accessing a field on a collection object, use square-bracket notation, and
prefix the MongoEngine field name with a tilde. The field name that follows the tilde will be translated to

38 Chapter 4. Offline Reading

http://www.mongodb.org/display/DOCS/Updating#Updating-The%24positionaloperator

MongoEngine Documentation, Release 0.10.5

the name used in the database. Note that when referring to fields on embedded documents, the name of the
EmbeddedDocumentField, followed by a dot, should be used before the name of the field on the embedded
document. The following example shows how the substitutions are made:

class Comment (EmbeddedDocument) :
content = StringField(db_field="body")

class BlogPost (Document) :
title = StringField(db_field="'doctitle")
comments = ListField (EmbeddedDocumentField (Comment), name='cs')

Returns a list of dictionaries. Each dictionary contains a value named

"document", which corresponds to the "title" field on a BlogPost, and

"comment", which corresponds to an individual comment. The substitutions
made are shown in the comments.

BlogPost.objects.exec_Js ("""

function () {
var comments = [];
db[collection].find(query) .forEach (function (doc) {
// doc[~comments] -> doc["cs"]
var docComments = doc[~comments];
for (var i = 0; 1 < docComments.length; i++) {
// doc[~comments] [1i] —> doc["cs"][1i]
var comment = doc[~comments] [i];

comments.push ({
// doc[~title] -> doc["doctitle"]

'document': doc[~title],
// comment [~comments.content] —> comment ["body"]
'comment': comment [~comments.content]

)i

1)

return comments;

}

nn ll)

4.2.6 GridFS

New in version 0.4.

Writing

GridFS support comes in the form of the F1 1 eFie1d field object. This field acts as a file-like object and provides
a couple of different ways of inserting and retrieving data. Arbitrary metadata such as content type can also be
stored alongside the files. In the following example, a document is created to store details about animals, including
a photo:

class Animal (Document) :
genus = StringField()
family = StringField()
photo = FileField()

marmot = Animal (genus='Marmota', family='Sciuridae')
marmot_photo = open ('marmot.jpg', 'rb')
marmot .photo.put (marmot_photo, content_type = 'image/Jjpeg')

marmot .save ()

4.2. User Guide 39

MongoEngine Documentation, Release 0.10.5

Retrieval

So using the F'i 1eField is just like using any other field. The file can also be retrieved just as easily:

marmot = Animal.objects (genus='Marmota') .first ()
photo = marmot.photo.read()
content_type = marmot.photo.content_type

Streaming

Streaming data into a F'i 1eField is achieved in a slightly different manner. First, a new file must be created by
calling the new_file () method. Data can then be written using write ():

marmot .photo.new_file ()

marmot .photo.write ('some_image_data')
marmot .photo.write ('some_more_image_data')
marmot .photo.close ()

marmot .save ()

Deletion

Deleting stored files is achieved with the delete () method:

marmot .photo.delete ()

Warning: The FileField in a Document actually only stores the ID of a file in a separate GridFS collection.
This means that deleting a document with a defined FileField does not actually delete the file. You must be
careful to delete any files in a Document as above before deleting the Document itself.

Replacing files

Files can be replaced with the replace () method. This works just like the put () method so even metadata
can (and should) be replaced:

another_marmot = open('another marmot.png', 'rb'")
marmot .photo.replace (another_marmot, content_type='image/png')

4.2.7 Signals

New in version 0.5.

Note: Signal support is provided by the excellent blinker library. If you wish to enable signal support this library
must be installed, though it is not required for MongoEngine to function.

Overview

Signals are found within the mongoengine.signals module. Unless specified signals receive no additional argu-
ments beyond the sender class and document instance. Post-signals are only called if there were no exceptions
raised during the processing of their related function.

Available signals include:

40 Chapter 4. Offline Reading

http://pypi.python.org/pypi/blinker

MongoEngine Documentation, Release 0.10.5

pre_init Called during the creation of a new Document or EmbeddedDocument instance, after the constructor
arguments have been collected but before any additional processing has been done to them. (I.e. assignment
of default values.) Handlers for this signal are passed the dictionary of arguments using the values keyword
argument and may modify this dictionary prior to returning.

post_init Called after all processing of a new Document or EmbeddedDocument instance has been com-
pleted.

pre_save Called within save () prior to performing any actions.
pre_save_post_validation Called within save () after validation has taken place but before saving.

post_save Called within save () after all actions (validation, insert/update, cascades, clearing dirty flags) have
completed successfully. Passed the additional boolean keyword argument created to indicate if the save was
an insert or an update.

pre_delete Called within delete () prior to attempting the delete operation.
post_delete Called within delete () upon successful deletion of the record.

pre_bulk_insert Called after validation of the documents to insert, but prior to any data being written. In this
case, the document argument is replaced by a documents argument representing the list of documents being
inserted.

post_bulk_insert Called after a successful bulk insert operation. As per pre_bulk_insert, the document argument
is omitted and replaced with a documents argument. An additional boolean argument, loaded, identifies the
contents of documents as either Document instances when True or simply a list of primary key values for
the inserted records if False.

Attaching Events

After writing a handler function like the following:

import logging
from datetime import datetime

from mongoengine import x
from mongoengine import signals

def update_modified(sender, document):
document .modified = datetime.utcnow ()

You attach the event handler to your Document or EmbeddedDocument subclass:

class Record (Document) :
modified = DateTimeField ()

signals.pre_save.connect (update_modified)

While this is not the most elaborate document model, it does demonstrate the concepts involved. As a more
complete demonstration you can also define your handlers within your subclass:

class Author (Document) :

name = StringField()

@classmethod

def pre_save(cls, sender, document, =xxkwargs):
logging.debug ("Pre Save: " % document.name)

@classmethod

def post_save(cls, sender, document, **kwargs):
logging.debug ("Post Save: " % document.name)

if 'created' in kwargs:
if kwargs|['created']:

4.2. User Guide 41

MongoEngine Documentation, Release 0.10.5

logging.debug ("Created™)
else:
logging.debug ("Updated™)

signals.pre_save.connect (Author.pre_save, sender=Author)
signals.post_save.connect (Author.post_save, sender=Author)

Finally, you can also use this small decorator to quickly create a number of signals and attach them to your
Document or EmbeddedDocument subclasses as class decorators:

def handler (event) :
"""Signal decorator to allow use of callback functions as class decorators.”"""

def decorator (fn) :

def apply(cls):
event .connect (fn, sender=cls)

return cls

fn.apply
return fn

apply

return decorator

Using the first example of updating a modification time the code is now much cleaner looking while still allowing
manual execution of the callback:

@handler (signals.pre_save)
def update_modified(sender, document):
document .modified = datetime.utcnow ()

Qupdate_modified.apply
class Record (Document) :
modified = DateTimeField ()

ReferenceFields and Signals

Currently reverse_delete_rule does not trigger signals on the other part of the relationship. If this is required you
must manually handle the reverse deletion.

4.2.8 Text Search

After MongoDB 2.4 version, supports search documents by text indexes.

Defining a Document with text index

Use the $ prefix to set a text index, Look the declaration:

class News (Document) :
title = StringField()
content = StringField()
is_active = BooleanField()

meta = {'indexes': [
{'fields': ['Stitle', "Scontent"],
'default_language': 'english',

'weights': {'title': 10, 'content': 2}
}
1}

42 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Querying

Saving a document:

News (title="Using mongodb text search",
content="Testing text search") .save()

News (title="MongoEngine 0.9 released",
content="Various improvements") .save ()

Next, start a text search using QuerySet .search_text method:

document = News.objects.search_text ('testing').first ()
document .title # may be: "Using mongodb text search"”

document = News.objects.search_text ('released').first()
document .title # may be: "MongoEngine 0.9 released"”

Ordering by text score

objects = News.objects.search('mongo') .order_by ('$text_score')

4.2.9 Use mongomock for testing

mongomock is a package to do just what the name implies, mocking a mongo database.

To use with mongoengine, simply specify mongomock when connecting with mongoengine:

connect ('mongoenginetest', host='mongomock://localhost"')
conn = get_connection ()

or with an alias:

connect ('mongoenginetest', host='mongomock://localhost', alias='testdb')
conn = get_connection('testdb")

4.3 API Reference

4.3.1 Connecting
mongoengine.connect (db=None, alias="default’, **kwargs)
Connect to the database specified by the ‘db’ argument.

Connection settings may be provided here as well if the database is not running on the default port on
localhost. If authentication is needed, provide username and password arguments as well.

Multiple databases are supported by using aliases. Provide a separate alias to connect to a different instance
of mongod.

Changed in version 0.6: - added multiple database support.

mongoengine.register_connection (alias, name=None, host=None, port=None,
read_preference=Primary(), username=None, pass-

word=None, authentication_source=None, **kwargs)
Add a connection.

Parameters

* alias —the name that will be used to refer to this connection throughout MongoEngine

4.3. API Reference 43

https://github.com/vmalloc/mongomock/

MongoEngine Documentation, Release 0.10.5

* name — the name of the specific database to use

* host - the host name of the mongod instance to connect to

* port — the port that the mongod instance is running on

* read_preference — The read preference for the collection ** Added pymongo 2.1
* username — username to authenticate with

* password — password to authenticate with

* authentication_source — database to authenticate against

* kwargs — allow ad-hoc parameters to be passed into the pymongo driver

4.3.2 Documents

class mongoengine.Document (*args, **values)

The base class used for defining the structure and properties of collections of documents stored in Mon-
goDB. Inherit from this class, and add fields as class attributes to define a document’s structure. Individual
documents may then be created by making instances of the Document subclass.

By default, the MongoDB collection used to store documents created using a Document subclass will
be the name of the subclass converted to lowercase. A different collection may be specified by providing
collection to the meta dictionary in the class definition.

A Document subclass may be itself subclassed, to create a specialised version of the document that will be
stored in the same collection. To facilitate this behaviour a _cIs field is added to documents (hidden though
the MongoEngine interface). To disable this behaviour and remove the dependence on the presence of _cls
setallow_inheritance to False in the meta dictionary.

A Document may use a Capped Collection by specifying max_documents and max_size in the
meta dictionary. max_documents is the maximum number of documents that is allowed to be stored
in the collection, and max_size is the maximum size of the collection in bytes. max_size is rounded
up to the next multiple of 256 by MongoDB internally and mongoengine before. Use also a multiple of
256 to avoid confusions. If max_size is not specified and max_documents is, max_size defaults to
10485760 bytes (10MB).

Indexes may be created by specifying indexes in the meta dictionary. The value should be a list of field
names or tuples of field names. Index direction may be specified by prefixing the field names with a + or -
sign.

Automatic index creation can be disabled by specifying auto_create_index in the meta dictionary.
If this is set to False then indexes will not be created by MongoEngine. This is useful in production systems
where index creation is performed as part of a deployment system.

By default, _cls will be added to the start of every index (that doesn’t contain a list) if allow_inheritance is
True. This can be disabled by either setting cls to False on the specific index or by setting index_cls to False
on the meta dictionary for the document.

By default, any extra attribute existing in stored data but not declared in your model will raise a
FieldDoesNotExist error. This can be disabled by setting strict to False in the meta dictio-
nary.

Initialise a document or embedded document
Parameters
* __auto_convert — Try and will cast python objects to Object types
* values — A dictionary of values for the document

objects
A QuerySet object that is created lazily on access.

44

Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

cascade_save (*args, **kwargs)
Recursively saves any references / generic references on the document

classmethod compare_indexes ()
Compares the indexes defined in MongoEngine with the ones existing in the database. Returns any
missing/extra indexes.

classmethod create_index (keys, background=False, **kwargs)
Creates the given indexes if required.

Parameters

* keys — a single index key or a list of index keys (to construct a multi-field index);
keys may be prefixed with a + or a - to determine the index ordering

* background — Allows index creation in the background

delete (**write_concern)
Delete the Document from the database. This will only take effect if the document has been previ-
ously saved.

Parameters write_concern — Extra keyword arguments are passed down which will be
used as options for the resultant getLastError command. For example, save (. .
., write_concern={w: 2, fsync: True}, ...) willwaituntilatleast
two servers have recorded the write and will force an fsync on the primary server.

classmethod drop_collection ()
Drops the entire collection associated with this Document type from the database.

classmethod ensure_index (key_or_list, drop_dups=False, background=False, **kwargs)
Ensure that the given indexes are in place. Deprecated in favour of create_index.

Parameters

* key_or_1list - asingle index key or a list of index keys (to construct a multi-field
index); keys may be prefixed with a + or a - to determine the index ordering

* background — Allows index creation in the background

* drop_dups — Was removed/ignored with MongoDB >2.7.5. The value will be re-
moved if PyMongo3+ is used

classmethod ensure_indexes ()
Checks the document meta data and ensures all the indexes exist.

Global defaults can be set in the meta - see Defining documents

Note: You can disable automatic index creation by setting auto_create_index to False in the docu-
ments meta data

classmethod 1ist_indexes ()
Lists all of the indexes that should be created for given collection. It includes all the indexes from
super- and sub-classes.

modify (query={}, **update)
Perform an atomic update of the document in the database and reload the document object using
updated version.

Returns True if the document has been updated or False if the document in the database doesn’t match
the query.

Note: All unsaved changes that have been made to the document are rejected if the method returns
True.

4.3.

API Reference 45

MongoEngine Documentation, Release 0.10.5

Parameters

* query — the update will be performed only if the document in the database matches
the query

* update — Django-style update keyword arguments
my_metaclass
alias of TopLevelDocumentMetaclass

classmethod register_delete_rule (document_cls, field_name, rule)
This method registers the delete rules to apply when removing this object.

reload (*fields, **kwargs)
Reloads all attributes from the database.

Parameters
» fields — (optional) args list of fields to reload
* max_depth — (optional) depth of dereferencing to follow
New in version 0.1.2.
Changed in version 0.6: Now chainable
Changed in version 0.9: Can provide specific fields to reload

save (force_insert=False, validate=True, clean=True, write_concern=None, cascade=None, cas-

cade_kwargs=None, _refs=None, save_condition=None, **kwargs)
Save the Document to the database. If the document already exists, it will be updated, otherwise it

will be created.
Parameters

* force_insert - only try to create a new document, don’t allow updates of existing
documents

* validate - validates the document; set to False to skip.
* clean - call the document clean method, requires validate to be True.

* write_concern — Extra keyword arguments are passed down to save () OR
insert () which will be used as options for the resultant getLastError
command. For example, save (..., write_concern={w: 2, fsync:
True}, ...) will wait until at least two servers have recorded the write and will
force an fsync on the primary server.

* cascade — Sets the flag for cascading saves. You can set a default by setting “cas-
cade” in the document __meta__

* cascade_kwargs — (optional) kwargs dictionary to be passed throw to cascading
saves. Implies cascade=True.

» _refs — A list of processed references used in cascading saves

* save_condition - only perform save if matching record in db satisfies condi-
tion(s) (e.g. version number). Raises OperationError if the conditions are not
satisfied

Changed in version 0.5: In existing documents it only saves changed fields using set / unset. Saves are
cascaded and any DBRe £ objects that have changes are saved as well.

Changed in version 0.6: Added cascading saves

Changed in version 0.8: Cascade saves are optional and default to False. If you want fine grain control
then you can turn off using document meta[’cascade’] = True. Also you can pass different kwargs to
the cascade save using cascade_kwargs which overwrites the existing kwargs with custom values.

46 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Changed in version 0.8.5: Optional save_condition that only overwrites existing documents if the
condition is satisfied in the current db record.

Changed in version 0.10: OperationError exception raised if save_condition fails.
Changed in version 0.10.1: :class: save_condition failure now raises a SaveConditionError

select_related (max_depth=1)

Handles dereferencing of DBRe £ objects to a maximum depth in order to cut down the number queries
to mongodb.

New in version 0.5.

switch_collection (collection_name, keep_created=True)
Temporarily switch the collection for a document instance.

Only really useful for archiving off data and calling save():

user = User.objects.get (id=user_id)
user.switch_collection('old-users')
user.save ()

Parameters
* collection_name (str) - The database alias to use for saving the document

* keep_created (bool) — keep self._created value after switching collection, else
is reset to True

See also:
Use switch_db if you need to read from another database

switch_db (db_alias, keep_created=True)
Temporarily switch the database for a document instance.

Only really useful for archiving off data and calling save():

user = User.objects.get (id=user_id)
user.switch_db('archive-db")
user.save ()

Parameters
* db_alias (str)— The database alias to use for saving the document
* keep_created (bool) — keep self._created value after switching db, else is reset
to True
See also:

Use switch_collection if you need to read from another collection

to_dbref ()
Returns an instance of DBRe f useful in __raw__ queries.

update (**kwargs)
Performs an update on the Document A convenience wrapper to update ().

Raises OperationError if called on an object that has not yet been saved.

class mongoengine . EmbeddedDocument (*args, **kwargs)
A Document that isn’t stored in its own collection. EmbeddedDocuments should be used as fields on
Documents through the EmbeddedDocumentField field type.

4.3. API Reference 47

MongoEngine Documentation, Release 0.10.5

A EmbeddedDocument subclass may be itself subclassed, to create a specialised version of the embedded
document that will be stored in the same collection. To facilitate this behaviour a _cls field is added to doc-
uments (hidden though the MongoEngine interface). To disable this behaviour and remove the dependence
on the presence of _cls set allow_inheritance to False in the meta dictionary.

my_metaclass
alias of DocumentMetaclass

class mongoengine .DynamicDocument (*args, **values)
A Dynamic Document class allowing flexible, expandable and uncontrolled schemas. As a Document
subclass, acts in the same way as an ordinary document but has expando style properties. Any data passed
or set against the DynamicDocument thatis not a field is automatically converted into a DynamicField
and data can be attributed to that field.

Note: There is one caveat on Dynamic Documents: fields cannot start with _

Initialise a document or embedded document
Parameters
* __auto_convert — Try and will cast python objects to Object types
* values — A dictionary of values for the document

my_metaclass
alias of TopLevelDocumentMetaclass

class mongoengine .DynamicEmbeddedDocument (*args, **kwargs)
A Dynamic Embedded Document class allowing flexible, expandable and uncontrolled schemas. See
DynamicDocument for more information about dynamic documents.

my_metaclass
alias of DocumentMetaclass

class mongoengine.document .MapReduceDocument (document, collection, key, value)
A document returned from a map/reduce query.

Parameters
e collection — Aninstance of Collection

* key — Document/result key, often an instance of ObjectId. If supplied as an
ObjectId found in the given collection, the object can be accessed via the
object property.

* value - The result(s) for this key.
New in version 0.3.

object
Lazy-load the object referenced by self.key. self.key should be the primary_key.

class mongoengine.ValidationError (message="‘, **kwargs)
Validation exception.

May represent an error validating a field or a document containing fields with validation errors.

Variables errors — A dictionary of errors for fields within this document or list, or None if
the error is for an individual field.

to_dict ()
Returns a dictionary of all errors within a document

Keys are field names or list indices and values are the validation error messages, or a nested dictionary
of errors for an embedded document or list.

48 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

class mongoengine .FieldDoesNotExist
Raised when trying to set a field not declared in a Document or an EmbeddedDocument.

To avoid this behavior on data loading, you should the st rict to False in the meta dictionnary.

4.3.3 Context Managers

class mongoengine.context_managers.switch_db (cls, db_alias)
switch_db alias context manager.

Example

Register connections
register_connection('default', 'mongoenginetest')
register_connection('testdb-1', 'mongoenginetest2')

class Group (Document) :
name = StringField()

Group (name="test") .save () # Saves 1in the default db

with switch_db (Group, 'testdb-1'"') as Group:
Group (name="hello testdb!") .save () # Saves in testdb-1

Construct the switch_db context manager
Parameters
* cls — the class to change the registered db
* db_alias - the name of the specific database to use

class mongoengine.context_managers.switch_collection (cls, collection_name)
switch_collection alias context manager.

Example
class Group (Document) :
name = StringField()
Group (name="test") .save () # Saves 1n the default db
with switch_collection (Group, 'groupl') as Group:
Group (name="hello testdb!") .save /() # Saves in groupl collection

Construct the switch_collection context manager
Parameters
* cls — the class to change the registered db
¢ collection_ name — the name of the collection to use

class mongoengine.context_managers.no_dereference (cls)
no_dereference context manager.

Turns off all dereferencing in Documents for the duration of the context manager:

with no_dereference (Group) as Group:
Group.objects.find ()

Construct the no_dereference context manager.

Parameters cls — the class to turn dereferencing off on

4.3. API Reference 49

MongoEngine Documentation, Release 0.10.5

class mongoengine.context_managers.query_counter

Query_counter context manager to get the number of queries.

Construct the query_counter.

4.3.4 Querying

class mongoengine.queryset .QuerySet (document, collection)

The default queryset, that builds queries and handles a set of results returned from a query.
Wraps a MongoDB cursor, providing Document objects as the results.

__call__ (q_obj=None, class_check=True, read_preference=None, **query)
Filter the selected documents by calling the QuerySet with a query.

Parameters

* g _obj—aQ object to be used in the query; the QuerySet is filtered multiple times
with different Q objects, only the last one will be used

* class_check - If set to False bypass class name check when querying collection

* read_preference —if set, overrides connection-level read_preference from Repli-
caSetConnection.

* query — Django-style query keyword arguments

aggregate (*pipeline, **kwargs)
Perform a aggregate function based in your queryset params :param pipeline: list of aggregation com-
mands, see: http://docs.mongodb.org/manual/core/aggregation-pipeline/

New in version 0.9.

aggregate_average (field)
Average over the values of the specified field.

Parameters £ield - the field to average over; use dot-notation to refer to embedded doc-
ument fields

This method is more performant than the regular average, because it uses the aggregation framework
instead of map-reduce.

aggregate_sum (field)
Sum over the values of the specified field.

Parameters £ield - the field to sum over; use dot-notation to refer to embedded document
fields

This method is more performant than the regular sum, because it uses the aggregation framework
instead of map-reduce.

all()
Returns all documents.

all fields ()
Include all fields. Reset all previously calls of .only() or .exclude().

post = BlogPost.objects.exclude ("comments").all_fields()

New in version 0.5.

as_pymongo (coerce_types=False)
Instead of returning Document instances, return raw values from pymongo.

Parameters coerce_types — Field types (if applicable) would be use to coerce types.

average (field)
Average over the values of the specified field.

50

Chapter 4. Offline Reading

http://docs.mongodb.org/manual/core/aggregation-pipeline/

MongoEngine Documentation, Release 0.10.5

Parameters field - the field to average over; use dot-notation to refer to embedded doc-
ument fields

Changed in version 0.5: - updated to map_reduce as db.eval doesnt work with sharding.
clone ()

Creates a copy of the current QuerySet

New in version 0.5.

clone_into (cls)
Creates a copy of the current BaseQuerySet into another child class

count (with_limit_and_skip=False)
Count the selected elements in the query.

Parameters (optional) (with_Ilimit_and skip) — take any limit () or
skip () that has been applied to this cursor into account when getting the count

create (**kwargs)
Create new object. Returns the saved object instance.

New in version 0.4.

delete (write_concern=None, _from_doc_delete=False, cascade_refs=None)
Delete the documents matched by the query.

Parameters

* write_concern — Extra keyword arguments are passed down which will be used
as options for the resultant getLastError command. For example, save (...,
write_concern={w: 2, fsync: True}, ...) will wait until at least
two servers have recorded the write and will force an fsync on the primary server.

e _from_doc_delete — True when called from document delete therefore signals
will have been triggered so don’t loop.

:returns number of deleted documents

distinct (field)
Return a list of distinct values for a given field.

Parameters f£ield — the field to select distinct values from

Note: This is a command and won’t take ordering or limit into account.

New in version 0.4.
Changed in version 0.5: - Fixed handling references
Changed in version 0.6: - Improved db_field refrence handling

ensure_index (**kwargs)
Deprecated use Document .ensure_index ()

exclude (*fields)
Opposite to .only(), exclude some document’s fields.

post = BlogPost.objects(...).exclude ("comments™)

Note: exclude() is chainable and will perform a union :: So with the following it will exclude both:
title and author.name:

post = BlogPost.objects.exclude ("title") .exclude ("author.name™)

. API Reference 51

MongoEngine Documentation, Release 0.10.5

all_fields () will reset any field filters.
Parameters f£ields — fields to exclude
New in version 0.5.

exec_7Js (code, *fields, **options)
Execute a Javascript function on the server. A list of fields may be provided, which will be translated
to their correct names and supplied as the arguments to the function. A few extra variables are added
to the function’s scope: collection, which is the name of the collection in use; query, which is
an object representing the current query; and opt ions, which is an object containing any options
specified as keyword arguments.

As fields in MongoEngine may use different names in the database (set using the db_ field keyword
argument to a Field constructor), a mechanism exists for replacing MongoEngine field names with
the database field names in Javascript code. When accessing a field, use square-bracket notation, and
prefix the MongoEngine field name with a tilde (~).

Parameters
* code - a string of Javascript code to execute

* fields - fields that you will be using in your function, which will be passed in to
your function as arguments

* options — options that you want available to the function (accessed in Javascript
through the opt ions object)

explain (format=False)
Return an explain plan record for the QuerySet‘s cursor.

Parameters format — format the plan before returning it

fields (_only_called=False, **kwargs)
Manipulate how you load this document’s fields. Used by .only() and .exclude() to manipulate which
fields to retrieve. Fields also allows for a greater level of control for example:

Retrieving a Subrange of Array Elements:

You can use the $slice operator to retrieve a subrange of elements in an array. For example to get the
first 5 comments:

post = BlogPost.objects(...).fields(slice__comments=5)

Parameters kwargs — A dictionary identifying what to include

New in version 0.5.

filter (*q_objs, **query)
Analiasof _ _call ()

first ()
Retrieve the first object matching the query.

from_json (json_data)
Converts json data to unsaved objects
get (*q_objs, **query)
Retrieve the the matching object raising MultipleObjectsReturned or Document-

Name.MultipleObjectsReturned exception if multiple results and DoesNotExist or Document-
Name.DoesNotExist if no results are found.

New in version 0.3.

52

Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

hint (index=None)
Added ‘hint’ support, telling Mongo the proper index to use for the query.

Judicious use of hints can greatly improve query performance. When doing a query on multiple fields
(at least one of which is indexed) pass the indexed field as a hint to the query.

Hinting will not do anything if the corresponding index does not exist. The last hint applied to this
cursor takes precedence over all others.

New in version 0.5.

in_bulk (object_ids)
Retrieve a set of documents by their ids.

Parameters object_ids — a list or tuple of ObjectIds

Return type dict of Objectlds as keys and collection-specific Document subclasses as val-
ues.

New in version 0.3.

insert (doc_or_docs, load_bulk=True, write_concern=None)
bulk insert documents

Parameters
¢ doc_or docs — a document or list of documents to be inserted
* (optional) (load_bulk) — If True returns the list of document instances

* write_concern —Extra keyword arguments are passed down to insert () which
will be used as options for the resultant get LastError command. For example,
insert (..., {w: 2, fsync: True}) will wait until at least two servers
have recorded the write and will force an fsync on each server being written to.

By default returns document instances, set Load_bulk to False to return just Ob jectIds

New in version 0.5.

item_frequencies (field, normalize=False, map_reduce=True)
Returns a dictionary of all items present in a field across the whole queried set of documents, and their
corresponding frequency. This is useful for generating tag clouds, or searching documents.

Note: Can only do direct simple mappings and cannot map across ReferenceField or
GenericReferenceField for more complex counting a manual map reduce call would is re-
quired.

If the field is a ListField, the items within each list will be counted individually.
Parameters
e field - the field to use
* normalize — normalize the results so they add to 1.0
* map_reduce — Use map_reduce over exec_js

Changed in version 0.5: defaults to map_reduce and can handle embedded document lookups

limit (n)
Limit the number of returned documents to n. This may also be achieved using array-slicing syntax
(e.g. User.objects[:5]).

Parameters n — the maximum number of objects to return

map_reduce (map_f, reduce_f, output, finalize_f=None, limit=None, scope=None)
Perform a map/reduce query using the current query spec and ordering. While map_ reduce respects
QuerySet chaining, it must be the last call made, as it does not return a maleable QuerySet.

4.3.

API Reference 53

MongoEngine Documentation, Release 0.10.5

See the test_map_reduce () and test_map_advanced () tests in tests.queryset.
QuerySetTest for usage examples.

Parameters
e map_f — map function, as Code or string
* reduce_ f — reduce function, as Code or string

e output - output collection name, if set to ‘inline’ will try to use
inline_map_reduce This can also be a dictionary containing output op-
tions see: http://docs.mongodb.org/manual/reference/command/mapReduce/#dbcmd.
mapReduce

e finalize_f - finalize function, an optional function that performs any post-
reduction processing.

* scope - values to insert into map/reduce global scope. Optional.
* limit — number of objects from current query to provide to map/reduce method

Returns an iterator yielding MapReduceDocument.

Note: Map/Reduce changed in server version >= 1.7.4. The PyMongo map_reduce () helper
requires PyMongo version >= 1.11.

Changed in version 0.5: - removed keep_temp keyword argument, which was only relevant for
MongoDB server versions older than 1.7.4

New in version 0.3.

max_time ms (ms)
Wait ms milliseconds before killing the query on the server

Parameters ms — the number of milliseconds before killing the query on the server

modify (upsert=False, full_response=False, remove=False, new=False, **update)
Update and return the updated document.

Returns either the document before or after modification based on new parameter. If no documents
match the query and upsert is false, returns None. If upserting and new is false, returns None.

If the full_response parameter is True, the return value will be the entire response object from the
server, including the ‘ok’ and ‘lastErrorObject’ fields, rather than just the modified document. This is
useful mainly because the ‘lastErrorObject” document holds information about the command’s execu-
tion.

Parameters
e upsert —insert if document doesn’t exist (default False)

e full_response - return the entire response object from the server (default
False, not available for PyMongo 3+)

* remove — remove rather than updating (default False)
* new — return updated rather than original document (default False)
* update — Django-style update keyword arguments

New in version 0.9.

next ()
Wrap the result in a Document object.

no_cache ()
Convert to a non_caching queryset

New in version 0.8.3: Convert to non caching queryset

54 Chapter 4. Offline Reading

http://docs.mongodb.org/manual/reference/command/mapReduce/#dbcmd.mapReduce
http://docs.mongodb.org/manual/reference/command/mapReduce/#dbcmd.mapReduce

MongoEngine Documentation, Release 0.10.5

no_dereference ()
Turn off any dereferencing for the results of this queryset.

no_sub_classes ()
Only return instances of this document and not any inherited documents

none ()
Helper that just returns a list

only (*fields)
Load only a subset of this document’s fields.

post = BlogPost.objects(...).only("title", "author.name")

Note: only() is chainable and will perform a union :: So with the following it will fetch both: title
and author.name:

post = BlogPost.objects.only("title") .only("author.name")

all_fields () will reset any field filters.
Parameters fields — fields to include

New in version 0.3.

Changed in version 0.5: - Added subfield support

order_by (*keys)
Order the QuerySet by the keys. The order may be specified by prepending each of the keys by a +
or a -. Ascending order is assumed.

Parameters keys — fields to order the query results by; keys may be prefixed with + or - to
determine the ordering direction

read_preference (read_preference)
Change the read_preference when querying.

Parameters read_preference — override ReplicaSetConnection-level preference.

rewind ()
Rewind the cursor to its unevaluated state.

New in version 0.3.

scalar (*fields)
Instead of returning Document instances, return either a specific value or a tuple of values in order.

Can be used along with no_dereference () to turn off dereferencing.

Note: This effects all results and can be unset by calling scalar without arguments. Calls only
automatically.

Parameters £ields — One or more fields to return instead of a Document.

search_text (text, language=None)
Start a text search, using text indexes. Require: MongoDB server version 2.6+.

Parameters language - The language that determines the list of stop words for
the search and the rules for the stemmer and tokenizer. If not specified,
the search uses the default language of the index. For supported languages,
see Text Search Languages <http://docs.mongodb.org/manual/reference/text-search-
languages/#text-search-languages>.

4.3.

API Reference 55

MongoEngine Documentation, Release 0.10.5

select_related (max_depth=1)
Handles dereferencing of DBRef objects or Object Id a maximum depth in order to cut down the
number queries to mongodb.

New in version 0.5.

skip (n)
Skip n documents before returning the results. This may also be achieved using array-slicing syntax
(e.g. User.objects[5:]).

Parameters n — the number of objects to skip before returning results

slave_okay (enabled)
Enable or disable the slave_okay when querying.

Parameters enabled — whether or not the slave_okay is enabled
Deprecated since version Ignored: with PyMongo 3+

snapshot (enabled)
Enable or disable snapshot mode when querying.

Parameters enabled — whether or not snapshot mode is enabled
..versionchanged:: 0.5 - made chainable .. deprecated:: Ignored with PyMongo 3+

sum (field)
Sum over the values of the specified field.

Parameters f£ield — the field to sum over; use dot-notation to refer to embedded document
fields

Changed in version 0.5: - updated to map_reduce as db.eval doesnt work with sharding.

timeout (enabled)
Enable or disable the default mongod timeout when querying.

Parameters enabled — whether or not the timeout is used
..versionchanged:: 0.5 - made chainable

to_Jjson (*args, **kwargs)
Converts a queryset to JSON

update (upsert=False, multi=True, write_concern=None, full_result=False, **update)
Perform an atomic update on the fields matched by the query.

Parameters
* upsert — Any existing document with that “_id” is overwritten.
e multi — Update multiple documents.

* write_concern — Extra keyword arguments are passed down which will be used
as options for the resultant getLastError command. For example, save (.. .,
write_concern={w: 2, fsync: True}, ...) will wait until at least
two servers have recorded the write and will force an fsync on the primary server.

e full_ result — Return the full result rather than just the number updated.
* update — Django-style update keyword arguments
New in version 0.2.

update_one (upsert=False, write_concern=None, **update)
Perform an atomic update on the fields of the first document matched by the query.

Parameters

* upsert — Any existing document with that “_id” is overwritten.

56 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

* write_concern — Extra keyword arguments are passed down which will be used
as options for the resultant getLastError command. For example, save (...,
write_concern={w: 2, fsync: True}, ...) will wait until at least
two servers have recorded the write and will force an fsync on the primary server.

* update — Django-style update keyword arguments
New in version 0.2.

upsert_one (write_concern=None, **update)
Overwrite or add the first document matched by the query.

Parameters

* write_concern — Extra keyword arguments are passed down which will be used
as options for the resultant getLastError command. For example, save (...,
write_concern={w: 2, fsync: True}, ...) will wait until at least
two servers have recorded the write and will force an fsync on the primary server.

* update — Django-style update keyword arguments
:returns the new or overwritten document
New in version 0.10.2.

using (alias)
This method is for controlling which database the QuerySet will be evaluated against if you are using
more than one database.
Parameters alias — The database alias

New in version 0.9.

values_1list (*fields)
An alias for scalar

where (where_clause)
Filter QuerySet results with a Swhere clause (a Javascript expression). Performs automatic field
name substitution like mongoengine.queryset.Queryset.exec_js ().

Note: When using this mode of query, the database will call your function, or evaluate your predicate
clause, for each object in the collection.

New in version 0.5.

with_id (object_id)
Retrieve the object matching the id provided. Uses object_id only and raises InvalidQueryError if a
filter has been applied. Returns None if no document exists with that id.

Parameters object_id — the value for the id of the document to look up
Changed in version 0.6: Raises InvalidQueryError if filter has been set

class mongoengine.queryset .QuerySetNoCache (document, collection)
A non caching QuerySet

__call__ (q_obj=None, class_check=True, read_preference=None, **query)
Filter the selected documents by calling the QuerySet with a query.
Parameters
* g _obj—aQ object to be used in the query; the QuerySet is filtered multiple
times with different Q objects, only the last one will be used
* class_check — If set to False bypass class name check when querying col-
lection
* read_preference - if set, overrides connection-level read_preference
from ReplicaSetConnection.
* query - Django-style query keyword arguments

4.3. API Reference 57

MongoEngine Documentation, Release 0.10.5

cache ()

Convert to a caching queryset

New in version 0.8.3: Convert to caching queryset

mongoengine.queryset .queryset_manager (func)

Decorator that allows you to define custom QuerySet managers on Document classes. The manager must
be a function that accepts a Document class as its first argument, and a QuerySet as its second argument.
The method function should return a QuerySet, probably the same one that was passed in, but modified

in some way.

4.3.5 Fields

class mongoengine.base.fields.BaseField (db_field=None, name=None, required=False,

A base class for fields in a MongoDB document. Instances of this class may be added to subclasses of

default=None, unique="False, unique_with=None,

primary_key=False, validation=None,
choices=None, null=False, sparse=False,
**kwargs)

Document to define a document’s schema.

Changed in version 0.5: - added verbose and help text

Parameters

e db_field - The database field to store this field in (defaults to the name of the field)
* name — Depreciated - use db_field

* required - If the field is required. Whether it has to have a value or not. Defaults to
False.

* default - (optional) The default value for this field if no value has been set (or if the
value has been unset). It can be a callable.

* unique - Is the field value unique or not. Defaults to False.
* unique_with — (optional) The other field this field should be unique with.
* primary_key — Mark this field as the primary key. Defaults to False.

* validation — (optional) A callable to validate the value of the field. Generally this
is deprecated in favour of the FIELD.validate method

* choices — (optional) The valid choices

* null — (optional) Is the field value can be null. If no and there is a default value then
the default value is set

* sparse — (optional) sparse=True combined with unique=True and required=False
means that uniqueness won’t be enforced for None values

* xxkwargs — (optional) Arbitrary indirection-free metadata for this field can be sup-
plied as additional keyword arguments and accessed as attributes of the field. Must not
conflict with any existing attributes. Common metadata includes verbose_name and
help_text.

class mongoengine.fields.StringField (regex=None, max_length=None, min_length=None,

*rkwargs)

A unicode string field.

class mongoengine. fields.URLField (verify_exists=False, url_regex=None, schemes=None,

**kwargs)

A field that validates input as an URL.

New in version 0.3.

58

Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

class mongoengine.fields.EmailField (regex=None, max_length=None, min_length=None,

**kwargs)
A field that validates input as an E-Mail-Address.

New in version 0.4.

class mongoengine.fields.IntField (min_value=None, max_value=None, **kwargs)
An 32-bit integer field.

class mongoengine. fields.LongField (min_value=None, max_value=None, **kwargs)
An 64-bit integer field.

class mongoengine.fields.FloatField (min_value=None, max_value=None, **kwargs)
An floating point number field.

class mongoengine.fields.DecimalField (min_value=None, max_value=None,
force_string=False, precision=2, round-
ing="ROUND_HALF_UP’, **kwargs)
A fixed-point decimal number field.

Changed in version 0.8.
New in version 0.3.
Parameters
* min_value — Validation rule for the minimum acceptable value.
* max_value — Validation rule for the maximum acceptable value.
* force_string - Store as a string.
* precision — Number of decimal places to store.
* rounding — The rounding rule from the python decimal library:
— decimal. ROUND_CEILING (towards Infinity)
— decimal. ROUND_DOWN (towards zero)
— decimal. ROUND_FLOOR (towards -Infinity)
— decimal. ROUND_HALF_DOWN (to nearest with ties going towards zero)
— decimal. ROUND_HALF EVEN (to nearest with ties going to nearest even integer)
— decimal. ROUND_HALF_UP (to nearest with ties going away from zero)
— decimal. ROUND_UP (away from zero)

— decimal. ROUND_O5UP (away from zero if last digit after rounding towards zero
would have been O or 5; otherwise towards zero)

Defaults to: decimal .ROUND_HALF_UP

class mongoengine.fields.BooleanField (db_field=None, name=None, required=False, de-
fault=None, unique=False, unique_with=None, pri-
mary_key=False, validation=None, choices=None,

null=False, sparse=False, **kwargs)
A boolean field type.

New in version 0.1.2.
Parameters
e db_field - The database field to store this field in (defaults to the name of the field)
* name — Depreciated - use db_field

* required - If the field is required. Whether it has to have a value or not. Defaults to
False.

4.3. API Reference 59

MongoEngine Documentation, Release 0.10.5

* default — (optional) The default value for this field if no value has been set (or if the
value has been unset). It can be a callable.

* unique - Is the field value unique or not. Defaults to False.
* unique_with — (optional) The other field this field should be unique with.
* primary_key — Mark this field as the primary key. Defaults to False.

* validation — (optional) A callable to validate the value of the field. Generally this
is deprecated in favour of the FIELD.validate method

* choices — (optional) The valid choices

* null — (optional) Is the field value can be null. If no and there is a default value then
the default value is set

* sparse — (optional) sparse=True combined with unique=True and required=False
means that uniqueness won’t be enforced for None values

* xxkwargs — (optional) Arbitrary indirection-free metadata for this field can be sup-
plied as additional keyword arguments and accessed as attributes of the field. Must not
conflict with any existing attributes. Common metadata includes verbose_name and
help_text.

class mongoengine.fields.DateTimeField (db_field=None, name=None, required=False,
default=None, unique=False, unique_with=None,

primary_key=False, validation=None,
choices=None, null=False, sparse=False,
**kwargs)

A datetime field.

Uses the python-dateutil library if available alternatively use time.strptime to parse the dates. Note: python-
dateutil’s parser is fully featured and when installed you can utilise it to convert varying types of date formats
into valid python datetime objects.

Note: Microseconds are rounded to the nearest millisecond. Pre UTC microsecond support is effec-
tively broken. Use ComplexDateTimeField if you need accurate microsecond support.
Parameters

* db_field - The database field to store this field in (defaults to the name of the field)
* name — Depreciated - use db_field

* required - If the field is required. Whether it has to have a value or not. Defaults to
False.

* default - (optional) The default value for this field if no value has been set (or if the
value has been unset). It can be a callable.

* unique — Is the field value unique or not. Defaults to False.
* unique_with — (optional) The other field this field should be unique with.
* primary_key — Mark this field as the primary key. Defaults to False.

* validation — (optional) A callable to validate the value of the field. Generally this
is deprecated in favour of the FIELD.validate method

* choices — (optional) The valid choices

* null — (optional) Is the field value can be null. If no and there is a default value then
the default value is set

* sparse — (optional) sparse=True combined with unique=True and required=False
means that uniqueness won’t be enforced for None values

60 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

* xxkwargs — (optional) Arbitrary indirection-free metadata for this field can be sup-
plied as additional keyword arguments and accessed as attributes of the field. Must not
conflict with any existing attributes. Common metadata includes verbose_name and
help_text.

class mongoengine.fields.ComplexDateTimeField (separator=", ‘, **kwargs)
ComplexDateTimeField handles microseconds exactly instead of rounding like DateTimeField does.

Derives from a StringField so you can do gfe and lfe filtering by using lexicographical comparison when
filtering / sorting strings.

The stored string has the following format:
YYYY,MM,DD,HH,MM,SS,NNNNNN

Where NNNNNN is the number of microseconds of the represented datetime. The , as the separator can be
easily modified by passing the separator keyword when initializing the field.

New in version 0.5.

class mongoengine. fields .EmbeddedDocumentField (document_type, **kwargs)
An embedded document field - with a declared document_type. Only valid values are subclasses of
EmbeddedDocument.

class mongoengine.fields.GenericEmbeddedDocumentField (db_field=None, name=None,

required=False, de-
fault=None, unique=False,
unique_with=None, pri-

mary_key=Fualse, valida-
tion=None, choices=None,
null=False, sparse=False,

**kwargs)
A generic embedded document field - allows any EmbeddedDocument to be stored.

Only valid values are subclasses of EmbeddedDocument.

Note: You can use the choices param to limit the acceptable EmbeddedDocument types

Parameters
e db_field - The database field to store this field in (defaults to the name of the field)
* name — Depreciated - use db_field

* required - If the field is required. Whether it has to have a value or not. Defaults to
False.

* default — (optional) The default value for this field if no value has been set (or if the
value has been unset). It can be a callable.

* unique - Is the field value unique or not. Defaults to False.
* unique_with — (optional) The other field this field should be unique with.
* primary_key — Mark this field as the primary key. Defaults to False.

* validation — (optional) A callable to validate the value of the field. Generally this
is deprecated in favour of the FIELD.validate method

* choices — (optional) The valid choices

* null — (optional) Is the field value can be null. If no and there is a default value then
the default value is set

* sparse — (optional) sparse=True combined with unique=True and required=False
means that uniqueness won’t be enforced for None values

4.3. API Reference 61

MongoEngine Documentation, Release 0.10.5

*xkwargs — (optional) Arbitrary indirection-free metadata for this field can be sup-
plied as additional keyword arguments and accessed as attributes of the field. Must not
conflict with any existing attributes. Common metadata includes verbose_name and
help_text.

class mongoengine.fields.DynamicField (db_field=None, name=None, required=False, de-

fault=None, unique=False, unique_with=None, pri-
mary_key=False, validation=None, choices=None,
null=False, sparse=False, **kwargs)

A truly dynamic field type capable of handling different and varying types of data.

Used by DynamicDocument to handle dynamic data

Parameters

db_field - The database field to store this field in (defaults to the name of the field)
name — Depreciated - use db_field

required - If the field is required. Whether it has to have a value or not. Defaults to
False.

default - (optional) The default value for this field if no value has been set (or if the
value has been unset). It can be a callable.

unique — Is the field value unique or not. Defaults to False.
unique_with — (optional) The other field this field should be unique with.
primary_ key — Mark this field as the primary key. Defaults to False.

validation — (optional) A callable to validate the value of the field. Generally this
is deprecated in favour of the FIELD.validate method

choices — (optional) The valid choices

null — (optional) Is the field value can be null. If no and there is a default value then
the default value is set

sparse — (optional) sparse=True combined with unique=True and required=False
means that uniqueness won’t be enforced for None values

*xkwargs — (optional) Arbitrary indirection-free metadata for this field can be sup-
plied as additional keyword arguments and accessed as attributes of the field. Must not
conflict with any existing attributes. Common metadata includes verbose_name and
help_text.

class mongoengine.fields.ListField (field=None, **kwargs)

A list field that wraps a standard field, allowing multiple instances of the field to be used as a list in the

database.

If using with ReferenceFields see: One to Many with ListFields

Note: Required means it cannot be empty - as the default for ListFields is []

class mongoengine.fields .EmbeddedDocumentListField (document_type, **kwargs)

A ListField designed specially to hold a list of embedded documents to provide additional query

helpers.

Note: The only valid list values are subclasses of EmbeddedDocument.

New in version 0.9.

Parameters

62

Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

* document_type — The type of EmbeddedDocument the list will hold.
* kwargs — Keyword arguments passed directly into the parent ListField.

class mongoengine. fields.SortedListField (field, **kwargs)
A ListField that sorts the contents of its list before writing to the database in order to ensure that a sorted
list is always retrieved.

Warning: There is a potential race condition when handling lists. If you set / save the whole list then
other processes trying to save the whole list as well could overwrite changes. The safest way to append
to a list is to perform a push operation.

New in version 0.4.
Changed in version 0.6: - added reverse keyword

class mongoengine.fields.DictField (basecls=None, field=None, *args, **kwargs)
A dictionary field that wraps a standard Python dictionary. This is similar to an embedded document, but
the structure is not defined.

Note: Required means it cannot be empty - as the default for DictFields is {}

New in version 0.3.
Changed in version 0.5: - Can now handle complex / varying types of data

class mongoengine. fields.MapField (field=None, *args, **kwargs)
A field that maps a name to a specified field type. Similar to a DictField, except the ‘value’ of each item
must match the specified field type.

New in version 0.5.

class mongoengine.fields.ReferenceField (document_type, dbref=False, re-

verse_delete_rule=0, **kwargs)
A reference to a document that will be automatically dereferenced on access (lazily).

Use the reverse_delete_rule to handle what should happen if the document the field is referencing is deleted.
EmbeddedDocuments, DictFields and MapFields does not support reverse_delete_rule and an InvalidDoc-
umentError will be raised if trying to set on one of these Document / Field types.

The options are:

* DO_NOTHING (0) - don’t do anything (default).

NULLIFY (1) - Updates the reference to null.

CASCADE (2) - Deletes the documents associated with the reference.

DENY (3) - Prevent the deletion of the reference object.
e PULL (4) - Pull the reference from a i st Field of references

Alternative syntax for registering delete rules (useful when implementing bi-directional delete rules)

class Bar (Document) :
content = StringField()
foo = ReferenceField('Foo')

Bar.register_delete_rule(Foo, 'bar', NULLIFY)

Note: reverse_delete_rule does not trigger pre / post delete signals to be triggered.

Changed in version 0.5: added reverse_delete_rule

4.3. API Reference 63

MongoEngine Documentation, Release 0.10.5

Initialises the Reference Field.
Parameters
* dbref — Store the reference as DBRef or as the ObjectId.id.

* reverse_delete_rule - Determines what to do when the referring object is
deleted

Note: A reference to an abstract document type is always stored as a DBRe £, regardless of the value of
dbref.

class mongoengine.fields.GenericReferenceField (*args, **kwargs)
A reference to any Document subclass that will be automatically dereferenced on access (lazily).

Note:

* Any documents used as a generic reference must be registered in the document registry. Importing the
model will automatically register it.

* You can use the choices param to limit the acceptable Document types

New in version 0.3.

class mongoengine.fields.CachedReferenceField (document_type, fields=[],

auto_sync=True, **kwargs)
A referencefield with cache fields to purpose pseudo-joins

New in version 0.9.
Initialises the Cached Reference Field.
Parameters
e fields — A list of fields to be cached in document
* auto_sync — if True documents are auto updated.

class mongoengine. fields.BinaryField (max_bytes=None, **kwargs)
A binary data field.

class mongoengine.fields.FileField (db_alias="default’, collection_name="fs’, **kwargs)
A GridFS storage field.

New in version 0.4.
Changed in version 0.5: added optional size param for read
Changed in version 0.6: added db_alias for multidb support

class mongoengine.fields.ImageField (size=None, thumbnail_size=None, collec-

tion_name="images’, **kwargs)
A Image File storage field.

@size (width, height, force): max size to store images, if larger will be automatically resized ex:
size=(800, 600, True)

@thumbnail (width, height, force): size to generate a thumbnail
New in version 0.6.
class mongoengine.fields.SequenceField (collection_name=None, db_alias=None, se-

quence_name=None, value_decorator=None,
*args, **kwargs)

Provides a sequential counter see: http://www.mongodb.org/display/DOCS/Object+IDs#
ObjectIDs-SequenceNumbers

64 Chapter 4. Offline Reading

http://www.mongodb.org/display/DOCS/Object+IDs#ObjectIDs-SequenceNumbers
http://www.mongodb.org/display/DOCS/Object+IDs#ObjectIDs-SequenceNumbers

MongoEngine Documentation, Release 0.10.5

Note: Although traditional databases often use increasing sequence numbers for primary keys. In Mon-
goDB, the preferred approach is to use Object IDs instead. The concept is that in a very large cluster of
machines, it is easier to create an object ID than have global, uniformly increasing sequence numbers.

Parameters

* collection_name - Name of the counter collection (default ‘mongo-
engine.counters’)

* sequence_name — Name of the sequence in the collection (default ‘Class-
Name.counter’)

* value_decorator — Any callable to use as a counter (default int)

Use any callable as value_decorator to transform calculated counter into any value suitable for your needs,
e.g. string or hexadecimal representation of the default integer counter value.

Note: In case the counter is defined in the abstract document, it will be common to all inherited documents
and the default sequence name will be the class name of the abstract document.

New in version 0.5.
Changed in version 0.8: added value_decorator

class mongoengine.fields.ObjectIdField (db_field=None, name=None, required=False,
default=None, unique=False, unique_with=None,

primary_key=False, validation=None,
choices=None, null=False, sparse=False,
**kwargs)

A field wrapper around MongoDB’s Objectlds.
Parameters
* db_field - The database field to store this field in (defaults to the name of the field)
* name — Depreciated - use db_field

* required - If the field is required. Whether it has to have a value or not. Defaults to
False.

* default — (optional) The default value for this field if no value has been set (or if the
value has been unset). It can be a callable.

* unique - Is the field value unique or not. Defaults to False.
* unique_with — (optional) The other field this field should be unique with.
* primary_key — Mark this field as the primary key. Defaults to False.

* validation — (optional) A callable to validate the value of the field. Generally this
is deprecated in favour of the FIELD.validate method

* choices — (optional) The valid choices

* null — (optional) Is the field value can be null. If no and there is a default value then
the default value is set

* sparse — (optional) sparse=True combined with unique=True and required=False
means that uniqueness won’t be enforced for None values

* xxkwargs — (optional) Arbitrary indirection-free metadata for this field can be sup-
plied as additional keyword arguments and accessed as attributes of the field. Must not
conflict with any existing attributes. Common metadata includes verbose_name and
help_text.

4.3. API Reference 65

MongoEngine Documentation, Release 0.10.5

class mongoengine. fields.UUIDField (binary=True, **kwargs)
A UUID field.

New in version 0.6.
Store UUID data in the database
Parameters binary — if False store as a string.
Changed in version 0.8.0.
Changed in version 0.6.19.

class mongoengine.fields.GeoPointField (db_field=None, name=None, required=False,
default=None, unique=False, unique_with=None,

primary_key=False, validation=None,
choices=None, null=False, sparse=False,
**kwargs)

A list storing a longitude and latitude coordinate.

Note: this represents a generic point in a 2D plane and a legacy way of representing a geo point. It admits
2d indexes but not “2dsphere” indexes in MongoDB > 2.4 which are more natural for modeling geospatial
points. See Geospatial indexes

New in version 0.4.
Parameters
e db_field - The database field to store this field in (defaults to the name of the field)
* name — Depreciated - use db_field

* required - If the field is required. Whether it has to have a value or not. Defaults to
False.

* default - (optional) The default value for this field if no value has been set (or if the
value has been unset). It can be a callable.

* unique — Is the field value unique or not. Defaults to False.
* unique_with — (optional) The other field this field should be unique with.
* primary_key — Mark this field as the primary key. Defaults to False.

* validation — (optional) A callable to validate the value of the field. Generally this
is deprecated in favour of the FIELD.validate method

* choices - (optional) The valid choices

* null — (optional) Is the field value can be null. If no and there is a default value then
the default value is set

* sparse — (optional) sparse=True combined with unique=True and required=False
means that uniqueness won’t be enforced for None values

* xxkwargs — (optional) Arbitrary indirection-free metadata for this field can be sup-
plied as additional keyword arguments and accessed as attributes of the field. Must not
conflict with any existing attributes. Common metadata includes verbose_name and
help_text.

class mongoengine.fields.PointField (auto_index=True, *args, **kwargs)
A GeoJSON field storing a longitude and latitude coordinate.

The data is represented as:

{ "type" : "Point" ,
"coordinates" : [x, yl}

66 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

You can either pass a dict with the full information or a list to set the value.
Requires mongodb >=2.4
New in version 0.8.

Parameters auto_index (bool) — Automatically create a “2dsphere” index. Defaults to
True.

class mongoengine.fields.LineStringField (aufo_index=True, *args, **kwargs)
A GeoJSON field storing a line of longitude and latitude coordinates.

The data is represented as:

{ "type" : "LineString"
"coordinates" : [[x1, vy1]1, [x1, y1] ... [xn, yn]l}

You can either pass a dict with the full information or a list of points.
Requires mongodb >=2.4
New in version 0.8.

Parameters auto_index (bool) — Automatically create a “2dsphere” index. Defaults to
True.

class mongoengine.fields.PolygonField (aufo_index=True, *args, **kwargs)
A GeoJSON field storing a polygon of longitude and latitude coordinates.

The data is represented as:

{ "type" : "Polygon"
"coordinates" : [[[x1, vy11, [x1, y1] ... [xn, ynll,
[[x1, y1], [x1, y1] ... [xn, yn]]}

You can either pass a dict with the full information or a list of LineStrings. The first LineString being the
outside and the rest being holes.

Requires mongodb >=2.4
New in version 0.8.

Parameters auto_index (bool) — Automatically create a “2dsphere” index. Defaults to
True.

class mongoengine.fields.MultiPointField (auto_index=True, *args, **kwargs)
A GeoJSON field storing a list of Points.

The data is represented as:

{ "type" : "MultiPoint" ,
"coordinates" : [[x1, y1], [x2, y211}

You can either pass a dict with the full information or a list to set the value.
Requires mongodb >=2.6
New in version 0.9.

Parameters auto_index (bool) — Automatically create a “2dsphere” index. Defaults to
True.

class mongoengine.fields.MultiLineStringField (auto_index=True, *args, **kwargs)
A GeoJSON field storing a list of LineStrings.

The data is represented as:

{ "type" : "MultiLineString"
"coordinates" : [[[x1, vy11, [x1, vy1] ... [xn, ynll,
([x1, y1], [x1, y1] ... [xn, yn]l]}

4.3. API Reference 67

MongoEngine Documentation, Release 0.10.5

You can either pass a dict with the full information or a list of points.
Requires mongodb >=2.6
New in version 0.9.

Parameters auto_index (bool) — Automatically create a “2dsphere” index. Defaults to
True.

class mongoengine.fields.MultiPolygonField (auto_index=True, *args, **kwargs)
A GeoJSON field storing list of Polygons.

The data is represented as:

{ "type" : "MultiPolygon" ,
"coordinates" : [[
[[x1, v1], [x1, vy1] ... [xn, ynll],
[[x1, vy1], [x1, y1] ... [xn, yn]]
1, 1
[[x1, v1], [x1, vy1] ... [xn, ynll,
[[x1, vy1], [x1, y1] ... [xn, yn]]
1
}

You can either pass a dict with the full information or a list of Polygons.
Requires mongodb >= 2.6
New in version 0.9.

Parameters auto_index (bool) — Automatically create a “2dsphere” index. Defaults to
True.

class mongoengine.fields.GridFSError

class mongoengine.fields.GridFSProxy (grid_id=None, key=None, instance=None,

db_alias="default’, collection_name="fs")
Proxy object to handle writing and reading of files to and from GridFS

New in version 0.4.
Changed in version 0.5: - added optional size param to read
Changed in version 0.6: - added collection name param

class mongoengine. fields.ImageGridFsProxy (grid_id=None, key=None, instance=None,
db_alias="default’, collection_name="fs’)
Proxy for ImageField

versionadded: 0.6

class mongoengine. fields.ImproperlyConfigured

4.3.6 Embedded Document Querying

New in version 0.9.

Additional queries for Embedded Documents are available when using the EmbeddedDocumentListField
to store a list of embedded documents.

A list of embedded documents is returned as a special list with the following methods:

class mongoengine.base.datastructures.EmbeddedDocumentList (list_items, instance,
name)

count ()
The number of embedded documents in the list.

68 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Returns The length of the list, equivalent to the result of 1len ().

create (**values)
Creates a new embedded document and saves it to the database.

Note: The embedded document changes are not automatically saved to the database after calling this
method.

Parameters values — A dictionary of values for the embedded document.

Returns The new embedded document instance.

delete ()
Deletes the embedded documents from the database.

Note: The embedded document changes are not automatically saved to the database after calling this
method.

Returns The number of entries deleted.
exclude (**kwargs)
Filters the list by excluding embedded documents with the given keyword arguments.

Parameters kwargs — The keyword arguments corresponding to the fields to exclude on.
Multiple arguments are treated as if they are ANDed together.

Returns A new EmbeddedDocumentList containing the non-matching embedded doc-
uments.

Raises AttributeError if a given keyword is not a valid field for the embedded document class.

filter (**kwargs)
Filters the list by only including embedded documents with the given keyword arguments.

Parameters kwargs — The keyword arguments corresponding to the fields to filter on.
Multiple arguments are treated as if they are ANDed together.

Returns A new EmbeddedDocumentList containing the matching embedded docu-
ments.

Raises AttributeError if a given keyword is not a valid field for the embedded document class.

first ()
Returns the first embedded document in the list, or None if empty.

get (**kwargs)
Retrieves an embedded document determined by the given keyword arguments.

Parameters kwargs — The keyword arguments corresponding to the fields to search on.
Multiple arguments are treated as if they are ANDed together.

Returns The embedded document matched by the given keyword arguments.

Raises DoesNotExist if the arguments used to query an embedded document returns no results.
MultipleObjectsReturned if more than one result is returned.

save (*args, **kwargs)
Saves the ancestor document.

Parameters
* args — Arguments passed up to the ancestor Document’s save method.

* kwargs — Keyword arguments passed up to the ancestor Document’s save method.

4.3.

API Reference 69

MongoEngine Documentation, Release 0.10.5

update (**update)
Updates the embedded documents with the given update values.

Note: The embedded document changes are not automatically saved to the database after calling this
method.

Parameters update — A dictionary of update values to apply to each embedded document.

Returns The number of entries updated.

4.3.7 Misc

mongoengine.common._import_class (cls_name)
Cache mechanism for imports.

Due to complications of circular imports mongoengine needs to do lots of inline imports in functions. This
is inefficient as classes are imported repeated throughout the mongoengine code. This is compounded by
some recursive functions requiring inline imports.

mongoengine.common provides a single point to import all these classes. Circular imports aren’t an
issue as it dynamically imports the class when first needed. Subsequent calls to the _import_class ()
can then directly retrieve the class from the mongoengine.common._class_registry_cache.

4.4 Changelog

4.4.1 Changes in 0.10.6 - Dev

* Add support for mocking MongoEngine based on mongomock. #1151
* Fixed not being able to run tests on Windows. #1153

* Allow creation of sparse compound indexes. #1114

4.4.2 Changes in 0.10.5

* Fix for reloading of strict with special fields. #1156

4.4.3 Changes in 0.10.4

 SaveConditionError is now importable from the top level package. #1165

* upsert_one method added. #1157

4.4.4 Changes in 0.10.3

* Fix read_preference (it had chaining issues with PyMongo 2.x and it didn’t work at all with PyMongo 3.x)
#1042

4.4.5 Changes in 0.10.2

* Allow shard key to point to a field in an embedded document. #551
* Allow arbirary metadata in fields. #1129

70 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

» ReferenceFields now support abstract document types. #837

4.4.6 Changes in 0.10.1

¢ Fix infinite recursion with CASCADE delete rules under specific conditions. #1046

* Fix CachedReferenceField bug when loading cached docs as DBRef but failing to save them. #1047
* Fix ignored chained options #842

* Document save’s save_condition error raises SaveConditionError exception #1070

* Fix Document.reload for DynamicDocument. #1050

e StrictDict & SemiStrictDict are shadowed at init time. #1105

* Remove test dependencies (nose and rednose) from install dependencies list. #1079

* Recursively build query when using elemMatch operator. #1130

¢ Fix instance back references for lists of embedded documents. #1131

4.4.7 Changes in 0.10.0

Django support was removed and will be available as a separate extension. #958

Allow to load undeclared field with meta attribute ‘strict’: False #957

Support for PyMongo 3+ #946

Removed get_or_create() deprecated since 0.8.0. #300

Improve Document._created status when switch collection and db #1020

Queryset update doesn’t go through field validation #453

Added support for specifying authentication source as option authSource in URL #967

Fixed mark_as_changed to handle higher/lower level fields changed. #927

ListField of embedded docs doesn’t set the _instance attribute when iterating over it #914

Support += and *= for ListField #595

Use sets for populating dbrefs to dereference

Fixed unpickled documents replacing the global field’s list. #8388

Fixed storage of microseconds in ComplexDateTimeField and unused separator option. #910

Don’t send a “cls” option to ensurelndex (related to https://jira.mongodb.org/browse/SERVER-769)

Fix for updating sorting in SortedListField. #978

Added __ support to escape field name in fields lookup keywords that match operators names #949

Fix for issue where FileField deletion did not free space in GridFS.

No_dereference() not respected on embedded docs containing reference. #517

Document save raise an exception if save_condition fails #1005

Fixes some internal _id handling issue. #961

Updated URL and Email Field regex validators, added schemes argument to URLField validation. #652

Capped collection multiple of 256. #1011

Added BaseQuerySet.aggregate_sum and BaseQuerySet.aggregate_average methods.

Fix for delete with write_concern {‘w’: 0}. #1008

44.

Changelog 71

https://jira.mongodb.org/browse/SERVER-769

MongoEngine Documentation, Release 0.10.5

* Allow dynamic lookup for more than two parts. #882
* Added support for min_distance on geo queries. #3831

¢ Allow to add custom metadata to fields #705

4.4.8 Changes in 0.9.0

» Update FileField when creating a new file #714

* Added EmbeddedDocumentListField for Lists of Embedded Documents. #3826
» ComplexDateTimeField should fall back to None when null=True #864
* Request Support for $min, $max Field update operators #8363

* BaseDict does not follow setdefault #866

* Add support for $type operator # 766

* Fix tests for pymongo 2.8+ #877

* No module named ‘django.utils.importlib’ (Django dev) #872

¢ Field Choices Now Accept Subclasses of Documents

* Ensure Indexes before Each Save #812

* Generate Unique Indices for Lists of EmbeddedDocuments #358

* Sparse fields #515

 write_concern not in params of Collection#remove #801

* Better BaseDocument equality check when not saved #798

* OperationError: Shard Keys are immutable. Tried to update id even though the document is not yet saved
#771

» with_limit_and_skip for count should default like in pymongo #759

* Fix storing value of precision attribute in DecimalField #787

¢ Set attribute to None does not work (at least for fields with default values) #734

* Querying by a field defined in a subclass raises InvalidQueryError #744

* Add Support For MongoDB 2.6.X’s maxTimeMS #778

¢ abstract shouldn’t be inherited in EmbeddedDocument # 789

* Allow specifying the ‘_cls’ as a field for indexes #397

* Stop ensure_indexes running on a secondaries unless connection is through mongos #746
* Not overriding default values when loading a subset of fields #399

» Saving document doesn’t create new fields in existing collection #620

* Added Queryset.aggregate wrapper to aggregation framework #703

* Added support to show original model fields on to_json calls instead of db_field #697
¢ Added Queryset.search_text to Text indexes searchs #700

* Fixed tests for Django 1.7 #696

¢ Follow ReferenceFields in EmbeddedDocuments with select_related #690

* Added preliminary support for text indexes #680

e Added elemMatch operator as well - match is too obscure #653

* Added support for progressive JPEG #486 #548

72 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Allow strings to be used in index creation #675

Fixed EmbeddedDoc weakref proxy issue #592

Fixed nested reference field distinct error #583

Fixed change tracking on nested MapFields #539

Dynamic fields in embedded documents now visible to queryset.only() / gs.exclude() #425 #507
Add authentication_source option to register_connection #178 #464 #573 #580 #590
Implemented equality between Documents and DBRefs #597

Fixed ReferenceField inside nested ListFields dereferencing problem #368

Added the ability to reload specific document fields #100

Added db_alias support and fixes for custom map/reduce output #586

post_save signal now has access to delta information about field changes #594 #589
Don’t query with $orderby for gs.get() #600

Fix id shard key save issue #636

Fixes issue with recursive embedded document errors #557

Fix clear_changed_fields() clearing unsaved documents bug #602

Removing support for Django 1.4.x, pymongo 2.5.x, pymongo 2.6.X.

Removing support for Python < 2.6.6

Fixed $maxDistance location for geoJSON $near queries with MongoDB 2.6+ #664

QuerySet.modify() and Document.modify() methods to provide find_and_modify() like behaviour #677
#773

Added support for the using() method on a queryset #676

PYPY support #673

Connection pooling #674

Avoid to open all documents from cursors in an if stmt #655
Ability to clear the ordering #657

Raise NotUniqueError in Document.update() on pymongo.errors.DuplicateKeyError #626
Slots - memory improvements #625

Fixed incorrectly split a query key when it ends with “_” #619
Geo docs updates #613

Workaround a dateutil bug #608

Conditional save for atomic-style operations #511

Allow dynamic dictionary-style field access #559

Increase email field length to accommodate new TLDs #726
index_cls is ignored when deciding to set _cls as index prefix #733
Make ‘db’ argument to connection optional #737

Allow atomic update for the entire DictField #742

Added MultiPointField, MultiLineField, MultiPolygonField

Fix multiple connections aliases being rewritten #748

Fixed a few instances where reverse_delete_rule was written as reverse_delete_rules. #791

44.

Changelog 73

MongoEngine Documentation, Release 0.10.5

* Make in_bulk() respect no_dereference() #1775
¢ Handle None from model __str__; Fixes #753 #754

_get_changed_fields fix for embedded documents with id field. #925

4.4.9 Changes in 0.8.7

* Calling reload on deleted / nonexistent documents raises DoesNotExist (#538)
* Stop ensure_indexes running on a secondaries (#555)

* Fix circular import issue with django auth (#531) (#545)

4.4.10 Changes in 0.8.6

* Fix django auth import (#531)

4.4.11 Changes in 0.8.5

Fix multi level nested fields getting marked as changed (#523)

Django 1.6 login fix (#522) (#527)

Django 1.6 session fix (#509)

EmbeddedDocument._instance is now set when setting the attribute (#506)
Fixed EmbeddedDocument with ReferenceField equality issue (#502)
Fixed GenericReferenceField serialization order (#499)

Fixed count and none bug (#498)

Fixed bug with .only() and DictField with digit keys (#496)

Added user_permissions to Django User object (#491, #492)

Fix updating Geo Location fields (#488)

Fix handling invalid dict field value (#485)

Added app_label to MongoUser (#484)

Use defaults when host and port are passed as None (#483)

Fixed distinct casting issue with ListField of EmbeddedDocuments (#470)
Fixed Django 1.6 sessions (#454, #480)

4.4.12 Changes in 0.8.4

Remove database name necessity in uri connection schema (#452)
Fixed “$pull” semantics for nested ListFields (#447)

Allow fields to be named the same as query operators (#445)

Updated field filter logic - can now exclude subclass fields (#443)
Fixed dereference issue with embedded listfield referencefields (#439)
Fixed slice when using inheritance causing fields to be excluded (#437)
Fixed ._get_db() attribute after a Document.switch_db() (#441)

Dynamic Fields store and recompose Embedded Documents / Documents correctly (#449)

74

Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

* Handle dynamic fieldnames that look like digits (#434)

* Added get_user_document and improve mongo_auth module (#423)
* Added str representation of GridFSProxy (#424)

» Update transform to handle docs erroneously passed to unset (#416)
¢ Fixed indexing - turn off _cls (#414)

* Fixed dereference threading issue in ComplexField.__get (#412)

* Fixed QuerySetNoCache.count() caching (#410)

* Don’t follow references in _get_changed_fields (#422, #417)

» Allow args and kwargs to be passed through to_json (#420)

4.4.13 Changes in 0.8.3

* Fixed EmbeddedDocuments with id also storing _id (#402)

* Added get_proxy_object helper to filefields (#391)

* Added QuerySetNoCache and QuerySet.no_cache() for lower memory consumption (#365)

* Fixed sum and average mapreduce dot notation support (#375, #376, #393)

* Fixed as_pymongo to return the id (#386)

* Document.select_related() now respects db_alias (#377)

* Reload uses shard_key if applicable (#384)

* Dynamic fields are ordered based on creation and stored in _fields_ordered (#396)
Potential breaking change: http://docs.mongoengine.org/en/latest/upgrade.html#to-0-8-3

¢ Fixed pickling dynamic documents _dynamic_fields (#387)

* Fixed ListField setslice and delslice dirty tracking (#390)

* Added Django 1.5 PY3 support (#392)

* Added match ($elemMatch) support for EmbeddedDocuments (#379)

* Fixed weakref being valid after reload (#374)

* Fixed queryset.get() respecting no_dereference (#373)

e Added full_result kwarg to update (#380)

4.4.14 Changes in 0.8.2

* Added compare_indexes helper (#361)

* Fixed cascading saves which weren’t turned off as planned (#291)

¢ Fixed Datastructures so instances are a Document or EmbeddedDocument (#363)
* Improved cascading saves write performance (#361)

* Fixed ambiguity and differing behaviour regarding field defaults (#349)

* ImageFields now include PIL error messages if invalid error (#353)

* Added lock when calling doc.Delete() for when signals have no sender (#350)

* Reload forces read preference to be PRIMARY (#355)

* Querysets are now lest restrictive when querying duplicate fields (#332, #333)

4.4. Changelog 75

http://docs.mongoengine.org/en/latest/upgrade.html#to-0-8-3

MongoEngine Documentation, Release 0.10.5

* FileField now honouring db_alias (#341)

* Removed customised __set__ change tracking in ComplexBaseField (#344)
* Removed unused var in _get_changed_fields (#347)

e Added pre_save_post_validation signal (#345)

» DateTimeField now auto converts valid datetime isostrings into dates (#343)
» DateTimeField now uses dateutil for parsing if available (#343)

¢ Fixed Doc.objects(read_preference=X) not setting read preference (#352)

* Django session ttl index expiry fixed (#329)

* Fixed pickle.loads (#342)

¢ Documentation fixes

4.4.15 Changes in 0.8.1

* Fixed Python 2.6 django auth importlib issue (#326)

* Fixed pickle unsaved document regression (#327)

4.4.16 Changes in 0.8.0

* Fixed querying ReferenceField custom_id (#317)

* Fixed pickle issues with collections (#316)

* Added get_next_value preview for SequenceFields (#319)

* Added no_sub_classes context manager and queryset helper (#312)

¢ Querysets now utilises a local cache

* Changed __len__ behaviour in the queryset (#247, #311)

* Fixed querying string versions of Objectlds issue with ReferenceField (#307)
* Added $setOnlnsert support for upserts (#308)

» Upserts now possible with just query parameters (#309)

o Upserting is the only way to ensure docs are saved correctly (#306)

* Fixed register_delete_rule inheritance issue

¢ Fix cloning of sliced querysets (#303)

* Fixed update_one write concern (#302)

* Updated minimum requirement for pymongo to 2.5

* Add support for new geojson fields, indexes and queries (#299)

* If values cant be compared mark as changed (#287)

* Ensure as_pymongo() and to_json honour only() and exclude() (#293)
¢ Document serialization uses field order to ensure a strict order is set (#296)
* DecimalField now stores as float not string (#289)

» UUIDField now stores as a binary by default (#292)

¢ Added Custom User Model for Django 1.5 (#285)

» Cascading saves now default to off (#291)

76 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

» ReferenceField now store Objectld’s by default rather than DBRef (#290)
* Added ImageField support for inline replacements (#86)

* Added SequenceField.set_next_value(value) helper (#159)

» Updated .only() behaviour - now like exclude it is chainable (#202)

¢ Added with_limit_and_skip support to count() (#235)

* Objects queryset manager now inherited (#256)

» Updated connection to use MongoClient (#262, #274)

¢ Fixed db_alias and inherited Documents (#143)

* Documentation update for document errors (#124)

» Deprecated get_or_create (#35)

» Updated inheritable objects created by upsert now contain _cls (#118)

* Added support for creating documents with embedded documents in a single operation (#6)
* Added to_json and from_json to Document (#1)

¢ Added to_json and from_json to QuerySet (#131)

» Updated index creation now tied to Document class (#102)

* Added none() to queryset (#127)

» Updated SequenceFields to allow post processing of the calculated counter value (#141)
¢ Added clean method to documents for pre validation data cleaning (#60)

* Added support setting for read prefrence at a query level (#157)

* Added _instance to EmbeddedDocuments pointing to the parent (#139)

* Inheritance is off by default (#122)

* Remove _types and just use _cls for inheritance (#148)

* Only allow QNode instances to be passed as query objects (#199)

* Dynamic fields are now validated on save (#153) (#154)

¢ Added support for multiple slices and made slicing chainable. (#170) (#190) (#191)
* Fixed GridFSProxy __getattr__ behaviour (#196)

* Fix Django timezone support (#151)

» Simplified Q objects, removed QueryTreeTransformerVisitor (#98) (#171)
* FileFields now copyable (#198)

* Querysets now return clones and are no longer edit in place (#56)

¢ Added support for $maxDistance (#179)

» Uses getlasterror to test created on updated saves (#163)

* Fixed inheritance and unique index creation (#140)

¢ Fixed reverse delete rule with inheritance (#197)

* Fixed validation for GenericReferences which haven’t been dereferenced
¢ Added switch_db context manager (#106)

¢ Added switch_db method to document instances (#106)

* Added no_dereference context manager (#82) (#61)

* Added switch_collection context manager (#220)

4.4. Changelog 77

MongoEngine Documentation, Release 0.10.5

¢ Added switch_collection method to document instances (#220)

* Added support for compound primary keys (#149) (#121)

* Fixed overriding objects with custom manager (#58)

¢ Added no_dereference method for querysets (#82) (#61)

¢ Undefined data should not override instance methods (#49)

* Added Django Group and Permission (#142)

* Added Doc class and pk to Validation messages (#69)

* Fixed Documents deleted via a queryset don’t call any signals (#105)
* Added the “get_decoded” method to the MongoSession class (#216)
* Fixed invalid choices error bubbling (#214)

 Updated Save so it calls $set and $unset in a single operation (#211)

* Fixed inner queryset looping (#204)

4.4.17 Changes in 0.7.10

¢ Fix UnicodeEncodeError for dbref (#278)

* Allow construction using positional parameters (#268)

» Updated EmailField length to support long domains (#243)

* Added 64-bit integer support (#251)

* Added Django sessions TTL support (#224)

* Fixed issue with numerical keys in MapField(EmbeddedDocumentField()) (#240)
* Fixed clearing _changed_fields for complex nested embedded documents (#237, #239, #242)
* Added “id” back to _data dictionary (#255)

¢ Only mark a field as changed if the value has changed (#258)

 Explicitly check for Document instances when dereferencing (#261)

* Fixed order_by chaining issue (#265)

* Added dereference support for tuples (#250)

* Resolve field name to db field name when using distinct(#260, #264, #269)

* Added kwargs to doc.save to help interop with django (#223, #270)

* Fixed cloning querysets in PY3

* Int fields no longer unset in save when changed to 0 (#272)

* Fixed ReferenceField query chaining bug fixed (#254)

4.4.18 Changes in 0.7.9

* Better fix handling for old style _types

* Embedded SequenceFields follow collection naming convention

78 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

4.4.19 Changes in 0.7.8

* Fix sequence fields in embedded documents (#166)

¢ Fix query chaining with .order_by() (#176)

* Added optional encoding and collection config for Django sessions (#180, #181, #183)
¢ Fixed EmailField so can add extra validation (#173, #174, #187)

* Fixed bulk inserts can now handle custom pk’s (#192)

¢ Added as_pymongo method to return raw or cast results from pymongo (#193)

4.4.20 Changes in 0.7.7

* Fix handling for old style _types

4.4.21 Changes in 0.7.6

* Unicode fix for repr (#133)

* Allow updates with match operators (#144)

Updated URLField - now can have a override the regex (#136)
* Allow Django AuthenticationBackends to work with Django user (hmarr/mongoengine#573)

¢ Fixed reload issue with ReferenceField where dbref=False (#138)

4.4.22 Changes in 0.7.5

» ReferenceFields with dbref=False use Objectld instead of strings (#134) See ticket for upgrade notes (#134)

4.4.23 Changes in 0.7.4

* Fixed index inheritance issues - firmed up testcases (#123) (#125)

4.4.24 Changes in 0.7.3

* Reverted EmbeddedDocuments meta handling - now can turn off inheritance (#119)

4.4.25 Changes in 0.7.2

» Update index spec generation so its not destructive (#113)

4.4.26 Changes in 0.7.1

* Fixed index spec inheritance (#111)

4.4. Changelog 79

MongoEngine Documentation, Release 0.10.5

4.4.27 Changes in 0.7.0

» Updated queryset.delete so you can use with skip / limit (#107)

» Updated index creation allows kwargs to be passed through refs (#104)

* Fixed Q object merge edge case (#109)

¢ Fixed reloading on sharded documents (hmarr/mongoengine#569)

* Added NotUniqueError for duplicate keys (#62)

* Added custom collection / sequence naming for SequenceFields (#92)

* Fixed UnboundLocalError in composite index with pk field (#88)

» Updated ReferenceField’s to optionally store Objectld strings this will become the default in 0.8 (#89)
¢ Added FutureWarning - save will default to cascade=False in 0.8

* Added example of indexing embedded document fields (#75)

* Fixed ImageField resizing when forcing size (#80)

* Add flexibility for fields handling bad data (#78)

* Embedded Documents no longer handle meta definitions

» Use weakref proxies in base lists / dicts (#74)

» Improved queryset filtering (hmarr/mongoengine#554)

¢ Fixed Dynamic Documents and Embedded Documents (hmarr/mongoengine#561)
* Fixed abstract classes and shard keys (#64)

* Fixed Python 2.5 support

* Added Python 3 support (thanks to Laine Heron)

4.4.28 Changes in 0.6.20

* Added support for distinct and db_alias (#59)
* Improved support for chained querysets when constraining the same fields (hmarr/mongoengine#554)

* Fixed BinaryField lookup re (#48)

4.4.29 Changes in 0.6.19

¢ Added Binary support to UUID (#47)

* Fixed MapField lookup for fields without declared lookups (#46)
* Fixed BinaryField python value issue (#48)

* Fixed SequenceField non numeric value lookup (#41)

* Fixed queryset manager issue (#52)

* Fixed FileField comparision (hmarr/mongoengine#547)

4.4.30 Changes in 0.6.18

* Fixed recursion loading bug in _get_changed_fields

80 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

4.4.31 Changes in 0.6.17

* Fixed issue with custom queryset manager expecting explict variable names

4.4.32 Changes in 0.6.16

¢ Fixed issue where db_alias wasn’t inherited

4.4.33 Changes in 0.6.15

e Updated validation error messages

* Added support for null / zero / false values in item_frequencies

* Fixed cascade save edge case

* Fixed geo index creation through reference fields

* Added support for args / kwargs when using @queryset_manager

¢ Deref list custom id fix

4.4.34 Changes in 0.6.14

¢ Fixed error dict with nested validation

Fixed Int/Float fields and not equals None
* Exclude tests from installation

* Allow tuples for index meta

* Fixed use of str in instance checks

* Fixed unicode support in transform update

* Added support for add_to_set and each

4.4.35 Changes in 0.6.13

¢ Fixed EmbeddedDocument db_field validation issue
* Fixed StringField unicode issue

* Fixes __repr__ modifying the cursor

4.4.36 Changes in 0.6.12

* Fixes scalar lookups for primary_key

* Fixes error with _delta handling DBRefs

4.4.37 Changes in 0.6.11

* Fixed inconsistency handling None values field attrs
* Fixed map_field embedded db_field issue
¢ Fixed .save() _delta issue with DbRefs

* Fixed Django TestCase

4.4. Changelog 81

MongoEngine Documentation, Release 0.10.5

¢ Added cmp to Embedded Document
Added PULL reverse_delete_rule
Fixed CASCADE delete bug

Fixed db_field data load error

¢ Fixed recursive save with FileField

4.4.38 Changes in 0.6.10

* Fixed basedict / baselist to return supert(..)

¢ Promoted BaseDynamicField to DynamicField

4.4.39 Changes in 0.6.9

* Fixed sparse indexes on inherited docs

* Removed FileField auto deletion, needs more work maybe 0.7

4.4.40 Changes in 0.6.8

* Fixed FileField losing reference when no default set

* Removed possible race condition from FileField (grid_file)

* Added assignment to save, can now do: b = MyDoc(**kwargs).save()
¢ Added support for pull operations on nested EmbeddedDocuments

* Added support for choices with GenericReferenceFields

* Added support for choices with GenericEmbeddedDocumentFields

* Fixed Django 1.4 sessions first save data loss

* FileField now automatically delete files on .delete()

* Fix for GenericReference to_mongo method

* Fixed connection regression

* Updated Django User document, now allows inheritance

4.4.41 Changes in 0.6.7

* Fixed indexing on ‘_id’ or ‘pk’ or ‘id’

¢ Invalid data from the DB now raises a InvalidDocumentError

* Cleaned up the Validation Error - docs and code

* Added meta auto_create_index so you can disable index creation
* Added write concern options to inserts

* Fixed typo in meta for index options

* Bug fix Read preference now passed correctly

* Added support for File like objects for GridFS

* Fix for #473 - Dereferencing abstracts

82 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

4.4.42 Changes in 0.6.6

* Django 1.4 fixed (finally)
¢ Added tests for Django

4.4.43 Changes in 0.6.5

* More Django updates

4.4.44 Changes in 0.6.4

» Refactored connection / fixed replicasetconnection
* Bug fix for unknown connection alias error message
* Sessions support Django 1.3 and Django 1.4

¢ Minor fix for ReferenceField

4.4.45 Changes in 0.6.3

¢ Updated sessions for Django 1.4
* Bug fix for updates where listfields contain embedded documents

* Bug fix for collection naming and mixins

4.4.46 Changes in 0.6.2

¢ Updated documentation for ReplicaSet connections

* Hack round _types issue with SERVER-5247 - querying other arrays may also cause problems.

4.4.47 Changes in 0.6.1

* Fix for replicaSet connections

4.4.48 Changes in 0.6
¢ Added FutureWarning to inherited classes not declaring ‘allow_inheritance’ as the default will change in
0.7
* Added support for covered indexes when inheritance is off
* No longer always upsert on save for items with a ‘_id’
¢ Error raised if update doesn’t have an operation
* DeReferencing is now thread safe

* Errors raised if trying to perform a join in a query

» Updates can now take __raw___ queries

Added custom 2D index declarations

Added replicaSet connection support

» Updated deprecated imports from pymongo (safe for pymongo 2.2)

4.4. Changelog 83

MongoEngine Documentation, Release 0.10.5

* Added uri support for connections

* Added scalar for efficiently returning partial data values (aliased to values_list)
* Fixed limit skip bug

* Improved Inheritance / Mixin

* Added sharding support

* Added pymongo 2.1 support

* Fixed Abstract documents can now declare indexes

* Added db_alias support to individual documents

¢ Fixed GridFS documents can now be pickled

* Added Now raises an InvalidDocumentError when declaring multiple fields with the same db_field
¢ Added InvalidQueryError when calling with_id with a filter

* Added support for DBRefs in distinct()

* Fixed issue saving False booleans

* Fixed issue with dynamic documents deltas

* Added Reverse Delete Rule support to ListFields - MapFields aren’t supported
* Added customisable cascade kwarg options

* Fixed Handle None values for non-required fields

¢ Removed Document._get_subclasses() - no longer required

* Fixed bug requiring subclasses when not actually needed

* Fixed deletion of dynamic data

* Added support for the $elementMatch operator

* Added reverse option to SortedListFields

* Fixed dereferencing - multi directional list dereferencing

* Fixed issue creating indexes with recursive embedded documents

* Fixed recursive lookup in _unique_with_indexes

* Fixed passing ComplexField defaults to constructor for ReferenceFields
* Fixed validation of DictField Int keys

* Added optional cascade saving

* Fixed dereferencing - max_depth now taken into account

* Fixed document mutation saving issue

» Fixed positional operator when replacing embedded documents

¢ Added Non-Django Style choices back (you can have either)

 Fixed __repr__ of a sliced queryset

* Added recursive validation error of documents / complex fields

* Fixed breaking during queryset iteration

¢ Added pre and post bulk-insert signals

* Added ImageField - requires PIL

* Fixed Reference Fields can be None in get_or_create / queries

* Fixed accessing pk on an embedded document

84 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

* Fixed calling a queryset after drop_collection now recreates the collection
* Add field name to validation exception messages

* Added UUID field

 Improved efficiency of .get()

» Updated ComplexFields so if required they won’t accept empty lists / dicts
* Added spec file for rpm-based distributions

« Fixed ListField so it doesnt accept strings

¢ Added DynamicDocument and EmbeddedDynamicDocument classes for expando schemas

4.4.49 Changes in v0.5.2

* A Robust Circular reference bugfix

4.4.50 Changes in v0.5.1

* Fixed simple circular reference bug

4.4.51 Changes in v0.5

Added InvalidDocumentError - so Document core methods can’t be overwritten

Added GenericEmbeddedDocument - so you can embed any type of embeddable document

Added within_polygon support - for those with mongodb 1.9

Updated sum / average to use map_reduce as db.eval doesn’t work in sharded environments

Added where() - filter to allowing users to specify query expressions as Javascript

Added SequenceField - for creating sequential counters

Added update() convenience method to a document

Added cascading saves - so changes to Referenced documents are saved on .save()

Added select_related() support

Added support for the positional operator

Updated geo index checking to be recursive and check in embedded documents

Updated default collection naming convention

Added Document Mixin support

Fixed queryet __repr__ mid iteration

Added hint() support, so can tell Mongo the proper index to use for the query

Fixed issue with inconsistent setting of _cls breaking inherited referencing

Added help_text and verbose_name to fields to help with some form libs

Updated item_frequencies to handle embedded document lookups

Added delta tracking now only sets / unsets explicitly changed fields

Fixed saving so sets updated values rather than overwrites

Added ComplexDateTimeField - Handles datetimes correctly with microseconds

Added ComplexBaseField - for improved flexibility and performance

44.

Changelog

85

MongoEngine Documentation, Release 0.10.5

Added get_FIELD_display() method for easy choice field displaying

Added queryset.slave_okay(enabled) method

Updated queryset.timeout(enabled) and queryset.snapshot(enabled) to be chainable
Added insert method for bulk inserts

Added blinker signal support

Added query_counter context manager for tests

Added map_reduce method item_frequencies and set as default (as db.eval doesn’t work in sharded envi-
ronments)

Added inline_map_reduce option to map_reduce

Updated connection exception so it provides more info on the cause.

Added searching multiple levels deep in DictField

Added DictField entries containing strings to use matching operators

Added MapField, similarto DictField

Added Abstract Base Classes

Added Custom Objects Managers

Added sliced subfields updating

Added NotRegistered exception if dereferencing Document not in the registry
Added a write concern for save, update, update_one and get_or_create
Added slicing / subarray fetching controls

Fixed various unique index and other index issues

Fixed threaded connection issues

Added spherical geospatial query operators

Updated queryset to handle latest version of pymongo map_reduce now requires an output.
Added Document __hash__, _ ne__ for pickling

Added FileField optional size arg for read method

Fixed FileField seek and tell methods for reading files

Added QuerySet .clone to support copying querysets

Fixed item_frequencies when using name thats the same as a native js function
Added reverse delete rules

Fixed issue with unset operation

Fixed Q-object bug

Added QuerySet.all_fields resets previous .only() and .exclude()

Added QuerySet .exclude

Added django style choices

Fixed order and filter issue

Added QuerysSet .only subfield support

Added creation_counter to BaseField allowing fields to be sorted in the way the user has specified them
Fixed various errors

Added many tests

86

Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

4.4.52 Changes in v0.4

Added GridFSStorage Django storage backend

Added FileField for GridFS support

New Q-object implementation, which is no longer based on Javascript
Added SortedListField

Added EmailField

Added GeoPointField

Added exact and iexact match operators to QuerySet

Added get_document_or_404 and get_list_or_404 Django shortcuts
Added new query operators for Geo queries

Added not query operator

Added new update operators: pop and add_to_set

Added ___raw___ query parameter

Added support for custom querysets

Fixed document inheritance primary key issue

Added support for querying by array element position

Base class can now be defined for DictField

Fixed MRO error that occured on document inheritance

Added QuerySet.distinct, QuerySet.create, QuerySet.snapshot, QuerySet.
timeout and QuerySet.all

Subsequent calls to connect () now work
Introduced min_length for StringField
Fixed multi-process connection issue

Other minor fixes

4.4.53 Changes in v0.3

Added MapReduce support

Added contains, startswith and endswith query operators (and case-insensitive versions that are
prefixed with ‘1”)

Deprecated fields’ name parameter, replaced with db_field
Added QuerySet .only for only retrieving specific fields
Added QuerySet.in_bulk () for bulk querying using ids

QuerySets now have a rewind () method, which is called automatically when the iterator is exhausted,
allowing QuerySets to be reused

Added DictField
Added URLField
Added DecimalField
Added BinaryField

Added GenericReferenceField

44.

Changelog 87

MongoEngine Documentation, Release 0.10.5

Added get () and get_or_create () methods to QuerySet

ReferenceFields may now reference the document they are defined on (recursive references) and doc-
uments that have not yet been defined

Document objects may now be compared for equality (equal if _ids are equal and documents are of same
type)
QuerySet update methods now have an upsert parameter

Added field name substitution for Javascript code (allows the user to use the Python names for fields in JS,
which are later substituted for the real field names)

Q objects now support regex querying

Fixed bug where referenced documents within lists weren’t properly dereferenced
ReferenceFields may now be queried using their _id

Fixed bug where EmbeddedDocument s couldn’t be non-polymorphic

queryset_manager functions now accept two arguments — the document class as the first and the query-
set as the second

Fixed bug where QuerySet .exec_ Js ignored Q objects

Other minor fixes

4.4.54 Changes in v0.2.2

Fixed bug that prevented indexes from being used on ListFields
Document.filter () added as an alias to Document.__call__ ()

validate () may now be used on EmbeddedDocuments

4.4.55 Changes in v0.2.1

Added a MongoEngine backend for Django sessions
Added force_insert to Document . save ()
Improved querying syntax for ListField and EmbeddedDocumentField

Added support for user-defined primary keys (_id in MongoDB)

4.4.56 Changes in v0.2

Added Q class for building advanced queries

Added QuerySet methods for atomic updates to documents

Fields may now specify unique=True to enforce uniqueness across a collection
Added option for default document ordering

Fixed bug in index definitions

4.4.57 Changes in v0.1.3

Added Django authentication backend
Added Document .meta support for indexes, which are ensured just before querying takes place

A few minor bugfixes

88

Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

4.4.58 Changes in v0.1.2

* Query values may be processed before before being used in queries
¢ Made connections lazy

* Fixed bug in Document dictionary-style access

* Added BooleanField

e Added Document .reload () method

4.4.59 Changes in v0.1.1
* Documents may now use capped collections
4.5 Upgrading

4.5.1 0.9.0

The 0.8.7 package on pypi was corrupted. If upgrading from 0.8.7 to 0.9.0 please follow:

pip uninstall pymongo
pip uninstall mongoengine
pip install pymongo==2.8
pip install mongoengine

4.5.2 0.8.7

Calling reload on deleted / nonexistent documents now raises a DoesNotExist exception.

4.5.3 0.8.21t00.8.3

Minor change that may impact users:

DynamicDocument fields are now stored in creation order after any declared fields. Previously they were stored
alphabetically.

4.5.4 0.7t0 0.8

There have been numerous backwards breaking changes in 0.8. The reasons for these are to ensure that Mongo-
Engine has sane defaults going forward and that it performs the best it can out of the box. Where possible there
have been FutureWarnings to help get you ready for the change, but that hasn’t been possible for the whole of the
release.

Warning: Breaking changes - test upgrading on a test system before putting live. There maybe multiple
manual steps in migrating and these are best honed on a staging / test system.

Python and PyMongo

MongoEngine requires python 2.6 (or above) and pymongo 2.5 (or above)

4.5. Upgrading 89

MongoEngine Documentation, Release 0.10.5

Data Model

Inheritance

The inheritance model has changed, we no longer need to store an array of t ypes with the model we can just use
the classname in _c1s. This means that you will have to update your indexes for each of your inherited classes
like so:

1. Declaration of the class
class Animal (Document) :
name = StringField()
meta = {
'allow_inheritance': True,
'indexes': ['name']

2. Remove _types
collection = Animal._get_collection()
collection.update({}, {"Sunset": {" _types": 1}}, multi=True)

3. Confirm extra data is removed
count = collection.find({'_types': {"Sexists": True}}) .count ()
assert count ==

4. Remove indexes
info = collection.index_information ()
indexes_to_drop = [key for key, value in info.iteritems|()
if '_types' in dict (value['key'])]
for index in indexes_to_drop:
collection.drop_index (index)

5. Recreate indexes
Animal.ensure_indexes ()

Document Definition

The default for inheritance has changed - it is now off by default and _c1ls will not be stored automati-
cally with the class. So if you extend your Document or EmbeddedDocuments you will need to declare
allow_inheritance in the meta data like so:

class Animal (Document) :
name = StringField()

meta = {'allow_inheritance': True}

Previously, if you had data in the database that wasn’t defined in the Document definition, it would set it as an
attribute on the document. This is no longer the case and the data is set only in the document . _data dictionary:

>>> from mongoengine import =«
>>> class Animal (Document) :

name = StringField()
>>> cat = Animal (name="kit", size="small")
0.7
>>> cat.size
u'small'
0.8

>>> cat.size

90 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Animal' object has no attribute 'size'

The Document class has introduced a reserved function clean(), which will be called before saving the document.
If your document class happens to have a method with the same name, please try to rename it.

def clean(self): pass

ReferenceField

ReferenceFields now store Objectlds by default - this is more efficient than DBRefs as we already know what
Document types they reference:

0ld code
class Animal (Document) :
name = ReferenceField('self')

New code to keep dbrefs
class Animal (Document) :
name = ReferenceField('self', dbref=True)

To migrate all the references you need to touch each object and mark it as dirty eg:

Doc definition
class Person (Document) :
name = StringField()
parent = ReferenceField('self')
friends = ListField(ReferenceField('self'"))

Mark all ReferenceFields as dirty and save
for p in Person.objects:
p._mark_as_changed('parent')
p._mark_as_changed('friends")
p.save ()

An example test migration for ReferenceFields is available on github.

Note: Internally mongoengine handles ReferenceFields the same, so they are converted to DBRef on loading and
Objectlds or DBRefs depending on settings on storage.

UUIDField

UUIDFields now default to storing binary values:

O01d code
class Animal (Document) :
uuid = UUIDField()

New code
class Animal (Document) :
uuid = UUIDField(binary=False)

To migrate all the uuids you need to touch each object and mark it as dirty eg:

Doc definition
class Animal (Document) :
uuid = UUIDField()

4.5. Upgrading 91

https://github.com/MongoEngine/mongoengine/blob/master/tests/migration/refrencefield_dbref_to_object_id.py

MongoEngine Documentation, Release 0.10.5

Mark all UUIDFields as dirty and save
for a in Animal.objects:
a._mark_as_changed ('uuid")
a.save ()

An example test migration for UUIDFields is available on github.

DecimalField

DecimalFields now store floats - previously it was storing strings and that made it impossible to do comparisons
when querying correctly.:

01d code
class Person (Document) :
balance = DecimalField()

New code
class Person (Document) :
balance = DecimalField(force_string=True)

To migrate all the DecimalFields you need to touch each object and mark it as dirty eg:

Doc definition
class Person (Document) :
balance = DecimalField()

Mark all DecimalField's as dirty and save
for p in Person.objects:
p._mark_as_changed('balance’)
p.save ()

Note: DecimalFields have also been improved with the addition of precision and rounding. See DecimalField
for more information.

An example test migration for DecimalFields is available on github.

Cascading Saves

To improve performance document saves will no longer automatically cascade. Any changes to a Document’s
references will either have to be saved manually or you will have to explicitly tell it to cascade on save:

At the class level:
class Person (Document) :
meta = {'cascade': True}

Or on save:
my_document . save (cascade=True)

Storage

Document and Embedded Documents are now serialized based on declared field order. Previously, the data was
passed to mongodb as a dictionary and which meant that order wasn’t guaranteed - so things like $addToSet
operations on EmbeddedDocument could potentially fail in unexpected ways.

92 Chapter 4. Offline Reading

https://github.com/MongoEngine/mongoengine/blob/master/tests/migration/uuidfield_to_binary.py
https://github.com/MongoEngine/mongoengine/blob/master/tests/migration/decimalfield_as_float.py

MongoEngine Documentation, Release 0.10.5

If this impacts you, you may want to rewrite the objects using the doc.mark_as_dirty ('field") pattern
described above. If you are using a compound primary key then you will need to ensure the order is fixed and
match your EmbeddedDocument to that order.

Querysets

Attack of the clones

Querysets now return clones and should no longer be considered editable in place. This brings us in line with how
Django’s querysets work and removes a long running gotcha. If you edit your querysets inplace you will have to
update your code like so:

01d code:

mammals = Animal.objects (type="mammal")

mammals.filter (order="Carnivora") # Returns a cloned queryset that isn't,
—assigned to anything - so this will break in 0.8

[m for m in mammals] # This will return all mammals in 0.8 as,

—the 2nd filter returned a new queryset

Update example a) assign queryset after a change:
mammals = Animal.objects (type="mammal")

carnivores = mammals.filter (order="Carnivora") # Reassign the new queryset so_,
—~filter can be applied
[m for m in carnivores] # This will return all carnivores

Update example b) chain the queryset:

mammals = Animal.objects (type="mammal") .filter (order="Carnivora") # The final_,
—queryset 1s assgined to mammals

[m for m in mammals] # This will,,
—return all carnivores

Len iterates the queryset

If you ever did len(queryset) it previously did a count() under the covers, this caused some unusual issues. As
len(queryset) is most often used by list(queryset) we now cache the queryset results and use that for the length.

This isn’t as performant as a count() and if you aren’t iterating the queryset you should upgrade to use count:

0l1d code
len (Animal.objects (type="mammal"))

New code
Animal.objects (type="mammal") .count ()

.only() now inline with .exclude()

The behaviour of .only() was highly ambiguous, now it works in mirror fashion to .exclude(). Chaining .only()
calls will increase the fields required:

0ld code
Animal.objects () .only (['type', 'name']).only('name', 'order'") # Would have_,
—returned just “name’

New code

Animal.objects () .only ('name')
Note:
Animal.objects () .only(['name']) .only ('order") # Now returns ‘name’ #andx "order’

4.5. Upgrading 93

MongoEngine Documentation, Release 0.10.5

Client

PyMongo 2.4 came with a new connection client; MongoClient and started the depreciation of the old
Connection. MongoEngine now uses the latest MongoClient for connections. By default operations were
safe but if you turned them off or used the connection directly this will impact your queries.

Querysets
Safe

safe has been depreciated in the new MongoClient connection. Please use write_concern instead. As safe always
defaulted as True normally no code change is required. To disable confirmation of the write just pass { “w”: 0} eg:

01d
Animal (name="Dinasour") .save (safe=False)

new code:
Animal (name="Dinasour") .save (write_concern={"w": 0})

Write Concern

write_options has been replaced with write_concern to bring it inline with pymongo. To upgrade simply rename
any instances where you used the write_option keyword to write_concern like so:

0l1d code:
Animal (name="Dinasour") .save (write_options={"w": 2})

new code:
Animal (name="Dinasour") .save (write_concern={"w": 2})

Indexes
Index methods are no longer tied to querysets but rather to the document class. Although Query-

Set._ensure_indexes and QuerySet.ensure_index still exist. They should be replaced with ensure indexes ()
/ ensure_index ().

SequenceFields

SequenceField now inherits from BaseField to allow flexible storage of the calculated value. As such MIN
and MAX settings are no longer handled.

455 0.6t00.7

Cascade saves

Saves will raise a FutureWarning if they cascade and cascade hasn’t been set to True. This is because in 0.8 it will
default to False. If you require cascading saves then either set it in the meta or pass via save eg

At the class level:
class Person (Document) :
meta = {'cascade': True}

Or in code:
my_document . save (cascade=True)

94 Chapter 4. Offline Reading

http://blog.mongodb.org/post/36666163412/introducing-mongoclient

MongoEngine Documentation, Release 0.10.5

Note: Remember: cascading saves do not cascade through lists.

ReferenceFields

ReferenceFields now can store references as Objectld strings instead of DBRefs. This will become the default in
0.8 and if dbref is not set a FutureWarning will be raised.

To explicitly continue to use DBRefs change the dbref flag to True

class Person (Document) :
groups = ListField(ReferenceField(Group, dbref=True))

To migrate to using strings instead of DBRefs you will have to manually migrate

Step 1 - Migrate the model definition
class Group (Document) :
author = ReferenceField (User, dbref=False)
members = ListField(ReferenceField(User, dbref=False))

Step 2 - Migrate the data

for g in Group.objects():
g.author = g.author
g.members = g.members
g.save ()

item_frequencies

In the 0.6 series we added support for null / zero / false values in item_frequencies. A side effect was to return
keys in the value they are stored in rather than as string representations. Your code may need to be updated to
handle native types rather than strings keys for the results of item frequency queries.

BinaryFields

Binary fields have been updated so that they are native binary types. If you previously were doing str comparisons
with binary field values you will have to update and wrap the value in a str.

4.5.6 0.5t00.6
Embedded Documents - if you had a pk field you will have to rename it from _id to pk as pk is no longer a property
of Embedded Documents.

Reverse Delete Rules in Embedded Documents, MapFields and DictFields now throw an InvalidDocument error
as they aren’t currently supported.

Document._get_subclasses - Is no longer used and the class method has been removed.
Document.objects.with_id - now raises an InvalidQueryError if used with a filter.

FutureWarning - A future warning has been added to all inherited classes that don’t define
allow_inheritance in their meta.

You may need to update pyMongo to 2.0 for use with Sharding.

45.7 0410 0.5

There have been the following backwards incompatibilities from 0.4 to 0.5. The main areas of changed are:
choices in fields, map_reduce and collection names.

4.5. Upgrading 95

MongoEngine Documentation, Release 0.10.5

Choice options:

Are now expected to be an iterable of tuples, with the first element in each tuple being the actual value to be stored.
The second element is the human-readable name for the option.

PyMongo / MongoDB
map reduce now requires pymongo 1.11+- The pymongo merge_output and reduce_output parameters, have been
depreciated.

More methods now use map_reduce as db.eval is not supported for sharding as such the following have been
changed:

e sum()
* average ()

e item frequencies/()

Default collection naming

Previously it was just lowercase, it’s now much more pythonic and readable as it’s lowercase and underscores,
previously

class MyAceDocument (Document) :
pass

MyAceDocument ._meta['collection'] == myacedocument

In 0.5 this will change to

class MyAceDocument (Document) :
pass

MyAceDocument ._get_collection_name () == my_ace_document

To upgrade use a Mixin class to set meta like so

class BaseMixin (object) :
meta = {
'collection': lambda c: c¢._ name__ .lower ()

class MyAceDocument (Document, BaseMixin):
pass

MyAceDocument ._get_collection_name () == "myacedocument"

Alternatively, you can rename your collections eg

from mongoengine.connection import _get_db
from mongoengine.base import _document_registry

def rename_collections{() :
db = _get_db()

failure = False

collection_names = [d._get_collection_name ()
for d in _document_registry.values/()]

for new_style_name in collection_names:

96 Chapter 4. Offline Reading

MongoEngine Documentation, Release 0.10.5

if not new_style_name: # embedded documents don't have collections
continue

old_style_name = new_style_name.replace('_"', '")

if old_style_name == new_style_name:

continue # Nothing to do

existing = db.collection_names ()
if old_style_name in existing:
if new_style_name in existing:
failure = True
print "FAILED to rename: to (already exists)" % (
old_style_name, new_style_name)
else:
db[old_style_name] .rename (new_style_name)
print "Renamed: to " % (old_style_name,
new_style_name)

if failure:

print "Upgrading collection names failed"
else:

print "Upgraded collection names"

mongodb 1.8 > 2.0 +

It’s been reported that indexes may need to be recreated to the newer version of indexes. To do this drop indexes
and call ensure_indexes on each model.

4.6 Django Support

Note: Django support has been split from the main MongoEngine repository. The legacy Django extension may
be found bundled with the 0.9 release of MongoEngine.

4.6.1 Help Wanted!

The MongoEngine team is looking for help contributing and maintaining a new Django extension for Mongo-
Engine! If you have Django experience and would like to help contribute to the project, please get in touch on the
mailing list or by simply contributing on GitHub.

4.6. Django Support 97

http://groups.google.com/group/mongoengine-users
https://github.com/MongoEngine/django-mongoengine

MongoEngine Documentation, Release 0.10.5

98

Chapter 4. Offline Reading

CHAPTER B

Indices and tables

* genindex
¢ modindex

e search

99

MongoEngine Documentation, Release 0.10.5

100 Chapter 5. Indices and tables

Python Module Index

m

mongoengine.queryset, 50

101

MongoEngine Documentation, Release 0.10.5

102 Python Module Index

Index

Symbols

__call__() (mongoengine.queryset.QuerySet method),
50

_call__() (mongoengine.queryset.QuerySetNoCache
method), 57

_import_class() (in module mongoengine.common), 70

A

aggregate() (mongoengine.queryset.QuerySet method),
50

aggregate_average() (mongoengine.queryset.QuerySet
method), 50

aggregate_sum() (mongoengine.queryset.QuerySet
method), 50

all() (mongoengine.queryset.QuerySet method), 50

all_fields() (mongoengine.queryset.QuerySet method),
50

as_pymongo() (mongoengine.queryset.QuerySet
method), 50

average() (mongoengine.queryset.QuerySet method),
50

B

BaseField (class in mongoengine.base.fields), 58
BinaryField (class in mongoengine.fields), 64
BooleanField (class in mongoengine.fields), 59

C

cache() (mongoengine.queryset.QuerySetNoCache
method), 57

CachedReferenceField (class in mongoengine.fields),
64

cascade_save() (mongoengine.Document method), 44
clone() (mongoengine.queryset.QuerySet method), 51
clone_into() (mongoengine.queryset.QuerySet

method), 51

compare_indexes() (mongoengine.Document class
method), 45

ComplexDateTimeField (class in mongoengine.fields),
61

connect() (in module mongoengine), 43

count() (mongoenglne.base.datastmctures.EmbeddedDocuer)r(lgﬂlt(Irég)t

method), 68

count() (mongoengine.queryset.QuerySet method), 51
create() (mongoengine.base.datastructures.EmbeddedDocumentList
method), 69
create() (mongoengine.queryset.QuerySet method), 51
create_index() (mongoengine.Document class method),
45

D

DateTimeField (class in mongoengine.fields), 60

DecimalField (class in mongoengine.fields), 59

delete() (mongoengine.base.datastructures. EmbeddedDocumentList
method), 69

delete() (mongoengine.Document method), 45

delete() (mongoengine.queryset.QuerySet method), 51

DictField (class in mongoengine.fields), 63

distinct() (mongoengine.queryset.QuerySet method),
51

Document (class in mongoengine), 44

drop_collection() (mongoengine.Document
method), 45

DynamicDocument (class in mongoengine), 48

DynamicEmbeddedDocument (class in mongoengine),
48

DynamicField (class in mongoengine.fields), 62

E

EmailField (class in mongoengine.fields), 58
EmbeddedDocument (class in mongoengine), 47

class

EmbeddedDocumentField (class in mongo-
engine.fields), 61

EmbeddedDocumentList (class in mongo-
engine.base.datastructures), 68

EmbeddedDocumentListField (class in mongo-
engine.fields), 62

ensure_index() (mongoengine.Document class
method), 45

ensure_index() (mongoengine.queryset.QuerySet
method), 51

ensure_indexes() (mongoengine.Document class
method), 45

exclude() (mongoengine.base.datastructures.EmbeddedDocumentList
method), 69
(mongoengine.queryset.QuerySet method),

51

103

MongoEngine Documentation, Release 0.10.5

exec_js() (mongoengine.queryset.QuerySet method),
52

explain() (mongoengine.queryset.QuerySet method),
52

F

FieldDoesNotExist (class in mongoengine), 48
fields() (mongoengine.queryset.QuerySet method), 52
FileField (class in mongoengine.fields), 64

MapField (class in mongoengine.fields), 63

MapReduceDocument (class in
engine.document), 48

max_time_ms() (mongoengine.queryset.QuerySet
method), 54

modify() (mongoengine.Document method), 45

modify() (mongoengine.queryset.QuerySet method),
54

mongoengine.queryset (module), 50

mongo-

filter() (mongoengine.base.datastructures. EmbeddedDocumbiitilisneStringField (class in mongoengine.fields), 67

method), 69
filter() (mongoengine.queryset.QuerySet method), 52

MultiPointField (class in mongoengine.fields), 67
MultiPolygonField (class in mongoengine.fields), 68

first() (mongoengine.base.datastructures. EmbeddedDocunmspitlnistaclass (mongoengine.Document attribute), 46

method), 69
first() (mongoengine.queryset.QuerySet method), 52
FloatField (class in mongoengine.fields), 59
from_json() (mongoengine.queryset.QuerySet
method), 52

G

GenericEmbeddedDocumentField (class in mongo-
engine.fields), 61

GenericReferenceField (class in mongoengine.fields),
64

GeoPointField (class in mongoengine.fields), 66

get() (mongoengine.base.datastructures. EmbeddedDocumaftidereference

method), 69
get() (mongoengine.queryset.QuerySet method), 52
GridFSError (class in mongoengine.fields), 68
GridFSProxy (class in mongoengine.fields), 68

H

hint() (mongoengine.queryset.QuerySet method), 52

ImageField (class in mongoengine.fields), 64

ImageGridFsProxy (class in mongoengine.fields), 68

ImproperlyConfigured (class in mongoengine.fields),
68

in_bulk() (mongoengine.queryset.QuerySet method),
53

insert() (mongoengine.queryset.QuerySet method), 53

IntField (class in mongoengine.fields), 59

item_frequencies() (mongoengine.queryset.QuerySet
method), 53

L

limit() (mongoengine.queryset.QuerySet method), 53

LineStringField (class in mongoengine.fields), 67

list_indexes() (mongoengine.Document class method),
45

ListField (class in mongoengine.fields), 62

LongField (class in mongoengine.fields), 59

M

map_reduce() (mongoengine.queryset.QuerySet
method), 53

my_metaclass (mongoengine.DynamicDocument at-
tribute), 48

my_metaclass (mongo-
engine.DynamicEmbeddedDocument at-
tribute), 48

my_metaclass (mongoengine.EmbeddedDocument at-
tribute), 48

N

next() (mongoengine.queryset.QuerySet method), 54

no_cache() (mongoengine.queryset.QuerySet method),
54

(class in
engine.context_managers), 49

no_dereference() (mongoengine.queryset.QuerySet
method), 54

no_sub_classes() (mongoengine.queryset.QuerySet
method), 55

none() (mongoengine.queryset.QuerySet method), 55

O

object (mongoengine.document.MapReduceDocument
attribute), 48

ObjectldField (class in mongoengine.fields), 65

objects (Document attribute), 44

only() (mongoengine.queryset.QuerySet method), 55

order_by() (mongoengine.queryset.QuerySet method),
55

mongo-

P

PointField (class in mongoengine.fields), 66
PolygonField (class in mongoengine.fields), 67

Q

query_counter (class in mongo-
engine.context_managers), 49

QuerySet (class in mongoengine.queryset), 50

queryset_manager() (in module mongo-

engine.queryset), 58
QuerySetNoCache (class in mongoengine.queryset), 57

R

read_preference() (mongoengine.queryset.QuerySet
method), 55
ReferenceField (class in mongoengine.fields), 63

104

Index

MongoEngine Documentation, Release 0.10.5

register_connection() (in module mongoengine), 43 W

register_delete_rule() (mongoengine.Document class \here() (mongoengine.queryset.QuerySet method), 57

method), 46 with_id() (mongoengine.queryset.QuerySet method),
reload() (mongoengine.Document method), 46 57

rewind() (mongoengine.queryset.QuerySet method), 55

S

save() (mongoengine.base.datastructures.EmbeddedDocumentList
method), 69

save() (mongoengine.Document method), 46

scalar() (mongoengine.queryset.QuerySet method), 55

search_text() (mongoengine.queryset.QuerySet
method), 55

select_related() (mongoengine.Document method), 47

select_related() (mongoengine.queryset.QuerySet
method), 55

SequenceField (class in mongoengine.fields), 64

skip() (mongoengine.queryset.QuerySet method), 56

slave_okay() (mongoengine.queryset.QuerySet
method), 56

snapshot() (mongoengine.queryset.QuerySet method),
56

SortedListField (class in mongoengine.fields), 63

StringField (class in mongoengine.fields), 58

sum() (mongoengine.queryset.QuerySet method), 56

switch_collection (class in mongo-
engine.context_managers), 49

switch_collection() (mongoengine.Document method),
47

switch_db (class in mongoengine.context_managers),
49

switch_db() (mongoengine.Document method), 47

T

timeout() (mongoengine.queryset.QuerySet method),
56

to_dbref() (mongoengine.Document method), 47

to_dict() (mongoengine. ValidationError method), 48

to_json() (mongoengine.queryset.QuerySet method),
56

U

update() (mongoengine.base.datastructures. EmbeddedDocumentList
method), 69

update() (mongoengine.Document method), 47

update() (mongoengine.queryset.QuerySet method), 56

update_one() (mongoengine.queryset.QuerySet
method), 56

upsert_one() (mongoengine.queryset.QuerySet
method), 57

URLField (class in mongoengine.fields), 58

using() (mongoengine.queryset.QuerySet method), 57

UUIDField (class in mongoengine.fields), 65

\Y

ValidationError (class in mongoengine), 48
values_list() (mongoengine.queryset.QuerySet
method), 57

Index 105

	Community
	Contributing
	Changes
	Offline Reading
	Indices and tables
	Python Module Index

