

Welcome to MongoElector’s documentation!

Contents:

	MongoElector
	About

	Installation
	Stable release

	From sources

	Usage
	MongoElector

	MongoLocker

	Code Documentation

	Contributing
	Types of Contributions

	Get Started!

	Pull Request Guidelines

	Tips

	Authors
	Creator

	Contributors

	History
	0.3.0 (2016-08-22)

	0.2.1 (2016-08-10)

	0.0.1 (2016-05-13)

Indices and tables

	Index

	Module Index

	Search Page

MongoElector

[image: Join the chat at https://gitter.im/zebpalmer/MongoElector]
 [https://gitter.im/zebpalmer/MongoElector?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge][image: https://img.shields.io/pypi/v/mongoelector.svg]
 [https://pypi.python.org/pypi/mongoelector][image: https://img.shields.io/travis/zebpalmer/MongoElector.svg]
 [https://travis-ci.org/zebpalmer/MongoElector][image: Code Health]
 [https://landscape.io/github/zebpalmer/MongoElector/master][image: Documentation Status]
 [https://readthedocs.org/projects/mongoelector/?badge=latest][image: https://api.codacy.com/project/badge/Grade/9b0eca961d57462aac560bbee862eee7]
 [https://www.codacy.com/app/zeb/MongoElector?utm_source=github.com&utm_medium=referral&utm_content=zebpalmer/MongoElector&utm_campaign=Badge_Grade]
About

The MongoElector project provides two pieces of distributed coordination;
Distributed locks via ‘MongoLocker’ and master elections via ‘MongoElector’.
MongoElector makes heavy use of MongoLocker, but the locking functionality
within MongoLocker can be used separately.

	Free software: GPLv3

	Documentation: https://mongoelector.readthedocs.io.

Note

As of 0.3.0 release, the distributed master election functionality is working.
Additional features and functionality as well as bug fixes and minor API changes
will be ongoing over the next couple of minor releases.

Features

	Simple API to allow distributed master election

	Distributed locking via MongoDB

	Ensure/Verify a specific instance holds the lock

	TTL

Todo

	Cluster Health and Management within MongoElector

Installation

Stable release

To install MongoElector, run this command in your terminal:

$ pip install mongoelector

From sources

The sources for MongoElector can be downloaded from the Github repo [https://github.com/zebpalmer/mongoelector].

You can either clone the public repository:

$ git clone git://github.com/zebpalmer/mongoelector

Or download the tarball [https://github.com/zebpalmer/mongoelector/tarball/master]:

$ curl -OL https://github.com/zebpalmer/mongoelector/tarball/master

Once you have a copy of the source, you can install it with:

$ python setup.py install

Usage

To use MongoElector in a project:

import mongoelector

MongoElector

A few random examples of interacting with MongoElector

Instantiate MongoElector object
elector = MongoElector('CleverName', dbconn, ttl=15, dbname='coolproj',
 onmaster=self.onmaster, onmasterloss=self.onmasterloss)

example callbacks

def onmasterloss():
 logging.info("Master Lost, shutting down task scheduler)
 sched.shutdown() # shutdown APScheduler

def onmaster():
 logging.info("Elected master, starting task scheduler)
 sched.start() # start APScheduler

start mongoelector
elector.start()

shutdown mongoelector, release master lock
elector.stop()

log if master
logging.debug('master status: {}'.format(elector.ismaster))

release the master lock, allowing another instance to take it
elector.release()

log if master exists (on any node)
logging.debug('Cluster master is running: {}'.format(elector.master_exists))

MongoLocker

create Pymongo dbconnection
dbconn = MongoClient(cfg.dbhost)
create lock object with a ttl of 60.
If the lock isn't refreshed within ttl seconds, it will auto-expire.
mlock = MongoLocker(self.key, dbconn, ttl=60, dbname='coolproj',
 dbcollection='electorlocks')

acquire the lock, raise AcquireTimeout after 30 seconds if not acquired.
mlock.acquire(timeout=30)

release lock
mlock.release()

check to see if lock is locked by any instance
print(mlock.locked())

check to see if lock is owned by this instance
print(mlock.owned())

Code Documentation

	
class mongoelector.MongoLocker(key, db, dbcollection='mongolocker', ttl=600, timeparanoid=True)

	Distributed lock object backed by MongoDB.

Intended to mimic standard lib Lock object as much as
reasonable. This object is used by MongoElector, but
is perfectly happy being used as a standalone distributed
locking object.

	Parameters:	
	key (str) – Name of distributed lock

	dbconn (PyMongo db connection) – Pymongo client connection to mongodb

	dbname (str) – name of database (defaults to ‘mongoelector’)

	dbname – name of collection (defaults to ‘mongolocker’)

	ttl (int) – Lock will expire (ttl seconds) after acquired unless renewed or released

	timeparanoid (bool) – Sanity check to ensure local server time matches mongodb server time (utc)

	
acquire(blocking=True, timeout=None, step=0.25, force=False)

	Attempts to acquire the lock, will block and retry
indefinitely by default. Can be configured not to block,
or to have a timeout. You can also force the acquisition
if you have a really good reason to do so.

	Parameters:	
	blocking (bool) – If true (default), will wait until lock is acquired.

	timeout (int) – blocking acquire will fail after timeout in seconds if the lock hasn’t been acquired yet.

	step (float or int) – delay between acquire attempts

	force (bool) – CAUTION: will forcibly take ownership of the lock

	
get_current()

	Returns the current (valid) lock object from the database,
regardless of which instance it is owned by.

	
locked()

	Returns current status of the lock, but does not indicate if
the current instance has ownership or not. (for that, use ‘self.owned()’)
This is a ‘look before you leap’ option. For example, it can be used
to ensure that some process is owns the lock and is doing the associated work.
Obviously this method does not guarantee that the current instance will be
successful in obtaining the lock on a subsequent acquire.

	Returns:	Lock status

	Return type:	bool

	
owned()

	Determines if self is the owner of the lock object.
This verifies the instance uuid matches the
uuid of the lock record in the db.

	Returns:	Owner status

	Return type:	bool

	
release(force=False)

	releases lock if owned by the current instance.

	Parameters:	force – CAUTION: Forces the release to happen,

even if the local instance isn’t the lock owner.
:type force: bool

	
status

	

	
touch()

	Renews lock expiration timestamp

	Returns:	new expiration timestamp

	Return type:	datetime

	
class mongoelector.MongoElector(key, db, ttl=15, onmaster=None, onmasterloss=None, onloop=None, app_version=None, report_status=True)

	This object will do lots of awesome distributed master
election coolness

Create a MongoElector instance

	Parameters:	
	key (str) – Name of the distributed lock that is used for master election.
should be unique to this type of daemon i.e. any instance for which you want
to run exactly one master should all share this same name.

	db – Connection to a MongoDB database

	ttl (int) – Time-to-live for the distributed lock. If the master node fails silently, this
timeout must be hit before another node will take over.

	onmaster (Function or Method) – Function that will be run every time this instance is elected as the new master

	onmasterloss (Function or Method) – Function that will be run every time when this instance loses it’s master status

	onloop (Function or Method) – Function that will be run on every loop

	app_version (str) – Parent app version, if provided, will be included in node_status for monitoring

	
cluster_detail

	

	
ismaster

	Returns True if this instance is master

	
master_exists

	Returns true if an instance (not necessarily this one) has master

	
node_status

	Status info for current object

	
poll()

	Main polling logic, will refresh lock if it’s owned,
or tries to obtain the lock if it’s available.
Runs onloop callback after lock maintenance logic

In general, this should only be called by the elector thread

	
pollwait

	An appropriate sleep time to wait before next poll

	
release()

	Releases master lock if owned and calls onmasterloss if provided.

	
report_status()

	

	
running

	Returns true if the elector logic is running

	
start(blocking=False)

	Starts mongo elector polling on a background thread then returns.
If blocking is set to True, this will never return until stop() is

	Parameters:	blocking (bool) – If False, returns as soon as the elector thread is started.
If True, will only return after stop() is called i.e. by another thread.

	
stop()

	Cleanly stop the elector. Surrender master if owned

Contributing

Contributions are welcome, and they are greatly appreciated! Every
little bit helps, and credit will always be given.

You can contribute in many ways:

Types of Contributions

Report Bugs

Report bugs at https://github.com/zebpalmer/MongoElector/issues.

If you are reporting a bug, please include:

	Your operating system name and version.

	Your python version

	MongoDB version

	Any details about your local setup that might be helpful in troubleshooting.

	Detailed steps to reproduce the bug.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/zebpalmer/MongoElector/issues.

If you are proposing a feature:

	Explain in detail how it would work.

	Keep the scope as narrow as possible, to make it easier to implement.

	Remember that this is a volunteer-driven project, and that contributions
are welcome :)

Get Started!

Ready to contribute? Here’s how to set up mongoelector for local development.

	Fork the mongoelector repo on GitHub.

	Clone your fork locally:

$ git clone git@github.com:your_name_here/mongoelector.git

	Install your local copy into a virtualenv. Assuming you have virtualenvwrapper installed, this is how you set up your fork for local development:

$ mkvirtualenv mongoelector
$ cd mongoelector/
$ python setup.py develop

	Create a branch for local development:

$ git checkout -b name-of-your-bugfix-or-feature

Now you can make your changes locally.

	When you’re done making changes, check that your changes pass flake8 and the tests, including testing other Python versions with tox:

$ python setup.py test
$ tox

To get flake8 and tox, just pip install them into your virtualenv. You will also need an instance of MongoDB running, tests default connecting to localhost.

	Commit your changes and push your branch to GitHub:

$ git add .
$ git commit -m "Your detailed description of your changes."
$ git push origin name-of-your-bugfix-or-feature

	Submit a pull request through the GitHub website.

Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

	The pull request should include tests.

	If the pull request adds functionality, the docs should be updated. Put
your new functionality into a function with a docstring, and add the
feature to the list in README.rst.

	The pull request should work for Python 2.7, 3.4 and 3.5. Check
https://travis-ci.org/zebpalmer/MongoElector/pull_requests
and make sure that the tests pass for all supported Python versions.

Tips

To run a subset of tests:

$ python -m unittest tests.test_mongoelector

Authors

Creator

	Zeb Palmer <zeb@zebpalmer.com>

Contributors

	Jesse Roberts

History

0.3.0 (2016-08-22)

	Initial working release of master election logic.

0.2.1 (2016-08-10)

	Distributed locking api & functionality largely complete & stable.

0.0.1 (2016-05-13)

	Hello World

 Python Module Index

 m

 		 	

 		
 m	

 	[image: -]
 	
 mongoelector	

 	
 	
 mongoelector.elector	

 	
 	
 mongoelector.locker	

Index

 A
 | C
 | E
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T

A

 	
 	acquire() (mongoelector.locker.MongoLocker method)

 	(mongoelector.MongoLocker method), [1]

 	
 	AcquireTimeout

C

 	
 	cluster_detail (mongoelector.elector.MongoElector attribute)

 	(mongoelector.MongoElector attribute), [1]

E

 	
 	ElectorThread (class in mongoelector.elector)

G

 	
 	get_current() (mongoelector.locker.MongoLocker method)

 	(mongoelector.MongoLocker method), [1]

I

 	
 	ismaster (mongoelector.elector.MongoElector attribute)

 	(mongoelector.MongoElector attribute), [1]

L

 	
 	locked() (mongoelector.locker.MongoLocker method)

 	(mongoelector.MongoLocker method), [1]

 	
 	LockExists

M

 	
 	master_exists (mongoelector.elector.MongoElector attribute)

 	(mongoelector.MongoElector attribute), [1]

 	MongoElector (class in mongoelector), [1]

 	(class in mongoelector.elector)

 	
 	mongoelector (module), [1]

 	mongoelector.elector (module)

 	mongoelector.locker (module)

 	MongoLocker (class in mongoelector), [1]

 	(class in mongoelector.locker)

N

 	
 	node_status (mongoelector.elector.MongoElector attribute)

 	(mongoelector.MongoElector attribute), [1]

O

 	
 	owned() (mongoelector.locker.MongoLocker method)

 	(mongoelector.MongoLocker method), [1]

P

 	
 	parse_master() (in module mongoelector.elector)

 	poll() (mongoelector.elector.MongoElector method)

 	(mongoelector.MongoElector method), [1]

 	
 	pollwait (mongoelector.elector.MongoElector attribute)

 	(mongoelector.MongoElector attribute), [1]

R

 	
 	release() (mongoelector.elector.MongoElector method)

 	(mongoelector.MongoElector method), [1]

 	(mongoelector.MongoLocker method), [1]

 	(mongoelector.locker.MongoLocker method)

 	
 	report_status() (mongoelector.elector.MongoElector method)

 	(mongoelector.MongoElector method), [1]

 	run() (mongoelector.elector.ElectorThread method)

 	running (mongoelector.elector.MongoElector attribute)

 	(mongoelector.MongoElector attribute), [1]

S

 	
 	start() (mongoelector.elector.MongoElector method)

 	(mongoelector.MongoElector method), [1]

 	status (mongoelector.locker.MongoLocker attribute)

 	(mongoelector.MongoLocker attribute), [1]

 	
 	stop() (mongoelector.elector.MongoElector method)

 	(mongoelector.MongoElector method), [1]

T

 	
 	touch() (mongoelector.locker.MongoLocker method)

 	(mongoelector.MongoLocker method), [1]

mongoelector package

Submodules

mongoelector.elector module

	
class mongoelector.elector.ElectorThread(elector)

	Bases: threading.Thread

Calls the election polling logic

Custom Thread object for the Elector

	
run()

	starts the elector polling logic, should not be called directly

	
class mongoelector.elector.MongoElector(key, db, ttl=15, onmaster=None, onmasterloss=None, onloop=None, app_version=None, report_status=True)

	Bases: object

This object will do lots of awesome distributed master
election coolness

Create a MongoElector instance

	Parameters:	
	key (str) – Name of the distributed lock that is used for master election.
should be unique to this type of daemon i.e. any instance for which you want
to run exactly one master should all share this same name.

	db – Connection to a MongoDB database

	ttl (int) – Time-to-live for the distributed lock. If the master node fails silently, this
timeout must be hit before another node will take over.

	onmaster (Function or Method) – Function that will be run every time this instance is elected as the new master

	onmasterloss (Function or Method) – Function that will be run every time when this instance loses it’s master status

	onloop (Function or Method) – Function that will be run on every loop

	app_version (str) – Parent app version, if provided, will be included in node_status for monitoring

	
cluster_detail

	

	
ismaster

	Returns True if this instance is master

	
master_exists

	Returns true if an instance (not necessarily this one) has master

	
node_status

	Status info for current object

	
poll()

	Main polling logic, will refresh lock if it’s owned,
or tries to obtain the lock if it’s available.
Runs onloop callback after lock maintenance logic

In general, this should only be called by the elector thread

	
pollwait

	An appropriate sleep time to wait before next poll

	
release()

	Releases master lock if owned and calls onmasterloss if provided.

	
report_status()

	

	
running

	Returns true if the elector logic is running

	
start(blocking=False)

	Starts mongo elector polling on a background thread then returns.
If blocking is set to True, this will never return until stop() is

	Parameters:	blocking (bool) – If False, returns as soon as the elector thread is started.
If True, will only return after stop() is called i.e. by another thread.

	
stop()

	Cleanly stop the elector. Surrender master if owned

	
mongoelector.elector.parse_master(data)

	

mongoelector.locker module

	
exception mongoelector.locker.AcquireTimeout

	Bases: exceptions.Exception

Raise when can’t get lock

	
exception mongoelector.locker.LockExists

	Bases: exceptions.Exception

Raise when a lock exists

	
class mongoelector.locker.MongoLocker(key, db, dbcollection='mongolocker', ttl=600, timeparanoid=True)

	Bases: object

Distributed lock object backed by MongoDB.

Intended to mimic standard lib Lock object as much as
reasonable. This object is used by MongoElector, but
is perfectly happy being used as a standalone distributed
locking object.

	Parameters:	
	key (str) – Name of distributed lock

	dbconn (PyMongo db connection) – Pymongo client connection to mongodb

	dbname (str) – name of database (defaults to ‘mongoelector’)

	dbname – name of collection (defaults to ‘mongolocker’)

	ttl (int) – Lock will expire (ttl seconds) after acquired unless renewed or released

	timeparanoid (bool) – Sanity check to ensure local server time matches mongodb server time (utc)

	
acquire(blocking=True, timeout=None, step=0.25, force=False)

	Attempts to acquire the lock, will block and retry
indefinitely by default. Can be configured not to block,
or to have a timeout. You can also force the acquisition
if you have a really good reason to do so.

	Parameters:	
	blocking (bool) – If true (default), will wait until lock is acquired.

	timeout (int) – blocking acquire will fail after timeout in seconds if the lock hasn’t been acquired yet.

	step (float or int) – delay between acquire attempts

	force (bool) – CAUTION: will forcibly take ownership of the lock

	
get_current()

	Returns the current (valid) lock object from the database,
regardless of which instance it is owned by.

	
locked()

	Returns current status of the lock, but does not indicate if
the current instance has ownership or not. (for that, use ‘self.owned()’)
This is a ‘look before you leap’ option. For example, it can be used
to ensure that some process is owns the lock and is doing the associated work.
Obviously this method does not guarantee that the current instance will be
successful in obtaining the lock on a subsequent acquire.

	Returns:	Lock status

	Return type:	bool

	
owned()

	Determines if self is the owner of the lock object.
This verifies the instance uuid matches the
uuid of the lock record in the db.

	Returns:	Owner status

	Return type:	bool

	
release(force=False)

	releases lock if owned by the current instance.

	Parameters:	force – CAUTION: Forces the release to happen,

even if the local instance isn’t the lock owner.
:type force: bool

	
status

	

	
touch()

	Renews lock expiration timestamp

	Returns:	new expiration timestamp

	Return type:	datetime

Module contents

	
class mongoelector.MongoLocker(key, db, dbcollection='mongolocker', ttl=600, timeparanoid=True)

	Bases: object

Distributed lock object backed by MongoDB.

Intended to mimic standard lib Lock object as much as
reasonable. This object is used by MongoElector, but
is perfectly happy being used as a standalone distributed
locking object.

	Parameters:	
	key (str) – Name of distributed lock

	dbconn (PyMongo db connection) – Pymongo client connection to mongodb

	dbname (str) – name of database (defaults to ‘mongoelector’)

	dbname – name of collection (defaults to ‘mongolocker’)

	ttl (int) – Lock will expire (ttl seconds) after acquired unless renewed or released

	timeparanoid (bool) – Sanity check to ensure local server time matches mongodb server time (utc)

	
acquire(blocking=True, timeout=None, step=0.25, force=False)

	Attempts to acquire the lock, will block and retry
indefinitely by default. Can be configured not to block,
or to have a timeout. You can also force the acquisition
if you have a really good reason to do so.

	Parameters:	
	blocking (bool) – If true (default), will wait until lock is acquired.

	timeout (int) – blocking acquire will fail after timeout in seconds if the lock hasn’t been acquired yet.

	step (float or int) – delay between acquire attempts

	force (bool) – CAUTION: will forcibly take ownership of the lock

	
get_current()

	Returns the current (valid) lock object from the database,
regardless of which instance it is owned by.

	
locked()

	Returns current status of the lock, but does not indicate if
the current instance has ownership or not. (for that, use ‘self.owned()’)
This is a ‘look before you leap’ option. For example, it can be used
to ensure that some process is owns the lock and is doing the associated work.
Obviously this method does not guarantee that the current instance will be
successful in obtaining the lock on a subsequent acquire.

	Returns:	Lock status

	Return type:	bool

	
owned()

	Determines if self is the owner of the lock object.
This verifies the instance uuid matches the
uuid of the lock record in the db.

	Returns:	Owner status

	Return type:	bool

	
release(force=False)

	releases lock if owned by the current instance.

	Parameters:	force – CAUTION: Forces the release to happen,

even if the local instance isn’t the lock owner.
:type force: bool

	
status

	

	
touch()

	Renews lock expiration timestamp

	Returns:	new expiration timestamp

	Return type:	datetime

	
class mongoelector.MongoElector(key, db, ttl=15, onmaster=None, onmasterloss=None, onloop=None, app_version=None, report_status=True)

	Bases: object

This object will do lots of awesome distributed master
election coolness

Create a MongoElector instance

	Parameters:	
	key (str) – Name of the distributed lock that is used for master election.
should be unique to this type of daemon i.e. any instance for which you want
to run exactly one master should all share this same name.

	db – Connection to a MongoDB database

	ttl (int) – Time-to-live for the distributed lock. If the master node fails silently, this
timeout must be hit before another node will take over.

	onmaster (Function or Method) – Function that will be run every time this instance is elected as the new master

	onmasterloss (Function or Method) – Function that will be run every time when this instance loses it’s master status

	onloop (Function or Method) – Function that will be run on every loop

	app_version (str) – Parent app version, if provided, will be included in node_status for monitoring

	
cluster_detail

	

	
ismaster

	Returns True if this instance is master

	
master_exists

	Returns true if an instance (not necessarily this one) has master

	
node_status

	Status info for current object

	
poll()

	Main polling logic, will refresh lock if it’s owned,
or tries to obtain the lock if it’s available.
Runs onloop callback after lock maintenance logic

In general, this should only be called by the elector thread

	
pollwait

	An appropriate sleep time to wait before next poll

	
release()

	Releases master lock if owned and calls onmasterloss if provided.

	
report_status()

	

	
running

	Returns true if the elector logic is running

	
start(blocking=False)

	Starts mongo elector polling on a background thread then returns.
If blocking is set to True, this will never return until stop() is

	Parameters:	blocking (bool) – If False, returns as soon as the elector thread is started.
If True, will only return after stop() is called i.e. by another thread.

	
stop()

	Cleanly stop the elector. Surrender master if owned

mongoelector

	mongoelector package
	Submodules

	mongoelector.elector module

	mongoelector.locker module

	Module contents

 _static/comment-close.png

_static/down-pressed.png

_static/up.png

_static/minus.png

_static/ajax-loader.gif

_static/file.png

_static/plus.png

nav.xhtml

 Table of Contents

 		Welcome to MongoElector's documentation!

 		MongoElector

 		About

 		Features

 		Todo

 		Installation

 		Stable release

 		From sources

 		Usage

 		MongoElector

 		MongoLocker

 		Code Documentation

 		Contributing

 		Types of Contributions

 		Report Bugs

 		Submit Feedback

 		Get Started!

 		Pull Request Guidelines

 		Tips

 		Authors

 		Creator

 		Contributors

 		History

 		0.3.0 (2016-08-22)

 		0.2.1 (2016-08-10)

 		0.0.1 (2016-05-13)

_static/comment.png

_static/comment-bright.png

_static/up-pressed.png

_static/down.png

