

Momoko

Momoko wraps Psycopg2 [http://initd.org/psycopg]’s functionality for use in Tornado [http://www.tornadoweb.org].

The latest source code can be found on Github [https://github.com/FSX/momoko] and bug reports can be sent
there too. All releases will be uploaded to PyPi [https://pypi.python.org/pypi/Momoko].

Contents:

	Changelog

	Installation

	Tutorial

	API

Indices and tables

	Index

	Search Page

Changelog

2.2.5 (2018-11-05)

	Explicitly declaring and testing Python 3.5, 3.6, and 3.7 support

	Tornado 5.x support (Tornado 4.x is supported as well)

	Dropped support for Python 2.6 and 3.3

2.2.4 (2016-10-31)

	Resiliency to PostgreSQL restarts (issue 147 [https://github.com/FSX/momoko/issues/147])

	Provide a useful __repr__() method for ConnectionContainer (issue 146 [https://github.com/FSX/momoko/issues/146])

	Dropped support for Python 3.2 - Tornado stopped supporting it as well

	Fixed potential conflict in connection management (issue 139 [https://github.com/FSX/momoko/issues/139])

2.2.3 (2016-03-10)

	Matching execute parameters behaviour to those of psycopg2. (issue 136 [https://github.com/FSX/momoko/issues/136]).

2.2.2 (2015-12-02)

	Doc fixes (issue 131 [https://github.com/FSX/momoko/issues/131]). Thanks to gward [https://github.com/gward].

	Makefile fix (issue 132 [https://github.com/FSX/momoko/issues/132]). Thanks to bitwolaiye [https://github.com/bitwolaiye].

	Catching all syncrhonous exceptions (issue 134 [https://github.com/FSX/momoko/issues/134]). Thanks to m-messiah [https://github.com/m-messiah].

	Catchin IOErrors in IOLoop handlers (issue 127 [https://github.com/FSX/momoko/issues/127]).

2.2.1 (2015-10-13)

	Wait for pending connections during connection acquiring (issue 122 [https://github.com/FSX/momoko/issues/122]). Thanks to jbowes [https://github.com/jbowes].

2.2.0 (2015-09-20)

	Fixed serious flaw with connection retrials. More details [https://github.com/FSX/momoko/commit/85183f5370181f75a29e876f5211d99c40b4ba5e].

	Fixed ping to handle failures properly (issue 115 [https://github.com/FSX/momoko/issues/115]).

	NOTE: gcc is now required to run tests - we supply built-in version of tcproxy [https://github.com/dccmx/tcproxy] for connection failure simulation.

2.1.1 (2015-08-03)

	Fixed JSON/HSTORE support with named cursors (issue 112 [https://github.com/FSX/momoko/issues/112]). Thanks to helminster [https://github.com/helminster].

2.1.0 (2015-07-08)

	Auto shrink support. Thanks to John Chumnanvech [https://github.com/jchumnanvech].

2.0.0 (2015-05-10)

	Full rewrite using using Futures [http://tornado.readthedocs.org/en/latest/concurrent.html]

	NOTE: The new API is similar but not backwards compatible. Make sure to read documentation first.

1.1.6 (2015-04-26)

	Aadded register_json

	Docs: fix typos, spelling, grammatical errors; improve unclear wording

	Removed support for psycopg2ct

1.1.5 (2014-11-17)

	Catching ALL types of early error. Fixes issue 79 [https://github.com/FSX/momoko/issues/79].

1.1.4 (2014-07-21)

	Tornado 4.0 compatablity: backported old Task class for Tornado 4.0 compatablity.

1.1.3 (2014-05-21)

	Fixed hstore.

1.1.2 (2014-03-06)

	Fixed a minor Python 3.2 issue.

1.1.1 (2014-03-06)

Fixes:

	Connection.transaction does not break when passed SQL strings are of unicode type

1.1.0 (2014-02-24)

New features:

	Transparent automatic reconnects if database disappears and comes back.

	Session init commands (setsession).

	Dynamic pool size stretching. New connections will be opened under
load up-to predefined limit.

	API for manual connection management with getconn/putconn. Useful for server-side cursors.

	A lot of internal improvements and cleanup.

Fixes:

	Connections are managed explicitly - eliminates transaction problems reported.

	connection_factory (and curosr_factor) arguments handled properly by Pool.

1.0.0 (2013-05-01)

	Fix code example in documentation. By matheuspatury in pull request 46 [https://github.com/FSX/momoko/pull/46]

1.0.0b2 (2013-02-28)

	Tested on CPython 2.6, 2.7, 3.2, 3.3 and PyPy with Psycopg2 [http://initd.org/psycopg/], psycopg2ct [http://pypi.python.org/pypi/psycopg2ct] and psycopg2cffi [http://pypi.python.org/pypi/psycopg2cffi].

	Add and remove a database connection to and from the IOLoop for each operation.
See pull request 38 [https://github.com/FSX/momoko/pull/38] and commits 189323211b [https://github.com/FSX/momoko/commit/189323211bcb44ea158f41ddf87d4240c0e657d6] and 92940db0a0 [https://github.com/FSX/momoko/commit/92940db0a0f6d780724f42d3d66f1b75a78430ff] for more information.

	Replaced dynamic connection pool with a static one.

	Add support for hstore [http://www.postgresql.org/docs/9.2/static/hstore.html].

1.0.0b1 (2012-12-16)

This is a beta release. It means that the code has not been tested thoroughly
yet. This first beta release is meant to provide all the functionality of the
previous version plus a few additions.

	Most of the code has been rewritten.

	The mogrify [http://initd.org/psycopg/docs/cursor.html#cursor.mogrify] method has been added.

	Added support for transactions.

	The query chain and batch have been removed, because tornado.gen can be used instead.

	Error reporting has bee improved by passing the raised exception to the callback.
A callback accepts two arguments: the cursor and the error.

	Op, WaitOp and WaitAllOps in momoko.utils are wrappers for
classes in tornado.gen which raise the error again when one occurs.
And the user can capture the exception in the request handler.

	A complete set of tests has been added in the momoko module: momoko.tests.
These can be run with python setup.py test.

0.5.0 (2012-07-30)

	Removed all Adisp related code.

	Refactored connection pool and connection polling.

	Just pass all unspecified arguments to BlockingPool and AsyncPool. So
connection_factory can be used again.

0.4.0 (2011-12-15)

	Reorganized classes and files.

	Renamed momoko.Client to momoko.AsyncClient.

	Renamed momoko.Pool to momoko.AsyncPool.

	Added a client and pool for blocking connections, momoko.BlockingClient
and momoko.BlockingPool.

	Added PoolError to the import list in __init__.py.

	Added an example that uses Tornado’s gen [http://www.tornadoweb.org/documentation/gen.html] module and Swift [http://code.naeseth.com/swirl/].

	Callbacks are now optional for AsyncClient.

	AsyncPool and Poller now accept a ioloop argument. [fzzbt [https://github.com/fzzbt]]

	Unit tests have been added. [fzzbt [https://github.com/fzzbt]]

0.3.0 (2011-08-07)

	Renamed momoko.Momoko to momoko.Client.

	Programming in blocking-style is now possible with AdispClient.

	Support for Python 3 has been added.

	The batch and chain fucntion now accepts different arguments. See the
documentation for details.

0.2.0 (2011-04-30)

	Removed executemany from Momoko, because it can not be used in asynchronous mode.

	Added a wrapper class, Momoko, for Pool, BatchQuery and QueryChain.

	Added the QueryChain class for executing a chain of queries (and callables)
in a certain order.

	Added the BatchQuery class for executing batches of queries at the same time.

	Improved Pool._clean_pool. It threw an IndexError when more than one
connection needed to be closed.

0.1.0 (2011-03-13)

	Initial release.

Installation

Momoko supports Python 2 and 3 and PyPy with psycopg2cffi [http://pypi.python.org/pypi/psycopg2cffi].
And the only dependencies are Tornado [http://www.tornadoweb.org/] and Psycopg2 [http://initd.org/psycopg/] (or psycopg2cffi [http://pypi.python.org/pypi/psycopg2cffi]).
Installation is easy using easy_install or pip [http://www.pip-installer.org/]:

pip install momoko

The lastest source code can always be cloned from the Github repository [https://github.com/FSX/momoko] with:

git clone git://github.com/FSX/momoko.git
cd momoko
python setup.py install

Psycopg2 is used by default when installing Momoko, but psycopg2cffi
can also be used by setting the MOMOKO_PSYCOPG2_IMPL environment variable to
psycopg2cffi before running setup.py. For example:

'psycopg2' or 'psycopg2cffi'
export MOMOKO_PSYCOPG2_IMPL='psycopg2cffi'

The unit tests all use this variable. It needs to be set if something else is used
instead of Psycopg2 when running the unit tests. Besides MOMOKO_PSYCOPG2_IMPL
there are also other variables that need to be set for the unit tests.

Here’s an example for the environment variables:

export MOMOKO_TEST_DB='your_db' # Default: momoko_test
export MOMOKO_TEST_USER='your_user' # Default: postgres
export MOMOKO_TEST_PASSWORD='your_password' # Empty de default
export MOMOKO_TEST_HOST='localhost' # Empty de default
export MOMOKO_TEST_PORT='5432' # Default: 5432

Set to '0' if hstore extension isn't enabled
export MOMOKO_TEST_HSTORE='1' # Default: 0

Momoko tests use tcproxy [https://github.com/dccmx/tcproxy] for simulating Postgres server unavailablity. The copy
of tcproxy is bundled with Momoko, but you need to build it first:

make -C tcproxy

Finally, running the tests is easy:

python setup.py test

Tutorial

This tutorial will demonstrate all the functionality found in Momoko. It’s assumed a
working PostgreSQL database is available, and everything is done in the context of a
simple tornado web application. Not everything is explained: because Momoko just
wraps Psycopg2, the Psycopg2 documentation [http://initd.org/psycopg/docs/cursor.html] must be used alongside Momoko’s.

The principle

Almost every method of Pool() and Connection()
returns a future [http://tornado.readthedocs.org/en/latest/concurrent.html]. There are some notable exceptions, like
close(); be sure to consult API documentation for the
details.

These future objects can be simply yield-ed in Tornado methods decorated with gen.coroutine.
For SQL execution related methods these futures resolve to corresponding cursor objects.

Trival example

Here is the simplest synchronous version of connect/select code:

import psycopg2
conn = psycopg2.connect(dsn="...")
cursor = conn.cursor()
cursor.execute("SELECT 1")
rows = cursor.fetchall()

And this is how the same code looks with Momoko/Tornado:

import momoko
from tornado.ioloop import IOLoop
ioloop = IOLoop.instance()

conn = momoko.Connection(dsn="...")
future = conn.connect()
ioloop.add_future(future, lambda x: ioloop.stop())
ioloop.start()
future.result() # raises exception on connection error

future = conn.execute("SELECT 1")
ioloop.add_future(future, lambda x: ioloop.stop())
ioloop.start()
cursor = future.result()
rows = cursor.fetchall()

We create connection object. Then invoke connect() method that returns future that
resolves to connection object itself when connection is ready (we already have connection
object at hand, thus we just wait until future is ready, ignoring its result).

Next we call execute() which returns future that resolves to ready-to-use cursor object.
And we use IOLoop again to wait for this future to be ready.

Now you know to use Connection() for working with with stand-alone
connections to PostgreSQL in asynchronous mode.

Introducing Pool

The real power of Momoko comes with Pool(). It provides several
nice features that make it useful in production environments:

	Connection pooling

	It manages several connections and distributes queries requests between them.
If all connections are busy, outstanding query requests are waiting in queue

	Automatic pool growing (stretching)

	You can allow automatic stretching - i.e. if all connections are busy and more
requests are coming, Pool will open more connections up a certain limit

	Automatic reconnects

	If connections get terminated (database server restart, etc) Pool will automatically
reconnect them and transparently retry query if it failed due to dead connection.

Boilerplate

Here’s the code that’s needed for the rest of this tutorial. Each example will replace parts
or extend upon this code. The code is kept simple and minimal; its purpose is just
to demonstrate Momoko’s functionality. Here it goes:

from tornado import gen
from tornado.ioloop import IOLoop
from tornado.httpserver import HTTPServer
from tornado.options import parse_command_line
from tornado import web

import psycopg2
import momoko

class BaseHandler(web.RequestHandler):
 @property
 def db(self):
 return self.application.db

class TutorialHandler(BaseHandler):
 def get(self):
 self.write('Some text here!')
 self.finish()

if __name__ == '__main__':
 parse_command_line()
 application = web.Application([
 (r'/', TutorialHandler)
], debug=True)

 ioloop = IOLoop.instance()

 application.db = momoko.Pool(
 dsn='dbname=your_db user=your_user password=very_secret_password '
 'host=localhost port=5432',
 size=1,
 ioloop=ioloop,
)

 # this is a one way to run ioloop in sync
 future = application.db.connect()
 ioloop.add_future(future, lambda f: ioloop.stop())
 ioloop.start()
 future.result() # raises exception on connection error

 http_server = HTTPServer(application)
 http_server.listen(8888, 'localhost')
 ioloop.start()

For more information about all the parameters passed to momoko.Pool see
momoko.Pool in the API documentation.

Using Pool

execute(), callproc(), transaction()
and mogrify() are methods of momoko.Pool which
can be used to query the database. (Actually, mogrify() is only used to
escape strings, but it needs a connection). All these methods, except mogrify(),
return a cursor or an exception object. All of the described retrieval methods in
Psycopg2’s documentation — fetchone [http://initd.org/psycopg/docs/cursor.html#cursor.fetchone], fetchmany [http://initd.org/psycopg/docs/cursor.html#cursor.fetchmany], fetchall [http://initd.org/psycopg/docs/cursor.html#cursor.fetchall], etc. — can be used
to fetch the results.

First, lets rewrite our trivial example using Tornado web handlers:

class TutorialHandler(BaseHandler):
 @gen.coroutine
 def get(self):
 cursor = yield self.db.execute("SELECT 1;")
 self.write("Results: %s" % cursor.fetchone())
 self.finish()

To execute several queries in parallel, accumulate corresponding futures and
yield them at once:

class TutorialHandler(BaseHandler):
 @gen.coroutine
 def get(self):
 try:
 f1 = self.db.execute('select 1;')
 f2 = self.db.execute('select 2;')
 f3 = self.db.execute('select 3;')
 yield [f1, f2, f3]

 cursor1 = f1.result()
 cursor2 = f2.result()
 cursor3 = f3.result()

 except (psycopg2.Warning, psycopg2.Error) as error:
 self.write(str(error))
 else:
 self.write('Q1: %r
' % (cursor1.fetchall(),))
 self.write('Q2: %r
' % (cursor2.fetchall(),))
 self.write('Q3: %r
' % (cursor3.fetchall(),))

 self.finish()

All the above examples use execute(), but work
with callproc(), transaction() and
mogrify() too.

Advanced

Manual connection management

You can manually acquire connection from the pool using the getconn() method.
This is very useful, for example, for server-side cursors.

It important to return connection back to the pool once you’ve done with it, even if an error occurs
in the middle of your work. Use either
putconn()
method or
manage()
manager to return the connection.

Here is the server-side cursor example (based on the code in momoko unittests):

@gen.coroutine
def get(self):
 int_count = 1000
 offset = 0
 chunk = 10
 try:
 conn = yield self.db.getconn()
 with self.db.manage(conn):
 yield conn.execute("BEGIN")
 yield conn.execute("DECLARE all_ints CURSOR FOR SELECT * FROM unit_test_int_table")
 while offset < int_count:
 cursor = yield conn.execute("FETCH %s FROM all_ints", (chunk,))
 rows = cursor.fetchall()
 # Do something with results...
 offset += chunk
 yield conn.execute("CLOSE all_ints")
 yield conn.execute("COMMIT")

 except Exception as error:
 self.write(str(error))

API

Classes, methods and stuff.

Connections

	
class momoko.Pool(dsn, connection_factory=None, cursor_factory=None, size=1, max_size=None, ioloop=None, raise_connect_errors=True, reconnect_interval=500, setsession=(), auto_shrink=False, shrink_delay=datetime.timedelta(0, 120), shrink_period=datetime.timedelta(0, 120))

	Asynchronous connection pool object. All its methods are
asynchronous unless stated otherwide in method description.

	Parameters

	
	dsn (string) – A Data Source Name [http://en.wikipedia.org/wiki/Data_Source_Name] string containing one of the following values:

	dbname - the database name

	user - user name used to authenticate

	password - password used to authenticate

	host - database host address (defaults to UNIX socket if not provided)

	port - connection port number (defaults to 5432 if not provided)

Or any other parameter supported by PostgreSQL. See the PostgreSQL
documentation for a complete list of supported parameters [http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-PQCONNECTDBPARAMS].

	connection_factory – The connection_factory argument can be used to create non-standard
connections. The class returned should be a subclass of psycopg2.extensions.connection [http://initd.org/psycopg/docs/connection.html#connection].
See Connection and cursor factories [http://initd.org/psycopg/docs/advanced.html#subclassing-cursor] for details. Defaults to None.

	cursor_factory – The cursor_factory argument can be used to return non-standart cursor class
The class returned should be a subclass of psycopg2.extensions.cursor [http://initd.org/psycopg/docs/extensions.html#psycopg2.extensions.cursor].
See Connection and cursor factories [http://initd.org/psycopg/docs/advanced.html#subclassing-cursor] for details. Defaults to None.

	size (int) – Minimal number of connections to maintain. size connections will be opened
and maintained after calling momoko.Pool.connect().

	max_size (int or None) – if not None, the pool size will dynamically grow on demand up to max_size
open connections. By default the connections will still be maintained even if
when the pool load decreases. See also auto_shrink parameter.

	ioloop – Tornado IOloop instance to use. Defaults to Tornado’s IOLoop.instance().

	raise_connect_errors (bool) – Whether to raise momoko.PartiallyConnectedError() when failing to
connect to database during momoko.Pool.connect().

	reconnect_interval (int) – If database server becomes unavailable, the pool will try to reestablish
the connection. The attempt frequency is reconnect_interval
milliseconds.

	setsession (list) – List of intial sql commands to be executed once connection is established.
If any of the commands fails, the connection will be closed.
NOTE: The commands will be executed as one transaction block.

	auto_shrink (bool) – Garbage-collect idle connections. Only applicable if max_size was specified.
Nevertheless, the pool will mainatain at least size connections.

	shrink_delay (datetime.timedelta()) – A connection is declared idle if it was not used for shrink_delay time period.
Idle connections will be garbage-collected if auto_shrink is set to True.

	shrink_period (datetime.timedelta()) – If auto_shink is enabled, this parameter defines how the pool will check for
idle connections.

	
exception DatabaseNotAvailable

	Raised when Pool can not connect to database server

	
callproc(*args, **kwargs)

	Call a stored database procedure with the given name.

See momoko.Connection.callproc() for documentation about the
parameters.

	
close()

	Close the connection pool.

NOTE: This is a synchronous method.

	
connect()

	Returns future that resolves to this Pool object.

If some connection failed to connect and self.raise_connect_errors
is true, raises momoko.PartiallyConnectedError().

	
execute(*args, **kwargs)

	Prepare and execute a database operation (query or command).

See momoko.Connection.execute() for documentation about the
parameters.

	
getconn(ping=True)

	Acquire connection from the pool.

You can then use this connection for subsequent queries.
Just use connection.execute instead of Pool.execute.

Make sure to return connection to the pool by calling momoko.Pool.putconn(),
otherwise the connection will remain forever busy and you’ll starve your pool.

Returns a future that resolves to the acquired connection object.

	Parameters

	ping (boolean) – Whether to ping the connection before returning it by executing momoko.Connection.ping().

	
manage(**kwds)

	Context manager that automatically returns connection to the pool.
You can use it instead of momoko.Pool.putconn():

connection = yield self.db.getconn()
with self.db.manage(connection):
 cursor = yield connection.execute("BEGIN")
 ...

	
mogrify(*args, **kwargs)

	Return a query string after arguments binding.

NOTE: This is NOT a synchronous method (contary to momoko.Connection.mogrify)
- it asynchronously waits for available connection. For performance
reasons, its better to create dedicated momoko.Connection()
object and use it directly for mogrification, this operation does not
imply any real operation on the database server.

See momoko.Connection.mogrify() for documentation about the
parameters.

	
ping()

	Make sure this connection is alive by executing SELECT 1 statement -
i.e. roundtrip to the database.

See momoko.Connection.ping() for documentation about the
parameters.

	
putconn(connection)

	Return busy connection back to the pool.

NOTE: This is a synchronous method.

	Parameters

	connection (Connection) – Connection object previously returned by momoko.Pool.getconn().

	
register_hstore(*args, **kwargs)

	Register adapter and typecaster for dict-hstore conversions.

See momoko.Connection.register_hstore() for documentation about
the parameters. This method has no globally parameter, because it
already registers hstore to all the connections in the pool.

	
register_json(*args, **kwargs)

	Create and register typecasters converting json type to Python objects.

See momoko.Connection.register_json() for documentation about
the parameters. This method has no globally parameter, because it
already registers json to all the connections in the pool.

	
transaction(*args, **kwargs)

	Run a sequence of SQL queries in a database transaction.

See momoko.Connection.transaction() for documentation about the
parameters.

	
class momoko.Connection(dsn, connection_factory=None, cursor_factory=None, ioloop=None, setsession=())

	Asynchronous connection object. All its methods are
asynchronous unless stated otherwide in method description.

	Parameters

	
	dsn (string) – A Data Source Name [http://en.wikipedia.org/wiki/Data_Source_Name] string containing one of the following values:

	dbname - the database name

	user - user name used to authenticate

	password - password used to authenticate

	host - database host address (defaults to UNIX socket if not provided)

	port - connection port number (defaults to 5432 if not provided)

Or any other parameter supported by PostgreSQL. See the PostgreSQL
documentation for a complete list of supported parameters [http://www.postgresql.org/docs/current/static/libpq-connect.html#LIBPQ-PQCONNECTDBPARAMS].

	connection_factory – The connection_factory argument can be used to create non-standard
connections. The class returned should be a subclass of psycopg2.extensions.connection [http://initd.org/psycopg/docs/connection.html#connection].
See Connection and cursor factories [http://initd.org/psycopg/docs/advanced.html#subclassing-cursor] for details. Defaults to None.

	cursor_factory – The cursor_factory argument can be used to return non-standart cursor class
The class returned should be a subclass of psycopg2.extensions.cursor [http://initd.org/psycopg/docs/extensions.html#psycopg2.extensions.cursor].
See Connection and cursor factories [http://initd.org/psycopg/docs/advanced.html#subclassing-cursor] for details. Defaults to None.

	setsession (list) – List of intial sql commands to be executed once connection is established.
If any of the commands fails, the connection will be closed.
NOTE: The commands will be executed as one transaction block.

	
callproc(procname, parameters=(), cursor_factory=None)

	Call a stored database procedure with the given name.

The sequence of parameters must contain one entry for each argument that
the procedure expects. The result of the call is returned as modified copy
of the input sequence. Input parameters are left untouched, output and
input/output parameters replaced with possibly new values.

The procedure may also provide a result set as output. This must then be
made available through the standard fetch*() [http://initd.org/psycopg/docs/cursor.html#fetch] methods.

	Parameters

	
	procname (string) – The name of the database procedure.

	parameters (tuple/list) – A list or tuple with query parameters. See Passing parameters to SQL queries [http://initd.org/psycopg/docs/usage.html#query-parameters]
for more information. Defaults to an empty tuple.

	cursor_factory – The cursor_factory argument can be used to create non-standard cursors.
The class returned must be a subclass of psycopg2.extensions.cursor [http://initd.org/psycopg/docs/extensions.html#psycopg2.extensions.cursor].
See Connection and cursor factories [http://initd.org/psycopg/docs/advanced.html#subclassing-cursor] for details. Defaults to None.

Returns future that resolves to cursor object containing result.

	
close()

	Closes the connection.

NOTE: This is a synchronous method.

	
closed

	Indicates whether the connection is closed or not.

	
connect()

	Initiate asynchronous connect.
Returns future that resolves to this connection object.

	
execute(operation, parameters=(), cursor_factory=None)

	Prepare and execute a database operation (query or command).

	Parameters

	
	operation (string) – An SQL query.

	parameters (tuple/list/dict) – A list, tuple or dict with query parameters. See Passing parameters to SQL queries [http://initd.org/psycopg/docs/usage.html#query-parameters]
for more information. Defaults to an empty tuple.

	cursor_factory – The cursor_factory argument can be used to create non-standard cursors.
The class returned must be a subclass of psycopg2.extensions.cursor [http://initd.org/psycopg/docs/extensions.html#psycopg2.extensions.cursor].
See Connection and cursor factories [http://initd.org/psycopg/docs/advanced.html#subclassing-cursor] for details. Defaults to None.

Returns future that resolves to cursor object containing result.

	
mogrify(operation, parameters=())

	Return a query string after arguments binding.

The string returned is exactly the one that would be sent to the database
running the execute() method or similar.

NOTE: This is a synchronous method.

	Parameters

	
	operation (string) – An SQL query.

	parameters (tuple/list) – A list or tuple with query parameters. See Passing parameters to SQL queries [http://initd.org/psycopg/docs/usage.html#query-parameters]
for more information. Defaults to an empty tuple.

	
ping()

	Make sure this connection is alive by executing SELECT 1 statement -
i.e. roundtrip to the database.

Returns future. If it resolves sucessfully - the connection is alive (or dead otherwise).

	
register_hstore(globally=False, unicode=False)

	Register adapter and typecaster for dict-hstore conversions.

More information on the hstore datatype can be found on the
Psycopg2 documentation [http://initd.org/psycopg/docs/extras.html#hstore-data-type].

	Parameters

	
	globally (boolean) – Register the adapter globally, not only on this connection.

	unicode (boolean) – If True, keys and values returned from the database will be unicode
instead of str. The option is not available on Python 3.

Returns future that resolves to None.

	
register_json(globally=False, loads=None)

	Create and register typecasters converting json type to Python objects.

More information on the json datatype can be found on the Psycopg2 documentation [http://initd.org/psycopg/docs/extras.html#json-adaptation].

	Parameters

	
	globally (boolean) – Register the adapter globally, not only on this connection.

	loads (function) – The function used to parse the data into a Python object. If None
use json.loads(), where json is the module chosen according to
the Python version. See psycopg2.extra docs.

Returns future that resolves to None.

	
transaction(statements, cursor_factory=None, auto_rollback=True)

	Run a sequence of SQL queries in a database transaction.

	Parameters

	
	statements (tuple/list) – List or tuple containing SQL queries with or without parameters. An item
can be a string (SQL query without parameters) or a tuple/list with two items,
an SQL query and a tuple/list/dict with parameters.

See Passing parameters to SQL queries [http://initd.org/psycopg/docs/usage.html#query-parameters] for more information.

	cursor_factory – The cursor_factory argument can be used to create non-standard cursors.
The class returned must be a subclass of psycopg2.extensions.cursor [http://initd.org/psycopg/docs/extensions.html#psycopg2.extensions.cursor].
See Connection and cursor factories [http://initd.org/psycopg/docs/advanced.html#subclassing-cursor] for details. Defaults to None.

	auto_rollback (bool) – If one of the transaction statements fails, try to automatically
execute ROLLBACK to abort the transaction. If ROLLBACK fails, it would
not be raised, but only logged.

Returns future that resolves to list of cursors. Each cursor contains the result
of the corresponding transaction statement.

	
momoko.connect(*args, **kwargs)

	Connection factory.
See momoko.Connection() for documentation about the parameters.

Returns future that resolves to momoko.Connection() object or raises exception.

Exceptions

	
class momoko.PoolError

	Raised when something goes wrong in the connection pool.

	
class momoko.PartiallyConnectedError

	Raised when momoko.Pool() can not initialize all of the requested connections.

 Python Module Index

 m

 		 	

 		
 m	

 	
 	
 momoko	

Index

 C
 | E
 | G
 | M
 | P
 | R
 | T

C

 	
 	callproc() (momoko.Connection method)

 	(momoko.Pool method)

 	close() (momoko.Connection method)

 	(momoko.Pool method)

 	
 	closed (momoko.Connection attribute)

 	connect() (in module momoko)

 	(momoko.Connection method)

 	(momoko.Pool method)

 	Connection (class in momoko)

E

 	
 	execute() (momoko.Connection method)

 	(momoko.Pool method)

G

 	
 	getconn() (momoko.Pool method)

M

 	
 	manage() (momoko.Pool method)

 	mogrify() (momoko.Connection method)

 	(momoko.Pool method)

 	
 	momoko (module)

P

 	
 	PartiallyConnectedError (class in momoko)

 	ping() (momoko.Connection method)

 	(momoko.Pool method)

 	
 	Pool (class in momoko)

 	Pool.DatabaseNotAvailable

 	PoolError (class in momoko)

 	putconn() (momoko.Pool method)

R

 	
 	register_hstore() (momoko.Connection method)

 	(momoko.Pool method)

 	
 	register_json() (momoko.Connection method)

 	(momoko.Pool method)

T

 	
 	transaction() (momoko.Connection method)

 	(momoko.Pool method)

 _static/up.png

nav.xhtml

 Table of Contents

 		
 Momoko

 		
 Changelog

 		
 2.2.5 (2018-11-05)

 		
 2.2.4 (2016-10-31)

 		
 2.2.3 (2016-03-10)

 		
 2.2.2 (2015-12-02)

 		
 2.2.1 (2015-10-13)

 		
 2.2.0 (2015-09-20)

 		
 2.1.1 (2015-08-03)

 		
 2.1.0 (2015-07-08)

 		
 2.0.0 (2015-05-10)

 		
 1.1.6 (2015-04-26)

 		
 1.1.5 (2014-11-17)

 		
 1.1.4 (2014-07-21)

 		
 1.1.3 (2014-05-21)

 		
 1.1.2 (2014-03-06)

 		
 1.1.1 (2014-03-06)

 		
 1.1.0 (2014-02-24)

 		
 1.0.0 (2013-05-01)

 		
 1.0.0b2 (2013-02-28)

 		
 1.0.0b1 (2012-12-16)

 		
 0.5.0 (2012-07-30)

 		
 0.4.0 (2011-12-15)

 		
 0.3.0 (2011-08-07)

 		
 0.2.0 (2011-04-30)

 		
 0.1.0 (2011-03-13)

 		
 Installation

 		
 Tutorial

 		
 The principle

 		
 Trival example

 		
 Introducing Pool

 		
 Boilerplate

 		
 Using Pool

 		
 Advanced

 		
 Manual connection management

 		
 API

 		
 Connections

 		
 Exceptions

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/minus.png

_static/plus.png

_static/file.png

_static/up-pressed.png

_static/ajax-loader.gif

_static/comment-bright.png

