
QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎

Aug 14, 2020

Contents

1 High-Level Aspirations 3

2 Existing JSON Efforts 5

3 Contents 7

i

ii

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

A JSON Schema for Quantum Chemistry

The purpose of this schema is to provide API-like access to existing workhorse quantum chemistry packages to enable
more complex and unified workflows. Primary to this is avoiding parsing ASCII-based output files, instead placing
output variables, vectors, matrices in a consistent format that can be easily read/loaded by humans or tools.

Contents 1

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

2 Contents

CHAPTER 1

High-Level Aspirations

In order to help define the overall scope and direction of the specification, several high-level goals will be pursued:

• Connecting QC to visualizers and GUIs

• Connecting QC to existing Workflows tools

• Transfer data between QC programs (Orbitals, Densities, etc.)

• Provide a rigorous record of computation for large-scale QC databases

• Provide a framework for QC API access

A concrete list of requirements for this schema can be found [here](Requirements.md).

Organizations:

• The Molecular Sciences Software Institute

Visualizers:

• Avogadro

• Molecular Design Toolkit

• VTK

• Jmol / JSmol

Quantum Chemistry Engines:

• GAMESS

• MPQC

• NWChem

• Q-Chem

• Psi4

• PySCF

Translators:

3

http://www.molssi.org
https://avogadro.cc
https://github.com/Autodesk/molecular-design-toolkit
http://www.vtk.org
http://jmol.org/
http://www.msg.ameslab.gov/gamess/
https://github.com/ValeevGroup/mpqc
http://www.nwchem-sw.org/index.php/Main_Page
https://www.q-chem.com
https://github.com/psi4/psi4
http://sunqm.github.io/pyscf/

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

• cclib

• openbabel

Utilities:

• geomeTRIC

4 Chapter 1. High-Level Aspirations

http://cclib.github.io
http://openbabel.org/
https://github.com/leeping/geomeTRIC

CHAPTER 2

Existing JSON Efforts

JSON or XML based input or output is a common abstraction with quantum chemistry. The idea is to pull from the
wide and coalesce into a single specification to prevent duplication of effort.

• Autodesk JSON

• BAGEL JSON

• Chemical JSON

• MPQC JSON

• NWChem JSON

• Psi4 JSON

• PyQC Schema

• Molpro Database XML

• Chemical Markup Language

5

https://github.com/Autodesk/molecular-design-toolkit/wiki/Molecular-JSON-Draft-Spec#molecule
https://github.com/nubakery/bagel/blob/master/test/benzene_sto3g_pml.json
https://github.com/OpenChemistry/chemicaljson
https://gist.github.com/dgasmith/28ce209867afd272d361a00322960160
https://github.com/wadejong/NWChemOutputToJson
https://github.com/psi4/psi4/blob/master/psi4/driver/json_wrapper.py#L55
https://github.com/PyQC/json_schema
https://www.molpro.net/info/2015.1/doc/manual/node814.html
http://www.xml-cml.org

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

6 Chapter 2. Existing JSON Efforts

CHAPTER 3

Contents

3.1 Specification Components

A brief overview of the fields present in the QC Schema is contained below. It should be noted that a significant
amount of customization can be added to each field, please see the Schema or Examples document section for further
information.

3.1.1 Input Components

Topology

The closest representation to the real physical nature of the system. In practical terms, for molecular sciences, this
is the coordinates (in some form) and the elements/Z-number at that coordinate. For both QM and MM, this is your
molecule. This may include bonding information and unit cell, lattice parameters, etc, as well.

This is the foundation upon which you build the model basis of your calculation.

A water molecule example:

{
"molecule": {
"geometry": [

0.0, 0.0000, -0.1294,
0.0, -1.4941, 1.0274,
0.0, 1.4941, 1.0274

],
"symbols": ["O", "H", "H"]

}
}

7

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Driver

What are you looking to calculate: energy, gradient, Hessian, or property.

A energy call:

{
"driver": "energy"

}

Model

The overall mathematical model we are using for our calculation. Another way to think about this is the largest
superset that still obtains roughly the same result. In QM, this is the Hamiltonian (HF, DFT, . . .) combined with the
overall basis of the calculation. An example in QM would be HF/STO-3G or B3LYP/6-311G**. Custom basis sets
can be handled with custom keywords.

A example B3LYP call in the cc-pVDZ basis.

{
"model": {
"method": "B3LYP",
"basis": "cc-pVDZ"

}
}

Keywords

Various tunable parameters for the calculation. These vary widely, depending on the basis and model chemistry. These
represent the keywords of individual programs currently.

Program specific keywords requesting a density-fitting SCF call and a specific energy convergence tolerance:

{
"keywords": {
"scf_type": "df",
"e_congerence": 1.e-7

}
}

3.1.2 Output Components

Input Components

The input components are duplicated in the output so that the result is a complete trace of the requested computation
from input specification to results.

Success

A description if the computation was successful or not. For unsuccessful computations standard errors will be placed
in the output such as convergence, IO errors, etc.

A successful example:

8 Chapter 3. Contents

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

{
"success": true,

{

An unsuccessful example:

{
"success": false,
"error": {
"error_type": "convergence_error",
"errorm_message": "SCF failed to converge after 50 iterations"

{

Returned Result

The “primary” return of a given computation. For energy, gradient, and Hessian quantities these are either single
numbers or a array representing the derivative quantity.

A simple “energy” driver example:

{
"return_result": -76.4187620271478

{

Provenance

A brief description of the program, version, and routine used to generate the output. Can include more detailed
information such as computation time, processor information, and host location.

{
"provenance": {
"creator": "QM Program",
"version": "1.1",
"routine": "module.json.run_json"

},
}

Properties

A set of intermediate values produced by the QM program such as the one-elecron and two-electron energies in SCF.
In addition, this will include such values such as the number of atomic orbitals and the number of alpha and beta
electrons.

An example properties from a water HF/cc-pVDZ computation:

{
"properties": {
"calcinfo_nbasis": 24,
"calcinfo_nmo": 24,
"calcinfo_nalpha": 5,
"calcinfo_nbeta": 5,
"scf_one_electron_energy": -122.44534536383044,
"scf_two_electron_energy": 37.622464940400654,

(continues on next page)

3.1. Specification Components 9

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

"nuclear_repulsion_energy": 8.80146205625184,
"scf_total_energy": -76.02141836717794

}
}

Know variable lists include:

• IUPAC Goldbook

• Units/Constants

• Electron Density

• IUPAC recommendations for computational chemistry

• IUPAC recommendations are product of IUPAC Projects

• IUPAC InChI related activities beyond organics

• CCLibVars

• PsiVars

• Codessa

Basis Quantities

The schema supports the export of basis quantities such as the overlap matrix or the orbitals. TBD

3.2 Frequently Asked Questions

3.2.1 Will the json be validated before it reaches my software?

This is a question for the producer and consumers of the QC Schema. It is certainly recommended to validate the
schema and validation can be accomplished in a variety of langauges found at the JSON-Schema website.

3.2.2 Does the schema accept arbitrary extra fields if my software piece needs in-
ternal extensions?

Yes, we are currently discussing which fields are reserved and where the best place for arbitrary fields would be.

3.2.3 Are there libraries for writing the schema in [programming-language]?

JSON is agnostic to the underlying programming language and is well supported in a variety of languages
(C++/Python/JS/etc). We will provide examples on how to write JSON in other languages where JSON is not as
well supported (Fortran).

3.2.4 Why not use XML?

The ability to hand write and tweak a given input has been a sought after property. In addition, the overall structure of
JSON is viewed as simpler and more intuitive than XML. As the schema is fully specified it should be possible for the
validator to take in a JSON input and return an XML output.

10 Chapter 3. Contents

https://goldbook.iupac.org
https://goldbook.iupac.org/lists/list_math.html,https://goldbook.iupac.org/lists/list_goldbook_unit_defs.html
https://goldbook.iupac.org/html/E/E01986.html
https://doi.org/10.1351/pac199769051137,https://doi.org/10.1515/pac-2012-1204
https://iupac.org/recommendations/recently-published/
https://iupac.org/who-we-are/divisions/division-details/?body_code=802
http://cclib.github.io/data_notes.html
http://psicode.org/psi4manual/master/glossary_psivariables.html
http://www.codessa-pro.com/descriptors/quantum/eee.htm
http://json-schema.org/implementations.html

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

3.2.5 What style will be used for indexing and case?

We will support zero-indexing for arrays and snake_case for keys. Discussion is underway if we will follow the Google
JSON Style Guide.

3.2.6 Will the schema be versioned?

Yes, the schema will have version flags so that the Schema can evolve over time.

3.3 Technical Discussion

This document contains various technical considerations that are both open and those which have been discussed and
closed.

3.3.1 Open Questions

How do we reference other objects?

JSON does not directly support object references. This makes it non-trivial to, say, maintain a list of bonds between
atoms. Some solutions are:

1) by array index (e.g., residue.atom_indices=[3,4,5,6])

2) by JSON path reference (see, e.g., https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03)

3) JSON-LD allows some flexibility of referencing. Also gives flexibility to break one document or one JSON
object into pieces that can be referenced against.

4) by a unique key. (e.g., residue.id='a83nd83', residue.atoms=['a9n3d9', '31di3'])

Array index is probably the best option - although they are a little fragile, they’re no more fragile than path references,
and require far less overhead than unique keys.

We need to look at this beyond atoms and bonds. Especially in workflows we can reuse pieces of data from previous
tasks in the workflow. Instead of repeating we can use referencing.

See also: http://stackoverflow.com/q/4001474/1958900

How do we uniquely specify physical units?

For instance, velocity might be “angstrom/fs” Alternatives:

1) Require units in the form {unit_name:exponent}, e.g. atom.velocity.
units={'angstrom':1, 'fs':-1}

2) Allow strings of the form atom.velocity.units="angstrom/fs", but require that units
be chosen from a specific list of specifications

3) Allow strings of the form atom.velocity.units="angstrom/fs", and require file parsers
to parse the units according to a specified syntax

Note: There are multiple standards specifications for units, and conversions. If done right in a schema,
you can use JSON-LD to link to the actual standards definition. Some examples in CML:

3.3. Technical Discussion 11

https://google.github.io/styleguide/jsoncstyleguide.xml
https://google.github.io/styleguide/jsoncstyleguide.xml
https://tools.ietf.org/html/draft-pbryan-zyp-json-ref-03
http://stackoverflow.com/q/4001474/1958900

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

"orbitalEnergy": {"units": "Hartree", "value": 0.935524}
"shieldingAnisotropy": {"units": "ppm","value": 17.5292}

JSON and HDF5

The object specifications in this document are tailored to JSON, but can be easily stored in an HDF5 file as well. HDF5
is, like JSON, hierarchical and self-describing. These similarities make it easy to perform 1-to-1 transformations
between well-formed JSON and a corresponding HDF5 representation.

Unlike JSON, HDF5 is binary and requires custom libraries to read, but has far better performance and storage charac-
teristics for numerical data. We will provide tools to easily interconvert files between JSON and HDF5. Applications
that support this format should always provide JSON support; ones that require high performance should also support
the HDF5 variant.

3.3.2 Closed Questions

Store large collections of objects

There exists multiple ways to arrange data which represents objects. These expressions come down to two primary
categories:

The “big” approach where each field is a flat (1D) array for each category:

{
"symbols": ["C", "C", ...],
"geometry": [0.000, 1.396, 0.000, 1.209, 0.698, 0.000, ...],
"masses": [12.017, 12.017, ...]

}

The “small” approach which has a closer object-base mapping:

{
"fields": ["symbols", "geometry", "masses"],
"table": [

["C", [0.000, 1.396, 0.000], 12.017],
["C", [1.209, 0.698, 0.000], 12.017],
...

]
}

For the QC Schema it was decided to follow the big approach as it has the following benefits:

• Serialization/deserialization is much faster due to the smaller number of objects generated.

• The “small” approach can lead to a complex hierachy of fields.

• It is generally thought the “big” approach is more straightfoward to program due to its flatter structure.

3.4 Examples

Several examples of completed schema. As the input is duplicated in the output the corresponding input of these
schema are the input fields alone. Effectively, this is all keys above the “provenance” field. For clarify all array-based
values have been truncated to four decimal places.

12 Chapter 3. Contents

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

3.4.1 Water MP2 Energy

{
"schema_name": "qc_schema_output",
"schema_version": 1,
"molecule": {
"geometry": [

0.0, 0.0, -0.1294,
0.0, -1.4941, 1.0274,
0.0, 1.4941, 1.0274

],
"symbols": ["O", "H", "H"]

},
"driver": "energy",
"model": {
"method": "MP2",
"basis": "cc-pVDZ"

},
"keywords": {},
"provenance": {
"creator": "QM Program",
"version": "1.1",
"routine": "module.json.run_json"

},
"return_result": -76.22836742810021,
"success": true,
"properties": {
"calcinfo_nbasis": 24,
"calcinfo_nmo": 24,
"calcinfo_nalpha": 5,
"calcinfo_nbeta": 5,
"calcinfo_natom": 3,
"return_energy": -76.22836742810021,
"scf_one_electron_energy": -122.44534536383037,
"scf_two_electron_energy": 37.62246494040059,
"nuclear_repulsion_energy": 8.80146205625184,
"scf_dipole_moment": [0.0, 0.0, 2.0954],
"scf_iterations": 10,
"scf_total_energy": -76.02141836717794,
"mp2_same_spin_correlation_energy": -0.051980792916251864,
"mp2_opposite_spin_correlation_energy": -0.15496826800602342,
"mp2_singles_energy": 0.0,
"mp2_doubles_energy": -0.20694906092226972,
"mp2_total_correlation_energy": -0.20694906092226972,
"mp2_total_energy": -76.22836742810021

}
}

3.4.2 Water HF Gradient

{
"schema_name": "qc_schema_output",
"schema_version": 1,
"molecule": {
"geometry": [

(continues on next page)

3.4. Examples 13

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

(continued from previous page)

0.0, 0.0, -0.1294,
0.0, -1.4941, 1.0274,
0.0, 1.4941, 1.0274

],
"symbols": ["O", "H", "H"]

},
"driver": "gradient",
"model": {
"method": "HF",
"basis": "cc-pVDZ"

},
"keywords": {},
"provenance": {
"creator": "QM Program",
"version": "1.1",
"routine": "module.json.run_json"

},
"return_result": [
0.0, 0.0, -0.0595,
0.0, -0.0430, 0.0297,
0.0, 0.0430, 0.0297

],
"success": true,
"properties": {
"calcinfo_nbasis": 24,
"calcinfo_nmo": 24,
"calcinfo_nalpha": 5,
"calcinfo_nbeta": 5,
"calcinfo_natom": 3,
"return_energy": -76.02141836717794,
"scf_one_electron_energy": -122.44534536383044,
"scf_two_electron_energy": 37.622464940400654,
"nuclear_repulsion_energy": 8.80146205625184,
"scf_dipole_moment": [0.0, 0.0, 2.0954],
"scf_iterations": 10,
"scf_total_energy": -76.02141836717794

}
}

3.5 Topology Schema

A full description of the overall molecule its geometry, fragments, and charges.

3.5.1 Required Keys

The following properties are required for a topology.

Key Name Description Field Type
symbols (nat,) atom symbols in title case. array[string]
geometry (3 * nat,) vector of XYZ coordinates [a0] of the atoms. array[number]
schema_name No description provided. string
schema_version No description provided. integer

14 Chapter 3. Contents

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

3.5.2 Optional Keys

The following keys are optional for the topology specification.

Key Name Description Field
Type

molecu-
lar_charge

The overall charge of the molecule. number

comment Any additional comment one would attach to the molecule. string
fragments (nfr, <varies>) list of indices (0-indexed) grouping atoms into molecular

fragments within the topology.
ar-
ray[array]

frag-
ment_multiplicities

(nfr,) list of multiplicities associated with each fragment tuple. ar-
ray[number]

connectivity A list describing bonds within a molecule. Each element is a (atom1,
atom2, order) tuple.

ar-
ray[array]

fix_com Whether translation of geometry is allowed (fix F) or disallowed (fix T). boolean
molecu-
lar_multiplicity

The overall multiplicity of the molecule. number

fix_symmetry Maximal point group symmetry at which geometry should be treated.
Lowercase.

string

name The name of the molecule. string
frag-
ment_charges

(nfr,) list of charges associated with each fragment tuple. ar-
ray[number]

fix_orientation Whether rotation of geometry is allowed (fix F) or disallowed (fix T). boolean
provenance #/definitions/provenance object
atomic_numbers (nat,) atomic numbers, nuclear charge for atoms. Ghostedness should

be indicated through ‘real’ field, not zeros here.
ar-
ray[number]

masses (nat,) atom masses [u]; canonical weights assumed if not given. ar-
ray[number]

atom_labels (nat,) atom labels with any user tagging information. ar-
ray[string]

real (nat,) list describing if atoms are real (T) or ghost (F). ar-
ray[boolean]

mass_numbers (nat,) mass numbers for atoms, if known isotope, else -1. ar-
ray[number]

3.6 Properties Schema

A list of valid quantum chemistry properties tracked by the schema.

3.6.1 Calculation Information

A list of fields that involve basic information of the requested computation.

3.6. Properties Schema 15

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Key Name Description Field
Type

cal-
cinfo_nbasis

The number of basis functions for the computation. number

cal-
cinfo_nmo

The number of molecular orbitals for the computation. number

cal-
cinfo_nalpha

The number of alpha electrons in the computation. number

cal-
cinfo_nbeta

The number of beta electrons in the computation. number

cal-
cinfo_natom

The number of atoms in the computation. number

re-
turn_energy

The energy of the requested method, identical to return_value for energy
computations.

number

3.6.2 Self-Consistent Field

A list of fields added at the self-consistent field (SCF) level. This includes both Hartree–Fock and Density Functional
Theory.

Key Name Description Field
Type

scf_one_electron_energyThe one-electron (core Hamiltonian) energy contribution to the total
SCF energy.

number

scf_two_electron_energyThe two-electron energy contribution to the total SCF energy. number
nu-
clear_repulsion_energy

The nuclear repulsion energy contribution to the total SCF energy. number

scf_vv10_energy The VV10 functional energy contribution to the total SCF energy. number
scf_xc_energy The functional energy contribution to the total SCF energy. number
scf_dispersion_correction_energyThe dispersion correction appended to an underlying functional

when a DFT-D method is requested.
number

scf_dipole_moment The X, Y, and Z dipole components. ar-
ray[number]

scf_total_energy The total electronic energy of the SCF stage of the calculation. This
is represented as the sum of the . . . quantities.

number

scf_iterations The number of SCF iterations taken before convergence. number

3.6.3 Moller-Plesset

A list of fields added at the Moller–Plesset (MP) level.

16 Chapter 3. Contents

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Key Name Description Field
Type

mp2_same_spin_correlation_energyThe portion of MP2 doubles correlation energy from same-spin
(i.e. triplet) correlations, without any user scaling.

number

mp2_opposite_spin_correlation_energyThe portion of MP2 doubles correlation energy from opposite-
spin (i.e. singlet) correlations, without any user scaling.

number

mp2_singles_energy The singles portion of the MP2 correlation energy. Zero except in
ROHF.

number

mp2_doubles_energy The doubles portion of the MP2 correlation energy including
same-spin and opposite-spin correlations.

number

mp2_correlation_energy The MP2 correlation energy. number
mp2_total_energy The total MP2 energy (MP2 correlation energy + HF energy). number
mp2_dipole_moment The MP2 X, Y, and Z dipole components. ar-

ray[number]

3.6.4 Coupled Cluster

A list of fields added at the Coupled Cluster (CC) level.

3.6. Properties Schema 17

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Key Name Description Field
Type

ccsd_same_spin_correlation_energyThe portion of CCSD doubles correlation energy from same-spin
(i.e. triplet) correlations, without any user scaling.

number

ccsd_opposite_spin_correlation_energyThe portion of CCSD doubles correlation energy from opposite-
spin (i.e. singlet) correlations, without any user scaling.

number

ccsd_singles_energy The singles portion of the CCSD correlation energy. Zero except
in ROHF.

number

ccsd_doubles_energy The doubles portion of the CCSD correlation energy including
same-spin and opposite-spin correlations.

number

ccsd_correlation_energy The CCSD correlation energy. number
ccsd_total_energy The total CCSD energy (CCSD correlation energy + HF energy). number
ccsd_prt_pr_correlation_energyThe CCSD(T) correlation energy. number
ccsd_prt_pr_total_energyThe total CCSD(T) energy (CCSD(T) correlation energy + HF en-

ergy).
number

ccsdt_correlation_energyThe CCSDT correlation energy. number
ccsdt_total_energy The total CCSDT energy (CCSDT correlation energy + HF en-

ergy).
number

ccs-
dtq_correlation_energy

The CCSDTQ correlation energy. number

ccsdtq_total_energy The total CCSDTQ energy (CCSDTQ correlation energy + HF
energy).

number

ccsd_dipole_moment The CCSD X, Y, and Z dipole components. ar-
ray[number]

ccsd_prt_pr_dipole_momentThe CCSD(T) X, Y, and Z dipole components. ar-
ray[number]

ccsdt_dipole_moment The CCSDT X, Y, and Z dipole components. ar-
ray[number]

ccs-
dtq_dipole_moment

The CCSDTQ X, Y, and Z dipole components. ar-
ray[number]

ccsd_iterations The number of CCSD iterations taken before convergence. number
ccsdt_iterations The number of CCSDT iterations taken before convergence. number
ccsdtq_iterations The number of CCSDTQ iterations taken before convergence. number

3.7 Wavefunction Schema

A list of valid quantum chemistry wavefunction properties tracked by the schema. Matrices are in column-major order.
AO basis functions are ordered according to the CCA standard as implemented in libint.

3.7.1 Basis Set

One-electron AO basis set. See Basis Set Schema.

3.7.2 Result

A list of fields comprising the primary result information. e.g. SCF quantities for a DFT calculation and MP2 quantities
for an MP2 calculation. Result fields contain the names of other fields in the wavefunction schema.

18 Chapter 3. Contents

https://github.com/evaleev/libint/wiki/using-modern-CPlusPlus-API#solid-harmonic-gaussians-ordering-and-normalization

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

Key Name Description Field Type
orbitals_a Alpha-spin orbitals in the AO basis of the primary return. string
orbitals_b Beta-spin orbitals in the AO basis of the primary return. string
density_a Alpha-spin density in the AO basis of the primary return. string
density_b Beta-spin density in the AO basis of the primary return. string
fock_a Alpha-spin Fock matrix in the AO basis of the primary return. string
fock_b Beta-spin Fock matrix in the AO basis of the primary return. string
eigenvalues_a Alpha-spin orbital eigenvalues of the primary return. string
eigenvalues_b Beta-spin orbital eigenvalues of the primary return. string
occupations_a Alpha-spin orbital occupations of the primary return. string
occupations_b Beta-spin orbital occupations of the primary return. string

3.7.3 Self-Consistent Field

A list of fields added at the self-consistent field (SCF) level. This includes both Hartree–Fock and Density Functional
Theory.

Key Name Description Field Type
scf_orbitals_a SCF alpha-spin orbitals in the AO basis. array[number]
scf_orbitals_b SCF beta-spin orbitals in the AO basis. array[number]
scf_density_a SCF alpha-spin density in the AO basis. array[number]
scf_density_b SCF beta-spin density in the AO basis. array[number]
scf_fock_a SCF alpha-spin Fock matrix in the AO basis. array[number]
scf_fock_b SCF beta-spin Fock matrix in the AO basis. array[number]
scf_coulomb_a SCF alpha-spin Coulomb matrix in the AO basis. array[number]
scf_coulomb_b SCF beta-spin Coulomb matrix in the AO basis. array[number]
scf_exchange_a SCF alpha-spin exchange matrix in the AO basis. array[number]
scf_exchange_b SCF beta-spin exchange matrix in the AO basis. array[number]
scf_eigenvalues_a SCF alpha-spin orbital eigenvalues. array[number]
scf_eigenvalues_b SCF beta-spin orbital eigenvalues. array[number]
scf_occupations_a SCF alpha-spin orbital occupations. array[number]
scf_occupations_b SCF beta-spin orbital occupations. array[number]

3.7.4 Localized Orbitals

A list of fields added at by orbital localization. Full MO matrices are stored even if only a subset of MOs are localized.

Key Name Description Field
Type

local-
ized_orbitals_a

Localized alpha-spin orbitals in the AO basis. All nmo orbitals are included,
even if only a subset were localized.

ar-
ray[number]

local-
ized_orbitals_b

Localized beta-spin orbitals in the AO basis. All nmo orbitals are included,
even if only a subset were localized.

ar-
ray[number]

local-
ized_fock_a

Alpha-spin Fock matrix in the localized molecular orbital basis. All nmo
orbitals are included, even if only a subset were localized.

ar-
ray[number]

local-
ized_fock_b

Beta-spin Fock matrix in the localized molecular orbital basis. All nmo
orbitals are included, even if only a subset were localized.

ar-
ray[number]

3.7. Wavefunction Schema 19

QC𝐽𝑆𝑂𝑁𝑆𝑐ℎ𝑒𝑚𝑎𝐷𝑜𝑐𝑢𝑚𝑒𝑛𝑡𝑎𝑡𝑖𝑜𝑛

3.7.5 Core Hamiltonian

A list of fields associated with (effective) one-electron (AKA) core Hamiltonians.

Key Name Description Field Type
h_core_a Alpha-spin core (one-electron) Hamiltonian in the AO basis. ar-

ray[number]
h_core_b Beta-spin core (one-electron) Hamiltonian in the AO basis. ar-

ray[number]
h_effective_a Alpha-spin effective core (one-electron) Hamiltonian in the AO ba-

sis.
ar-
ray[number]

h_effective_b Beta-spin effective core (one-electron) Hamiltonian in the AO basis. ar-
ray[number]

3.8 Basis Set Schema

A full description of the basis set.

3.8.1 Required Keys

The following properties are required for a basis set.

Key Name Description Field Type
center_data Shared basis data for all atoms/centers in the molecule object
atom_map Mapping of all atoms/centers in the molecule to data in center_data array[string]
name Name of the basis set string

3.8.2 Optional Keys

The following keys are optional for the basis set specification.

Key Name Description Field Type
schema_name No description provided. string
description Brief description of the basis set string
schema_version No description provided. integer

20 Chapter 3. Contents

	High-Level Aspirations
	Existing JSON Efforts
	Contents

