
Projection Explorer Documentation
Release

Guillermo Pérez-Hernández

Mar 06, 2017

Contents

1 molpx.visualize 3

2 molpx.generate 5

3 Example Notebook 7

4 About 15

5 Download and Install 17

6 Quick Start 19

7 Documentation 21

8 Warnings 23

9 Data Privacy Statement 25

10 Known Issues 27

11 Indices and tables 29

i

ii

Projection Explorer Documentation, Release

The Molecular Projection Explorer, molPX, is a python module that provides interactive visualization of projected
coordinates of molecular dynamics (MD) trajectories inside a jupyter notebook.

molPX is based on the incredibly useful nglview IPython/Jupyter widget. Other libraries heavily used are mdtraj and
PyEMMA. At the moment, there is also an sklearn dependency that might disappear in the future.

At the moment the API consists of two subpackages:

Contents 1

https://github.com/arose/nglview
http://mdtraj.org/
http://www.emma-project.org/latest/
http://scikit-learn.org/stable/index.html

Projection Explorer Documentation, Release

2 Contents

CHAPTER 1

molpx.visualize

The core functionality is to link two interative figures, fig1 and fig2, inside an Ipython/Jupyter notebook, so that an
action in fig1 (e.g.a click of the mouse or a slide of a slidebar) will trigger an event in fig2 (e.g. a frame update or point
moved) and vice versa. Usually, these two figures contain representations from:

• molecules: an nglviewer widget showing the molecular structure that a particular value of is associated with
and

• projected coordinates: a matplotlib figure showing the projected coordinates (e.g. TICs or PCs or any other),
𝑌0, ..., 𝑌𝑁 , either as a 2D histogram, 𝑃𝐷𝐹 (𝑌𝑖, 𝑌𝑗) or as trajectory views 𝑌0(𝑡), ...𝑌𝑁 (𝑡)

You are strongly encouraged to check nglview’ documentation, since its functionalities extend beyond the scope of
this package and the molecular visualization universe is rich and complex (unlike this module).

The three methods offered by this module are:

molpx.visualize.FES
molpx.visualize.sample
molpx.visualize.traj

3

https://github.com/arose/nglview
https://github.com/arose/nglview

Projection Explorer Documentation, Release

4 Chapter 1. molpx.visualize

CHAPTER 2

molpx.generate

This module contains methods that generate the needed objects for visualize of the methods to work.

molpx.generate.projection_paths
molpx.generate.sample

TL;DR: see molPX in action through the

5

Projection Explorer Documentation, Release

6 Chapter 2. molpx.generate

CHAPTER 3

Example Notebook

You can find this notebook in the molpx/notebooks/ directory and execute it yourself.

Unfortunately for this html documentation, nglview‘s output, i.e. the pictures of molecular structures, cannot be
stored currently in the notebook file. In short: this html-notebook is lacking the most visually appealing part of molpx.
Please check the Youtube video or the gif animation to see molpx in action.

Click on the sections below to navigate to though the notebook:

molpx intro

In this notebook we will be using the 1 millisecond trajectory of Bovine Pancreatic Trypsin Inhibitor (BPTI) generated
by DE Shaw Research on the Anton Supercomputer and kindly made available by their lab. The original work is

• Shaw DE, Maragakis P, Lindorff-Larsen K, Piana S, Dror RO, Eastwood MP, Bank JA, Jumper JM, Salmon JK,
Shan Y, Wriggers W: Atomic-level characterization of the structural dynamics of proteins. Science 330:341-346
(2010). doi: 10.1126/science.1187409.

The trajectory has been duplicated and shortened to provide a mock-trajectory set and be able to deal with lists of
trajectories of different lenghts:

• c-alpha_centered.stride.100.xtc

• c-alpha_centered.stride.100.reversed.xtc

• c-alpha_centered.stride.100.halved.xtc

Input types and typical usecase

The typical usecase is having molecular dynamics (MD) simulation data in form of trajectory files with extensions like
.xtc, .dcd etc and the associated molecular topology as a .pdb or .gro file.

These files are the most general starting point for any analysis dealing with MD, and molpx‘s API has been designed
to be able to function without further input:

7

Projection Explorer Documentation, Release

In [1]: top = 'notebooks/data/bpti-c-alpha_centered.pdb'
MD_trajfiles = ['notebooks/data/c-alpha_centered.stride.1000.xtc',

'notebooks/data/c-alpha_centered.stride.1000.reversed.xtc',
'notebooks/data/c-alpha_centered.stride.1000.halved.xtc'

]

dt = 24.4 #saving interval in the .xtc files, in ns

import molpx
from matplotlib import pylab as plt
%matplotlib notebook
import pyemma
import numpy as np

This way the user does not have to care where the data are:
top = molpx._molpxdir(top)
MD_trajfiles = [molpx._molpxdir(ff) for ff in MD_trajfiles]

However, molpx relies heavily on the awesome `mdtraj <http://www.mdtraj.org>‘__ module for dealing with
molecular structures, and so most of molpx‘s functions accept also Trajectory-type objects (native to mdtraj)
as alternative inputs.

In [2]: # Create a memory representation of the trajectories
MD_list = [molpx.generate._md.load(itraj, top=top) for itraj in MD_trajfiles]

The same idea applies to the input of projected trajectories: molpx can take the filenames as inputs (.npy, .dat,
.txt etc) or deal directly with numpy.ndarray objects.

** These alternative, “from-memory” input modes (md.Trajectory and np.ndarray objects) avoid forcing the
user to read from file everytime an API function is called, saving I/O overhead**

The following cell either reads or generates projected trajectory files for this demonstration. In a real usecase this
step (done here using TICA) might not be needed, given that the user might have generated the projected trajectory
elsewhere:

In [3]: # Perform TICA or read from file directly if already .npy-files already exist
Y_filenames = [ff.replace('.xtc','.Y.npy') for ff in MD_trajfiles]
try:

Y = [np.load(ff) for ff in Y_filenames]
except:

import pyemma
feat = pyemma.coordinates.featurizer(top)
pairs = feat.pairs(range(feat.topology.n_atoms)[::2])
feat.add_distances(pairs)
src = pyemma.coordinates.source(MD_trajfiles, features=feat)
tica = pyemma.coordinates.tica(src, lag=10, dim=3)
Y = tica.get_output()
[np.save(ff, iY) for ff, iY in zip(Y_filenames, Y)]

Visualize a FES and the molecular structures behind it

Execute the following cell and click either on the FES or on the slidebar. Some input parameters have been comented
out for you to try out different modes of input (disk vs memory) as well as different projection indices:

In [4]: ax, fig, iwd, data_sample, geom = molpx.visualize.FES(
MD_list,
#MD_trajfiles,
top,
Y_filenames,
#Y,

8 Chapter 3. Example Notebook

http://www.mdtraj.org

Projection Explorer Documentation, Release

nbins=50,
#proj_idxs=[1,2],
axlabel='TIC',

)
iwd

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/home/mi/gph82/miniconda3/lib/python3.4/site-packages/matplotlib/cbook.py:136: MatplotlibDeprecationWarning: The spectral and spectral_r colormap was deprecated in version 2.0. Use nipy_spectral and nipy_spectral_r instead.
warnings.warn(message, mplDeprecation, stacklevel=1)

Visualize trajectories, FES and molecular structures

The user can sample structures as they occurr in sequence in the actual trajectory. Depending on the size of the dataset,
this can be very time consuming, particularly if data is being read from disk.

In this example, try changing MD_trajfiles to MD_list and/or changing Y_filenames to simply Y and see if
it helps.

Furthermore, the objects in memory can be strided down to fewer frames before being parsed to the method. To stride
objects being read from the dist, use the stride parameter.

Other commented parameters provide more control on the output of visualize.traj. Uncomment them and see
what happens

In [5]: proj_stride=5
__, myfig, iwd, __ = molpx.visualize.traj(MD_trajfiles,

top,
Y_filenames,
plot_FES = True,
dt = dt*1e-6, tunits='ms',
#active_traj=2,
#traj_selection = [0, 2],
#max_frames=100,
#proj_idxs=[0,2],

)
myfig.tight_layout()
iwd

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/home/mi/gph82/SOURCE_gph82/python/projection_explorer/molpx/visualize.py:255: RuntimeWarning: divide by zero encountered in log
_plt.contourf(-_np.log(h).T, extent=irange)

Intermediate steps: using molpx to generate a regspace sample of
the data

See the documentation of molpx.generate.sample to find out about all possible options:

molpx.generate.sample(MD_trajectories, MD_top, projected_trajectories, proj_idxs=[0,
→˓1], n_points=100, n_geom_samples=1, keep_all_samples=False, proj_stride=1,
→˓verbose=False, return_data=False)

3.2. Intermediate steps: using molpx to generate a regspace sample of the data 9

Projection Explorer Documentation, Release

In [6]: data_sample, geoms = molpx.generate.sample(#MD_list,
MD_trajfiles,
top,
#Y,
Y_filenames,
n_points=200

)
data_sample.shape, geoms

Out[6]: ((192, 2),
<mdtraj.Trajectory with 192 frames, 58 atoms, 58 residues, and unitcells at 0x7f1890e8e128>)

Link the PDF plot with the sampled structures and visually explore the FES

Click either on the plot or on the widget slidebar: they’re connected!

In [7]: # Replot the FES
plt.figure(figsize=(7,7))
h, (x,y) = np.histogramdd(np.vstack(Y)[:,:2], bins=50)
plt.contourf(x[:-1], y[:-1], -np.log(h.T), alpha=.50)
Create the linked widget
linked_wdg = molpx.visualize.sample(data_sample,

geoms.superpose(geoms[0]),
plt.gca(),
clear_lines=True,
#plot_path=True

)
plt.plot(data_sample[:,0], data_sample[:,1],' ok', zorder=0)
Show it
linked_wdg

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/home/mi/gph82/miniconda3/lib/python3.4/site-packages/ipykernel/__main__.py:4: RuntimeWarning: divide by zero encountered in log

Paths samples along the different projections (=axis)

In [8]: paths_dict, idata = molpx.generate.projection_paths(#MD_list,
MD_trajfiles,
top,
Y_filenames,
#Y, # You can also directly give the data here
n_projs=3,
proj_dim = 3,
verbose=False,

)

Link the PDF plot with the sampled paths/structures and visually explore the coor-
dinates (separately).

Click either on the plot or on the widget slidebar: they’re connected! You can change the type of path between
min_rmsd or min_disp and you can also change the coordinate sampled (0 or 1)

10 Chapter 3. Example Notebook

Projection Explorer Documentation, Release

In [9]: # Choose the coordinate and the tyep of path
coord = 1
#path_type = 'min_rmsd'
path_type = 'min_disp'
igeom = paths_dict[coord][path_type]["geom"]
ipath = paths_dict[coord][path_type]["proj"]

Choose the proj_idxs for the path and the FES
to be shown
proj_idxs = [0,1]

In [10]: plt.figure(figsize=(7,7))
h, (x,y) = np.histogramdd(np.vstack(Y)[:,proj_idxs], bins=50)
plt.contourf(x[:-1], y[:-1], -np.log(h.T), alpha=.50)

linked_wdg = molpx.visualize.sample(ipath[:,proj_idxs],
igeom.superpose(igeom[0]),
plt.gca(),
clear_lines=True,
plot_path=True,

)
linked_wdg

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/home/mi/gph82/miniconda3/lib/python3.4/site-packages/ipykernel/__main__.py:3: RuntimeWarning: divide by zero encountered in log
app.launch_new_instance()

Intereaction with PyEMMA

molpx is using many methods of the coordinates submodule of PyEMMA, and thus it also understands some of
PyEMMA‘s classes as input (for the moment, only clustering).

Use a clustering object as input

If the dataset has already been clustered, and it is that clustering that the user wants to explore, molpx.generate.
sample can take this clustering object as an input instead of the the projected trajectories:

In [11]: # Do "some" clustering
clkmeans = pyemma.coordinates.cluster_kmeans([iY[:,:2] for iY in Y], 5)

06-03-17 12:25:58 pyemma.coordinates.clustering.kmeans.KmeansClustering[5] INFO Algorithm did not reach convergence criterion of 1e-05 in 10 iterations. Consider increasing max_iter.

In [12]: data_sample, geoms = molpx.generate.sample(MD_trajfiles, top, clkmeans,
n_geom_samples=50,
#keep_all_samples=True # read the doc for this argument

)

In [13]: # Plot clusters
plt.figure(figsize=(7,7))
plt.plot(clkmeans.clustercenters[:,0], clkmeans.clustercenters[:,1],' ok')
FES as background is optional (change the bool to False)
if True:

plt.contourf(x[:-1], y[:-1], -np.log(h.T), alpha=.50)

Link the clusters positions with the molecular structures
iwdg = molpx.visualize.sample(data_sample,

3.4. Intereaction with PyEMMA 11

Projection Explorer Documentation, Release

geoms.superpose(geoms[0]),
plt.gca(),
clear_lines=False,
#plot_path=True

)
iwdg

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/home/mi/gph82/miniconda3/lib/python3.4/site-packages/ipykernel/__main__.py:6: RuntimeWarning: divide by zero encountered in log

Visual representations for MSMs

Visually inspect the network behind an MSM

In [14]: MSM = pyemma.msm.estimate_markov_model(clkmeans.dtrajs, 20)

In [15]: plt.figure(figsize=(7,7))

ax, pos = pyemma.plots.plot_markov_model(MSM.P,
minflux=5e-4,
arrow_labels=None,
ax=plt.gca(),
arrow_curvature = 2, show_frame=True,
pos=clkmeans.clustercenters)

Add a background if wanted
h, (x, y) = np.histogramdd(np.vstack(Y)[:,:2], weights=np.hstack(MSM.trajectory_weights()), bins=50)
plt.contourf(x[:-1], y[:-1], -np.log(h.T), cmap="jet", alpha=.5, zorder=0)
plt.xlim(x[[0,-1]])
plt.xticks(np.unique(x.round()))
plt.yticks(np.unique(y.round()))

plt.ylim(y[[0,-1]])

iwd = molpx.visualize.sample(pos, geoms, plt.gca())
iwd

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/home/mi/gph82/miniconda3/lib/python3.4/site-packages/ipykernel/__main__.py:11: RuntimeWarning: divide by zero encountered in log

TPT Reactive Pathway Representation

In [16]: # Do an MSM with a realistic number of clustercenters
cl_many = pyemma.coordinates.cluster_regspace([iY[:,:2] for iY in Y], dmin=.25)
M = pyemma.msm.estimate_markov_model(cl_many.dtrajs, 20)
cl_many.n_clusters

Out[16]: 123

In [17]: # Use this object to sample geometries
pos, geom = molpx.generate.sample(MD_trajfiles, top, cl_many)

In [18]: # Find the most representative microstate of each
and least populated macrostate
M.pcca(3)
dens_max_i = [distro.argmax() for distro in M.metastable_distributions]

12 Chapter 3. Example Notebook

Projection Explorer Documentation, Release

A = np.argmax([M.stationary_distribution[iset].sum() for iset in M.metastable_sets])
B = np.argmin([M.stationary_distribution[iset].sum() for iset in M.metastable_sets])
print(cl_many.clustercenters[dens_max_i[A]],

cl_many.clustercenters[dens_max_i[B]])

[-0.18704125 -0.77366424] [6.71851349 0.03159955]

In [19]: # Create a TPT object with most_pop, least_pop as source, sink respectively
tpt = pyemma.msm.tpt(M, [dens_max_i[A]], [dens_max_i[B]])
paths, flux = tpt.pathways(fraction=.5)

In [20]: # Get a path with a decent number of intermediates
sample_path = paths[np.argmax([len(ipath) for ipath in paths])]

In [21]: plt.figure()
plt.contourf(x[:-1], y[:-1], -np.log(h.T), cmap="jet", alpha=.5, zorder=0)
iwd = molpx.visualize.sample(cl_many.clustercenters[sample_path],

geom[sample_path].superpose(geom[sample_path[0]]), plt.gca(),
plot_path=True,

)
plt.scatter(*cl_many.clustercenters.T, alpha=.25)
iwd

<IPython.core.display.Javascript object>

<IPython.core.display.HTML object>

/home/mi/gph82/miniconda3/lib/python3.4/site-packages/ipykernel/__main__.py:2: RuntimeWarning: divide by zero encountered in log
from ipykernel import kernelapp as app

In [22]: # Check
https://github.com/arose/nglview/issues/518
https://github.com/arose/nglview/issues/517

Find more about the people behind molPX here:

3.4. Intereaction with PyEMMA 13

Projection Explorer Documentation, Release

14 Chapter 3. Example Notebook

CHAPTER 4

About

molPX has been developed mostly by Dr. Guillermo Pérez-Hernández in the group of Prof. Dr. Frank Noé, with
occasional but priceless help from: * Martin K. Scherer * Moritz Hoffman * Fabian Paul, and * Dr. Simon Olsson

Beyond molPX’s own methods, this module connects two incredibly powerful and incredibly useful python modules:
* mdtraj for handling molecular structures inside python * nglview IPython/Jupyter widget for in-notebook molecular
visualization.

molPX is specially in debt to Dr. Alexander Rose, who, apart from developing the impressive nglview (among other
projects) provided the very first proof-of-concept for molPX.

molPX was recently introduced to the community in a PyEMMA workshop in Berlin:

15

http://www.mi.fu-berlin.de/en/math/groups/comp-mol-bio/staff/perez/index.html
http://www.mi.fu-berlin.de/en/math/groups/comp-mol-bio/index.html
https://github.com/marscher
https://github.com/clonker
https://github.com/fabian-paul
https://github.com/psolsson
http://mdtraj.org/
https://github.com/arose/nglview
https://github.com/arose
https://github.com/arose/nglview
https://pyemma.org

Projection Explorer Documentation, Release

16 Chapter 4. About

CHAPTER 5

Download and Install

At the moment, cloning or downloading the source from github is the only option to get molPX. After that, just cd to
the directory projection explorer and issue

>>> python setup.py install

17

https://github.com/markovmodel/molPX

Projection Explorer Documentation, Release

18 Chapter 5. Download and Install

CHAPTER 6

Quick Start

>>> cd molpx/notebooks
>>> jupyter notebook Projection_Explorer.ipynb

should put you in front of a jupyter notebook explaining the basic functionality.

19

Projection Explorer Documentation, Release

20 Chapter 6. Quick Start

CHAPTER 7

Documentation

You can build html documentation by issuing

>>> cd docs
>>> make html

This will generate projection_explorer/docs/build/html/index.html with the html documentation.

21

Projection Explorer Documentation, Release

22 Chapter 7. Documentation

CHAPTER 8

Warnings

• The important methods (bmutils) have been tested, the API has only been tested superficially. Expect some
instability.

• This is currently under heavy development and the API might change rapidly.

23

Projection Explorer Documentation, Release

24 Chapter 8. Warnings

CHAPTER 9

Data Privacy Statement

When you import this Python package, some of your metadata is sent to our servers. These are:

• molPX version

• Python version

• Operating System

• Hostname/ mac address of the accessing computer

• Time of retrieval

It is very easy to disable this feature, even before you use install
molpx for the first time. Here’s how

1. Create a hidden folder .molpx in your home folder

2. Create a file conf_molpx.py inside of .molpx with the following line: report_status = False

3. Restart your ipython/jupyter sessions

Hints:

• You can check your report status anytime by typing this line in a (i)python terminal

>>> import molpx
>>> molpx._report_status()

• If you don’t know where your home folder is (for whatever reason), you can find it out by typing in a (i)python
terminal

>>> import os
>>> os.path.expanduser('~/.molpx')

25

Projection Explorer Documentation, Release

26 Chapter 9. Data Privacy Statement

CHAPTER 10

Known Issues

• The installation of nglview might give a SandboxViolation error. Until this is fixed, the recommended
install is to externally issue

>>> conda install nglview -c bioconda

or, alternatively

>>> pip install nglview

• Projection Explorer only works with nglview versions >=0.6.2.1.

• The interplay between nglview, nbextensions, ipywidgets might limit you to use python3.X on some plat-
forms. Sorry about that.

27

Projection Explorer Documentation, Release

28 Chapter 10. Known Issues

CHAPTER 11

Indices and tables

• genindex

• modindex

• search

29

	molpx.visualize
	molpx.generate
	Example Notebook
	About
	Download and Install
	Quick Start
	Documentation
	Warnings
	Data Privacy Statement
	Known Issues
	Indices and tables

