
Moira
Release 2.4

Dec 25, 2018

Contents

1 Contents 1
1.1 Overview . 1
1.2 Changelog . 3
1.3 Installation . 7
1.4 User Guide . 20
1.5 Development . 44
1.6 Contact Moira Developers . 48

2 Overview 49
2.1 Key Features . 49
2.2 Limitations . 50
2.3 Microservices . 50

i

ii

CHAPTER 1

Contents

1.1 Overview

Moira is a real-time alerting tool, based on Graphite data.

1.1.1 Key Features

• Graphite storage independence

Some Graphite queries are very ineffective. Tools like Seyren multiply this effect every minute making lots of
ineffective queries and overloading your cluster. Moira relies on the incoming metric stream, and has its own
fast cache for recent data.

• Support for (almost) all Graphite functions

Graphite function library (carbonapi) is embedded directly into Moira source code. You can use any function
and get predictable results, like in your Graphite or Grafana dashboards.

• Support for custom expressions

If simple warning/error threshold is not enough, you can write flexible govaluate expressions to calculate trigger
state based on metric data.

• Tags for triggers and subscriptions

When several teams/services share one monitoring tool, it is essential to provide some way of filtering triggers
and subscriptions in the UI. Moira has a flexible tag system.

• Extendable notification channels

Moira supports email, Slack, Pushover and many other channels of notification out-of-the-box. But you can
always write your own plugin in Go and rebuild Moira Notifier microservice.

• Alarm fatigue protection

Sometimes one of your triggers goes mad and switches back and forth between states, sending you hundreds of
notifications. Sometimes you just ignore and delete all messages, accidentally also deleting one that is actually

1

https://github.com/graphite-project
https://github.com/scobal/seyren
https://github.com/go-graphite/carbonapi/blob/ccac7217894801a5a6ceb8602a70ea0d79e975cf/cmd/carbonapi/COMPATIBILITY.md#functions
https://github.com/Knetic/govaluate/blob/master/MANUAL.md
https://slack.com
https://pushover.net
https://en.wikipedia.org/wiki/Alarm_fatigue

Moira, Release 2.4

important. Moira tries to protect you with a feature called throttling. It’s simple: if one of your triggers starts
to send over 10 messages per an hour, Moira limits this trigger to one message per 30 minutes. Alerts from this
trigger are combined, and not lost - just packaged into a single message.

1.1.2 Limitations

By default, Moira stores metric history for one hour. This ensures performance under heavy load. You can tweak this
in config file, but note that performance will degrade.

In order to reduce database load, Moira checks every single trigger at most once every 5 seconds. Probably, your
metrics arrive once every minute, so you really won’t notice this limitation. You can also tweak this in config file.

1.1.3 Microservices

In spirit of Graphite architecture, Moira consists of several loosely coupled microservices. You are welcome to replace
or to add new ones.

Filter

Filter is a lightweight service responsible for receiving lots of metric data in Graphite format. It filters received data
and saves only metrics that match any of user triggers. This reduces load on all other parts of Moira.

Checker

Checker is an application with embedded Graphite functions. Checker watches for incoming metric values and per-
forms checks according to saved trigger settings. When state of any trigger changes, Checker generates an event.

Notifier

Notifier is an application that watches for generated events. Notifier is responsible for scheduling and sending notifi-
cations, observing quiet hours, retrying failed notifications, etc.

API

API is an application that serves as a backend for UI.

Web 2.0

Web 2.0 is a frontend React application, it looks like this:

2 Chapter 1. Contents

Moira, Release 2.4

1.2 Changelog

1.2.1 2.4.0

• Timeseries graphs in notifications moira-alert/moira#148. See more Plotting.

• Add api method GET trigger/{{triggerId}}/render to imlement timeseries plotting in api moira-
alert/moira#137.

• Add maintenance for a whole trigger. Add new api method PUT trigger/{{triggerId}}/
setMaintenance. PUT trigger/{{triggerId}}/maintenance is deprecated now moira-
alert/moira#138, moira-alert/web2.0#199.

• Add extra maintenance intervals: 14 and 30 days moira-alert/web2.0#198.

• Add option to mute notifications about new metrics in the trigger moira-alert/moira#120. See more: Dealing
with NODATA.

• Allow user to remove all NODATA metrics from trigger moira-alert/moira#124.

• Check Lazy triggers (triggers without any subscriptions) less frequently moira-alert/moira#131. See more Lazy
Triggers Checker.

• Run single NODATA checker worker at single moment moira-alert/moira#129.

• Avoid throttling of remote-triggers when trigger switches to EXCEPTION and back to OK moira-
alert/moira#121.

• Consider the status of the trigger when rendering the trigger status indicator moira-alert/web2.0#195.

1.2. Changelog 3

https://github.com/moira-alert/moira/pull/148
https://github.com/moira-alert/moira/pull/137
https://github.com/moira-alert/moira/pull/137
https://github.com/moira-alert/moira/pull/138
https://github.com/moira-alert/moira/pull/138
https://github.com/moira-alert/web2.0/pull/199
https://github.com/moira-alert/web2.0/pull/198
https://github.com/moira-alert/moira/pull/120
https://github.com/moira-alert/moira/pull/124
https://github.com/moira-alert/moira/pull/131
https://github.com/moira-alert/moira/pull/129
https://github.com/moira-alert/moira/pull/121
https://github.com/moira-alert/moira/pull/121
https://github.com/moira-alert/web2.0/pull/195

Moira, Release 2.4

• Replace useless trigger export button with “Duplicate” moira-alert/web2.0#189.

• Add Moira-Notifier toggle on Hidden Pages moira-alert/web2.0#191. Please, read Self State Monitor first.

• Show contact type icon on Hidden Pages moira-alert/web2.0#196.

• Show TTL and TTLState in Advanced mode moira-alert/web2.0#197.

• Throw an exception if first target is no longer valid moira-alert/moira#122.

• Refactor cli. Remove old converters, whih were written before moira 2.2 moira-alert/moira#139.

• Update golang to version 1.11.2 moira-alert/moira#147.

• Flush trigger events when removing the trigger moira-alert/moira#116.

• Remove redundant Graphite-metrics that counted the time of check of each single trigger moira-alert/moira#117.

• Add api method GET trigger/search to implement full-text trigger search in api, GET trigger/page
is deprecated now moira-alert/moira#125.

• Fix Redis leakages: some data was not removed properly from Redis storage moira-alert/moira#129.

• Fix bug in trigger schedule due to which triggers were considered suppressed between 23:59:00 and 00:00:59
moira-alert/moira#127.

• Fix bug in trigger when specific schedule time didn’t work if start time was bigger than end time moira-
alert/moira#119.

• Fix bug in Create and test button when add new subscription moira-alert/web2.0#194.

• Fix bug that increases updated last checks count when user create or update trigger from api (or web) moira-
alert/moira#146.

• Fix bug which allowed to use other people’s contacts your in subscriptions moira-alert/moira#145.

• Fix bug that allowed to create and use an empty tag in subscriptions and triggers moira-alert/moira#144.

• Fix bug when senders didn’t resolve EXCEPTION state moira-alert/moira#156.

• Update Moira Client 2.4.

• Update Moira Trigger Role 2.4.

Important: Redis DB conversion is required.

Moira 2.4 has some structure changes in Redis DB. It will work fluently out of the box, but lazy triggers will still be
checked every time on new metrics.

You can upgrade from moira 2.2 or 2.3 using corresponding flag in --from-version variable.

moira-cli --config=/etc/moira/cli.yml --update --from-version=2.2/2.3

If you would like to downgrade back to Moira 2.2 or 2.3, you should run CLI-converter.

moira-cli --config=/etc/moira/cli.yml --downgrade --to-version=2.2/2.3

Both cases imply usage of Moira-Cli v.2.4, you can find it on Release Page.

1.2.2 2.3.1

• Fix last_remote_check_delay option in Notifier configuration moira-alert/moira#114.

4 Chapter 1. Contents

https://github.com/moira-alert/web2.0/pull/189
https://github.com/moira-alert/web2.0/pull/191
https://github.com/moira-alert/web2.0/pull/196
https://github.com/moira-alert/web2.0/pull/197
https://github.com/moira-alert/moira/pull/122
https://github.com/moira-alert/moira/pull/139
https://github.com/moira-alert/moira/pull/147
https://github.com/moira-alert/moira/pull/116
https://github.com/moira-alert/moira/pull/117
https://github.com/moira-alert/moira/pull/125
https://github.com/moira-alert/moira/pull/129
https://github.com/moira-alert/moira/pull/127
https://github.com/moira-alert/moira/pull/119
https://github.com/moira-alert/moira/pull/119
https://github.com/moira-alert/web2.0/pull/194
https://github.com/moira-alert/moira/pull/146
https://github.com/moira-alert/moira/pull/146
https://github.com/moira-alert/moira/pull/145
https://github.com/moira-alert/moira/pull/144
https://github.com/moira-alert/moira/pull/156
https://github.com/moira-alert/python-moira-client/releases/tag/2.4
https://galaxy.ansible.com/moira-alert/moira-trigger-role
https://github.com/moira-alert/moira/releases
https://github.com/moira-alert/moira/pull/114

Moira, Release 2.4

1.2.3 2.3

• Add API methods: DELETE /notification/all and DELETE /event/all moira-alert/moira#73.

• Add notifier config option: DateTime format for email sender moira-alert/moira#74.

• Add Graphite-API support for remote triggers moira-alert/moira#75. See more: Remote Triggers Checker.
Thanks to @errx.

• Fix newlines in trigger description body for web and email sender moira-alert/moira#76.

• Add option to enable runtime metrics in Graphite-section of configuration moira-alert/moira#79.

• Add new fancy email template moira-alert/moira#82.

• Change default trigger state to TTLState option instead of NODATA moira-alert/moira#83.

• Refactor maintenance logic moira-alert/moira#87. See more: Maintenance.

• Add basic false NODATA protection moira-alert/moira#90. See more: Self State Monitor.

• Prohibit removal of contact with assigned subscriptions found moira-alert/moira#91.

• Make trigger exception messages more descriptive moira-alert/moira#92.

• Make filter cache capacity configurable moira-alert/moira#93. See more Filter Configuration.

• Fix incorrect behavior in which the trigger did not return from the EXCEPTION state moira-alert/moira#94.

• Remove deprecated pseudo-tags, use checkboxes instead moira-alert/moira#95. See more: Ignore specific states
transitions.

• Allow to use single-valued thresholds (ex. only WARN or only ERROR) moira-alert/moira#96.

• Reduce the useless CPU usage in Moira-Filter moira-alert/moira#98. Thanks to @errx.

• Add concurrent matching workers in Moira-Filter moira-alert/moira#99. Thanks to @errx.

• Update Carbonapi to 1.0.0-rc.0 moira-alert/moira#101.

• Improve checker performance moira-alert/moira#103.

• Add Markdown support in contact edit modal view moira-alert/web2.0#138.

• Fix default timezone in trigger moira-alert/web2.0#173.

• Add ability to type negative numbers in simple trigger edit mode moira-alert/web2.0#169.

• Fix trailing whitespaces in tag search bar moira-alert/web2.0#139.

• Update Moira Client 2.3.4.

• Update Moira Trigger Role 2.3.

Important: Redis DB conversion is desirable.

Moira 2.3 has some structure changes in Redis DB. It will work fluently out of the box, but we recommend you to run
converter once Moira is updated.

moira-cli -update --config=/etc/moira/cli.yml

Listing 1.1: /etc/moira/cli.yml

redis:
host: localhost
port: "6379"

1.2. Changelog 5

https://github.com/moira-alert/moira/pull/73
https://github.com/moira-alert/moira/pull/74
https://github.com/moira-alert/moira/pull/75
https://github.com/errx
https://github.com/moira-alert/moira/pull/76
https://github.com/moira-alert/moira/pull/79
https://github.com/moira-alert/moira/pull/82
https://github.com/moira-alert/moira/pull/83
https://github.com/moira-alert/moira/pull/87
https://github.com/moira-alert/moira/pull/90
https://github.com/moira-alert/moira/pull/91
https://github.com/moira-alert/moira/pull/92
https://github.com/moira-alert/moira/pull/93
https://github.com/moira-alert/moira/pull/94
https://github.com/moira-alert/moira/pull/95
https://github.com/moira-alert/moira/pull/96
https://github.com/moira-alert/moira/pull/98
https://github.com/errx
https://github.com/moira-alert/moira/pull/99
https://github.com/errx
https://github.com/moira-alert/moira/pull/101
https://github.com/moira-alert/moira/pull/103
https://github.com/moira-alert/web2.0/pull/138
https://github.com/moira-alert/web2.0/pull/173
https://github.com/moira-alert/web2.0/pull/169
https://github.com/moira-alert/web2.0/pull/139
https://github.com/moira-alert/python-moira-client/releases/tag/2.3.4
https://galaxy.ansible.com/moira-alert/moira-trigger-role

Moira, Release 2.4

dbid: 0
log_file: stdout
log_level: debug

If you would like to downgrade back to Moira 2.2, you should run CLI-converter.

moira-cli -downgrade --config=/etc/moira/cli.yml

Both cases imply usage of Moira-Cli v.2.3, you can find it on Release Page.

1.2.4 2.2

• Add Redis Sentinel support.

• Increase new metric event processing speed by adding a cache on metric patterns.

• Update carbonapi (new functions: map, reduce, delay; updated: asPercent).

• Optimize reading metrics while checking trigger (removed unnecessary Redis transaction).

• Add domain autoresolving for self-metrics sending to Graphite.

• Fix concurrent read/write from expression cache.

• Re-enable Markdown in Slack sender.

• Optimize internal metric collection.

• Replace pseudotags with ordinary checkboxes in Web UI (but not on backend yet).

• Fix bug that allowed to create pseudotags (ERROR, etc.) as ordinary tags.

• Add metrics for each trigger handling time.

• Translate pagination.

• Make sorting by status the default option on trigger page.

• Hide tag list on trigger edit page.

• Sort tags alphabetically everywhere.

• Highlight metric row on mouse hover.

• Automatically add tags from search bar when creating new trigger.

• Add metric name to “Trigger has same timeseries names” error message.

• Update event names in case trigger name had changed.

• Fix bug in triggers with multiple targets. Metrics from targets T2, T3, . . . were not deleted properly.

• Fix old-style configuration files in platform-specific packages.

• Fix bug that prevented non-integer timestamps from processing.

• Fix logo image background.

• Fix sorting on -s and 0s.

• Fix UI glitch while setting maintenance time.

• Fix retention scheme parsing for some rare cases with comments.

6 Chapter 1. Contents

https://github.com/moira-alert/moira/releases

Moira, Release 2.4

1.2.5 2.1

• Throw an exception if any target except the first one resolves in more than one metric.

• Fix Moira version detection in CI builds.

• Add user login information to API request logs.

• Fix long interval between creating a new trigger and getting data into that trigger.

1.2.6 2.0

Version 2.0 is fully rewritten in Go instead of Python. This implies lower CPU load in Checker and API microservices,
but also changes the list of supported Graphite functions.

We also introduce new UI based on React. It is not backwards-compatible with old API, but new API supports both
old and new UI.

Breaking Changes

• New structure of Configuration files.

• New Advanced mode expression format. Moira 2.0 supports govaluate expressions instead of Python expres-
sions. Use moira-cli -convert-expressions to convert.

• API methods URLs do not have trailing slashes anymore.

• API /notification method returns valid JSON list instead of plain text.

• ttl parameter in API calls is always a number instead of string.

• API PUT methods strictly separate create and update operations.

• There is no tag maintenance entity anymore.

• Error messages return valid JSON instead of plain text.

• Support for Graphite functions changed. See carbonapi compatibility list for details.

Other Improvements

• Internal Graphite metric names changed.

• Numerous bugs fixed. Some new were created :)

1.3 Installation

1.3.1 Manual Installation

Tip: To get Moira running quickly, try Docker version

There are following components you need to install before running Moira microservices:

1. golang version 1.9 or higher

2. redis database version 2.8 or higher

1.3. Installation 7

https://github.com/go-graphite/carbonapi/blob/ccac7217894801a5a6ceb8602a70ea0d79e975cf/cmd/carbonapi/COMPATIBILITY.md#functions
https://github.com/Knetic/govaluate
https://github.com/go-graphite/carbonapi/blob/ccac7217894801a5a6ceb8602a70ea0d79e975cf/cmd/carbonapi/COMPATIBILITY.md#functions
https://golang.org/doc/install
http://redis.io/download

Moira, Release 2.4

3. web server e.g. nginx

Build Moira Microservices

go get -u github.com/moira-alert/moira
cd $GOPATH/src/github.com/moira-alert/moira
make build

You will find binaries in $GOPATH/src/github.com/moira-alert/moira/build.

Download Web UI Application

https://github.com/moira-alert/web2.0/releases/latest

Download and unpack .tar.gz file into Nginx static files directory (e.g. /var/local/www/moira).

Configure

1. If you need to override default settings, place configuration files somewhere on your disk (e.g. /etc/moira/).
You can dive into Configuration syntax on a separate page.

2. Place nginx configuration file to proper location (e.g. /etc/nginx/conf.d/moira.conf):

server {
listen 127.0.0.1:80;
location / {

root /var/local/www/moira;
index index.html;
try_files $uri $uri/ /index.html;

}
location /api/ {

proxy_pass http://127.0.0.1:8081;
}

}

3. If you need to override UI settings, edit web.json file. You can find its location in API configuration.

Run

1. Run nginx and redis-server

2. Run microservices

$GOPATH/src/github.com/moira-alert/moira/build/cache
$GOPATH/src/github.com/moira-alert/moira/build/checker
$GOPATH/src/github.com/moira-alert/moira/build/notifier
$GOPATH/src/github.com/moira-alert/moira/build/api

Now you need to feed your metrics to Moira (see Feeding Metrics to Moira) on port 2003 and to create alerts in UI
(see User Guide).

8 Chapter 1. Contents

http://nginx.org/en/download.html
https://github.com/moira-alert/web2.0/releases/latest
https://github.com/moira-alert/moira/blob/master/pkg/api/web.json
https://moira.readthedocs.io/en/latest/installation/configuration.html#api

Moira, Release 2.4

1.3.2 Docker

You can quickly test a local Moira installation using Docker containers from Docker Hub and docker-compose file in
documentation repository.

git clone https://github.com/moira-alert/doc.git
cd doc
docker-compose up

Containers are preconfigured to serve Web UI at localhost:8080 and accept graphite metrics at
localhost:2003.

1.3.3 RPM and DEB Packages

All stable versions of Moira components are tagged on GitHub. For every tag, we automatically build RPM and DEB
packages. You can download these packages on each repository release page:

1. https://github.com/moira-alert/web2.0/releases

2. https://github.com/moira-alert/moira/releases

1.3.4 Configuration

By default, microservices will look for /etc/moira/<servicename>.yml, but you can change this location by
passing your path as a command-line parameter --config.

On this page you can find examples of configuration files for Moira microservices.

Filter

Use fields MasterName and SentinelAddrs to enable Redis Sentinel support,
use Host and Port fields otherwise.
redis:

Sentinel cluster name
master_name: ""
Sentinel address list, format: {host1_name:port};{ip:port}
sentinel_addrs: ""
Node ip-address or host name
host: "moira-redis"
Node port
port: "6379"
Database id
dbid: 0

graphite:
If true, graphite sender will be enabled.
enabled: true
If true, runtime stats will be captured and sent to graphite. Note: It takes to

→˓call stoptheworld() with configured "graphite.interval" to capture runtime stats
→˓(https://golang.org/src/runtime/mstats.go)
runtime_stats: false
Graphite relay URI, format: ip:port
uri: "graphite-relay:2003"
Moira metrics prefix. Use 'prefix: {hostname}' to use hostname autoresolver.
prefix: DevOps.moira
Metrics sending interval

1.3. Installation 9

https://hub.docker.com/u/moira/
https://github.com/moira-alert/web2.0/releases
https://github.com/moira-alert/moira/releases

Moira, Release 2.4

interval: 60s
filter:

Metrics listener uri
listen: ":2003"
Retentions config file path. Simply use your original storage-schemas.conf or

→˓create new if you're using Moira without existing Graphite installation.
retention_config: /etc/moira/storage-schemas.conf
Number of metrics to cache before checking them.
Note: As this value increases, Redis CPU usage decreases.
Normally, this value must be an order of magnitude less than graphite.prefix.

→˓filter.recevied.matching.count | nonNegativeDerivative() | scaleToSeconds(1)
For example: with 100 matching metrics, set cache_capacity to 10. With 1000

→˓matching metrics, increase cache_capacity up to 100.
cache_capacity: 10
Defines number of threads to match incoming graphite-metrics.
Equals to the number of processor cores found on Moira host by default or when

→˓variable is defined as 0.
max_parallel_matches: 0

log:
log_file: stdout
log_level: info

storage-schemas.conf is graphite carbon configuration file that should match similarly-named file in your Graphite
installation.

Checker

Use fields MasterName and SentinelAddrs to enable Redis Sentinel support,
use Host and Port fields otherwise.
redis:

Sentinel cluster name
master_name: ""
Sentinel address list, format: {host1_name:port};{ip:port}
sentinel_addrs: ""
Node ip-address or host name
host: "moira-redis"
Node port
port: "6379"
Database id
dbid: 0

graphite:
If true, graphite sender will be enabled.
enabled: true
If true, runtime stats will be captured and sent to graphite. Note: It takes to

→˓call stoptheworld() with configured "graphite.interval" to capture runtime stats
→˓(https://golang.org/src/runtime/mstats.go)
runtime_stats: false
Graphite relay URI, format: ip:port
uri: "graphite-relay:2003"
Moira metrics prefix. Use 'prefix: {hostname}' to use hostname autoresolver.
prefix: DevOps.moira
Metrics sending interval
interval: 60s

checker:
Period for every trigger to perform forced check on
nodata_check_interval: 60s

10 Chapter 1. Contents

http://graphite.readthedocs.io/en/latest/config-carbon.html#storage-schemas-conf

Moira, Release 2.4

Min period to perform triggers re-check. Note: Reducing of this value leads to
→˓increasing of CPU and memory usage values
check_interval: 10s
In Moira 2.4 we add a new entity - Lazy Trigger. This is a regular trigger but

→˓without any subscription for it.
By default Moira treats any trigger equally regardless on its subscriptions

→˓number.
You can change this behaviour using option below. This can reduce CPU usage on

→˓your server.
Lazy triggers checker works if lazy_triggers_check_interval > check_interval. We

→˓recommend setting it to 10m.
lazy_triggers_check_interval: 0
Time interval to store metrics. Note: Increasing of this value leads to

→˓increasing of Redis memory consumption value
metrics_ttl: 3h
Period for every trigger to cancel forced check (greater than 'NoDataCheckInterval

→˓') if no metrics were received
stop_checking_interval: 30s
Equals to the number of processor cores found on Moira host by default or when

→˓variable is defined as 0.
max_parallel_checks: 0
Is related with remote triggers (see remote section)
Equals to the number of processor cores found on Moira host by default or when

→˓variable is defined as 0.
max_parallel_remote_checks: 0

This section configures remote triggers Checker.
See https://moira.readthedocs.io/en/latest/installation/configuration.html#remote-
→˓triggers-checker for futher information
remote:

enabled: false
URL of Graphite HTTP API: graphite-web, carbonapi, etc.
Specify full URL including '/render'
url: "http://graphite.example.com/render"
Auth username. Only Basic-auth supported
user: devops
Auth password. Only Basic-auth supported
password: verySecurePassword
Min period to perform triggers re-check.
Note: Reducing of this value leads to increasing of CPU and memory usage values

→˓and extra load on Graphite HTTP API
check_interval: 60s
Maximum timeout for HTTP-request made to Graphite HTTP API
timeout: 60s

log:
log_file: stdout
log_level: info

Remote Triggers Checker

One of Moira key feature is Graphite independance. Some Graphite queries are very ineffective. Tools like Seyren
multiply this effect every minute making lots of ineffective queries and overloading your cluster. Moira relies on the
incoming metric stream, and has its own fast cache for recent data.

Enabling Remote triggers Checker allows user to create triggers that relies on Graphite Storage instead of Redis DB.

1.3. Installation 11

https://github.com/scobal/seyren

Moira, Release 2.4

Warning: Use this feature with caution, because it can create an extra load on Graphite HTTP API.

Lazy Triggers Checker

In Moira 2.4 we add a new entity - Lazy Trigger. This is a regular trigger but without any subscription for it. By
default Moira treats any trigger equally regardless on its subscriptions number. You can change this behaviour using
lazy_triggers_check_interval option in checker section. This can reduce CPU usage on your server. Lazy
triggers checker works if lazy_triggers_check_interval > check_interval. We recommend set it to
10m (10 minutes).

Notifier

Use fields MasterName and SentinelAddrs to enable Redis Sentinel support,
use Host and Port fields otherwise.
redis:

Sentinel cluster name
master_name: ""
Sentinel address list, format: {host1_name:port};{ip:port}
sentinel_addrs: ""
Node ip-address or host name
host: "moira-redis"
Node port
port: "6379"
Database id
dbid: 0

graphite:
If true, graphite sender will be enabled.
enabled: true
If true, runtime stats will be captured and sent to graphite. Note: It takes to

→˓call stoptheworld() with configured "graphite.interval" to capture runtime stats
→˓(https://golang.org/src/runtime/mstats.go)
runtime_stats: false
Graphite relay URI, format: ip:port
uri: "graphite-relay:2003"
Moira metrics prefix. Use 'prefix: {hostname}' to use hostname autoresolver.
prefix: DevOps.moira
Metrics sending interval
interval: 60s

notifier:
Soft timeout to start retrying to send notification after single failed attempt
sender_timeout: 10s
Hard timeout to stop retrying to send notification after multiple failed attempts
resending_timeout: "1:00"
Web-UI uri prefix for trigger links in notifications. For example: with 'http://

→˓localhost' every notification will contain link like 'http://localhost/trigger/
→˓triggerId'
front_uri: "https://moira.example.com"
Timezone to use to convert ticks. Default is UTC. See https://golang.org/pkg/time/

→˓#LoadLocation for more details.
timezone: Europe/Moscow
Format for email sender. Default is "15:04 02.01.2006". See https://golang.org/

→˓pkg/time/#Time.Format for more details about golang time formatting.
date_time_format: "15:04 02.01.2006"
List of senders, every element has "type" field (one of ["pushover", "slack",

→˓"mail", "telegram", "twilio sms", "twilio voice", "script"])

12 Chapter 1. Contents

Moira, Release 2.4

Every type of sender has additional config fields
senders:
- type: pushover

Api token for your pushover channel, for more info see https://pushover.net/
→˓api#registration

api_token: ...
- type: slack

Api token for your moira notifications slack user, for more info see https://
→˓get.slack.help/hc/en-us/articles/215770388-Create-and-regenerate-API-tokens

api_token: ...
- type: telegram

Api token for your telegram bot, for more info about creating bot and get
→˓token see https://core.telegram.org/bots#3-how-do-i-create-a-bot

api_token: ...
- type: mail

mail_from: ...
smtp_host: ...
smtp_port: ...
Skip SMTP server certificate chain validation if false
insecure_tls: false
Uses "mail_from" if empty
smtp_user: ...
smtp_pass: ...
Email template file path (standard Go templates). By default use 'Fancy'

→˓template (see screenshot below). If empty, use build-in template with no markups
→˓and styles.

template_file: '/etc/moira/fancy-template.html'
- type: twilio sms

api_asid: ...
api_authtoken: ...
api_fromphone: ...
URL that responds with TwiML config for voice message generation, see https://

→˓www.twilio.com/docs/api/twiml/voice-overview
voiceurl: ...
append_message: true

- type: twilio voice
api_asid: ...
api_authtoken: ...
api_fromphone: ...

- type: script
name: ...
Executable path. File must exist on all machines where notifier is running.
You can use ${trigger_name} and ${contact_value} in command-line parameters,
they will be replaced with trigger name and contact (as specified in web

→˓interface).
exec: ...

Self state monitor configuration section. Note: No inner subscriptions is
→˓required. Moira will use its notification mechanism to send messages.
moira_selfstate:
enabled: true
If true, Moira selfstate will check remote triggers checker works properly and

→˓notify admin if remote checker fails
See https://moira.readthedocs.io/en/latest/installation/configuration.html

→˓#remote-triggers-checker for futher information
remote_triggers_enabled: false
Max Redis disconnect delay to send alert when reached
redis_disconect_delay: 60s
Max Filter metrics receive delay to send alert when reached

1.3. Installation 13

Moira, Release 2.4

last_metric_received_delay: 120s
Max Checker checks perform delay to send alert when reached
last_check_delay: 120s
Max Remote triggers Checker checks perform delay to send alert when reached
See https://moira.readthedocs.io/en/latest/installation/configuration.html

→˓#remote-triggers-checker for futher information
last_remote_check_delay: 300s
Self state monitor alerting interval
notice_interval: 300s
Contact list for Self state monitor alerts, use this like delivery channels in

→˓web-ui
contacts:

- type: mail
value: devopsteam@example.com

log:
log_file: stdout
log_level: info

This section configures remote triggers Checker.
See https://moira.readthedocs.io/en/latest/installation/configuration.html#remote-
→˓triggers-checker for futher information
remote:

enabled: false
URL of Graphite HTTP API: graphite-web, carbonapi, etc.
Specify full URL including '/render'
url: "http://graphite.example.com/render"
Auth username. Only Basic-auth supported
user: devops
Auth password. Only Basic-auth supported
password: verySecurePassword
Min period to perform triggers re-check.
Note: Reducing of this value leads to increasing of CPU and memory usage values

→˓and extra load on Graphite HTTP API
check_interval: 60s
Maximum timeout for HTTP-request made to Graphite HTTP API
timeout: 60s

Email template

By default mail sender will use ‘Fancy’ template:

14 Chapter 1. Contents

Moira, Release 2.4

Self state monitor

If self state monitor is enabled, Moira will periodically check the Redis connection, the number of incoming metrics
in the Moira-Filter and the number of triggers to be checked by Moira-Checker.

See Self State Monitor for more details.

API

Use fields MasterName and SentinelAddrs to enable Redis Sentinel support,
use Host and Port fields otherwise.
redis:

Sentinel cluster name
master_name: ""
Sentinel address list, format: {host1_name:port};{ip:port}
sentinel_addrs: ""
Node ip-address or host name

1.3. Installation 15

Moira, Release 2.4

host: "moira-redis"
Node port
port: "6379"
Database id
dbid: 0

graphite:
If true, graphite sender will be enabled.
enabled: true
If true, runtime stats will be captured and sent to graphite. Note: It takes to

→˓call stoptheworld() with configured "graphite.interval" to capture runtime stats
→˓(https://golang.org/src/runtime/mstats.go)
runtime_stats: false
Graphite relay URI, format: ip:port
uri: "graphite-relay:2003"
Moira metrics prefix. Use 'prefix: {hostname}' to use hostname autoresolver.
prefix: DevOps.moira
Metrics sending interval
interval: 60s

api:
Api local network address. Default is ':8081' so api will be available at http://

→˓moira.company.com:8081/api
listen: ":8081"
If true, CORS for cross-domain requests will be enabled. This option can be used

→˓only for debugging purposes.
enable_cors: false
Web_UI config file path. If file not found, api will return 404 in response to

→˓"api/config"
web_config_path: "/etc/moira/web.json"

log:
log_file: stdout
log_level: info

This section configures remote triggers Checker.
See https://moira.readthedocs.io/en/latest/installation/configuration.html#remote-
→˓triggers-checker for futher information
remote:

enabled: false
URL of Graphite HTTP API: graphite-web, carbonapi, etc.
Specify full URL including '/render'
url: "http://graphite.example.com/render"
Auth username. Only Basic-auth supported
user: devops
Auth password. Only Basic-auth supported
password: verySecurePassword
Min period to perform triggers re-check.
Note: Reducing of this value leads to increasing of CPU and memory usage values

→˓and extra load on Graphite HTTP API
check_interval: 60s
Maximum timeout for HTTP-request made to Graphite HTTP API
timeout: 60s

WEB UI

{
"contacts": [
{

"type": "pushover",

16 Chapter 1. Contents

Moira, Release 2.4

"validation": "",
"title": "pushover user key"

},
{

"type": "slack",
"validation": "^[@#][a-zA-Z0-9-_]+",
"title": "slack #channel / @user"

},
{

"type": "telegram",
"validation": "",
"title": "Enter telegram #channel, @username or group",
"help": "### To make things work you should:\n### In personal chat:\n - start

→˓conversation with bot [@ExampleMoiraBot](https://t.me/ExampleMoiraBot);\n - execute
→˓command `/start`;\n - type your login in above field as `@login`.\n\n### In group
→˓chat:\n - invite bot [@ExampleMoiraBot](https://t.me/ExampleMoiraBot) into chat;\n -
→˓ execute command `/start@ExampleMoiraBot`;\n - bot will send you chat id, you
→˓should type it without extra characters in above field.\n\n### In channel:\n - add
→˓bot [@ExampleMoiraBot](https://t.me/ExampleMoiraBot) into channel;\n - promote bot
→˓as channel administrator;\n - type channel name in above field as `#channel`.\n"

}
],
"supportEmail": "devops@example.com",
"remoteAllowed": false

}

• type — contact type: pushover, slack, mail, script, telegram, twilio sms, twilio voice;

• validation — regular expression for user contact;

• title — hint shown in input field;

• help — help text in Markdown markup .

• remoteAllowed — set to true if Remote Triggers Checker is enabled.

1.3. Installation 17

https://daringfireball.net/projects/markdown/syntax

Moira, Release 2.4

1.3.5 Feeding Metrics to Moira

Moira needs to keep its own local copy of your metric data to improve performance and reduce load on your existing
graphite cluster. This means data needs to be duplicated from your existing stream and sent to your existing cluster
and to your Moira installation.

Unfortunatly, the Carbon-Relay with Graphite does not support duplication of data to multiple backends, and so you
need to use a more feature rich carbon relay such as carbon-c-relay.

The following is a basic example configuration which defines two clusters and sends all metrics to both at once. One
cluster is Moira installation, and the other uses consistent hashing across a three node cluster of Carbon servers.

18 Chapter 1. Contents

https://github.com/grobian/carbon-c-relay

Moira, Release 2.4

cluster moira
forward

moira-host:2003
;

cluster graphite
carbon_ch

127.0.0.1:2006=a
127.0.0.1:2007=b
127.0.0.1:2008=c

;

match *
send to

moira
graphite

;

1.3.6 Security

Typically, internal DevOps tools like Graphite are deployed in intranet without any external access, so you can skip
authentication and leave everything accessible to everyone. But powerful Moira features, like separate subscriptions
for tags, work best when you have some way to tell apart users.

Moira doesn’t provide any authentication mechanism. It is hard to find one that fits all situations. Instead, Moira
accepts X-WebAuth-User header with some user id, like login name. You are free to set up any reverse proxy and
configure it to provide this header.

If you don’t, Moira will assume that user id is “anonymous”.

Warning: Even if you do provide authentication header, please note that most parts of Moira are read and write
accessible to every user, and there is no meaningful way of authorization in Moira. This is by design, because
Moira is an internal DevOps tool. Separating users is a convenience, not protection feature.

Example of Nginx configuration

Assuming that Moira UI static files are in /var/www/moira-web and API is running on port 8081

server {
auth_basic "Moira";
auth_basic_user_file /etc/nginx/htpasswd;

listen 0.0.0.0:80 default_server;

location / {
root /var/www/moira;
index index.html;
try_files $uri $uri/ /index.html;

}

location /api/ {
proxy_pass http://127.0.0.1:8081;
proxy_set_header X-WebAuth-User $remote_user;

1.3. Installation 19

Moira, Release 2.4

}
}

Look at auth_basic_module if you need more details of Nginx basic authentication.

1.4 User Guide

This user guide is based on a number of real-life scenarios, from simple and universal to complicated and specific.

1.4.1 Simple Threshold Trigger

Let’s say you measure how much free space is left on your HDD and store this value as DevOps.my_server.
hdd.freespace_mbytes in Graphite. Maybe you want to get an email when you have less than 50 GB left (it’s
not a big problem), and a Pushover notification when you have less than 1 GB left (you really need to delete something
asap).

You can easily accomplish this by adding a trigger in Moira’s Simple Mode:

20 Chapter 1. Contents

http://nginx.org/en/docs/http/ngx_http_auth_basic_module.html

Moira, Release 2.4

Graphite Target

You can specify a single metric like we did here: DevOps.my_server.hdd.freespace_mbytes.

You can also specify multiple metrics like DevOps.*.hdd.freespace_mbytes. All metrics will be monitored
separately, and you will get separate notifications for each metric.

You can even use Graphite functions like movingAverage(DevOps.my_server.hdd.
freespace_mbytes, 10). Moira understands everything that Graphite itself understands. See appropriate
documentation.

1.4. User Guide 21

http://graphite.readthedocs.org/en/latest/functions.html

Moira, Release 2.4

Thresholds

In simple mode you need to at least one threshold values: WARNING and ERROR. In our example we set both, lower
values are bad, so we set warning threshold greater than error threshold. In this case, Moira will consider any value less
than 50000 a warning and less than 1000 an error, which is what we want. In other cases, you may need to consider
large values a problem - then you should make error threshold greater than warning and select Watch for value
rising option.

See also:

You can set only one threshold. For example, you can set WARNING equal to 50000, omit ERROR and select Watch
for value falling. In this case you will receive only WARNING messages when free space goes under 50GB
and never receive ERROR messages. You can also do vise versa: set ERROR and omit WARNING.

Tags

In Moira, you cannot subscribe to a single trigger. Instead, you should categorize your triggers by tags and subscribe
to a tag. It may look like an overkill here, but when you have dozens of triggers, you are much better off with tags,
because you don’t have to enter your contact information over and over again. Tags also help to filter information on
main screen:

You can add as many tags as you want.

Subscriptions

Proceed to the Setting Up Your Subscriptions page to learn how to set up a subscription to your trigger.

1.4.2 Setting Up Your Subscriptions

By now you should have at least one trigger saved. If you don’t, go back to the Simple Threshold Trigger page.

First, add some delivery channels:

22 Chapter 1. Contents

Moira, Release 2.4

If your Moira installation is configured with separate user accounts, you will see only your channels and subscriptions
on this page. Otherwise, every user will see the same page with the same channels and subscriptions.

Consult Security page for instructions on separating user accounts.

Once you have at least one channel, you can create a subscription. Press + Add subscription button:

1.4. User Guide 23

Moira, Release 2.4

Plotting

According to two existing polling approaches:

• Local triggers are best to analyze realtime metrics

• Remote triggers allows to use wider time windows to fetch historical data directly from Graphite

there is also two different time ranges will be used according to trigger type:

• Notification based on events generated by local trigger will contain graph with timeseries for the last 30 minuntes
wheter is throttled or it was scheduled earlier because of subscription’s own time limits.

• Notification based on events generated by remote trigger will contain graph with timeseries for not less than 30
minuntes until last event occured. Otherwise first and last events times will form the window.

24 Chapter 1. Contents

Moira, Release 2.4

Tags

Add required tags into subscription to receive notifications from triggers with these tags.

Matching rule is: Notification will be sent if trigger contains ALL of selected tags.

For example:

• If subscription has only one tag, you will receive notifications from any trigger with this tag.

– Create Triggger1 with tags: ["DevOps", "Moira-duty"]

– Create Triggger2 with tags: ["DevOps"]

– Create Subscription1 with tags: ["DevOps"]

By using Subscription1 you will receive events for both Triggger1 and Triggger2

• If subscription has multiple tags, you will receive notifications only from triggers which include all these tags.

– Create Subscription2 with tags: ["DevOps", "Moira-duty"]

By using Subscription2 you will receive events only for Trigger1

Ignore specific states transitions

You also can reduce number of notifications ignoring unnecessary event. For this purpose use following check boxes:

1.4. User Guide 25

Moira, Release 2.4

• Send notifications when triggers degraded only

Only following states transitions will require notifications:

– OK→ WARN

– OK→ ERROR

– OK→ NODATA

– WARN→ ERROR

– WARN→ NODATA

– ERROR→ NODATA

• Do not send WARN notifications

Following states transitions will be ignored:

– OK→ WARN

– WARN→ OK

Create and Test

You can just save your subscription, but if you want to be 100% sure it works, you should immediately test it. Dummy
notification message will arrive shortly.

1.4.3 Efficient Triggers

To use Moira efficiently, you should understand its underlying design decisions.

We often notice that when new users create their first triggers, they set thresholds at random, or by intuition. It happens
because when you configure your first 24/7/365 automated monitoring system, you don’t really know how your system
works. If you have at least hundreds of metrics, it’s impossible to watch all of them with your eyes. What are the
limits of your system? How often does your system reach critical resource consumption during a day? Should you
immediately react when metric X reaches value N, or is it a fluctuation that passes by itself?

Later, when you learn to understand you system, you will need to adjust your triggers. And that’s when you need to
understand Moira.

States

Unlike many other tools providing several distinct level systems like “priority” and “severity”, Moira supports a single
set of states. Every state has a well-defined meaning, and you should use these states accordingly.

OK

This is a basic state, in which all your metrics must spend most of their time. Just like you keep your autotests green,
you should keep your metrics green.

26 Chapter 1. Contents

Moira, Release 2.4

WARN

This state means that you should do something to prevent ERRORs in the future. Not immediately: maybe you should
order more hardware from your vendor, or plan to optimize code in the next iteration. You can configure less intrusive
delivery channels here, like email.

Metrics can be in this state for days or even weeks.

ERROR

This is a critical condition that requires immediate intervention. Your datacenter is on fire. All application processes
shut down. There is no disk space left on your database server to process million-dollar transactions. These notifi-
cations are important enough to wake you up at night. You can still configure schedules to assign shifts to several
engineers, though (see Schedules). You should configure more intrusive delivery channels here, like Pushover.

Metrics should not be in this state for more than several hours.

Moira will send you reminders every 24 hours if some of your metrics remain in this state.

If a delivery channel supports high-priority messages (like Pushover does), Moira will try to use them for ERRORs.

NODATA

This state means that Moira hasn’t been receiving data points for a metric for some time. See Dealing with NODATA
for details. This state is considered as bad as an ERROR in Moira (because it can actually be an ERROR - we don’t
receive any data, so we don’t know for sure). It may be even worse than an ERROR, because users tend to ignore
metrics in this state and leave them hanging in the web interface, greatly increasing the chance to miss something
actually important. You should delete old unused metrics from Moira when they stop providing data points:

In the beginning every metric is in this state. You will receive one NODATA → OK notification when the first data
point arrives.

Moira will send you reminders every 24 hours if some of your metrics remain in this state.

Moira will set NODATA state only for known metrics - i.e. for metrics that have sent at least one data point to Moira.

EXCEPTION

This is an error inside Moira. Unless you have bad syntax in your Advanced Mode Trigger trigger, this has nothing
to do with your metric state. You should try to fix or update Moira, or contact Moira developers (see Contact Moira
Developers).

Dealing With False Positives

Sometimes it’s hard to maintain strict rule of keeping your metrics green, if your triggers switch OK → ERROR →
OK → ERROR for short periods of time several times a day. It can lead to alarm fatigue and missing actual failures.

1.4. User Guide 27

Moira, Release 2.4

There is no single recipe for eliminating false positives, but here are some tips.

Use Graphite Functions

Graphite provides tons of useful functions to process data, and Moira understands all of them. For example:

• If you are experiencing peaks on you graphs that lead to unnecessary state switches, you can alleviate these
peaks with movingAverage or movingMedian.

• If you are interested in aggregate 10-minute values, not single minute values, use summarize.

• If you want zeros instead of missing data points, use transformNull. Also, keepLastValue is useful
when dealing with missing points.

• Avoid functions that show and hide metrics, like averageAbove. Moira does not consider hidden metrics to
be in NODATA state. Instead, Moira retains last state that the metric had when it was visible.

Draw First, Monitor Later

Always draw a graph of target(s) you are planning to monitor. Use generic Graphite web interface or something like
Grafana. Look for minumum and maximum values. Notice, how often and for how long the graph crosses your
planned thresholds. Try to correlate the graph with previous system failures. Then, copy and paste corrected target to
Moira.

Of course, you may and should remove any functions that make no sense in Moira (like sortByTotal) and can
generate unwanted side effects (like averageAbove).

28 Chapter 1. Contents

http://graphite.readthedocs.org/en/latest/functions.html

Moira, Release 2.4

1.4.4 Schedules

Moira provides two ways of defining allowed time intervals for notifications.

Subscription Schedule

If a metric is not that important to wake you up in the middle of the night, you can set a schedule for subscription:

1.4. User Guide 29

Moira, Release 2.4

Notifications generated by this subscription will arrive only on weekdays, from 08:00 to 17:59 local time.

If an event happens on weekend, you will receive a notification at 08:00 on Monday. So notifications are not skipped,
you just receive them later. Events will still appear on the event history page at the time when they happened (see
Current State and Event History).

30 Chapter 1. Contents

Moira, Release 2.4

Trigger Watch Time

Let’s say, you have a popular website, that serves over 1000 page views per second during a day. You can set up a
trigger to notify you when you have less than 50 page views per second - obviously, something is wrong. You also
need to disable this trigger for the night, because at night all of your users sleep, and this metric is irrelevant.

Of course, you can set up a subscription schedule - but your history will become riddled with false night “events”, and
you will still receive notifications in the morning. In this case, you need to set up a trigger watch time:

No events will be recorded for this trigger outside of watch time - you will receive no notifications, and the event
history page will be empty (see Current State and Event History).

1.4.5 Current State and Event History

By clicking on a saved trigger, you can see current state and event history of this trigger.

1.4. User Guide 31

Moira, Release 2.4

Current State

Moira shows current state, current value and time of last event for every separate metric that matches the trigger.

Event History

On this tab you can see a chronologically sorted list of events for each separate metric. Each event includes time, old
and new values. Please, note that the left (old) value is taken from the previous event, and does not represent metric
value just before the event.

32 Chapter 1. Contents

Moira, Release 2.4

1.4.6 Throttling

Throttling is a distinctive and controversial feature of Moira. If you are experiencing a delay or any other strange
behavior of notifications, chances are, it is because of throttling.

To understand throttling, imagine two triggers:

1. Send notification if CPU load on any of your servers is more than 75%.

2. Send notification if there is a fire in your server room.

It is a busy day, your servers are overloaded, and you are receiving a ton of notifications about CPU load. Probably,
you already have several dozens of notifications in your inbox. You will likely delete all of them at once, and you
probably won’t notice that one of these hundreds of letters was about a fire in your server room.

So, the problem is: one misconfigured trigger spoils everything by spamming your inbox with irrelevant notifications.
Moira provides a protection mechanism called throttling. Simple rules:

1. If a trigger sends more than 10 notifications per 1 hour, limit this trigger to 1 message per 30 minutes.

2. If a trigger sends more than 20 notifications per 3 hours, limit this trigger to 1 message per 1 hour.

It works like this:

1.4. User Guide 33

Moira, Release 2.4

• First notification is delivered immediately.

• Second notification is delivered immediately.

• . . .

• Tenth notification is delivered immediately, and you get a warning: “Please, fix your system or tune this trigger
to generate less events.”

• Next notifications are delayed so that you receive one message per 30 minutes/1 hour. Nothing is lost, you just
receive one message with a pack of events. Every message contains a warning: “Please, fix your system or tune
this trigger to generate less events.”

Moira will enable and disable throttling automatically based on frequency of events.

Disabling Throttling

There are four ways to disable throttling for a specific trigger:

1. Obey the warning message. That is, fix your system to generate less events. Or change trigger thresholds. Or use
Graphite functions like movingAverage to remove spikes from your metric graph. This is the best method to
deal with throttling.

2. Enable Maintenance mode for some of your metrics. This will temporarily disable checking of a metric and
give you time to fix the system:

3. Manually reset throttling for your trigger. This basically means that you’ve fixed the system and would like to
resume operation normally. It won’t help if your trigger is still spamming notifications:

34 Chapter 1. Contents

Moira, Release 2.4

4. Entirely disable throttling for a subscription. This is not recommended, unless you really know what you are
doing:

1.4. User Guide 35

Moira, Release 2.4

1.4.7 Dealing with NODATA

If you have a simple trigger (like the one described in Simple Threshold Trigger), you probably know what happens
when a metric has a very high or a very low value. Free disk space is too low? You get a notification.

But what if your metric has no value? Literally, what if Moira is not receiving any data for your metric? How can you
know, whether you have enough disk space left or not? In this case, a trigger setting defines the behavior:

36 Chapter 1. Contents

Moira, Release 2.4

When Moira hasn’t been receiving data for more than default 600 seconds, it will set a special NODATA state for this
metric. You can set any other state or change time delay here. For example, if you have an error metric, and no data
means no errors, you should set this to OK.

Note: Checkbox Mute new metrics notifications defines whether Moira should notify you about new
metrics or mute those notifications. If box is unchecked, Moira will send you NODATA → OK event for every new
metric in the trigger.

Muting notifications about new metrics could be useful if you have trigger with lots of metric in it.

You can also select DEL here to automatically delete all metrics that no longer provide data. A simple use case is
when you often rename metrics and Moira quickly becomes flooded with old irrelevant metric names.

Warning: DEL is a dangerous setting, you can easily miss a real notification if your system stops sending metric
data.

You will receive notifications when your metric goes in and out of NODATA state, just like any other state.

1.4.8 Advanced Mode Trigger

Sometimes a simple trigger (Simple Threshold Trigger) doesn’t provide enough flexibility for your task.

For example, you may want to receive a notification when 5% of user requests take up more than a second to process,
but only if there are more than 100 requests per minute. Usually, you will have two separate metrics for this:

1. Nginx.requests.process_time.p95 - 95th percentile of request processing time in milliseconds

2. Nginx.requests.count - request count per minute

Maybe you can construct a monstrous Graphite expression to reflect this combination, but Moira’s Advanced Mode is
better:

1.4. User Guide 37

Moira, Release 2.4

You can use any govaluate expression with predefined constants here:

• t1, t2, . . . are values from your targets

• OK, WARN, ERROR, NODATA are states that must be the result of evaluation

• PREV_STATE is equal to previously set state, and allows you to prevent frequent state changes

Note: Only T1 target can resolve into multiple metrics in Advanced Mode. T2, T3, . . . must resolve to single metrics.
Moira will calculate expression separately for every metric in T1.

Any incorrect expressions or bad syntax will result in EXCEPTION trigger state.

Data source

If Remote Triggers Checker is enabled, you can choose between following Data Sources:

• Redis — Moira database. By default Redis stores data for only several hours. It covers most of user cases when
you need real-time alerting.

• Graphite — remote Graphite-like HTTP API. It should be used only when you need to get metrics for a large
period.

38 Chapter 1. Contents

https://github.com/Knetic/govaluate/blob/master/MANUAL.md
https://redis.io/
https://github.com/go-graphite/carbonapi

Moira, Release 2.4

Warning: Please, use this Data Source with caution. It may cause extra load on Graphite HTTP API.

Important: Please, keep in mind that functions in Remote and Local triggers can work differently. To avoid
this, make sure you use Carbonapi with the same revision as in Moira. Latest Carbonapi listed in Changelog.

1.4.9 Hidden Pages

Some rarely used features of Moira are hidden on pages that are not linked from anywhere. This is a deliberate design
decision to reduce visual clutter in the main UI.

You need to type an address of a hidden page manually, like this: http://moira.example.com/
hidden_page.

Notifications

If Moira encounters an error while sending a notification, it will try again every minute for the next 24 hours. After that
period, the notification is considered lost. You can configure this via resending_timeout parameter in notifier
yaml config.

In some cases notifications will never be delivered, for example if a user specifies invalid contact.

If you need to interrupt this behavior, you can manually delete failing notifications at /notifications.

Tags

Deleting a tag is a rare and dangerous operation, but you still can do it at /tags.

Tags list shows how many triggers and subscriptions use a tag. You can’t delete a tag if there is at least one trigger that
uses it. You can delete a tag that is used in a subscription.

Patterns

You can see a list of all Graphite patterns with links to corresponding triggers and list of all matching metrics at
/patterns.

1.4.10 Maintenance

Maintenance is a proper way to mute alerting on specific metrics or triggers. It can be useful during planned work.
E.g., you are going to move server from one data center to another and don’t want Moira to disturb you.

1.4. User Guide 39

Moira, Release 2.4

Examples

When you switch a metric or trigger into maintenance, Moira will mute all state changes during that period. You will
receive notification about every metric, if the state before and after maintenance turn out to be different.

Example 1. Maintenance metric, alert will not be sent

• metric awesomeMetric1 is in OK state;

• Rick switches metric into maintenance for an hour;

• within the hour metric changes its state several times:

– OK→ WARN,

– WARN→ ERROR,

– ERROR→ OK;

• after one-hour maintenance ends, metric is in OK state;

• Moira checks if metric state changed during maintenance:

– awesomeMetric1 state before maintenance: OK;

– awesomeMetric1 state after maintenance OK;

• nothing to notify about: the state remained the same as it was before the maintenance period.

Example 2. Maintenance metric, alert will be sent

• metric awesomeMetric2 is in OK state;

• Rick switches metric into maintenance for an hour;

• within the hour metric changes its state several times:

– OK→ WARN,

40 Chapter 1. Contents

https://www.youtube.com/watch?v=dQw4w9WgXcQ
https://www.youtube.com/watch?v=dQw4w9WgXcQ

Moira, Release 2.4

– WARN→ ERROR,

– ERROR→ OK,

– OK→ ERROR;

• after one-hour maintenance ends, metric is in ERROR state;

• Moira checks if metric state changed during maintenance:

– awesomeMetric2 state before maintenance: OK;

– awesomeMetric2 state after maintenance ERROR;

• Moira sends message to user: the state has changed from that which was before the maintenance period.

Example 3. Maintenance trigger, alert will be sent

• metric awesomeMetric1 is in WARN state;

• metric awesomeMetric2 is in OK state;

• Rick switches trigger with this metrics into maintenance for an hour;

• within the hour metric awesomeMetric2 changes its state several times:

– OK→ WARN,

– WARN→ ERROR,

– ERROR→ OK,

– OK→ ERROR;

• after one-hour maintenance ends, metric is in ERROR state;

• Moira checks if metric state changed during maintenance:

– awesomeMetric1 state before maintenance: WARN;

– awesomeMetric1 state after maintenance WARN;

– awesomeMetric2 state before maintenance: OK;

– awesomeMetric2 state after maintenance ERROR;

• Moira sends message about awesomeMetric2 metric to user: the state has changed from that which was
before the maintenance period.

1.4.11 Self State Monitor

Self State Monitor is a built-in mechanism designed to protect end user from false NODATA notifications and notify
administrator about issues in Moira and/or Graphite systems.

Why Self State Monitor

A situation is possible when Graphite Relay, Redis DB or Moira-Filter service breaks down. This leads to the fact that
Moira doesn’t receive any metrics from Graphite. In this case, Moira has no metrics on which it could check state of
the triggers. According to the Moira logic, it should switch triggers to NODATA state and send alert messages to users.

To handle this situation properly, we recommend turning on the Self State Monitor. In this case, Moira will prevent
itself from sending alert messages to end users but notify administrators of the existing problem.

1.4. User Guide 41

https://www.youtube.com/watch?v=dQw4w9WgXcQ

Moira, Release 2.4

Warning: When Self State Monitor detects a problem, it disables any notifications to end users and does not turn
it back on without manual intervention.

Please, read this manual before using Self State Monitor in production.

See also:

For a better understanding, look at the architecture of the Moira microservices.

When Self State Monitor helps

Self state monitor checks these situations:

1. If there is no connection between Moira and Redis for longer than redis_disconect_delay.

2. If Moira-Filter receive no metrics for longer than last_metric_received_delay.

3. If Moira-Checker checks no triggers for longer than last_check_delay.

See also:

All the above configuration parametres can be found in the Moira-Notifier section on configuration page.

How Self State Monitor works

When you turn Self State Monitor on, it works this way:

• Self State Monitor checks Moira state every 10 seconds.

• Something breaks down. It can be Graphite-Relay, connection to Redis DB or crashed Moira-Filter docker
container.

• Self State send alarm message to administrator with issue discription.

Here is an example of message:

• Self State Monitor turns Moira-Notifier service off, switching it in ERROR state.

42 Chapter 1. Contents

Moira, Release 2.4

Note: When Moira-Notifier switches to ERROR state, it mutes all messages to end users and only alerts
administrators about Moira health issues. You need to fix existing problems and then manually switch Moira-
Notifier back to OK using API.

When Moira-Notifier not in OK state, Moira will show you an error in Web UI:

Turn Moira-Notifier ON and OFF

You can reveal current Moira-Notifier state or change it on a hidden /notifications page.

1.4. User Guide 43

Moira, Release 2.4

Warning: Please, note this toggle changes Moira-Notifier state, not user notifications preferences.

When you disable notifications with this toggle, Moira-Notifier stops sending messages to all users.

1.5 Development

All services use Redis database to store and exchange data. Therefore, it is important to maintain an accurate descrip-
tion of data storage formats and conventions.

Following topics describe database structure, running tests, developing notification plugins, etc.

1.5.1 Architecture

Terminology

Pattern

A Graphite pattern is a single dot-separated metric name, possibly containing one or more wildcards.

Examples:

44 Chapter 1. Contents

Moira, Release 2.4

server.web*.load
server.web{1,2,3}.load
server.web1.load

Target

A Graphite target is one or more patterns, possibly combined using Graphite functions.

Examples:

averageSeries(server.web*.load)

Metric

A metric is a single time-series that is a result of parsing some Graphite target.

Some targets produce a single metric, for example:

server.web1.load
highestCurrent(server.web*.load)

Some targets produce several metrics, for example:

movingAverage(server.web*.load, 10)

State

Moira stores separate state for every metric. Each metric can be in only one state at any moment:

Trigger

Trigger is a configuration that tells Moira which metrics to watch for. Triggers consist of:

• Name. This is just for convenience, user can enter anything here.

• Description. Longer text that gets included in notification to delivery channels that support long texts.

• One or more targets.

• WARN and ERROR value limits, or a Python expression to calculate state.

• One or more tags.

• TTL value. Metrics switch to NODATA state when new data doesn’t arrive for TTL seconds.

• Check schedule. For example, a trigger can be set to check only during business hours.

Last Check

When Moira checks a trigger, it stores the following information on each metric:

• Current value.

• Current timestamp.

1.5. Development 45

http://graphite.readthedocs.io/en/latest/render_api.html#target

Moira, Release 2.4

• Current state.

Trigger Event

When Moira checks a trigger, if any of the metric states change, Moira generates an event. Events consist of:

• Trigger ID.

• Metric name (as given by parsed target).

• New state.

• Previous state.

• Current timestamp.

Tags

Tags are simple string markers for grouping of triggers and configuring subscriptions.

Subscription

Moira generates notifications for an event only if trigger tags match any of the user-created subscriptions. Each
subscription consists of:

• One or more tags.

• Contact information.

• Quiet time schedule.

Dataflow

Filter and Check Incoming Metrics

When user adds a new trigger, Moira parses patterns from targets and saves them to moira-pattern-list key
in Redis. Filter rereads this list every second. When a metric value arrives, Filter checks metric name against the
list of patterns. Matching metrics are saved to moira-metric:<metricname> keys in Redis. Redis pub/sub
mechanism is used to inform Checker of incoming metric value that should be checked as soon as possible.

Checker metrics handler reads triggers by pattern from moira-pattern-triggers:<pattern> and add
trigger_id to Redis set moira-triggers-to-check. NODATA Checker adds all triggers to Re-
dis set moira-triggers-to-check once per nodata_check_interval setting. Remote Triggers
Checker gets all remote trigger ID and adds it to Redis set moira-remote-triggers-to-check once per
remote\check_interval setting.

Checker pops trigger_id from moira-triggers-to-check and starts checking procedure. Remote Triggers
Checker does the same, but pops trigger_id from moira-remote-triggers-to-check and starts remote
check, which involve remote Graphite HTTP API.

Trigger target can contain one or multiple metrics, so results are written per metric.
moira-metric-last-check:<trigger_id> Redis key contains last check JSON with metric states.

46 Chapter 1. Contents

Moira, Release 2.4

When a metric changes its state, a new event is written to moira-trigger-events Redis key. This happens only
if value timestamp falls inside time period allowed by trigger schedule.

If a metric has been in NODATA or ERROR state for a long period, every 24 hours Moira will issue an additional
reminder event.

Trigger switches to EXCEPTION state, if any exception occurs during trigger checking.

Process Trigger Events

Notifier constantly pulls new events from moira-trigger-events Redis key and schedules notifications accord-
ing to subscription schedule and throttling rules. If a trigger contains all of the tags in a subscription, and only in this
case, a notification is created for this subscription.

Subscription schedule delays notifications of occurred event to the beginning of next allowed time interval. Note that
this differs from trigger schedule, which suppresses event generation entirely.

Throttling rules will delay notifications:

• If there are more than 10 events per hour, a notification will be sent at most once per 30 minutes.

• If there are more than 20 events per 3 hours, a notification will be sent at most once per hour.

Scheduled notifications are written to moira-notifier-notifications Redis key.

Process Notifications

Notifier constantly pulls scheduled notifications from moira-notifier-notifications Redis key. It calls
sender for certain contact type and writes notification back to Redis in case of sender error.

1.5.2 UI

UI is a static web application built with RetailUI based on React.

Install dependencies.

npm install

Run webpack dev server at http://localhost:9000.

npm start

Note: UI doesn’t work without running API microservice.

1.5.3 Backend

Backend microservices are written in Go. To run tests, first get all dependencies.

go get github.com/kardianos/govendor
govendor sync

1.5. Development 47

https://github.com/skbkontur/retail-ui
https://reactjs.org
http://localhost:9000
https://golang.org

Moira, Release 2.4

Then, run GoConvey tests.

go get github.com/smartystreets/goconvey
goconvey

Writing Your Own Notification Sender

First, look at built-in senders:

• senders/slack

• senders/pushover

• senders/mail

All of them implement interface Sender from interfaces.go. Please, note that scheduling and throttling require
senders to support packing several events into one message.

You should include your new sender in RegisterSenders method of notifier/registrator.go with ap-
propriate type.

Senders have access to their settings in common config, which is passed to the Init method.

1.6 Contact Moira Developers

The best way to contact us is to visit our Gitter chat. We usually reply within a day, but sometimes immediately :)

48 Chapter 1. Contents

http://goconvey.co
https://gitter.im/moira-alert/moira

CHAPTER 2

Overview

Moira is a real-time alerting tool, based on Graphite data.

2.1 Key Features

• Graphite storage independence

Some Graphite queries are very ineffective. Tools like Seyren multiply this effect every minute making lots of
ineffective queries and overloading your cluster. Moira relies on the incoming metric stream, and has its own
fast cache for recent data.

• Support for (almost) all Graphite functions

Graphite function library (carbonapi) is embedded directly into Moira source code. You can use any function
and get predictable results, like in your Graphite or Grafana dashboards.

• Support for custom expressions

If simple warning/error threshold is not enough, you can write flexible govaluate expressions to calculate trigger
state based on metric data.

• Tags for triggers and subscriptions

When several teams/services share one monitoring tool, it is essential to provide some way of filtering triggers
and subscriptions in the UI. Moira has a flexible tag system.

• Extendable notification channels

Moira supports email, Slack, Pushover and many other channels of notification out-of-the-box. But you can
always write your own plugin in Go and rebuild Moira Notifier microservice.

• Alarm fatigue protection

Sometimes one of your triggers goes mad and switches back and forth between states, sending you hundreds of
notifications. Sometimes you just ignore and delete all messages, accidentally also deleting one that is actually
important. Moira tries to protect you with a feature called throttling. It’s simple: if one of your triggers starts

49

https://github.com/graphite-project
https://github.com/scobal/seyren
https://github.com/go-graphite/carbonapi/blob/ccac7217894801a5a6ceb8602a70ea0d79e975cf/cmd/carbonapi/COMPATIBILITY.md#functions
https://github.com/Knetic/govaluate/blob/master/MANUAL.md
https://slack.com
https://pushover.net
https://en.wikipedia.org/wiki/Alarm_fatigue

Moira, Release 2.4

to send over 10 messages per an hour, Moira limits this trigger to one message per 30 minutes. Alerts from this
trigger are combined, and not lost - just packaged into a single message.

2.2 Limitations

By default, Moira stores metric history for one hour. This ensures performance under heavy load. You can tweak this
in config file, but note that performance will degrade.

In order to reduce database load, Moira checks every single trigger at most once every 5 seconds. Probably, your
metrics arrive once every minute, so you really won’t notice this limitation. You can also tweak this in config file.

2.3 Microservices

In spirit of Graphite architecture, Moira consists of several loosely coupled microservices. You are welcome to replace
or to add new ones.

2.3.1 Filter

Filter is a lightweight service responsible for receiving lots of metric data in Graphite format. It filters received data
and saves only metrics that match any of user triggers. This reduces load on all other parts of Moira.

2.3.2 Checker

Checker is an application with embedded Graphite functions. Checker watches for incoming metric values and per-
forms checks according to saved trigger settings. When state of any trigger changes, Checker generates an event.

2.3.3 Notifier

Notifier is an application that watches for generated events. Notifier is responsible for scheduling and sending notifi-
cations, observing quiet hours, retrying failed notifications, etc.

2.3.4 API

API is an application that serves as a backend for UI.

2.3.5 Web 2.0

Web 2.0 is a frontend React application, it looks like this:

50 Chapter 2. Overview

Moira, Release 2.4

2.3. Microservices 51

	Contents
	Overview
	Changelog
	Installation
	User Guide
	Development
	Contact Moira Developers

	Overview
	Key Features
	Limitations
	Microservices

