
NMA-Task Documentation

Michael Glenister

Jul 05, 2018

Getting started

1 Introduction 1
1.1 PyMOL Plugin . 1
1.2 Cite this project . 1
1.3 Contributing . 1
1.4 License . 1

2 Installation 3
2.1 Platform compatibility . 3
2.2 Download the project . 3
2.3 Installing dependencies . 3

3 Normal Mode Analysis (NMA) 5

4 Principal Component Analysis (PCA) 9

5 Kernel PCA (kPCA) 11

6 Incremental PCA 13

7 Multi-dimensional scaling (MDS) 15

8 t-Distributed Stochastic Neighbor Embedding (t-SNE) 17

9 NMA Scripts 19
9.1 Coarse grain . 19
9.2 ANM . 20
9.3 Mean square fluctuation . 20
9.4 Assembly Covariance . 21
9.5 Conformation mode . 24
9.6 Combination mode . 24
9.7 Mode visualisation . 25

10 PCA Scripts 29
10.1 PCA on Cartesian coordinates . 30
10.2 PCA on internal coordinates . 31
10.3 MDS (Multi-dimensional scaling) on MD trajectory . 32
10.4 t-SNE on MD trajectory . 33

i

11 NMA Tutorial 35
11.1 Aim . 35
11.2 Create a working directory . 35
11.3 Preparation of structure of the mature capsid . 35
11.4 Preparation of the structure of the A-particle capsid . 36
11.5 Coarse grain . 36
11.6 Mode decomposition . 37
11.7 Identification of modes that contribute to the conformational change 38
11.8 Conformation mode . 39
11.9 Combination mode . 41
11.10 Mode visualisation . 42
11.11 Mean square fluctuation (MSF) . 48
11.12 Assembly Covariance . 49

12 PCA Tutorial 55
12.1 PCA of a MD trajectory . 55
12.2 MDS (Multi-dimensional scaling) on a MD trajectory . 60
12.3 t-SNE on a MD trajectory . 60

13 pyMODE-TASK- PyMOL plugin 65

ii

CHAPTER 1

Introduction

MODE-TASK is a collection of tools for analysing normal modes and performing principal component analysis on
biological assemblies.

Novel coarse graining techniques allow for analysis of very large assemblies without the need for high performance
computing clusters and workstations.

1.1 PyMOL Plugin

A PyMOL plugin for MODE-TASK has been made available here.

1.2 Cite this project

Caroline Ross, Bilal Nizami, Michael Glenister, Olivier Sheik Amamuddy, Ali Rana Atilgan, Canan Atilgan, Özlem
Tastan Bishop; MODE-TASK: Large-scale protein motion tools, Bioinformatics, May 2018 , https://doi.org/10.1093/
bioinformatics/bty427

1.3 Contributing

To contribute to the documentation please follow this guide.

To contribute to the source code, submit a pull request to our Github repository.

1.4 License

The project is licensed under GNU GPL 3.0

1

https://github.com/RUBi-ZA/pyMODE-TASK
https://doi.org/10.1093/bioinformatics/bty427
https://doi.org/10.1093/bioinformatics/bty427
https://docs.readthedocs.io/en/latest/getting_started.html
https://github.com/RUBi-ZA/MODE-TASK

NMA-Task Documentation

2 Chapter 1. Introduction

CHAPTER 2

Installation

2.1 Platform compatibility

A Linux-like operating system is recommended. However, MODE-TASK is compatible with most platforms which
are able to run Python 2.7 or Python 3.6.

A compiler is required to compile C++ from source, in this instance we use g++.

2.2 Download the project

MODE-TASK can be cloned from its GitHub repository

git clone https://github.com/RUBi-ZA/MODE-TASK.git
cd MODE-TASK

2.3 Installing dependencies

Ubuntu:

Python 2.7 with pip and virtualenv

sudo apt-get update
sudo apt-get install python-pip virtualenv virtualenvwrapper
source venv/bin/activate
pip install -r requirements.txt

Python 3.6 with pip and virtualenv

3

NMA-Task Documentation

sudo apt-get update
sudo apt-get install python3-pip virtualenv virtualenvwrapper
source venv/bin/activate
pip3 install -r requirements.txt

Conda

conda create -n mode_task
source activate mode_task
conda install -c conda-forge numpy
conda install -c conda-forge cython
conda install -c omnia mdtraj
conda install -c conda-forge scipy
conda install -c conda-forge pandas
conda install -c conda-forge sklearn-contrib-lightning
conda install -c conda-forge matplotlib

To install conda follow their documentation

OSX:

brew update
brew install python gcc
pip install virtualenv virtualenvwrapper

Windows:

Enable Windows Subsystem for Linux (WSL) by following these instructions.

Install the system dependencies as with Ubuntu above.

4 Chapter 2. Installation

https://conda.io/docs/user-guide/install/index.html#regular-installation
https://msdn.microsoft.com/en-us/commandline/wsl/install_guide

CHAPTER 3

Normal Mode Analysis (NMA)

NMA analyses the oscillations of a structure. For proteins, it is useful for studying the large amplitude motions for a
selected conformation. The main assumption is that the motions are harmonic. Thus, each normal mode, which is a
concerted motion of many atoms, acts as a simple harmonic oscillator, and it is independent of all the other normal
modes.

For a harmonic oscillator with a mass 𝑚 supported on a spring with force constant 𝑘, the potential energy of the
system, 𝑉 = 𝑘𝑥2, for an extension 𝑥 leads to the restoring force,

F = −𝑑𝑉

𝑑𝑥
= −𝑘𝑥

By substituting this Hooke’s Law force into Newton’s Law, F = 𝑚a leads to the differential equation,

−𝑘𝑥 = 𝑚
𝑑2𝑥

𝑑𝑡2

The solution is,

−𝑘𝑥 = −4𝜋2𝑣2𝑚𝑥

with 𝑣 being the frequency of the vibration.

In three dimensions and for a set of 𝑁 atoms, one has the corresponding generalized equation,

−HX = −4𝜋2𝑣2X

where H is the 3𝑁x3𝑁 Hessian symmetric matrix of force constants and X is the 3𝑁x1 vector of the positions of
the atoms. The solutions of the equation may be cast in the form of an eigenvalue decomposition of H where the
eigenvectors are the mass weighted displacements of the normal coordinates; i.e. the independent vibrational motions
of the collection of atoms. The corresponding eigenvalues are the negative of the squared normal mode frequencies of
each mode. H has exactly six zero eigenvalues for the translations and rotations of the molecule in three dimensional
space.

In NMA of proteins, it is central to obtain a good representation of the protein for a proper analysis of the available
modes of motion. One approach would be to obtain the Hessian matrix from the second derivatives of the energy for
the conformation of interest following a very stringent minimization of the molecule. The latter is important as NMA

5

NMA-Task Documentation

is based on the harmonic assumption which is only a valid approximation at the bottom of the potential energy minima.
For the complex potentials representing interactions in proteins in the water environment, these second derivatives may
be obtained through numerical methods which are extremely costly.

Alternatively, H may be approximated by the variance-covariance matrix of the protein, obtained from a molecular
dynamics (MD) simulation of suitable length. This is relevant as it may be shown through employing statistical
mechanics that the average displacements of nodes from a mean structure for an atom 𝑖,∆R𝑖 are related to those of
all other atoms through the relationship,

< ∆R𝑖 · ∆R𝑗 >= 3𝑘𝐵𝑇H
−1

It is important to select the length of the MD simulation for this procedure such that the molecule samples only the
state of interest,1 since when more than a single potential energy well along the conformational space of the molecule
is sampled, the harmonic assumption would again fail.

As a third alternative for obtaining the Hessian, one may make use of the elastic network property of a folded protein.
Here, the assumption is that, once a protein folds to a functionally relevant conformation, its total energy is represented
by a simple harmonic potential such that residues are connected to their nearest neighbors via elastic springs. By
further employing the assumption that the spring constants, 𝛾, are equivalent in all pairs of interactions, one arrives at
the anisotropic network model (ANM).2

H is thus composed of 𝑁x𝑁 super-elements, i.e.,

H =

⎡⎢⎢⎢⎣
H1,1 H1,2 · · · H1,N

H2,1 H2,N

...
...

HN,1 HN,N

⎤⎥⎥⎥⎦
where each super-element Hij is a 3x3 matrix that holds the anisotropic information regarding the orientation of nodes
𝑖, 𝑗:

Hij =

⎡⎣𝜕2𝑉/𝜕𝑋𝑖𝜕𝑋𝑗 𝜕2𝑉/𝜕𝑋𝑖𝜕𝑌𝑗 𝜕2𝑉/𝜕𝑋𝑖𝜕𝑍𝑗

𝜕2𝑉/𝜕𝑌𝑖𝜕𝑋𝑗 𝜕2𝑉/𝜕𝑌𝑖𝜕𝑌𝑗 𝜕2𝑉/𝜕𝑌𝑖𝜕𝑍𝑗

𝜕2𝑉/𝜕𝑍𝑖𝜕𝑋𝑗 𝜕2𝑉/𝜕𝑍𝑖𝜕𝑌𝑗 𝜕2𝑉/𝜕𝑍𝑖𝜕𝑍𝑗

⎤⎦
Denoting the separation between nodes 𝑖 and 𝑗 by 𝑆𝑖𝑗 , the elements of the off-diagonal super-elements Hij are given
by:

𝜕2𝑉/𝜕𝑋𝑖𝜕𝑌𝑗 = −𝛾(𝑋𝑗 −𝑋𝑖)(𝑌𝑗 − 𝑌𝑖)/𝑆
2
𝑖𝑗

and those of the diagonal super-elements Hij are obtained via,

𝜕2𝑉/𝜕𝑋2
𝑖 = 𝛾

∑︁
𝑗

(𝑋𝑗 −𝑋𝑖)
2/𝑆2

𝑖𝑗 for the diagonal terms

𝜕2𝑉/𝜕𝑋𝑖𝜕𝑌𝑗 = 𝛾
∑︁
𝑗

(𝑋𝑗 −𝑋𝑖)(𝑌𝑗 − 𝑌𝑖)/𝑆
2
𝑖𝑗 for the off-diagonal terms.

In this representation of the protein, the structure is coarse-grained at the level of a residue, usually through the
coordinates of C𝛼 or C𝛽 atoms obtained from the protein data bank. Moreover, pairs of nodes are assumed to interact
if they are within a pre-selected cut-off distance, 𝑟𝑐. For large structures such as viruses, further coarse graining may
be shown to well describe the most collective modes of motion.

The selection of 𝑟𝑐 has been the cause of much research. While it is clear that there is a lower bound where the
condition of six zero eigenvalues of H should be satisfied, distances in the range 10-25 Å have been employed in the

1 C Atilgan, OB Okan, AR Atilgan, “Network-based Models as Tools Hinting at Non-evident Protein Functionality,” Annual Review of Bio-
physics, 41, 205-225 (2012).

2 AR Atilgan, SR Durell, RL Jernigan, MC Demirel, O Keskin, I Bahar, “Anisotropy of Fluctuation Dynamics of Proteins with an Elastic
Network Model,” Biophysical Journal, 80, 505-515.

6 Chapter 3. Normal Mode Analysis (NMA)

NMA-Task Documentation

literature. It has been shown by a systematic study of increasing 𝑟𝑐 that the collective modes of motion do not change
beyond a certain value for proteins; i.e. selection of too large 𝑟𝑐 is safer than a too small value.3 The reason for this has
been explained by expressing H as the sum of an essential and a trivial part. The essential part of H includes all the
local information necessary for the correct representation of the modes. On the other hand, due to the symmetries in
a protein originating from the orientational order of closely packed spheres, the effects from the long range neighbors
cancel out.

References

3 C Atilgan, OB Okan, AR Atilgan, “Orientational Order Governs Collectivity of Folded Proteins,” Proteins: Structure, Function, Bioinformat-
ics, 78, 3363-3375 (2010).

7

NMA-Task Documentation

8 Chapter 3. Normal Mode Analysis (NMA)

CHAPTER 4

Principal Component Analysis (PCA)

A molecular dynamics (MD) simulation of a protein provides the positional movements of each atom with respect to
a fixed reference frame at a given time. The mean squared positional fluctuations (variances) of each atom are readily
calculated once the total simulation and sampling times are set. Sufficiency of both total observation period and the
sampling rate are crucial in collecting the data so as to identify biologically relevant motions. Let us monitor the
variance of each residue’s C𝛼 or C𝛽 atom during a MD simulation of a protein. Suppose that these variances do not
change significantly in time, like a stationary process. This suggests that within the period of observation we have
recorded the motion about one (native) conformation. Though constant in time for a given residue, the variances do
change from one residue to another. It is important to distinguish the differences between the variances of different
parts of the protein and to explain the root cause of these differences; e.g. while loop or disordered regions exhibit
high values, relatively rigid parts, such as helices or sheets display lower variances.

PCA4 operates on the variance-covariance matrix, C, of the protein, obtained from a MD simulation of any length;
thus, the observed process need not be stationary. It is useful in distinguishing the different parts of the energy
landscape sampled during the MD simulation. To obtain C, first the protein coordinates are superimposed on a
reference structure, usually the initial coordinates, or the average coordinates. The displacement vector for each
residue (described by the C𝛼 or C𝛽 coordinates of the residue 𝑖) at a time point 𝑡,∆R𝑖(𝑡) is obtained. For a set of 𝑀
recorded coordinates, these are organized in the trajectory fluctuation matrix of order 3𝑁x𝑀 :

∆R =

⎡⎢⎢⎢⎢⎢⎢⎣
∆R1(𝑡1) ∆R1(𝑡2) · ∆R1(𝑡𝑀)
∆R2(𝑡1) ∆R2(𝑡2) · ∆R2(𝑡𝑀)
∆R3(𝑡1) ∆R3(𝑡2) · ∆R3(𝑡𝑀)

· · · ·
· · · ·

∆R𝑛(𝑡1) ∆R𝑛(𝑡2) ∆R𝑛(𝑡𝑀)

⎤⎥⎥⎥⎥⎥⎥⎦
The 3𝑁x3𝑁 C matrix is then obtained via the operation,

C = ∆R∆RT

If a single energy well along the potential energy surface of a protein is sampled, then C approximates the inverse
Hessian, H−1 , as the harmonic approximation applies in this case (see NMA for details). However, if different parts

4 A Amadei, ABM Linssen, HJC Berendsen, “Essential Dynamics of Proteins,” Proteins: Structure, Function and Genetics, 17, 412-425 (1993).

9

NMA-Task Documentation

of the landscape are sampled, the decomposition of C will carry information on all the regions entered during the
simulation. Thus, the diagonalization,

C = UΛUT

yields the eigenvectors and the corresponding eigenvalues of the C matrix. Λ is the 3𝑁x3𝑁 diagonal matrix holding
the eigenvalues 𝜆𝑖 with six zero values corresponding to the translations and rotations of the molecule. The 𝑖th row of
the U matrix holding the eigenvector corresponding to the 𝑖th eigenvalue. The trajectory ∆R may be projected onto
the eigenvectors to obtain the principal components, 𝑞𝑖, which are the rows of the 3𝑁x𝑀 Q matrix.

Q = U∆R

Since a few principal components usually carry the largest amount of information of the trajectory, the different
regions of the conformational space will manifest as more than one blob in a plot of 𝑞𝑖 versus 𝑞𝑗 where 𝑖 and 𝑗 are
small. Furthermore, the size of the blobs in the plots will provide information on the width of the potential wells
sampled. Finally, the time points when passage between different wells occur may be pinpointed by this method.
The different implementations of the construction of the C matrix and the various ways of decomposing it have been
discussed in detail in the literature,5 and implemented in MODE-TASK.

References

5 CC David, DJ Jacobs, “Principal component analysis: a method for determining the essential dynamics of proteins,” Methods in Molecular
Biology, 1084, 193-226 (2014).

10 Chapter 4. Principal Component Analysis (PCA)

CHAPTER 5

Kernel PCA (kPCA)

Standard PCA assumes that input data are linearly related. In cases where variables are not intrinsically linearly
related the user has option to perform nonlinear generalization of PCA such as Kernel PCA. It is an extention of
normal PCA, where different kernel fucntions (such as linear, RBF, polynomial, and cosine) are used to perform
non-linear dimensional reduction.

𝑁 points are linearly non-separable in dimension (𝑑 < 𝑁). But there can be a hyperplane dividing them in a higher
dimension given 𝑁 points, (𝑋𝑖) it can be maped to an N-dimensional space with

Φ(Xi) where Φ : Rd− > Rn

Φ is an arbitrary choosen fucntion.

MODE-TASK includes the tools to perform the Kernel PCA on MD trajectory, and offers the user different choices for
the kernel. In Kernel PCA the input trajectory is first raised to a higher dimension by a kernel function and then PCA
is performed on the elevated data. One should use Kernel PCA with caution as it is difficult to interpret the results
since the input trajectory is mapped to a different feature space than conformational space. Nevertheless, Kernel PCA
could be an invaluable tool in studying structural mechanisms behind protein dynamics in cases where conventional
PCA is not helpful.

11

NMA-Task Documentation

12 Chapter 5. Kernel PCA (kPCA)

CHAPTER 6

Incremental PCA

A major bottleneck in the speed of PCA calculation is the availability of computer memory during the loading of a MD
trajectory. IPCA is a memory efficient variant of PCA, where only most substantial singular vectors are used to project
the input data to a lower dimension. The IPCA algorithm uses a batch data loading approach and the incremental
storage of various variables, thus achieving higher memory efficiency. MODE-TASK has implemented IPCA on MD
trajectory, available through scikit-learn Python library on the original algorithm67.

References

6 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res.
2011;12:2825–30.

7 Ross DA, Lim J, Lin R-S, Yang M-H. Incremental Learning for Robust Visual Tracking. Int. J. Comput. Vis. 2008;77:125–41.

13

NMA-Task Documentation

14 Chapter 6. Incremental PCA

CHAPTER 7

Multi-dimensional scaling (MDS)

MDS is a technique of dimensionality reduction, where measure of dissimilarity in a dataset is used. It places each
input point in 𝑁 -dimensional space while trying to preserve the original distance matrix as much as possible. MODE-
TASK implements metric and nonmetric types of MDS for MD trajectory by using the scikit-learn library6. The
Euclidean distance between internal coordinates and pairwise RMSD between the MD frames is used as dissimilarity
measures in MODE-TASK.

15

NMA-Task Documentation

16 Chapter 7. Multi-dimensional scaling (MDS)

CHAPTER 8

t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE is another dimensionality reduction method for data of high dimensions8. t-SNE has been implemented for
protein MD trajectories in MODE-TASK. Like MDS, the Euclidean distance between internal coordinates of a protein
structure and pairwise RMSD between a set of atoms are used as measures of dissimilarity.

References

8 Van der Maaten L, Hinton G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 2008;9:2579–605.

17

NMA-Task Documentation

18 Chapter 8. t-Distributed Stochastic Neighbor Embedding (t-SNE)

CHAPTER 9

NMA Scripts

9.1 Coarse grain

Takes a protein structure or biological assembly and coarse grains to select a set amount of CB atoms Command:

coarseGrain.py <options> --pdbFile <pdb file> --atomType <string>

Inputs:

Input (*required) Input type Flag Description
PDB file * File --pdb PDB structure to coarse

grain. Can also accept bi-
ological assembly (.pdb1)

Atom type * String --atomType Specify the type of atom
to be selected in CG mod-
els. Only CA or CB ac-
cepted.

Coarse grain level Comma Separted String --cg Level/Levels by which
to coarse grain protein.
Lower is less coarse
grained
E.g –cg 4 OR
E.g –cg 1,3,5 Default: 4

Starting atom Integer --startingAtom Residue number of the
starting atom. Default: 1

Output file File --output Specify a name for the
PDB output file. Default:
ComplexCG.pdb

Outputs:

19

NMA-Task Documentation

Output Description
PDB file/s Coarse grained protein/s or macromolecule/s

9.2 ANM

Constructs an elastic network model of a protein complex and solves for the eigenvalues and eigenvectors of the
system.

Compile:

g++ -I cpp/src/ ANM.cpp -o ANM

Command:

ANM <options> --pdb <pdb file> --atomType <atom type>

Inputs:

Input (*re-
quired)

Input
type

Flag Description

PDB file * File --pdb PDB input file
Atom type * String --atomType Specify the type of atom to be selected in CG models. Only CA or

CB accepted.
Cutoff Integer --cutoff Cuttoff radius in Å. Default: 15

Outputs:

Output Description
W matrix Text file of 3𝑁 eigenvalues
VT matrix Text file of 3𝑁x3𝑁 eigenvectors. Printed in rows
U matrix Text file of 3𝑁x3𝑁 eigenvectors. Printed in columns

9.3 Mean square fluctuation

Calculates and returns the diagonals of the correlation matrix for a given set of modes.

The user can also compare the msf between two protein complexes. Let’s say that the user has performed NMA on
two coarse grained models of the same protein, and now wants to compare if the additional coarse graining decreased
the accuracy. If we obtain the same mean square fluctuations for each residue, then in each model we can say that the
results are comparable regardless of the coarse graining level. Obviously, we must compare only the residues that are
common in each model. Hence, we specify common residues.

Command:

meanSquareFluctuations.py <options> --pdb <PDB file> --wMatrix <text file> --vtMatrix
→˓<text file> --atomType <string>

Inputs:

20 Chapter 9. NMA Scripts

NMA-Task Documentation

Input (*required) Input type Flag Description
PDB file * File --pdb PDB input file
W matrix file * File --wMatrix W values from ANM

script for PDB
VT matrix file * File --vtMatrix VT values from ANM

script for Comparison
PDB

Atom type * String --atomType Specify the type of atom
to be selected in CG mod-
els. Only CA or CB ac-
cepted.

Comparison PDB File --pdbC When assigned, calculates
mean square fluctua-
tions based on common
residues between the two
systems.

W matrix file for pdbC File --wMatrixC When assigned, calculates
W values from ANM for
Comparison PDB

VT matrix file for pdbC File --vtMatrixC When assigned, calculates
VT values from ANM for
Comparison PDB

Selected modes String
OR

Colon Separated String
OR

Comma Separated String

--modes MSFs will be calculated
over specified modes. Op-
tions: 1) Single mode E.g
–modes 7; 2) A range E.g
–modes 7:20; 3) A list E.g
–modes 8,9,11
If unspecified MSFs will
be calculated for the first
twenty slowest modes
(7:27)

Outputs:

Output Description
The following are generated for the PDB and Comparison PDB (if pdbC was assigned)
MSF text file MSF for all residues, calculated over all modes
MSF modes text file MSF for all residues, calculated for a specific mode range
Common residue MSF text file MSF for all common residues, calculated over all modes
Common residue MSF modes text file MSF for all common residues, calculated over a specific mode range

9.4 Assembly Covariance

Calculates and plots Covariance matrices

The user can compare the Covariance between different regions in the biological assembly, or can calculate the Co-
variance across the full assembly complex. The user also has the option to perform the calculation over a specified list
of modes or a mode range. The function also has a zoom option that allows the user to create a Covariance plot for a
particular chain within a particular asymmetric unit.

9.4. Assembly Covariance 21

NMA-Task Documentation

Command:

assemblyCovariance.py <options> --pdb <PDB file> --wMatrix <text file> --vtMatrix
→˓<text file> --atomType <string>

Inputs:

22 Chapter 9. NMA Scripts

NMA-Task Documentation

Input (*required) Input type Flag Description
PDB file * File --pdb PDB input file
W matrix file * File --wMatrix W values from ANM

script for PDB
VT matrix file * File --vtMatrix VT values from ANM

script for Comparison
PDB

Atom type * String --atomType Specify the type of atom
to be selected in CG mod-
els. Only CA or CB ac-
cepted.

Selected modes String
OR

Colon Separated String
OR

Comma Separated String

--modes Covariance will be calcu-
lated over specified modes
Options: 1) All modes
E.g –modes all; 2) Single
mode E.g –modes 7; 3) A
range E.g –modes 7:20; 4)
A list E.g –modes 8,9,11
If unspecified, Covariance
will be calculated for all
modes.

Asymmetric Units String
OR

Comma Separated String

--aUnits Covariance will be calcu-
lated and plotted for spec-
ified asymmetric units
Options: 1) Single unit

E.g –aUnits
5;

2. A list of units E.g
–aUnits 1,3

If unspecified, Covariance
will be calculated for the
first asymmetric unit in
the assembly.

Zoom Comma Separated String --zoom
If specified,
Covariance
will be cal-
culated and
plotted for
a specified
chain in a
specified
unit. Only
format ac-
cepts is:
[Unit,Chain]

E.g –zoom 1,2
OR

E.g
–zoom
1,B

(Chain specifier must match
chain label in PDB
file) The above
calculates the co-
variance for the
second chain in the
first asymmetric
unit.

VMin float --vmin Minimum axes value for
plot Default: -0.1

VMax float --vmax Maximum axes value for
plot Default: 0.1

9.4. Assembly Covariance 23

NMA-Task Documentation

Outputs:

Output Description
Covariance Plots Covariance Matrices plotted as a Linear Segmented Color map
Matrix text files Covariance Matrices printed in .txt format

9.5 Conformation mode

Identifies modes responsible for the conformational change of a molecule.

Command:

conformationMode.py <options> --pdbConf <PDB file> --pdbANM <PDB file> --vtMatrix
→˓<text file> --atomType <string>

Inputs:

Input (*re-
quired)

Input
type

Flag Description

Unaligned PDB
file *

File --pdbConf PDB file of the conformational change

PDB * File --pdbANM PDB file that was used to run ANM
VT matrix file * File --vtMatrixEigenvetors obtained from ANM script
Atom type * String --atomTypeSpecify the type of atom to be selected in CG models. Only CA or

CB accepted.
Output file File --output Specify a name for the output file. Default: ModesOfCon-

fChange.txt

Outputs:

Output Description
Conformation file Text file with the overlap and correlation of each mode

9.6 Combination mode

Calculates the combined overlap and correlation for specified set of modes to a known conformational change. This
script also calculates the overlap and correlation per chain in each asymmetric unit for the specified modes. This allows
the user to determine which parts of the complex, in each mode, contribute the most to the overall conformational
change.

Command:

combinationMode.py <options> --pdbConf <PDB file> --pdbANM <PDB file> --vtMatrix
→˓<text file> --modes <comma separated string> --atomType <string>

Inputs:

24 Chapter 9. NMA Scripts

NMA-Task Documentation

Input (*re-
quired)

Input
type

Flag Description

Unaligned
PDB file *

File --pdbConfPDB file of the conformational change

PDB * File --pdbANM PDB file that was used to run ANM
VT matrix file
*

File --vtMatrixEigenvetors obtained from ANM script

Modes * Integer --modes Calculate the overlap for a combination of specific modes. Numbers are
separated by commas: 1,5,7

Atom type * String --atomTypeSpecify the type of atom to be selected in CG models. Only CA or CB
accepted.

Output file File --output Specify a name for the output file. Default: ModeSpecific-
ConfChange.txt

Outputs:

Output Description
Combination
file

Text file with the overlap and correlation of each mode as well as the combined overlap and
correlation for the modes specified

Break down
per unit file

Text file with the overlap and correlation calculated for each chain in each asymmetric unit in the
complex. Calculations are performed for each specified mode.

9.7 Mode visualisation

Generates a set of frames, where eigenvectors are plotted as a set of unit vectors multiplied by an increasing factor in
each frame. Vectors are also plotted as arrows that can be viewed in the tool VMD

Command:

visualiseVector.py <options> --pdb <PDB file> --vtMatrix <text file> --mode <int> --
→˓atomType <string> --direction <int>

Inputs:

9.7. Mode visualisation 25

NMA-Task Documentation

Input (*required) Input type Flag Description
Coarse grained PDB file * File --pdb Coarse grained PDB input

file
Mode index value * Ingeter --mode Value specifying the index

of the mode
VT matrix file * File --vtMatrix VT values from ANM

script
Atom type * String --atomType Specify the type of atom

to be selected in CG mod-
els. Only CA or CB ac-
cepted.

Direction Boolean integer (1 or -1) --direction Direction of overlap cor-
rection. Default = 1

Arrow head float --head Radius of cone that forms
the head of each vector ar-
row

Arrow tail float --tail Radius of cylinder that
forms the tail of each vec-
tor arrow

Arrow length float --arrowLength Specify a factor by which
to increase or decrease the
length of each arrow E.g

–arrowLength
2 doubles the
default length
and –ar-
rowLength
0.5 halves the
default length

Colours Comma Separted String --colourByChain Colour the vectors arrows
of each chain. E.g for a
two chain protein

–colourByChain
blue,red

will colour the arrows of
Chain A as blue and Chain
B as red

Asymmetric Units String
OR

Comma Separated String

--aUnits Vector frames and arrows
will be plotted for speci-
fied asymmetric units
Options: 1) Single unit

E.g –aUnits 5
2. A list of units E.g

–aUnits 1,3

Chain String --chain Draws arrows only for the
specified chain. This op-
tion only accepts a single
chain

26 Chapter 9. NMA Scripts

NMA-Task Documentation

Outputs:

Outputs are generated in output/VISUALISE directory by default.

Output Description
PDB file Output PDB to be opened in VMD
Arrows file Tcl script that can be copied into the VMD TK console

9.7. Mode visualisation 27

NMA-Task Documentation

28 Chapter 9. NMA Scripts

CHAPTER 10

PCA Scripts

Principal component analysis (PCA) is a useful statistical technique that has found applications in detection of corre-
lated motion in MD data. Protein dynamics is manifested as a change in molecular structure, or conformation over a
timescale. PCA extracts most important motions from a protein’s MD trajectory using a covariance/correlation matrix
(C-matrix) constructed from atomic coordinates. Different types of coordinate systems (Cartesian or internal coordi-
nates) can be employed to define atomic movement in each time frame of a trajectory. Modes describing the protein
motions can be constructed by diagonalizing the C-matrix. It leads to a complete set of orthonormal (orthogonal
and normalized) collective modes (eigenvectors) with eigenvalues (variance) that characterize the protein dynamics.
The largest eigenvalues represent the most collective spatial motion. When the original mean centered data (MD
trajectory) is projected on the eigenvectors, the results are called Principal Components (PC). Diagonalization of the
C-matrix can be done by Eigenvalue decomposition (EVD) or Singular value decomposition (SVD), with the latter
being computationally efficient.

As stated earlier, different representations of protein conformations can be used. One can choose Cartesian coordinates
or internal coordinates such as the pairwise distance between atoms, 1-3 angle, torsional angles (Φ or Ψ). Since
decomposition of a C-matrix is memory intensive and very often the program will run out of memory, often a coarse
graining is required such as selecting CA atoms. The user can select the subset of atoms from the trajectory for the
analysis such as CA, backbone atoms or all protein’s atoms. It is highly recommended that the user should strip the
water from the trajectory before hand, as it would result in faster loading and alleviate the memory issues.

PCA uses linear transformation which may not be sufficient in cases where variables are non-linearly related. Thus, the
user has the option to perform Nonlinear generalization of PCA such as Kernel PCA (kPCA). Caution should be given
while interpreting the kPCA results since it is mapped to a feature space which is inherently different than confor-
mational space. Nevertheless, kPCA is useful in understanding the protein’s functions in terms of its conformational
dynamics.

General Usage:

To perform PCA on a protein’s MD trajectory we need a sufficiently sampled MD trajectory and a corresponding
topology file. This can be achieved by running the following command.

Command: pca.py -t <MD trajectory> -p <topology file>

To see the all the available options run the following command: pca.py -h

Inputs:

29

NMA-Task Documentation

Input
(*re-
quired)

In-
put
type

Flag Description

Trajec-
tory file
*

File -t MD trajectory input file (.xtc, .mdcrd etc.)

Topol-
ogy file
*

File -p Topology file (.gro, .pdb etc)

Output
direc-
tory

String -out Name of the output directory. Default is out, suffixed by trajectory name

Atom
group

String -ag Group of atoms for PCA. Default is CA atoms. Other options are: all = all atoms,
backbone = backbone atoms, CA = C-alpha atoms, protein = protein atoms

Refer-
ence
structure

File -r Reference structure for RMSD. Default: First frame of MD trajectory

PCA
method

String -pt PCA method. Default is svd (Single Value Decomposition) PCA. Options are: evd, kpca,
svd, ipca. If svd is selected, additional arguments can be passed by flag -st. If KernelPCA
is selected kernel type can also be defined by flag -k

Number
of com-
ponents

Int -nc Number of components to keep in a PCA object. Default: All the components will be
kept.

Kernel
Type

String -kt Type of kernel for KernalPCA. Default is linear. Options are: linear, poly, rbf, sigmoid,
cosine, precomputed

SVD
solver
type

String -st Type of svd_solver for SVD (Single Value Decomposition) PCA. Default is auto. Op-
tions are: auto, full, arpack, randomized

Outputs:

Output Description
PC plots 2D Plot of first 3 PCs. It is grace formatted text file
PC plots (.png) 2D Plot of first 3 PCs. Same as above, but points are color coded according to MD time
Scree plot Scree plot of contribution of first 100 modes (eigenvectors)
RMSD plot RMSD of selected atoms over the MD time
RMSD Modes Plot of contribution of each resdiues towards the first 3 modes (eigenvectors)

Besides the above-mentioned plots, it also prints useful information on the terminal such as, information about the
trajectory, Kaiser-Meyer-Olkein (KMO) index of the trajectory, and cosine contents of the first few PCs. KMO value
range from 0 to 1, 1 indicating that the MD has been sampled sufficiently. The cosine content of PCA projections can
be used as an indicator if a simulation is converged. Squared cosine value should be more than 0.5.

Specific Examples:

10.1 PCA on Cartesian coordinates

Given a trajectory called trajectory.xtc and a topology file called complex.pdb, the following command is
used:

pca.py -t trajectory.xtc -p complex.pdb

30 Chapter 10. PCA Scripts

NMA-Task Documentation

This will perform the singular value decomposition (SVD) based PCA on CA atoms by default. To use other methods,
see the following examples.

10.1.1 SVD PCA

To perform SVD PCA on CA atoms of a MD trajectory

Command: pca.py -t trajectory.xtc -p complex.pdb -ag CA -pt svd

To perform the SVD PCA on backbone atoms

Command: pca.py -t trajectory.xtc -p complex.pdb -ag backbone -pt svd

10.1.2 Kernel PCA

To perform the Kernel PCA with linear kernel

Command: pca.py -t trajectory.xtc -p complex.pdb -ag CA -pt kpca -kt linear

To perform the Kernel PCA with rbf kernel

Command: pca.py -t trajectory.xtc -p complex.pdb -ag CA -pt kpca -kt rbf

10.1.3 Incremental PCA

Incremental PCA (IPCA) is a variant of usual PCA, which uses low-rank approximation of the input MD trajectory. It
uses the amount of memory to store the input trajectory which is independent of trajectory size. IPCA is very useful
in case the size of trajectory is larger than that may be handled by the available computer memory.

Command: pca.py -t trajectory.xtc -p complex.pdb -ag CA -pt ipca

10.1.4 Eigenvalue decomposition (EVD) PCA

To perform the PCA by eigenvalue decomposition

Command: pca.py -t trajectory.xtc -p complex.pdb -ag CA -pt evd

Detailed usage:

Run the following command to see the detailed usage and other options: pca.py -h

10.2 PCA on internal coordinates

Users can also perform the PCA on internal coordinates of a MD trajectory. Options are available for different types
of internal coordinates such as: pairwise distance between atoms, 1-3 angle between backbone atoms, psi angle, and
phi angle.

General Usage:

Command: internal_pca.py -t <MD trajectory> -p <topology file>

10.2. PCA on internal coordinates 31

NMA-Task Documentation

Inputs:

Input
(*re-
quired)

Input
type

Flag Description

Trajec-
tory file
*

File -t MD trajectory input file (.xtc, .mdcrd, etc.)

Topology
file *

File -p Topology file (.gro, .pdb, etc)

Output
directory

String -out Name of the output directory. Default is out, suffixed by trajectory name

Atom
group

String -ag Group of atom for PCA. Default is CA atoms. Other options are: all = all atoms,
backbone = backbone atoms, CA = C-alpha atoms, protein = protein atoms

Coor-
dinate
Type

String -ct Internal cordinate type. Options are: distance, angles, phi, and psi

Outputs:

Output Description
PC plots 2D Plot of first 3 PCs. It is a grace formatted text file
PC plots (.png) 2D Plot of first 3 PCs. Same as above, but points are color coded according to MD time
Scree plot Scree plot of the contribution of the first 100 modes (eigenvectors)

Specific Examples:

PCA on pairwise distance between CA atoms:

To perform the PCA on pairwise distance between CA atoms of an MD trajectory trajectory.xtc and a topology
file complex.pdb

Command: internal_pca.py -t trajectory.xtc -p complex.pdb -ag CA -ct distance

PCA on psi angles:

Command: internal_pca.py -t trajectory.xtc -p complex.pdb -ct psi

Detailed usage:

Run the following command to see the detailed usage and other options: internal_pca.py -h

10.3 MDS (Multi-dimensional scaling) on MD trajectory

MDS is a tool to visualize the similarity or dissimilarity in a dataset. Two types of dissimilarity measures can be used
in the case of a MD trajectory. The first is Euclidean distance between internal coordinates of a protein structure, the
second is pairwise RMSD between a set of atoms over the frames of a MD trajectory.

General Usage:

command: mds.py -t <MD trajectory> -p <topology file>

Inputs:

32 Chapter 10. PCA Scripts

NMA-Task Documentation

Input
(*re-
quired)

In-
put
type

Flag Description

Tra-
jectory
file *

File -t MD trajectory input file (.xtc, .mdcrd, etc.)

Topol-
ogy file
*

File -p Topology file (.gro, .pdb, etc)

Output
direc-
tory

String -out Name of the output directory. Default is out, suffixed by trajectory name

Atom
group

String -ag Group of atoms for MDS. Default is CA atoms. Other options are: all = all atoms, back-
bone = backbone atoms, CA = C-alpha atoms, protein = protein atoms

MDS
type

String -mt Type of MDS. Options are nm = non-metric, metric = metric

Dis-
simi-
larity
type

String -dt Type of dissimilarity matrix to use. euc = Euclidean distance between internal coordi-
nates, rmsd = pairwise RMSD. Default is rmsd

Coor-
dinate
type

String -ct Internal coordinate type. Default is pairwise distance. Only used if Dissimilarity type is
Euclidean

Atom
indices

String -ai Group of atoms for pairwise distance. Default is CA atoms. Other options are: all =
all atoms,backbone = backbone atoms, alpha = C-alpha atoms,heavy = all non-hydrogen
atoms, minimal = CA, CB, C, N, O atoms

Outputs:

Output Description
PC plots 2D Plot of the first 3 PCs. It is a grace formatted text file
PC plots (.png) 2D Plot of the first 3 PCs. Same as above, but points are color coded according to MD time

Specific Examples:

MDS on pairwise RMSD:

To perform MDS on the pairwise RMSD between CA atoms

Command: mds.py -t trajectory.xtc -p complex.pdb -dt rmsd -ag CA

MDS on internal coordinates:

To perform MDS on the pairwise distance between CA atoms

Command: mds.py -t trajectory.xtc -p complex.pdb -dt euc -ag CA

Detailed usage:

Run the following command to see the detailed usage and other options: mds.py -h

10.4 t-SNE on MD trajectory

t-distributed Stochastic Neighbor Embedding (t-SNE) is a tool for dimensionality reduction. It is a variant of stochastic
neighbor embedding technique. t-SNE uses a measure of dissimilarity, which, in the case of MD trajectory, may be

10.4. t-SNE on MD trajectory 33

NMA-Task Documentation

the Euclidean distance between internal coordinates or pairwise RMSD.

General Usage:

Command: tsne.py -t <MD trajectory> -p <topology file>

Inputs:

Input
(*re-
quired)

In-
put
type

Flag Description

Trajec-
tory file
*

File -t MD trajectory input file (.xtc, .mdcrd, etc.)

Topol-
ogy file
*

File -p Topology file (.gro, .pdb, etc)

Output
direc-
tory

String -out Name of the output directory. Default is out, suffixed by trajectory name

Atom
group

String -ag Group of atoms for t-SNE. Default is CA atoms. Other options are: all = all atoms,
backbone = backbone atoms, CA = C-alpha atoms, protein = protein atoms

Coor-
dinate
type

String -ct Internal coordinates type. Default is pairwise distance . Only used if Dissimilarity type
is Euclidean

Dissim-
ilarity
type

String -dt Type of dissimilarity matrix to use. euc = Euclidean distance between internal coordi-
nates, rmsd = pairwise RMSD. Default is rmsd

Atom
indices

String -ai Group of atoms for pairwise distance. Default is CA atoms. Other options are: all = all
atoms, backbone = backbone atoms, alpha = C-alpha atoms, heavy = all non-hydrogen
atoms, minimal = CA, CB, C, N, O atoms

PER-
PLEX-
ITY

Float -pr [t-SNE parameters] The perplexity is related to the number of nearest neighbors that is
used in other manifold learning algorithms Default is 30

LEARN-
ING_RATE

Float -lr [t-SNE parameters] The learning rate for t-SNE. Default is 200

N_ITER Int -ni [t-SNE parameters] Number of iteration to run. Default is 300

Outputs:

Output Description
PC plots 2D Plot of the first 3 PCs. It is grace formatted text file
PC plots (.png) 2D Plot of the first 3 PCs. Same as above, but point are color coded according to MD time

Specific Example:

t-SNE on CA atoms: To perform t-SNE using the pairwise RMSD of CA atoms as index of dissimilarity.

command: tsne.py -t trajectory.xtc -p complex.pdb -ag CA -dt rmsd

To perform t-SNE using the Euclidean space between pairwise distance of CA atoms as index of dissimilarity.

command: tsne.py -t trajectory.xtc -p complex.pdb -ag CA -dt euc -ai alpha

Detailed usage:

Run the following command to see the detailed usage and other options: tsne.py -h

34 Chapter 10. PCA Scripts

CHAPTER 11

NMA Tutorial

Enterovirus 71 (EV-71) is a human pathogen that predominantly infects small children. The capsid is icoshedral and
contains 60 protomer units. In a mature capsid the protomers are assembled as a set of 12 pentamers. Each protomer
contains a single copy of the proteins VP1-VP4. During infection, the virus capsid expands to release its RNA into the
host cell. This expanded capsid is known as the A-particle.

11.1 Aim

In this tutorial we will apply the ANM model to a single pentamer of the mature EV-71 capsid. We aim to identify the
normal modes that contribute to the conformational changes within a pentamer during capsid expansion.

11.2 Create a working directory

First create a directory for all the MODE-TASK scripts using the Linux command:

mkdir ModeTask

Copy the entire contents of the MODE-TASK Scripts into the MODE-TASK directory.

Within this directory create a folder called Tutorial:

cd ModeTask
mkdir Tutorial

We will run all scripts from the ModeTask directory.

11.3 Preparation of structure of the mature capsid

1. Download the 3VBS biological assembly (3VBS.pdb1) of the mature EV-71 capsid from the PDB.

35

NMA-Task Documentation

2. Open 3VBS.pdb1 in PyMOL.

3. Use the split_states 3VBS command to visualise the full capsid.

4. Save the capsid: File – Save Molecule – Select the first five states. Save as EV71_Pentamer.pdb into the
ModeTask/Tutorial directory.

Each protomer has four subunits: VP1-VP4. VP4 is an internal capsid protein.

• Number of residues per protomer = 842

• Number of residues per pentamer = 4210

The estimated run time to perfom ANM on a complex of 4210 residues, using Mode Task is 25 hours.

For the sake of this tutorial we will use the coarseGrain.py script to construct a lower resolution pentamer.

11.4 Preparation of the structure of the A-particle capsid

1. Download the 4N43 biological assembly (4N43.pdb1) of the A-partcile EV-71 capsid from the PDB.

2. Open 4N43.pdb1 in PyMOL.

3. Use the split_states 4N43 command to visualise the full capsid.

4. Save the capsid: File – Save Molecule – Select the first five states. Save as Apart_Pentamer.pdb into the
ModeTask/Tutorial directory.

11.5 Coarse grain

The MODE-TASK package is designed to analyse both single proteins and larger macromolecules such as a virus
capsid. The ANM.cpp script contructs an elastic network model on all CA or CB atoms in a given PDB file. This is
ideal for smaller protein complexes. For larger protein complexes, the coarseGrained.py script can be used to construct
an additional coarse grained PDB file.

1. Create a two models of the EV71 Pentamer complex with additional coarse graining set at levels 3 and 4 of
selected CB atoms:

coarseGrain.py --pdb Tutorial/EV71_Pentamer.pdb --cg 3,4 --startingAtom 1 --
→˓output EV71_CG3.pdb --outdir Tutorial --atomType CB

The input paramaters include:

• pdb: This is the pdb structure that you wish to coarse grain

• cg: This specifies the levels of coarse graining. To select fewer atoms increase the level

• starting atom: This specifies the first residue to be selected in the complex

• output: The filename of the coarse grained pdb file

• outdir: The directory in which to save the coarse grained pdb file

Output:

1. EV71_CG3.pdb and EV71_CG4.pdb : Two separate coarse grained pdb files that have the coordinates of se-
lected CB atoms from residues that are equally distributed across the complex. As an example, EV71_CG3.pdb
is shown in the figure below.

2. Command line output

36 Chapter 11. NMA Tutorial

NMA-Task Documentation

==
Started at: 2017-12-12 11:34:36.399300
--
SUMMARY OF COARSE GRAINING PERFORMED AT LEVEL 3
No. atoms selected per unit: 122 from 842 original residues
No. atoms selected per macromolecule: 610 from 4210 orignal residues
--
--
SUMMARY OF COARSE GRAINING PERFORMED AT LEVEL 4
No. atoms selected per unit: 54 from 842 original residues
No. atoms selected per macromolecule: 270 from 4210 orignal residues
--
Completed at: 2017-12-12 11:34:36.541637
- Total time: 0:00:00

Note that, the same set of 122 atoms from each protomer were selected for CG3, likewise, the same set of 54 atoms
from each protomer were selected for CG4 – thus the symmetry of the pentamer is retained.

Fig. 1: Left) Crystal structure of the EV71 Pentamer (3VBS). Right) EV71_CG3.pdb contains 610 CB atoms from
4210 total residues.

11.6 Mode decomposition

The ANM.cpp script accepts a PDB file and a cutoff distance. The script constructs the Hessian matrix connecting
all CB atoms within the specific cutoff radius. The script then performs singular value decomposition to return the
eigenvalues and eigenvectors of the Hessian matrix.

Input parameters:

• pdb: path to PDB file

11.6. Mode decomposition 37

NMA-Task Documentation

• cutoff: cutoff radius in A. The script will construct an elastic network model by connecting all atoms that interact
within the cutoff distance (default = 15Å)

• outdir: folder in which output is saved

Output:

W_values.txt: A list of 3N eigenvalues of the system. Eigenvalues are ordered from slowest to fastest.

VT_values.txt: A 3Nx3N list of the eigenvectors for each mode. Eigenvectors are printed as a set of rows.

U_values.txt: A 3Nx3N list of the eigenvectors for each mode. Eigenvectors are printed as a set of columns.

1. Compile the ANM.cpp script

The ANM.cpp script requires classes of the AlgLib library. These classes can be found in the cpp/src folder in the
GitHub Directory. The path to these classes must be specified in the compile command using the -I parameter:

g++ -I cpp/src/ ANM.cpp -o ANM

In this tutorial, we will perform a comparative analysis between the normal modes of the EV71_CG3.pdb and
EV71_CG4.pdb

2. Run ./ANM to analyse EV71_CG4.pdb with a cutoff of 24Å

./ANM --pdb Tutorial/EV71_CG4.pdb --outdir Tutorial --atomType CB --cutoff
→˓24

Example of the command line output:

Started at: 2017-08-22 11:55:33
Starting Decomposition
Completed at: 2017-08-22 11:55:47
- Total time: 0:00:13

3. Run ./ANM to analyse EV71_CG3.pdb

3.1) First make a sub-directory to avoid overwriting of your previous ANM output:

mkdir Tutorial/CG3

3.2)

./ANM --pdb Tutorial/EV71_CG3.pdb --outdir Tutorial/CG3 --atomType CB --cutoff 24

Example of command line output:

Started at: 2017-08-22 11:56:42
Starting Decomposition
Completed at: 2017-08-22 11:59:14
- Total time: 0:02:0-704

11.7 Identification of modes that contribute to the conformational
change

We have performed ANM on two separate pentamer complexes. From each model, we have obtained a set of eigen-
values and eigenvectors corresponding to each normal mode:

1. EV71_CG4.pdb, total non-trivial modes = 804

38 Chapter 11. NMA Tutorial

NMA-Task Documentation

2. EV71_CG3.pdb, total non-trivial modes = 1824

For each model we will now identify the modes that contribute to the conformational change of a pentamer during
capsid expansion.

We will then compare the modes from the respective models and determine if the additional coarse graining affected
the ability to capture such modes.

To determine if our modes overlap with the direction of the conformational change, we must first determine the confor-
mational change between the crystal structures of the mature and A-particle pentamer. The conformationMode.py
scripts take two UNALIGNED pdb files and the set of all eigenvectors determined for the complex. The script aligns
the structures, calculates the known conformational change and then identifies which modes contribute to the change.

Prepare the A-particle pentamer in PyMOL, using the biological assembly: 4n43.pdb1

11.8 Conformation mode

1. Compute the overlap between all modes of the EV71_CG4 model:

conformationMode.py --pdbANM Tutorial/EV71_CG4.pdb --vtMatrix Tutorial/VT_
→˓values.txt --pdbConf Tutorial/Apart_Pentamer.pdb --outdir Tutorial/ --
→˓atomType CB

Input paramters:

–pdbANM: This is the PDB file that you use to run ANM. Do not use the aligned file here

–vtMatrix: The eigenvalues obtained from ANM of the EV71_CG4 model

–pdbConf: This is the pdb file of the conformational change. In this case, the pentamer of the A-particle (The
–pdbANM and –pdbConf must NOT BE ALIGNED)

Output:

A text file with the overlap and correlation of each mode to the conformational change. The modes are ordered by the
absolute value of their overlap.

2. Compute overlap between all modes of the EV71_CG3 model (Remember to specify the correct directory):

conformationMode.py --pdbANM Tutorial/EV71_CG3.pdb --vtMatrix Tutorial/CG3/
→˓VT_values.txt --pdbConf Tutorial/Apart_Pentamer.pdb --outdir Tutorial/CG3
→˓--atomType CB

Top output from conformationalMode.py of EV71_CG4:

MODE Overlap Correlation

Mode: 9 0.759547056636 0.502678274421
Mode: 37 0.274882204134 0.0404194084198
Mode: 36 -0.266695656516 0.116161361929
Mode: 23 0.260184892921 0.0752811758038
Mode: 608 0.224274263942 0.0255344947974
Mode: 189 -0.208122679764 0.143874874887
Mode: 355 0.165654954812 0.0535734675763
Mode: 56 0.14539061536 0.11985698672
Mode: 387 -0.137880035134 0.245587436772
Mode: 307 -0.130040876389 0.145317107434

Top output from conformationalMode.py of EV71_CG3:

11.8. Conformation mode 39

NMA-Task Documentation

MODE Overlap Correlation

Mode: 9 -0.663942246191 0.236900852193
Mode: 30 -0.235871923574 0.192794743468
Mode: 56 0.159507003696 0.083164362262
Mode: 101 0.157155354273 0.272502734273
Mode: 172 0.156716125374 0.275230637373
Mode: 166 -0.153026188385 0.332283689479
Mode: 189 -0.147803049356 0.372767489438
Mode: 38 -0.13204901279 0.196369524407
Mode: 423 -0.131685652034 0.334715006091
Mode: 76 -0.129977918229 0.296798866026

In addition, the command line output will specify the precise atoms over which the calculations were performed.
(Of course, this will correspond to all atoms that are present in both conformations). The RMSD between the two
structures will also be specified:

Started at: 2017-12-12 12:50:48.922586

WARNING!!!:
Not all chains from PDB files were selected
Suggested: Chain IDs do not match between PDB Files

Correlations calculated across 465 common residues (93 per 5 asymmetric
→˓units).
Breakdown per chain:

A: 32 residues per asymmetric unit
Residues selected include: 74 79 92 98 101 105 108 112 122 139 142 148 155
→˓158 161 171

175 180 189 198 203 213 216 224 240 253 265 269
→˓273 282

290 293

B: 29 residues per asymmetric unit
Residues selected include: 17 37 44 58 65 76 79 83 90 108 115 128 134 141
→˓151 155 180

186 189 202 208 219 222 227 231 234 241 245 249

C: 32 residues per asymmetric unit
Residues selected include: 2 7 12 15 18 28 32 36 40 65 78 82 86 92 98 104
→˓112 133 139

147 152 158 169 174 202 205 209 214 219 222 229
→˓233

RMSD between the two conformations = 3.95802072351

Completed at: 2017-12-12 12:50:49.269902
- Total time: 0:00:00

40 Chapter 11. NMA Tutorial

NMA-Task Documentation

11.9 Combination mode

This option allows to calculate the overlap and correlation to a conformational change, over a combination of modes.
In this example, we will use the EV71_CG3 Model and perform the calculation over the modes 9 and 30.

combinationMode.py –pdbANM Tutorial/EV71_CG3.pdb –vtMatrix Tutorial/CG3/VT_values.txt –pdb-
Conf Tutorial/Apart_Pentamer.pdb –modes 9,30 –outdir Tutorial/CG3 –atomType CB

Output from combinationMode.py

The command line output is the same as described for conformationMode.py

The script will also print out two text files:

1. A file that specifies that calculated overlap and correlation over the full model:

MODE Overlap Correlation

Mode: 9 -0.663942246191 0.236900852193
Mode: 30 -0.235871923574 0.192794743468

Combined Overlap = 0.616937749679
Combined Correlation = 0.219893695954

2. A file that gives a breakdown of the calculated overlap and correlation per chain in each asymmetric unit of the
model. This is very useful for identifying which regions of the complex contribute the most to the conformational
change for a given mode:

===
===

ASYMMETRIC UNIT: 1
CHAIN: A
MODE Overlap Correlation

Mode: 9 -0.677454134085 0.101259205597
Mode: 30 -0.396594527376 0.601345215538

Combined Overlap = 0.620398046618
Combined Correlation = 0.337867917512

CHAIN: B
MODE Overlap Correlation

Mode: 9 -0.717931968623 0.491498558701
Mode: 30 -0.348260895864 0.249005547277

Combined Overlap = 0.679846136775
Combined Correlation = 0.321369216974

CHAIN: C
MODE Overlap Correlation

Mode: 9 -0.637082761027 0.198091140187
Mode: 30 0.0309855898365 0.149051660589

Combined Overlap = 0.532447057412
(continues on next page)

11.9. Combination mode 41

NMA-Task Documentation

(continued from previous page)

Combined Correlation = 0.14767859844

===
===

ASYMMETRIC UNIT: 2
CHAIN: A
MODE Overlap Correlation

Mode: 9 -0.677486033685 0.101126894833
Mode: 30 -0.396528584512 0.601655942534

Combined Overlap = 0.620396963618
Combined Correlation = 0.337655761311

CHAIN: B
MODE Overlap Correlation

Mode: 9 -0.717946715867 0.491379282027
Mode: 30 -0.34820663545 0.249321165251

Combined Overlap = 0.679888476475
Combined Correlation = 0.321447980441

CHAIN: C
MODE Overlap Correlation

Mode: 9 -0.637045607049 0.19801176313
Mode: 30 0.0310759318839 0.149266120068

Combined Overlap = 0.53259259653
Combined Correlation = 0.147730501227

===
===

ASYMMETRIC UNIT: 3
.
.
.
ASYMMETRIC UNIT: 4
.
.
.
ASYMMETRIC UNIT: 5

11.10 Mode visualisation

From each model we have identified which mode overlaps the most with the direction of the conformational change.
We can now project these vectors onto the respective models using the visualiseVector.py script and then visualise
them as a set of frames in VMD:

1) Standard visualisation This option uses the default settings: Radius of arrow head = 2.20 Radius of arrow tail = 0.80

42 Chapter 11. NMA Tutorial

NMA-Task Documentation

Arrow are coloured by chain in ascending order of PDB file according to the list:

In a biological assembly, respective chains from each asymmetric unit are presented in the same colour. The script can
handle 20 non-identical changes, after which all arrows will be coloured black by default

1.1) Visualise eigenvectors for mode 9 of the CG4 model. Note this overlap is positive, thus the vectors act in the
direction to conformational change. Therefore we can specify the direction as 1 (or rely on the default setting of
direction = 1) when visualising the vectors:

visualiseVector.py –pdb Tutorial/EV71_CG4.pdb –vtMatrix Tutorial/VT_values.txt –mode
9 –atomType CB –direction 1 –outdir Tutorial OR visualiseVector.py –pdb Tuto-
rial/EV71_CG4.pdb –vtMatrix Tutorial/VT_values.txt –mode 9 –atomType CB –outdir Tu-
torial

1.2) Visualise eigenvectors for mode 9 of the CG3 model. Note this overlap is negative, thus the vectors act in the
opposite direction to conformational change. Therefore we must specify the direction as -1 when visualising the
vectors:

visualiseVector.py –pdb Tutorial/CG3/EV71_CG3.pdb –vtMatrix Tutorial/CG3/VT_values.txt –mode 9
–atomType CB –direction -1 –outdir Tutorial/CG3

Output from visualiseVector.py

The script will produce a folder named VISUALISE. For every mode that you give to visualiseVector.py two files will
be produced:

1. A VISUAL PDB file. This can be opened in VMD and visualised as a set of 50 frames.

2. A VISUAL_ARROWS text file. This file contains a Tcl script that can be copied into the VMD TK console.
The script plots a set of arrows indicating the direction of each atom.

Visualising the results in VMD

1. Open VMD.

2. To load the VISUAL_9.pdb file click the following tabs: File >> New Molecule >> Browse >>
Select VISUAL_9.pdb.

3. The VISUAL_9.pdb file contains a set of 50 frames of the eigenvectors of mode 9. This can be visualised as a
movie by clicking on the Play button. The frame set can also be coloured to the user’s desire using the options
under the Graphics >> Representations

4. The VISUAL_ARROWS text file contains a script that can be copied and pasted straight into the Tk Console in
VMD: Extensions >> Tk Console

5. To obtain a clearer observation, change the background to white: Graphics >> Colors >> Under
Categories select Display >> Under Names select Background >> Under Colors
select White

6. To obtain only the arrows, delete all frames of the VISUAL_9.pdb molecules: Right click on the
number of frames >> Delete frames >> Delete frames 0 to 49

7) Alternatively you can plot the arrows onto the original PDB (uncoarse grained) PDB file and visualise it in cartoon
format: Load EV71_Pentamer.pdb into VMD >>‘‘Graphics >> Representations >> Drawing method >> NewCartoon‘‘
>> copy and paste the VISUAL_ARROWS text file into the Tk Console. To improve clarity under the NewCartoon
options select: Material >> Transparent Spline Style >> B-Spline

8. To colour tha protein complex by chain: Graphics >> Colours >> Under Categories
select Chain >> Under Name select A >> Under Colours select Red To match
the arrows colours as: Chain A = Red Chain B = Blue Chain C = Orche Chain D = Purple Finally
instruct VMD to colour by chain Graphics >> Representations >> Coloring Method
>> Chain

11.10. Mode visualisation 43

NMA-Task Documentation

Fig. 2: Fig: Visualisation in VMD. Left) Only arrows depicted Right) Arrows plotted onto cartoon depiction of
pentamer

2. Additional options for visualisation

Here you have the options to: 2.1) Change the thickness and length of the arrows 2.2) Specify the colours of the arrows
for each change 2.3) Visualise the motion and draw arrows for a single or specified set of asymmetric units 2.4) Draw
arrows for a single chain

We will demonstrate each of the above options using the EV71_CG4 model.

2.1) Change the thickness and length of the arrows Here we will increase the thickness of the arrow head to 3.0,
increase the thickness of the arrow tail to 1.5 and the increase the length pf each arrow by a factor of 2

visualiseVector.py –pdb Tutorial/EV71_CG4.pdb –vtMatrix Tutorial/VT_values.txt –mode 9 –atomType
CB –outdir Tutorial –head 3.0 –tail 1.5 –arrowLength 2

2.2) specify the colours of the arrows for each change

Here we will colour the arrows as follows: Chain A = Yellow Chain B = Blue Chain C = Pink Chain D = Green

visualiseVector.py –pdb Tutorial/EV71_CG4.pdb –vtMatrix Tutorial/VT_values.txt –mode 9 –atomType CB
–outdir Tutorial –colourByChain yellow,blue,pink,green

2.3) Visualise the motion and draw arrows for a single or specified set of asymmetric units

Here we will visualise the motion of asymmetric units 1 and 3.

visualiseVector.py –pdb Tutorial/EV71_CG4.pdb –vtMatrix Tutorial/VT_values.txt –mode 9 –atomType
CB –outdir Tutorial –aUnits 1,3

The motion will be captured in the frame set: VISUAL_AUNITS_9.pdb in the Tutorial folder, and can be played in
VMD.

2.4) Draw arrows for a single chain

Here we will draw arrows only for A chain of asymmetric unit 1 of the EV71_CG4 pentamer, in colour gray
visualiseVector.py –pdb Tutorial/EV71_CG4.pdb –vtMatrix Tutorial/VT_values.txt –mode 9 –atomType CB
–outdir Tutorial –aUnits 1 –chain A –colourByChain gray

44 Chapter 11. NMA Tutorial

NMA-Task Documentation

Fig. 3: Fig: Visualisation in VMD after increasing arrow sizes

11.10. Mode visualisation 45

NMA-Task Documentation

Fig. 4: Fig: Visualisation in VMD with arrows coloured as specified by user

46 Chapter 11. NMA Tutorial

NMA-Task Documentation

Fig. 5: Fig: Vectors arrows for asymmetric units 1 and 3 of the pentamer

11.10. Mode visualisation 47

NMA-Task Documentation

Fig. 6: Fig: Vectors arrows for Chain A of asymmetric units 1 in colour gray

11.11 Mean square fluctuation (MSF)

Next, we will use the meanSquareFluctuations.py script to calculate the MSF of the CB atoms. The scripts allows you
to calculate:

1. the MSFs, calculated over all modes

2. the MSFs of the CB atoms for a specific mode, or a specific range of modes.

The script also allows for comparison of MSF obtained from modes of different models. We can use the –pdbConf2
parameter to send the script a second PDB model. The script will then calculate the MSF of atoms corresponding to
residues that are common between both models.

In this tutorial, we will analyse and compare the MSF between EV71_CG4 and EV71_CG3. This will give an indica-
tion as to whether or not the higher coarse grained model is also suitable to study the virus.

1. We will compare the MSFs between the two models for a) all modes, and b) mode 9

meanSquareFluctuation.py --pdb Tutorial/EV71_CG3.pdb --wMatrix Tutorial/CG3/
→˓W_values.txt --vtMatrix Tutorial/CG3/VT_values.txt --pdbConf2 Tutorial/
→˓EV71_CG4.pdb --wMatrixC Tutorial/W_values.txt --vtMatrixC Tutorial/
→˓VT_values.txt --modes 9 --outdir Tutorial/ --atomType CB

Output for Model CG3:

1) PDB1_msf.txt: Text file of the overall MSFs values for all residues of CG3

2) PDB1__msfSpecificModes.txt: MSFs for all residues for mode 9 of CG3

3) PDB1CommonResidues_msf.txt: Overal MSFs for residues (of CG3) common to CG3 and CG4

48 Chapter 11. NMA Tutorial

NMA-Task Documentation

4) PDB1_CommonResidues_msfSpecificModes.txt: MSFs for residues (of CG3) common to CG3 and CG4 calcu-
lated for mode 9

Output for Model CG4:

1) PDBCompare_msf.txt:: Text file of the overall MSFs values for all residues of CG4

2) PDBCompare__msfSpecificModes.txt: MSFs for all residues for mode 9 of CG4

3) PDBCompareCommonResidues_msf.txt: overal MSFs for residues (of CG4) common to CG4 and CG3.

4) PDBCompare_CommonResidues_msfSpecificModes.txt: MSFs for residues (of CG4) common to CG4 and CG3
calculated for mode 9

11.12 Assembly Covariance

Now, we will use the assemblyCovariance.py script to calculate to plot various covariance matrices of the complex.
For this example we will use the EV71_CG3 Model.

1. First, we will plot the overall covariance for the full model, as calculated over all modes:

assemblyCovariance.py –pdb Tutorial/EV71_CG3.pdb –wMatrix Tutorial/CG3/W_values.txt –vt-
Matrix Tutorial/CG3/VT_values.txt –modes all –outdir Tutorial/CG3/ –atomType CB

The above function will produce a plot corresponding to the full model, AND as a default a second plot that zooms
into the first asymmetric unit will also be produced

2. Now we will use the additional options to calculate the covariance for mode 7 only (the first non-trivial mode).
We will also plot the covariance between the asymmetric units 1 and 3, and then zoom into chain A of the first
asymmetric unit. We have also adjusted the values of the axes to increase sensitivity for a single mode.

assemblyCovariance.py –pdb Tutorial/EV71_CG3.pdb –wMatrix Tutorial/CG3/W_values.txt –vt-
Matrix Tutorial/CG3/VT_values.txt –modes 7 –aUnits 1,3 –zoom 1,A –outdir Tutorial/CG3/M7
–atomType CB –vmin -0.005 –vmax 0.005

The above function will produce a plot corresponding to the full model for mode 7, a second plot that zooms into
covariance between the first and third asymmetric units, and a third plot for the covariance of Chain A and Unit 1.

For each of the steps above, the script also outputs each covariance matrix in txt file format.

11.12. Assembly Covariance 49

NMA-Task Documentation

Fig. 7: Fig: Overall covariance matrix for the full EV71_CG3 Model

50 Chapter 11. NMA Tutorial

NMA-Task Documentation

Fig. 8: Fig: Overall covariance matrix for a single protomer within the EV71_CG3 Model

11.12. Assembly Covariance 51

NMA-Task Documentation

Fig. 9: Fig: Covariance matrix for the full EV71_CG3 Model calculated over Mode 7

52 Chapter 11. NMA Tutorial

NMA-Task Documentation

Fig. 10: Fig: Covariance matrix for the asymmetric units 1 and 3 of the EV71_CG3 Model calculated over Mode 7

11.12. Assembly Covariance 53

NMA-Task Documentation

Fig. 11: Fig: Covariance matrix for Chain A in asymmetric units 1 the EV71_CG3 Model calculated over Mode 7

54 Chapter 11. NMA Tutorial

CHAPTER 12

PCA Tutorial

12.1 PCA of a MD trajectory

In this tutorial, we will be performing PCA on a MD trajectory of protein. Before doing the PCA, we need to prepare
the trajectory which includes removing periodicity and removing water molecules. Most of the MD packages have
options to do this. We will be using GROMACS in this tutorial. We will be using .xtc format for trajectory and .pdb
for topology file. Any other common trajectory format should also work with MODE-TASK.

1. Preparation of trajectory

1.1. Remove periodicity

gmx_mpi trjconv -s md_01.tpr -f md_01.xtc -o md_01_noPBC.xtc -pbc mol -ur
→˓compact

select system to apply it.

1.2. Remove water

gmx_mpi trjconv -s md_01.tpr -f md_01_noPBC.xtc -o md_01_noWAT.xtc -n index

and select protein

2. Create a working directory

First, create a directory for all the MODE-TASK scripts using the Linux command:

mkdir ModeTask

Copy the entire contents of the MODE-TASK scripts into the MODE-TASK directory.

Within this directory create a folder called Tutorial:

cd ModeTask
mkdir Tutorial

55

NMA-Task Documentation

We will run all scripts from the MODE-TASK directory. Move the trajectory (md_01_noWAT.xtc) and topology file
(complex.pdb) into the Tutorial directory.

3. Running PCA

MODE-TASK includes tools to perform PCA on Cartesian coordinates as well as internal coordinates. It also allows
users to run different variants of PCA on a single MD trajectory.

3.1. PCA on Cartesian coordinates

Run the following command to perform the singular value decomposition (SVD) PCA on CA atoms.

pca.py -t Tutorial/md_01_noWAT.xtc -p Tutorial/complex.pdb -ag CA -pt svd

Output:

(a)- Various output files are written to the out_md_01_noWAT.xtc directory. 2D Plot of first 3 PCs, Scree plot, RMSD
plot, and RMSD Modes plot. For details about these output files, please refer to the MODE-TASK documentation.

(b)- Command line output: Following output is redirected to command line.

Results will be written in out_md_01_noWAT.xtc
Reading trajectory Tutorial/md_01_noWAT.xtc ...
No reference structure given, RMSD will be computed to the first frame in
→˓the trajectory
Trajectory info:
Total 101 frames read from Tutorial/md_01_noWAT.xtc
MD time is from 199000.0 to 200000.0 ps
13244 atoms and 861 residues in the trajectory
Atom group selected for PCA: CA
Total 860 CA atoms selected for analysis
KMO for input trajectory is 5.25051335835e-06
RMSD written to rmsd.agr
Performing SVD (Single Value Decomposition) PCA with 'auto' svd_solver
Trace of the covariance matrix is: 4.9427056479
cosine content of first PC= 0.777934456531
cosine content of second PC= 0.643848137376
cosine content of 3rd PC= 0.70061477062
cosine content of 4th PC= 0.530112237076

3.2. Visualizing the results

2D Plot of the first 3 PCs in grace and png format is written. In order to open the .agr file with xmgrace run the
following command.

xmgrace out_pca_test_trj.xtc/pca_projection1_2.agr

You can also visualize the .png format figure plot by opening it with your favorite picture visualizer. In the same way,
open the rmsd.agr and pca_variance.agr.

3.3. PCA on internal coordinates

One can also do PCA on internal coordinates of a MD trajectory. Options are available for different types of internal
coordinates such as, pairwise distance between atoms, 1-3 angle between backbone atoms, phi angle, and psi angle.
Run the following command to do PCA on pairwise distance between CA atoms.

internal_pca.py -t Tutorial/md_01_noWAT.xtc -p Tutorial/complex.pdb -ag CA -
→˓ct distance

Run the following command to do PCA on backbone psi angles.

56 Chapter 12. PCA Tutorial

NMA-Task Documentation

Fig. 1: plot of PC1 and PC2

12.1. PCA of a MD trajectory 57

NMA-Task Documentation

Fig. 2: plot of PC1 and PC3

58 Chapter 12. PCA Tutorial

NMA-Task Documentation

Fig. 3: Explained variance of PCs

12.1. PCA of a MD trajectory 59

NMA-Task Documentation

internal_pca.py -t Tutorial/md_01_noWAT.xtc -p Tutorial/complex.pdb -ag CA -
→˓ct psi

Output files include 2D plot of first 3 PCs and Scree plot, which can be visualized using xmgrace as described earlier.

12.2 MDS (Multi-dimensional scaling) on a MD trajectory

To perform the MDS on pairwise RMSD between C-alpha atoms, run the following command.

mds.py -t Tutorial/md_01_noWAT.xtc -p Tutorial/complex.pdb -ag CA -dt rmsd

Output files include 2D plot of first three PCs which can be visualized using xmgrace as described earlier.

Fig. 4: plot of PC1 and PC2

12.3 t-SNE on a MD trajectory

Run the following command to perform t-SNE using pairwise RMSD of CA atoms as the index of dissimilarity.

60 Chapter 12. PCA Tutorial

NMA-Task Documentation

Fig. 5: plot of PC1 and PC3

12.3. t-SNE on a MD trajectory 61

NMA-Task Documentation

tsne.py -t Tutorial/md_01_noWAT.xtc -p Tutorial/complex.pdb -ag CA -dt rmsd

Output files include 2D plot of the first 3 PCs, which can be visualize using xmgrace as described earlier.

Note: The t-SNE algorithm is non-linear and highly flexible, which makes it difficult to interpret the results. Different
set of parameters gives very different output. Users are required to try different set of values for “perplexity” , “learning
rates”, and “number of iteration”. A useful discussion covering these issues can be found here https://distill.pub/2016/
misread-tsne/

Fig. 6: plot of PC1 and PC2

62 Chapter 12. PCA Tutorial

https://distill.pub/2016/misread-tsne/
https://distill.pub/2016/misread-tsne/

NMA-Task Documentation

Fig. 7: plot of PC1 and PC3

12.3. t-SNE on a MD trajectory 63

NMA-Task Documentation

64 Chapter 12. PCA Tutorial

CHAPTER 13

pyMODE-TASK- PyMOL plugin

Kindly see the pyMODE-TASK documentaion for further details.

65

http://pymode-task.readthedocs.io/en/latest/

	Introduction
	PyMOL Plugin
	Cite this project
	Contributing
	License

	Installation
	Platform compatibility
	Download the project
	Installing dependencies

	Normal Mode Analysis (NMA)
	Principal Component Analysis (PCA)
	Kernel PCA (kPCA)
	Incremental PCA
	Multi-dimensional scaling (MDS)
	t-Distributed Stochastic Neighbor Embedding (t-SNE)
	NMA Scripts
	Coarse grain
	ANM
	Mean square fluctuation
	Assembly Covariance
	Conformation mode
	Combination mode
	Mode visualisation

	PCA Scripts
	PCA on Cartesian coordinates
	PCA on internal coordinates
	MDS (Multi-dimensional scaling) on MD trajectory
	t-SNE on MD trajectory

	NMA Tutorial
	Aim
	Create a working directory
	Preparation of structure of the mature capsid
	Preparation of the structure of the A-particle capsid
	Coarse grain
	Mode decomposition
	Identification of modes that contribute to the conformational change
	Conformation mode
	Combination mode
	Mode visualisation
	Mean square fluctuation (MSF)
	Assembly Covariance

	PCA Tutorial
	PCA of a MD trajectory
	MDS (Multi-dimensional scaling) on a MD trajectory
	t-SNE on a MD trajectory

	pyMODE-TASK- PyMOL plugin

