
Mockify Documentation
Release 0...5

Maciej Wiatrzyk

Jul 27, 2019

Contents

1 User’s Guide 3
1.1 Changelog . 3

1.1.1 0.5.0 . 3
1.1.2 0.4.0 . 3
1.1.3 0.3.1 . 3
1.1.4 0.2.1 . 4
1.1.5 0.1.12 . 4

1.2 Installation . 4
1.2.1 From PyPI using virtualenv and pip . 4
1.2.2 Directly from source using virtualenv and pip . 4
1.2.3 Verifying installation . 4

1.3 Tutorial . 5
1.3.1 Mocking functions . 5
1.3.2 Mocking objects . 5
1.3.3 Recording and verifying expectations . 6
1.3.4 Configuring expectation objects . 11
1.3.5 Recording complex expectations . 15

1.4 API Reference . 17
1.4.1 mockify - Library core . 17
1.4.2 mockify.mock - Classes for mocking things . 21
1.4.3 mockify.actions - Classes for recording side effects . 24
1.4.4 mockify.cardinality - Classes for setting expected call cardinality 25
1.4.5 mockify.matchers - Classes for wildcarding expected arguments 27
1.4.6 mockify.exc - Library exceptions . 28

1.5 License . 29

Python Module Index 31

Index 33

i

ii

Mockify Documentation, Release 0...5

Welcome to Mockify library documentation!

Mockify is a mocking toolkit for Python inspired by GMock (Google Mock) C++ framework. I was using GMock a
lot during my 5 years of work as a C++ developer and really liked it for its expressive API. During that days I was still
writing some Python code (mostly in Python 2.x) and for testing it I was using hand-written stubs when needed. When
I used unittest.mock for the first time I noticed that it uses a very different approach than GMock I got used to,
so I decided to start writing my own toolkit.

Currently, Mockify is supplied with following features:

• Creating mocks of standalone functions and Python objects

• Recording call expectations with fixed arguments and using matchers

• Checking if expectations are satisfied using one single assert_satisfied assertion method

• Configuring recorded expectations:

– setting expected call count

– recording single and repeated actions (a.k.a. side effects)

– chaining actions

I hope you will find this library useful :-)

Contents 1

https://docs.python.org/3/library/unittest.mock.html#module-unittest.mock

Mockify Documentation, Release 0...5

2 Contents

CHAPTER 1

User’s Guide

1.1 Changelog

1.1.1 0.5.0

• Dependency management provided by pipenv

• Project’s CLI provided by Invoke library

• Added mockify.mock.Namespace mock class

• Use Sphinx Read The Docs theme for documentation

• Class mockify.mock.Object can now be used without subclassing and has API similar to other mock
classes

• Module mockify.helpers (was merged to library core)

• Module mockify.times (renamed to mockify.cardinality)

• Module mockify.engine is now available via mockify

• Modules mockify.mock.function and mockify.mock.object are now merged into mockify.mock

1.1.2 0.4.0

• Added strategies for dealing with unexpected calls

1.1.3 0.3.1

• Added frontend for mocking Python objects

3

Mockify Documentation, Release 0...5

1.1.4 0.2.1

• Updated copyright notice

• Added description to Alabaster Sphinx theme used for docs

• Added FunctionFactory mocking utility

• Changed Registry.assert_satisfied method to allow it to get mock names to check using positional args

• Script for running tests added (pytest wrapper)

• Updated copyright.py script and hardcode year the project was started and author’s name

1.1.5 0.1.12

• First release published to PyPI

1.2 Installation

1.2.1 From PyPI using virtualenv and pip

Mockify can be installed by simply invoking this inside active virtual Python environment:

$ pip install mockify

This will install most recently deployed version of the library.

You can also add Mockify to your requirements.txt file if your project already has one. After that, you can install all
dependencies at once using this command:

$ pip install -r requirements.txt

1.2.2 Directly from source using virtualenv and pip

You can also install Mockify directly from source code by simply invoking this command inside active virtual Python
environment:

$ pip install git+https://gitlab.com/zef1r/mockify.git@[branch-or-tag]

This will allow you to install most recent version of the library that may not be released yet to PyPI. And also you will
be able to install from any branch and tag.

1.2.3 Verifying installation

Once Mockify is installed, you can simply check if it works by invoking this code to print version of installed Mockify
library:

import mockify

print(mockify.version)

And you’re now ready to use Mockify for mocking things in your tests. Please proceed to Tutorial section of this
documentation to learn how to use it.

4 Chapter 1. User’s Guide

Mockify Documentation, Release 0...5

1.3 Tutorial

1.3.1 Mocking functions

Using Function class

This is the most basic mocking utility. Instances of mockify.mock.Function are simply used to mock normal
Python functions. You’ll need such mocks for example to test code that uses callbacks.

To create function mock you need to import function mock utility:

>>> from mockify.mock import Function

Now you can create function mock using following boilerplate pattern:

>>> foo = Function('foo')

In the code above we have created function mock named foo and assigned it to variable of same name. Now object
foo can be used like a normal Python function.

Most examples in this tutorial use function mocks.

Using FunctionFactory class

New in version 0.2.

You can also create function mocks in easier way by using mockify.mock.FunctionFactory class. Objects
of this class simplify function mock creation by allowing it to be created by just attribute reading. For example, to
create foo and bar function mocks you just need to execute following code:

>>> from mockify.mock import FunctionFactory
>>> factory = FunctionFactory()
>>> foo = factory.foo
>>> bar = factory.bar

Now both foo and bar are instances of mockify.mock.Function class. Of course you do not have to assign
factory attribute to a variable - you can pass it directly, or even pass entire factory object to code being under test if
needed.

Besides simplified mock creation this class also provides mockify.mock.FunctionFactory.
assert_satisfied() method that checks if all mocks created by the factory are satisfied. Of course you
can still do this by checking each individually:

>>> foo.assert_satisfied()
>>> bar.assert_satisfied()

But you will also achieve same result with this:

>>> factory.assert_satisfied()

1.3.2 Mocking objects

New in version 0.3.

Changed in version 0.5: Now you don’t need to subclass, and the API is the same as for other mock classes.

1.3. Tutorial 5

Mockify Documentation, Release 0...5

To mock Python objects you need mockify.mock.Object class:

>>> from mockify.mock import Object

Now you can instantiate like any other mocking utility:

>>> mock = Object('mock')

Once you have a mock object, you can inject it into some code being under test. For example, let’s have following
function that interacts with some obj object:

>>> def uut(obj):
... for x in obj.spam:
... obj.foo(x)
... return obj.bar()

To make uut function pass, we have to record expectations for:

• spam property to be read once

• foo to be called zero or more times (depending on what spam returns)

• bar to be called once and to return value that will also be used as uut function return value

We can of course create several combinations of expectations listed above (due to use of loop by uut function), but for
the sake of simplicity let’s configure spam to return [1] list, forcing foo to be called once with 1:

>>> from mockify.actions import Return
>>> mock.spam.fget.expect_call().will_once(Return([1]))
<mockify.Expectation: mock.spam.fget()>
>>> mock.foo.expect_call(1)
<mockify.Expectation: mock.foo(1)>
>>> mock.bar.expect_call().will_once(Return(True))
<mockify.Expectation: mock.bar()>

Let’s now call our uut function. Since we have covered all methods by our expectations, the mock call will now pass
returning True (as we’ve set bar to return True):

>>> uut(mock)
True

And our mock is of course satisfied:

>>> mock.assert_satisfied()

1.3.3 Recording and verifying expectations

Mocks with no expectations

When mock is created, it has no expectations set, so it already is satisfied:

>>> foo = Function('foo')
>>> foo.assert_satisfied()

Mockify requires each mock to have all needed expectations recorded. But since foo has no expectations recorded yet,
it cannot be called with any arguments and doing so will result in mockify.exc.UninterestedCall exception
being raised when call is made. For example:

6 Chapter 1. User’s Guide

Mockify Documentation, Release 0...5

>>> foo(1, 2)
Traceback (most recent call last):

...
mockify.exc.UninterestedCall: foo(1, 2)

In order to allow foo to be called with (1, 2) as parameters, a matching expectation have to be recorded.

Mocks with one expectation

Let’s go back to our mock foo defined in previous example and record a matching expectation:

>>> foo.expect_call(1, 2)
<mockify.Expectation: foo(1, 2)>

Now we’ve recorded that foo is expected to be called once with (1, 2) as positional arguments. Since the mock
now has expectation, it is not satisfied now, as the expectation was not yet satisfied (previous failed call does not
count):

>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo(1, 2)
Expected: to be called once

Actual: never called

As you can see, Mockify is presenting explanatory assertion message. You will know that only one expectation has
failed and will no exactly which expectation it is as exact file and line number where the expectation was created are
presented. Besides, you will also know how many times the mock is expected to be called with params matching
Pattern and how many times it was actually called.

Each expectation can be in one of three states:

• unsatisfied,

• satisfied

• and oversaturated.

Currently, expectation from example above is in unsatisfied state, as it can still be satisfied by adequate number of
matching mock calls. Let’s then call a mock once to make it satisfied:

>>> foo(1, 2)
>>> foo.assert_satisfied()

Calling a mock more times than expected is possible and will not cause mockify.exc.UninterestedCall
exception, as this is only used to point out that there were no expectations found that match given call parameters. But
if expectation is already satisfied and is called again, it becomes oversaturated and the mock will stay unsatisfied for
entire its lifetime:

>>> foo(1, 2)
>>> foo.assert_satisfied()
Traceback (most recent call last):

...

(continues on next page)

1.3. Tutorial 7

Mockify Documentation, Release 0...5

(continued from previous page)

mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo(1, 2)
Expected: to be called once

Actual: called twice
>>> foo(1, 2)
>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo(1, 2)
Expected: to be called once

Actual: called 3 times

Mocks with many expectations

Usually each mock will have many expectations recorded, as the code being under test will usually use its dependencies
more than once and with many different parameters. Let’s have a look at following simple function:

>>> def example(count, callback):
... for i in range(count):
... callback(i)

This function is simply calling callback given number of times and passes current loop index as an argument on
each iteration. If we want to test such function we basically need 3 tests:

1) Check if callback is not called when count is 0

2) Check if callback is called once with 0 when count is 1

3) Check if callback is triggered with 0, 1, . . . , N-1 if count is N

First test can be written as simple as this one:

>>> callback = Function('callback')
>>> example(0, callback)
>>> callback.assert_satisfied()

If callback gets called, the test will fail with mockify.exc.UninterestedCall exception. There is also a
nicer way to expect something to not happen but we’ll talk about this a bit later.

Second test will look similar to what we’ve already used in previous examples:

>>> callback = Function('callback')
>>> callback.expect_call(0)
<mockify.Expectation: callback(0)>
>>> example(1, callback)
>>> callback.assert_satisfied()

And third test would look like this. For the sake of simplicity let’s test our example function for N=2:

8 Chapter 1. User’s Guide

Mockify Documentation, Release 0...5

>>> callback = Function('callback')
>>> callback.expect_call(0)
<mockify.Expectation: callback(0)>
>>> callback.expect_call(1)
<mockify.Expectation: callback(1)>
>>> example(2, callback)
>>> callback.assert_satisfied()

As you can see, we have recorded two expectations. Mockify by default does not care about order of expectations, so
the same can also be achieved if those expectations are reversed:

>>> callback = Function('callback')
>>> callback.expect_call(1)
<mockify.Expectation: callback(1)>
>>> callback.expect_call(0)
<mockify.Expectation: callback(0)>
>>> example(2, callback)
>>> callback.assert_satisfied()

Note: There are plans of implementing ordered expectations in future releases of Mockify.

Let’s now leave our example function for a while and have a look at how unsatisfied assertion is rendered in case of
multiple failed expectations. Let’s create another mock with two expectations and call assert_satisfied on it:

>>> foo = Function('foo')
>>> foo.expect_call(1)
<mockify.Expectation: foo(1)>
>>> foo.expect_call(2)
<mockify.Expectation: foo(2)>
>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following 2 expectations are not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo(1)
Expected: to be called once

Actual: never called

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo(2)
Expected: to be called once

Actual: never called

If you now call a mock for the first time and check if it is satisfied, you’ll see that only one unsatisfied expectation has
left:

>>> foo(1)
>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

(continues on next page)

1.3. Tutorial 9

Mockify Documentation, Release 0...5

(continued from previous page)

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo(2)
Expected: to be called once

Actual: never called

And if call one remaining expected call, the mock will become satisfied:

>>> foo(2)
>>> foo.assert_satisfied()

Using matchers

Sometimes you will need to write single expectation that is supposed to match multiple argument values. For this pur-
pose, you will need matchers. Matchers are simple objects with overloaded object.__eq__() method. Thanks
to matchers you will be able to write expectations that match entire classes of values, not exact ones. You will find
predefined matchers in mockify.matchers module.

Let’s now use mockify.matchers.Any matcher to show how it would look in practice:

>>> from mockify.matchers import _
>>> foo = Function('foo')
>>> foo.expect_call(_)
<mockify.Expectation: foo(_)>
>>> foo.expect_call(_)
<mockify.Expectation: foo(_)>

We’ve just recorded that we expect foo to be called twice with exactly one argument of any kind. So, for example,
we can satisfy our mock with this:

>>> foo([])
>>> foo('spam')
>>> foo.assert_satisfied()

Matchers will also allow us to write complex patterns. For example, if mock is called with dict as an argument and
the dict represents JSONRPC request (see: https://www.jsonrpc.org/specification), we could write expectation that we
want our mock to be execute with request object, but no matter what is the method, params and ID:

>>> foo = Function('foo')
>>> foo.expect_call({'jsonrpc': '2.0', 'method': _, 'params': _, 'id': _})
<mockify.Expectation: foo({...})>
>>> foo({'jsonrpc': '2.0', 'method': 'spam', 'params': 123, 'id': 1})
>>> foo.assert_satisfied()

But if now the mock is called with different dict structure, the call will fail:

>>> foo({'jsonrpc': '2.0'})
Traceback (most recent call last):

...
mockify.exc.UninterestedCall: foo({'jsonrpc': '2.0'})

Dealing with unexpected calls

New in version 0.4.

10 Chapter 1. User’s Guide

https://docs.python.org/3/reference/datamodel.html#object.__eq__
https://www.jsonrpc.org/specification

Mockify Documentation, Release 0...5

Now you can change a default strategy for handling uninterested calls for your mocks.

To change a strategy you need to create a custom mockify.Registry object and use it as a registry for your mock
classes.

For example, you can change the strategy to ignore, so all unexpected mock calls will simply be ignored:

>>> from mockify import Registry

>>> registry = Registry(uninterested_call_strategy='ignore')

>>> mock = Function('mock', registry=registry)
>>> mock(1, 2)
>>> mock(1, 2, c=3)
>>> mock()

>>> mock.assert_satisfied()

And now your mock will only fail if you have an unsatisfied expectation:

>>> mock.expect_call('spam')
<mockify.Expectation: mock('spam')>
>>> mock.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:
<BLANKLINE>
at <doctest tutorial.rst[74]>:1

Pattern: mock('spam')
Expected: to be called once

Actual: never called

1.3.4 Configuring expectation objects

So far, we’ve done nothing with mockify..Expectation object expect_call method returns. But it has a lot
of very handy features that we are going to discuss right now.

Expecting a mock to be never called

It is very tricky to expect something to never happen as there are infinite number of possibilities. Besides, especially
if it takes time to execute test, after how many seconds should we say that somethid did not happpen? But sometimes
you may need to expect a mock to be never called.

Let’s go back to our example function defined before. There was a test that callback is never called. The test looked
like this:

>>> callback = Function('callback')
>>> example(0, callback)
>>> callback.assert_satisfied()

Although it works fine, there is not visible what we are expecting. Same test can be done like this:

>>> from mockify.matchers import _
>>> callback = Function('callback')
>>> callback.expect_call(_).times(0)

(continues on next page)

1.3. Tutorial 11

Mockify Documentation, Release 0...5

(continued from previous page)

<mockify.Expectation: callback(_)>
>>> example(0, callback)
>>> callback.assert_satisfied()

As you can see, we’ve used mockify.Expectation.times() method and called it with 0, meaning that we
expect callback to be called 0 times. Now the test looks more expressive, but as stated in the beginning, expecting
something to never happen is tricky. No matter if we call example function, other function or even nothing instead,
the test will still pass:

>>> from mockify.matchers import _
>>> callback = Function('callback')
>>> callback.expect_call(_).times(0)
<mockify.Expectation: callback(_)>
>>> callback.assert_satisfied()

Just like normally expectation has expected call count set to one, modifying it with times(0) sets this counter to 0,
so mock is already satisfied. Situtation changes when mock gets called:

>>> callback(0)
>>> callback.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: callback(_)
Expected: to be never called

Actual: called once

Expecting a mock to be called given number of times

So far, if we needed to expect a mock to be called more than once we’ve recorded two or more expectations with same
parameters. But there is a better way of doing this.

Let’s go back to our example function and third test. We can rewrite it in following way:

>>> callback = Function('callback')
>>> callback.expect_call(_).times(2)
<mockify.Expectation: callback(_)>
>>> example(2, callback)
>>> callback.assert_satisfied()

But actually we’ve verified only that mock is called twice each time with any argument. So in fact, if example calls a
mock with fixed argument, then the test above will still pass. Therefore, we need another matcher to ensure that mock
is called with valid arguments. For that purpose, we’ll use mockify.matchers.SaveArg:

>>> from mockify.matchers import SaveArg
>>> count = SaveArg()
>>> callback = Function('callback')
>>> callback.expect_call(count).times(2)
<mockify.Expectation: callback(SaveArg)>
>>> example(2, callback)
>>> callback.assert_satisfied()

(continues on next page)

12 Chapter 1. User’s Guide

Mockify Documentation, Release 0...5

(continued from previous page)

>>> count.called_with == [0, 1]
True

Using mockify.matchers.SaveArg you will also have to do some additional assertions like in example above.

Method mockify..Expectation.times() allows to configure more then just fixed expected number of calls.
For more information go to the mockify.times module documentation.

Single actions

Besides setting how many times each mock is expected to be called and with what arguments, you can also record
actions to be executed on each mock call. For example, we can tell a mock to return given value when it gets called.
To do this, we need to use mockify..Expectation.will_once() method:

>>> from mockify.actions import Return
>>> foo = Function('foo')
>>> foo.expect_call().will_once(Return(1))
<mockify.Expectation: foo()>

If you now check if mock is satisfied, you’ll notice that there is additional information of what action is going to be
executed next:

>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo()
Action: Return(1)

Expected: to be called once
Actual: never called

So if you now call a mock, it will return 1 and will be satisfied:

>>> foo()
1
>>> foo.assert_satisfied()

But if you now call a mock again it will end up with an exception:

>>> foo()
Traceback (most recent call last):

...
mockify.exc.OversaturatedCall: at <doctest tutorial.rst[...]>:1: foo(): no more
→˓actions recorded for call: foo()

This is a very special situation, as when actions are recorded it is assumed that the mock should always return some-
thing. Therefore, failing to do that is treated as exception currently.

Note: There are plans to implement default actions, so there will be no such exception in that case, but a default
action will be executed instead. But mock will not be satisfied anyway.

For more actions please proceed to the mockify.actions documentation.

1.3. Tutorial 13

Mockify Documentation, Release 0...5

Action chains

You can chain mockify..Expectation.will_once() method invocations to end up with action chains being
recorded, so each time when mock is called, next action in a chain is executed. For example, you can record expectation
that mock is going to be called twice, returning 1 on first call and 2 on second call:

>>> foo = Function('foo')
>>> foo.expect_call().will_once(Return(1)).will_once(Return(2))
<mockify.Expectation: foo()>

When you now check if mock is satisfied, you will be informed that it is expected to be called twice and that next
action is Return(1):

>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo()
Action: Return(1)

Expected: to be called twice
Actual: never called

If you now call a mock, it will return 1:

>>> foo()
1

If you now check if it is satisfied, you will notice that one more call is needed and that next action will be Return(2):

>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo()
Action: Return(2)

Expected: to be called twice
Actual: called once

Finally, if you call a mock for the second time it will return 2 and mock will become satisfied:

>>> foo()
2
>>> foo.assert_satisfied()

You can of course record different actions type for each call. For list of available built-in actions or instructions of how
to make custom ones please refer to the mockify.actions module documentation.

Repeated actions

Repeated actions allow to set single action that will keep being executed each time the mock is called. By default,
if mock has repeated action set it can be called any number of times, so mock with repeated action set is initially

14 Chapter 1. User’s Guide

Mockify Documentation, Release 0...5

satisfied. Repeated actions are recorded using mockify..Expectation.will_repeatedly() method:

>>> foo = Function('foo')
>>> foo.expect_call().will_repeatedly(Return(1))
<mockify.Expectation: foo()>
>>> foo.assert_satisfied()

And you can call mock with such defined expectation any times you want. For example, lets call it 3 times. The mock
will return 1 on each call and still will be satisfied:

>>> for _ in range(3):
... foo()
1
1
1
>>> foo.assert_satisfied()

You can also use mockify..Expectation.times() method to set expected call count on a repeated action.
For example, if you want to record repeated action that can be executed at most twice, you would write following:

>>> from mockify.times import AtMost
>>> foo = Function('foo')
>>> foo.expect_call().will_repeatedly(Return(1)).times(AtMost(2))
<mockify.Expectation: foo()>

Such expectation is already satisfied (as at most twice is 0, 1 or 2 calls):

>>> foo.assert_satisfied()

But right now if you call a mock 3 times, the mock will no longer be satisfied:

>>> for _ in range(3):
... foo()
1
1
1
>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo()
Action: Return(1)

Expected: to be called at most twice
Actual: called 3 times

1.3.5 Recording complex expectations

Currently we’ve used all of the features independently, but actually it is possible to record expectations that are com-
bination of those. For example, you can record few single actions, and one repeated:

>>> foo = Function('foo')
>>> foo.expect_call().will_once(Return(1)).will_once(Return(2)).will_
→˓repeatedly(Return(3))

(continues on next page)

1.3. Tutorial 15

Mockify Documentation, Release 0...5

(continued from previous page)

<mockify.Expectation: foo()>

Such mock will be expected to be called at least twice, as there are two single actions in the chain recorded:

>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo()
Action: Return(1)

Expected: to be called at least twice
Actual: never called

If now the mock is called for the fist time it will return 1, for the second time - 2, and after that it will keep returning
3. And of course it will be satisfied, as all single actions were consumed:

>>> foo()
1
>>> foo()
2
>>> for _ in range(3):
... foo()
3
3
3
>>> foo.assert_satisfied()

You can also set expected call count for repeated action:

>>> foo = Function('foo')
>>> foo.expect_call().will_once(Return(1)).will_repeatedly(Return(2)).times(2)
<mockify.Expectation: foo()>

Now the mock will have to be called exactly 3 times:

>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo()
Action: Return(1)

Expected: to be called 3 times
Actual: never called

>>> foo()
1
>>> foo()
2
>>> foo()
2
>>> foo.assert_satisfied()

16 Chapter 1. User’s Guide

Mockify Documentation, Release 0...5

Even such combinations are possible:

>>> foo = Function('foo')
>>> foo.expect_call().will_once(Return(1)).will_repeatedly(Return(2)).times(2).will_
→˓once(Return(3))
<mockify.Expectation: foo()>

And this time the mock is expected to be called 4 times:

>>> foo.assert_satisfied()
Traceback (most recent call last):

...
mockify.exc.Unsatisfied: following expectation is not satisfied:

at <doctest tutorial.rst[...]>:1
-----------------------------...

Pattern: foo()
Action: Return(1)

Expected: to be called 4 times
Actual: never called

>>> foo()
1
>>> for _ in range(2):
... foo()
2
2
>>> foo()
3
>>> foo.assert_satisfied()

1.4 API Reference

1.4.1 mockify - Library core

Library core module.

class mockify.Call(name, args=None, kwargs=None)
Bases: object

Binds mock name with arguments it was called with or it is expected to be called with.

Call objects are created in mock frontends (like mockify.mock.Function mock class) by methods
expected_call and __call__ by simply passing their argument to Call constructor.

Instances of this class are comparable. Two Call objects are equal if and only if all attributes (name, args
and kwargs) are the same. For example:

>>> Call('foo') == Call('foo')
True
>>> Call('foo') != Call('bar')
True
>>> Call('foo', (1, 2), {'c': 3}) == Call('foo', (1, 2), {'c': 3})
True

Call objects can also be created with use of matchers, for example mockify.matchers.Any , that will
match any value:

1.4. API Reference 17

https://docs.python.org/3/library/functions.html#object

Mockify Documentation, Release 0...5

>>> from mockify.matchers import _
>>> Call('foo', (_, _)) == Call('foo', (1, 2))
True
>>> Call('foo', (_, _)) == Call('foo', (3, 4))
True

Parameters

• name – Function or method name.

• args – Positional arguments

• kwargs – Named arguments

args
Mock positional args.

classmethod create(*args, **kwargs)
Factory method for easier Call object creating.

You must give at least one positional argument - the name. All other will be passed to constructor’s args
and kwargs parameters.

New in version 0.5.

kwargs
Mock named args.

name
Mock name.

class mockify.Expectation(expected_call, filename, lineno)
Bases: object

Class representing single expectation.

Instances of this class are normally created by registry objects using Registry.expect_call() method.
Each instance of this class is correlated with exactly one mockify.engine.Call object representing ex-
pected mock call pattern.

After Expectation object is created by call to some expect_call method, it can be mutated using fol-
lowing methods:

• times()

• will_once()

• will_repeatedly()

Parameters

• call – Instance of mockify.engine.Call representing expected mock call pattern

• filename – File name were this expectation was created

• lineno – Line number where this expectation was created

__call__(call)
Call this expectation object.

If given call object does not match expected_call then this method will raise TypeError excep-
tion.

18 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/exceptions.html#TypeError

Mockify Documentation, Release 0...5

Otherwise, total call count is increased by one and:

• if actions are recorded, then next action is executed and its result returned or mockify.exc.
OversaturatedCall exception is raised if there are no more actions

• if there are no actions recorded, just None is returned

expected_call
Instance of mockify.engine.Call representing expected mock call pattern.

This basically is exactly the same Call object as was passed to Expectation constructor.

format_action()
Return textual representation of next action to be executed.

This method uses action’s __str__ method to render action name.

Returns None if there were no actions recorded or all were consumed.

This is used by mockify.exc.Unsatisfied exception when rendering error message.

format_actual()
Return textual representation of how many times this expectation was called so far.

This is used by mockify.exc.Unsatisfied exception when rendering error message.

format_expected()
Return textual representation of how many times this expectation is expected to be called.

This is used by mockify.exc.Unsatisfied exception when rendering error message.

format_location()
Return textual representation of place (filename and lineno) where this expectation was created.

Basically, it just returns [filename]:[lineno] string, where filename and lineno are given via
Expectation constructor.

is_satisfied()
Check if this expectation is satisfied.

match(call)
Check if expected_call matches call.

times(expected_count)
Record how many times this expectation is expected to be called.

Parameters expected_count – Expected call count.

This can be either integer number (exact call count) or instance of one of classes from
mockify.times module.

will_once(action)
Attach action to be executed when this expectation gets consumed.

This method can be used several times, making action chains. Once expectation is consumed, next action
is executed and removed from the list. If there are no more actions, another call will fail with mockify.
exc.OversaturatedCall exception.

After this method is used, you can also use will_repeatedly() to record repeated action that will
get executed after all single actions are consumed.

Parameters action – Action to be executed.

See mockify.actions for details.

1.4. API Reference 19

Mockify Documentation, Release 0...5

will_repeatedly(action)
Attach repeated action to be executed when this expectation is called.

This method is used to record one action that gets executed each time this expectation object is called. By
default, when repeated action is recorded, expectation can be called any number of times (including zero).

After setting repeated action, you can also set expected call count using times().

Parameters action – Action to be executed.

See mockify.actions for details.

class mockify.Registry(expectation_class=None, uninterested_call_strategy=’fail’)
Bases: object

Acts like a database for Expectation objects.

This class is used as a backend for higher level mocking utilities (a.k.a. frontends), like mockify.mock.
Function mocking class. It provides methods to record, lookup and verifying of expectations.

There can be many instances of registry classes, or one that can be shared between various mock frontends. For
example, you can create one registry in setup code, then create various mocks inside your tests, to finally trigger
assert_satisfied() of that single registry in test’s teardown code. Or you can just use frontends with
their defaults. It is completely up to you.

Parameters

• expectation_class – This is optional.

Used to give custom subclass of Expectation to be used inside this registry.

• uninterested_call_strategy – Setup the way how uninterested calls are treated.

Following values are available:

– fail - issue mockify.exc.UninterestedCall exception on each unexpectedly
called mock (default)

– ignore - do nothing with uninterested calls

– warn - issue a warning on each uninterested call

New in version 0.4.

__call__(call)
Call a mock.

When this method is called, registry performs a lookup of matching unsatisfied expectations and calls first
expectation found. If there are no matching expectation, then mockify.exc.UninterestedCall
exception is raised. If there are matching expectations but all are satisfied, then last is called (making it
oversaturated).

Parameters call – Instance of mockify.engine.Call class representing mock being
called

assert_satisfied(*names)
Assert that all expectations are satisfied.

If there is at least one unsatisfied expectation, then this method will raise mockify.exc.
Unsatisfied exception containing list of failed expectations.

This method can be called as many times as you want.

Changed in version 0.2: Accepts names of mocks to check as positional args. If one or more names are
given, then this method limits checking only to mocks of matching names.

20 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#object

Mockify Documentation, Release 0...5

expect_call(call, filename, lineno)
Register expectation.

Returns instance of expectation_class (usually Expectation) representing newly created ex-
pectation.

Parameters

• call – Instance of mockify.engine.Call class representing exact mock call or a
pattern (if created with matchers) that is expected to be executed

• filename – Path to file were expectation is created

• lineno – Line number (inside filename) where expectation is created

mockify.assert_satisfied(*subjects)
Context manager for verifying multiple subjects at once.

Each passed subject must have assert_satisfied method defined, so it can be used with mockify.
mock.Function or mockify.engine.Registry instances for example.

Basically, the role of this helper is to ensure that all subjects become satisfied after leaving wrapped context. For
example:

>>> from mockify.mock import Function
>>> foo = Function('foo')
>>> bar = Function('bar')
>>> foo.expect_call()
<mockify.Expectation: foo()>
>>> bar.expect_call().times(0)
<mockify.Expectation: bar()>
>>> with assert_satisfied(foo, bar):
... foo()

And that’s it - you don’t have to explicitly check if foo and bar are satisfied, because the helper will do it for
you. And also it emphasizes part of code that actually uses given mocks.

1.4.2 mockify.mock - Classes for mocking things

Classes for mocking things.

class mockify.mock.Object(name, methods=None, properties=None, registry=None)
Bases: object

Class for mocking Python objects.

Changed in version 0.5: New API introduced.

New in version 0.3.

Since version 0.5 this class provides a new API that complies with the one used by other mock classes.

You can now create mock objects directly, without subclassing:

mock = Object('mock')

Method calls are now recorded like this:

mock.foo.expect_call(1, 2)

And for recording property get/set expectations you write:

1.4. API Reference 21

https://docs.python.org/3/library/functions.html#object

Mockify Documentation, Release 0...5

mock.bar.fset.expect_call(123)
mock.bar.fget.expect_call().will_once(Return(123))
mock.baz.fget.expect_call().will_once(Return(456))

And you can still subclass this class and provide a set of methods and properties, like in this example:

class Dummy(Object):
__methods__ = ['foo']
__properties__ = ['bar']

Parameters

• name – Name of mocked object

• methods – Sequence of names of methods to be mocked.

If this is given, then the only allowed methods will be the ones from given sequence. Attempt
to access any other will result in AttributeError being raised.

• properties – Sequence of names of properties to be mocked.

Use is the same as for methods parameter.

• registry – Instance of mockify.Registry class.

If not given, a default one will be created for this mock object.

assert_satisfied()
Assert that all expected method/property calls are satisfied.

expect_call(__name__, *args, **kwargs)
Record method call expectation.

Deprecated since version 0.5: See Object for a brief example of how to use new API.

expect_get(__name__)
Record property get expectation.

Deprecated since version 0.5: See Object for a brief example of how to use new API.

expect_set(__name__, value)
Record property set expectation.

Deprecated since version 0.5: See Object for a brief example of how to use new API.

class mockify.mock.Function(name, registry=None)
Bases: object

Class for mocking Python functions.

Example usage:

>>> foo = Function('foo')
>>> foo.expect_call(1, 2).times(2)
<mockify.Expectation: foo(1, 2)>
>>> for _ in range(2):
... foo(1, 2)
>>> foo.assert_satisfied()

Parameters

• name – Mock function name

22 Chapter 1. User’s Guide

https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/functions.html#object

Mockify Documentation, Release 0...5

• registry – This is optional.

Use this to pass custom instance of mockify.engine.Registry class if you need to
share it between multiple frontends. Sharing is useful for example to check if all mocks are
satisfied using one assert_satisfied call:

>>> from mockify import Registry
>>> reg = Registry()
>>> foo = Function('foo', registry=reg)
>>> bar = Function('bar', registry=reg)
>>> foo.expect_call()
<mockify.Expectation: foo()>
>>> bar.expect_call()
<mockify.Expectation: bar()>
>>> foo()
>>> bar()
>>> reg.assert_satisfied()

assert_satisfied()
Assert that this function mock is satisfied.

This method just calls mockify.engine.Registry.assert_satisfied() with name given
via constructor as an argument.

expect_call(*args, **kwargs)
Record call expectation.

This method creates mockify.engine.Call instance giving it args and kwargs, fetches file and
line number from current call stack and triggers mockify.engine.Registry.expect_call()
and returns expectation object it produces.

class mockify.mock.FunctionFactory(registry=None)
Bases: object

Helper factory class for easier function mocks creating.

This helper can be created with no params or with mockify.engine.Registry instance as parameter. It
provides an easy way of function mock creating by simply getting factory attributes that become function mock
names. Once such attribute is get for the first time, Function instance is created, and later it is just returned.

This allows to create function mocks as easy as in this example:

>>> factory = FunctionFactory()
>>> factory.foo.expect_call()
<mockify.Expectation: foo()>
>>> factory.bar.expect_call(1, 2)
<mockify.Expectation: bar(1, 2)>

Then pass to some unit under test:

>>> def unit_under_test(foo, bar):
... foo()
... bar(1, 2)
>>> unit_under_test(factory.foo, factory.bar)

To finally check if all mocks registered in one FunctionFactory object are satisfied using one single call:

>>> factory.assert_satisfied()

1.4. API Reference 23

https://docs.python.org/3/library/functions.html#object

Mockify Documentation, Release 0...5

assert_satisfied()
Check if all function mocks registered by this factory are satisfied.

This method simply calls mockify.engine.Registry.assert_satisfied() with names of
all created mocks as arguments.

class mockify.mock.Namespace(name, registry=None, mock_class=None)
Bases: object

Used to mock functions that are behind some kind of a namespace.

New in version 0.5.

Look at following code:

if os.path.isfile(path):
do_something_with_file(path)

It is very common pattern of how os is used by Python applications. And basically Namespace can be used
to make it easier to mock such statements. You simply do it like this:

os = Namespace('os')
os.path.isfile.expect_call('/foo/bar/baz.txt').will_once(Return(True))

And now you can call such mocked statement:

assert os.path.isfile('/foo/bar/baz.txt')

There is no namespace nesting limit.

Parameters

• name – Mock name.

This will be used as a prefix for all namespaced mocks created by this class.

• registry – Instance of mockify.Registry to be used.

If not given, a default one will be created for this mock object.

• mock_class – Mock class to be used for “leaf” nodes.

By default, this is mockify.mock.Function, but you can give any other mock class
here.

assert_satisfied()
Check if all mocks created within this namespace are satisfied.

name
Name of this namespace mock.

This will be a root for all nested namespaces.

1.4.3 mockify.actions - Classes for recording side effects

Module containing predefined actions that can be used as argument for Expectation.will_once() or
Expectation.will_repeatedly().

Basically, any class containing following methods is considered an action:

__str__(self)

24 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/os.html#module-os

Mockify Documentation, Release 0...5

Returning string representation of an action.

This is used for error reporting.

__call__(self, *args, **kwargs)

Method that is called when mock is called.

Entire action logic goes in here.

class mockify.actions.Invoke(func)
Bases: object

Makes mock invoking given function when called.

When mock is called, all arguments (if there are any) are passed to the func and its return value is returned as
mock’s return value.

Parameters func – Function to be executed

class mockify.actions.Raise(exc)
Bases: object

Makes mock raising given exception when called.

Parameters exc – Instance of exception to be raised

class mockify.actions.Return(value)
Bases: object

Makes mock returning given value when called.

Parameters value – Value to be returned

1.4.4 mockify.cardinality - Classes for setting expected call cardinality

Module containing set of classes to be used with mockify.engine.Expectation.times() method.

You can also create your own classes to be used with that method. The only thing required from such class is to
implement following interface:

is_satisfied(self, actual) Return True if actual call count is satisfied by self, or
False otherwise.

Here, actual is absolute call count expectation received so far. It is completely implementation-
specific of which values of actual are said to be satisfied and which are not. For example,
Exactly will compare actual with fixed value (given via constructor) and return True only
if those two are equal.

adjust_by(self, minimal) Adjust self by current minimal expected call count and return
new instance of type(self).

In some complex expectation there could be a situation in which expectation must be computed
again. This is not visible for library user, but must be done behind the scenes to properly process
expectations. Such situation can be presented in this example:

>>> from mockify.actions import Return
>>> from mockify.mock import Function
>>> foo = Function('foo')
>>> foo.expect_call(1, 2).will_once(Return(1)).will_
→˓repeatedly(Return(2)).times(2)
<mockify.Expectation: foo(1, 2)>

(continues on next page)

1.4. API Reference 25

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Mockify Documentation, Release 0...5

(continued from previous page)

>>> foo(1, 2)
1
>>> foo(1, 2)
2
>>> foo(1, 2)
2
>>> foo.assert_satisfied()

In example above we’ve used times(2) to tell that last repeated action is expected to be called
twice, but real expected call count is 3 times, as will_once is used. Behind the scenes, this is
recalculated using this metho.

format_expected(self) Return textual representation of expected call count.

This is used by mockify.exc.Unsatisfied exception when error message is being rendered.

minimal(sefl) (property) Property containing minimal call count that is considered valid for given
instance.

For example, for AtLeast or Exactly it would be just its constructor argument, for
:class‘AtMost‘ it will be 0, for Between it will be its minimal argument.

class mockify.cardinality.AtLeast(minimal)
Bases: object

Used to set minimal expected call count.

If this is used, then expectation is said to be satisfied if actual call count is not less that minimal.

Parameters minimal – Integer value representing minimal expected call count

class mockify.cardinality.AtMost(maximal)
Bases: object

Used to set maximal expected call count.

If this is used, then expectation is said to be satisfied if actual call count is not greater than maximal.

Parameters maximal – Integer value representing maximal expected call count

class mockify.cardinality.Between(minimal, maximal)
Bases: object

Used to set a range of valid call counts.

If this is used, then expectation is said to be satisfied if actual call count is not less than minimal and not
greater than maximal.

Parameters

• minimal – Integer value representing minimal expected call count

• maximal – Integer value representing maximal expected call count

class mockify.cardinality.Exactly(expected)
Bases: object

Used to expect fixed call count to be made.

You do not have to use this class explicitly as its instances are automatically created when you call times
method with integer value as argument.

Parameters expected – Integer value representing expected call count

26 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/functions.html#object

Mockify Documentation, Release 0...5

1.4.5 mockify.matchers - Classes for wildcarding expected arguments

Module containing predefined matchers.

A matcher is every class that inherits from Matcher and implements following methods:

__repr__(self) Return matcher’s text representation.

__eq__(self, other) Check if self is equal to other.

Here we use standard Python __eq__ operator as it will be automatically executed by Python no
matter where the matcher is used. But equality definition is completely up to the matcher implemen-
tation.

class mockify.matchers.Any
Bases: mockify.matchers.Matcher

Matcher that matches any value.

It is available also as _ (underscore) single instance that can be imported from this module.

For example, you can record expectation that mock must be called with one positional argument of any value
but exactly 3 times:

>>> from mockify.matchers import _
>>> from mockify.mock import Function
>>> foo = Function('foo')
>>> foo.expect_call(_).times(3)
<mockify.Expectation: foo(_)>
>>> for i in range(3):
... foo(i)
>>> foo.assert_satisfied()

class mockify.matchers.Matcher
Bases: object

Base class for matchers.

class mockify.matchers.SaveArg
Bases: mockify.matchers.Matcher

Matcher that matches any value and keeps ordered track of unique values.

This can be used as a replacement for Any in case that you need to ensure that mock was called in specified
order.

For example:

>>> from mockify.mock import Function
>>> arg = SaveArg()
>>> foo = Function('foo')
>>> foo.expect_call(arg).times(3)
<mockify.Expectation: foo(SaveArg)>
>>> for i in range(3):
... foo(i)
>>> foo.assert_satisfied()
>>> arg.called_with == [0, 1, 2]
True

called_with
List of ordered unique values that this matcher was called with.

1.4. API Reference 27

https://docs.python.org/3/library/functions.html#object

Mockify Documentation, Release 0...5

1.4.6 mockify.exc - Library exceptions

exception mockify.exc.OversaturatedCall(expectation, call)
Bases: TypeError

Raised when mock is called more times than expected.

This exception will be thrown only if mock has actions defined as it does not know what to do next if all expected
actions were already executed.

Parameters

• expectation – Instance of mockify.engine.Expectation class representing ex-
pectation that was oversaturated

• call – Instance of mockify.engine.Call class representing mock call that oversat-
urated expectation

call
Instance of mockify.engine.Call passed to OversaturatedCall constructor.

expectation
Instance of mockify.engine.Expectation passed to OversaturatedCall constructor.

exception mockify.exc.UninterestedCall(call)
Bases: TypeError

Raised when uninterested mock is called.

Mockify requires each mock call to have matching expectation recorded. If none is found during call, then this
exception is raised, terminating the test.

Parameters call – Instance of mockify.engine.Call class representing uinterested mock
call

call
Instance of mockify.engine.Call passed to UninterestedCall constructor.

exception mockify.exc.UninterestedGetterCall(name)
Bases: mockify.exc.UninterestedPropertyAccess

Raised when uninterested property getter is called.

This will be raised if some system under test gets mock property that has no expectations set.

New in version 0.3.

exception mockify.exc.UninterestedPropertyAccess(name)
Bases: TypeError

Base class for exceptions signalling uninterested property access.

This situation occurs when object property is accessed without previous matching expectation being recorded.

New in version 0.3.

Parameters name – Property name

name
Name of property being accessed.

exception mockify.exc.UninterestedSetterCall(name, value)
Bases: mockify.exc.UninterestedPropertyAccess

Raised when uninterested property setter is called.

28 Chapter 1. User’s Guide

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/exceptions.html#TypeError

Mockify Documentation, Release 0...5

This will be raised if some system under test sets mock property that has no matching expectations set.

New in version 0.3.

value
Value property was set to.

exception mockify.exc.Unsatisfied(expectations)
Bases: AssertionError

Raised by mockify.engine.Registry.assert_satisfied() method when there is at least one un-
satisfied expectation.

This exception displays explanatory information to the user:

• file location where unsatisfied expectation was recorded

• expected call pattern

• expected call count

• actual call count

• next action to be executed (if any)

Parameters expectations – List of mockify.engine.Expectation instances represent-
ing all unsatisfied expectations

expectations
Instance of mockify.engine.Expectation passed to Unsatisfied constructor.

1.5 License

Mockify is released under the terms of the MIT license.

Copyright (C) 2018 - 2019 Maciej Wiatrzyk

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

1.5. License 29

https://docs.python.org/3/library/exceptions.html#AssertionError

Mockify Documentation, Release 0...5

30 Chapter 1. User’s Guide

Python Module Index

m
mockify, 17
mockify.actions, 24
mockify.cardinality, 25
mockify.exc, 28
mockify.matchers, 27
mockify.mock, 21

31

Mockify Documentation, Release 0...5

32 Python Module Index

Index

Symbols
__call__() (mockify.Expectation method), 18
__call__() (mockify.Registry method), 20

A
Any (class in mockify.matchers), 27
args (mockify.Call attribute), 18
assert_satisfied() (in module mockify), 21
assert_satisfied() (mockify.mock.Function

method), 23
assert_satisfied() (mock-

ify.mock.FunctionFactory method), 23
assert_satisfied() (mockify.mock.Namespace

method), 24
assert_satisfied() (mockify.mock.Object

method), 22
assert_satisfied() (mockify.Registry method), 20
AtLeast (class in mockify.cardinality), 26
AtMost (class in mockify.cardinality), 26

B
Between (class in mockify.cardinality), 26

C
Call (class in mockify), 17
call (mockify.exc.OversaturatedCall attribute), 28
call (mockify.exc.UninterestedCall attribute), 28
called_with (mockify.matchers.SaveArg attribute),

27
create() (mockify.Call class method), 18

E
Exactly (class in mockify.cardinality), 26
expect_call() (mockify.mock.Function method), 23
expect_call() (mockify.mock.Object method), 22
expect_call() (mockify.Registry method), 20
expect_get() (mockify.mock.Object method), 22
expect_set() (mockify.mock.Object method), 22
Expectation (class in mockify), 18

expectation (mockify.exc.OversaturatedCall at-
tribute), 28

expectations (mockify.exc.Unsatisfied attribute), 29
expected_call (mockify.Expectation attribute), 19

F
format_action() (mockify.Expectation method), 19
format_actual() (mockify.Expectation method), 19
format_expected() (mockify.Expectation method),

19
format_location() (mockify.Expectation method),

19
Function (class in mockify.mock), 22
FunctionFactory (class in mockify.mock), 23

I
Invoke (class in mockify.actions), 25
is_satisfied() (mockify.Expectation method), 19

K
kwargs (mockify.Call attribute), 18

M
match() (mockify.Expectation method), 19
Matcher (class in mockify.matchers), 27
mockify (module), 17
mockify.actions (module), 24
mockify.cardinality (module), 25
mockify.exc (module), 28
mockify.matchers (module), 27
mockify.mock (module), 21

N
name (mockify.Call attribute), 18
name (mockify.exc.UninterestedPropertyAccess at-

tribute), 28
name (mockify.mock.Namespace attribute), 24
Namespace (class in mockify.mock), 24

33

Mockify Documentation, Release 0...5

O
Object (class in mockify.mock), 21
OversaturatedCall, 28

R
Raise (class in mockify.actions), 25
Registry (class in mockify), 20
Return (class in mockify.actions), 25

S
SaveArg (class in mockify.matchers), 27

T
times() (mockify.Expectation method), 19

U
UninterestedCall, 28
UninterestedGetterCall, 28
UninterestedPropertyAccess, 28
UninterestedSetterCall, 28
Unsatisfied, 29

V
value (mockify.exc.UninterestedSetterCall attribute), 29

W
will_once() (mockify.Expectation method), 19
will_repeatedly() (mockify.Expectation method),

19

34 Index

	User’s Guide
	Changelog
	0.5.0
	0.4.0
	0.3.1
	0.2.1
	0.1.12

	Installation
	From PyPI using virtualenv and pip
	Directly from source using virtualenv and pip
	Verifying installation

	Tutorial
	Mocking functions
	Mocking objects
	Recording and verifying expectations
	Configuring expectation objects
	Recording complex expectations

	API Reference
	mockify - Library core
	mockify.mock - Classes for mocking things
	mockify.actions - Classes for recording side effects
	mockify.cardinality - Classes for setting expected call cardinality
	mockify.matchers - Classes for wildcarding expected arguments
	mockify.exc - Library exceptions

	License

	Python Module Index
	Index

