
MngIt Documentation
Release 0.1.0

Pierre Fernique

June 20, 2016

Contents

1 Documentation 3
1.1 User guide . 3
1.2 Reference guide . 15

2 Authors 17

3 Change-log 19

4 License 21

5 Indices 23

Python Module Index 25

i

ii

MngIt Documentation, Release 0.1.0

Summary

Version 0.2.0
Status
Author see Authors section
ChangeLog see Change-log section
License CeCILL-C (see License section)

MngIt aims at managing redundant information within sofware. This information collection is done using a central
configuration file and using information provided by Version Control System (VCS) repositories. Then, information
is dispatched in various files in order to minimize redundancy. MngIt also aims at providing commands to ease
development using web-based repository hosting services.n Given precise workflows, the process of using VCS with
web-base repository hosting services can be eased for developers.

Contents 1

MngIt Documentation, Release 0.1.0

2 Contents

CHAPTER 1

Documentation

1.1 User guide

1.1.1 Managing redundant information within software

We here assume that you are using the Git Version Control System (VCS) to develop a repository denoted
<reponame>.

$ mkdir <reponame>
$ cd <reponame>
$ git init
$ ls -a
. .. .git

Using a configuration file, MngIt aims at dispatching redundant information in various files that can be considered as
mandatory in repositories. The configuration file named .mngit.yml is created at the root of <reponame> using
the mngit config command.

$ mngit config
$ ls -a
. .. .git .mngit.yml

These informations are then dispatched in the repository using the mngit update command. This configuration
file is formatted according to the YAML human friendly data serialization standard. This configuration file is incre-
mentally filled using commands that are presented in the remainder of this documentation.

The software field

The .mngit.yml contains a field software that contains 2 sub-fields:

• The name of the software (denoted by <name>).

Warning: name sub-field must be formatted according to restructuredText markup syntax.

• A short description of the software (denoted by <shortdesc>).

Warning: desc sub-field must be formatted according to restructuredText markup syntax.

These informations are provided as follows (see Lst. 1.1)

3

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html

MngIt Documentation, Release 0.1.0

$ mngit software --name <name> --desc <shortdesc>

Lst. 1.1: Status of the .mngit.yml file

software:
desc: <shortdesc>
name: <name>

The about field

The .mngit.yml contains a field about that contains some additional information concerning the software:

• An email for corresponding authors (denoted by <email>)

• A long description of the software (denoted by <longdesc>).

Warning: desc sub-field must be formatted according to restructuredText markup syntax. Empty lines are
not allowed.

These informations are provided as follows (see Lst. 1.1)

$ mngit about --contact <email> --desc <details>

Lst. 1.2: Status of the .mngit.yml file

software:
desc: <shortdesc>
name: <name>

about:
contact: <email>
desc: <longdesc>

The version field

Like most VCSs, Git has the ability to tag specific points in history as being important. Using the mngit version
command ensures that the version will be automatically updated from the Git history at each update (see Lst. 1.4).

$ mngit version

Note: As illustrated on Lst. 1.3, once the mngit version command has been executed, a default version (0.1.0
for semantic version plugin) is added in the software field.

Lst. 1.3: Status of the .mngit.yml file

about:
contact: <email>
desc: <longdesc>

software:
desc: <shortdesc>
name: <name>
version: 0.1.0

version:
plugin: semantic

4 Chapter 1. Documentation

http://docutils.sourceforge.net/rst.html
https://git-scm.com/book/en/v2/Git-Basics-Tagging

MngIt Documentation, Release 0.1.0

To detect versions, MngIt considers the last tag corresponding to certain patterns. To handle differ-
ent versioning patterns, the version plugin manager is used. Currently, MngIt provide the semantic
version plugin that corresponds to the semantic versioning design (e.g. tags considered are matching the
’(v)?([0-9]*).([0-9]*).([0-9]*)(-.*)?’ regular expression).

$ git add -A
$ git commit -m 'Add MngIt configuration file'
...
$ git tag v0.2.0
$ mngit update

Lst. 1.4: Status of the .mngit.yml file after the execution of the git tag command

about:
contact: <email>
desc: <longdesc>

software:
desc: <shortdesc>
name: <name>
version: 0.2.0

version:
plugin: semantic

The authors field

If you consider that a file (assumed to be AUTHORS.rst) listing repository authors is mandatory, you can use the
mngit authors command to ensure an automatic update of this file.

$ mngit authors

This file is updated from authors that are retrieved from the Git log.

$ mngit update
$ ls -a
. .. AUTHORS.rst .git .mngit.yml

An author is identified by its name and email. For each author a score is computed according to the plugin given to the
authors plugin manager. Currently, MngIt provide a commit authors plugin that compute the score of authors
as their number of commits. Authors are written according to a specified format sub-field in decreasing order in the
file named accoording to the basename sub-field (see Lst. 1.5) .

Warning: format sub-field must contains substitutions for name, email and score that are identified by
braces.

Lst. 1.5: Status of the .mngit.yml file

software:
desc: <shortdesc>
name: <name>
version: 0.1.0

about:
contact: <email>
desc: <longdesc>

version:

1.1. User guide 5

http://semver.org/

MngIt Documentation, Release 0.1.0

plugin: semantic
authors:
basename: AUTHORS.rst
format: '* {name} <{email}> ({score})'
plugin: commit

The license field

If you consider that a file (assumed to be LICENSE.rst) containing repository license is mandatory, you can use the
mngit license command to ensure an automatic update this file. This will also update all your license headers in
source code files. For creating these field you must first precise the license to consider (see Lst. 1.6).

$ mngit license --plugin CeCILL-C

Lst. 1.6: Status of the .mngit.yml file

software:
desc: <desc>
name: <name>
version: 0.1.0

version:
plugin: semantic

authors:
basename: <authors>
format: '* {name} <{email}> ({score})'
plugin: commit

license:
basename: LICENSE.rst
plugin: CeCILL-C
width: 78

How the LICENSE.rst and source code files are updated is controlled by the plugin sub-field that is used by the
license plugin manager to select corresponding plugin. For source code license headers, the width of the header is
controller by width sub-field.

$ mngit update
$ ls -a
. .. AUTHORS.rst .git LICENSE.rst .mngit.yml

The restructuredtext field

In order to dispatch informations in repository reStructuredText files using the mngit update command, you can
use the mngit restructuredtext command. This command require a list of target files within which reStruc-
turedText substitutions are defined between .. MngIt gards:

• |NAME| can be used to get the name sub-field of software field.

• |BRIEF| can be used to get the desc sub-field of software field.

• |VERSION| can be used to get the version sub-field of software field.

• |DETAILS| can be used to get the desc sub-field of about field.

• |AUTHORSFILE|_ can be used to get a link to the file identified by the basename sub-field of authors
field.

• |LICENSENAME| can be used to get the plugin sub-field of license field.

6 Chapter 1. Documentation

MngIt Documentation, Release 0.1.0

• |LICENSEFILE|_ can be used to get a link to the file identified by the basename sub-field of license
field.

Warning: These substitutions are available only if corresponding fields and sub-fields are in the .mngit.yml
file.

To define targetted files, use this command as follows (see Lst. 1.7)

$ mkdir doc
$ touch doc/index.rst
$ touch README.rst
$ ls -R
.:
AUTHORS.rst doc LICENSE.rst README.rst

./doc:
index.rst
$ mngit restructuredtext --target README.rst doc/index.rst

Lst. 1.7: Status of the .mngit.yml file

about:
contact: <email>
desc: <longdesc>

authors:
basename: AUTHORS.rst
format: '* {name} <{email}> ({score})'
plugin: commit

license:
basename: LICENSE.rst
plugin: CeCILL-C
width: 78

restructuredtext:
plugin: default
target:
- README.rst
- doc/index.rst

software:
desc: <shortdesc>
name: <name>
version: 0.3.0

version:
plugin: semantic

Note: For now, we only consider the Git VCS but features could be added to in order to accept the Subversion VCS.

Note: This documentation only illustrate command purposes. For more detailed information use the -h option (e.g.
mngit -h, mngit config -h...)

1.1.2 Commands to ease development using GitHub

We here assume that you are using the Git Version Control System (VCS) and GitHub as web-based repository hosting
service. We present a workflow to contribute to an official repository denoted <reponame> in an organization (or

1.1. User guide 7

https://github.com/blog/674-introducing-organizations

MngIt Documentation, Release 0.1.0

user account) denoted <orgname>. The workflow describe here is mainly inspired from OpenAlea and Virtual Plants
public development workflow. Considering this workflow, MngIt provides some commands to ease the process.

Fork and clone a repository

To fork and clone the repository <reponame> of the <organame> organization, we recommend to use the
mngithub clone command instead of GitHub interface and Git commands. To perform these steps, mngithub
clone uses the PyGithub package to access GitHub interface in Python. Your gitHub credentials (<username>
and <password>) are therefore required.

$ mngithub clone
Username for 'https://github.com': <username>
Password for 'https://pfernique@github.com': <password>

The, you must enter:

• the organization name (<organame>).

Enter an organization name: <organame>

Note: In place of an organization, you can give a GitHub user.

• the repository name (<reponame>).

Enter a repository name: <reponame>

Warning: The <reponame> must exists in the <organame> organization.

This command:

1. Fork the <reponame> of the <organame> organization into your account.

Note: If you already forked the <reponame> it will not be forked one more time.

2. Clone it on your disk at your current location within the <reponame> directory.

Warning: If your fork of the <reponame> repository is not named <reponame>, Its name will be used
in place of <reponame> for the directory that contains the clone.

Note: By default, the clone is performed using SSH remote url. If you prefer to use the HTTPS remote url, use
the url argument of the mngithub clone command:

$ mngithub clone --url=https

3. Add the upstream remote that refers to the repository on the <organame> organization.

Note: By default, the origin remote refers to the repository on your account.

8 Chapter 1. Documentation

http://virtualplants.github.io/contribute/devel/git-workflow.html
http://pygithub.readthedocs.io/en/stable/

MngIt Documentation, Release 0.1.0

Fig. 1.1: Repository status after fork and clone of a repository.
The repository is named <reponame>. The left hand cloud represents the repository on the <organame> organization GitHub
account. The right hand clound represents the forked repository on your <username> GitHub account. The computer represents

the cloned repository on your computer.

Note: Cloning a repository using Git only adds the origin remote. The principale value added of the mngithub clone
command is to add the upstream remote. For example, this enable you to compare your local branch to both remote branches

using:

• for the remote branch on the <organame> GitHub account,

$ git diff upstream/master

• for the remote branch on your <username> GitHub account,

$ git diff origin/master

Or, since origin is chosen by default,

$ git diff master

1.1. User guide 9

MngIt Documentation, Release 0.1.0

Contribute to a repository

When using Git you should constently keep in mind the following warning:

Warning: Never work on master, always on a branch

In order to contribute to the <reponame> repository of the <organame> or-
ganization we therefore recommand to follow the following workflow.

Name Description
Branch See Create a development branch section. In order to enable code review from mainteners, the

development must be short (i.e. one branch for one task such as new feature, bug fix...).
Work See Work on your modifications section. In order to benefit from tools developped by mainteners and

ensure code quality, the development must respect some guidelines.
Com-
mit

See Commit your modifications section. Commits are snapshots of the repository. There are useful in
particular for versionning software or create backups.

Up-
load
?

See Upload your modifications section. In order save your modifications into your personal repository,
you should upload them. Otherwise, you can continue to add commits.

Sub-
mit
?

See Submit your modifications section. In order to integrate your modifications to the official repository,
you must submit your modifications that will be integrated by organization mainteners.

Note: In the following we assume that you forked the official repository in your personal account and cloned it
according to previous recommendations (see Fork and clone a repository).

Create a development branch

In order to enable code review from mainteners, the development must be short (i.e. one branch for one task such as
new feature, bug fix...). Moreover, the more the development cycle is long, the more you will risk to have conflicts.

The process of development branch creation is detailed in Fig. 1.2 but mngithub branch commands do this for
you.

$ mngithub branch <branchname>

Note: Please choose an explicit name <branchname> for your branch.

10 Chapter 1. Documentation

MngIt Documentation, Release 0.1.0

Fig. 1.2: Steps of the development branch creation.
Repositories of the same color are synchronized. Before the creation of your development branch, all three repositories are not

synchronized. In:

1. Your local master branch is synchronized with the upstream master branch.

git checkout master
git pull upstream master

2. Your remote origin master branch is synchronized with your local master branch.

git push

3. Since all your master branches are synchronized, the local <branchname> branch is created

git branch <branchname>
git checkout <branchname>

Or equivalently

git checkout -b <branchname>

4. Then, the remote origin <branchname> branch is created in order to enable the uploading of future modifications into
your <username> GitHub account.

git push --set-upstream origin <branchname>

Warning: After the execution of the mngithub branch command, your local repository has switched on the
<branchname> branch.

$ git branch
master

* <branchname>

But there are, at this point, no differences between the master and <branchname> branches.

$ git status
On branch <branchname>
nothing to commit, working directory clean

Note: Once this step is done, refers to the workflow to continue.

Work on your modifications

Note: Once this step is done, refers to the workflow to continue.

Commit your modifications

The commit of modifications with Git is quite different from Subversion. In particular, Git will not consider that your
local <branchname> branch differs from origin <branchname> branch until you committed your modifica-
tions (see Fig. 1.3).

1.1. User guide 11

MngIt Documentation, Release 0.1.0

Fig. 1.3: Effect of Git commits
Until you committed your modifications (1.), Git will not consider that your local <branchname> branch differs from origin

<branchname> remote branch.

Note: While master and origin master are still synchronized, it is assumed that some work from other developpers has
been integrated into the upstream master. There are therefore two different versions of master branches at the end of this

step.

Warning: The commit of modifications do not implies the upload of these modifications. The branches <branchname> and
origin <branchname> are therefore no more synchronized.

The repository index In Git, the repository index notion is primordial (see the this post for more details). In short,
files in the repository index are files that would be committed to the repository if you used the git commit com-
mand. However, files in the repository index are not committed to the repository until you use the git commit
command. Therefore, in order to commit your modifications you must first build the repository index using file addi-
tions and removals. For this step the git status, git add and git rm commands are your friends:

git status Tells you what files:

• have been added to the repository index,

• exists in the working tree but are not in the repository index,

• have different contents between the working tree and the repository index.

git add <pathspec> Add the <pathspec> file to the repository index.

Warning: Contrarily to Subversion, with Git the git add command must be performed not only for
adding new files but also for modified files. By default no file is added in the index.

For more details, refers to the Git manual (git add --help).

git rm <pathspec> Remove the <pathspec> file from the working tree and the index. For more details,
refers to the Git manual (git remove --help).

Note: If you do not want to remove the <pathspec> file from you working tree but only in the repository
index use git rm --cached <pathspec> instead.

Note: Since the incremental addition or removal of files can be tidious, the commands git add -A can be of
most interest. This command will also add files that were created. Therefore in order to add only relevant files, the
.gitignore file is of most importance (see create).

The Git Commit Once the index is build as desired, it must be committed in order to make another snapshot of
the repository. This is done using the git commit command. If you leave off the -m option, this command open
your favorite editor (see ../configuration) where you can construct a message associated to the commit. Two
commits are distinguished:

Backup & service commits These commits are not corresponding to particular development stages and can be used
when uploading is a neccessity. For example these commits arise when a developper wants to:

• Remotly save his developments.

• Use a service (see create).

12 Chapter 1. Documentation

http://www.gitguys.com/topics/whats-the-deal-with-the-git-index/

MngIt Documentation, Release 0.1.0

For this type of commits, please use the git commit -m "<shortdesc>" command where
<shortdesc> is a short summary of the commit. This summary should be less that 50 characters.

Developement commits The commits are all commits not considered as backup. Please avoid the usage of the -m
option and produce a nice commit message using the follwing steps (the reader can refer to the A Better Git
Commit message to more informations):

• The first line should be a short summary. Referencing the bug number or the main accomplishment of the
change (e.g “Fixes issue #8976). This is the title of your commit and should be less than 50 characters.

• Then a line break.

• Followed by a longer detailed description about the things that changed. This section is a really good place
to explain what and why. You could cover statistics, performance wins, roadblocks, etc. The text should
be wrapped at 72 characters.

Note: If you want to add to your index deleted or modified files when committing, you can use the -a flag. The
command

git commit -a

is used for automatically staged files that have been modified and deleted, but new files you have not told Git about
are not affected. In this fact this command is different from the commands

git add -A
git commit

that will also add new files.

Note: Once this step is done, refers to the workflow to continue.

Upload your modifications

Once you have committed your modifications, you can upload them in your <username> GitHub account using the
git push command (see Fig. 1.4).

Fig. 1.4: Steps of the development branch creation.
Repositories of the same color are synchronized. Before the creation of your development branch, all three repositories are not

synchronized. In:

Submit your modifications

Fig. 1.5: Steps of the development branch creation.
Repositories of the same color are synchronized.

Prepare your pull-request Before submitting your modifications, you must recover changes from upstream
master remote branch in your local master branch

git checkout master
git pull upstream master

1.1. User guide 13

https://web-design-weekly.com/2013/09/01/a-better-git-commit/
https://web-design-weekly.com/2013/09/01/a-better-git-commit/

MngIt Documentation, Release 0.1.0

and upload the changes in your origin master remote branch

git push

Then, you must rebase your local development branch with your local master branch.

git checkout <branchname>
git rebase master

If conflicts occur, fix conflicts for each file and finish rebase

git rebase --continue

Note: Any file modified when fixing conflicts should be added using the git add <pathspec> command.

If anything has gone wrong, you can abort reabase

git rebase --abort

Fig. 1.6: Steps of the development branch creation.
Repositories of the same color are synchronized

Create your pull-request On github interface, select your branch <branchname> and click on pull-request (see
this post for more details).

Warning: You must see the following message: “Able to merge. These branches can be automatically merged”.
If it’s not the case, the upstream master has probably diverged. You must therefore turn back to previous step
(see Prepare your pull-request section).

If all steps described in the workflow are respected, your branch is clean and mainteners have absolutely nothing to do
to integrate your work (except to review your changes) and so it will certainly be integrated.

Fig. 1.7: Steps of the development branch creation.
Repositories of the same color are synchronized

Integrate your pull-request
Note: Once your branch is integrated in the upstream master, it is recommanded to to delete your branch:

• On your local repository,

git checkout master
git branch -d <branchname>

• On your personal repository,

git push origin --delete <branchname>

Warning: Once this step is done, refers to the workflow to continue.

See StatisKit <statiskit.readthedocs.io/en/latest/maintener/index.html>‘s maintener reference guide

14 Chapter 1. Documentation

https://help.github.com/articles/using-pull-requests/

MngIt Documentation, Release 0.1.0

1.2 Reference guide

mngit.config.dump_config(repository, config)

mngit.config.init_config(repository, **kwargs)
Create a MngIt configuration file

Parameters

• name (str) - Name of the software

• brief (str) - A brief description of the software

mngit.config.load_config(repository)

mngit.languages.get_language(basename)

mngit.load_rst_default.load_restructuredtext(repository, filepath, config)

1.2. Reference guide 15

MngIt Documentation, Release 0.1.0

16 Chapter 1. Documentation

CHAPTER 2

Authors

• Pierre Fernique <pfernique@gmail.com> (250)

17

mailto:pfernique@gmail.com

MngIt Documentation, Release 0.1.0

18 Chapter 2. Authors

CHAPTER 3

Change-log

19

MngIt Documentation, Release 0.1.0

20 Chapter 3. Change-log

CHAPTER 4

License

MngIt is distributed under the CeCILL-C license.

21

MngIt Documentation, Release 0.1.0

22 Chapter 4. License

CHAPTER 5

Indices

• genindex

• modindex

23

MngIt Documentation, Release 0.1.0

24 Chapter 5. Indices

Python Module Index

m
mngit, 15
mngit.config, 15
mngit.languages, 15
mngit.load_rst_default, 15

25

MngIt Documentation, Release 0.1.0

26 Python Module Index

Index

D
dump_config() (in module mngit.config), 15

G
get_language() (in module mngit.languages), 15

I
init_config() (in module mngit.config), 15

L
load_config() (in module mngit.config), 15
load_restructuredtext() (in module mn-

git.load_rst_default), 15

M
mngit (module), 15
mngit.config (module), 15
mngit.languages (module), 15
mngit.load_rst_default (module), 15

27

	Documentation
	User guide
	Reference guide

	Authors
	Change-log
	License
	Indices
	Python Module Index

