MMDE-Wiki Documentation

Release latest

Contents

1	Amplicon Sequencing				
	1.1	Experimental Design]		
	1.2	Sample Preparation	1		
	1.3	Sequencing Library Preparation	1		
	1.4	OTU Clustering	2		
		PICRUSt			
2	Shots	gun Sequencing	-		

Amplicon Sequencing

1.1 Experimental Design

TODO: document experimental design issues

1.1.1 High-diversity samples

1.1.2 Low-diversity samples

1.2 Sample Preparation

TODO: document sample preparation

1.2.1 Sample Collection

1.2.2 DNA extraction

1.3 Sequencing Library Preparation

TODO: document library preparation

1.3.1 Library Types

These preparation methods are currently supported by the UMGC

Earth Microbiome Protocol (EMP)

- V4
- V4 (version 2)
- ITS1

Dual-indexed

- V1-V3
- V4

- V4 + PNA blockers
- V3-V5
- V4-V6
- V5-V6
- V3 (in development)
- V3-V4 (in development)

IIS (in development)

- V4
- V4-V6

1.4 OTU Clustering

TODO: OTU clustering

1.4.1 Process

The following steps are recommended for performing OTU picking using Qiime. Two packages are available to automate the process of running these steps on a dataset. If you have an MSI account you can use the "metagenomicsQC" package to automatically process a dataset using MSI computing resources and generate a html report summarizing the Qiime results. If you do not have access to MSI we provide a toolkit for generating a bash script to run all of these steps.

- Configuring Qiime: FIX
 Create Mapping File: FIX
- 3. Trimming/Filtering/Converting
 - (a) Overlapping paired-end reads: Read pairs are stitched together and amplicon primers are removed using PandaSeq. Sequence IDs are converted to Qiime format and fastq files are converted to fasta format.
 - (b) Non-overlapping paired-end reads: Samples with paired end reads that don't overlap are treated like single-end reads; the second (R2) read is ignored
 - (c) Single-end reads: 3' ends are quality trimmed and the amplicon primer is removed. Sequence IDs are converted to Qiime format and fastq files are converted to fasta format. (Qiime scripts convert_fasta_qual_fastq.py and split_libraries.py used)
- 4. Chimera Detection: Chimeras are detected using ChimeraSlayer's usearch61 method.
- 5. **OTU Picking**: Qiime's pick_open_reference_otus.py script is used to pick OTUs using usearch61.
- 6. Qiime Plots: A series of plots based on the OTU table are generated using Qiime
- 7. Alpha Diversity:
- 8. Normalization:
- 9. Beta Diversity:

1.4.2 Running at MSI

Log in

Submit job

1.4.3 Running on a Mac or Linux computer

Qiime is a large software package with many dependencies that can be difficult to install. We recommend using MacQIIME is a precompiled installation of QIIME, with most of its dependecies, placed in one easy-to-install package. The MMDE-toolkit

Installing Qiime

- 1. Install MacQIIME or refer to the QIIME installation guide for other options.
- 2. Install USEARCH, versions 5.2.236(really?) and 6.1 are both required and not included in Qiime due to license issues
- 3. Install Pandaseq
- 4. Download MMDE-toolkit

Running Qiime

- 1. Create mappingfile
- 2. Start MacQIIME
- 3. Generate QIIME bash script:

```
qiime-1.9.1.pl > qiime.sh
```

4. Execute QIIME bash script:

bash qiime.sh

1.5 PICRUSt

TODO: document PICRUSt

1.5.1 Installing PICRUSt

1.5.2 Running PICRUSt

1.5. PICRUSt 3

CHAPTER 2	2
-----------	---

Shotgun Sequencing

Guidelines for shotgun metagenomic sequencing will be developed in the future.

The Minnesota Microbiome Data Engine Wiki is developed and maintained by

- Dan Knights Lab
- University of Minnesota Genomics Center
- University of Minnesota Informatics Institute