

    
      
          
            
  
Краткое руководство по машинному обучению

Краткое и доступное объяснение концепций машинного обучения с диаграммами, примерами кода и ссылками на внешние ресурсы для самостоятельного углубленного изучения.


Предупреждение

Данное руководство находится в стадии ранней разреботки. Оно является вольным переводом англоязычного руководства Machine Learning Cheatsheet [https://ml-cheatsheet.readthedocs.io/en/latest/]. Если вы нашли ошибку, пожалуйста поднимите вопрос [https://github.com/mhyhre/ml-cheatsheet-russian/issues] или сделайте свой вклад [https://github.com/mhyhre/ml-cheatsheet-russian/blob/master/README.md] для улучшения руководства!
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Введение

Линейная регрессия это алгоритм машинного обучения с учителем. Иными словами - алгоритму для обучения необходимо указать как входные данные так и заранее подготовленные выходные данные. Всё месте это называется обучающей выборкой.
Линейная регрессия может предсказать только одно значение из бесконечно большого диапазона значений, например температуру, скорость движения спутника, и так далее.

Линейная регрессия может быть двух видов:

Простая регрессия

Простая линейная регрессия в своей основе содержит простейшую линейную формулу:


\[y = mx + b\]

Где \(m\) и \(b\) это значения, которые необходимо подобрать алгоритму для достижения наилучшей точности в своих предсказаниях. Значение \(x\) представляет собой входные данные и \(y\) представляет собой выходные данные.

Множественная регрессия

Более сложная форма линейной регрессии с несколькими переменными.  Значения \(w\) являются коэффициентами (ещё их называют «весами» - англ. weight), а \(x_1\), \(x_2\), \(x_3\), … входными значениями. В данном случае алгоритм подбирает значения \(w\).


\[f(x,y,z) = w_1 x_1 + w_2 x_2 + w_3 x_3\]




Простая регрессия

Давайте представим что у нас есть следующая таблица с  колонками:








	Компания

	Затраты на рекламу

	Продажи



	Amazon

	37.8

	22.1



	Google

	39.3

	10.4



	Facebook

	45.9

	18.3



	Apple

	41.3

	18.5






Далее мы обучим линейную модель для предсказания количества продаж в зависимости от потраченных на рекламу денег.


Предсказывание

Наша предсказывающая модель будет выводит приближенное значение продаж в зависимости от затрат на рекламу по простой формуле линейного уравнения:


\[Продажи = Вес_1 \cdot Реклама + Смещение\]

или в англоязычных терминах:


\[Sales = Weight \cdot Advertisment + Bias\]


	Weight

	коэффициент независимой переменной Advertisment. В машинном обучении такие коэффициенты называют весами (weights).



	Advertisment

	независимая переменная. В машинном обучении такие переменные называют признаками (features).



	Bias

	Параметр смещения относительн оси y. В машинном обучении этот параметр также называют bias.





Our algorithm will try to learn the correct values for Weight and Bias. By the end of our training, our equation will approximate the line of best fit.

[image: _images/linear_regression_line_intro.png]
Code

def predict_sales(radio, weight, bias):
    return weight*radio + bias








Cost function

The prediction function is nice, but for our purposes we don’t really need it. What we need is a cost function so we can start optimizing our weights.

Let’s use MSE (L2) as our cost function. MSE measures the average squared difference between an observation’s actual and predicted values. The output is a single number representing the cost, or score, associated with our current set of weights. Our goal is to minimize MSE to improve the accuracy of our model.

Math

Given our simple linear equation \(y = mx + b\), we can calculate MSE as:


\[MSE =  \frac{1}{N} \sum_{i=1}^{n} (y_i - (m x_i + b))^2\]


Примечание


	\(N\) is the total number of observations (data points)


	\(\frac{1}{N} \sum_{i=1}^{n}\) is the mean


	\(y_i\) is the actual value of an observation and \(m x_i + b\) is our prediction






Code

def cost_function(radio, sales, weight, bias):
    companies = len(radio)
    total_error = 0.0
    for i in range(companies):
        total_error += (sales[i] - (weight*radio[i] + bias))**2
    return total_error / companies








Gradient descent

To minimize MSE we use Gradient Descent to calculate the gradient of our cost function. [TODO: Slightly longer explanation].

Math

There are two parameters (coefficients) in our cost function we can control: weight \(m\) and bias \(b\). Since we need to consider the impact each one has on the final prediction, we use partial derivatives. To find the partial derivatives, we use the Chain rule. We need the chain rule because \((y - (mx + b))^2\) is really 2 nested functions: the inner function \(y - mx + b\) and the outer function \(x^2\).

Returning to our cost function:


\[f(m,b) =  \frac{1}{N} \sum_{i=1}^{n} (y_i - (mx_i + b))^2\]

We can calculate the gradient of this cost function as:


\[\begin{split}f'(m,b) =
   \begin{bmatrix}
     \frac{df}{dm}\\
     \frac{df}{db}\\
    \end{bmatrix}
=
   \begin{bmatrix}
     \frac{1}{N} \sum -2x_i(y_i - (mx_i + b)) \\
     \frac{1}{N} \sum -2(y_i - (mx_i + b)) \\
    \end{bmatrix}\end{split}\]

Code

To solve for the gradient, we iterate through our data points using our new weight and bias values and take the average of the partial derivatives. The resulting gradient tells us the slope of our cost function at our current position (i.e. weight and bias) and the direction we should update to reduce our cost function (we move in the direction opposite the gradient). The size of our update is controlled by the learning rate.

def update_weights(radio, sales, weight, bias, learning_rate):
    weight_deriv = 0
    bias_deriv = 0
    companies = len(radio)

    for i in range(companies):
        # Calculate partial derivatives
        # -2x(y - (mx + b))
        weight_deriv += -2*radio[i] * (sales[i] - (weight*radio[i] + bias))

        # -2(y - (mx + b))
        bias_deriv += -2*(sales[i] - (weight*radio[i] + bias))

    # We subtract because the derivatives point in direction of steepest ascent
    weight -= (weight_deriv / companies) * learning_rate
    bias -= (bias_deriv / companies) * learning_rate

    return weight, bias








Training

Training a model is the process of iteratively improving your prediction equation by looping through the dataset multiple times, each time updating the weight and bias values in the direction indicated by the slope of the cost function (gradient). Training is complete when we reach an acceptable error threshold, or when subsequent training iterations fail to reduce our cost.

Before training we need to initializing our weights (set default values), set our hyperparameters (learning rate and number of iterations), and prepare to log our progress over each iteration.

Code

def train(radio, sales, weight, bias, learning_rate, iters):
    cost_history = []

    for i in range(iters):
        weight,bias = update_weights(radio, sales, weight, bias, learning_rate)

        #Calculate cost for auditing purposes
        cost = cost_function(features, targets, weights)
        cost_history.append(cost)

        # Log Progress
        if i % 10 == 0:
            print "iter: "+str(i) + " cost: "+str(cost)

    return weight, bias, cost_history








Model evaluation

If our model is working, we should see our cost decrease after every iteration.

Logging

iter=1     weight=.03    bias=.0014    cost=197.25
iter=10    weight=.28    bias=.0116    cost=74.65
iter=20    weight=.39    bias=.0177    cost=49.48
iter=30    weight=.44    bias=.0219    cost=44.31
iter=30    weight=.46    bias=.0249    cost=43.28





Visualizing

[image: _images/linear_regression_line_1.png]
[image: _images/linear_regression_line_2.png]
[image: _images/linear_regression_line_3.png]
[image: _images/linear_regression_line_4.png]
Cost history

[image: _images/linear_regression_training_cost.png]



Summary

By learning the best values for weight (.46) and bias (.25), we now have an equation that predicts future sales based on radio advertising investment.


\[Sales = .46 Radio + .025\]

How would our model perform in the real world? I’ll let you think about it :)






Multivariable regression

Let’s say we are given data [http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv] on TV, radio, and newspaper advertising spend for a list of companies, and our goal is to predict sales in terms of units sold.










	Company

	TV

	Radio

	News

	Units



	Amazon

	230.1

	37.8

	69.1

	22.1



	Google

	44.5

	39.3

	23.1

	10.4



	Facebook

	17.2

	45.9

	34.7

	18.3



	Apple

	151.5

	41.3

	13.2

	18.5







Growing complexity

As the number of features grows, the complexity of our model increases and it becomes increasingly difficult to visualize, or even comprehend, our data.

[image: _images/linear_regression_3d_plane_mlr.png]
One solution is to break the data apart and compare 1-2 features at a time. In this example we explore how Radio and TV investment impacts Sales.




Normalization

As the number of features grows, calculating gradient takes longer to compute. We can speed this up by «normalizing» our input data to ensure all values are within the same range. This is especially important for datasets with high standard deviations or differences in the ranges of the attributes. Our goal now will be to normalize our features so they are all in the range -1 to 1.

Code

For each feature column {
    #1 Subtract the mean of the column (mean normalization)
    #2 Divide by the range of the column (feature scaling)
}





Our input is a 200 x 3 matrix containing TV, Radio, and Newspaper data. Our output is a normalized matrix of the same shape with all values between -1 and 1.

def normalize(features):
    **
    features     -   (200, 3)
    features.T   -   (3, 200)

    We transpose the input matrix, swapping
    cols and rows to make vector math easier
    **

    for feature in features.T:
        fmean = np.mean(feature)
        frange = np.amax(feature) - np.amin(feature)

        #Vector Subtraction
        feature -= fmean

        #Vector Division
        feature /= frange

    return features






Примечание

Matrix math. Before we continue, it’s important to understand basic Linear Algebra concepts as well as numpy functions like numpy.dot() [https://docs.scipy.org/doc/numpy/reference/generated/numpy.dot.html].






Making predictions

Our predict function outputs an estimate of sales given our current weights (coefficients) and a company’s TV, radio, and newspaper spend. Our model will try to identify weight values that most reduce our cost function.


\[Sales = W_1 TV + W_2 Radio + W_3 Newspaper\]

def predict(features, weights):
  **
  features - (200, 3)
  weights - (3, 1)
  predictions - (200,1)
  **
  return np.dot(features,weights)








Initialize weights

W1 = 0.0
W2 = 0.0
W3 = 0.0
weights = np.array([
    [W1],
    [W2],
    [W3]
])








Cost function

Now we need a cost function to audit how our model is performing. The math is the same, except we swap the \(mx + b\) expression for \(W_1 x_1 + W_2 x_2 + W_3 x_3\). We also divide the expression by 2 to make derivative calculations simpler.


\[MSE =  \frac{1}{2N} \sum_{i=1}^{n} (y_i - (W_1 x_1 + W_2 x_2 + W_3 x_3))^2\]

def cost_function(features, targets, weights):
    **
    Features:(200,3)
    Targets: (200,1)
    Weights:(3,1)
    Returns 1D matrix of predictions
    **
    N = len(targets)

    predictions = predict(features, weights)

    # Matrix math lets use do this without looping
    sq_error = (predictions - targets)**2

    # Return average squared error among predictions
    return 1.0/(2*N) * sq_error.sum()








Gradient descent

Again using the Chain rule we can compute the gradient–a vector of partial derivatives describing the slope of the cost function for each weight.


\[\begin{split}\begin{align}
f'(W_1) = -x_1(y - (W_1 x_1 + W_2 x_2 + W_3 x_3)) \\
f'(W_2) = -x_2(y - (W_1 x_1 + W_2 x_2 + W_3 x_3)) \\
f'(W_3) = -x_3(y - (W_1 x_1 + W_2 x_2 + W_3 x_3))
\end{align}\end{split}\]

def update_weights(features, targets, weights, lr):
    '''
    Features:(200, 3)
    Targets: (200, 1)
    Weights:(3, 1)
    '''
    predictions = predict(features, weights)

    #Extract our features
    x1 = features[:,0]
    x2 = features[:,1]
    x3 = features[:,2]

    # Use matrix cross product (*) to simultaneously
    # calculate the derivative for each weight
    d_w1 = -x1*(targets - predictions)
    d_w2 = -x2*(targets - predictions)
    d_w3 = -x3*(targets - predictions)

    # Multiply the mean derivative by the learning rate
    # and subtract from our weights (remember gradient points in direction of steepest ASCENT)
    weights[0][0] -= (lr * np.mean(d_w1))
    weights[1][0] -= (lr * np.mean(d_w2))
    weights[2][0] -= (lr * np.mean(d_w3))

    return weights





And that’s it! Multivariate linear regression.




Simplifying with matrices

The gradient descent code above has a lot of duplication. Can we improve it somehow? One way to refactor would be to loop through our features and weights–allowing our function handle any number of features. However there is another even better technique: vectorized gradient descent.

Math

We use the same formula as above, but instead of operating on a single feature at a time, we use matrix multiplication to operative on all features and weights simultaneously. We replace the \(x_i\) terms with a single feature matrix \(X\).


\[gradient = -X(targets - predictions)\]

Code

X = [
    [x1, x2, x3]
    [x1, x2, x3]
    [x1, x2, x3]
]

targets = [
    [1],
    [2],
    [3]
]

def update_weights_vectorized(X, targets, weights, lr):
    **
    gradient = X.T * (predictions - targets) / N
    X: (200, 3)
    Targets: (200, 1)
    Weights: (3, 1)
    **
    companies = len(X)

    #1 - Get Predictions
    predictions = predict(X, weights)

    #2 - Calculate error/loss
    error = targets - predictions

    #3 Transpose features from (200, 3) to (3, 200)
    # So we can multiply w the (200,1)  error matrix.
    # Returns a (3,1) matrix holding 3 partial derivatives --
    # one for each feature -- representing the aggregate
    # slope of the cost function across all observations
    gradient = np.dot(-X.T,  error)

    #4 Take the average error derivative for each feature
    gradient /= companies

    #5 - Multiply the gradient by our learning rate
    gradient *= lr

    #6 - Subtract from our weights to minimize cost
    weights -= gradient

    return weights








Bias term

Our train function is the same as for simple linear regression, however we’re going to make one final tweak before running: add a bias term to our feature matrix.

In our example, it’s very unlikely that sales would be zero if companies stopped advertising. Possible reasons for this might include past advertising, existing customer relationships, retail locations, and salespeople. A bias term will help us capture this base case.

Code

Below we add a constant 1 to our features matrix. By setting this value to 1, it turns our bias term into a constant.

bias = np.ones(shape=(len(features),1))
features = np.append(bias, features, axis=1)








Model evaluation

After training our model through 1000 iterations with a learning rate of .0005, we finally arrive at a set of weights we can use to make predictions:


\[Sales = 4.7TV + 3.5Radio + .81Newspaper + 13.9\]

Our MSE cost dropped from 110.86 to 6.25.

[image: _images/multiple_regression_error_history.png]
References


	1

	https://en.wikipedia.org/wiki/Linear_regression



	2

	http://www.holehouse.org/mlclass/04_Linear_Regression_with_multiple_variables.html



	3

	http://machinelearningmastery.com/simple-linear-regression-tutorial-for-machine-learning



	4

	http://people.duke.edu/~rnau/regintro.htm



	5

	https://spin.atomicobject.com/2014/06/24/gradient-descent-linear-regression



	6

	https://www.analyticsvidhya.com/blog/2015/08/common-machine-learning-algorithms













          

      

      

    

  

    
      
          
            
  
Gradient Descent

Gradient descent is an optimization algorithm used to minimize some function by iteratively moving in the direction of steepest descent as defined by the negative of the gradient. In machine learning, we use gradient descent to update the parameters of our model. Parameters refer to coefficients in Линейная регрессия and weights in neural networks.


Introduction

Consider the 3-dimensional graph below in the context of a cost function. Our goal is to move from the mountain in the top right corner (high cost) to the dark blue sea in the bottom left (low cost). The arrows represent the direction of steepest descent (negative gradient) from any given point–the direction that decreases the cost function as quickly as possible. Source [http://www.adalta.it/Pages/-GoldenSoftware-Surfer-010.asp]

[image: _images/gradient_descent.png]
Starting at the top of the mountain, we take our first step downhill in the direction specified by the negative gradient. Next we recalculate the negative gradient (passing in the coordinates of our new point) and take another step in the direction it specifies. We continue this process iteratively until we get to the bottom of our graph, or to a point where we can no longer move downhill–a local minimum. image source [https://youtu.be/5u0jaA3qAGk].

[image: _images/gradient_descent_demystified.png]



Learning rate

The size of these steps is called the learning rate. With a high learning rate we can cover more ground each step, but we risk overshooting the lowest point since the slope of the hill is constantly changing. With a very low learning rate, we can confidently move in the direction of the negative gradient since we are recalculating it so frequently. A low learning rate is more precise, but calculating the gradient is time-consuming, so it will take us a very long time to get to the bottom.




Cost function

A Loss Functions tells us «how good» our model is at making predictions for a given set of parameters. The cost function has its own curve and its own gradients. The slope of this curve tells us how to update our parameters to make the model more accurate.




Step-by-step

Now let’s run gradient descent using our new cost function. There are two parameters in our cost function we can control: \(m\) (weight) and \(b\) (bias). Since we need to consider the impact each one has on the final prediction, we need to use partial derivatives. We calculate the partial derivatives of the cost function with respect to each parameter and store the results in a gradient.

Math

Given the cost function:


\[f(m,b) =  \frac{1}{N} \sum_{i=1}^{n} (y_i - (mx_i + b))^2\]

The gradient can be calculated as:


\[\begin{split}f'(m,b) =
   \begin{bmatrix}
     \frac{df}{dm}\\
     \frac{df}{db}\\
    \end{bmatrix}
=
   \begin{bmatrix}
     \frac{1}{N} \sum -2x_i(y_i - (mx_i + b)) \\
     \frac{1}{N} \sum -2(y_i - (mx_i + b)) \\
    \end{bmatrix}\end{split}\]

To solve for the gradient, we iterate through our data points using our new \(m\) and \(n\) values and compute the partial derivatives. This new gradient tells us the slope of our cost function at our current position (current parameter values) and the direction we should move to update our parameters. The size of our update is controlled by the learning rate.

Code

def update_weights(m, b, X, Y, learning_rate):
    m_deriv = 0
    b_deriv = 0
    N = len(X)
    for i in range(N):
        # Calculate partial derivatives
        # -2x(y - (mx + b))
        m_deriv += -2*X[i] * (Y[i] - (m*X[i] + b))

        # -2(y - (mx + b))
        b_deriv += -2*(Y[i] - (m*X[i] + b))

    # We subtract because the derivatives point in direction of steepest ascent
    m -= (m_deriv / float(N)) * learning_rate
    b -= (b_deriv / float(N)) * learning_rate

    return m, b
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Introduction

Logistic regression is a classification algorithm used to assign observations to a discrete set of classes. Unlike linear regression which outputs continuous number values, logistic regression transforms its output using the logistic sigmoid function to return a probability value which can then be mapped to two or more discrete classes.


Comparison to linear regression

Given data on time spent studying and exam scores. Линейная регрессия and logistic regression can predict different things:



	Linear Regression could help us predict the student’s test score on a scale of 0 - 100. Linear regression predictions are continuous (numbers in a range).


	Logistic Regression could help use predict whether the student passed or failed. Logistic regression predictions are discrete (only specific values or categories are allowed). We can also view probability scores underlying the model’s classifications.










Types of logistic regression



	Binary (Pass/Fail)


	Multi (Cats, Dogs, Sheep)


	Ordinal (Low, Medium, High)












Binary logistic regression

Say we’re given data [http://scilab.io/wp-content/uploads/2016/07/data_classification.csv] on student exam results and our goal is to predict whether a student will pass or fail based on number of hours slept and hours spent studying. We have two features (hours slept, hours studied) and two classes: passed (1) and failed (0).








	Studied

	Slept

	Passed



	4.85

	9.63

	1



	8.62

	3.23

	0



	5.43

	8.23

	1



	9.21

	6.34

	0






Graphically we could represent our data with a scatter plot.

[image: _images/logistic_regression_exam_scores_scatter.png]

Sigmoid activation

In order to map predicted values to probabilities, we use the sigmoid function. The function maps any real value into another value between 0 and 1. In machine learning, we use sigmoid to map predictions to probabilities.

Math


\[S(z) = \frac{1} {1 + e^{-z}}\]


Примечание


	\(s(z)\) = output between 0 and 1 (probability estimate)


	\(z\) = input to the function (your algorithm’s prediction e.g. mx + b)


	\(e\) = base of natural log






Graph

[image: _images/sigmoid.png]
Code




Decision boundary

Our current prediction function returns a probability score between 0 and 1. In order to map this to a discrete class (true/false, cat/dog), we select a threshold value or tipping point above which we will classify values into class 1 and below which we classify values into class 2.


\[\begin{split}p \geq 0.5, class=1 \\
p < 0.5, class=0\end{split}\]

For example, if our threshold was .5 and our prediction function returned .7, we would classify this observation as positive. If our prediction was .2 we would classify the observation as negative. For logistic regression with multiple classes we could select the class with the highest predicted probability.

[image: _images/logistic_regression_sigmoid_w_threshold.png]



Making predictions

Using our knowledge of sigmoid functions and decision boundaries, we can now write a prediction function. A prediction function in logistic regression returns the probability of our observation being positive, True, or «Yes». We call this class 1 and its notation is \(P(class=1)\). As the probability gets closer to 1, our model is more confident that the observation is in class 1.

Math

Let’s use the same multiple linear regression equation from our linear regression tutorial.


\[z = W_0 + W_1 Studied + W_2 Slept\]

This time however we will transform the output using the sigmoid function to return a probability value between 0 and 1.


\[P(class=1) = \frac{1} {1 + e^{-z}}\]

If the model returns .4 it believes there is only a 40% chance of passing. If our decision boundary was .5, we would categorize this observation as «Fail.»«

Code

We wrap the sigmoid function over the same prediction function we used in multiple linear regression

def predict(features, weights):
  '''
  Returns 1D array of probabilities
  that the class label == 1
  '''
  z = np.dot(features, weights)
  return sigmoid(z)








Cost function

Unfortunately we can’t (or at least shouldn’t) use the same cost function MSE (L2) as we did for linear regression. Why? There is a great math explanation in chapter 3 of Michael Neilson’s deep learning book 5, but for now I’ll simply say it’s because our prediction function is non-linear (due to sigmoid transform). Squaring this prediction as we do in MSE results in a non-convex function with many local minimums. If our cost function has many local minimums, gradient descent may not find the optimal global minimum.

Math

Instead of Mean Squared Error, we use a cost function called Cross-Entropy, also known as Log Loss. Cross-entropy loss can be divided into two separate cost functions: one for \(y=1\) and one for \(y=0\).

[image: _images/ng_cost_function_logistic.png]
The benefits of taking the logarithm reveal themselves when you look at the cost function graphs for y=1 and y=0. These smooth monotonic functions 7 (always increasing or always decreasing) make it easy to calculate the gradient and minimize cost. Image from Andrew Ng’s slides on logistic regression 1.

[image: _images/y1andy2_logistic_function.png]
The key thing to note is the cost function penalizes confident and wrong predictions more than it rewards confident and right predictions! The corollary is increasing prediction accuracy (closer to 0 or 1) has diminishing returns on reducing cost due to the logistic nature of our cost function.

Above functions compressed into one

[image: _images/logistic_cost_function_joined.png]
Multiplying by \(y\) and \((1-y)\) in the above equation is a sneaky trick that let’s us use the same equation to solve for both y=1 and y=0 cases. If y=0, the first side cancels out. If y=1, the second side cancels out. In both cases we only perform the operation we need to perform.

Vectorized cost function

[image: _images/logistic_cost_function_vectorized.png]
Code

def cost_function(features, labels, weights):
    '''
    Using Mean Absolute Error

    Features:(100,3)
    Labels: (100,1)
    Weights:(3,1)
    Returns 1D matrix of predictions
    Cost = ( log(predictions) + (1-labels)*log(1-predictions) ) / len(labels)
    '''
    observations = len(labels)

    predictions = predict(features, weights)

    #Take the error when label=1
    class1_cost = -labels*np.log(predictions)

    #Take the error when label=0
    class2_cost = (1-labels)*np.log(1-predictions)

    #Take the sum of both costs
    cost = class1_cost - class2_cost

    #Take the average cost
    cost = cost.sum()/observations

    return cost








Gradient descent

To minimize our cost, we use Gradient Descent just like before in Линейная регрессия. There are other more sophisticated optimization algorithms out there such as conjugate gradient like BFGS, but you don’t have to worry about these. Machine learning libraries like Scikit-learn hide their implementations so you can focus on more interesting things!

Math

One of the neat properties of the sigmoid function is its derivative is easy to calculate. If you’re curious, there is a good walk-through derivation on stack overflow 6. Michael Neilson also covers the topic in chapter 3 of his book.


\[\begin{align}
s'(z) & = s(z)(1 - s(z))
\end{align}\]

Which leads to an equally beautiful and convenient cost function derivative:


\[C' = x(s(z) - y)\]


Примечание


	\(C'\) is the derivative of cost with respect to weights


	\(y\) is the actual class label (0 or 1)


	\(s(z)\) is your model’s prediction


	\(x\) is your feature or feature vector.






Notice how this gradient is the same as the MSE (L2) gradient, the only difference is the hypothesis function.

Pseudocode

Repeat {

  1. Calculate gradient average
  2. Multiply by learning rate
  3. Subtract from weights

}





Code

def update_weights(features, labels, weights, lr):
    '''
    Vectorized Gradient Descent

    Features:(200, 3)
    Labels: (200, 1)
    Weights:(3, 1)
    '''
    N = len(features)

    #1 - Get Predictions
    predictions = predict(features, weights)

    #2 Transpose features from (200, 3) to (3, 200)
    # So we can multiply w the (200,1)  cost matrix.
    # Returns a (3,1) matrix holding 3 partial derivatives --
    # one for each feature -- representing the aggregate
    # slope of the cost function across all observations
    gradient = np.dot(features.T,  predictions - labels)

    #3 Take the average cost derivative for each feature
    gradient /= N

    #4 - Multiply the gradient by our learning rate
    gradient *= lr

    #5 - Subtract from our weights to minimize cost
    weights -= gradient

    return weights








Mapping probabilities to classes

The final step is assign class labels (0 or 1) to our predicted probabilities.

Decision boundary

def decision_boundary(prob):
  return 1 if prob >= .5 else 0





Convert probabilities to classes

def classify(preds):
  '''
  input  - N element array of predictions between 0 and 1
  output - N element array of 0s (False) and 1s (True)
  '''
  decision_boundary = np.vectorize(decision_boundary)
  return decision_boundary(predictions).flatten()





Example output

Probabilities = [ 0.967, 0.448, 0.015, 0.780, 0.978, 0.004]
Classifications = [1, 0, 0, 1, 1, 0]








Training

Our training code is the same as we used for linear regression.

def train(features, labels, weights, lr, iters):
    cost_history = []

    for i in range(iters):
        weights = update_weights(features, labels, weights, lr)

        #Calculate error for auditing purposes
        cost = cost_function(features, labels, weights)
        cost_history.append(cost)

        # Log Progress
        if i % 1000 == 0:
            print "iter: "+str(i) + " cost: "+str(cost)

    return weights, cost_history








Model evaluation

If our model is working, we should see our cost decrease after every iteration.

iter: 0 cost: 0.635
iter: 1000 cost: 0.302
iter: 2000 cost: 0.264





Final cost:  0.2487.  Final weights: [-8.197, .921, .738]

Cost history

[image: _images/logistic_regression_loss_history.png]
Accuracy

Accuracy measures how correct our predictions were. In this case we simple compare predicted labels to true labels and divide by the total.

def accuracy(predicted_labels, actual_labels):
    diff = predicted_labels - actual_labels
    return 1.0 - (float(np.count_nonzero(diff)) / len(diff))





Decision boundary

Another helpful technique is to plot the decision boundary on top of our predictions to see how our labels compare to the actual labels. This involves plotting our predicted probabilities and coloring them with their true labels.

[image: _images/logistic_regression_final_decision_boundary.png]
Code to plot the decision boundary

def plot_decision_boundary(trues, falses):
    fig = plt.figure()
    ax = fig.add_subplot(111)

    no_of_preds = len(trues) + len(falses)

    ax.scatter([i for i in range(len(trues))], trues, s=25, c='b', marker="o", label='Trues')
    ax.scatter([i for i in range(len(falses))], falses, s=25, c='r', marker="s", label='Falses')

    plt.legend(loc='upper right');
    ax.set_title("Decision Boundary")
    ax.set_xlabel('N/2')
    ax.set_ylabel('Predicted Probability')
    plt.axhline(.5, color='black')
    plt.show()










Multiclass logistic regression

Instead of \(y = {0,1}\) we will expand our definition so that \(y = {0,1...n}\). Basically we re-run binary classification multiple times, once for each class.


Procedure



	Divide the problem into n+1 binary classification problems (+1 because the index starts at 0?).


	For each class…


	Predict the probability the observations are in that single class.


	prediction = <math>max(probability of the classes)







For each sub-problem, we select one class (YES) and lump all the others into a second class (NO). Then we take the class with the highest predicted value.




Softmax activation

something about softmax here…




Scipy example

Let’s compare our performance to the LogisticRegression model provided by scikit-learn 8.

import sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.cross_validation import train_test_split

# Normalize grades to values between 0 and 1 for more efficient computation
normalized_range = sklearn.preprocessing.MinMaxScaler(feature_range=(-1,1))

# Extract Features + Labels
labels.shape =  (100,) #scikit expects this
features = normalized_range.fit_transform(features)

# Create Test/Train
features_train,features_test,labels_train,labels_test = train_test_split(features,labels,test_size=0.4)

# Scikit Logistic Regression
scikit_log_reg = LogisticRegression()
scikit_log_reg.fit(features_train,labels_train)

#Score is Mean Accuracy
scikit_score = clf.score(features_test,labels_test)
print 'Scikit score: ', scikit_score

#Our Mean Accuracy
observations, features, labels, weights = run()
probabilities = predict(features, weights).flatten()
classifications = classifier(probabilities)
our_acc = accuracy(classifications,labels.flatten())
print 'Our score: ',our_acc





Scikit score:  0.88. Our score: 0.89
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Glossary

Definitions of common machine learning terms.


	Accuracy

	Percentage of correct predictions made by the model.






	Algorithm

	A method, function, or series of instructions used to generate a machine learning model. Examples include linear regression, decision trees, support vector machines, and neural networks.






	Attribute

	A quality describing an observation (e.g. color, size, weight). In Excel terms, these are column headers.






	Bias metric

	What is the average difference between your predictions and the correct value for that observation?


	Low bias could mean every prediction is correct. It could also mean half of your predictions are above their actual values and half are below, in equal proportion, resulting in low average difference.


	High bias (with low variance) suggests your model may be underfitting and you’re using the wrong architecture for the job.









	Bias term

	Allow models to represent patterns that do not pass through the origin. For example, if all my features were 0, would my output also be zero? Is it possible there is some base value upon which my features have an effect? Bias terms typically accompany weights and are attached to neurons or filters.






	Categorical Variables

	Variables with a discrete set of possible values. Can be ordinal (order matters) or nominal (order doesn’t matter).






	Classification

	Predicting a categorical output (e.g. yes or no?, blue, green or red?).






	Classification Threshold

	The lowest probability value at which we’re comfortable asserting a positive classification. For example, if the predicted probability of being diabetic is > 50%, return True, otherwise return False.






	Clustering

	Unsupervised grouping of data into buckets.






	Confusion Matrix

	Table that describes the performance of a classification model by grouping predictions into 4 categories.


	True Positives: we correctly predicted they do have diabetes


	True Negatives: we correctly predicted they don’t have diabetes


	False Positives: we incorrectly predicted they do have diabetes (Type I error)


	False Negatives: we incorrectly predicted they don’t have diabetes (Type II error)









	Continuous Variables

	Variables with a range of possible values defined by a number scale (e.g. sales, lifespan).






	Deduction

	A top-down approach to answering questions or solving problems. A logic technique that starts with a theory and tests that theory with observations to derive a conclusion. E.g. We suspect X, but we need to test our hypothesis before coming to any conclusions.






	Deep Learning

	Contribute a definition!






	Dimension

	Contribute a definition!






	Epoch

	An epoch describes the number of times the algorithm sees the entire data set.






	Extrapolation

	Making predictions outside the range of a dataset. E.g. My dog barks, so all dogs must bark. In machine learning we often run into trouble when we extrapolate outside the range of our training data.






	Feature

	With respect to a dataset, a feature represents an attribute and value combination. Color is an attribute. «Color is blue» is a feature. In Excel terms, features are similar to cells. The term feature has other definitions in different contexts.






	Feature Selection

	Feature selection is the process of selecting relevant features from a data-set for creating a Machine Learning model.






	Feature Vector

	A list of features describing an observation with multiple attributes. In Excel we call this a row.






	Hyperparameters

	Hyperparameters are higher-level properties of a model such as how fast it can learn (learning rate) or complexity of a model. The depth of trees in a Decision Tree or number of hidden layers in a Neural Networks are examples of hyper parameters.






	Induction

	A bottoms-up approach to answering questions or solving problems. A logic technique that goes from observations to theory. E.g. We keep observing X, so we <b><i>infer</i></b> that Y must be True.






	Instance

	A data point, row, or sample in a dataset. Another term for observation.






	Learning Rate

	The size of the update steps to take during optimization loops like Gradient Descent. With a high learning rate we can cover more ground each step, but we risk overshooting the lowest point since the slope of the hill is constantly changing. With a very low learning rate, we can confidently move in the direction of the negative gradient since we are recalculating it so frequently. A low learning rate is more precise, but calculating the gradient is time-consuming, so it will take us a very long time to get to the bottom.






	Loss

	Contribute a definition!






	Machine Learning

	Contribute a definition!






	Model

	A data structure that stores a representation of a dataset (weights and biases). Models are created/learned when you train an algorithm on a dataset.






	Neural Networks

	Contribute a definition!






	Normalization

	Contribute a definition!






	Null Accuracy

	Baseline accuracy that can be acheived by always predicting the most frequent class («B has the highest frequency, so lets guess B every time»).






	Observation

	A data point, row, or sample in a dataset. Another term for instance.






	Overfitting

	Overfitting occurs when your model learns the training data too well and incorporates details and noise specific to your dataset. You can tell a model is overfitting when it performs great on your training/validation set, but poorly on your test set (or new real-world data).






	Parameters

	Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]






	Precision

	In the context of binary classification (Yes/No), precision measures the model’s performance at classifying positive observations (i.e. «Yes»). In other words, when a positive value is predicted, how often is the prediction correct? We could game this metric by only returning positive for the single observation we are most confident in.


\[P = \frac{True Positives}{True Positives + False Positives}\]






	Recall

	Also called sensitivity. In the context of binary classification (Yes/No), recall measures how «sensitive» the classifier is at detecting positive instances. In other words, for all the true observations in our sample, how many did we «catch.» We could game this metric by always classifying observations as positive.


\[R = \frac{True Positives}{True Positives + False Negatives}\]






	Recall vs Precision

	Say we are analyzing Brain scans and trying to predict whether a person has a tumor (True) or not (False). We feed it into our model and our model starts guessing.


	Precision is the % of True guesses that were actually correct! If we guess 1 image is True out of 100 images and that image is actually True, then our precision is 100%! Our results aren’t helpful however because we missed 10 brain tumors! We were super precise when we tried, but we didn’t try hard enough.


	Recall, or Sensitivity, provides another lens which with to view how good our model is. Again let’s say there are 100 images, 10 with brain tumors, and we correctly guessed 1 had a brain tumor. Precision is 100%, but recall is 10%. Perfect recall requires that we catch all 10 tumors!









	Regression

	Predicting a continuous output (e.g. price, sales).






	Regularization

	Contribute a definition!






	Reinforcement Learning

	Training a model to maximize a reward via iterative trial and error.






	Segmentation

	Contribute a definition!






	Specificity

	In the context of binary classification (Yes/No), specificity measures the model’s performance at classifying negative observations (i.e. «No»). In other words, when the correct label is negative, how often is the prediction correct? We could game this metric if we predict everything as negative.


\[S = \frac{True Negatives}{True Negatives + False Positives}\]






	Supervised Learning

	Training a model using a labeled dataset.






	Test Set

	A set of observations used at the end of model training and validation to assess the predictive power of your model. How generalizable is your model to unseen data?






	Training Set

	A set of observations used to generate machine learning models.






	Transfer Learning

	Contribute a definition!






	Type 1 Error

	False Positives. Consider a company optimizing hiring practices to reduce false positives in job offers. A type 1 error occurs when candidate seems good and they hire him, but he is actually bad.






	Type 2 Error

	False Negatives. The candidate was great but the company passed on him.






	Underfitting

	Underfitting occurs when your model over-generalizes and fails to incorporate relevant variations in your data that would give your model more predictive power. You can tell a model is underfitting when it performs poorly on both training and test sets.






	Universal Approximation Theorem

	A neural network with one hidden layer can approximate any continuous function but only for inputs in a specific range. If you train a network on inputs between -2 and 2, then it will work well for inputs in the same range, but you can’t expect it to generalize to other inputs without retraining the model or adding more hidden neurons.






	Unsupervised Learning

	Training a model to find patterns in an unlabeled dataset (e.g. clustering).






	Validation Set

	A set of observations used during model training to provide feedback on how well the current parameters generalize beyond the training set. If training error decreases but validation error increases, your model is likely overfitting and you should pause training.






	Variance

	How tightly packed are your predictions for a particular observation relative to each other?


	Low variance suggests your model is internally consistent, with predictions varying little from each other after every iteration.


	High variance (with low bias) suggests your model may be overfitting and reading too deeply into the noise found in every training set.
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Introduction

You need to know some basic calculus in order to understand how functions change over time (derivatives), and to calculate the total amount of a quantity that accumulates over a time period (integrals). The language of calculus will allow you to speak precisely about the properties of functions and better understand their behaviour.

Normally taking a calculus course involves doing lots of tedious calculations by hand, but having the power of computers on your side can make the process much more fun. This section describes the key ideas of calculus which you’ll need to know to understand machine learning concepts.




Derivatives

A derivative can be defined in two ways:



	Instantaneous rate of change (Physics)


	Slope of a line at a specific point (Geometry)







Both represent the same principle, but for our purposes it’s easier to explain using the geometric definition.


Geometric definition

In geometry slope represents the steepness of a line. It answers the question: how much does \(y\) or \(f(x)\) change given a specific change in \(x\)?

[image: _images/slope_formula.png]
Using this definition we can easily calculate the slope between two points. But what if I asked you, instead of the slope between two points, what is the slope at a single point on the line? In this case there isn’t any obvious «rise-over-run» to calculate. Derivatives help us answer this question.

A derivative outputs an expression we can use to calculate the instantaneous rate of change, or slope, at a single point on a line. After solving for the derivative you can use it to calculate the slope at every other point on the line.




Taking the derivative

Consider the graph below, where \(f(x) = x^2 + 3\).

[image: _images/calculus_slope_intro.png]
The slope between (1,4) and (3,12) would be:


\[slope = \frac{y2-y1}{x2-x1} = \frac{12-4}{3-1} = 4\]

But how do we calculate the slope at point (1,4) to reveal the change in slope at that specific point?

One way would be to find the two nearest points, calculate their slopes relative to \(x\) and take the average. But calculus provides an easier, more precise way: compute the derivative. Computing the derivative of a function is essentially the same as our original proposal, but instead of finding the two closest points, we make up an imaginary point an infinitesimally small distance away from \(x\) and compute the slope between \(x\) and the new point.

In this way, derivatives help us answer the question: how does \(f(x)\) change if we make a very very tiny increase to x? In other words, derivatives help estimate the slope between two points that are an infinitesimally small distance away from each other. A very, very, very small distance, but large enough to calculate the slope.

In math language we represent this infinitesimally small increase using a limit. A limit is defined as the output value a function approaches as the input value approaches another value. In our case the target value is the specific point at which we want to calculate slope.




Step-by-step

Calculating the derivative is the same as calculating normal slope, however in this case we calculate the slope between our point and a point infinitesimally close to it. We use the variable \(h\) to represent this infinitesimally distance. Here are the steps:


	Given the function:





\[f(x) = x^2\]


	Increment \(x\) by a very small value \(h (h = Δx)\)





\[f(x + h) = (x + h)^2\]


	Apply the slope formula





\[\frac{f(x + h) - f(x)}{h}\]


	Simplify the equation





\[ \begin{align}\begin{aligned}\begin{split}\frac{x^2 + 2xh + h^2 - x^2}{h} \\\end{split}\\\frac{2xh+h^2}{h} = 2x+h\end{aligned}\end{align} \]


	Set \(h\) to 0 (the limit as \(h\) heads toward 0)





\[{2x + 0} = {2x}\]

So what does this mean? It means for the function \(f(x) = x^2\), the slope at any point equals \(2x\). The formula is defined as:


\[\lim_{h\to0}\frac{f(x+h) - f(x)}{h}\]

Code

Let’s write code to calculate the derivative of any function \(f(x)\). We test our function works as expected on the input \(f(x)=x^2\) producing a value close to the actual derivative \(2x\).

def get_derivative(func, x):
    """Compute the derivative of `func` at the location `x`."""
    h = 0.0001                          # step size
    return (func(x+h) - func(x)) / h    # rise-over-run

def f(x): return x**2                   # some test function f(x)=x^2
x = 3                                   # the location of interest
computed = get_derivative(f, x)
actual = 2*x

computed, actual   # = 6.0001, 6        # pretty close if you ask me...





In general it’s preferable to use the math to obtain exact derivative formulas, but keep in mind you can always compute derivatives numerically by computing the rise-over-run for a «small step» \(h\).




Machine learning use cases

Machine learning uses derivatives in optimization problems. Optimization algorithms like gradient descent use derivatives to decide whether to increase or decrease weights in order to maximize or minimize some objective (e.g. a model’s accuracy or error functions). Derivatives also help us approximate nonlinear functions as linear functions (tangent lines), which have constant slopes. With a constant slope we can decide whether to move up or down the slope (increase or decrease our weights) to get closer to the target value (class label).






Chain rule

The chain rule is a formula for calculating the derivatives of composite functions. Composite functions are functions composed of functions inside other function(s).


How It Works

Given a composite function \(f(x) = A(B(x))\), the derivative of \(f(x)\) equals the product of the derivative of \(A\) with respect to \(B(x)\) and the derivative of \(B\) with respect to \(x\).


\[\mbox{composite function derivative} = \mbox{outer function derivative} * \mbox{inner function derivative}\]

For example, given a composite function \(f(x)\), where:


\[f(x) = h(g(x))\]

The chain rule tells us that the derivative of \(f(x)\) equals:


\[\frac{df}{dx} = \frac{dh}{dg} \cdot \frac{dg}{dx}\]




Step-by-step

Say \(f(x)\) is composed of two functions \(h(x) = x^3\) and \(g(x) = x^2\). And that:


\[\begin{split}\begin{align}
f(x) &= h(g(x)) \\
     &= (x^2)^3 \\
\end{align}\end{split}\]

The derivative of \(f(x)\) would equal:


\[\begin{split}\begin{align}
\frac{df}{dx} &=  \frac{dh}{dg} \frac{dg}{dx} \\
              &=  \frac{dh}{d(x^2)} \frac{dg}{dx}
\end{align}\end{split}\]

Steps


	Solve for the inner derivative of \(g(x) = x^2\)





\[\frac{dg}{dx} = 2x\]


	Solve for the outer derivative of \(h(x) = x^3\), using a placeholder \(b\) to represent the inner function \(x^2\)





\[\frac{dh}{db} = 3b^2\]


	Swap out the placeholder variable for the inner function





\[3x^4\]


	Return the product of the two derivatives





\[3x^4 \cdot 2x = 6x^5\]




Multiple functions

In the above example we assumed a composite function containing a single inner function. But the chain rule can also be applied to higher-order functions like:


\[f(x) = A(B(C(x)))\]

The chain rule tells us that the derivative of this function equals:


\[\frac{df}{dx} = \frac{dA}{dB} \frac{dB}{dC} \frac{dC}{dx}\]

We can also write this derivative equation \(f'\) notation:


\[f' = A'(B(C(x)) \cdot B'(C(x)) \cdot C'(x)\]

Steps

Given the function \(f(x) = A(B(C(x)))\), lets assume:


\[\begin{split}\begin{align}
A(x) & = sin(x) \\
B(x) & = x^2 \\
C(x) & = 4x
\end{align}\end{split}\]

The derivatives of these functions would be:


\[\begin{split}\begin{align}
A'(x) &= cos(x) \\
B'(x) &= 2x \\
C'(x) &= 4
\end{align}\end{split}\]

We can calculate the derivative of \(f(x)\) using the following formula:


\[f'(x) = A'( (4x)^2) \cdot B'(4x) \cdot C'(x)\]

We then input the derivatives and simplify the expression:


\[\begin{split}\begin{align}
f'(x) &= cos((4x)^2) \cdot 2(4x) \cdot 4 \\
      &= cos(16x^2) \cdot 8x \cdot 4 \\
      &= cos(16x^2)32x
\end{align}\end{split}\]






Gradients

A gradient is a vector that stores the partial derivatives of multivariable functions. It helps us calculate the slope at a specific point on a curve for functions with multiple independent variables. In order to calculate this more complex slope, we need to isolate each variable to determine how it impacts the output on its own. To do this we iterate through each of the variables and calculate the derivative of the function after holding all other variables constant. Each iteration produces a partial derivative which we store in the gradient.


Partial derivatives

In functions with 2 or more variables, the partial derivative is the derivative of one variable with respect to the others. If we change \(x\), but hold all other variables constant, how does \(f(x,z)\) change? That’s one partial derivative. The next variable is \(z\). If we change \(z\) but hold \(x\) constant, how does \(f(x,z)\) change? We store partial derivatives in a gradient, which represents the full derivative of the multivariable function.




Step-by-step

Here are the steps to calculate the gradient for a multivariable function:


	Given a multivariable function





\[f(x,z) = 2z^3x^2\]


	Calculate the derivative with respect to \(x\)





\[\frac{df}{dx}(x,z)\]


	Swap \(2z^3\) with a constant value \(b\)





\[f(x,z) = bx^2\]


	Calculate the derivative with \(b\) constant





\[\begin{split}\begin{align}
\frac{df}{dx} & = \lim_{h\to0}\frac{f(x+h) - f(x)}{h} \\
              & = \lim_{h\to0}\frac{b(x+h)^2 - b(x^2)}{h} \\
              & = \lim_{h\to0}\frac{b((x+h)(x+h)) - bx^2}{h} \\
              & = \lim_{h\to0}\frac{b((x^2 + xh + hx + h^2)) - bx^2}{h} \\
              & = \lim_{h\to0}\frac{bx^2 + 2bxh + bh^2 - bx^2}{h} \\
              & = \lim_{h\to0}\frac{2bxh + bh^2}{h} \\
              & = \lim_{h\to0}\frac{2bxh + bh^2}{h} \\
              & = \lim_{h\to0} 2bx + bh \\
\end{align}\end{split}\]

As \(h —> 0\)…


2bx + 0





	Swap \(2z^3\) back into the equation, to find the derivative with respect to \(x\).





\[\begin{split}\begin{align}
\frac{df}{dx}(x,z) &= 2(2z^3)x \\
                   &= 4z^3x
\end{align}\end{split}\]


	Repeat the above steps to calculate the derivative with respect to \(z\)





\[\frac{df}{dz}(x,z) = 6x^2z^2\]


	Store the partial derivatives in a gradient





\[\begin{split}\nabla f(x,z)=\begin{bmatrix}
    \frac{df}{dx} \\
    \frac{df}{dz} \\
   \end{bmatrix}
=\begin{bmatrix}
    4z^3x \\
    6x^2z^2 \\
   \end{bmatrix}\end{split}\]




Directional derivatives

Another important concept is directional derivatives. When calculating the partial derivatives of multivariable functions we use our old technique of analyzing the impact of infinitesimally small increases to each of our independent variables. By increasing each variable we alter the function output in the direction of the slope.

But what if we want to change directions? For example, imagine we’re traveling north through mountainous terrain on a 3-dimensional plane. The gradient we calculated above tells us we’re traveling north at our current location. But what if we wanted to travel southwest? How can we determine the steepness of the hills in the southwest direction? Directional derivatives help us find the slope if we move in a direction different from the one specified by the gradient.

Math

The directional derivative is computed by taking the dot product 11 of the gradient of \(f\) and a unit vector \(\vec{v}\) of «tiny nudges» representing the direction. The unit vector describes the proportions we want to move in each direction. The output of this calculation is a scalar number representing how much \(f\) will change if the current input moves with vector \(\vec{v}\).

Let’s say you have the function \(f(x,y,z)\) and you want to compute its directional derivative along the following vector 2:


\[\begin{split}\vec{v}=\begin{bmatrix}
  2 \\
  3 \\
  -1  \\
 \end{bmatrix}\end{split}\]

As described above, we take the dot product of the gradient and the directional vector:


\[\begin{split}\begin{bmatrix}
  \frac{df}{dx} \\
  \frac{df}{dy} \\
  \frac{df}{dz} \\
 \end{bmatrix}
 \cdot
 \begin{bmatrix}
    2 \\
    3 \\
    -1  \\
 \end{bmatrix}\end{split}\]

We can rewrite the dot product as:


\[\nabla_\vec{v} f = 2 \frac{df}{dx} + 3 \frac{df}{dy} - 1 \frac{df}{dz}\]

This should make sense because a tiny nudge along \(\vec{v}\) can be broken down into two tiny nudges in the x-direction, three tiny nudges in the y-direction, and a tiny nudge backwards, by −1 in the z-direction.




Useful properties

There are two additional properties of gradients that are especially useful in deep learning. The gradient of a function:



	Always points in the direction of greatest increase of a function (explained here [https://betterexplained.com/articles/understanding-pythagorean-distance-and-the-gradient])


	Is zero at a local maximum or local minimum












Integrals

The integral of \(f(x)\) corresponds to the computation of the area under the graph of \(f(x)\). The area under \(f(x)\) between the points \(x=a\) and \(x=b\) is denoted as follows:


\[A(a,b) = \int_a^b f(x) \: dx.\]

[image: _images/integral_definition.png]
The area \(A(a,b)\) is bounded by the function \(f(x)\) from above, by the \(x\)-axis from below, and by two vertical lines at \(x=a\) and \(x=b\). The points \(x=a\) and \(x=b\) are called the limits of integration. The \(\int\) sign comes from the Latin word summa. The integral is the «sum» of the values of \(f(x)\) between the two limits of integration.

The integral function \(F(c)\) corresponds to the area calculation as a function of the upper limit of integration:


\[F(c) \equiv \int_0^c \! f(x)\:dx\,.\]

There are two variables and one constant in this formula. The input variable \(c\) describes the upper limit of integration. The integration variable \(x\) performs a sweep from \(x=0\) until \(x=c\). The constant \(0\) describes the lower limit of integration. Note that choosing \(x=0\) for the starting point of the integral function was an arbitrary choice.

The integral function \(F(c)\) contains the «precomputed» information about the area under the graph of \(f(x)\).  The derivative function \(f'(x)\) tells us the «slope of the graph» property of the function \(f(x)\) for all values of \(x\). Similarly, the integral function \(F(c)\) tells us the «area under the graph» property of the function \(f(x)\) for all possible limits of integration.

The area under \(f(x)\) between \(x=a\) and \(x=b\) is obtained by calculating the change in the integral function as follows:


\[A(a,b) = \int_a^b \! f(x)\:dx
     =  F(b)-F(a).\]

[image: _images/integral_as_change_in_antriderivative.png]

Computing integrals

We can approximate the total area under the function \(f(x)\) between \(x=a\) and \(x=b\) by splitting the region into tiny vertical strips of width \(h\), then adding up the areas of the rectangular strips. The figure below shows how to compute the area under \(f(x)=x^2\) between \(x=1\) and \(x=3\) by approximating it as four rectangular strips of width \(h=0.5\).

[image: _images/integral_as_rectangular_strips.png]
Usually we want to choose \(h\) to be a small number so that the approximation is accurate. Here is some sample code that performs integration.

def get_integral(func, a, b):
    """Compute the area under `func` between x=a and x=b."""
    h = 0.0001               # width of small rectangle
    x = a                    # start at x=a
    total = 0
    while x <= b:            # continue until x=b
        total += h*func(x)   # area of rect is base*height
        x += h
    return total

def f(x): return x**2                    # some test function f(x)=x^2
computed = get_integral(f, 1, 3)
def actualF(x): return 1.0/3.0*x**3
actual = actualF(3) - actualF(1)
computed, actual    # = 8.6662, 8.6666   # pretty close if you ask me...





You can find integral functions using the derivative formulas and some reverse engineering. To find an integral function of the function \(f(x)\), we must find a function \(F(x)\) such that \(F'(x)=f(x)\). Suppose you’re given a function \(f(x)\) and asked to find its integral function \(F(x)\):


\[F(x) = \int \! f(x)\: dx.\]

This problem is equivalent to finding a function \(F(x)\) whose derivative is \(f(x)\):


\[F'(x) = f(x).\]

For example, suppose you want to find the indefinite integral \(\int \!x^2\:dx\). We can rephrase this problem as the search for some function \(F(x)\) such that


\[F'(x) = x^2.\]

Remembering the derivative formulas we saw above, you guess that \(F(x)\) must contain an \(x^3\) term. Taking the derivative of a cubic term results in a quadratic term. Therefore, the function you are looking for has the form \(F(x)=cx^3\), for some constant \(c\). Pick the constant \(c\) that makes this equation true:


\[F'(x) = 3cx^2 = x^2.\]

Solving \(3c=1\), we find \(c=\frac{1}{3}\) and so the integral function is


\[F(x) = \int x^2 \:dx = \frac{1}{3}x^3 + C.\]

You can verify that \(\frac{d}{dx}\left[\frac{1}{3}x^3 + C\right] = x^2\).




Applications of integration

Integral calculations have widespread applications to more areas of science than are practical to list here. Let’s explore a few examples related to probabilities.


Computing probabilities

A continuous random variable \(X\) is described by its probability density function \(p(x)\). A probability density function \(p(x)\) is a positive function for which the total area under the curve is \(1\):


\[      p(x) \geq 0, \forall x
\qquad
       \textrm{and}
       \qquad
       \int_{-\infty}^\infty p(x)\; dx = 1.\]

The probability of observing a value of \(X\) between \(a\) and \(b\) is given by the integral


\[      \textrm{Pr}(a \leq X \leq b)
=
      \int_a^b p(x)\; dx.\]

Thus, the notion of integration is central to probability theory with continuous random variables.

We also use integration to compute certain characteristic properties of the random variable. The expected value and the variance are two properties of any random variable \(X\) that capture important aspects of its behaviour.




Expected value

The expected value of the random variable \(X\) is computed using the formula


\[\mu
      % \equiv \mathbb{E}_X[X]
      = \int_{-\infty}^\infty x\, p(x).\]

The expected value is a single number that tells us what value of \(X\) we can expect to obtain on average from the random variable \(X\). The expected value is also called the average or the mean of the random variable \(X\).




Variance

The variance of the random variable \(X\) is defined as follows:


\[\sigma^2
      % \equiv  \mathbb{E}_X\!\big[(X-\mu)^2\big]
      = \int_{-\infty}^\infty (x-\mu)^2 \, p(x).\]

The variance formula computes the expectation of the squared distance of the random variable \(X\) from its expected value. The variance \(\sigma^2\), also denoted \(\textrm{var}(X)\), gives us an indication of how clustered or spread the values of \(X\) are. A small variance indicates the outcomes of \(X\) are tightly clustered near the expected value \(\mu\), while a large variance indicates the outcomes of \(X\) are widely spread. The square root of the variance is called the standard deviation and is usually denoted \(\sigma\).

The expected value \(\mu\) and the variance \(\sigma^2\) are two central concepts in probability theory and statistics because they allow us to characterize any random variable. The expected value is a measure of the central tendency of the random variable,  while the variance \(\sigma^2\) measures its dispersion.
Readers familiar with concepts from physics can think of the expected value as the centre of mass of the distribution, and the variance as the moment of inertia of the distribution.
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Linear algebra is a mathematical toolbox that offers helpful techniques for manipulating groups of numbers simultaneously. It provides structures like vectors and matrices (spreadsheets) to hold these numbers and new rules for how to add, subtract, multiply, and divide them. Here is a brief overview of basic linear algebra concepts taken from my linear algebra post [https://medium.com/p/cd67aba4526c] on Medium.


Vectors

Vectors are 1-dimensional arrays of numbers or terms. In geometry, vectors store the magnitude and direction of a potential change to a point. The vector [3, -2] says go right 3 and down 2. A vector with more than one dimension is called a matrix.


Notation

There are a variety of ways to represent vectors. Here are a few you might come across in your reading.


\[\begin{split}v = \begin{bmatrix}
1 \\
2 \\
3 \\
\end{bmatrix}
=
\begin{pmatrix}
1 \\
2 \\
3 \\
\end{pmatrix}
=
\begin{bmatrix}
1 & 2 & 3\\
\end{bmatrix}\end{split}\]




Vectors in geometry

Vectors typically represent movement from a point. They store both the magnitude and direction of potential changes to a point. The vector [-2,5] says move left 2 units and up 5 units 1.

[image: _images/vectors_geometry.png]
A vector can be applied to any point in space. The vector’s direction equals the slope of the hypotenuse created moving up 5 and left 2. Its magnitude equals the length of the hypotenuse.




Scalar operations

Scalar operations involve a vector and a number. You modify the vector in-place by adding, subtracting, or multiplying the number from all the values in the vector.


\[\begin{split}\begin{bmatrix}
2 \\
2 \\
2 \\
\end{bmatrix}
+
1
=
\begin{bmatrix}
3 \\
3 \\
3 \\
\end{bmatrix}\end{split}\]




Elementwise operations

In elementwise operations like addition, subtraction, and division, values that correspond positionally are combined to produce a new vector. The 1st value in vector A is paired with the 1st value in vector B. The 2nd value is paired with the 2nd, and so on. This means the vectors must have equal dimensions to complete the operation.*


\[\begin{split}\begin{bmatrix}
a_1 \\
a_2 \\
\end{bmatrix}
+
\begin{bmatrix}
b_1 \\
b_2 \\
\end{bmatrix}
=
\begin{bmatrix}
a_1+b_1 \\
a_2+b_2 \\
\end{bmatrix}\end{split}\]

y = np.array([1,2,3])
x = np.array([2,3,4])
y + x = [3, 5, 7]
y - x = [-1, -1, -1]
y / x = [.5, .67, .75]





See below for details on broadcasting in numpy.




Dot product

The dot product of two vectors is a scalar. Dot product of vectors and matrices (matrix multiplication) is one of the most important operations in deep learning.


\[\begin{split}\begin{bmatrix}
a_1 \\
a_2 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
b_1 \\
b_2 \\
\end{bmatrix}
= a_1 b_1+a_2 b_2\end{split}\]

y = np.array([1,2,3])
x = np.array([2,3,4])
np.dot(y,x) = 20








Hadamard product

Hadamard Product is elementwise multiplication and it outputs a vector.


\[\begin{split}\begin{bmatrix}
a_1 \\
a_2 \\
\end{bmatrix}
 \odot
\begin{bmatrix}
b_1 \\
b_2 \\
\end{bmatrix}
=
\begin{bmatrix}
a_1 \cdot b_1 \\
a_2 \cdot b_2 \\
\end{bmatrix}\end{split}\]

y = np.array([1,2,3])
x = np.array([2,3,4])
y * x = [2, 6, 12]








Vector fields

A vector field shows how far the point (x,y) would hypothetically move if we applied a vector function to it like addition or multiplication. Given a point in space, a vector field shows the power and direction of our proposed change at a variety of points in a graph 2.

[image: _images/vector_field.png]
This vector field is an interesting one since it moves in different directions depending the starting point. The reason is that the vector behind this field stores terms like \(2x\) or \(x^2\) instead of scalar values like -2 and 5. For each point on the graph, we plug the x-coordinate into \(2x\) or \(x^2\) and draw an arrow from the starting point to the new location. Vector fields are extremely useful for visualizing machine learning techniques like Gradient Descent.






Matrices

A matrix is a rectangular grid of numbers or terms (like an Excel spreadsheet) with special rules for addition, subtraction, and multiplication.


Dimensions

We describe the dimensions of a matrix in terms of rows by columns.


\[\begin{split}\begin{bmatrix}
2 & 4 \\
5 & -7 \\
12 & 5 \\
\end{bmatrix}
\begin{bmatrix}
a² & 2a & 8\\
18 & 7a-4 & 10\\
\end{bmatrix}\end{split}\]

The first has dimensions (3,2). The second (2,3).

a = np.array([
 [1,2,3],
 [4,5,6]
])
a.shape == (2,3)
b = np.array([
 [1,2,3]
])
b.shape == (1,3)








Scalar operations

Scalar operations with matrices work the same way as they do for vectors. Simply apply the scalar to every element in the matrix — add, subtract, divide, multiply, etc.


\[\begin{split}\begin{bmatrix}
2 & 3 \\
2 & 3 \\
2 & 3 \\
\end{bmatrix}
+
1
=
\begin{bmatrix}
3 & 4 \\
3 & 4 \\
3 & 4 \\
\end{bmatrix}\end{split}\]

# Addition
a = np.array(
[[1,2],
 [3,4]])
a + 1
[[2,3],
 [4,5]]








Elementwise operations

In order to add, subtract, or divide two matrices they must have equal dimensions. We combine corresponding values in an elementwise fashion to produce a new matrix.


\[\begin{split}\begin{bmatrix}
a & b \\
c & d \\
\end{bmatrix}
+
\begin{bmatrix}
1 & 2\\
3 & 4 \\
\end{bmatrix}
=
\begin{bmatrix}
a+1 & b+2\\
c+3 & d+4 \\
\end{bmatrix}\end{split}\]

a = np.array([
 [1,2],
 [3,4]])
b = np.array([
 [1,2],
 [3,4]])

a + b
[[2, 4],
 [6, 8]]

a — b
[[0, 0],
 [0, 0]]








Hadamard product

Hadamard product of matrices is an elementwise operation. Values that correspond positionally are multiplied to produce a new matrix.


\[\begin{split}\begin{bmatrix}
a_1 & a_2 \\
a_3 & a_4 \\
\end{bmatrix}
\odot
\begin{bmatrix}
b_1 & b_2 \\
b_3 & b_4 \\
\end{bmatrix}
=
\begin{bmatrix}
a_1 \cdot b_1 & a_2 \cdot b_2 \\
a_3 \cdot b_3 & a_4 \cdot b_4 \\
\end{bmatrix}\end{split}\]

a = np.array(
[[2,3],
 [2,3]])
b = np.array(
[[3,4],
 [5,6]])

# Uses python's multiply operator
a * b
[[ 6, 12],
 [10, 18]]





In numpy you can take the Hadamard product of a matrix and vector as long as their dimensions meet the requirements of broadcasting.


\[\begin{split}\begin{bmatrix}
{a_1} \\
{a_2} \\
\end{bmatrix}
\odot
\begin{bmatrix}
b_1 & b_2 \\
b_3 & b_4 \\
\end{bmatrix}
=
\begin{bmatrix}
a_1 \cdot b_1 & a_1 \cdot b_2 \\
a_2 \cdot b_3 & a_2 \cdot b_4 \\
\end{bmatrix}\end{split}\]




Matrix transpose

Neural networks frequently process weights and inputs of different sizes where the dimensions do not meet the requirements of matrix multiplication. Matrix transpose provides a way to “rotate” one of the matrices so that the operation complies with multiplication requirements and can continue. There are two steps to transpose a matrix:



	Rotate the matrix right 90°


	Reverse the order of elements in each row (e.g. [a b c] becomes [c b a])







As an example, transpose matrix M into T:


\[\begin{split}\begin{bmatrix}
a & b \\
c & d \\
e & f \\
\end{bmatrix}
\quad \Rightarrow \quad
\begin{bmatrix}
a & c & e \\
b & d & f \\
\end{bmatrix}\end{split}\]

a = np.array([
   [1, 2],
   [3, 4]])

a.T
[[1, 3],
 [2, 4]]








Matrix multiplication

Matrix multiplication specifies a set of rules for multiplying matrices together to produce a new matrix.

Rules

Not all matrices are eligible for multiplication. In addition, there is a requirement on the dimensions of the resulting matrix output. Source.



	The number of columns of the 1st matrix must equal the number of rows of the 2nd


	The product of an M x N matrix and an N x K matrix is an M x K matrix. The new matrix takes the rows of the 1st and columns of the 2nd







Steps

Matrix multiplication relies on dot product to multiply various combinations of rows and columns. In the image below, taken from Khan Academy’s excellent linear algebra course, each entry in Matrix C is the dot product of a row in matrix A and a column in matrix B 3.

[image: _images/khan_academy_matrix_product.png]
The operation a1 · b1 means we take the dot product of the 1st row in matrix A (1, 7) and the 1st column in matrix B (3, 5).


\[\begin{split}a_1 \cdot b_1 =
\begin{bmatrix}
1 \\
7 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
3 \\
5 \\
\end{bmatrix}
= (1 \cdot 3) + (7 \cdot 5) = 38\end{split}\]

Here’s another way to look at it:


\[\begin{split}\begin{bmatrix}
a & b \\
c & d \\
e & f \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
\end{bmatrix}
=
\begin{bmatrix}
1a + 3b & 2a + 4b \\
1c + 3d & 2c + 4d \\
1e + 3f & 2e + 4f \\
\end{bmatrix}\end{split}\]




Test yourself


	What are the dimensions of the matrix product?





\[\begin{split}\begin{bmatrix}
1 & 2 \\
5 & 6 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 2 & 3 \\
5 & 6 & 7 \\
\end{bmatrix}
= \text{2 x 3}\end{split}\]


	What are the dimensions of the matrix product?





\[\begin{split}\begin{bmatrix}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8 \\
9 & 10 & 11 & 12 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 2 \\
5 & 6 \\
3 & 0 \\
2 & 1 \\
\end{bmatrix}
= \text{3 x 2}\end{split}\]


	What is the matrix product?





\[\begin{split}\begin{bmatrix}
2 & 3 \\
1 & 4 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
5 & 4 \\
3 & 5 \\
\end{bmatrix}
=
\begin{bmatrix}
19 & 23 \\
17 & 24 \\
\end{bmatrix}\end{split}\]


	What is the matrix product?}





\[\begin{split}\begin{bmatrix}
3 \\
5 \\
\end{bmatrix}
\cdot
\begin{bmatrix}
1 & 2 & 3\\
\end{bmatrix}
=
\begin{bmatrix}
3 & 6 & 9 \\
5 & 10 & 15 \\
\end{bmatrix}\end{split}\]


	What is the matrix product?





\[\begin{split}\begin{bmatrix}
1 & 2 & 3\\
\end{bmatrix}
\cdot
\begin{bmatrix}
4 \\
5 \\
6 \\
\end{bmatrix}
=
\begin{bmatrix}
32 \\
\end{bmatrix}\end{split}\]






Numpy


Dot product

Numpy uses the function np.dot(A,B) for both vector and matrix multiplication. It has some other interesting features and gotchas so I encourage you to read the documentation here before use.

a = np.array([
 [1, 2]
 ])
a.shape == (1,2)
b = np.array([
 [3, 4],
 [5, 6]
 ])
b.shape == (2,2)

# Multiply
mm = np.dot(a,b)
mm == [13, 16]
mm.shape == (1,2)








Broadcasting

In numpy the dimension requirements for elementwise operations are relaxed via a mechanism called broadcasting. Two matrices are compatible if the corresponding dimensions in each matrix (rows vs rows, columns vs columns) meet the following requirements:



	The dimensions are equal, or


	One dimension is of size 1







a = np.array([
 [1],
 [2]
])
b = np.array([
 [3,4],
 [5,6]
])
c = np.array([
 [1,2]
])

# Same no. of rows
# Different no. of columns
# but a has one column so this works
a * b
[[ 3, 4],
 [10, 12]]

# Same no. of columns
# Different no. of rows
# but c has one row so this works
b * c
[[ 3, 8],
 [5, 12]]

# Different no. of columns
# Different no. of rows
# but both a and c meet the
# size 1 requirement rule
a + c
[[2, 3],
 [3, 4]]





Tutorials


	Khan Academy Linear Algebra [https://medium.com/r/?url=https%3A%2F%2Fwww.khanacademy.org%2Fmath%2Flinear-algebra]


	Deep Learning Book Math [https://medium.com/r/?url=http%3A%2F%2Fwww.deeplearningbook.org%2Fcontents%2Fpart_basics.html]


	Andrew Ng Course Notes [https://medium.com/r/?url=https%3A%2F%2Fwww.coursera.org%2Flearn%2Fmachine-learning%2Fresources%2FJXWWS]


	Linear Algebra Better Explained [https://medium.com/r/?url=https%3A%2F%2Fbetterexplained.com%2Farticles%2Flinear-algebra-guide%2F]


	Understanding Matrices Intuitively [https://medium.com/r/?url=http%3A%2F%2Fblog.stata.com%2F2011%2F03%2F03%2Funderstanding-matrices-intuitively-part-1%2F]


	Intro To Linear Algebra [https://medium.com/r/?url=http%3A%2F%2Fwww.holehouse.org%2Fmlclass%2F03_Linear_algebra_review.html]


	Immersive Math [https://medium.com/r/?url=http%3A%2F%2Fimmersivemath.com%2Fila%2Findex.html]
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Probability

Basic concepts in probability for machine learning.
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Statistics

Basic concepts in statistics for machine learning.
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Notation

Commonly used math symbols in machine learning texts.



	Algebra


	Calculus


	Linear algebra


	Probability


	Set theory


	Statistics







Примечание

Use the table generator [http://www.tablesgenerator.com/text_tables] to quickly add new symbols.
Import current tables into tablesgenerator from figures/*.tgn. Export and save your changes. Also
see helpful multiline editing [https://www.sublimetext.com/docs/3/multiple_selection_with_the_keyboard.html] in Sublime.




Algebra









	Symbol

	Name

	Description

	Example



	\((f ∘ g)\)

	composite function

	a nested function

	(f ∘ g)(x) = f(g(x))



	\(∆\)

	delta

	change / difference

	∆x = x_1 - x_0



	\(e\)

	Euler’s number

	e = 2.718281828

	s = frac{1}{1+e^{-z}}



	\(\sum\)

	summation

	sum of all values

	∑ x_i = x_1 + x_2 + x_3



	\(\prod\)

	capital pi

	product of all values

	∏ x_i = x_1∙x_2∙x_3



	\(\epsilon\)

	epsilon

	tiny number near 0

	lr = 1e-4









Calculus









	Symbol

	Name

	Description

	Example



	\(x'\)

	derivative

	first derivative

	(x^2)“ = 2x



	\(x''\)

	second derivative

	second derivative

	(x^2)““ = 2



	\(\lim\)

	limit

	function value as x approaches 0

	


	\(∇\)

	nabla

	gradient

	∇f(a,b,c)









Linear algebra









	Symbol

	Name

	Description

	Example



	\([ ]\)

	brackets

	matrix or vector

	\(M = [1 3 5]\)



	\(\cdot\)

	dot

	dot product

	\((Z = X \cdot W\)



	\(\odot\)

	hadamard

	hadamard product

	\(A = B \odot C\)



	\(X^T\)

	transpose

	matrix transpose

	\(W^T \cdot X\)



	\(\vec x\)

	vector

	vector

	\(v = [1 2 3]\)



	\(X\)

	matrix

	capitalized variables are matrices

	\(X, W, B\)



	\(\hat x\)

	unit vector

	vector of magnitude 1

	\(\hat x = [0.2 0.5 0.3]\)









Probability









	Symbol

	Name

	Description

	Example



	\(P(A)\)

	probability

	probability of event  A

	P(x=1) = 0.5









Set theory









	Symbol

	Name

	Description

	Example



	\({ }\)

	set

	list of distinct elements

	S = {1, 5, 7, 9}









Statistics









	Symbol

	Name

	Description

	Example



	\(μ\)

	population mean

	mean of population values

	


	\(\bar x\)

	sample mean

	mean of subset of population

	


	\(σ^2\)

	population variance

	variance of population value

	


	\(s^2\)

	sample variance

	variance of subset of population

	


	\(σ_X\)

	standard deviation

	population standard deviation

	


	\(s\)

	sample std dev

	standard deviation of sample

	


	\(ρX\)

	correlation

	correlation of variables X and Y

	


	\(\tilde x\)

	median

	median value of variable x
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Основы
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	Смещение (Bias)
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	Функции Активации


	Функции потерь (ошибки)
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Нейронная сеть (Neural network)

Neural networks are a class of machine learning algorithms used to model complex patterns in datasets using multiple hidden layers and non-linear activation functions. A neural network takes an input, passes it through multiple layers of hidden neurons (mini-functions with unique coefficients that must be learned), and outputs a prediction representing the combined input of all the neurons.

[image: _images/neural_network_w_matrices.png]
Neural networks are trained iteratively using optimization techniques like gradient descent. After each cycle of training, an error metric is calculated based on the difference between prediction and target. The derivatives of this error metric are calculated and propagated back through the network using a technique called backpropagation. Each neuron’s coefficients (weights) are then adjusted relative to how much they contributed to the total error. This process is repeated iteratively until the network error drops below an acceptable threshold.




Нейрон (Neuron)

A neuron takes a group of weighted inputs, applies an activation function, and returns an output.

[image: _images/neuron.png]
Inputs to a neuron can either be features from a training set or outputs from a previous layer’s neurons. Weights are applied to the inputs as they travel along synapses to reach the neuron. The neuron then applies an activation function to the “sum of weighted inputs” from each incoming synapse and passes the result on to all the neurons in the next layer.




Синапсы (Synapses)

Synapses are like roads in a neural network. They connect inputs to neurons, neurons to neurons, and neurons to outputs. In order to get from one neuron to another, you have to travel along the synapse paying the “toll” (weight) along the way. Each connection between two neurons has a unique synapse with a unique weight attached to it. When we talk about updating weights in a network, we’re really talking about adjusting the weights on these synapses.




Веса (Weights)

Explanation of weights (parameters)




Смещение (Bias)

Bias terms are additional constants attached to neurons and added to the weighted input before the activation function is applied. Bias terms help models represent patterns that do not necessarily pass through the origin. For example, if all your features were 0, would your output also be zero? Is it possible there is some base value upon which your features have an effect? Bias terms typically accompany weights and must also be learned by your model.




Layers

[image: _images/neural_network_simple.png]
Input Layer

Holds the data your model will train on. Each neuron in the input layer represents a unique attribute in your dataset (e.g. height, hair color, etc.).

Hidden Layer

Sits between the input and output layers and applies an activation function before passing on the results. There are often multiple hidden layers in a network. In traditional networks, hidden layers are typically fully-connected layers — each neuron receives input from all the previous layer’s neurons and sends its output to every neuron in the next layer. This contrasts with how convolutional layers work where the neurons send their output to only some of the neurons in the next layer.

Output Layer

The final layer in a network. It receives input from the previous hidden layer, optionally applies an activation function, and returns an output representing your model’s prediction.




Взвешенный вход (Weighted Input)

A neuron’s input equals the sum of weighted outputs from all neurons in the previous layer. Each input is multiplied by the weight associated with the synapse connecting the input to the current neuron. If there are 3 inputs or neurons in the previous layer, each neuron in the current layer will have 3 distinct weights — one for each each synapse.

Single Input


\[\begin{split}Z &= Input \cdot Weight \\
  &= X W\end{split}\]

Multiple Inputs


\[\begin{split}Z &= \sum_{i=1}^{n}x_i w_i \\
  &= x_1 w_1 + x_2 w_2 + x_3 w_3\end{split}\]

Notice, it’s exactly the same equation we use with linear regression! In fact, a neural network with a single neuron is the same as linear regression! The only difference is the neural network post-processes the weighted input with an activation function.




Функции Активации

Activation functions live inside neural network layers and modify the data they receive before passing it to the next layer. Activation functions give neural networks their power — allowing them to model complex non-linear relationships. By modifying inputs with non-linear functions neural networks can model highly complex relationships between features. Popular activation functions include relu and sigmoid.

Activation functions typically have the following properties:



	Non-linear - In linear regression we’re limited to a prediction equation that looks like a straight line. This is nice for simple datasets with a one-to-one relationship between inputs and outputs, but what if the patterns in our dataset were non-linear? (e.g. \(x^2\), sin, log). To model these relationships we need a non-linear prediction equation.¹ Activation functions provide this non-linearity.


	Continuously differentiable — To improve our model with gradient descent, we need our output to have a nice slope so we can compute error derivatives with respect to weights. If our neuron instead outputted 0 or 1 (perceptron), we wouldn’t know in which direction to update our weights to reduce our error.


	Fixed Range — Activation functions typically squash the input data into a narrow range that makes training the model more stable and efficient.










Функции потерь (ошибки)

A loss function, or cost function, is a wrapper around our model’s predict function that tells us «how good» the model is at making predictions for a given set of parameters. The loss function has its own curve and its own derivatives. The slope of this curve tells us how to change our parameters to make the model more accurate! We use the model to make predictions. We use the cost function to update our parameters. Our cost function can take a variety of forms as there are many different cost functions available. Popular loss functions include: MSE (L2) and Cross-entropy Loss.




Оптимизационные алгоритмы

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]
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Простая сеть

[image: _images/neural_network_simple.png]
Прямое распространение - это процесс с помощью которого сеть делает предсказание (prediction). Также это основной режим работы обученной нейронной сети. Входные данные «распространяются» через каждый слой сети и выходной слой выдает финальный результат - предсказание. Для простой учебной нейронной сети один проход данных можно выразить математически как:


\[Prediction = A(\;A(\;X W_h\;)W_o\;)\]

Где \(A\) это функция активации, например ReLU, \(X\) это входные данные, \(W_h\) и \(W_o\) это веса слоев.


Прямой проход по шагам


	Вычислить значения входов скрытого слоя умножениием \(X\) на веса скрытого слоя \(W_h\) и получить \(Z_h\).


	Применить функцию активации к  \(Z_h\) и передать результат \(H\) в выходной слой.


	Вычислить значения входов выходного слоя умножением значения \(H\) на веса выходного слоя \(W_o\) и получить  \(Z_o\)


	Применить функцию активации к \(Z_o\). Результатом будет предсказание сети.







Код

Давайте напишем метод feed_forward() для распространения входных данных через нейронную сеть с 1-м скрытым слоем. Выход этого метода будет представлять собой предсказание модели.

def relu(z):
    return max(0,z)

def feed_forward(x, Wh, Wo):
    # Hidden layer
    Zh = x * Wh
    H = relu(Zh)

    # Output layer
    Zo = H * Wo
    output = relu(Zo)
    return output





x это вход сети, Zo и Zh это «взвешенный» вход слоев, a Wo и Wh это веса слоев.






Более сложная сеть

Простая сеть очень помогает в учебном процессе, но реальные сети намного больше и сложнее устроены. Современные нейронные сети имеют гораздо больше скрытых слоев, больше нейронов в каждом слое, больше входных переменных. Рассмотрим более крупную (но всё ещё простую) нейронную сеть, которая позволит нам показать универсальный подход, основанный на матричном умножении, используемом в больших, «промышленных» нейронных сетях.

[image: _images/neural_network_w_matrices.png]

Архитектура

Для произвольного изменения количества входов или выходов сети, мы должны сделать наш код более гибким с помощью добавления новых параметров в __init_ метод: inputLayerSize, hiddenLayerSize,outputLayerSize. Мы будем продолжать ограничивать себя в количестве скрытых слоев, но сейчас это не так важно, потому что мы можем менять ширину (количество нейронов) имеющихся слоев.

INPUT_LAYER_SIZE = 1
HIDDEN_LAYER_SIZE = 2
OUTPUT_LAYER_SIZE = 2








Инициализация весов

Unlike last time where Wh and Wo were scalar numbers, our new weight variables will be numpy arrays. Each array will hold all the weights for its own layer — one weight for each synapse. Below we initialize each array with the numpy’s np.random.randn(rows, cols) method, which returns a matrix of random numbers drawn from a normal distribution with mean 0 and variance 1.

def init_weights():
    Wh = np.random.randn(INPUT_LAYER_SIZE, HIDDEN_LAYER_SIZE) * \
                np.sqrt(2.0/INPUT_LAYER_SIZE)
    Wo = np.random.randn(HIDDEN_LAYER_SIZE, OUTPUT_LAYER_SIZE) * \
                np.sqrt(2.0/HIDDEN_LAYER_SIZE)





Here’s an example calling random.randn():

arr = np.random.randn(1, 2)

print(arr)
>> [[-0.36094661 -1.30447338]]

print(arr.shape)
>> (1,2)





As you’ll soon see, there are strict requirements on the dimensions of these weight matrices. The number of rows must equal the number of neurons in the previous layer. The number of columns must match the number of neurons in the next layer.

A good explanation of random weight initalization can be found in the Stanford CS231 course notes 1 chapter on neural networks.




Bias Terms

Смещение (Bias) terms allow us to shift our neuron’s activation outputs left and right. This helps us model datasets that do not necessarily pass through the origin.

Using the numpy method np.full() below, we create two 1-dimensional bias arrays filled with the default value 0.2. The first argument to np.full is a tuple of array dimensions. The second is the default value for cells in the array.

def init_bias():
    Bh = np.full((1, HIDDEN_LAYER_SIZE), 0.1)
    Bo = np.full((1, OUTPUT_LAYER_SIZE), 0.1)
    return Bh, Bo








Working with Matrices

To take advantage of fast linear algebra techniques and GPUs, we need to store our inputs, weights, and biases in matrices. Here is our neural network diagram again with its underlying matrix representation.

[image: _images/nn_with_matrices_displayed.png]
What’s happening here? To better understand, let’s walk through each of the matrices in the diagram with an emphasis on their dimensions and why the dimensions are what they are. The matrix dimensions above flow naturally from the architecture of our network and the number of samples in our training set.

Matrix dimensions









	Var

	Name

	Dimensions

	Explanation



	X

	Input

	(3, 1)

	Includes 3 rows of training data, and each row has 1 attribute (height, price, etc.)



	Wh

	Hidden weights

	(1, 2)

	These dimensions are based on number of rows equals the number of attributes for the observations in our training set. The number columns equals the number of neurons in the hidden layer. The dimensions of the weights matrix between two layers is determined by the sizes of the two layers it connects. There is one weight for every input-to-neuron connection between the layers.



	Bh

	Hidden bias

	(1, 2)

	Each neuron in the hidden layer has is own bias constant. This bias matrix is added to the weighted input matrix before the hidden layer applies ReLU.



	Zh

	Hidden weighted input

	(1, 2)

	Computed by taking the dot product of X and Wh. The dimensions (1,2) are required by the rules of matrix multiplication. Zh takes the rows of in the inputs matrix and the columns of weights matrix. We then add the hidden layer bias matrix Bh.



	H

	Hidden activations

	(3, 2)

	Computed by applying the Relu function to Zh. The dimensions are (3,2) — the number of rows matches the number of training samples and the number of columns equals the number of neurons. Each column holds all the activations for a specific neuron.



	Wo

	Output weights

	(2, 2)

	The number of rows matches the number of hidden layer neurons and the number of columns equals the number of output layer neurons. There is one weight for every hidden-neuron-to-output-neuron connection between the layers.



	Bo

	Output bias

	(1, 2)

	There is one column for every neuron in the output layer.



	Zo

	Output weighted input

	(3, 2)

	Computed by taking the dot product of H and Wo and then adding the output layer bias Bo. The dimensions are (3,2) representing the rows of in the hidden layer matrix and the columns of output layer weights matrix.



	O

	Output activations

	(3, 2)

	Each row represents a prediction for a single observation in our training set. Each column is a unique attribute we want to predict. Examples of two-column output predictions could be a company’s sales and units sold, or a person’s height and weight.









Dynamic Resizing

Before we continue I want to point out how the matrix dimensions change with changes to the network architecture or size of the training set. For example, let’s build a network with 2 input neurons, 3 hidden neurons, 2 output neurons, and 4 observations in our training set.

[image: _images/dynamic_resizing_neural_network_4_obs.png]
Now let’s use same number of layers and neurons but reduce the number of observations in our dataset to 1 instance:

[image: _images/dynamic_resizing_neural_network_1_obs.png]
As you can see, the number of columns in all matrices remains the same. The only thing that changes is the number of rows the layer matrices, which fluctuate with the size of the training set. The dimensions of the weight matrices remain unchanged. This shows us we can use the same network, the same lines of code, to process any number of observations.




Refactoring Our Code

Here is our new feed forward code which accepts matrices instead of scalar inputs.

def feed_forward(X):
    '''
    X    - input matrix
    Zh   - hidden layer weighted input
    Zo   - output layer weighted input
    H    - hidden layer activation
    y    - output layer
    yHat - output layer predictions
    '''

    # Hidden layer
    Zh = np.dot(X, Wh) + Bh
    H = relu(Zh)

    # Output layer
    Zo = np.dot(H, Wo) + Bo
    yHat = relu(Zo)
    return yHat





Weighted input

The first change is to update our weighted input calculation to handle matrices. Using dot product, we multiply the input matrix by the weights connecting them to the neurons in the next layer. Next we add the bias vector using matrix addition.

Zh = np.dot(X, Wh) + Bh





[image: _images/neural_network_matrix_weighted_input.png]
The first column in Bh is added to all the rows in the first column of resulting dot product of X and Wh. The second value in Bh is added to all the elements in the second column. The result is a new matrix, Zh which has a column for every neuron in the hidden layer and a row for every observation in our dataset. Given all the layers in our network are fully-connected, there is one weight for every neuron-to-neuron connection between the layers.

The same process is repeated for the output layer, except the input is now the hidden layer activation H and the weights Wo.

ReLU activation

The second change is to refactor ReLU to use elementwise multiplication on matrices. It’s only a small change, but its necessary if we want to work with matrices. np.maximum() is actually extensible and can handle both scalar and array inputs.

def relu(Z):
    return np.maximum(0, Z)





In the hidden layer activation step, we apply the ReLU activation function np.maximum(0,Z) to every cell in the new matrix. The result is a matrix where all negative values have been replaced by 0. The same process is repeated for the output layer, except the input is Zo.




Final Result

Putting it all together we have the following code for forward propagation with matrices.

INPUT_LAYER_SIZE = 1
HIDDEN_LAYER_SIZE = 2
OUTPUT_LAYER_SIZE = 2

def init_weights():
    Wh = np.random.randn(INPUT_LAYER_SIZE, HIDDEN_LAYER_SIZE) * \
                np.sqrt(2.0/INPUT_LAYER_SIZE)
    Wo = np.random.randn(HIDDEN_LAYER_SIZE, OUTPUT_LAYER_SIZE) * \
                np.sqrt(2.0/HIDDEN_LAYER_SIZE)


def init_bias():
    Bh = np.full((1, HIDDEN_LAYER_SIZE), 0.1)
    Bo = np.full((1, OUTPUT_LAYER_SIZE), 0.1)
    return Bh, Bo

def relu(Z):
    return np.maximum(0, Z)

def relu_prime(Z):
    '''
    Z - weighted input matrix

    Returns gradient of Z where all
    negative values are set to 0 and
    all positive values set to 1
    '''
    Z[Z < 0] = 0
    Z[Z > 0] = 1
    return Z

def cost(yHat, y):
    cost = np.sum((yHat - y)**2) / 2.0
    return cost

def cost_prime(yHat, y):
    return yHat - y

def feed_forward(X):
    '''
    X    - input matrix
    Zh   - hidden layer weighted input
    Zo   - output layer weighted input
    H    - hidden layer activation
    y    - output layer
    yHat - output layer predictions
    '''

    # Hidden layer
    Zh = np.dot(X, Wh) + Bh
    H = relu(Zh)

    # Output layer
    Zo = np.dot(H, Wo) + Bo
    yHat = relu(Zo)
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The goals of backpropagation are straightforward: adjust each weight in the network in proportion to how much it contributes to overall error. If we iteratively reduce each weight’s error, eventually we’ll have a series of weights the produce good predictions.


Chain rule refresher

As seen above, foward propagation can be viewed as a long series of nested equations. If you think of feed forward this way, then backpropagation is merely an application the Chain rule to find the Derivatives of cost with respect to any variable in the nested equation. Given a forward propagation function:


\[f(x) = A(B(C(x)))\]

A, B, and C are activation functions at different layers. Using the chain rule we easily calculate the derivative of \(f(x)\) with respect to \(x\):


\[f'(x) = f'(A) \cdot A'(B) \cdot B'(C) \cdot C'(x)\]

How about the derivative with respect to B? To find the derivative with respect to B you can pretend \(B(C(x))\) is a constant, replace it with a placeholder variable B, and proceed to find the derivative normally with respect to B.


\[f'(B) = f'(A) \cdot A'(B)\]

This simple technique extends to any variable within a function and allows us to precisely pinpoint the exact impact each variable has on the total output.




Applying the chain rule

Let’s use the chain rule to calculate the derivative of cost with respect to any weight in the network. The chain rule will help us identify how much each weight contributes to our overall error and the direction to update each weight to reduce our error. Here are the equations we need to make a prediction and calculate total error, or cost:

[image: _images/backprop_ff_equations.png]
Given a network consisting of a single neuron, total cost could be calculated as:


\[Cost = C(R(Z(X W)))\]

Using the chain rule we can easily find the derivative of Cost with respect to weight W.


\[\begin{split}C'(W) &= C'(R) \cdot R'(Z) \cdot Z'(W) \\
      &= (\hat{y} -y) \cdot R'(Z) \cdot X\end{split}\]

Now that we have an equation to calculate the derivative of cost with respect to any weight, let’s go back to our toy neural network example above

[image: _images/simple_nn_diagram_zo_zh_defined.png]
What is the derivative of cost with respect to \(W_o\)?


\[\begin{split}C'(W_O) &= C'(\hat{y}) \cdot \hat{y}'(Z_O) \cdot Z_O'(W_O) \\
        &= (\hat{y} - y) \cdot R'(Z_O) \cdot H\end{split}\]

And how about with respect to \(W_h\)? To find out we just keep going further back in our function applying the chain rule recursively until we get to the function that has the Wh term.


\[\begin{split}C'(W_h) &= C'(\hat{y}) \cdot O'(Z_o) \cdot Z_o'(H) \cdot H'(Z_h) \cdot Z_h'(W_h) \\
        &= (\hat{y} - y) \cdot R'(Z_o) \cdot W_o \cdot R'(Z_h) \cdot X\end{split}\]

And just for fun, what if our network had 10 hidden layers. What is the derivative of cost for the first weight \(w_1\)?


\[\begin{split}C'(w_1) = \frac{dC}{d\hat{y}} \cdot \frac{d\hat{y}}{dZ_{11}} \cdot \frac{dZ_{11}}{dH_{10}} \cdot \\ \frac{dH_{10}}{dZ_{10}} \cdot \frac{dZ_{10}}{dH_9} \cdot \frac{dH_9}{dZ_9} \cdot \frac{dZ_9}{dH_8} \cdot \frac{dH_8}{dZ_8} \cdot \frac{dZ_8}{dH_7} \cdot \frac{dH_7}{dZ_7} \cdot \\ \frac{dZ_7}{dH_6} \cdot \frac{dH_6}{dZ_6} \cdot \frac{dZ_6}{dH_5} \cdot \frac{dH_5}{dZ_5} \cdot \frac{dZ_5}{dH_4} \cdot \frac{dH_4}{dZ_4} \cdot \frac{dZ_4}{dH_3} \cdot \\ \frac{dH_3}{dZ_3} \cdot \frac{dZ_3}{dH_2} \cdot \frac{dH_2}{dZ_2} \cdot \frac{dZ_2}{dH_1} \cdot \frac{dH_1}{dZ_1} \cdot \frac{dZ_1}{dW_1}\end{split}\]

See the pattern? The number of calculations required to compute cost derivatives increases as our network grows deeper. Notice also the redundancy in our derivative calculations. Each layer’s cost derivative appends two new terms to the terms that have already been calculated by the layers above it. What if there was a way to save our work somehow and avoid these duplicate calculations?




Saving work with memoization

Memoization is a computer science term which simply means: don’t recompute the same thing over and over. In memoization we store previously computed results to avoid recalculating the same function. It’s handy for speeding up recursive functions of which backpropagation is one. Notice the pattern in the derivative equations below.

[image: _images/memoization.png]
Each of these layers is recomputing the same derivatives! Instead of writing out long derivative equations for every weight, we can use memoization to save our work as we backprop error through the network. To do this, we define 3 equations (below), which together encapsulate all the calculations needed for backpropagation. The math is the same, but the equations provide a nice shorthand we can use to track which calculations we’ve already performed and save our work as we move backwards through the network.

[image: _images/backprop_3_equations.png]
We first calculate the output layer error and pass the result to the hidden layer before it. After calculating the hidden layer error, we pass its error value back to the previous hidden layer before it. And so on and so forth. As we move back through the network we apply the 3rd formula at every layer to calculate the derivative of cost with respect that layer’s weights. This resulting derivative tells us in which direction to adjust our weights to reduce overall cost.


Примечание

The term layer error refers to the derivative of cost with respect to a layer’s input. It answers the question: how does the cost function output change when the input to that layer changes?



Output layer error

To calculate output layer error we need to find the derivative of cost with respect to the output layer input, \(Z_o\). It answers the question — how are the final layer’s weights impacting overall error in the network? The derivative is then:


\[C'(Z_o) = (\hat{y} - y) \cdot R'(Z_o)\]

To simplify notation, ml practitioners typically replace the \((\hat{y}-y) * R'(Zo)\) sequence with the term \(E_o\). So our formula for output layer error equals:


\[E_o = (\hat{y} - y) \cdot R'(Z_o)\]

Hidden layer error

To calculate hidden layer error we need to find the derivative of cost with respect to the hidden layer input, Zh.


\[C'(Z_h) = (\hat{y} - y) \cdot R'(Z_o) \cdot W_o \cdot R'(Z_h)\]

Next we can swap in the \(E_o\) term above to avoid duplication and create a new simplified equation for Hidden layer error:


\[E_h = E_o \cdot W_o \cdot R'(Z_h)\]

This formula is at the core of backpropagation. We calculate the current layer’s error, and pass the weighted error back to the previous layer, continuing the process until we arrive at our first hidden layer. Along the way we update the weights using the derivative of cost with respect to each weight.

Derivative of cost with respect to any weight

Let’s return to our formula for the derivative of cost with respect to the output layer weight \(W_o\).


\[C'(W_O) = (\hat{y} - y) \cdot R'(Z_O) \cdot H\]

We know we can replace the first part with our equation for output layer error \(E_h\). H represents the hidden layer activation.


\[C'(W_o) = E_o \cdot H\]

So to find the derivative of cost with respect to any weight in our network, we simply multiply the corresponding layer’s error times its input (the previous layer’s output).


\[C'(w) = CurrentLayerError \cdot CurrentLayerInput\]


Примечание

Input refers to the activation from the previous layer, not the weighted input, Z.



Summary

Here are the final 3 equations that together form the foundation of backpropagation.

[image: _images/backprop_final_3_deriv_equations.png]
Here is the process visualized using our toy neural network example above.

[image: _images/backprop_visually.png]



Code example

def relu_prime(z):
    if z > 0:
        return 1
    return 0

def cost(yHat, y):
    return 0.5 * (yHat - y)**2

def cost_prime(yHat, y):
    return yHat - y

def backprop(x, y, Wh, Wo, lr):
    yHat = feed_forward(x, Wh, Wo)

    # Layer Error
    Eo = (yHat - y) * relu_prime(Zo)
    Eh = Eo * Wo * relu_prime(Zh)

    # Cost derivative for weights
    dWo = Eo * H
    dWh = Eh * x

    # Update weights
    Wh -= lr * dWh
    Wo -= lr * dWo





References


	1

	Example











          

      

      

    

  

    
      
          
            
  
Activation Functions



	ELU


	ReLU


	LeakyReLU


	Sigmoid


	Tanh


	Softmax







ELU

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




ReLU

A recent invention which stands for Rectified Linear Units. The formula is deceptively simple: \(max(0,z)\). Despite its name and appearance, it’s not linear and provides the same benefits as Sigmoid but with better performance.







	Function

	Derivative



	
\[\begin{split}R(z) = \begin{Bmatrix} z & z > 0 \\
 0 & z <= 0 \end{Bmatrix}\end{split}\]


	
\[\begin{split}R'(z) = \begin{Bmatrix} 1 & z>0 \\
0 & z<0 \end{Bmatrix}\end{split}\]




	[image: _images/relu.png]

	[image: _images/relu_prime.png]



	
	





Pros


	Pro 1




Cons


	Con 1




Further reading


	Deep Sparse Rectifier Neural Networks [http://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf] Glorot et al., (2011)


	Yes You Should Understand Backprop [https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b], Karpathy (2016)







LeakyReLU

LeakyRelu is a variant of ReLU. Instead of being 0 when \(z < 0\), a leaky ReLU allows a small, non-zero, constant gradient \(\alpha\) (Normally, \(\alpha = 0.01\)). However, the consistency of the benefit across tasks is presently unclear. 1







	Function

	Derivative



	
\[\begin{split}R(z) = \begin{Bmatrix} z & z > 0 \\
 \alpha z & z <= 0 \end{Bmatrix}\end{split}\]


	
\[\begin{split}R'(z) = \begin{Bmatrix} 1 & z>0 \\
\alpha & z<0 \end{Bmatrix}\end{split}\]




	[image: _images/leakyrelu.png]

	[image: _images/leakyrelu_prime.png]



	
	





Pros


	Pro 1




Cons


	Con 1




Further reading


	Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [https://arxiv.org/pdf/1502.01852.pdf], Kaiming He et al. (2015)







Sigmoid

Sigmoid takes a real value as input and outputs another value between 0 and 1. It’s easy to work with and has all the nice properties of activation functions: it’s non-linear, continuously differentiable, monotonic, and has a fixed output range.







	Function

	Derivative



	
\[S(z) = \frac{1} {1 + e^{-z}}\]


	
\[S'(z) = S(z) \cdot (1 - S(z))\]




	[image: _images/sigmoid.png]

	[image: _images/sigmoid_prime.png]



	
	





Pros


	Pro 1




Cons


	Con 1




Further reading


	Yes You Should Understand Backprop [https://medium.com/@karpathy/yes-you-should-understand-backprop-e2f06eab496b], Karpathy (2016)







Tanh

Tanh squashes a real-valued number to the range [-1, 1]. It’s non-linear. But unlike Sigmoid, its output is zero-centered.
Therefore, in practice the tanh non-linearity is always preferred to the sigmoid nonlinearity. 1







	Function

	Derivative



	
\[tanh(z) = \frac{e^{z} - e^{-z}}{e^{z} + e^{-z}}\]


	
\[tanh'(z) = 1 - tanh(z)^{2}\]




	[image: _images/tanh.png]

	[image: _images/tanh_prime.png]



	
	





Pros


	Pro 1




Cons


	Con 1







Softmax

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]

References


	1(1,2)

	http://cs231n.github.io/neural-networks-1/











          

      

      

    

  

    
      
          
            
  
Layers



	BatchNorm


	Convolution


	Dropout


	Linear


	LSTM


	Pooling


	RNN







BatchNorm

BatchNorm accelerates convergence by reducing internal covariate shift inside each batch.
If the individual observations in the batch are widely different, the gradient
updates will be choppy and take longer to converge.

The batch norm layer normalizes the incoming activations and outputs a new batch
where the mean equals 0 and standard deviation equals 1. It subtracts the mean
and divides by the standard deviation of the batch.

Code

Code example from Agustinus Kristiadi [https://wiseodd.github.io/techblog/2016/07/04/batchnorm/]

def BatchNorm():
    # From https://wiseodd.github.io/techblog/2016/07/04/batchnorm/
    # TODO: Add doctring for variable names. Add momentum to init.
    def __init__(self):
        pass

    def forward(self, X, gamma, beta):
        mu = np.mean(X, axis=0)
        var = np.var(X, axis=0)

        X_norm = (X - mu) / np.sqrt(var + 1e-8)
        out = gamma * X_norm + beta

        cache = (X, X_norm, mu, var, gamma, beta)

        return out, cache, mu, var

    def backward(self, dout, cache):
        X, X_norm, mu, var, gamma, beta = cache

        N, D = X.shape

        X_mu = X - mu
        std_inv = 1. / np.sqrt(var + 1e-8)

        dX_norm = dout * gamma
        dvar = np.sum(dX_norm * X_mu, axis=0) * -.5 * std_inv**3
        dmu = np.sum(dX_norm * -std_inv, axis=0) + dvar * np.mean(-2. * X_mu, axis=0)

        dX = (dX_norm * std_inv) + (dvar * 2 * X_mu / N) + (dmu / N)
        dgamma = np.sum(dout * X_norm, axis=0)
        dbeta = np.sum(dout, axis=0)

        return dX, dgamma, dbeta





Further reading


	Original Paper [https://arxiv.org/abs/1502.03167]


	Implementing BatchNorm in Neural Net [https://wiseodd.github.io/techblog/2016/07/04/batchnorm/]


	Understanding the backward pass through Batch Norm [https://kratzert.github.io/2016/02/12/understanding-the-gradient-flow-through-the-batch-normalization-layer.html]







Convolution

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Dropout

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Linear

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




LSTM

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Pooling

Max and average pooling layers.

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




RNN

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]

References


	1

	http://www.deeplearningbook.org/contents/convnets.html











          

      

      

    

  

    
      
          
            
  
Loss Functions



	Cross-Entropy


	Hinge


	Huber


	Kullback-Leibler


	MAE (L1)


	MSE (L2)







Cross-Entropy

Cross-entropy loss, or log loss, measures the performance of a classification model whose output is a probability value between 0 and 1. Cross-entropy loss increases as the predicted probability diverges from the actual label. So predicting a probability of .012 when the actual observation label is 1 would be bad and result in a high loss value. A perfect model would have a log loss of 0.

[image: _images/cross_entropy.png]
The graph above shows the range of possible loss values given a true observation (isDog = 1). As the predicted probability approaches 1, log loss slowly decreases. As the predicted probability decreases, however, the log loss increases rapidly. Log loss penalizes both types of errors, but especially those predications that are confident and wrong!

Cross-entropy and log loss are slightly different depending on context, but in machine learning when calculating error rates between 0 and 1 they resolve to the same thing.

Code

def CrossEntropy(yHat, y):
    if yHat == 1:
      return -log(y)
    else:
      return -log(1 - y)





Math

In binary classification, where the number of classes \(M\) equals 2, cross-entropy can be calculated as:


\[-{(y\log(p) + (1 - y)\log(1 - p))}\]

If \(M > 2\) (i.e. multiclass classification), we calculate a separate loss for each class label per observation and sum the result.


\[-\sum_{c=1}^My_{o,c}\log(p_{o,c})\]


Примечание


	M - number of classes (dog, cat, fish)


	log - the natural log


	y - binary indicator (0 or 1) if class label \(c\) is the correct classification for observation \(o\)


	p - predicted probability observation \(o\) is of class \(c\)









Hinge

Used for classification.

Code

def Hinge(yHat, y):
    return np.max(0, 1 - yHat * y)








Huber

Typically used for regression. It’s less sensitive to outliers than the MSE.

Code

def Huber(yHat, y):
    pass








Kullback-Leibler

Code

def KLDivergence(yHat, y):
    pass








MAE (L1)

Mean Absolute Error, or L1 loss. Excellent overview below [6] and [10].

Code

def L1(yHat, y):
    return np.sum(np.absolute(yHat - y))








MSE (L2)

Mean Squared Error, or L2 loss. Excellent overview below [6] and [10].

def MSE(yHat, y):
    return np.sum((yHat - y)**2) / y.size





def MSE_prime(yHat, y):
    return yHat - y





References


	1

	https://en.m.wikipedia.org/wiki/Cross_entropy



	2

	https://www.kaggle.com/wiki/LogarithmicLoss



	3

	https://en.wikipedia.org/wiki/Loss_functions_for_classification



	4

	http://www.exegetic.biz/blog/2015/12/making-sense-logarithmic-loss/



	5

	http://neuralnetworksanddeeplearning.com/chap3.html



	6

	http://rishy.github.io/ml/2015/07/28/l1-vs-l2-loss/



	7

	https://en.wikipedia.org/wiki/S%C3%B8rensen%E2%80%93Dice_coefficient



	8

	https://en.wikipedia.org/wiki/Huber_loss



	9

	https://en.wikipedia.org/wiki/Hinge_loss



	10

	http://www.chioka.in/differences-between-l1-and-l2-as-loss-function-and-regularization/











          

      

      

    

  

    
      
          
            
  
Optimizers



	Adadelta


	Adagrad


	Adam


	Conjugate Gradients


	BFGS


	Momentum


	Nesterov Momentum


	Newton’s Method


	RMSProp


	SGD







Adadelta

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Adagrad

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Adam

Adaptive Moment Estimation (Adam) combines ideas from both RMSProp and Momentum. It computes adaptive learning rates for each parameter and works as follows.


	First, it computes the exponentially weighted average of past gradients (\(v_{dW}\)).


	Second, it computes the exponentially weighted average of the squares of past gradients (\(s_{dW}\)).


	Third, these averages have a bias towards zero and to counteract this a bias correction is applied (\(v_{dW}^{corrected}\), \(s_{dW}^{corrected}\)).


	Lastly, the parameters are updated using the information from the calculated averages.





\[\begin{split}v_{dW} = \beta_1 v_{dW} + (1 - \beta_1) \frac{\partial \mathcal{J} }{ \partial W } \\
s_{dW} = \beta_2 s_{dW} + (1 - \beta_2) (\frac{\partial \mathcal{J} }{\partial W })^2 \\
v^{corrected}_{dW} = \frac{v_{dW}}{1 - (\beta_1)^t} \\
s^{corrected}_{dW} = \frac{s_{dW}}{1 - (\beta_1)^t} \\
W = W - \alpha \frac{v^{corrected}_{dW}}{\sqrt{s^{corrected}_{dW}} + \varepsilon}\end{split}\]


Примечание


	\(v_{dW}\) - the exponentially weighted average of past gradients


	\(s_{dW}\) - the exponentially weighted average of past squares of gradients


	\(\beta_1\) - hyperparameter to be tuned


	\(\beta_2\) - hyperparameter to be tuned


	\(\frac{\partial \mathcal{J} }{ \partial W }\) - cost gradient with respect to current layer


	\(W\) - the weight matrix (parameter to be updated)


	\(\alpha\) - the learning rate


	\(\epsilon\) - very small value to avoid dividing by zero









Conjugate Gradients

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




BFGS

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Momentum

Used in conjunction Stochastic Gradient Descent (sgd) or Mini-Batch Gradient Descent, Momentum takes into account
past gradients to smooth out the update. This is seen in variable \(v\) which is an exponentially weighted average
of the gradient on previous steps. This results in minimizing oscillations and faster convergence.


\[\begin{split}v_{dW} = \beta v_{dW} + (1 - \beta) \frac{\partial \mathcal{J} }{ \partial W } \\
W = W - \alpha v_{dW}\end{split}\]


Примечание


	\(v\) - the exponentially weighted average of past gradients


	\(\frac{\partial \mathcal{J} }{ \partial W }\) - cost gradient with respect to current layer weight tensor


	\(W\) - weight tensor


	\(\beta\) - hyperparameter to be tuned


	\(\alpha\) - the learning rate









Nesterov Momentum

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Newton’s Method

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




RMSProp

Another adaptive learning rate optimization algorithm, Root Mean Square Prop (RMSProp) works by keeping an exponentially weighted average of the squares of past gradients.
RMSProp then divides the learning rate by this average to speed up convergence.


\[\begin{split}s_{dW} = \beta s_{dW} + (1 - \beta) (\frac{\partial \mathcal{J} }{\partial W })^2 \\
W = W - \alpha \frac{\frac{\partial \mathcal{J} }{\partial W }}{\sqrt{s^{corrected}_{dW}} + \varepsilon}\end{split}\]


Примечание


	\(s\) - the exponentially weighted average of past squares of gradients


	\(\frac{\partial \mathcal{J} }{\partial W }\) - cost gradient with respect to current layer weight tensor


	\(W\) - weight tensor


	\(\beta\) - hyperparameter to be tuned


	\(\alpha\) - the learning rate


	\(\epsilon\) - very small value to avoid dividing by zero









SGD

Stochastic Gradient Descent.

def SGD(data, batch_size, lr):
    N = len(data)
    np.random.shuffle(data)
    mini_batches = np.array([data[i:i+batch_size]
     for i in range(0, N, batch_size)])
    for X,y in mini_batches:
        backprop(X, y, lr)





References


	1

	http://sebastianruder.com/optimizing-gradient-descent/



	2

	http://www.deeplearningbook.org/contents/optimization.html



	3

	https://arxiv.org/pdf/1502.03167.pdf











          

      

      

    

  

    
      
          
            
  
Regularization



	Data Augmentation


	Dropout


	Early Stopping


	Ensembling


	Injecting Noise


	L1 Regularization


	L2 Regularization






Techniques for combating overfitting and improving training.


Data Augmentation

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Dropout

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Early Stopping

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Ensembling

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Injecting Noise

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




L1 Regularization

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




L2 Regularization

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]

References


	1

	http://www.deeplearningbook.org/contents/regularization.html











          

      

      

    

  

    
      
          
            
  
Architectures



	Autoencoder


	CNN


	GAN


	MLP


	RNN


	VAE







Autoencoder

TODO: Description of Autoencoder use case and basic architecture. Figure from [1].

[image: _images/autoencoder.png]
Model

An example implementation in PyTorch.

class Autoencoder(nn.Module):
    def __init__(self, in_shape):
        super().__init__()
        c,h,w = in_shape
        self.encoder = nn.Sequential(
            nn.Linear(c*h*w, 128),
            nn.ReLU(),
            nn.Linear(128, 64),
            nn.ReLU(),
            nn.Linear(64, 12),
            nn.ReLU()
        )
        self.decoder = nn.Sequential(
            nn.Linear(12, 64),
            nn.ReLU(),
            nn.Linear(64, 128),
            nn.ReLU(),
            nn.Linear(128, c*h*w),
            nn.Sigmoid()
        )

    def forward(self, x):
        bs,c,h,w = x.size()
        x = x.view(bs, -1)
        x = self.encoder(x)
        x = self.decoder(x)
        x = x.view(bs, c, h, w)
        return x





Training

def train(net, loader, loss_func, optimizer):
    net.train()
    for inputs, _ in loader:
        inputs = Variable(inputs)

        output = net(inputs)
        loss = loss_func(output, inputs)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()





Further reading


	Convolutional Autoencoders [https://pgaleone.eu/neural-networks/2016/11/24/convolutional-autoencoders/]


	Deep Learning Book [http://www.deeplearningbook.org/contents/autoencoders.html]







CNN

TODO: Description of CNN use case and basic architecture. Figure from [2].

[image: _images/cnn.jpeg]
Model

An example implementation in PyTorch.

Training

Further reading


	CS231 Convolutional Networks [http://cs231n.github.io/convolutional-networks]


	Deep Learning Book [http://www.deeplearningbook.org/contents/convnets.html]







GAN

TODO: Description of GAN use case and basic architecture. Figure from [3].

[image: _images/gan.png]
Model

TODO: An example implementation in PyTorch.

Training

TODO

Further reading


	Generative Adversarial Networks [http://guertl.me/post/162759264070/generative-adversarial-networks]


	Deep Learning Book [http://www.deeplearningbook.org/contents/generative_models.html]







MLP

A Multi Layer Perceptron (MLP) is a neural network with only fully connected layers. Figure from [5].

[image: _images/mlp.jpg]
Model

An example implementation in Numpy or Pytorch?

TODO

Training

TODO

Further reading

TODO




RNN

Description of RNN use case and basic architecture.

[image: _images/rnn.png]
Model

class RNN(nn.Module):
    def __init__(self, n_classes):
        super().__init__()
        self.hid_fc = nn.Linear(185, 128)
        self.out_fc = nn.Linear(185, n_classes)
        self.softmax = nn.LogSoftmax()
    
    def forward(self, inputs, hidden):
        inputs = inputs.view(1,-1)
        combined = torch.cat([inputs, hidden], dim=1)
        hid_out = self.hid_fc(combined)
        out = self.out_fc(combined)
        out = self.softmax(out)
        return out, hid_out





Training

In this example, our input is a list of last names, where each name is
a variable length array of one-hot encoded characters. Our target is is a list of
indices representing the class (language) of the name.


	For each input name..


	Initialize the hidden vector


	Loop through the characters and predict the class


	Pass the final character’s prediction to the loss function


	Backprop and update the weights




def train(model, inputs, targets):
    for i in range(len(inputs)):
        target = Variable(targets[i])
        name = inputs[i]
        hidden = Variable(torch.zeros(1,128))
        model.zero_grad()
        
        for char in name:
            input_ = Variable(torch.FloatTensor(char))
            pred, hidden = model(input_, hidden)
        
        loss = criterion(pred, target)
        loss.backward()
        
        for p in model.parameters():
            p.data.add_(-.001, p.grad.data)





Further reading


	Jupyter notebook [https://github.com/bfortuner/ml-cheatsheet/blob/master/notebooks/rnn.ipynb]


	Deep Learning Book [http://www.deeplearningbook.org/contents/rnn.html]







VAE

Autoencoders can encode an input image to a latent vector and decode it, but they can’t generate novel images.
Variational Autoencoders (VAE) solve this problem by adding a constraint: the latent vector representation should model a unit gaussian distribution.
The Encoder returns the mean and variance of the learned gaussian. To generate a new image, we pass a new mean and variance to the Decoder.
In other words, we «sample a latent vector» from the gaussian and pass it to the Decoder.
It also improves network generalization and avoids memorization. Figure from [4].

[image: _images/vae.png]
Loss Function

The VAE loss function combines reconstruction loss (e.g. Cross Entropy, MSE) with KL divergence.

def vae_loss(output, input, mean, logvar, loss_func):
    recon_loss = loss_func(output, input)
    kl_loss = torch.mean(0.5 * torch.sum(
        torch.exp(logvar) + mean**2 - 1. - logvar, 1))
    return recon_loss + kl_loss





Model

An example implementation in PyTorch of a Convolutional Variational Autoencoder.

class VAE(nn.Module):
    def __init__(self, in_shape, n_latent):
        super().__init__()
        self.in_shape = in_shape
        self.n_latent = n_latent
        c,h,w = in_shape
        self.z_dim = h//2**2 # receptive field downsampled 2 times
        self.encoder = nn.Sequential(
            nn.BatchNorm2d(c),
            nn.Conv2d(c, 32, kernel_size=4, stride=2, padding=1),  # 32, 16, 16
            nn.BatchNorm2d(32),
            nn.LeakyReLU(),
            nn.Conv2d(32, 64, kernel_size=4, stride=2, padding=1),  # 32, 8, 8
            nn.BatchNorm2d(64),
            nn.LeakyReLU(),
        )
        self.z_mean = nn.Linear(64 * self.z_dim**2, n_latent)
        self.z_var = nn.Linear(64 * self.z_dim**2, n_latent)
        self.z_develop = nn.Linear(n_latent, 64 * self.z_dim**2)
        self.decoder = nn.Sequential(
            nn.ConvTranspose2d(64, 32, kernel_size=3, stride=2, padding=0),
            nn.BatchNorm2d(32),
            nn.ReLU(),
            nn.ConvTranspose2d(32, 1, kernel_size=3, stride=2, padding=1),
            CenterCrop(h,w),
            nn.Sigmoid()
        )

    def sample_z(self, mean, logvar):
        stddev = torch.exp(0.5 * logvar)
        noise = Variable(torch.randn(stddev.size()))
        return (noise * stddev) + mean

    def encode(self, x):
        x = self.encoder(x)
        x = x.view(x.size(0), -1)
        mean = self.z_mean(x)
        var = self.z_var(x)
        return mean, var

    def decode(self, z):
        out = self.z_develop(z)
        out = out.view(z.size(0), 64, self.z_dim, self.z_dim)
        out = self.decoder(out)
        return out

    def forward(self, x):
        mean, logvar = self.encode(x)
        z = self.sample_z(mean, logvar)
        out = self.decode(z)
        return out, mean, logvar





Training

def train(model, loader, loss_func, optimizer):
    model.train()
    for inputs, _ in loader:
        inputs = Variable(inputs)

        output, mean, logvar = model(inputs)
        loss = vae_loss(output, inputs, mean, logvar, loss_func)

        optimizer.zero_grad()
        loss.backward()
        optimizer.step()





Further reading


	Original Paper [https://arxiv.org/abs/1312.6114]


	VAE Explained [http://kvfrans.com/variational-autoencoders-explained]


	Deep Learning Book [http://www.deeplearningbook.org/contents/autoencoders.html]




References
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	https://hackernoon.com/autoencoders-deep-learning-bits-1-11731e200694
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	http://cs231n.github.io/convolutional-networks
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Classification Algorithms

Many of these overlap with other algorithm categories…


Bayesian

Overlaps..




Boosting

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Decision Trees

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




K-Nearest Neighbor

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Logistic Regression

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Random Forests

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Support Vector Machines

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]

References
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Clustering Algorithms


Centroid

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Density

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Distribution

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Hierarchical

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




K-Means

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Mean shift

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]

References


	1

	https://en.wikipedia.org/wiki/Cluster_analysis











          

      

      

    

  

    
      
          
            
  
Regression Algorithms


Lasso

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Linear

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Ordinary Least Squares

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Polynomial

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Ridge

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Splines

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Stepwise

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]

References


	1

	https://www.analyticsvidhya.com/blog/2015/08/comprehensive-guide-regression/



	2

	http://machinelearningmastery.com/a-tour-of-machine-learning-algorithms/











          

      

      

    

  

    
      
          
            
  
Reinforcement Learning

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]

References
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Datasets

Public datasets in vision, nlp and more forked from caesar0301’s awesome datasets [https://github.com/caesar0301/awesome-public-datasets] wiki.



	Agriculture


	Art


	Biology


	Climate/Weather


	Complex Networks


	Computer Networks


	Data Challenges


	Earth Science


	Economics


	Education


	Energy


	Finance


	GIS


	Government


	Healthcare


	Image Processing


	Machine Learning


	Museums


	Music


	Natural Language


	Neuroscience


	Physics


	Psychology/Cognition


	Public Domains


	Search Engines


	Social Networks


	Social Sciences


	Software


	Sports


	Time Series


	Transportation







Agriculture


	U.S. Department of Agriculture’s PLANTS Database [http://www.plants.usda.gov/dl_all.html]


	U.S. Department of Agriculture’s Nutrient Database [https://www.ars.usda.gov/northeast-area/beltsville-md/beltsville-human-nutrition-research-center/nutrient-data-laboratory/docs/sr28-download-files/]







Art


	Google’s Quick Draw Sketch Dataset [https://quickdraw.withgoogle.com/data]







Biology


	1000 Genomes [http://www.1000genomes.org/data]


	American Gut (Microbiome Project) [https://github.com/biocore/American-Gut]


	Broad Bioimage Benchmark Collection (BBBC) [https://www.broadinstitute.org/bbbc]


	Broad Cancer Cell Line Encyclopedia (CCLE) [http://www.broadinstitute.org/ccle/home]


	Cell Image Library [http://www.cellimagelibrary.org]


	Complete Genomics Public Data [http://www.completegenomics.com/public-data/69-genomes/]


	EBI ArrayExpress [http://www.ebi.ac.uk/arrayexpress/]


	EBI Protein Data Bank in Europe [http://www.ebi.ac.uk/pdbe/emdb/index.html/]


	Electron Microscopy Pilot Image Archive (EMPIAR) [http://www.ebi.ac.uk/pdbe/emdb/empiar/]


	ENCODE project [https://www.encodeproject.org]


	Ensembl Genomes [http://ensemblgenomes.org/info/genomes]


	Gene Expression Omnibus (GEO) [http://www.ncbi.nlm.nih.gov/geo/]


	Gene Ontology (GO) [http://geneontology.org/page/download-annotations]


	Global Biotic Interactions (GloBI) [https://github.com/jhpoelen/eol-globi-data/wiki#accessing-species-interaction-data]


	Harvard Medical School (HMS) LINCS Project [http://lincs.hms.harvard.edu]


	Human Genome Diversity Project [http://www.hagsc.org/hgdp/files.html]


	Human Microbiome Project (HMP) [http://www.hmpdacc.org/reference_genomes/reference_genomes.php]


	ICOS PSP Benchmark [http://ico2s.org/datasets/psp_benchmark.html]


	International HapMap Project [http://hapmap.ncbi.nlm.nih.gov/downloads/index.html.en]


	Journal of Cell Biology DataViewer [http://jcb-dataviewer.rupress.org]


	MIT Cancer Genomics Data [http://www.broadinstitute.org/cgi-bin/cancer/datasets.cgi]


	NCBI Proteins [http://www.ncbi.nlm.nih.gov/guide/proteins/#databases]


	NCBI Taxonomy [http://www.ncbi.nlm.nih.gov/taxonomy]


	NCI Genomic Data Commons [https://gdc-portal.nci.nih.gov]


	NIH Microarray data [http://bit.do/VVW6] or FTP [ftp://ftp.ncbi.nih.gov/pub/geo/DATA/supplementary/series/GSE6532/] (see FTP link on RAW [https://raw.githubusercontent.com/caesar0301/awesome-public-datasets/master/README.rst])


	OpenSNP genotypes data [https://opensnp.org/]


	Pathguid - Protein-Protein Interactions Catalog [http://www.pathguide.org/]


	Protein Data Bank [http://www.rcsb.org/]


	Psychiatric Genomics Consortium [https://www.med.unc.edu/pgc/downloads]


	PubChem Project [https://pubchem.ncbi.nlm.nih.gov/]


	PubGene (now Coremine Medical) [http://www.pubgene.org/]


	Sanger Catalogue of Somatic Mutations in Cancer (COSMIC) [http://cancer.sanger.ac.uk/cosmic]


	Sanger Genomics of Drug Sensitivity in Cancer Project (GDSC) [http://www.cancerrxgene.org/]


	Sequence Read Archive(SRA) [http://www.ncbi.nlm.nih.gov/Traces/sra/]


	Stanford Microarray Data [http://smd.stanford.edu/]


	Stowers Institute Original Data Repository [http://www.stowers.org/research/publications/odr]


	Systems Science of Biological Dynamics (SSBD) Database [http://ssbd.qbic.riken.jp]


	The Cancer Genome Atlas (TCGA), available via Broad GDAC [https://gdac.broadinstitute.org/]


	The Catalogue of Life [http://www.catalogueoflife.org/content/annual-checklist-archive]


	The Personal Genome Project [http://www.personalgenomes.org/] or PGP [https://my.pgp-hms.org/public_genetic_data]


	UCSC Public Data [http://hgdownload.soe.ucsc.edu/downloads.html]


	UniGene [http://www.ncbi.nlm.nih.gov/unigene]


	Universal Protein Resource (UnitProt) [http://www.uniprot.org/downloads]







Climate/Weather


	Actuaries Climate Index [http://actuariesclimateindex.org/data/]


	Australian Weather [http://www.bom.gov.au/climate/dwo/]


	Aviation Weather Center - Consistent, timely and accurate weather information for the world airspace system [https://aviationweather.gov/adds/dataserver]


	Brazilian Weather - Historical data (In Portuguese) [http://sinda.crn2.inpe.br/PCD/SITE/novo/site/]


	Canadian Meteorological Centre [http://weather.gc.ca/grib/index_e.html]


	Climate Data from UEA (updated monthly) [https://crudata.uea.ac.uk/cru/data/temperature/#datterandftp://ftp.cmdl.noaa.gov/]


	European Climate Assessment & Dataset [http://eca.knmi.nl/]


	Global Climate Data Since 1929 [http://en.tutiempo.net/climate]


	NASA Global Imagery Browse Services [https://wiki.earthdata.nasa.gov/display/GIBS]


	NOAA Bering Sea Climate [http://www.beringclimate.noaa.gov/]


	NOAA Climate Datasets [http://www.ncdc.noaa.gov/data-access/quick-links]


	NOAA Realtime Weather Models [http://www.ncdc.noaa.gov/data-access/model-data/model-datasets/numerical-weather-prediction]


	NOAA SURFRAD Meteorology and Radiation Datasets [https://www.esrl.noaa.gov/gmd/grad/stardata.html]


	The World Bank Open Data Resources for Climate Change [http://data.worldbank.org/developers/climate-data-api]


	UEA Climatic Research Unit [http://www.cru.uea.ac.uk/data]


	WorldClim - Global Climate Data [http://www.worldclim.org]


	WU Historical Weather Worldwide [https://www.wunderground.com/history/index.html]







Complex Networks


	AMiner Citation Network Dataset [http://aminer.org/citation]


	CrossRef DOI URLs [https://archive.org/details/doi-urls]


	DBLP Citation dataset [https://kdl.cs.umass.edu/display/public/DBLP]


	DIMACS Road Networks Collection [http://www.dis.uniroma1.it/challenge9/download.shtml]


	NBER Patent Citations [http://nber.org/patents/]


	Network Repository with Interactive Exploratory Analysis Tools [http://networkrepository.com/]


	NIST complex networks data collection [http://math.nist.gov/~RPozo/complex_datasets.html]


	Protein-protein interaction network [http://vlado.fmf.uni-lj.si/pub/networks/data/bio/Yeast/Yeast.htm]


	PyPI and Maven Dependency Network [https://ogirardot.wordpress.com/2013/01/31/sharing-pypimaven-dependency-data/]


	Scopus Citation Database [https://www.elsevier.com/solutions/scopus]


	Small Network Data [http://www-personal.umich.edu/~mejn/netdata/]


	Stanford GraphBase (Steven Skiena) [http://www3.cs.stonybrook.edu/~algorith/implement/graphbase/implement.shtml]


	Stanford Large Network Dataset Collection [http://snap.stanford.edu/data/]


	Stanford Longitudinal Network Data Sources [http://stanford.edu/group/sonia/dataSources/index.html]


	The Koblenz Network Collection [http://konect.uni-koblenz.de/]


	The Laboratory for Web Algorithmics (UNIMI) [http://law.di.unimi.it/datasets.php]


	The Nexus Network Repository [http://nexus.igraph.org/]


	UCI Network Data Repository [https://networkdata.ics.uci.edu/resources.php]


	UFL sparse matrix collection [http://www.cise.ufl.edu/research/sparse/matrices/]


	WSU Graph Database [http://www.eecs.wsu.edu/mgd/gdb.html]







Computer Networks


	3.5B Web Pages from CommonCrawl 2012 [http://www.bigdatanews.com/profiles/blogs/big-data-set-3-5-billion-web-pages-made-available-for-all-of-us]


	53.5B Web clicks of 100K users in Indiana Univ. [http://cnets.indiana.edu/groups/nan/webtraffic/click-dataset/]


	CAIDA Internet Datasets [http://www.caida.org/data/overview/]


	ClueWeb09 - 1B web pages [http://lemurproject.org/clueweb09/]


	ClueWeb12 - 733M web pages [http://lemurproject.org/clueweb12/]


	CommonCrawl Web Data over 7 years [http://commoncrawl.org/the-data/get-started/]


	CRAWDAD Wireless datasets from Dartmouth Univ. [https://crawdad.cs.dartmouth.edu/]


	Criteo click-through data [http://labs.criteo.com/2015/03/criteo-releases-its-new-dataset/]


	OONI: Open Observatory of Network Interference - Internet censorship data [https://ooni.torproject.org/data/]


	Open Mobile Data by MobiPerf [https://console.developers.google.com/storage/openmobiledata_public/]


	Rapid7 Sonar Internet Scans [https://sonar.labs.rapid7.com/]


	UCSD Network Telescope, IPv4 /8 net [http://www.caida.org/projects/network_telescope/]







Data Challenges


	Bruteforce Database [https://github.com/duyetdev/bruteforce-database]


	Challenges in Machine Learning [http://www.chalearn.org/]


	CrowdANALYTIX dataX [http://data.crowdanalytix.com]


	D4D Challenge of Orange [http://www.d4d.orange.com/en/home]


	DrivenData Competitions for Social Good [http://www.drivendata.org/]


	ICWSM Data Challenge (since 2009) [http://icwsm.cs.umbc.edu/]


	Kaggle Competition Data [https://www.kaggle.com/]


	KDD Cup by Tencent 2012 [http://www.kddcup2012.org/]


	Localytics Data Visualization Challenge [https://github.com/localytics/data-viz-challenge]


	Netflix Prize [http://netflixprize.com/leaderboard.html]


	Space Apps Challenge [https://2015.spaceappschallenge.org]


	Telecom Italia Big Data Challenge [https://dandelion.eu/datamine/open-big-data/]


	TravisTorrent Dataset - MSR’2017 Mining Challenge [https://travistorrent.testroots.org/]


	Yelp Dataset Challenge [http://www.yelp.com/dataset_challenge]







Earth Science


	AQUASTAT - Global water resources and uses [http://www.fao.org/nr/water/aquastat/data/query/index.html?lang=en]


	BODC - marine data of ~22K vars [https://www.bodc.ac.uk/data/]


	Earth Models [http://www.earthmodels.org/]


	EOSDIS - NASA’s earth observing system data [http://sedac.ciesin.columbia.edu/data/sets/browse]


	Integrated Marine Observing System (IMOS) - roughly 30TB of ocean measurements [https://imos.aodn.org.au] or on S3 [http://imos-data.s3-website-ap-southeast-2.amazonaws.com/]


	Marinexplore - Open Oceanographic Data [http://marinexplore.org/]


	Smithsonian Institution Global Volcano and Eruption Database [http://volcano.si.edu/]


	USGS Earthquake Archives [http://earthquake.usgs.gov/earthquakes/search/]







Economics


	American Economic Association (AEA) [https://www.aeaweb.org/resources/data]


	EconData from UMD [http://inforumweb.umd.edu/econdata/econdata.html]


	Economic Freedom of the World Data [http://www.freetheworld.com/datasets_efw.html]


	Historical MacroEconomc Statistics [http://www.historicalstatistics.org/]


	International Economics Database [http://widukind.cepremap.org/] and various data tools [https://github.com/Widukind]


	International Trade Statistics [http://www.econostatistics.co.za/]


	Internet Product Code Database [http://www.upcdatabase.com/]


	Joint External Debt Data Hub [http://www.jedh.org/]


	Jon Haveman International Trade Data Links [http://www.macalester.edu/research/economics/PAGE/HAVEMAN/Trade.Resources/TradeData.html]


	OpenCorporates Database of Companies in the World [https://opencorporates.com/]


	Our World in Data [http://ourworldindata.org/]


	SciencesPo World Trade Gravity Datasets [http://econ.sciences-po.fr/thierry-mayer/data]


	The Atlas of Economic Complexity [http://atlas.cid.harvard.edu]


	The Center for International Data [http://cid.econ.ucdavis.edu]


	The Observatory of Economic Complexity [http://atlas.media.mit.edu/en/]


	UN Commodity Trade Statistics [http://comtrade.un.org/db/]


	UN Human Development Reports [http://hdr.undp.org/en]







Education


	College Scorecard Data [https://collegescorecard.ed.gov/data/]


	Student Data from Free Code Camp [http://academictorrents.com/details/030b10dad0846b5aecc3905692890fb02404adbf]







Energy


	AMPds [http://ampds.org/]


	BLUEd [http://nilm.cmubi.org/]


	COMBED [http://combed.github.io/]


	Dataport [https://dataport.pecanstreet.org/]


	DRED [http://www.st.ewi.tudelft.nl/~akshay/dred/]


	ECO [http://www.vs.inf.ethz.ch/res/show.html?what=eco-data]


	EIA [http://www.eia.gov/electricity/data/eia923/]


	HES [http://randd.defra.gov.uk/Default.aspx?Menu=Menu&Module=More&Location=None&ProjectID=17359&FromSearch=Y&Publisher=1&SearchText=EV0702&SortString=ProjectCode&SortOrder=Asc&Paging=10#Description] - Household Electricity Study, UK


	HFED [http://hfed.github.io/]


	iAWE [http://iawe.github.io/]


	PLAID [http://plaidplug.com/] - the Plug Load Appliance Identification Dataset


	REDD [http://redd.csail.mit.edu/]


	Tracebase [https://www.tracebase.org]


	UK-DALE [http://www.doc.ic.ac.uk/~dk3810/data/] - UK Domestic Appliance-Level Electricity


	WHITED [http://nilmworkshop.org/2016/proceedings/Poster_ID18.pdf]







Finance


	CBOE Futures Exchange [http://cfe.cboe.com/Data/]


	Google Finance [https://www.google.com/finance]


	Google Trends [http://www.google.com/trends?q=google&ctab=0&geo=all&date=all&sort=0]


	NASDAQ [https://data.nasdaq.com/]


	NYSE Market Data [ftp://ftp.nyxdata.com] (see FTP link on RAW [https://raw.githubusercontent.com/caesar0301/awesome-public-datasets/master/README.rst])


	OANDA [http://www.oanda.com/]


	OSU Financial data [http://fisher.osu.edu/fin/fdf/osudata.htm]


	Quandl [https://www.quandl.com/]


	St Louis Federal [https://research.stlouisfed.org/fred2/]


	Yahoo Finance [http://finance.yahoo.com/]







GIS


	ArcGIS Open Data portal [http://opendata.arcgis.com/]


	Cambridge, MA, US, GIS data on GitHub [http://cambridgegis.github.io/gisdata.html]


	Factual Global Location Data [https://www.factual.com/]


	Geo Spatial Data from ASU [http://geodacenter.asu.edu/datalist/]


	Geo Wiki Project - Citizen-driven Environmental Monitoring [http://geo-wiki.org/]


	GeoFabrik - OSM data extracted to a variety of formats and areas [http://download.geofabrik.de/]


	GeoNames Worldwide [http://www.geonames.org/]


	Global Administrative Areas Database (GADM) [http://www.gadm.org/]


	Homeland Infrastructure Foundation-Level Data [https://hifld-dhs-gii.opendata.arcgis.com/]


	Landsat 8 on AWS [https://aws.amazon.com/public-data-sets/landsat/]


	List of all countries in all languages [https://github.com/umpirsky/country-list]


	National Weather Service GIS Data Portal [http://www.nws.noaa.gov/gis/]


	Natural Earth - vectors and rasters of the world [http://www.naturalearthdata.com/]


	OpenAddresses [http://openaddresses.io/]


	OpenStreetMap (OSM) [http://wiki.openstreetmap.org/wiki/Downloading_data]


	Pleiades - Gazetteer and graph of ancient places [http://pleiades.stoa.org/]


	Reverse Geocoder using OSM data [https://github.com/kno10/reversegeocode] & additional high-resolution data files [http://data.ub.uni-muenchen.de/61/]


	TIGER/Line - U.S. boundaries and roads [http://www.census.gov/geo/maps-data/data/tiger-line.html]


	TwoFishes - Foursquare’s coarse geocoder [https://github.com/foursquare/twofishes]


	TZ Timezones shapfiles [http://efele.net/maps/tz/world/]


	UN Environmental Data [http://geodata.grid.unep.ch/]


	World boundaries from  the U.S. Department of State [https://hiu.state.gov/data/data.aspx]


	World countries in multiple formats [https://github.com/mledoze/countries]







Government


	A list of cities and countries contributed by community [https://github.com/caesar0301/awesome-public-datasets/blob/master/Government.rst]


	Open Data for Africa [http://opendataforafrica.org/]


	OpenDataSoft’s list of 1,600 open data [https://www.opendatasoft.com/a-comprehensive-list-of-all-open-data-portals-around-the-world/]







Healthcare


	EHDP Large Health Data Sets [http://www.ehdp.com/vitalnet/datasets.htm]


	Gapminder World demographic databases [http://www.gapminder.org/data/]


	Medicare Coverage Database (MCD), U.S. [https://www.cms.gov/medicare-coverage-database/]


	Medicare Data Engine of medicare.gov Data [https://data.medicare.gov/]


	Medicare Data File [http://go.cms.gov/19xxPN4]


	MeSH, the vocabulary thesaurus used for indexing articles for PubMed [https://www.nlm.nih.gov/mesh/filelist.html]


	Number of Ebola Cases and Deaths in Affected Countries (2014) [https://data.hdx.rwlabs.org/dataset/ebola-cases-2014]


	Open-ODS (structure of the UK NHS) [http://www.openods.co.uk]


	OpenPaymentsData, Healthcare financial relationship data [https://openpaymentsdata.cms.gov]


	The Cancer Genome Atlas project (TCGA) [https://tcga-data.nci.nih.gov/tcga/tcgaDownload.jsp] and BigQuery table [http://google-genomics.readthedocs.org/en/latest/use_cases/discover_public_data/isb_cgc_data.html]


	World Health Organization Global Health Observatory [http://www.who.int/gho/en/]







Image Processing


	10k US Adult Faces Database [http://wilmabainbridge.com/facememorability2.html]


	2GB of Photos of Cats [http://137.189.35.203/WebUI/CatDatabase/catData.html] or Archive version [https://web.archive.org/web/20150520175645/http://137.189.35.203/WebUI/CatDatabase/catData.html]


	Adience Unfiltered faces for gender and age classification [http://www.openu.ac.il/home/hassner/Adience/data.html]


	Affective Image Classification [http://www.imageemotion.org/]


	Animals with attributes [http://attributes.kyb.tuebingen.mpg.de/]


	Caltech Pedestrian Detection Benchmark [https://www.vision.caltech.edu/Image_Datasets/CaltechPedestrians/]


	Chars74K dataset, Character Recognition in Natural Images (both English and Kannada are available) [http://www.ee.surrey.ac.uk/CVSSP/demos/chars74k/]


	Face Recognition Benchmark [http://www.face-rec.org/databases/]


	GDXray: X-ray images for X-ray testing and Computer Vision [http://dmery.ing.puc.cl/index.php/material/gdxray/]


	ImageNet (in WordNet hierarchy) [http://www.image-net.org/]


	Indoor Scene Recognition [http://web.mit.edu/torralba/www/indoor.html]


	International Affective Picture System, UFL [http://csea.phhp.ufl.edu/media/iapsmessage.html]


	Massive Visual Memory Stimuli, MIT [http://cvcl.mit.edu/MM/stimuli.html]


	MNIST database of handwritten digits, near 1 million examples [http://yann.lecun.com/exdb/mnist/]


	Several Shape-from-Silhouette Datasets [http://kaiwolf.no-ip.org/3d-model-repository.html]


	Stanford Dogs Dataset [http://vision.stanford.edu/aditya86/ImageNetDogs/]


	SUN database, MIT [http://groups.csail.mit.edu/vision/SUN/hierarchy.html]


	The Action Similarity Labeling (ASLAN) Challenge [http://www.openu.ac.il/home/hassner/data/ASLAN/ASLAN.html]


	The Oxford-IIIT Pet Dataset [http://www.robots.ox.ac.uk/~vgg/data/pets/]


	Violent-Flows - Crowd Violence Non-violence Database and benchmark [http://www.openu.ac.il/home/hassner/data/violentflows/]


	Visual genome [http://visualgenome.org/api/v0/api_home.html]


	YouTube Faces Database [http://www.cs.tau.ac.il/~wolf/ytfaces/]







Machine Learning


	Context-aware data sets from five domains [https://github.com/irecsys/CARSKit/tree/master/context-aware_data_sets]


	Delve Datasets for classification and regression (Univ. of Toronto) [http://www.cs.toronto.edu/~delve/data/datasets.html]


	Discogs Monthly Data [http://data.discogs.com/]


	eBay Online Auctions (2012) [http://www.modelingonlineauctions.com/datasets]


	IMDb Database [http://www.imdb.com/interfaces]


	Keel Repository for classification, regression and time series [http://sci2s.ugr.es/keel/datasets.php]


	Labeled Faces in the Wild (LFW) [http://vis-www.cs.umass.edu/lfw/]


	Lending Club Loan Data [https://www.lendingclub.com/info/download-data.action]


	Machine Learning Data Set Repository [http://mldata.org/]


	Million Song Dataset [http://labrosa.ee.columbia.edu/millionsong/]


	More Song Datasets [http://labrosa.ee.columbia.edu/millionsong/pages/additional-datasets]


	MovieLens Data Sets [http://grouplens.org/datasets/movielens/]


	New Yorker caption contest ratings [https://github.com/nextml/caption-contest-data]


	RDataMining - «R and Data Mining» ebook data [http://www.rdatamining.com/data]


	Registered Meteorites on Earth [http://healthintelligence.drupalgardens.com/content/registered-meteorites-has-impacted-earth-visualized]


	Restaurants Health Score Data in San Francisco [http://missionlocal.org/san-francisco-restaurant-health-inspections/]


	UCI Machine Learning Repository [http://archive.ics.uci.edu/ml/]


	Yahoo! Ratings and Classification Data [http://webscope.sandbox.yahoo.com/catalog.php?datatype=r]


	Youtube 8m [https://research.google.com/youtube8m/download.html]







Museums


	Canada Science and Technology Museums Corporation’s Open Data [http://techno-science.ca/en/data.php]


	Cooper-Hewitt’s Collection Database [https://github.com/cooperhewitt/collection]


	Minneapolis Institute of Arts metadata [https://github.com/artsmia/collection]


	Natural History Museum (London) Data Portal [http://data.nhm.ac.uk/]


	Rijksmuseum Historical Art Collection [https://www.rijksmuseum.nl/en/api]


	Tate Collection metadata [https://github.com/tategallery/collection]


	The Getty vocabularies [http://vocab.getty.edu]







Music


	Nottingham Folk Songs [https://github.com/jukedeck/nottingham-dataset]


	Bach 10 [http://music.cs.northwestern.edu/data/Bach10_Dataset_Description.pdf]







Natural Language


	Automatic Keyphrase Extracttion [https://github.com/snkim/AutomaticKeyphraseExtraction/]


	Blogger Corpus [http://u.cs.biu.ac.il/~koppel/BlogCorpus.htm]


	CLiPS Stylometry Investigation Corpus [http://www.clips.uantwerpen.be/datasets/csi-corpus]


	ClueWeb09 FACC [http://lemurproject.org/clueweb09/FACC1/]


	ClueWeb12 FACC [http://lemurproject.org/clueweb12/FACC1/]


	DBpedia - 4.58M things with 583M facts [http://wiki.dbpedia.org/Datasets]


	Flickr Personal Taxonomies [http://www.isi.edu/~lerman/downloads/flickr/flickr_taxonomies.html]


	Freebase.com of people, places, and things [http://www.freebase.com/]


	Google Books Ngrams (2.2TB) [https://aws.amazon.com/datasets/google-books-ngrams/]


	Google MC-AFP, generated based on the public available Gigaword dataset using Paragraph Vectors [https://github.com/google/mcafp]


	Google Web 5gram (1TB, 2006) [https://catalog.ldc.upenn.edu/LDC2006T13]


	Gutenberg eBooks List [http://www.gutenberg.org/wiki/Gutenberg:Offline_Catalogs]


	Hansards text chunks of Canadian Parliament [http://www.isi.edu/natural-language/download/hansard/]


	Machine Comprehension Test (MCTest) of text from Microsoft Research [http://research.microsoft.com/en-us/um/redmond/projects/mctest/index.html]


	Machine Translation of European languages [http://statmt.org/wmt11/translation-task.html#download]


	Microsoft MAchine Reading COmprehension Dataset (or MS MARCO) [http://www.msmarco.org/dataset.aspx]


	Multi-Domain Sentiment Dataset (version 2.0) [http://www.cs.jhu.edu/~mdredze/datasets/sentiment/]


	Open Multilingual Wordnet [http://compling.hss.ntu.edu.sg/omw/]


	Personae Corpus [http://www.clips.uantwerpen.be/datasets/personae-corpus]


	SaudiNewsNet Collection of Saudi Newspaper Articles (Arabic, 30K articles) [https://github.com/ParallelMazen/SaudiNewsNet]


	SMS Spam Collection in English [http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/]


	Universal Dependencies [http://universaldependencies.org]


	USENET postings corpus of 2005~2011 [http://www.psych.ualberta.ca/~westburylab/downloads/usenetcorpus.download.html]


	Webhose - News/Blogs in multiple languages [https://webhose.io/datasets]


	Wikidata - Wikipedia databases [https://www.wikidata.org/wiki/Wikidata:Database_download]


	Wikipedia Links data - 40 Million Entities in Context [https://code.google.com/p/wiki-links/downloads/list]


	WordNet databases and tools [http://wordnet.princeton.edu/wordnet/download/]







Neuroscience


	Allen Institute Datasets [http://www.brain-map.org/]


	Brain Catalogue [http://braincatalogue.org/]


	Brainomics [http://brainomics.cea.fr/localizer]


	CodeNeuro Datasets [http://datasets.codeneuro.org/]


	Collaborative Research in Computational Neuroscience (CRCNS) [http://crcns.org/data-sets]


	FCP-INDI [http://fcon_1000.projects.nitrc.org/index.html]


	Human Connectome Project [http://www.humanconnectome.org/data/]


	NDAR [https://ndar.nih.gov/]


	NeuroData [http://neurodata.io]


	Neuroelectro [http://neuroelectro.org/]


	NIMH Data Archive [http://data-archive.nimh.nih.gov/]


	OASIS [http://www.oasis-brains.org/]


	OpenfMRI [https://openfmri.org/]


	Study Forrest [http://studyforrest.org]







Physics


	CERN Open Data Portal [http://opendata.cern.ch/]


	Crystallography Open Database [http://www.crystallography.net/]


	NASA Exoplanet Archive [http://exoplanetarchive.ipac.caltech.edu/]


	NSSDC (NASA) data of 550 space spacecraft [http://nssdc.gsfc.nasa.gov/nssdc/obtaining_data.html]


	Sloan Digital Sky Survey (SDSS) - Mapping the Universe [http://www.sdss.org/]







Psychology/Cognition


	OSU Cognitive Modeling Repository Datasets [http://www.cmr.osu.edu/browse/datasets]







Public Domains


	Amazon [http://aws.amazon.com/datasets/]


	Archive-it from Internet Archive [https://www.archive-it.org/explore?show=Collections]


	Archive.org Datasets [https://archive.org/details/datasets]


	CMU JASA data archive [http://lib.stat.cmu.edu/jasadata/]


	CMU StatLab collections [http://lib.stat.cmu.edu/datasets/]


	Data.World [https://data.world]


	Data360 [http://www.data360.org/index.aspx]


	Datamob.org [http://datamob.org/datasets]


	Google [http://www.google.com/publicdata/directory]


	Infochimps [http://www.infochimps.com/]


	KDNuggets Data Collections [http://www.kdnuggets.com/datasets/index.html]


	Microsoft Azure Data Market Free DataSets [http://datamarket.azure.com/browse/data?price=free]


	Microsoft Data Science for Research [http://aka.ms/Data-Science]


	Numbray [http://numbrary.com/]


	Open Library Data Dumps [https://openlibrary.org/developers/dumps]


	Reddit Datasets [https://www.reddit.com/r/datasets]


	RevolutionAnalytics Collection [http://packages.revolutionanalytics.com/datasets/]


	Sample R data sets [http://stat.ethz.ch/R-manual/R-patched/library/datasets/html/00Index.html]


	Stats4Stem R data sets [http://www.stats4stem.org/data-sets.html]


	StatSci.org [http://www.statsci.org/datasets.html]


	The Washington Post List [http://www.washingtonpost.com/wp-srv/metro/data/datapost.html]


	UCLA SOCR data collection [http://wiki.stat.ucla.edu/socr/index.php/SOCR_Data]


	UFO Reports [http://www.nuforc.org/webreports.html]


	Wikileaks 911 pager intercepts [https://911.wikileaks.org/files/index.html]


	Yahoo Webscope [http://webscope.sandbox.yahoo.com/catalog.php]







Search Engines


	Academic Torrents of data sharing from UMB [http://academictorrents.com/]


	Datahub.io [https://datahub.io/dataset]


	DataMarket (Qlik) [https://datamarket.com/data/list/?q=all]


	Harvard Dataverse Network of scientific data [https://dataverse.harvard.edu/]


	ICPSR (UMICH) [http://www.icpsr.umich.edu/icpsrweb/ICPSR/index.jsp]


	Institute of Education Sciences [http://eric.ed.gov]


	National Technical Reports Library [http://www.ntis.gov/products/ntrl/]


	Open Data Certificates (beta) [https://certificates.theodi.org/en/datasets]


	OpenDataNetwork - A search engine of all Socrata powered data portals [http://www.opendatanetwork.com/]


	Statista.com - statistics and Studies [http://www.statista.com/]


	Zenodo - An open dependable home for the long-tail of science [https://zenodo.org/collection/datasets]







Social Networks


	72 hours #gamergate Twitter Scrape [http://waxy.org/random/misc/gamergate_tweets.csv]


	Ancestry.com Forum Dataset over 10 years [http://www.cs.cmu.edu/~jelsas/data/ancestry.com/]


	Cheng-Caverlee-Lee September 2009 - January 2010 Twitter Scrape [https://archive.org/details/twitter_cikm_2010]


	CMU Enron Email of 150 users [http://www.cs.cmu.edu/~enron/]


	EDRM Enron EMail of 151 users, hosted on S3 [https://aws.amazon.com/datasets/enron-email-data/]


	Facebook Data Scrape (2005) [https://archive.org/details/oxford-2005-facebook-matrix]


	Facebook Social Networks from LAW (since 2007) [http://law.di.unimi.it/datasets.php]


	Foursquare from UMN/Sarwat (2013) [https://archive.org/details/201309_foursquare_dataset_umn]


	GitHub Collaboration Archive [https://www.githubarchive.org/]


	Google Scholar citation relations [http://www3.cs.stonybrook.edu/~leman/data/gscholar.db]


	High-Resolution Contact Networks from Wearable Sensors [http://www.sociopatterns.org/datasets/]


	Mobile Social Networks from UMASS [https://kdl.cs.umass.edu/display/public/Mobile+Social+Networks]


	Network Twitter Data [http://snap.stanford.edu/data/higgs-twitter.html]


	Reddit Comments [https://www.reddit.com/r/datasets/comments/3bxlg7/i_have_every_publicly_available_reddit_comment/]


	Skytrax“ Air Travel Reviews Dataset [https://github.com/quankiquanki/skytrax-reviews-dataset]


	Social Twitter Data [http://snap.stanford.edu/data/egonets-Twitter.html]


	SourceForge.net Research Data [http://www3.nd.edu/~oss/Data/data.html]


	Twitter Data for Online Reputation Management [http://nlp.uned.es/replab2013/]


	Twitter Data for Sentiment Analysis [http://help.sentiment140.com/for-students/]


	Twitter Graph of entire Twitter site [http://an.kaist.ac.kr/traces/WWW2010.html]


	Twitter Scrape Calufa May 2011 [http://archive.org/details/2011-05-calufa-twitter-sql]


	UNIMI/LAW Social Network Datasets [http://law.di.unimi.it/datasets.php]


	Yahoo! Graph and Social Data [http://webscope.sandbox.yahoo.com/catalog.php?datatype=g]


	Youtube Video Social Graph in 2007,2008 [http://netsg.cs.sfu.ca/youtubedata/]







Social Sciences


	ACLED (Armed Conflict Location & Event Data Project) [http://www.acleddata.com/]


	Canadian Legal Information Institute [https://www.canlii.org/en/index.php]


	Center for Systemic Peace Datasets - Conflict Trends, Polities, State Fragility, etc [http://www.systemicpeace.org/]


	Correlates of War Project [http://www.correlatesofwar.org/]


	Cryptome Conspiracy Theory Items [http://cryptome.org]


	Datacards [http://datacards.org]


	European Social Survey [http://www.europeansocialsurvey.org/data/]


	FBI Hate Crime 2013 - aggregated data [https://github.com/emorisse/FBI-Hate-Crime-Statistics/tree/master/2013]


	Fragile States Index [http://fsi.fundforpeace.org/data]


	GDELT Global Events Database [http://gdeltproject.org/data.html]


	General Social Survey (GSS) since 1972 [http://gss.norc.org]


	German Social Survey [http://www.gesis.org/en/home/]


	Global Religious Futures Project [http://www.globalreligiousfutures.org/]


	Humanitarian Data Exchange [https://data.hdx.rwlabs.org/]


	INFORM Index for Risk Management [http://www.inform-index.org/Results/Global]


	Institute for Demographic Studies [http://www.ined.fr/en/]


	International Networks Archive [http://www.princeton.edu/~ina/]


	International Social Survey Program ISSP [http://www.issp.org]


	International Studies Compendium Project [http://www.isacompendium.com/public/]


	James McGuire Cross National Data [http://jmcguire.faculty.wesleyan.edu/welcome/cross-national-data/]


	MacroData Guide by Norsk samfunnsvitenskapelig datatjeneste [http://nsd.uib.no]


	Minnesota Population Center [https://www.ipums.org/]


	MIT Reality Mining Dataset [http://realitycommons.media.mit.edu/realitymining.html]


	Notre Dame Global Adaptation Index (NG-DAIN) [http://index.gain.org/about/download]


	Open Crime and Policing Data in England, Wales and Northern Ireland [https://data.police.uk/data/]


	Paul Hensel General International Data Page [http://www.paulhensel.org/dataintl.html]


	PewResearch Internet Survey Project [http://www.pewinternet.org/datasets/pages/2/]


	PewResearch Society Data Collection [http://www.pewresearch.org/data/download-datasets/]


	Political Polarity Data [http://www3.cs.stonybrook.edu/~leman/data/14-icwsm-political-polarity-data.zip]


	StackExchange Data Explorer [http://data.stackexchange.com/help]


	Terrorism Research and Analysis Consortium [http://www.trackingterrorism.org/]


	Texas Inmates Executed Since 1984 [http://www.tdcj.state.tx.us/death_row/dr_executed_offenders.html]


	Titanic Survival Data Set [https://github.com/caesar0301/awesome-public-datasets/tree/master/Datasets] or on Kaggle [https://www.kaggle.com/c/titanic/data]


	UCB’s Archive of Social Science Data (D-Lab) [http://ucdata.berkeley.edu/]


	UCLA Social Sciences Data Archive [http://dataarchives.ss.ucla.edu/Home.DataPortals.htm]


	UN Civil Society Database [http://esango.un.org/civilsociety/]


	Universities Worldwide [http://univ.cc/]


	UPJOHN for Labor Employment Research [http://www.upjohn.org/services/resources/employment-research-data-center]


	Uppsala Conflict Data Program [http://ucdp.uu.se/]


	World Bank Open Data [http://data.worldbank.org/]


	WorldPop project - Worldwide human population distributions [http://www.worldpop.org.uk/data/get_data/]







Software


	FLOSSmole data about free, libre, and open source software development [http://flossdata.syr.edu/data/]







Sports


	Basketball (NBA/NCAA/Euro) Player Database and Statistics [http://www.draftexpress.com/stats.php]


	Betfair Historical Exchange Data [http://data.betfair.com/]


	Cricsheet Matches (cricket) [http://cricsheet.org/]


	Ergast Formula 1, from 1950 up to date (API) [http://ergast.com/mrd/db]


	Football/Soccer resources (data and APIs) [http://www.jokecamp.com/blog/guide-to-football-and-soccer-data-and-apis/]


	Lahman’s Baseball Database [http://www.seanlahman.com/baseball-archive/statistics/]


	Pinhooker: Thoroughbred Bloodstock Sale Data [https://github.com/phillc73/pinhooker]


	Retrosheet Baseball Statistics [http://www.retrosheet.org/game.htm]


	Tennis database of rankings, results, and stats for ATP [https://github.com/JeffSackmann/tennis_atp], WTA [https://github.com/JeffSackmann/tennis_wta], Grand Slams [https://github.com/JeffSackmann/tennis_slam_pointbypoint] and Match Charting Project [https://github.com/JeffSackmann/tennis_MatchChartingProject]







Time Series


	Databanks International Cross National Time Series Data Archive [http://www.cntsdata.com]


	Hard Drive Failure Rates [https://www.backblaze.com/hard-drive-test-data.html]


	Heart Rate Time Series from MIT [http://ecg.mit.edu/time-series/]


	Time Series Data Library (TSDL) from MU [https://datamarket.com/data/list/?q=provider:tsdl]


	UC Riverside Time Series Dataset [http://www.cs.ucr.edu/~eamonn/time_series_data/]







Transportation


	Airlines OD Data 1987-2008 [http://stat-computing.org/dataexpo/2009/the-data.html]


	Bay Area Bike Share Data [http://www.bayareabikeshare.com/open-data]


	Bike Share Systems (BSS) collection [https://github.com/BetaNYC/Bike-Share-Data-Best-Practices/wiki/Bike-Share-Data-Systems]


	GeoLife GPS Trajectory from Microsoft Research [http://research.microsoft.com/en-us/downloads/b16d359d-d164-469e-9fd4-daa38f2b2e13/]


	German train system by Deutsche Bahn [http://data.deutschebahn.com/datasets/]


	Hubway Million Rides in MA [http://hubwaydatachallenge.org/trip-history-data/]


	Marine Traffic - ship tracks, port calls and more [http://www.marinetraffic.com/de/ais-api-services]


	Montreal BIXI Bike Share [https://montreal.bixi.com/en/open-data]


	NYC Taxi Trip Data 2009- [http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml]


	NYC Taxi Trip Data 2013 (FOIA/FOILed) [https://archive.org/details/nycTaxiTripData2013]


	NYC Uber trip data April 2014 to September 2014 [https://github.com/fivethirtyeight/uber-tlc-foil-response]


	Open Traffic collection [https://github.com/graphhopper/open-traffic-collection]


	OpenFlights - airport, airline and route data [http://openflights.org/data.html]


	Philadelphia Bike Share Stations (JSON) [https://www.rideindego.com/stations/json/]


	Plane Crash Database, since 1920 [http://www.planecrashinfo.com/database.htm]


	RITA Airline On-Time Performance data [http://www.transtats.bts.gov/Tables.asp?DB_ID=120]


	RITA/BTS transport data collection (TranStat) [http://www.transtats.bts.gov/DataIndex.asp]


	Toronto Bike Share Stations (XML file) [http://www.bikesharetoronto.com/data/stations/bikeStations.xml]


	Transport for London (TFL) [https://tfl.gov.uk/info-for/open-data-users/our-open-data]


	Travel Tracker Survey (TTS) for Chicago [http://www.cmap.illinois.gov/data/transportation/travel-tracker-survey]


	U.S. Bureau of Transportation Statistics (BTS) [http://www.rita.dot.gov/bts/]


	U.S. Domestic Flights 1990 to 2009 [http://academictorrents.com/details/a2ccf94bbb4af222bf8e69dad60a68a29f310d9a]


	U.S. Freight Analysis Framework since 2007 [http://ops.fhwa.dot.gov/freight/freight_analysis/faf/index.htm]










          

      

      

    

  

    
      
          
            
  
Libraries

Machine learning libraries and frameworks forked from josephmisti’s awesome machine learning [https://github.com/josephmisiti/awesome-machine-learning].



	APL


	C


	C++


	Common Lisp


	Clojure


	Elixir


	Erlang


	Go


	Haskell


	Java


	Javascript


	Julia


	Lua


	Matlab


	.NET


	Objective C


	OCaml


	PHP


	Python


	Ruby


	Rust


	R


	SAS


	Scala


	Swift







APL

General-Purpose Machine Learning


	naive-apl [https://github.com/mattcunningham/naive-apl] - Naive Bayesian Classifier implementation in APL







C

General-Purpose Machine Learning


	Darknet [https://github.com/pjreddie/darknet] - Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.


	Recommender [https://github.com/GHamrouni/Recommender] - A C library for product recommendations/suggestions using collaborative filtering (CF).


	Hybrid Recommender System [https://github.com/SeniorSA/hybrid-rs-trainner] - A hybrid recomender system based upon scikit-learn algorithms.




Computer Vision


	CCV [https://github.com/liuliu/ccv] - C-based/Cached/Core Computer Vision Library, A Modern Computer Vision Library


	VLFeat [http://www.vlfeat.org/] - VLFeat is an open and portable library of computer vision algorithms, which has Matlab toolbox




Speech Recognition


	HTK [http://htk.eng.cam.ac.uk/] -The Hidden Markov Model Toolkit. HTK is a portable toolkit for building and manipulating hidden Markov models.







C++

Computer Vision


	DLib [http://dlib.net/imaging.html] - DLib has C++ and Python interfaces for face detection and training general object detectors.


	EBLearn [http://eblearn.sourceforge.net/] - Eblearn is an object-oriented C++ library that implements various machine learning models


	OpenCV [http://opencv.org] - OpenCV has C++, C, Python, Java and MATLAB interfaces and supports Windows, Linux, Android and Mac OS.


	VIGRA [https://github.com/ukoethe/vigra] - VIGRA is a generic cross-platform C++ computer vision and machine learning library for volumes of arbitrary dimensionality with Python bindings.




General-Purpose Machine Learning


	BanditLib [https://github.com/jkomiyama/banditlib] - A simple Multi-armed Bandit library.


	Caffe [http://caffe.berkeleyvision.org]  - A deep learning framework developed with cleanliness, readability, and speed in mind. [DEEP LEARNING]


	CNTK [https://github.com/Microsoft/CNTK)-TheComputationalNetworkToolkit(CNTK] by Microsoft Research, is a unified deep-learning toolkit that describes neural networks as a series of computational steps via a directed graph.


	CUDA [https://code.google.com/p/cuda-convnet/] - This is a fast C++/CUDA implementation of convolutional [DEEP LEARNING]


	CXXNET [https://github.com/antinucleon/cxxnet] - Yet another deep learning framework with less than 1000 lines core code [DEEP LEARNING]


	DeepDetect [https://github.com/beniz/deepdetect] - A machine learning API and server written in C++11. It makes state of the art machine learning easy to work with and integrate into existing applications.


	Disrtibuted Machine learning Tool Kit (DMTK) [http://www.dmtk.io/)-Adistributedmachinelearning(parameterserver)frameworkbyMicrosoft.Enablestrainingmodelsonlargedatasetsacrossmultiplemachines.Currenttoolsbundledwithitinclude:LightLDAandDistributed(Multisense] Word Embedding.


	DLib [http://dlib.net/ml.html] - A suite of ML tools designed to be easy to imbed in other applications


	DSSTNE [https://github.com/amznlabs/amazon-dsstne] - A software library created by Amazon for training and deploying deep neural networks using GPUs which emphasizes speed and scale over experimental flexibility.


	DyNet [https://github.com/clab/dynet] - A dynamic neural network library working well with networks that have dynamic structures that change for every training instance. Written in C++ with bindings in Python.


	encog-cpp [https://code.google.com/archive/p/encog-cpp]


	Fido [https://github.com/FidoProject/Fido] - A highly-modular C++ machine learning library for embedded electronics and robotics.


	igraph [http://igraph.org/c/] - General purpose graph library


	Intel(R) DAAL [https://github.com/01org/daal] - A high performance software library developed by Intel and optimized for Intel’s architectures. Library provides algorithmic building blocks for all stages of data analytics and allows to process data in batch, online and distributed modes.


	LightGBM [https://github.com/Microsoft/LightGBM)-Microsoft'sfast,distributed,highperformancegradientboosting(GBDT,GBRT,GBMorMART] framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.


	MLDB [https://mldb.ai] - The Machine Learning Database is a database designed for machine learning. Send it commands over a RESTful API to store data, explore it using SQL, then train machine learning models and expose them as APIs.


	mlpack [http://www.mlpack.org/] - A scalable C++ machine learning library


	ROOT [https://root.cern.ch] - A modular scientific software framework. It provides all the functionalities needed to deal with big data processing, statistical analysis, visualization and storage.


	shark [http://image.diku.dk/shark/sphinx_pages/build/html/index.html] - A fast, modular, feature-rich open-source C++ machine learning library.


	Shogun [https://github.com/shogun-toolbox/shogun] - The Shogun Machine Learning Toolbox


	sofia-ml [https://code.google.com/archive/p/sofia-ml] - Suite of fast incremental algorithms.


	Stan [http://mc-stan.org/] - A probabilistic programming language implementing full Bayesian statistical inference with Hamiltonian Monte Carlo sampling


	Timbl [https://languagemachines.github.io/timbl/] - A software package/C++ library implementing several memory-based learning algorithms, among which IB1-IG, an implementation of k-nearest neighbor classification, and IGTree, a decision-tree approximation of IB1-IG. Commonly used for NLP.


	Vowpal Wabbit (VW) [https://github.com/JohnLangford/vowpal_wabbit/wiki] - A fast out-of-core learning system.


	Warp-CTC [https://github.com/baidu-research/warp-ctc)-AfastparallelimplementationofConnectionistTemporalClassification(CTC], on both CPU and GPU.


	XGBoost [https://github.com/dmlc/xgboost] - A parallelized optimized general purpose gradient boosting library.




Natural Language Processing


	BLLIP Parser [https://github.com/BLLIP/bllip-parser)-BLLIPNaturalLanguageParser(alsoknownastheCharniak-Johnsonparser]


	colibri-core [https://github.com/proycon/colibri-core] - C++ library, command line tools, and Python binding for extracting and working with basic linguistic constructions such as n-grams and skipgrams in a quick and memory-efficient way.


	CRF++ [https://taku910.github.io/crfpp/)-OpensourceimplementationofConditionalRandomFields(CRFs] for segmenting/labeling sequential data & other Natural Language Processing tasks.


	CRFsuite [http://www.chokkan.org/software/crfsuite/)-CRFsuiteisanimplementationofConditionalRandomFields(CRFs] for labeling sequential data.


	frog [https://github.com/LanguageMachines/frog] - Memory-based NLP suite developed for Dutch: PoS tagger, lemmatiser, dependency parser, NER, shallow parser, morphological analyzer.


	libfolia](https://github.com/LanguageMachines/libfolia) - C++ library for the [FoLiA format [http://proycon.github.io/folia/]


	MeTA](https://github.com/meta-toolkit/meta) - [MeTA : ModErn Text Analysis [https://meta-toolkit.org/] is a C++ Data Sciences Toolkit that facilitates mining big text data.


	MIT Information Extraction Toolkit [https://github.com/mit-nlp/MITIE] - C, C++, and Python tools for named entity recognition and relation extraction


	ucto [https://github.com/LanguageMachines/ucto] - Unicode-aware regular-expression based tokenizer for various languages. Tool and C++ library. Supports FoLiA format.




Speech Recognition


	Kaldi [https://github.com/kaldi-asr/kaldi] - Kaldi is a toolkit for speech recognition written in C++ and licensed under the Apache License v2.0. Kaldi is intended for use by speech recognition researchers.




Sequence Analysis


	ToPS [https://github.com/ayoshiaki/tops] - This is an objected-oriented framework that facilitates the integration of probabilistic models for sequences over a user defined alphabet.




Gesture Detection


	grt [https://github.com/nickgillian/grt] - The Gesture Recognition Toolkit. GRT is a cross-platform, open-source, C++ machine learning library designed for real-time gesture recognition.







Common Lisp

General-Purpose Machine Learning


	mgl [https://github.com/melisgl/mgl/)-Neuralnetworks(boltzmannmachines,feed-forwardandrecurrentnets], Gaussian Processes


	mgl-gpr [https://github.com/melisgl/mgl-gpr/] - Evolutionary algorithms


	cl-libsvm [https://github.com/melisgl/cl-libsvm/] - Wrapper for the libsvm support vector machine library







Clojure

Natural Language Processing


	Clojure-openNLP [https://github.com/dakrone/clojure-opennlp] - Natural Language Processing in Clojure (opennlp)


	Infections-clj [https://github.com/r0man/inflections-clj] - Rails-like inflection library for Clojure and ClojureScript




General-Purpose Machine Learning


	Touchstone [https://github.com/ptaoussanis/touchstone] - Clojure A/B testing library


	Clojush [https://github.com/lspector/Clojush] -  The Push programming language and the PushGP genetic programming system implemented in Clojure


	Infer [https://github.com/aria42/infer] - Inference and machine learning in clojure


	Clj-ML [https://github.com/antoniogarrote/clj-ml] - A machine learning library for Clojure built on top of Weka and friends


	DL4CLJ [https://github.com/engagor/dl4clj/] - Clojure wrapper for Deeplearning4j


	Encog [https://github.com/jimpil/enclog)-ClojurewrapperforEncog(v3)(Machine-Learningframeworkthatspecializesinneural-nets]


	Fungp [https://github.com/vollmerm/fungp] - A genetic programming library for Clojure


	Statistiker [https://github.com/clojurewerkz/statistiker] - Basic Machine Learning algorithms in Clojure.


	clortex [https://github.com/htm-community/clortex] - General Machine Learning library using Numenta’s Cortical Learning Algorithm


	comportex [https://github.com/htm-community/comportex] - Functionally composable Machine Learning library using Numenta’s Cortical Learning Algorithm


	cortex [https://github.com/thinktopic/cortex] - Neural networks, regression and feature learning in Clojure.


	lambda-ml [https://github.com/cloudkj/lambda-ml] - Simple, concise implementations of machine learning techniques and utilities in Clojure.




Data Analysis / Data Visualization


	Incanter [http://incanter.org/] - Incanter is a Clojure-based, R-like platform for statistical computing and graphics.


	PigPen [https://github.com/Netflix/PigPen] - Map-Reduce for Clojure.


	Envision [https://github.com/clojurewerkz/envision] - Clojure Data Visualisation library, based on Statistiker and D3







Elixir

General-Purpose Machine Learning


	Simple Bayes [https://github.com/fredwu/simple_bayes] - A Simple Bayes / Naive Bayes implementation in Elixir.




Natural Language Processing


	Stemmer [https://github.com/fredwu/stemmer)-AnEnglish(Porter2] stemming implementation in Elixir.







Erlang

General-Purpose Machine Learning


	Disco [https://github.com/discoproject/disco/] - Map Reduce in Erlang







Go

Natural Language Processing


	go-porterstemmer [https://github.com/reiver/go-porterstemmer] - A native Go clean room implementation of the Porter Stemming algorithm.


	paicehusk [https://github.com/Rookii/paicehusk] - Golang implementation of the Paice/Husk Stemming Algorithm.


	snowball [https://github.com/tebeka/snowball] - Snowball Stemmer for Go.


	go-ngram [https://github.com/Lazin/go-ngram] - In-memory n-gram index with compression.




General-Purpose Machine Learning


	gago [https://github.com/MaxHalford/gago] - Multi-population, flexible, parallel genetic algorithm.


	Go Learn [https://github.com/sjwhitworth/golearn] - Machine Learning for Go


	go-pr [https://github.com/daviddengcn/go-pr] - Pattern recognition package in Go lang.


	go-ml [https://github.com/alonsovidales/go_ml] - Linear / Logistic regression, Neural Networks, Collaborative Filtering and Gaussian Multivariate Distribution


	bayesian [https://github.com/jbrukh/bayesian] - Naive Bayesian Classification for Golang.


	go-galib [https://github.com/thoj/go-galib] - Genetic Algorithms library written in Go / golang


	Cloudforest [https://github.com/ryanbressler/CloudForest] - Ensembles of decision trees in go/golang.


	gobrain [https://github.com/goml/gobrain] - Neural Networks written in go


	GoNN [https://github.com/fxsjy/gonn] - GoNN is an implementation of Neural Network in Go Language, which includes BPNN, RBF, PCN


	MXNet [https://github.com/dmlc/mxnet] - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.


	go-mxnet-predictor [https://github.com/songtianyi/go-mxnet-predictor] - Go binding for MXNet c_predict_api to do inference with pre-trained model




Data Analysis / Data Visualization


	go-graph [https://github.com/StepLg/go-graph] - Graph library for Go/golang language.


	SVGo [http://www.svgopen.org/2011/papers/34-SVGo_a_Go_Library_for_SVG_generation/] - The Go Language library for SVG generation


	RF [https://github.com/fxsjy/RF.go] - Random forests implementation in Go







Haskell

General-Purpose Machine Learning


	haskell-ml [https://github.com/ajtulloch/haskell-ml] - Haskell implementations of various ML algorithms.


	HLearn [https://github.com/mikeizbicki/HLearn] - a suite of libraries for interpreting machine learning models according to their algebraic structure.


	hnn [https://wiki.haskell.org/HNN] - Haskell Neural Network library.


	hopfield-networks [https://github.com/ajtulloch/hopfield-networks] - Hopfield Networks for unsupervised learning in Haskell.


	caffegraph [https://github.com/ajtulloch/dnngraph] - A DSL for deep neural networks


	LambdaNet [https://github.com/jbarrow/LambdaNet] - Configurable Neural Networks in Haskell







Java

Natural Language Processing


	Cortical.io [http://www.cortical.io/)-Retina:anAPIperformingcomplexNLPoperations(disambiguation,classification,streamingtextfiltering,etc...] as quickly and intuitively as the brain.


	CoreNLP [http://nlp.stanford.edu/software/corenlp.shtml] - Stanford CoreNLP provides a set of natural language analysis tools which can take raw English language text input and give the base forms of words


	Stanford Parser [http://nlp.stanford.edu/software/lex-parser.shtml] - A natural language parser is a program that works out the grammatical structure of sentences


	Stanford POS Tagger [http://nlp.stanford.edu/software/tagger.shtml] - A Part-Of-Speech Tagger (POS Tagger


	Stanford Name Entity Recognizer [http://nlp.stanford.edu/software/CRF-NER.shtml] - Stanford NER is a Java implementation of a Named Entity Recognizer.


	Stanford Word Segmenter [http://nlp.stanford.edu/software/segmenter.shtml] - Tokenization of raw text is a standard pre-processing step for many NLP tasks.


	Tregex, Tsurgeon and Semgrex [http://nlp.stanford.edu/software/tregex.shtml)-Tregexisautilityformatchingpatternsintrees,basedontreerelationshipsandregularexpressionmatchesonnodes(thenameisshortfor"treeregularexpressions"].


	Stanford Phrasal: A Phrase-Based Translation System [http://nlp.stanford.edu/phrasal/]


	Stanford English Tokenizer [http://nlp.stanford.edu/software/tokenizer.shtml] - Stanford Phrasal is a state-of-the-art statistical phrase-based machine translation system, written in Java.


	Stanford Tokens Regex [http://nlp.stanford.edu/software/tokensregex.shtml] - A tokenizer divides text into a sequence of tokens, which roughly correspond to «words»


	Stanford Temporal Tagger [http://nlp.stanford.edu/software/sutime.shtml] - SUTime is a library for recognizing and normalizing time expressions.


	Stanford SPIED [http://nlp.stanford.edu/software/patternslearning.shtml] - Learning entities from unlabeled text starting with seed sets using patterns in an iterative fashion


	Stanford Topic Modeling Toolbox [http://nlp.stanford.edu/software/tmt/tmt-0.4/] - Topic modeling tools to social scientists and others who wish to perform analysis on datasets


	Twitter Text Java [https://github.com/twitter/twitter-text-java] - A Java implementation of Twitter’s text processing library


	MALLET [http://mallet.cs.umass.edu/] - A Java-based package for statistical natural language processing, document classification, clustering, topic modeling, information extraction, and other machine learning applications to text.


	OpenNLP [https://opennlp.apache.org/] - a machine learning based toolkit for the processing of natural language text.


	LingPipe [http://alias-i.com/lingpipe/index.html] - A tool kit for processing text using computational linguistics.


	ClearTK [https://code.google.com/archive/p/cleartk)-ClearTKprovidesaframeworkfordevelopingstatisticalnaturallanguageprocessing(NLP] components in Java and is built on top of Apache UIMA.


	Apache cTAKES [http://ctakes.apache.org/)-ApacheclinicalTextAnalysisandKnowledgeExtractionSystem(cTAKES] is an open-source natural language processing system for information extraction from electronic medical record clinical free-text.


	ClearNLP [https://github.com/clir/clearnlp] - The ClearNLP project provides software and resources for natural language processing. The project started at the Center for Computational Language and EducAtion Research, and is currently developed by the Center for Language and Information Research at Emory University. This project is under the Apache 2 license.


	CogcompNLP [https://github.com/IllinoisCogComp/illinois-cogcomp-nlp)-ThisprojectcollectsanumberofcorelibrariesforNaturalLanguageProcessing(NLP] developed in the University of Illinois“ Cognitive Computation Group, for example illinois-core-utilities which provides a set of NLP-friendly data structures and a number of NLP-related utilities that support writing NLP applications, running experiments, etc, illinois-edison a library for feature extraction from illinois-core-utilities data structures and many other packages.




General-Purpose Machine Learning


	aerosolve [https://github.com/airbnb/aerosolve] - A machine learning library by Airbnb designed from the ground up to be human friendly.


	Datumbox [https://github.com/datumbox/datumbox-framework] - Machine Learning framework for rapid development of Machine Learning and Statistical applications


	ELKI [https://elki-project.github.io/)-Javatoolkitfordatamining.(unsupervised:clustering,outlierdetectionetc.]


	Encog [https://github.com/encog/encog-java-core] - An advanced neural network and machine learning framework. Encog contains classes to create a wide variety of networks, as well as support classes to normalize and process data for these neural networks. Encog trains using multithreaded resilient propagation. Encog can also make use of a GPU to further speed processing time. A GUI based workbench is also provided to help model and train neural networks.


	FlinkML in Apache Flink [https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/ml/index.html] - Distributed machine learning library in Flink


	H2O [https://github.com/h2oai/h2o-3] - ML engine that supports distributed learning on Hadoop, Spark or your laptop via APIs in R, Python, Scala, REST/JSON.


	htm.java [https://github.com/numenta/htm.java] - General Machine Learning library using Numenta’s Cortical Learning Algorithm


	java-deeplearning [https://github.com/deeplearning4j/deeplearning4j] - Distributed Deep Learning Platform for Java, Clojure,Scala


	Mahout [https://github.com/apache/mahout] - Distributed machine learning


	Meka [http://meka.sourceforge.net/)-Anopensourceimplementationofmethodsformulti-labelclassificationandevaluation(extensiontoWeka].


	MLlib in Apache Spark [http://spark.apache.org/docs/latest/mllib-guide.html] - Distributed machine learning library in Spark


	Hydrosphere Mist [https://github.com/Hydrospheredata/mist] - a service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.


	Neuroph [http://neuroph.sourceforge.net/] - Neuroph is lightweight Java neural network framework


	ORYX [https://github.com/oryxproject/oryx] - Lambda Architecture Framework using Apache Spark and Apache Kafka with a specialization for real-time large-scale machine learning.


	Samoa [https://samoa.incubator.apache.org/] SAMOA is a framework that includes distributed machine learning for data streams with an interface to plug-in different stream processing platforms.


	RankLib [https://sourceforge.net/p/lemur/wiki/RankLib/] - RankLib is a library of learning to rank algorithms


	rapaio [https://github.com/padreati/rapaio] - statistics, data mining and machine learning toolbox in Java


	RapidMiner [https://rapidminer.com] - RapidMiner integration into Java code


	Stanford Classifier [http://nlp.stanford.edu/software/classifier.shtml] - A classifier is a machine learning tool that will take data items and place them into one of k classes.


	SmileMiner [https://github.com/haifengl/smile] - Statistical Machine Intelligence & Learning Engine


	SystemML [https://github.com/apache/incubator-systemml)-flexible,scalablemachinelearning(ML] language.


	WalnutiQ [https://github.com/WalnutiQ/wAlnut] - object oriented model of the human brain


	Weka [http://www.cs.waikato.ac.nz/ml/weka/] - Weka is a collection of machine learning algorithms for data mining tasks


	LBJava [https://github.com/IllinoisCogComp/lbjava/] - Learning Based Java is a modeling language for the rapid development of software systems, offers a convenient, declarative syntax for classifier and constraint definition directly in terms of the objects in the programmer’s application.




Speech Recognition


	CMU Sphinx [http://cmusphinx.sourceforge.net/] - Open Source Toolkit For Speech Recognition purely based on Java speech recognition library.




Data Analysis / Data Visualization


	Flink [http://flink.apache.org/] - Open source platform for distributed stream and batch data processing.


	Hadoop [https://github.com/apache/hadoop-mapreduce] - Hadoop/HDFS


	Spark [https://github.com/apache/spark] - Spark is a fast and general engine for large-scale data processing.


	Storm [http://storm.apache.org/] - Storm is a distributed realtime computation system.


	Impala [https://github.com/cloudera/impala] - Real-time Query for Hadoop


	DataMelt [http://jwork.org/dmelt/] - Mathematics software for numeric computation, statistics, symbolic calculations, data analysis and data visualization.


	Dr. Michael Thomas Flanagan’s Java Scientific Library [http://www.ee.ucl.ac.uk/~mflanaga/java/]




Deep Learning


	Deeplearning4j [https://github.com/deeplearning4j/deeplearning4j] - Scalable deep learning for industry with parallel GPUs







Javascript

Natural Language Processing


	Twitter-text [https://github.com/twitter/twitter-text] - A JavaScript implementation of Twitter’s text processing library


	NLP.js [https://github.com/nicktesla/nlpjs] - NLP utilities in javascript and coffeescript


	natural [https://github.com/NaturalNode/natural] - General natural language facilities for node


	Knwl.js [https://github.com/loadfive/Knwl.js] - A Natural Language Processor in JS


	Retext [https://github.com/wooorm/retext] - Extensible system for analyzing and manipulating natural language


	TextProcessing [https://market.mashape.com/japerk/text-processing/support] - Sentiment analysis, stemming and lemmatization, part-of-speech tagging and chunking, phrase extraction and named entity recognition.


	NLP Compromise [https://github.com/nlp-compromise/compromise] - Natural Language processing in the browser




Data Analysis / Data Visualization


	D3.js [https://d3js.org/]


	High Charts [http://www.highcharts.com/]


	NVD3.js [http://nvd3.org/]


	dc.js [http://dc-js.github.io/dc.js/]


	chartjs [http://www.chartjs.org/]


	dimple [http://dimplejs.org/]


	amCharts [https://www.amcharts.com/]


	D3xter [https://github.com/NathanEpstein/D3xter] - Straight forward plotting built on D3


	statkit [https://github.com/rigtorp/statkit] - Statistics kit for JavaScript


	datakit [https://github.com/nathanepstein/datakit] - A lightweight framework for data analysis in JavaScript


	science.js [https://github.com/jasondavies/science.js/] - Scientific and statistical computing in JavaScript.


	Z3d [https://github.com/NathanEpstein/Z3d] - Easily make interactive 3d plots built on Three.js


	Sigma.js [http://sigmajs.org/] - JavaScript library dedicated to graph drawing.


	C3.js [http://c3js.org/]- customizable library based on D3.js for easy chart drawing.


	Datamaps [http://datamaps.github.io/]- Customizable SVG map/geo visualizations using D3.js.


	ZingChart [https://www.zingchart.com/]- library written on Vanilla JS for big data visualization.


	cheminfo [http://www.cheminfo.org/] - Platform for data visualization and analysis, using the visualizer [https://github.com/npellet/visualizer] project.




General-Purpose Machine Learning


	Convnet.js [http://cs.stanford.edu/people/karpathy/convnetjs/] - ConvNetJS is a Javascript library for training Deep Learning models[DEEP LEARNING]


	Clusterfck [http://harthur.github.io/clusterfck/] - Agglomerative hierarchical clustering implemented in Javascript for Node.js and the browser


	Clustering.js [https://github.com/emilbayes/clustering.js] - Clustering algorithms implemented in Javascript for Node.js and the browser


	Decision Trees [https://github.com/serendipious/nodejs-decision-tree-id3] - NodeJS Implementation of Decision Tree using ID3 Algorithm


	DN2A [https://github.com/dn2a/dn2a-javascript] - Digital Neural Networks Architecture


	figue [https://code.google.com/archive/p/figue] - K-means, fuzzy c-means and agglomerative clustering


	Node-fann [https://github.com/rlidwka/node-fann)-FANN(FastArtificialNeuralNetworkLibrary] bindings for Node.js


	Kmeans.js [https://github.com/emilbayes/kMeans.js] - Simple Javascript implementation of the k-means algorithm, for node.js and the browser


	LDA.js [https://github.com/primaryobjects/lda] - LDA topic modeling for node.js


	Learning.js [https://github.com/yandongliu/learningjs] - Javascript implementation of logistic regression/c4.5 decision tree


	Machine Learning [http://joonku.com/project/machine_learning] - Machine learning library for Node.js


	machineJS [https://github.com/ClimbsRocks/machineJS] - Automated machine learning, data formatting, ensembling, and hyperparameter optimization for competitions and exploration- just give it a .csv file!


	mil-tokyo [https://github.com/mil-tokyo] - List of several machine learning libraries


	Node-SVM [https://github.com/nicolaspanel/node-svm] - Support Vector Machine for nodejs


	Brain [https://github.com/harthur/brain] - Neural networks in JavaScript [Deprecated]


	Bayesian-Bandit [https://github.com/omphalos/bayesian-bandit.js] - Bayesian bandit implementation for Node and the browser.


	Synaptic [https://github.com/cazala/synaptic] - Architecture-free neural network library for node.js and the browser


	kNear [https://github.com/NathanEpstein/kNear] - JavaScript implementation of the k nearest neighbors algorithm for supervised learning


	NeuralN [https://github.com/totemstech/neuraln] - C++ Neural Network library for Node.js. It has advantage on large dataset and multi-threaded training.


	kalman [https://github.com/itamarwe/kalman] - Kalman filter for Javascript.


	shaman [https://github.com/luccastera/shaman] - node.js library with support for both simple and multiple linear regression.


	ml.js [https://github.com/mljs/ml] - Machine learning and numerical analysis tools for Node.js and the Browser!


	Pavlov.js [https://github.com/NathanEpstein/Pavlov.js] - Reinforcement learning using Markov Decision Processes


	MXNet [https://github.com/dmlc/mxnet] - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.




Misc


	sylvester [https://github.com/jcoglan/sylvester] - Vector and Matrix math for JavaScript.


	simple-statistics [https://github.com/simple-statistics/simple-statistics)-AJavaScriptimplementationofdescriptive,regression,andinferencestatistics.ImplementedinliterateJavaScriptwithnodependencies,designedtoworkinallmodernbrowsers(includingIE] as well as in node.js.


	regression-js [https://github.com/Tom-Alexander/regression-js] - A javascript library containing a collection of least squares fitting methods for finding a trend in a set of data.


	Lyric [https://github.com/flurry/Lyric] - Linear Regression library.


	GreatCircle [https://github.com/mwgg/GreatCircle] - Library for calculating great circle distance.







Julia

General-Purpose Machine Learning


	MachineLearning [https://github.com/benhamner/MachineLearning.jl] - Julia Machine Learning library


	MLBase [https://github.com/JuliaStats/MLBase.jl] - A set of functions to support the development of machine learning algorithms


	PGM [https://github.com/JuliaStats/PGM.jl] - A Julia framework for probabilistic graphical models.


	DA [https://github.com/trthatcher/DiscriminantAnalysis.jl] - Julia package for Regularized Discriminant Analysis


	Regression [https://github.com/lindahua/Regression.jl)-Algorithmsforregressionanalysis(e.g.linearregressionandlogisticregression]


	Local Regression [https://github.com/JuliaStats/Loess.jl] - Local regression, so smooooth!


	Naive Bayes [https://github.com/nutsiepully/NaiveBayes.jl] - Simple Naive Bayes implementation in Julia


	Mixed Models [https://github.com/dmbates/MixedModels.jl)-AJuliapackageforfitting(statistical] mixed-effects models


	Simple MCMC [https://github.com/fredo-dedup/SimpleMCMC.jl] - basic mcmc sampler implemented in Julia


	Distance [https://github.com/JuliaStats/Distance.jl] - Julia module for Distance evaluation


	Decision Tree [https://github.com/bensadeghi/DecisionTree.jl] - Decision Tree Classifier and Regressor


	Neural [https://github.com/compressed/BackpropNeuralNet.jl] - A neural network in Julia


	MCMC [https://github.com/doobwa/MCMC.jl] - MCMC tools for Julia


	Mamba [https://github.com/brian-j-smith/Mamba.jl)-MarkovchainMonteCarlo(MCMC] for Bayesian analysis in Julia


	GLM [https://github.com/JuliaStats/GLM.jl] - Generalized linear models in Julia


	Online Learning [https://github.com/lendle/OnlineLearning.jl]


	GLMNet [https://github.com/simonster/GLMNet.jl] - Julia wrapper for fitting Lasso/ElasticNet GLM models using glmnet


	Clustering [https://github.com/JuliaStats/Clustering.jl] - Basic functions for clustering data: k-means, dp-means, etc.


	SVM [https://github.com/JuliaStats/SVM.jl] - SVM’s for Julia


	Kernal Density [https://github.com/JuliaStats/KernelDensity.jl] - Kernel density estimators for julia


	Dimensionality Reduction [https://github.com/JuliaStats/DimensionalityReduction.jl] - Methods for dimensionality reduction


	NMF [https://github.com/JuliaStats/NMF.jl] - A Julia package for non-negative matrix factorization


	ANN [https://github.com/EricChiang/ANN.jl] - Julia artificial neural networks


	Mocha [https://github.com/pluskid/Mocha.jl] - Deep Learning framework for Julia inspired by Caffe


	XGBoost [https://github.com/dmlc/XGBoost.jl] - eXtreme Gradient Boosting Package in Julia


	ManifoldLearning [https://github.com/wildart/ManifoldLearning.jl] - A Julia package for manifold learning and nonlinear dimensionality reduction


	MXNet [https://github.com/dmlc/mxnet] - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.


	Merlin [https://github.com/hshindo/Merlin.jl] - Flexible Deep Learning Framework in Julia


	ROCAnalysis [https://github.com/davidavdav/ROCAnalysis.jl] - Receiver Operating Characteristics and functions for evaluation probabilistic binary classifiers


	GaussianMixtures [https://github.com/davidavdav/GaussianMixtures.jl] - Large scale Gaussian Mixture Models


	ScikitLearn [https://github.com/cstjean/ScikitLearn.jl] - Julia implementation of the scikit-learn API


	Knet [https://github.com/denizyuret/Knet.jl] - Koç University Deep Learning Framework




Natural Language Processing


	Topic Models [https://github.com/slycoder/TopicModels.jl] - TopicModels for Julia


	Text Analysis [https://github.com/johnmyleswhite/TextAnalysis.jl] - Julia package for text analysis




Data Analysis / Data Visualization


	Graph Layout [https://github.com/IainNZ/GraphLayout.jl] - Graph layout algorithms in pure Julia


	Data Frames Meta [https://github.com/JuliaStats/DataFramesMeta.jl] - Metaprogramming tools for DataFrames


	Julia Data [https://github.com/nfoti/JuliaData] - library for working with tabular data in Julia


	Data Read [https://github.com/WizardMac/ReadStat.jl] - Read files from Stata, SAS, and SPSS


	Hypothesis Tests [https://github.com/JuliaStats/HypothesisTests.jl] - Hypothesis tests for Julia


	Gadfly [https://github.com/GiovineItalia/Gadfly.jl] - Crafty statistical graphics for Julia.


	Stats [https://github.com/JuliaStats/Stats.jl] - Statistical tests for Julia


	RDataSets [https://github.com/johnmyleswhite/RDatasets.jl] - Julia package for loading many of the data sets available in R


	DataFrames [https://github.com/JuliaStats/DataFrames.jl] - library for working with tabular data in Julia


	Distributions [https://github.com/JuliaStats/Distributions.jl] - A Julia package for probability distributions and associated functions.


	Data Arrays [https://github.com/JuliaStats/DataArrays.jl] - Data structures that allow missing values


	Time Series [https://github.com/JuliaStats/TimeSeries.jl] - Time series toolkit for Julia


	Sampling [https://github.com/lindahua/Sampling.jl] - Basic sampling algorithms for Julia




Misc Stuff / Presentations


	DSP [https://github.com/JuliaDSP/DSP.jl)-DigitalSignalProcessing(filtering,periodograms,spectrograms,windowfunctions].


	JuliaCon Presentations [https://github.com/JuliaCon/presentations] - Presentations for JuliaCon


	SignalProcessing [https://github.com/davidavdav/SignalProcessing.jl] - Signal Processing tools for Julia


	Images [https://github.com/JuliaImages/Images.jl] - An image library for Julia







Lua

General-Purpose Machine Learning


	Torch7 [http://torch.ch/]


	cephes [https://github.com/deepmind/torch-cephes] - Cephes mathematical functions library, wrapped for Torch. Provides and wraps the 180+ special mathematical functions from the Cephes mathematical library, developed by Stephen L. Moshier. It is used, among many other places, at the heart of SciPy.


	autograd [https://github.com/twitter/torch-autograd] - Autograd automatically differentiates native Torch code. Inspired by the original Python version.


	graph [https://github.com/torch/graph] - Graph package for Torch


	randomkit [https://github.com/deepmind/torch-randomkit] - Numpy’s randomkit, wrapped for Torch


	signal [http://soumith.ch/torch-signal/signal/] - A signal processing toolbox for Torch-7. FFT, DCT, Hilbert, cepstrums, stft


	nn [https://github.com/torch/nn] - Neural Network package for Torch


	torchnet [https://github.com/torchnet/torchnet] - framework for torch which provides a set of abstractions aiming at encouraging code re-use as well as encouraging modular programming


	nngraph [https://github.com/torch/nngraph] - This package provides graphical computation for nn library in Torch7.


	nnx [https://github.com/clementfarabet/lua---nnx] - A completely unstable and experimental package that extends Torch’s builtin nn library


	rnn [https://github.com/Element-Research/rnn] - A Recurrent Neural Network library that extends Torch’s nn. RNNs, LSTMs, GRUs, BRNNs, BLSTMs, etc.


	dpnn [https://github.com/Element-Research/dpnn] - Many useful features that aren’t part of the main nn package.


	dp [https://github.com/nicholas-leonard/dp] - A deep learning library designed for streamlining research and development using the Torch7 distribution. It emphasizes flexibility through the elegant use of object-oriented design patterns.


	optim [https://github.com/torch/optim] - An optimization library for Torch. SGD, Adagrad, Conjugate-Gradient, LBFGS, RProp and more.


	unsup [https://github.com/koraykv/unsup)-ApackageforunsupervisedlearninginTorch.Providesmodulesthatarecompatiblewithnn(LinearPsd,ConvPsd,AutoEncoder,...),andself-containedalgorithms(k-means,PCA].


	manifold [https://github.com/clementfarabet/manifold] - A package to manipulate manifolds


	svm [https://github.com/koraykv/torch-svm] - Torch-SVM library


	lbfgs [https://github.com/clementfarabet/lbfgs] - FFI Wrapper for liblbfgs


	vowpalwabbit [https://github.com/clementfarabet/vowpal_wabbit] - An old vowpalwabbit interface to torch.


	OpenGM [https://github.com/clementfarabet/lua---opengm] - OpenGM is a C++ library for graphical modeling, and inference. The Lua bindings provide a simple way of describing graphs, from Lua, and then optimizing them with OpenGM.


	sphagetti [https://github.com/MichaelMathieu/lua---spaghetti)-Spaghetti(sparselinear] module for torch7 by @MichaelMathieu


	LuaSHKit [https://github.com/ocallaco/LuaSHkit] - A lua wrapper around the Locality sensitive hashing library SHKit


	kernel smoothing [https://github.com/rlowrance/kernel-smoothers] - KNN, kernel-weighted average, local linear regression smoothers


	cutorch [https://github.com/torch/cutorch] - Torch CUDA Implementation


	cunn [https://github.com/torch/cunn] - Torch CUDA Neural Network Implementation


	imgraph [https://github.com/clementfarabet/lua---imgraph] - An image/graph library for Torch. This package provides routines to construct graphs on images, segment them, build trees out of them, and convert them back to images.


	videograph [https://github.com/clementfarabet/videograph] - A video/graph library for Torch. This package provides routines to construct graphs on videos, segment them, build trees out of them, and convert them back to videos.


	saliency [https://github.com/marcoscoffier/torch-saliency] - code and tools around integral images. A library for finding interest points based on fast integral histograms.


	stitch [https://github.com/marcoscoffier/lua---stitch] - allows us to use hugin to stitch images and apply same stitching to a video sequence


	sfm [https://github.com/marcoscoffier/lua---sfm] - A bundle adjustment/structure from motion package


	fex [https://github.com/koraykv/fex] - A package for feature extraction in Torch. Provides SIFT and dSIFT modules.


	OverFeat [https://github.com/sermanet/OverFeat] - A state-of-the-art generic dense feature extractor


	Numeric Lua [http://numlua.luaforge.net/]


	Lunatic Python [http://labix.org/lunatic-python]


	SciLua [http://scilua.org/]


	Lua - Numerical Algorithms [https://bitbucket.org/lucashnegri/lna]


	Lunum [https://github.com/jzrake/lunum]




Demos and Scripts


	Core torch7 demos repository [https://github.com/e-lab/torch7-demos].
* linear-regression, logistic-regression
* face detector (training and detection as separate demos)
* mst-based-segmenter
* train-a-digit-classifier
* train-autoencoder
* optical flow demo
* train-on-housenumbers
* train-on-cifar
* tracking with deep nets
* kinect demo
* filter-bank visualization
* saliency-networks


	Training a Convnet for the Galaxy-Zoo Kaggle challenge(CUDA demo) [https://github.com/soumith/galaxyzoo]


	Music Tagging [https://github.com/mbhenaff/MusicTagging] - Music Tagging scripts for torch7


	torch-datasets [https://github.com/rosejn/torch-datasets] - Scripts to load several popular datasets including:
* BSR 500
* CIFAR-10
* COIL
* Street View House Numbers
* MNIST
* NORB


	Atari2600 [https://github.com/fidlej/aledataset] - Scripts to generate a dataset with static frames from the Arcade Learning Environment







Matlab

Computer Vision


	Contourlets [http://www.ifp.illinois.edu/~minhdo/software/contourlet_toolbox.tar] - MATLAB source code that implements the contourlet transform and its utility functions.


	Shearlets [http://www.shearlab.org/software] - MATLAB code for shearlet transform


	Curvelets [http://www.curvelet.org/software.html] - The Curvelet transform is a higher dimensional generalization of the Wavelet transform designed to represent images at different scales and different angles.


	Bandlets [http://www.cmap.polytechnique.fr/~peyre/download/] - MATLAB code for bandlet transform


	mexopencv [http://kyamagu.github.io/mexopencv/] - Collection and a development kit of MATLAB mex functions for OpenCV library




Natural Language Processing


	NLP [https://amplab.cs.berkeley.edu/an-nlp-library-for-matlab/] - An NLP library for Matlab




General-Purpose Machine Learning


	Training a deep autoencoder or a classifier on MNIST [http://www.cs.toronto.edu/~hinton/MatlabForSciencePaper.html]


	Convolutional-Recursive Deep Learning for 3D Object Classification [http://www.socher.org/index.php/Main/Convolutional-RecursiveDeepLearningFor3DObjectClassification] - Convolutional-Recursive Deep Learning for 3D Object Classification[DEEP LEARNING]


	t-Distributed Stochastic Neighbor Embedding [http://homepage.tudelft.nl/19j49/t-SNE.html)-t-DistributedStochasticNeighborEmbedding(t-SNE)isa(prize-winning] technique for dimensionality reduction that is particularly well suited for the visualization of high-dimensional datasets.


	Spider [http://people.kyb.tuebingen.mpg.de/spider/] - The spider is intended to be a complete object orientated environment for machine learning in Matlab.


	LibSVM [http://www.csie.ntu.edu.tw/~cjlin/libsvm/#matlab] - A Library for Support Vector Machines


	LibLinear [http://www.csie.ntu.edu.tw/~cjlin/liblinear/#download] - A Library for Large Linear Classification


	Machine Learning Module [https://github.com/josephmisiti/machine-learning-module] - Class on machine w/ PDF,lectures,code


	Caffe [http://caffe.berkeleyvision.org]  - A deep learning framework developed with cleanliness, readability, and speed in mind.


	Pattern Recognition Toolbox [https://github.com/covartech/PRT]  - A complete object-oriented environment for machine learning in Matlab.


	Pattern Recognition and Machine Learning [https://github.com/PRML/PRMLT] - This package contains the matlab implementation of the algorithms described in the book Pattern Recognition and Machine Learning by C. Bishop.


	Optunity [http://optunity.readthedocs.io/en/latest/] - A library dedicated to automated hyperparameter optimization with a simple, lightweight API to facilitate drop-in replacement of grid search. Optunity is written in Python but interfaces seamlessly with MATLAB.




Data Analysis / Data Visualization


	matlab_gbl [https://www.cs.purdue.edu/homes/dgleich/packages/matlab_bgl/] - MatlabBGL is a Matlab package for working with graphs.


	gamic [http://www.mathworks.com/matlabcentral/fileexchange/24134-gaimc---graph-algorithms-in-matlab-code] - Efficient pure-Matlab implementations of graph algorithms to complement MatlabBGL’s mex functions.







.NET

Computer Vision


	OpenCVDotNet [https://code.google.com/archive/p/opencvdotnet] - A wrapper for the OpenCV project to be used with .NET applications.


	Emgu CV [http://www.emgu.com/wiki/index.php/Main_Page] - Cross platform wrapper of OpenCV which can be compiled in Mono to e run on Windows, Linus, Mac OS X, iOS, and Android.


	AForge.NET [http://www.aforgenet.com/framework/] - Open source C# framework for developers and researchers in the fields of Computer Vision and Artificial Intelligence. Development has now shifted to GitHub.


	Accord.NET [http://accord-framework.net] - Together with AForge.NET, this library can provide image processing and computer vision algorithms to Windows, Windows RT and Windows Phone. Some components are also available for Java and Android.




Natural Language Processing


	Stanford.NLP for .NET [https://github.com/sergey-tihon/Stanford.NLP.NET/] - A full port of Stanford NLP packages to .NET and also available precompiled as a NuGet package.




General-Purpose Machine Learning


	Accord-Framework [http://accord-framework.net/] -The Accord.NET Framework is a complete framework for building machine learning, computer vision, computer audition, signal processing and statistical applications.


	Accord.MachineLearning [http://www.nuget.org/packages/Accord.MachineLearning/] - Support Vector Machines, Decision Trees, Naive Bayesian models, K-means, Gaussian Mixture models and general algorithms such as Ransac, Cross-validation and Grid-Search for machine-learning applications. This package is part of the Accord.NET Framework.


	DiffSharp [http://diffsharp.github.io/DiffSharp/)-Anautomaticdifferentiation(AD)libraryprovidingexactandefficientderivatives(gradients,Hessians,Jacobians,directionalderivatives,andmatrix-freeHessian-andJacobian-vectorproducts] for machine learning and optimization applications. Operations can be nested to any level, meaning that you can compute exact higher-order derivatives and differentiate functions that are internally making use of differentiation, for applications such as hyperparameter optimization.


	Vulpes [https://github.com/fsprojects/Vulpes] - Deep belief and deep learning implementation written in F# and leverages CUDA GPU execution with Alea.cuBase.


	Encog [http://www.nuget.org/packages/encog-dotnet-core/] -  An advanced neural network and machine learning framework. Encog contains classes to create a wide variety of networks, as well as support classes to normalize and process data for these neural networks. Encog trains using multithreaded resilient propagation. Encog can also make use of a GPU to further speed processing time. A GUI based workbench is also provided to help model and train neural networks.


	Neural Network Designer [http://bragisoft.com/] - DBMS management system and designer for neural networks. The designer application is developed using WPF, and is a user interface which allows you to design your neural network, query the network, create and configure chat bots that are capable of asking questions and learning from your feed back.  The chat bots can even scrape the internet for information to return in their output as well as to use for learning.


	Infer.NET [http://infernet.azurewebsites.net/] - Infer.NET is a framework for running Bayesian inference in graphical models. One can use Infer.NET to solve many different kinds of machine learning problems, from standard problems like classification, recommendation or clustering through to customised solutions to domain-specific problems. Infer.NET has been used in a wide variety of domains including information retrieval, bioinformatics, epidemiology, vision, and many others.




Data Analysis / Data Visualization


	numl [http://www.nuget.org/packages/numl/] - numl is a machine learning library intended to ease the use of using standard modeling techniques for both prediction and clustering.


	Math.NET Numerics [http://www.nuget.org/packages/MathNet.Numerics/] - Numerical foundation of the Math.NET project, aiming to provide methods and algorithms for numerical computations in science, engineering and every day use. Supports .Net 4.0, .Net 3.5 and Mono on Windows, Linux and Mac; Silverlight 5, WindowsPhone/SL 8, WindowsPhone 8.1 and Windows 8 with PCL Portable Profiles 47 and 344; Android/iOS with Xamarin.


	Sho [https://www.microsoft.com/en-us/research/project/sho-the-net-playground-for-data/?from=http%3A%2F%2Fresearch.microsoft.com%2Fen-us%2Fprojects%2Fsho%2F)-Shoisaninteractiveenvironmentfordataanalysisandscientificcomputingthatletsyouseamlesslyconnectscripts(inIronPython)withcompiledcode(in.NET] to enable fast and flexible prototyping. The environment includes powerful and efficient libraries for linear algebra as well as data visualization that can be used from any .NET language, as well as a feature-rich interactive shell for rapid development.







Objective C

General-Purpose Machine Learning


	YCML [https://github.com/yconst/YCML)-AMachineLearningframeworkforObjective-CandSwift(OSX/iOS].


	MLPNeuralNet [https://github.com/nikolaypavlov/MLPNeuralNet] - Fast multilayer perceptron neural network library for iOS and Mac OS X. MLPNeuralNet predicts new examples by trained neural network. It is built on top of the Apple’s Accelerate Framework, using vectorized operations and hardware acceleration if available.


	MAChineLearning [https://github.com/gianlucabertani/MAChineLearning] - An Objective-C multilayer perceptron library, with full support for training through backpropagation. Implemented using vDSP and vecLib, it’s 20 times faster than its Java equivalent. Includes sample code for use from Swift.


	BPN-NeuralNetwork [https://github.com/Kalvar/ios-BPN-NeuralNetwork)-Itimplemented3layersneuralnetwork(InputLayer,HiddenLayerandOutputLayer)anditnamedBackPropagationNeuralNetwork(BPN]. This network can be used in products recommendation, user behavior analysis, data mining and data analysis.


	Multi-Perceptron-NeuralNetwork [https://github.com/Kalvar/ios-Multi-Perceptron-NeuralNetwork)-itimplementedmulti-perceptronsneuralnetwork(ニューラルネットワーク)basedonBackPropagationNeuralNetwork(BPN] and designed unlimited-hidden-layers.


	KRHebbian-Algorithm [https://github.com/Kalvar/ios-KRHebbian-Algorithm)-Itisanon-supervisorandself-learningalgorithm(adjusttheweights] in neural network of Machine Learning.


	KRKmeans-Algorithm [https://github.com/Kalvar/ios-KRKmeans-Algorithm] - It implemented K-Means the clustering and classification algorithm. It could be used in data mining and image compression.


	KRFuzzyCMeans-Algorithm [https://github.com/Kalvar/ios-KRFuzzyCMeans-Algorithm)-ItimplementedFuzzyC-Means(FCM] the fuzzy clustering / classification algorithm on Machine Learning. It could be used in data mining and image compression.







OCaml

General-Purpose Machine Learning


	Oml [https://github.com/hammerlab/oml/] - A general statistics and machine learning library.


	GPR [http://mmottl.github.io/gpr/] - Efficient Gaussian Process Regression in OCaml.


	Libra-Tk [http://libra.cs.uoregon.edu] - Algorithms for learning and inference with discrete probabilistic models.


	TensorFlow [https://github.com/LaurentMazare/tensorflow-ocaml] - OCaml bindings for TensorFlow.







PHP

Natural Language Processing


	jieba-php [https://github.com/fukuball/jieba-php] - Chinese Words Segmentation Utilities.




General-Purpose Machine Learning


	PHP-ML [https://github.com/php-ai/php-ml] - Machine Learning library for PHP. Algorithms, Cross Validation, Neural Network, Preprocessing, Feature Extraction and much more in one library.


	PredictionBuilder [https://github.com/denissimon/prediction-builder] - A library for machine learning that builds predictions using a linear regression.







Python

Computer Vision


	Scikit-Image [https://github.com/scikit-image/scikit-image] - A collection of algorithms for image processing in Python.


	SimpleCV [http://simplecv.org/] - An open source computer vision framework that gives access to several high-powered computer vision libraries, such as OpenCV. Written on Python and runs on Mac, Windows, and Ubuntu Linux.


	Vigranumpy [https://github.com/ukoethe/vigra] - Python bindings for the VIGRA C++ computer vision library.


	OpenFace [https://cmusatyalab.github.io/openface/] - Free and open source face recognition with deep neural networks.


	PCV [https://github.com/jesolem/PCV] - Open source Python module for computer vision




Natural Language Processing


	NLTK [http://www.nltk.org/] - A leading platform for building Python programs to work with human language data.


	Pattern [http://www.clips.ua.ac.be/pattern] - A web mining module for the Python programming language. It has tools for natural language processing, machine learning, among others.


	Quepy [https://github.com/machinalis/quepy] - A python framework to transform natural language questions to queries in a database query language


	TextBlob [http://textblob.readthedocs.io/en/dev/)-ProvidingaconsistentAPIfordivingintocommonnaturallanguageprocessing(NLP] tasks. Stands on the giant shoulders of NLTK and Pattern, and plays nicely with both.


	YAlign [https://github.com/machinalis/yalign] - A sentence aligner, a friendly tool for extracting parallel sentences from comparable corpora.


	jieba [https://github.com/fxsjy/jieba#jieba-1] - Chinese Words Segmentation Utilities.


	SnowNLP [https://github.com/isnowfy/snownlp] - A library for processing Chinese text.


	spammy [https://github.com/prodicus/spammy] - A library for email Spam filtering built on top of nltk


	loso [https://github.com/victorlin/loso] - Another Chinese segmentation library.


	genius [https://github.com/duanhongyi/genius] - A Chinese segment base on Conditional Random Field.


	KoNLPy [http://konlpy.org] - A Python package for Korean natural language processing.


	nut [https://github.com/pprett/nut] - Natural language Understanding Toolkit


	Rosetta [https://github.com/columbia-applied-data-science/rosetta)-Textprocessingtoolsandwrappers(e.g.VowpalWabbit]


	BLLIP Parser [https://pypi.python.org/pypi/bllipparser/)-PythonbindingsfortheBLLIPNaturalLanguageParser(alsoknownastheCharniak-Johnsonparser]


	PyNLPl](https://github.com/proycon/pynlpl) - Python Natural Language Processing Library. General purpose NLP library for Python. Also contains some specific modules for parsing common NLP formats, most notably for [FoLiA [http://proycon.github.io/folia/], but also ARPA language models, Moses phrasetables, GIZA++ alignments.


	python-ucto [https://github.com/proycon/python-ucto)-Pythonbindingtoucto(aunicode-awarerule-basedtokenizerforvariouslanguages]


	python-frog [https://github.com/proycon/python-frog)-PythonbindingtoFrog,anNLPsuiteforDutch.(postagging,lemmatisation,dependencyparsing,NER]


	python-zpar](https://github.com/EducationalTestingService/python-zpar) - Python bindings for [ZPar [https://github.com/frcchang/zpar], a statistical part-of-speech-tagger, constiuency parser, and dependency parser for English.


	colibri-core [https://github.com/proycon/colibri-core] - Python binding to C++ library for extracting and working with with basic linguistic constructions such as n-grams and skipgrams in a quick and memory-efficient way.


	spaCy [https://github.com/honnibal/spaCy/] - Industrial strength NLP with Python and Cython.


	PyStanfordDependencies [https://github.com/dmcc/PyStanfordDependencies] - Python interface for converting Penn Treebank trees to Stanford Dependencies.


	Distance [https://github.com/doukremt/distance] - Levenshtein and Hamming distance computation


	Fuzzy Wuzzy [https://github.com/seatgeek/fuzzywuzzy] - Fuzzy String Matching in Python


	jellyfish [https://github.com/jamesturk/jellyfish] - a python library for doing approximate and phonetic matching of strings.


	editdistance [https://pypi.python.org/pypi/editdistance] - fast implementation of edit distance


	textacy [https://github.com/chartbeat-labs/textacy] - higher-level NLP built on Spacy


	stanford-corenlp-python](https://github.com/dasmith/stanford-corenlp-python) - Python wrapper for [Stanford CoreNLP [https://github.com/stanfordnlp/CoreNLP]




General-Purpose Machine Learning


	auto_ml [https://github.com/ClimbsRocks/auto_ml] - Automated machine learning for production and analytics. Lets you focus on the fun parts of ML, while outputting production-ready code, and detailed analytics of your dataset and results. Includes support for NLP, XGBoost, LightGBM, and soon, deep learning.


	machine learning](https://github.com/jeff1evesque/machine-learning) - automated build consisting of a [web-interface](https://github.com/jeff1evesque/machine-learning#web-interface), and set of [programmatic-interface [https://github.com/jeff1evesque/machine-learning#programmatic-interface)API,forsupportvectormachines.Correspondingdataset(s)arestoredintoaSQLdatabase,thengeneratedmodel(s)usedforprediction(s], are stored into a NoSQL datastore.


	XGBoost [https://github.com/dmlc/xgboost)-PythonbindingsforeXtremeGradientBoosting(Tree] Library


	Bayesian Methods for Hackers [https://github.com/CamDavidsonPilon/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers] - Book/iPython notebooks on Probabilistic Programming in Python


	Featureforge [https://github.com/machinalis/featureforge] A set of tools for creating and testing machine learning features, with a scikit-learn compatible API


	MLlib in Apache Spark [http://spark.apache.org/docs/latest/mllib-guide.html] - Distributed machine learning library in Spark


	Hydrosphere Mist [https://github.com/Hydrospheredata/mist] - a service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.


	scikit-learn [http://scikit-learn.org/] - A Python module for machine learning built on top of SciPy.


	metric-learn [https://github.com/all-umass/metric-learn] - A Python module for metric learning.


	SimpleAI [https://github.com/simpleai-team/simpleai] Python implementation of many of the artificial intelligence algorithms described on the book «Artificial Intelligence, a Modern Approach». It focuses on providing an easy to use, well documented and tested library.


	astroML [http://www.astroml.org/] - Machine Learning and Data Mining for Astronomy.


	graphlab-create [https://turi.com/products/create/docs/)-Alibrarywithvariousmachinelearningmodels(regression,clustering,recommendersystems,graphanalytics,etc.] implemented on top of a disk-backed DataFrame.


	BigML [https://bigml.com] - A library that contacts external servers.


	pattern [https://github.com/clips/pattern] - Web mining module for Python.


	NuPIC [https://github.com/numenta/nupic] - Numenta Platform for Intelligent Computing.


	Pylearn2](https://github.com/lisa-lab/pylearn2) - A Machine Learning library based on [Theano [https://github.com/Theano/Theano].


	keras](https://github.com/fchollet/keras) - Modular neural network library based on [Theano [https://github.com/Theano/Theano].


	Lasagne [https://github.com/Lasagne/Lasagne] - Lightweight library to build and train neural networks in Theano.


	hebel [https://github.com/hannes-brt/hebel] - GPU-Accelerated Deep Learning Library in Python.


	Chainer [https://github.com/pfnet/chainer] - Flexible neural network framework


	prohpet [https://facebookincubator.github.io/prophet] - Fast and automated time series forecasting framework by Facebook.


	gensim [https://github.com/RaRe-Technologies/gensim] - Topic Modelling for Humans.


	topik [https://github.com/ContinuumIO/topik] - Topic modelling toolkit


	PyBrain [https://github.com/pybrain/pybrain] - Another Python Machine Learning Library.


	Brainstorm [https://github.com/IDSIA/brainstorm] - Fast, flexible and fun neural networks. This is the successor of PyBrain.


	Crab [https://github.com/muricoca/crab] - A ﬂexible, fast recommender engine.


	python-recsys [https://github.com/ocelma/python-recsys] - A Python library for implementing a Recommender System.


	thinking bayes [https://github.com/AllenDowney/ThinkBayes] - Book on Bayesian Analysis


	Image-to-Image Translation with Conditional Adversarial Networks](https://github.com/williamFalcon/pix2pix-keras) - Implementation of image to image (pix2pix) translation from the paper by [isola et al [https://arxiv.org/pdf/1611.07004.pdf].[DEEP LEARNING]


	Restricted Boltzmann Machines [https://github.com/echen/restricted-boltzmann-machines] -Restricted Boltzmann Machines in Python. [DEEP LEARNING]


	Bolt [https://github.com/pprett/bolt] - Bolt Online Learning Toolbox


	CoverTree [https://github.com/patvarilly/CoverTree] - Python implementation of cover trees, near-drop-in replacement for scipy.spatial.kdtree


	nilearn [https://github.com/nilearn/nilearn] - Machine learning for NeuroImaging in Python


	imbalanced-learn [http://contrib.scikit-learn.org/imbalanced-learn/] - Python module to perform under sampling and over sampling with various techniques.


	Shogun [https://github.com/shogun-toolbox/shogun] - The Shogun Machine Learning Toolbox


	Pyevolve [https://github.com/perone/Pyevolve] - Genetic algorithm framework.


	Caffe [http://caffe.berkeleyvision.org]  - A deep learning framework developed with cleanliness, readability, and speed in mind.


	breze [https://github.com/breze-no-salt/breze] - Theano based library for deep and recurrent neural networks


	pyhsmm [https://github.com/mattjj/pyhsmm)-libraryforapproximateunsupervisedinferenceinBayesianHiddenMarkovModels(HMMs)andexplicit-durationHiddensemi-MarkovModels(HSMMs], focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations.


	mrjob [https://pythonhosted.org/mrjob/] - A library to let Python program run on Hadoop.


	SKLL [https://github.com/EducationalTestingService/skll] - A wrapper around scikit-learn that makes it simpler to conduct experiments.


	neurolab [https://github.com/zueve/neurolab] - https://github.com/zueve/neurolab


	Spearmint [https://github.com/JasperSnoek/spearmint] - Spearmint is a package to perform Bayesian optimization according to the algorithms outlined in the paper: Practical Bayesian Optimization of Machine Learning Algorithms. Jasper Snoek, Hugo Larochelle and Ryan P. Adams. Advances in Neural Information Processing Systems, 2012.


	Pebl [https://github.com/abhik/pebl/] - Python Environment for Bayesian Learning


	Theano [https://github.com/Theano/Theano/] - Optimizing GPU-meta-programming code generating array oriented optimizing math compiler in Python


	TensorFlow [https://github.com/tensorflow/tensorflow/] - Open source software library for numerical computation using data flow graphs


	yahmm [https://github.com/jmschrei/yahmm/] - Hidden Markov Models for Python, implemented in Cython for speed and efficiency.


	python-timbl [https://github.com/proycon/python-timbl] - A Python extension module wrapping the full TiMBL C++ programming interface. Timbl is an elaborate k-Nearest Neighbours machine learning toolkit.


	deap [https://github.com/deap/deap] - Evolutionary algorithm framework.


	pydeep [https://github.com/andersbll/deeppy] - Deep Learning In Python


	mlxtend [https://github.com/rasbt/mlxtend] - A library consisting of useful tools for data science and machine learning tasks.


	neon](https://github.com/NervanaSystems/neon) - Nervana’s [high-performance [https://github.com/soumith/convnet-benchmarks] Python-based Deep Learning framework [DEEP LEARNING]


	Optunity [http://optunity.readthedocs.io/en/latest/] - A library dedicated to automated hyperparameter optimization with a simple, lightweight API to facilitate drop-in replacement of grid search.


	Neural Networks and Deep Learning [https://github.com/mnielsen/neural-networks-and-deep-learning] - Code samples for my book «Neural Networks and Deep Learning» [DEEP LEARNING]


	Annoy [https://github.com/spotify/annoy] - Approximate nearest neighbours implementation


	skflow [https://github.com/tensorflow/skflow] - Simplified interface for TensorFlow, mimicking Scikit Learn.


	TPOT [https://github.com/rhiever/tpot] - Tool that automatically creates and optimizes machine learning pipelines using genetic programming. Consider it your personal data science assistant, automating a tedious part of machine learning.


	pgmpy [https://github.com/pgmpy/pgmpy] A python library for working with Probabilistic Graphical Models.


	DIGITS [https://github.com/NVIDIA/DIGITS)-TheDeepLearningGPUTrainingSystem(DIGITS] is a web application for training deep learning models.


	Orange [http://orange.biolab.si/] - Open source data visualization and data analysis for novices and experts.


	MXNet [https://github.com/dmlc/mxnet] - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.


	milk [https://github.com/luispedro/milk] - Machine learning toolkit focused on supervised classification.


	TFLearn [https://github.com/tflearn/tflearn] - Deep learning library featuring a higher-level API for TensorFlow.


	REP [https://github.com/yandex/rep] - an IPython-based environment for conducting data-driven research in a consistent and reproducible way. REP is not trying to substitute scikit-learn, but extends it and provides better user experience.


	rgf_python [https://github.com/fukatani/rgf_python)-PythonbindingsforRegularizedGreedyForest(Tree] Library.


	gym [https://github.com/openai/gym] - OpenAI Gym is a toolkit for developing and comparing reinforcement learning algorithms.


	skbayes [https://github.com/AmazaspShumik/sklearn-bayes] - Python package for Bayesian Machine Learning with scikit-learn API


	fuku-ml [https://github.com/fukuball/fuku-ml] - Simple machine learning library, including Perceptron, Regression, Support Vector Machine, Decision Tree and more, it’s easy to use and easy to learn for beginners.




Data Analysis / Data Visualization


	SciPy [http://www.scipy.org/] - A Python-based ecosystem of open-source software for mathematics, science, and engineering.


	NumPy [http://www.numpy.org/] - A fundamental package for scientific computing with Python.


	Numba [http://numba.pydata.org/)-PythonJIT(justintime] complier to LLVM aimed at scientific Python by the developers of Cython and NumPy.


	NetworkX [https://networkx.github.io/] - A high-productivity software for complex networks.


	igraph [http://igraph.org/python/] - binding to igraph library - General purpose graph library


	Pandas [http://pandas.pydata.org/] - A library providing high-performance, easy-to-use data structures and data analysis tools.


	Open Mining [https://github.com/mining/mining)-BusinessIntelligence(BI)inPython(Pandaswebinterface]


	PyMC [https://github.com/pymc-devs/pymc] - Markov Chain Monte Carlo sampling toolkit.


	zipline [https://github.com/quantopian/zipline] - A Pythonic algorithmic trading library.


	PyDy [http://www.pydy.org/] - Short for Python Dynamics, used to assist with workflow in the modeling of dynamic motion based around NumPy, SciPy, IPython, and matplotlib.


	SymPy [https://github.com/sympy/sympy] - A Python library for symbolic mathematics.


	statsmodels [https://github.com/statsmodels/statsmodels] - Statistical modeling and econometrics in Python.


	astropy [http://www.astropy.org/] - A community Python library for Astronomy.


	matplotlib [http://matplotlib.org/] - A Python 2D plotting library.


	bokeh [https://github.com/bokeh/bokeh] - Interactive Web Plotting for Python.


	plotly [https://plot.ly/python/] - Collaborative web plotting for Python and matplotlib.


	vincent [https://github.com/wrobstory/vincent] - A Python to Vega translator.


	d3py](https://github.com/mikedewar/d3py) - A plotting library for Python, based on [D3.js [https://d3js.org/].


	PyDexter [https://github.com/D3xterjs/pydexter] - Simple plotting for Python. Wrapper for D3xterjs; easily render charts in-browser.


	ggplot [https://github.com/yhat/ggpy] - Same API as ggplot2 for R.


	ggfortify [https://github.com/sinhrks/ggfortify] - Unified interface to ggplot2 popular R packages.


	Kartograph.py [https://github.com/kartograph/kartograph.py] - Rendering beautiful SVG maps in Python.


	pygal [http://pygal.org/en/stable/] - A Python SVG Charts Creator.


	PyQtGraph [https://github.com/pyqtgraph/pyqtgraph] - A pure-python graphics and GUI library built on PyQt4 / PySide and NumPy.


	pycascading [https://github.com/twitter/pycascading]


	Petrel [https://github.com/AirSage/Petrel] - Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python.


	Blaze [https://github.com/blaze/blaze] - NumPy and Pandas interface to Big Data.


	emcee [https://github.com/dfm/emcee] - The Python ensemble sampling toolkit for affine-invariant MCMC.


	windML [http://www.windml.org] - A Python Framework for Wind Energy Analysis and Prediction


	vispy [https://github.com/vispy/vispy] - GPU-based high-performance interactive OpenGL 2D/3D data visualization library


	cerebro2 [https://github.com/numenta/nupic.cerebro2] A web-based visualization and debugging platform for NuPIC.


	NuPIC Studio [https://github.com/htm-community/nupic.studio] An all-in-one NuPIC Hierarchical Temporal Memory visualization and debugging super-tool!


	SparklingPandas [https://github.com/sparklingpandas/sparklingpandas)PandasonPySpark(POPS]


	Seaborn [http://seaborn.pydata.org/] - A python visualization library based on matplotlib


	bqplot [https://github.com/bloomberg/bqplot)-AnAPIforplottinginJupyter(IPython]


	pastalog [https://github.com/rewonc/pastalog] - Simple, realtime visualization of neural network training performance.


	caravel [https://github.com/airbnb/superset] - A data exploration platform designed to be visual, intuitive, and interactive.


	Dora [https://github.com/nathanepstein/dora] - Tools for exploratory data analysis in Python.


	Ruffus [http://www.ruffus.org.uk] - Computation Pipeline library for python.


	SOMPY [https://github.com/sevamoo/SOMPY)-SelfOrganizingMapwritteninPython(Usesneuralnetworksfordataanalysis].


	somoclu [https://github.com/peterwittek/somoclu] Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters, has python API.


	HDBScan [https://github.com/lmcinnes/hdbscan] - implementation of the hdbscan algorithm in Python - used for clustering


	visualize_ML [https://github.com/ayush1997/visualize_ML] - A python package for data exploration and data analysis.


	scikit-plot [https://github.com/reiinakano/scikit-plot] - A visualization library for quick and easy generation of common plots in data analysis and machine learning.




Neural networks


	Neural networks [https://github.com/karpathy/neuraltalk] - NeuralTalk is a Python+numpy project for learning Multimodal Recurrent Neural Networks that describe images with sentences.


	Neuron [https://github.com/molcik/python-neuron)-Neuronissimpleclassfortimeseriespredictions.It'sutilizeLNU(LinearNeuralUnit),QNU(QuadraticNeuralUnit),RBF(RadialBasisFunction),MLP(MultiLayerPerceptron),MLP-ELM(MultiLayerPerceptron-ExtremeLearningMachine] neural networks learned with Gradient descent or LeLevenberg–Marquardt algorithm.


	Data Driven Code [https://github.com/atmb4u/data-driven-code] - Very simple implementation of neural networks for dummies in python without using any libraries, with detailed comments.







Ruby

Natural Language Processing


	Treat [https://github.com/louismullie/treat] -  Text REtrieval and Annotation Toolkit, definitely the most comprehensive toolkit I’ve encountered so far for Ruby


	Ruby Linguistics [https://deveiate.org/projects/Linguistics] -  Linguistics is a framework for building linguistic utilities for Ruby objects in any language. It includes a generic language-independent front end, a module for mapping language codes into language names, and a module which contains various English-language utilities.


	Stemmer [https://github.com/aurelian/ruby-stemmer] - Expose libstemmer_c to Ruby


	Ruby Wordnet [https://deveiate.org/projects/Ruby-WordNet/] - This library is a Ruby interface to WordNet


	Raspel [https://sourceforge.net/projects/raspell/] - raspell is an interface binding for ruby


	UEA Stemmer [https://github.com/ealdent/uea-stemmer] - Ruby port of UEALite Stemmer - a conservative stemmer for search and indexing


	Twitter-text-rb [https://github.com/twitter/twitter-text-rb] - A library that does auto linking and extraction of usernames, lists and hashtags in tweets




General-Purpose Machine Learning


	Ruby Machine Learning [https://github.com/tsycho/ruby-machine-learning] - Some Machine Learning algorithms, implemented in Ruby


	Machine Learning Ruby [https://github.com/mizoR/machine-learning-ruby]


	jRuby Mahout [https://github.com/vasinov/jruby_mahout] - JRuby Mahout is a gem that unleashes the power of Apache Mahout in the world of JRuby.


	CardMagic-Classifier [https://github.com/cardmagic/classifier] - A general classifier module to allow Bayesian and other types of classifications.


	rb-libsvm [https://github.com/febeling/rb-libsvm] - Ruby language bindings for LIBSVM which is a Library for Support Vector Machines


	Random Forester [https://github.com/asafschers/random_forester] - Creates Random Forest classifiers from PMML files




Data Analysis / Data Visualization


	rsruby [https://github.com/alexgutteridge/rsruby] - Ruby - R bridge


	data-visualization-ruby [https://github.com/chrislo/data_visualisation_ruby] - Source code and supporting content for my Ruby Manor presentation on Data Visualisation with Ruby


	ruby-plot [https://www.ruby-toolbox.com/projects/ruby-plot] - gnuplot wrapper for ruby, especially for plotting roc curves into svg files


	plot-rb [https://github.com/zuhao/plotrb] - A plotting library in Ruby built on top of Vega and D3.


	scruffy [http://www.rubyinside.com/scruffy-a-beautiful-graphing-toolkit-for-ruby-194.html] - A beautiful graphing toolkit for Ruby


	SciRuby [http://sciruby.com/]


	Glean [https://github.com/glean/glean] - A data management tool for humans


	Bioruby [https://github.com/bioruby/bioruby]


	Arel [https://github.com/nkallen/arel]




Misc


	Big Data For Chimps [https://github.com/infochimps-labs/big_data_for_chimps]


	Listof](https://github.com/kevincobain2000/listof) - Community based data collection, packed in gem. Get list of pretty much anything (stop words, countries, non words) in txt, json or hash. [Demo/Search for a list [http://kevincobain2000.github.io/listof/]







Rust

General-Purpose Machine Learning


	deeplearn-rs [https://github.com/tedsta/deeplearn-rs] - deeplearn-rs provides simple networks that use matrix multiplication, addition, and ReLU under the MIT license.


	rustlearn [https://github.com/maciejkula/rustlearn] - a machine learning framework featuring logistic regression, support vector machines, decision trees and random forests.


	rusty-machine [https://github.com/AtheMathmo/rusty-machine] - a pure-rust machine learning library.


	leaf](https://github.com/autumnai/leaf) - open source framework for machine intelligence, sharing concepts from TensorFlow and Caffe.  Available under the MIT license. [**[Deprecated]** [https://medium.com/@mjhirn/tensorflow-wins-89b78b29aafb#.s0a3uy4cc]


	RustNN [https://github.com/jackm321/RustNN] - RustNN is a feedforward neural network library.







R

General-Purpose Machine Learning


	ahaz [http://cran.r-project.org/web/packages/ahaz/index.html] - ahaz: Regularization for semiparametric additive hazards regression


	arules [http://cran.r-project.org/web/packages/arules/index.html] - arules: Mining Association Rules and Frequent Itemsets


	biglasso [https://cran.r-project.org/web/packages/biglasso/index.html] - biglasso: Extending Lasso Model Fitting to Big Data in R


	bigrf [http://cran.r-project.org/web/packages/bigrf/index.html] - bigrf: Big Random Forests: Classification and Regression Forests for Large Data Sets


	`bigRR <http://cran.r-project.org/web/packages/bigRR/index.html) - bigRR: Generalized Ridge Regression (with special advantage for p >> n cases>`__


	bmrm [http://cran.r-project.org/web/packages/bmrm/index.html] - bmrm: Bundle Methods for Regularized Risk Minimization Package


	Boruta [http://cran.r-project.org/web/packages/Boruta/index.html] - Boruta: A wrapper algorithm for all-relevant feature selection


	bst [http://cran.r-project.org/web/packages/bst/index.html] - bst: Gradient Boosting


	C50 [http://cran.r-project.org/web/packages/C50/index.html] - C50: C5.0 Decision Trees and Rule-Based Models


	caret [http://caret.r-forge.r-project.org/] - Classification and Regression Training: Unified interface to ~150 ML algorithms in R.


	caretEnsemble [http://cran.r-project.org/web/packages/caretEnsemble/index.html] - caretEnsemble: Framework for fitting multiple caret models as well as creating ensembles of such models.


	Clever Algorithms For Machine Learning [https://github.com/jbrownlee/CleverAlgorithmsMachineLearning]


	CORElearn [http://cran.r-project.org/web/packages/CORElearn/index.html] - CORElearn: Classification, regression, feature evaluation and ordinal evaluation


	CoxBoost [http://cran.r-project.org/web/packages/CoxBoost/index.html] - CoxBoost: Cox models by likelihood based boosting for a single survival endpoint or competing risks


	Cubist [http://cran.r-project.org/web/packages/Cubist/index.html] - Cubist: Rule- and Instance-Based Regression Modeling


	e1071 [http://cran.r-project.org/web/packages/e1071/index.html)-e1071:MiscFunctionsoftheDepartmentofStatistics(e1071], TU Wien


	earth [http://cran.r-project.org/web/packages/earth/index.html] - earth: Multivariate Adaptive Regression Spline Models


	elasticnet [http://cran.r-project.org/web/packages/elasticnet/index.html] - elasticnet: Elastic-Net for Sparse Estimation and Sparse PCA


	ElemStatLearn [http://cran.r-project.org/web/packages/ElemStatLearn/index.html] - ElemStatLearn: Data sets, functions and examples from the book: «The Elements of Statistical Learning, Data Mining, Inference, and Prediction» by Trevor Hastie, Robert Tibshirani and Jerome Friedman Prediction» by Trevor Hastie, Robert Tibshirani and Jerome Friedman


	evtree [http://cran.r-project.org/web/packages/evtree/index.html] - evtree: Evolutionary Learning of Globally Optimal Trees


	forecast [http://cran.r-project.org/web/packages/forecast/index.html] - forecast: Timeseries forecasting using ARIMA, ETS, STLM, TBATS, and neural network models


	forecastHybrid [http://cran.r-project.org/web/packages/forecastHybrid/index.html] - forecastHybrid: Automatic ensemble and cross validation of ARIMA, ETS, STLM, TBATS, and neural network models from the «forecast» package


	fpc [http://cran.r-project.org/web/packages/fpc/index.html] - fpc: Flexible procedures for clustering


	frbs [http://cran.r-project.org/web/packages/frbs/index.html] - frbs: Fuzzy Rule-based Systems for Classification and Regression Tasks


	GAMBoost [http://cran.r-project.org/web/packages/GAMBoost/index.html] - GAMBoost: Generalized linear and additive models by likelihood based boosting


	gamboostLSS [http://cran.r-project.org/web/packages/gamboostLSS/index.html] - gamboostLSS: Boosting Methods for GAMLSS


	gbm [http://cran.r-project.org/web/packages/gbm/index.html] - gbm: Generalized Boosted Regression Models


	glmnet [http://cran.r-project.org/web/packages/glmnet/index.html] - glmnet: Lasso and elastic-net regularized generalized linear models


	glmpath [http://cran.r-project.org/web/packages/glmpath/index.html] - glmpath: L1 Regularization Path for Generalized Linear Models and Cox Proportional Hazards Model


	GMMBoost [http://cran.r-project.org/web/packages/GMMBoost/index.html] - GMMBoost: Likelihood-based Boosting for Generalized mixed models


	grplasso [http://cran.r-project.org/web/packages/grplasso/index.html] - grplasso: Fitting user specified models with Group Lasso penalty


	grpreg [http://cran.r-project.org/web/packages/grpreg/index.html] - grpreg: Regularization paths for regression models with grouped covariates


	h2o [http://cran.r-project.org/web/packages/h2o/index.html] - A framework for fast, parallel, and distributed machine learning algorithms at scale – Deeplearning, Random forests, GBM, KMeans, PCA, GLM


	hda [http://cran.r-project.org/web/packages/hda/index.html] - hda: Heteroscedastic Discriminant Analysis


	Introduction to Statistical Learning [http://www-bcf.usc.edu/~gareth/ISL/]


	ipred [http://cran.r-project.org/web/packages/ipred/index.html] - ipred: Improved Predictors


	kernlab [http://cran.r-project.org/web/packages/kernlab/index.html] - kernlab: Kernel-based Machine Learning Lab


	klaR [http://cran.r-project.org/web/packages/klaR/index.html] - klaR: Classification and visualization


	lars [http://cran.r-project.org/web/packages/lars/index.html] - lars: Least Angle Regression, Lasso and Forward Stagewise


	lasso2 [http://cran.r-project.org/web/packages/lasso2/index.html] - lasso2: L1 constrained estimation aka ‘lasso’


	LiblineaR [http://cran.r-project.org/web/packages/LiblineaR/index.html] - LiblineaR: Linear Predictive Models Based On The Liblinear C/C++ Library


	LogicReg [http://cran.r-project.org/web/packages/LogicReg/index.html] - LogicReg: Logic Regression


	Machine Learning For Hackers [https://github.com/johnmyleswhite/ML_for_Hackers]


	maptree [http://cran.r-project.org/web/packages/maptree/index.html] - maptree: Mapping, pruning, and graphing tree models


	mboost [http://cran.r-project.org/web/packages/mboost/index.html] - mboost: Model-Based Boosting


	medley [https://www.kaggle.com/forums/f/15/kaggle-forum/t/3661/medley-a-new-r-package-for-blending-regression-models?forumMessageId=21278] - medley: Blending regression models, using a greedy stepwise approach


	mlr [http://cran.r-project.org/web/packages/mlr/index.html] - mlr: Machine Learning in R


	mvpart [http://cran.r-project.org/web/packages/mvpart/index.html] - mvpart: Multivariate partitioning


	ncvreg [http://cran.r-project.org/web/packages/ncvreg/index.html] - ncvreg: Regularization paths for SCAD- and MCP-penalized regression models


	nnet [http://cran.r-project.org/web/packages/nnet/index.html] - nnet: Feed-forward Neural Networks and Multinomial Log-Linear Models


	oblique.tree [http://cran.r-project.org/web/packages/oblique.tree/index.html] - oblique.tree: Oblique Trees for Classification Data


	pamr [http://cran.r-project.org/web/packages/pamr/index.html] - pamr: Pam: prediction analysis for microarrays


	party [http://cran.r-project.org/web/packages/party/index.html] - party: A Laboratory for Recursive Partytioning


	partykit [http://cran.r-project.org/web/packages/partykit/index.html] - partykit: A Toolkit for Recursive Partytioning


	penalized [http://cran.r-project.org/web/packages/penalized/index.html)-penalized:L1(lassoandfusedlasso)andL2(ridge] penalized estimation in GLMs and in the Cox model


	penalizedLDA [http://cran.r-project.org/web/packages/penalizedLDA/index.html] - penalizedLDA: Penalized classification using Fisher’s linear discriminant


	penalizedSVM [http://cran.r-project.org/web/packages/penalizedSVM/index.html] - penalizedSVM: Feature Selection SVM using penalty functions


	quantregForest [http://cran.r-project.org/web/packages/quantregForest/index.html] - quantregForest: Quantile Regression Forests


	randomForest [http://cran.r-project.org/web/packages/randomForest/index.html] - randomForest: Breiman and Cutler’s random forests for classification and regression


	randomForestSRC [http://cran.r-project.org/web/packages/randomForestSRC/index.html)-randomForestSRC:RandomForestsforSurvival,RegressionandClassification(RF-SRC]


	rattle [http://cran.r-project.org/web/packages/rattle/index.html] - rattle: Graphical user interface for data mining in R


	rda [http://cran.r-project.org/web/packages/rda/index.html] - rda: Shrunken Centroids Regularized Discriminant Analysis


	rdetools [http://cran.r-project.org/web/packages/rdetools/index.html)-rdetools:RelevantDimensionEstimation(RDE] in Feature Spaces


	REEMtree [http://cran.r-project.org/web/packages/REEMtree/index.html)-REEMtree:RegressionTreeswithRandomEffectsforLongitudinal(Panel] Data


	relaxo [http://cran.r-project.org/web/packages/relaxo/index.html] - relaxo: Relaxed Lasso


	rgenoud [http://cran.r-project.org/web/packages/rgenoud/index.html] - rgenoud: R version of GENetic Optimization Using Derivatives


	rgp [http://cran.r-project.org/web/packages/rgp/index.html] - rgp: R genetic programming framework


	Rmalschains [http://cran.r-project.org/web/packages/Rmalschains/index.html)-Rmalschains:ContinuousOptimizationusingMemeticAlgorithmswithLocalSearchChains(MA-LS-Chains] in R


	rminer [http://cran.r-project.org/web/packages/rminer/index.html)-rminer:Simpleruseofdataminingmethods(e.g.NNandSVM] in classification and regression


	ROCR [http://cran.r-project.org/web/packages/ROCR/index.html] - ROCR: Visualizing the performance of scoring classifiers


	RoughSets [http://cran.r-project.org/web/packages/RoughSets/index.html] - RoughSets: Data Analysis Using Rough Set and Fuzzy Rough Set Theories


	rpart [http://cran.r-project.org/web/packages/rpart/index.html] - rpart: Recursive Partitioning and Regression Trees


	RPMM [http://cran.r-project.org/web/packages/RPMM/index.html] - RPMM: Recursively Partitioned Mixture Model


	RSNNS [http://cran.r-project.org/web/packages/RSNNS/index.html)-RSNNS:NeuralNetworksinRusingtheStuttgartNeuralNetworkSimulator(SNNS]


	RWeka [http://cran.r-project.org/web/packages/RWeka/index.html] - RWeka: R/Weka interface


	RXshrink [http://cran.r-project.org/web/packages/RXshrink/index.html] - RXshrink: Maximum Likelihood Shrinkage via Generalized Ridge or Least Angle Regression


	sda [http://cran.r-project.org/web/packages/sda/index.html] - sda: Shrinkage Discriminant Analysis and CAT Score Variable Selection


	SDDA [http://cran.r-project.org/web/packages/SDDA/index.html] - SDDA: Stepwise Diagonal Discriminant Analysis


	SuperLearner](https://github.com/ecpolley/SuperLearner) and [subsemble [http://cran.r-project.org/web/packages/subsemble/index.html] - Multi-algorithm ensemble learning packages.


	svmpath [http://cran.r-project.org/web/packages/svmpath/index.html] - svmpath: svmpath: the SVM Path algorithm


	tgp [http://cran.r-project.org/web/packages/tgp/index.html] - tgp: Bayesian treed Gaussian process models


	tree [http://cran.r-project.org/web/packages/tree/index.html] - tree: Classification and regression trees


	varSelRF [http://cran.r-project.org/web/packages/varSelRF/index.html] - varSelRF: Variable selection using random forests


	XGBoost.R [https://github.com/tqchen/xgboost/tree/master/R-package)-RbindingforeXtremeGradientBoosting(Tree] Library


	Optunity [http://optunity.readthedocs.io/en/latest/] - A library dedicated to automated hyperparameter optimization with a simple, lightweight API to facilitate drop-in replacement of grid search. Optunity is written in Python but interfaces seamlessly to R.


	igraph [http://igraph.org/r/] - binding to igraph library - General purpose graph library


	MXNet [https://github.com/dmlc/mxnet] - Lightweight, Portable, Flexible Distributed/Mobile Deep Learning with Dynamic, Mutation-aware Dataflow Dep Scheduler; for Python, R, Julia, Go, Javascript and more.


	TDSP-Utilities [https://github.com/Azure/Azure-TDSP-Utilities)-TwodatascienceutilitiesinRfromMicrosoft:1)InteractiveDataExploration,Analysis,andReporting(IDEAR);2)AutomatedModelingandReporting(AMR].




Data Analysis / Data Visualization


	ggplot2 [http://ggplot2.org/] - A data visualization package based on the grammar of graphics.







SAS

General-Purpose Machine Learning


	Enterprise Miner [https://www.sas.com/en_us/software/enterprise-miner.html] - Data mining and machine learning that creates deployable models using a GUI or code.


	Factory Miner [https://www.sas.com/en_us/software/factory-miner.html] - Automatically creates deployable machine learning models across numerous market or customer segments using a GUI.




Data Analysis / Data Visualization


	SAS/STAT [https://www.sas.com/en_us/software/analytics/stat.html] - For conducting advanced statistical analysis.


	University Edition [https://www.sas.com/en_us/software/university-edition.html] - FREE! Includes all SAS packages necessary for data analysis and visualization, and includes online SAS courses.




High Performance Machine Learning


	High Performance Data Mining [https://www.sas.com/en_us/software/analytics/high-performance-data-mining.html] - Data mining and machine learning that creates deployable models using a GUI or code in an MPP environment, including Hadoop.


	High Performance Text Mining [https://www.sas.com/en_us/software/analytics/high-performance-text-mining.html] - Text mining using a GUI or code in an MPP environment, including Hadoop.




Natural Language Processing


	Contextual Analysis [https://www.sas.com/en_us/software/analytics/contextual-analysis.html] - Add structure to unstructured text using a GUI.


	Sentiment Analysis [https://www.sas.com/en_us/software/analytics/sentiment-analysis.html] - Extract sentiment from text using a GUI.


	Text Miner [https://www.sas.com/en_us/software/analytics/text-miner.html] - Text mining using a GUI or code.




Demos and Scripts


	ML_Tables [https://github.com/sassoftware/enlighten-apply/tree/master/ML_tables] - Concise cheat sheets containing machine learning best practices.


	enlighten-apply [https://github.com/sassoftware/enlighten-apply] - Example code and materials that illustrate applications of SAS machine learning techniques.


	enlighten-integration [https://github.com/sassoftware/enlighten-integration] - Example code and materials that illustrate techniques for integrating SAS with other analytics technologies in Java, PMML, Python and R.


	enlighten-deep [https://github.com/sassoftware/enlighten-deep] - Example code and materials that illustrate using neural networks with several hidden layers in SAS.


	dm-flow [https://github.com/sassoftware/dm-flow] - Library of SAS Enterprise Miner process flow diagrams to help you learn by example about specific data mining topics.







Scala

Natural Language Processing


	ScalaNLP [http://www.scalanlp.org/] - ScalaNLP is a suite of machine learning and numerical computing libraries.


	Breeze [https://github.com/scalanlp/breeze] - Breeze is a numerical processing library for Scala.


	Chalk [https://github.com/scalanlp/chalk] - Chalk is a natural language processing library.


	FACTORIE [https://github.com/factorie/factorie] - FACTORIE is a toolkit for deployable probabilistic modeling, implemented as a software library in Scala. It provides its users with a succinct language for creating relational factor graphs, estimating parameters and performing inference.




Data Analysis / Data Visualization


	MLlib in Apache Spark [http://spark.apache.org/docs/latest/mllib-guide.html] - Distributed machine learning library in Spark


	Hydrosphere Mist [https://github.com/Hydrospheredata/mist] - a service for deployment Apache Spark MLLib machine learning models as realtime, batch or reactive web services.


	Scalding [https://github.com/twitter/scalding] - A Scala API for Cascading


	Summing Bird [https://github.com/twitter/summingbird] - Streaming MapReduce with Scalding and Storm


	Algebird [https://github.com/twitter/algebird] - Abstract Algebra for Scala


	xerial [https://github.com/xerial/xerial] - Data management utilities for Scala


	simmer [https://github.com/avibryant/simmer] - Reduce your data. A unix filter for algebird-powered aggregation.


	PredictionIO [https://github.com/apache/incubator-predictionio] - PredictionIO, a machine learning server for software developers and data engineers.


	BIDMat [https://github.com/BIDData/BIDMat] - CPU and GPU-accelerated matrix library intended to support large-scale exploratory data analysis.


	Wolfe [http://www.wolfe.ml/] Declarative Machine Learning


	Flink [http://flink.apache.org/] - Open source platform for distributed stream and batch data processing.


	Spark Notebook [http://spark-notebook.io] - Interactive and Reactive Data Science using Scala and Spark.




General-Purpose Machine Learning


	Conjecture [https://github.com/etsy/Conjecture] - Scalable Machine Learning in Scalding


	brushfire [https://github.com/stripe/brushfire] - Distributed decision tree ensemble learning in Scala


	ganitha [https://github.com/tresata/ganitha] - scalding powered machine learning


	adam [https://github.com/bigdatagenomics/adam] - A genomics processing engine and specialized file format built using Apache Avro, Apache Spark and Parquet. Apache 2 licensed.


	bioscala [https://github.com/bioscala/bioscala] - Bioinformatics for the Scala programming language


	BIDMach [https://github.com/BIDData/BIDMach] - CPU and GPU-accelerated Machine Learning Library.


	Figaro [https://github.com/p2t2/figaro] - a Scala library for constructing probabilistic models.


	H2O Sparkling Water [https://github.com/h2oai/sparkling-water] - H2O and Spark interoperability.


	FlinkML in Apache Flink [https://ci.apache.org/projects/flink/flink-docs-master/apis/batch/libs/ml/index.html] - Distributed machine learning library in Flink


	DynaML [https://github.com/transcendent-ai-labs/DynaML] - Scala Library/REPL for Machine Learning Research


	Saul [https://github.com/IllinoisCogComp/saul/] - Flexible Declarative Learning-Based Programming.


	SwiftLearner [https://github.com/valdanylchuk/swiftlearner/] - Simply written algorithms to help study ML or write your own implementations.







Swift

General-Purpose Machine Learning


	Swift AI [https://github.com/collinhundley/Swift-AI] - Highly optimized artificial intelligence and machine learning library written in Swift.


	BrainCore [https://github.com/aleph7/BrainCore] - The iOS and OS X neural network framework


	swix [https://github.com/stsievert/swix] - A bare bones library that
includes a general matrix language and wraps some OpenCV for iOS development.


	DeepLearningKit [http://deeplearningkit.org/] an Open Source Deep Learning Framework for Apple’s iOS, OS X and tvOS.
It currently allows using deep convolutional neural network models trained in Caffe on Apple operating systems.


	AIToolbox [https://github.com/KevinCoble/AIToolbox] - A toolbox framework of AI modules written in Swift:  Graphs/Trees, Linear Regression, Support Vector Machines, Neural Networks, PCA, KMeans, Genetic Algorithms, MDP, Mixture of Gaussians.


	MLKit [https://github.com/Somnibyte/MLKit] - A simple Machine Learning Framework written in Swift. Currently features Simple Linear Regression, Polynomial Regression, and Ridge Regression.


	Swift Brain [https://github.com/vlall/Swift-Brain] - The first neural network / machine learning library written in Swift. This is a project for AI algorithms in Swift for iOS and OS X development. This project includes algorithms focused on Bayes theorem, neural networks, SVMs, Matrices, etc..










          

      

      

    

  

    
      
          
            
  
Papers



	Machine Learning


	Deep Learning


	Understanding


	Optimization / Training Techniques


	Unsupervised / Generative Models


	Image Segmentation / Object Detection


	Image / Video


	Natural Language Processing


	Speech / Other


	Reinforcement Learning


	New papers


	Classic Papers











Machine Learning

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Deep Learning

Forked from terryum’s awesome deep learning papers [https://github.com/terryum/awesome-deep-learning-papers].


Understanding


	Distilling the knowledge in a neural network (2015), G. Hinton et al. [pdf] [http://arxiv.org/1503.02531]


	Deep neural networks are easily fooled: High confidence predictions for unrecognizable images (2015), A. Nguyen et al. [pdf] [http://arxiv.org/1412.1897]


	How transferable are features in deep neural networks? (2014), J. Yosinski et al. [pdf] [http://papers.nips.cc/paper/5347-how-transferable-are-features-in-deep-neural-networks.pdf]


	CNN features off-the-Shelf: An astounding baseline for recognition (2014), A. Razavian et al. [pdf] [http://www.cv-foundation.org//openaccess/content_cvpr_workshops_2014/W15/papers/Razavian_CNN_Features_Off-the-Shelf_2014_CVPR_paper.pdf]


	Learning and transferring mid-Level image representations using convolutional neural networks (2014), M. Oquab et al. [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Oquab_Learning_and_Transferring_2014_CVPR_paper.pdf]


	Visualizing and understanding convolutional networks (2014), M. Zeiler and R. Fergus [pdf] [http://arxiv.org/1311.2901]


	Decaf: A deep convolutional activation feature for generic visual recognition (2014), J. Donahue et al. [pdf] [http://arxiv.org/1310.1531]







Optimization / Training Techniques


	Batch normalization: Accelerating deep network training by reducing internal covariate shift (2015), S. Loffe and C. Szegedy [pdf] [http://arxiv.org/1502.03167]


	Delving deep into rectifiers: Surpassing human-level performance on imagenet classification (2015), K. He et al. [pdf] [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/He_Delving_Deep_into_ICCV_2015_paper.pdf]


	Dropout: A simple way to prevent neural networks from overfitting (2014), N. Srivastava et al. [pdf] [http://jmlr.org/papers/volume15/srivastava14a/srivastava14a.pdf]


	Adam: A method for stochastic optimization (2014), D. Kingma and J. Ba [pdf] [http://arxiv.org/1412.6980]


	Improving neural networks by preventing co-adaptation of feature detectors (2012), G. Hinton et al. [pdf] [http://arxiv.org/1207.0580.pdf]


	Random search for hyper-parameter optimization (2012) J. Bergstra and Y. Bengio [pdf] [http://www.jmlr.org/papers/volume13/bergstra12a/bergstra12a]







Unsupervised / Generative Models


	Pixel recurrent neural networks (2016), A. Oord et al. [pdf] [http://arxiv.org/1601.06759v2.pdf]


	Improved techniques for training GANs (2016), T. Salimans et al. [pdf] [http://papers.nips.cc/paper/6125-improved-techniques-for-training-gans.pdf]


	Unsupervised representation learning with deep convolutional generative adversarial networks (2015), A. Radford et al. [pdf] [https://arxiv.org/1511.06434v2]


	DRAW: A recurrent neural network for image generation (2015), K. Gregor et al. [pdf] [http://arxiv.org/1502.04623]


	Generative adversarial nets (2014), I. Goodfellow et al. [pdf] [http://papers.nips.cc/paper/5423-generative-adversarial-nets.pdf]


	Auto-encoding variational Bayes (2013), D. Kingma and M. Welling [pdf] [http://arxiv.org/1312.6114]


	Building high-level features using large scale unsupervised learning (2013), Q. Le et al. [pdf] [http://arxiv.org/1112.6209]







Image Segmentation / Object Detection


	You only look once: Unified, real-time object detection (2016), J. Redmon et al. [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Redmon_You_Only_Look_CVPR_2016_paper.pdf]


	Fully convolutional networks for semantic segmentation (2015), J. Long et al. [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Long_Fully_Convolutional_Networks_2015_CVPR_paper.pdf]


	Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks (2015), S. Ren et al. [pdf] [http://papers.nips.cc/paper/5638-faster-r-cnn-towards-real-time-object-detection-with-region-proposal-networks.pdf]


	Fast R-CNN (2015), R. Girshick [pdf] [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Girshick_Fast_R-CNN_ICCV_2015_paper.pdf]


	Rich feature hierarchies for accurate object detection and semantic segmentation (2014), R. Girshick et al. [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Girshick_Rich_Feature_Hierarchies_2014_CVPR_paper.pdf]


	Semantic image segmentation with deep convolutional nets and fully connected CRFs, L. Chen et al. [pdf] [https://arxiv.org/1412.7062]


	Learning hierarchical features for scene labeling (2013), C. Farabet et al. [pdf] [https://hal-enpc.archives-ouvertes.fr/docs/00/74/20/77/farabet-pami-13.pdf]







Image / Video


	Image Super-Resolution Using Deep Convolutional Networks (2016), C. Dong et al. [pdf] [https://arxiv.org/1501.00092v3.pdf]


	A neural algorithm of artistic style (2015), L. Gatys et al. [pdf] [https://arxiv.org/1508.06576]


	Deep visual-semantic alignments for generating image descriptions (2015), A. Karpathy and L. Fei-Fei [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf]


	Show, attend and tell: Neural image caption generation with visual attention (2015), K. Xu et al. [pdf] [http://arxiv.org/1502.03044]


	Show and tell: A neural image caption generator (2015), O. Vinyals et al. [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Vinyals_Show_and_Tell_2015_CVPR_paper.pdf]


	Long-term recurrent convolutional networks for visual recognition and description (2015), J. Donahue et al. [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Donahue_Long-Term_Recurrent_Convolutional_2015_CVPR_paper.pdf]


	VQA: Visual question answering (2015), S. Antol et al. [pdf] [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Antol_VQA_Visual_Question_ICCV_2015_paper.pdf]


	DeepFace: Closing the gap to human-level performance in face verification (2014), Y. Taigman et al. [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Taigman_DeepFace_Closing_the_2014_CVPR_paper.pdf]:


	Large-scale video classification with convolutional neural networks (2014), A. Karpathy et al. [pdf] [http://vision.stanford.edu/karpathy14.pdf]


	DeepPose: Human pose estimation via deep neural networks (2014), A. Toshev and C. Szegedy [pdf] [http://www.cv-foundation.org/openaccess/content_cvpr_2014/papers/Toshev_DeepPose_Human_Pose_2014_CVPR_paper.pdf]


	Two-stream convolutional networks for action recognition in videos (2014), K. Simonyan et al. [pdf] [http://papers.nips.cc/paper/5353-two-stream-convolutional-networks-for-action-recognition-in-videos.pdf]


	3D convolutional neural networks for human action recognition (2013), S. Ji et al. [pdf] [http://machinelearning.wustl.edu/mlpapers/paper_files/icml2010_JiXYY10.pdf]







Natural Language Processing


	Neural Architectures for Named Entity Recognition (2016), G. Lample et al. [pdf] [http://aclweb.org/anthology/N/N16/N16-1030.pdf]


	Exploring the limits of language modeling (2016), R. Jozefowicz et al. [pdf] [http://arxiv.org/1602.02410]


	Teaching machines to read and comprehend (2015), K. Hermann et al. [pdf] [http://papers.nips.cc/paper/5945-teaching-machines-to-read-and-comprehend.pdf]


	Effective approaches to attention-based neural machine translation (2015), M. Luong et al. [pdf] [https://arxiv.org/1508.04025]


	Conditional random fields as recurrent neural networks (2015), S. Zheng and S. Jayasumana. [pdf] [http://www.cv-foundation.org/openaccess/content_iccv_2015/papers/Zheng_Conditional_Random_Fields_ICCV_2015_paper.pdf]


	Memory networks (2014), J. Weston et al. [pdf] [https://arxiv.org/1410.3916]


	Neural turing machines (2014), A. Graves et al. [pdf] [https://arxiv.org/1410.5401]


	Neural machine translation by jointly learning to align and translate (2014), D. Bahdanau et al. [pdf] [http://arxiv.org/1409.0473]


	Sequence to sequence learning with neural networks (2014), I. Sutskever et al. [pdf] [http://papers.nips.cc/paper/5346-sequence-to-sequence-learning-with-neural-networks.pdf]


	Learning phrase representations using RNN encoder-decoder for statistical machine translation (2014), K. Cho et al. [pdf] [http://arxiv.org/1406.1078]


	A convolutional neural network for modeling sentences (2014), N. Kalchbrenner et al. [pdf] [http://arxiv.org/1404.2188v1]


	Convolutional neural networks for sentence classification (2014), Y. Kim [pdf] [http://arxiv.org/1408.5882]


	Glove: Global vectors for word representation (2014), J. Pennington et al. [pdf] [http://anthology.aclweb.org/D/D14/D14-1162.pdf]


	Distributed representations of sentences and documents (2014), Q. Le and T. Mikolov [pdf] [http://arxiv.org/1405.4053]


	Distributed representations of words and phrases and their compositionality (2013), T. Mikolov et al. [pdf] [http://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf]


	Efficient estimation of word representations in vector space (2013), T. Mikolov et al.  [pdf] [http://arxiv.org/1301.3781]


	Recursive deep models for semantic compositionality over a sentiment treebank (2013), R. Socher et al. [pdf] [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.383.1327&rep=rep1&type=pdf]


	Generating sequences with recurrent neural networks (2013), A. Graves. [pdf] [https://arxiv.org/1308.0850]







Speech / Other


	End-to-end attention-based large vocabulary speech recognition (2016), D. Bahdanau et al. [pdf] [https://arxiv.org/1508.04395]


	Deep speech 2: End-to-end speech recognition in English and Mandarin (2015), D. Amodei et al. [pdf] [https://arxiv.org/1512.02595]


	Speech recognition with deep recurrent neural networks (2013), A. Graves [pdf] [http://arxiv.org/1303.5778.pdf]


	Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups (2012), G. Hinton et al. [pdf] [http://www.cs.toronto.edu/~asamir/papers/SPM_DNN_12.pdf]


	Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition (2012) G. Dahl et al. [pdf] [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.337.7548&rep=rep1&type=pdf]


	Acoustic modeling using deep belief networks (2012), A. Mohamed et al. [pdf] [http://www.cs.toronto.edu/~asamir/papers/speechDBN_jrnl.pdf]







Reinforcement Learning


	End-to-end training of deep visuomotor policies (2016), S. Levine et al. [pdf] [http://www.jmlr.org/papers/volume17/15-522/source/15-522.pdf]


	Learning Hand-Eye Coordination for Robotic Grasping with Deep Learning and Large-Scale Data Collection (2016), S. Levine et al. [pdf] [https://arxiv.org/1603.02199]


	Asynchronous methods for deep reinforcement learning (2016), V. Mnih et al. [pdf] [http://www.jmlr.org/proceedings/papers/v48/mniha16.pdf]


	Deep Reinforcement Learning with Double Q-Learning (2016), H. Hasselt et al. [pdf] [https://arxiv.org/1509.06461.pdf]


	Mastering the game of Go with deep neural networks and tree search (2016), D. Silver et al. [pdf] [http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html]


	Continuous control with deep reinforcement learning (2015), T. Lillicrap et al. [pdf] [https://arxiv.org/1509.02971]


	Human-level control through deep reinforcement learning (2015), V. Mnih et al. [pdf] [http://www.davidqiu.com:8888/research/nature14236.pdf]


	Deep learning for detecting robotic grasps (2015), I. Lenz et al. [pdf] [http://www.cs.cornell.edu/~asaxena/papers/lenz_lee_saxena_deep_learning_grasping_ijrr2014.pdf]


	Playing atari with deep reinforcement learning (2013), V. Mnih et al. [pdf] [http://arxiv.org/1312.5602.pdf)]







New papers


	Deep Photo Style Transfer (2017), F. Luan et al. [pdf] [http://arxiv.org/1703.07511v1.pdf]


	Evolution Strategies as a Scalable Alternative to Reinforcement Learning (2017), T. Salimans et al. [pdf] [http://arxiv.org/1703.03864v1.pdf]


	Deformable Convolutional Networks (2017), J. Dai et al. [pdf] [http://arxiv.org/1703.06211v2.pdf]


	Mask R-CNN (2017), K. He et al. [pdf] [https://128.84.21.199/1703.06870]


	Learning to discover cross-domain relations with generative adversarial networks (2017), T. Kim et al. [pdf] [http://arxiv.org/1703.05192v1.pdf]


	Deep voice: Real-time neural text-to-speech (2017), S. Arik et al., [pdf] [http://arxiv.org/1702.07825v2.pdf]


	PixelNet: Representation of the pixels, by the pixels, and for the pixels (2017), A. Bansal et al. [pdf] [http://arxiv.org/1702.06506v1.pdf]


	Batch renormalization: Towards reducing minibatch dependence in batch-normalized models (2017), S. Ioffe. [pdf] [https://arxiv.org/abs/1702.03275]


	Wasserstein GAN (2017), M. Arjovsky et al. [pdf] [https://arxiv.org/1701.07875v1]


	Understanding deep learning requires rethinking generalization (2017), C. Zhang et al. [pdf] [https://arxiv.org/1611.03530]


	Least squares generative adversarial networks (2016), X. Mao et al. [pdf] [https://arxiv.org/abs/1611.04076v2]







Classic Papers


	An analysis of single-layer networks in unsupervised feature learning (2011), A. Coates et al. [pdf] [http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_CoatesNL11.pdf]


	Deep sparse rectifier neural networks (2011), X. Glorot et al. [pdf] [http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2011_GlorotBB11.pdf]


	Natural language processing (almost) from scratch (2011), R. Collobert et al. [pdf] [http://arxiv.org/1103.0398]


	Recurrent neural network based language model (2010), T. Mikolov et al. [pdf] [http://www.fit.vutbr.cz/research/groups/speech/servite/2010/rnnlm_mikolov.pdf]


	Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion (2010), P. Vincent et al. [pdf] [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.297.3484&rep=rep1&type=pdf]


	Learning mid-level features for recognition (2010), Y. Boureau [pdf] [http://ece.duke.edu/~lcarin/boureau-cvpr-10.pdf]


	A practical guide to training restricted boltzmann machines (2010), G. Hinton [pdf] [http://www.csri.utoronto.ca/~hinton/absps/guideTR.pdf]


	Understanding the difficulty of training deep feedforward neural networks (2010), X. Glorot and Y. Bengio [pdf] [http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_GlorotB10.pdf]


	Why does unsupervised pre-training help deep learning (2010), D. Erhan et al. [pdf] [http://machinelearning.wustl.edu/mlpapers/paper_files/AISTATS2010_ErhanCBV10.pdf]


	Learning deep architectures for AI (2009), Y. Bengio. [pdf] [http://sanghv.com/download/soft/machine%20learning,%20artificial%20intelligence,%20mathematics%20ebooks/ML/learning%20deep%20architectures%20for%20AI%20(2009).pdf]


	Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations (2009), H. Lee et al. [pdf] [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.149.802&rep=rep1&type=pdf]


	Greedy layer-wise training of deep networks (2007), Y. Bengio et al. [pdf] [http://machinelearning.wustl.edu/mlpapers/paper_files/NIPS2006_739.pdf]


	A fast learning algorithm for deep belief nets (2006), G. Hinton et al. [pdf] [http://nuyoo.utm.mx/~jjf/rna/A8%20A%20fast%20learning%20algorithm%20for%20deep%20belief%20nets.pdf]


	Gradient-based learning applied to document recognition (1998), Y. LeCun et al. [pdf] [http://yann.lecun.com/exdb/publis/lecun-01a.pdf]


	Long short-term memory (1997), S. Hochreiter and J. Schmidhuber. [pdf] [http://www.mitpressjournals.org/doi/pdfplus/10.1162/neco.1997.9.8.1735]












          

      

      

    

  

    
      
          
            
  
Other Content

Books, blogs, courses and more forked from josephmisiti’s awesome machine learning [https://github.com/josephmisiti/awesome-machine-learning]



	Blogs


	Data Science


	Machine learning


	Math






	Books


	Machine learning


	Deep learning


	Probability & Statistics


	Linear Algebra






	Courses


	Podcasts


	Tutorials







Blogs


Data Science


	https://jeremykun.com/


	http://iamtrask.github.io/


	http://blog.explainmydata.com/


	http://andrewgelman.com/


	http://simplystatistics.org/


	http://www.evanmiller.org/


	http://jakevdp.github.io/


	http://blog.yhat.com/


	http://wesmckinney.com


	http://www.overkillanalytics.net/


	http://newton.cx/~peter/


	http://mbakker7.github.io/exploratory_computing_with_python/


	https://sebastianraschka.com/blog/index.html


	http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/


	http://colah.github.io/


	http://www.thomasdimson.com/


	http://blog.smellthedata.com/


	https://sebastianraschka.com/


	http://dogdogfish.com/


	http://www.johnmyleswhite.com/


	http://drewconway.com/zia/


	http://bugra.github.io/


	http://opendata.cern.ch/


	https://alexanderetz.com/


	http://www.sumsar.net/


	https://www.countbayesie.com


	http://blog.kaggle.com/


	http://www.danvk.org/


	http://hunch.net/


	http://www.randalolson.com/blog/


	https://www.johndcook.com/blog/r_language_for_programmers/


	http://www.dataschool.io/







Machine learning


	OpenAI [https://www.openai.com/]


	Distill [http://distill.pub/]


	Andrej Karpathy Blog [http://karpathy.github.io/]


	Colah’s Blog [http://colah.github.io/]


	WildML [http://www.wildml.com/]


	FastML [http://www.fastml.com/]


	TheMorningPaper [https://blog.acolyer.org]







Math


	http://www.sumsar.net/


	http://allendowney.blogspot.ca/


	https://healthyalgorithms.com/


	https://petewarden.com/


	http://mrtz.org/blog/









Books


Machine learning


	Real World Machine Learning [https://www.manning.com/books/real-world-machine-learning] [Free Chapters]


	An Introduction To Statistical Learning [http://www-bcf.usc.edu/~gareth/ISL/] - Book + R Code


	Elements of Statistical Learning [http://statweb.stanford.edu/~tibs/ElemStatLearn/] - Book


	Probabilistic Programming & Bayesian Methods for Hackers [http://camdavidsonpilon.github.io/Probabilistic-Programming-and-Bayesian-Methods-for-Hackers/] - Book + IPython Notebooks


	Think Bayes [http://greenteapress.com/wp/think-bayes/] - Book + Python Code


	Information Theory, Inference, and Learning Algorithms [http://www.inference.phy.cam.ac.uk/mackay/itila/book.html]


	Gaussian Processes for Machine Learning [http://www.gaussianprocess.org/gpml/chapters/]


	Data Intensive Text Processing w/ MapReduce [http://lintool.github.io/MapReduceAlgorithms/]


	Reinforcement Learning: - An Introduction [http://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html]


	Mining Massive Datasets [http://infolab.stanford.edu/~ullman/mmds/book.pdf]


	A First Encounter with Machine Learning [https://www.ics.uci.edu/~welling/teaching/273ASpring10/IntroMLBook.pdf]


	Pattern Recognition and Machine Learning [http://users.isr.ist.utl.pt/~wurmd/Livros/school/Bishop%20-%20Pattern%20Recognition%20And%20Machine%20Learning%20-%20Springer%20%202006.pdf]


	Machine Learning & Bayesian Reasoning [http://web4.cs.ucl.ac.uk/staff/D.Barber/textbook/090310.pdf]


	Introduction to Machine Learning [http://alex.smola.org/drafts/thebook.pdf] - Alex Smola and S.V.N. Vishwanathan


	A Probabilistic Theory of Pattern Recognition [http://www.szit.bme.hu/~gyorfi/pbook.pdf]


	Introduction to Information Retrieval [http://nlp.stanford.edu/IR-book/pdf/irbookprint.pdf]


	Forecasting: principles and practice [https://www.otexts.org/fpp/]


	Practical Artificial Intelligence Programming in Java [http://www.markwatson.com/opencontent_data/JavaAI3rd.pdf]


	Introduction to Machine Learning [https://arxiv.org/pdf/0904.3664v1.pdf] - Amnon Shashua


	Reinforcement Learning [http://www.intechopen.com/books/reinforcement_learning]


	Machine Learning [http://www.intechopen.com/books/machine_learning]


	A Quest for AI [http://ai.stanford.edu/~nilsson/QAI/qai.pdf]


	Introduction to Applied Bayesian Statistics and Estimation for Social Scientists [http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.177.857&rep=rep1&type=pdf] - Scott M. Lynch


	Bayesian Modeling, Inference and Prediction [https://users.soe.ucsc.edu/~draper/draper-BMIP-dec2005.pdf]


	A Course in Machine Learning [http://ciml.info/]


	Machine Learning, Neural and Statistical Classification [http://www1.maths.leeds.ac.uk/~charles/statlog/]


	Bayesian Reasoning and Machine Learning [http://web4.cs.ucl.ac.uk/staff/D.Barber/pmwiki/pmwiki.php?n=Brml.HomePage] Book+MatlabToolBox


	R Programming for Data Science [https://leanpub.com/rprogramming]


	Data Mining - Practical Machine Learning Tools and Techniques [http://cs.du.edu/~mitchell/mario_books/Data_Mining:_Practical_Machine_Learning_Tools_and_Techniques_-_2e_-_Witten_&_Frank.pdf] Book







Deep learning


	Deep Learning - An MIT Press book [http://www.deeplearningbook.org/]


	Coursera Course Book on NLP [http://www.cs.columbia.edu/~mcollins/notes-spring2013.html]


	NLTK [http://www.nltk.org/book/]


	NLP w/ Python [http://victoria.lviv.ua/html/fl5/NaturalLanguageProcessingWithPython.pdf]


	Foundations of Statistical Natural Language Processing [http://nlp.stanford.edu/fsnlp/promo/]


	An Introduction to Information Retrieval [http://nlp.stanford.edu/IR-book/pdf/irbookonlinereading.pdf]


	A Brief Introduction to Neural Networks [http://www.dkriesel.com/_media/science/neuronalenetze-en-zeta2-2col-dkrieselcom.pdf]


	Neural Networks and Deep Learning [http://neuralnetworksanddeeplearning.com/]







Probability & Statistics


	Think Stats [http://www.greenteapress.com/thinkstats/] - Book + Python Code


	From Algorithms to Z-Scores [http://heather.cs.ucdavis.edu/probstatbook] - Book


	The Art of R Programming [http://heather.cs.ucdavis.edu/~matloff/132/NSPpart.pdf)-Book(NotFinished]


	Introduction to statistical thought [http://people.math.umass.edu/~lavine/Book/book.pdf]


	Basic Probability Theory [http://www.math.uiuc.edu/~r-ash/BPT/BPT.pdf]


	Introduction to probability [https://math.dartmouth.edu/~prob/prob/prob.pdf] - By Dartmouth College


	Principle of Uncertainty [http://uncertainty.stat.cmu.edu/wp-content/uploads/2011/05/principles-of-uncertainty.pdf]


	Probability & Statistics Cookbook [http://statistics.zone/]


	Advanced Data Analysis From An Elementary Point of View [http://www.stat.cmu.edu/~cshalizi/ADAfaEPoV/ADAfaEPoV.pdf]


	Introduction to Probability [http://athenasc.com/probbook.html] -  Book and course by MIT


	The Elements of Statistical Learning: Data Mining, Inference, and Prediction. [http://statweb.stanford.edu/~tibs/ElemStatLearn/] -Book


	An Introduction to Statistical Learning with Applications in R [http://www-bcf.usc.edu/~gareth/ISL/] - Book


	Learning Statistics Using R [http://health.adelaide.edu.au/psychology/ccs/teaching/lsr/]


	Introduction to Probability and Statistics Using R [https://cran.r-project.org/web/packages/IPSUR/vignettes/IPSUR.pdf] - Book


	Advanced R Programming [http://adv-r.had.co.nz] - Book


	Practical Regression and Anova using R [http://cran.r-project.org/doc/contrib/Faraway-PRA.pdf] - Book


	R practicals [http://www.columbia.edu/~cjd11/charles_dimaggio/DIRE/resources/R/practicalsBookNoAns.pdf] - Book


	The R Inferno [http://www.burns-stat.com/pages/Tutor/R_inferno.pdf] - Book







Linear Algebra


	Linear Algebra Done Wrong [http://www.math.brown.edu/~treil/papers/LADW/book.pdf]


	Linear Algebra, Theory, and Applications [https://math.byu.edu/~klkuttle/Linearalgebra.pdf]


	Convex Optimization [http://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf]


	Applied Numerical Computing [http://www.seas.ucla.edu/~vandenbe/103/reader.pdf]


	Applied Numerical Linear Algebra [http://egrcc.github.io/docs/math/applied-numerical-linear-algebra.pdf]









Courses


	CS231n, Convolutional Neural Networks for Visual Recognition, Stanford University [http://cs231n.stanford.edu/]


	CS224d, Deep Learning for Natural Language Processing, Stanford University [http://cs224d.stanford.edu/]


	Oxford Deep NLP 2017, Deep Learning for Natural Language Processing, University of Oxford [https://github.com/oxford-cs-deepnlp-2017/lectures]


	Artificial Intelligence (Columbia University) [https://www.edx.org/course/artificial-intelligence-ai-columbiax-csmm-101x] - free


	Machine Learning (Columbia University) [https://www.edx.org/course/machine-learning-columbiax-csmm-102x] - free


	Machine Learning (Stanford University) [https://www.coursera.org/learn/machine-learning] - free


	Neural Networks for Machine Learning (University of Toronto) [https://www.coursera.org/learn/neural-networks] - free


	Machine Learning Specialization (University of Washington) [https://www.coursera.org/specializations/machine-learning] - Courses: Machine Learning Foundations: A Case Study Approach, Machine Learning: Regression, Machine Learning: Classification, Machine Learning: Clustering & Retrieval, Machine Learning: Recommender Systems & Dimensionality Reduction,Machine Learning Capstone: An Intelligent Application with Deep Learning; free


	Machine Learning Course (2014-15 session) (by Nando de Freitas, University of Oxford) [https://www.cs.ox.ac.uk/people/nando.defreitas/machinelearning/] - Lecture slides and video recordings.


	Learning from Data (by Yaser S. Abu-Mostafa, Caltech) [http://www.work.caltech.edu/telecourse.html] - Lecture videos available







Podcasts


	The O’Reilly Data Show [http://radar.oreilly.com/tag/oreilly-data-show-podcast]


	Partially Derivative [http://partiallyderivative.com/]


	The Talking Machines [http://www.thetalkingmachines.com/]


	The Data Skeptic [https://dataskeptic.com/]


	Linear Digressions [http://benjaffe.github.io/linear-digressions-site/]


	Data Stories [http://datastori.es/]


	Learning Machines 101 [http://www.learningmachines101.com/]


	Not So Standard Deviations [http://simplystatistics.org/2015/09/17/not-so-standard-deviations-the-podcast/]


	TWIMLAI [https://twimlai.com/shows/]







Tutorials

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]







          

      

      

    

  

    
      
          
            
  
Contribute

Become a contributor! Check out our github [http://github.com/bfortuner/ml-cheatsheet/] for more information.





          

      

      

    

  

    
      
          
            

Алфавитный указатель



 




          

      

      

    

  

    
      
          
            
  
Applications



	Anomaly Detection


	Computer Vision


	Classification


	Object Detection


	Segmentation






	Natural Language


	Dialog Systems


	Machine Translation


	Speech Recognition


	Text Summarization


	Question Answering






	Recommender Systems


	Time-Series







Anomaly Detection

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Computer Vision


Classification

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Object Detection

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Segmentation

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]






Natural Language


Dialog Systems

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Machine Translation

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Speech Recognition

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Text Summarization

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Question Answering

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]






Recommender Systems

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Time-Series

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]
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Generative Algorithms

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]
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Training (empty)



	Combating Overfitting


	Cross-validation


	Validation Set


	Test Set






	Hyperparameter Tuning


	Learning Rate


	Optimizers






	Model Evaluation


	Bias-Variance Tradeoff


	Loss Functions


	Precision vs Recall











Combating Overfitting


Cross-validation

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Validation Set

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Test Set

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]






Hyperparameter Tuning


Learning Rate

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Optimizers

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]






Model Evaluation


Bias-Variance Tradeoff

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Loss Functions

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]




Precision vs Recall

Be the first to contribute! [https://github.com/bfortuner/ml-cheatsheet]
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