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CHAPTER 1

Overview

This document provides the reader with the information necessary to carry out numerical experiments using MITgcm.
It gives a comprehensive description of the continuous equations on which the model is based, the numerical algorithms
the model employs and a description of the associated program code. Along with the hydrodynamical kernel, physical
and biogeochemical parameterizations of key atmospheric and oceanic processes are available. A number of examples
illustrating the use of the model in both process and general circulation studies of the atmosphere and ocean are also
presented.

Introduction

MITgcm has a number of novel aspects:

• it can be used to study both atmospheric and oceanic phenomena; one hydrodynamical kernel is
used to drive forward both atmospheric and oceanic models - see Figure 1.1

• it has a non-hydrostatic capability and so can be used to study both small-scale and large scale
processes - see Figure 1.2

• finite volume techniques are employed yielding an intuitive discretization and support for the treat-
ment of irregular geometries using orthogonal curvilinear grids and shaved cells - see Figure 1.3

• tangent linear and adjoint counterparts are automatically maintained along with the forward model,
permitting sensitivity and optimization studies.

• the model is developed to perform efficiently on a wide variety of computational platforms.

Key publications reporting on and charting the development of the model are Hill and Marshall (1995), Marshall et al.
(1997a), Marshall et al. (1997b), Adcroft and Marshall (1997), Marshall et al. (1998), Adcroft and Marshall (1999),
Hill et al. (1999), Marotzke et al. (1999), Adcroft and Campin (2004), Adcroft et al. (2004b), Marshall et al. (2004)
(an overview on the model formulation can also be found in Adcroft et al. (2004c)):

1
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Figure 1.1: MITgcm has a single dynamical kernel that can drive forward either oceanic or atmospheric simulations.

~10 000 km~1 000km~100 km

~1 km
~10 km

~100 m
 

Figure 1.2: MITgcm has non-hydrostatic capabilities, allowing the model to address a wide range of phenomenon -
from convection on the left, all the way through to global circulation patterns on the right.
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Finite Volume: Shaved Cells
Stream Function Ψ Tracer θ at t=0.3

Figure 1.3: Finite volume techniques (bottom panel) are used, permitting a treatment of topography that rivals 𝜎
(terrain following) coordinates.
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We begin by briefly showing some of the results of the model in action to give a feel for the wide range of problems
that can be addressed using it.

Illustrations of the model in action

MITgcm has been designed and used to model a wide range of phenomena, from convection on the scale of meters in
the ocean to the global pattern of atmospheric winds - see Figure 1.2. To give a flavor of the kinds of problems the
model has been used to study, we briefly describe some of them here. A more detailed description of the underlying
formulation, numerical algorithm and implementation that lie behind these calculations is given later. Indeed many
of the illustrative examples shown below can be easily reproduced: simply download the model (the minimum you
need is a PC running Linux, together with a FORTRAN77 compiler) and follow the examples described in detail in
the documentation.

4 Chapter 1. Overview
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Global atmosphere: ‘Held-Suarez’ benchmark

A novel feature of MITgcm is its ability to simulate, using one basic algorithm, both atmospheric and oceanographic
flows at both small and large scales.

Figure 1.4 shows an instantaneous plot of the 500 mb temperature field obtained using the atmospheric isomorph of
MITgcm run at 2.8° resolution on the cubed sphere. We see cold air over the pole (blue) and warm air along an
equatorial band (red). Fully developed baroclinic eddies spawned in the northern hemisphere storm track are evident.
There are no mountains or land-sea contrast in this calculation, but you can easily put them in. The model is driven
by relaxation to a radiative-convective equilibrium profile, following the description set out in Held and Suarez (1994)
[HS94] designed to test atmospheric hydrodynamical cores - there are no mountains or land-sea contrast.

Figure 1.4: Instantaneous plot of the temperature field at 500 mb obtained using the atmospheric isomorph of MITgcm

As described in Adcroft et al. (2004) [ACHM04], a ‘cubed sphere’ is used to discretize the globe permitting a uniform
griding and obviated the need to Fourier filter. The ‘vector-invariant’ form of MITgcm supports any orthogonal
curvilinear grid, of which the cubed sphere is just one of many choices.

Figure 1.5 shows the 5-year mean, zonally averaged zonal wind from a 20-level configuration of the model. It compares
favorable with more conventional spatial discretization approaches. The two plots show the field calculated using
the cube-sphere grid and the flow calculated using a regular, spherical polar latitude-longitude grid. Both grids are
supported within the model.

Ocean gyres

Baroclinic instability is a ubiquitous process in the ocean, as well as the atmosphere. Ocean eddies play an important
role in modifying the hydrographic structure and current systems of the oceans. Coarse resolution models of the
oceans cannot resolve the eddy field and yield rather broad, diffusive patterns of ocean currents. But if the resolution
of our models is increased until the baroclinic instability process is resolved, numerical solutions of a different and
much more realistic kind, can be obtained.

1.2. Illustrations of the model in action 5
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Figure 1.5: Five year mean, zonally averaged zonal flow for cube-sphere simulation (top) and latitude-longitude
simulation (bottom) and using Held-Suarez forcing. Note the difference in the solutions over the pole — the cubed
sphere is superior.
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Figure 1.6 shows the surface temperature and velocity field obtained from MITgcm run at 1
6

∘ horizontal resolution
on a lat-lon grid in which the pole has been rotated by 90° on to the equator (to avoid the converging of meridian in
northern latitudes). 21 vertical levels are used in the vertical with a ‘lopped cell’ representation of topography. The
development and propagation of anomalously warm and cold eddies can be clearly seen in the Gulf Stream region.
The transport of warm water northward by the mean flow of the Gulf Stream is also clearly visible.
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Figure 1.6: Instantaneous temperature map from a 1
6

∘ simulation of the North Atlantic. The figure shows the temper-
ature in the second layer (37.5 m deep).

Global ocean circulation

Figure 1.7 shows the pattern of ocean currents at the surface of a 4° global ocean model run with 15 vertical levels.
Lopped cells are used to represent topography on a regular lat-lon grid extending from 70°N to 70°S. The model is
driven using monthly-mean winds with mixed boundary conditions on temperature and salinity at the surface. The
transfer properties of ocean eddies, convection and mixing is parameterized in this model.

Figure 1.8 shows the meridional overturning circulation of the global ocean in Sverdrups.

1.2. Illustrations of the model in action 7
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180W 150W 120W  90W  60W  30W   0  30E  60E  90E 120E 150E 180E
 90S

 60S

 30S

  0 

 30N

 60N

 90N
Currents at 25m, t=1000 years

0.5 m/s

Figure 1.7: Pattern of surface ocean currents from a global integration of the model at 4° horizontal resolution and
with 15 vertical levels.

Figure 1.8: Meridional overturning stream function (in Sverdrups) from a global integration of the model at 4° hori-
zontal resolution and with 15 vertical levels.

8 Chapter 1. Overview
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Convection and mixing over topography

Dense plumes generated by localized cooling on the continental shelf of the ocean may be influenced by rotation when
the deformation radius is smaller than the width of the cooling region. Rather than gravity plumes, the mechanism for
moving dense fluid down the shelf is then through geostrophic eddies. The simulation shown in Figure 1.9 (blue is
cold dense fluid, red is warmer, lighter fluid) employs the non-hydrostatic capability of MITgcm to trigger convection
by surface cooling. The cold, dense water falls down the slope but is deflected along the slope by rotation. It is found
that entrainment in the vertical plane is reduced when rotational control is strong, and replaced by lateral entrainment
due to the baroclinic instability of the along-slope current.

Figure 1.9: MITgcm run in a non-hydrostatic configuration to study convection over a slope.

Boundary forced internal waves

The unique ability of MITgcm to treat non-hydrostatic dynamics in the presence of complex geometry makes it an ideal
tool to study internal wave dynamics and mixing in oceanic canyons and ridges driven by large amplitude barotropic
tidal currents imposed through open boundary conditions.

Figure 1.10 shows the influence of cross-slope topographic variations on internal wave breaking - the cross-slope
velocity is in color, the density contoured. The internal waves are excited by application of open boundary conditions
on the left. They propagate to the sloping boundary (represented using MITgcm’s finite volume spatial discretization)
where they break under non-hydrostatic dynamics.

Parameter sensitivity using the adjoint of MITgcm

Forward and tangent linear counterparts of MITgcm are supported using an ‘automatic adjoint compiler’. These can
be used in parameter sensitivity and data assimilation studies.

1.2. Illustrations of the model in action 9
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Figure 1.10: Simulation of internal waves forced at an open boundary (on the left) impacting a sloping shelf. The
along slope velocity is shown colored, contour lines show density surfaces. The slope is represented with high-fidelity
using lopped cells.

10 Chapter 1. Overview
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As one example of application of the MITgcm adjoint, Figure 1.11 maps the gradient 𝜕𝐽
𝜕ℋ where 𝐽 is the magnitude

of the overturning stream-function shown in Figure 1.8 at 60°N and ℋ(𝜆, 𝜙) is the mean, local air-sea heat flux over a
100 year period. We see that 𝐽 is sensitive to heat fluxes over the Labrador Sea, one of the important sources of deep
water for the thermohaline circulations. This calculation also yields sensitivities to all other model parameters.

180W 150W 120W  90W  60W  30W   0  30E  60E  90E 120E 150E 180E
 90S

 60S

 30S

  0

 30N

 60N

 90N
Heat Flux   (Min =  −7.7 10−4 Sv W−1 m2; Max =  42.9 10−4 Sv W−1 m2)

 −10   −5    0    5   10   15   20   25   30   35   40   45   50

10−4 Sv W−1 m2

Figure 1.11: Sensitivity of meridional overturning strength to surface heat flux changes. Contours show the magnitude
of the response (in Sv x 10-4 ) that a persistent +1 Wm-2 heat flux anomaly at a given grid point would produce.

Global state estimation of the ocean

An important application of MITgcm is in state estimation of the global ocean circulation. An appropriately defined
‘cost function’, which measures the departure of the model from observations (both remotely sensed and in-situ)
over an interval of time, is minimized by adjusting ‘control parameters’ such as air-sea fluxes, the wind field, the
initial conditions etc. Figure 1.12 and Figure 1.13 show the large scale planetary circulation and a Hopf-Muller plot of
Equatorial sea-surface height. Both are obtained from assimilation bringing the model in to consistency with altimetric
and in-situ observations over the period 1992-1997.

Ocean biogeochemical cycles

MITgcm is being used to study global biogeochemical cycles in the ocean. For example one can study the effects of
interannual changes in meteorological forcing and upper ocean circulation on the fluxes of carbon dioxide and oxygen
between the ocean and atmosphere. Figure 1.14 shows the annual air-sea flux of oxygen and its relation to density

1.2. Illustrations of the model in action 11
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Figure 1.12: Circulation patterns from a multi-year, global circulation simulation constrained by Topex altimeter data
and WOCE cruise observations. This output is from a higher resolution, shorter duration experiment with equatorially
enhanced grid spacing.

12 Chapter 1. Overview
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Figure 1.13: Equatorial sea-surface height in unconstrained (left), constrained (middle) simulations and in observations
(right).

1.2. Illustrations of the model in action 13
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outcrops in the southern oceans from a single year of a global, interannually varying simulation. The simulation is run
at 1°x1° resolution telescoping to 1

3

∘ x 1
3

∘ in the tropics (not shown).

Simulations of laboratory experiments

Figure 1.16 shows MITgcm being used to simulate a laboratory experiment (Figure 1.15) inquiring into the dynamics
of the Antarctic Circumpolar Current (ACC). An initially homogeneous tank of water (1 m in diameter) is driven from
its free surface by a rotating heated disk. The combined action of mechanical and thermal forcing creates a lens of
fluid which becomes baroclinically unstable. The stratification and depth of penetration of the lens is arrested by its
instability in a process analogous to that which sets the stratification of the ACC.

Continuous equations in ‘r’ coordinates

To render atmosphere and ocean models from one dynamical core we exploit ‘isomorphisms’ between equation sets
that govern the evolution of the respective fluids - see Figure 1.17. One system of hydrodynamical equations is written
down and encoded. The model variables have different interpretations depending on whether the atmosphere or ocean
is being studied. Thus, for example, the vertical coordinate ‘𝑟’ is interpreted as pressure, 𝑝, if we are modeling the
atmosphere (right hand side of Figure 1.17) and height, 𝑧, if we are modeling the ocean (left hand side of Figure 1.17).

The state of the fluid at any time is characterized by the distribution of velocity v⃗, active tracers 𝜃 and 𝑆, a ‘geopoten-
tial’ 𝜑 and density 𝜌 = 𝜌(𝜃, 𝑆, 𝑝) which may depend on 𝜃, 𝑆, and 𝑝. The equations that govern the evolution of these
fields, obtained by applying the laws of classical mechanics and thermodynamics to a Boussinesq, Navier-Stokes fluid
are, written in terms of a generic vertical coordinate, 𝑟, so that the appropriate kinematic boundary conditions can be
applied isomorphically see Figure 1.18.

𝐷v⃗ℎ

𝐷𝑡
+
(︁

2Ω⃗ × v⃗
)︁
ℎ

+ ∇ℎ𝜑 = ℱv⃗ℎ
horizontal momentum (1.1)

𝐷�̇�

𝐷𝑡
+ ̂︀𝑘 · (︁2Ω⃗ × v⃗

)︁
+
𝜕𝜑

𝜕𝑟
+ 𝑏 = ℱ�̇� vertical momentum (1.2)

∇ℎ · v⃗ℎ +
𝜕�̇�

𝜕𝑟
= 0 continuity (1.3)

𝑏 = 𝑏(𝜃, 𝑆, 𝑟) equation of state (1.4)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 potential temperature (1.5)

𝐷𝑆

𝐷𝑡
= 𝒬𝑆 humidity/salinity (1.6)

14 Chapter 1. Overview
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Figure 1.14: Annual air-sea flux of oxygen (shaded) plotted along with potential density outcrops of the surface of the
southern ocean from a global 1°x1° integration with a telescoping grid (to 1
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∘ ) at the equator.
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Figure 1.15: A 1 m diameter laboratory experiment simulating the dynamics of the Antarctic Circumpolar Current.

Figure 1.16: A numerical simulation of the laboratory experiment using MITgcm.

16 Chapter 1. Overview



MITgcm Documentation, Release 1.0

Figure 1.17: Isomorphic equation sets used for atmosphere (right) and ocean (left).
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Figure 1.18: Vertical coordinates and kinematic boundary conditions for atmosphere (top) and ocean (bottom).
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Here:

𝑟 is the vertical coordinate

𝐷

𝐷𝑡
=

𝜕

𝜕𝑡
+ v⃗ · ∇ is the total derivative

∇ = ∇ℎ + ̂︀𝑘 𝜕
𝜕𝑟

is the ‘grad’ operator

with ∇ℎ operating in the horizontal and ̂︀𝑘 𝜕
𝜕𝑟 operating in the vertical, where ̂︀𝑘 is a unit vector in the vertical

𝑡 is time

v⃗ = (𝑢, 𝑣, �̇�) = (v⃗ℎ, �̇�) is the velocity

𝜑 is the ‘pressure’/‘geopotential’

Ω⃗ is the Earth’s rotation

𝑏 is the ‘buoyancy’

𝜃 is potential temperature

𝑆 is specific humidity in the atmosphere; salinity in the ocean

ℱv⃗ are forcing and dissipation of v⃗

𝒬𝜃 are forcing and dissipation of 𝜃

𝒬𝑆 are forcing and dissipation of 𝑆

The ℱ ′𝑠 and 𝒬′𝑠 are provided by ‘physics’ and forcing packages for atmosphere and ocean. These are described in
later chapters.

Kinematic Boundary conditions

Vertical

at fixed and moving 𝑟 surfaces we set (see Figure 1.18):

�̇� = 0 at 𝑟 = 𝑅𝑓𝑖𝑥𝑒𝑑(𝑥, 𝑦) (ocean bottom, top of the atmosphere) (1.7)

�̇� =
𝐷𝑟

𝐷𝑡
at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔(𝑥, 𝑦) (ocean surface, bottom of the atmosphere) (1.8)

Here

𝑅𝑚𝑜𝑣𝑖𝑛𝑔 = 𝑅𝑜 + 𝜂

where 𝑅𝑜(𝑥, 𝑦) is the ‘𝑟−value’ (height or pressure, depending on whether we are in the atmosphere or ocean) of the
‘moving surface’ in the resting fluid and 𝜂 is the departure from 𝑅𝑜(𝑥, 𝑦) in the presence of motion.

Horizontal

v⃗ · n⃗ = 0 (1.9)

where n⃗ is the normal to a solid boundary.

18 Chapter 1. Overview
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Atmosphere

In the atmosphere, (see Figure 1.18), we interpret:

𝑟 = 𝑝 is the pressure (1.10)

�̇� =
𝐷𝑝

𝐷𝑡
= 𝜔 is the vertical velocity in p coordinates (1.11)

𝜑 = 𝑔 𝑧 is the geopotential height (1.12)

𝑏 =
𝜕Π

𝜕𝑝
𝜃 is the buoyancy (1.13)

𝜃 = 𝑇 (
𝑝𝑐
𝑝

)𝜅 is potential temperature (1.14)

𝑆 = 𝑞 is the specific humidity (1.15)

where

𝑇 is absolute temperature

𝑝 is the pressure

𝑧 is the height of the pressure surface
𝑔 is the acceleration due to gravity

In the above the ideal gas law, 𝑝 = 𝜌𝑅𝑇 , has been expressed in terms of the Exner function Π(𝑝) given by (1.16) (see
also Section 1.4.1)

Π(𝑝) = 𝑐𝑝(
𝑝

𝑝𝑐
)𝜅 (1.16)

where 𝑝𝑐 is a reference pressure and 𝜅 = 𝑅/𝑐𝑝 with 𝑅 the gas constant and 𝑐𝑝 the specific heat of air at constant
pressure.

At the top of the atmosphere (which is ‘fixed’ in our 𝑟 coordinate):

𝑅𝑓𝑖𝑥𝑒𝑑 = 𝑝𝑡𝑜𝑝 = 0

In a resting atmosphere the elevation of the mountains at the bottom is given by

𝑅𝑚𝑜𝑣𝑖𝑛𝑔 = 𝑅𝑜(𝑥, 𝑦) = 𝑝𝑜(𝑥, 𝑦)

i.e. the (hydrostatic) pressure at the top of the mountains in a resting atmosphere.

The boundary conditions at top and bottom are given by:

𝜔 = 0 at 𝑟 = 𝑅𝑓𝑖𝑥𝑒𝑑 (top of the atmosphere) (1.17)

𝜔 =
𝐷𝑝𝑠
𝐷𝑡

at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 (bottom of the atmosphere) (1.18)

Then the (hydrostatic form of) equations (1.1)-(1.6) yields a consistent set of atmospheric equations which, for conve-
nience, are written out in 𝑝−coordinates in Section 1.4.1 - see eqs. (1.59)-(1.63).

1.3. Continuous equations in ‘r’ coordinates 19
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Ocean

In the ocean we interpret:

𝑟 = 𝑧 is the height (1.19)

�̇� =
𝐷𝑧

𝐷𝑡
= 𝑤 is the vertical velocity (1.20)

𝜑 =
𝑝

𝜌𝑐
is the pressure (1.21)

𝑏(𝜃, 𝑆, 𝑟) =
𝑔

𝜌𝑐
(𝜌(𝜃, 𝑆, 𝑟) − 𝜌𝑐) is the buoyancy (1.22)

where 𝜌𝑐 is a fixed reference density of water and 𝑔 is the acceleration due to gravity.

In the above:

At the bottom of the ocean: 𝑅𝑓𝑖𝑥𝑒𝑑(𝑥, 𝑦) = −𝐻(𝑥, 𝑦).

The surface of the ocean is given by: 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 = 𝜂

The position of the resting free surface of the ocean is given by 𝑅𝑜 = 𝑍𝑜 = 0.

Boundary conditions are:

𝑤 = 0 at 𝑟 = 𝑅𝑓𝑖𝑥𝑒𝑑 (ocean bottom) (1.23)

𝑤 =
𝐷𝜂

𝐷𝑡
at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 = 𝜂 (ocean surface) (1.24)

where 𝜂 is the elevation of the free surface.

Then equations (1.1)- (1.6) yield a consistent set of oceanic equations which, for convenience, are written out in
𝑧−coordinates in Section 1.5.1 - see eqs. (1.98) to (1.103).

Hydrostatic, Quasi-hydrostatic, Quasi-nonhydrostatic and Non-hydrostatic forms

Let us separate 𝜑 in to surface, hydrostatic and non-hydrostatic terms:

𝜑(𝑥, 𝑦, 𝑟) = 𝜑𝑠(𝑥, 𝑦) + 𝜑ℎ𝑦𝑑(𝑥, 𝑦, 𝑟) + 𝜑𝑛ℎ(𝑥, 𝑦, 𝑟) (1.25)

and write (1.1) in the form:

𝜕v⃗ℎ

𝜕𝑡
+ ∇ℎ𝜑𝑠 + ∇ℎ𝜑ℎ𝑦𝑑 + 𝜖𝑛ℎ∇ℎ𝜑𝑛ℎ = G⃗�⃗�ℎ

(1.26)

𝜕𝜑ℎ𝑦𝑑
𝜕𝑟

= −𝑏 (1.27)

𝜖𝑛ℎ
𝜕�̇�

𝜕𝑡
+
𝜕𝜑𝑛ℎ
𝜕𝑟

= 𝐺�̇� (1.28)
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Here 𝜖𝑛ℎ is a non-hydrostatic parameter.

The
(︁
G⃗�⃗�, 𝐺�̇�

)︁
in (1.26) and (1.28) represent advective, metric and Coriolis terms in the momentum equations. In

spherical coordinates they take the form1 - see Marshall et al. (1997a) [MHPA97] for a full discussion:

𝐺𝑢 = − v⃗.∇𝑢 advection

−
{︂
𝑢�̇�

𝑟
− 𝑢𝑣 tan𝜙

𝑟

}︂
metric

−
{︀
−2Ω𝑣 sin𝜙+ 2Ω�̇� cos𝜙

}︀
Coriolis

+ ℱ𝑢 forcing/dissipation

(1.29)

𝐺𝑣 = − v⃗.∇𝑣 advection

−
{︂
𝑣�̇�

𝑟
− 𝑢2 tan𝜙

𝑟

}︂
metric

− {−2Ω𝑢 sin𝜙} Coriolis
+ ℱ𝑣 forcing/dissipation

(1.30)

𝐺�̇� = − v⃗.∇�̇� advection

−
{︂
𝑢2 + 𝑣2

𝑟

}︂
metric

+ 2Ω𝑢 cos𝜙 Coriolis

+ ℱ�̇� forcing/dissipation

(1.31)

In the above ‘𝑟’ is the distance from the center of the earth and ‘𝜙 ’ is latitude (see Figure 1.20).

Grad and div operators in spherical coordinates are defined in Coordinate systems.

Shallow atmosphere approximation

Most models are based on the ‘hydrostatic primitive equations’ (HPE’s) in which the vertical momentum equation is
reduced to a statement of hydrostatic balance and the ‘traditional approximation’ is made in which the Coriolis force
is treated approximately and the shallow atmosphere approximation is made. MITgcm need not make the ‘traditional
approximation’. To be able to support consistent non-hydrostatic forms the shallow atmosphere approximation can be
relaxed - when dividing through by 𝑟 in, for example, (1.29), we do not replace 𝑟 by 𝑎, the radius of the earth.

Hydrostatic and quasi-hydrostatic forms

These are discussed at length in Marshall et al. (1997a) [MHPA97].

In the ‘hydrostatic primitive equations’ (HPE) all the underlined terms in Eqs. (1.29) → (1.31) are neglected and ‘𝑟’
is replaced by ‘𝑎’, the mean radius of the earth. Once the pressure is found at one level - e.g. by inverting a 2-d Elliptic
equation for 𝜑𝑠 at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 - the pressure can be computed at all other levels by integration of the hydrostatic
relation, eq (1.27).

In the ‘quasi-hydrostatic’ equations (QH) strict balance between gravity and vertical pressure gradients is not imposed.
The 2Ω𝑢 cos𝜙 Coriolis term are not neglected and are balanced by a non-hydrostatic contribution to the pressure field:
only the terms underlined twice in Eqs. (1.29) → (1.31) are set to zero and, simultaneously, the shallow atmosphere

1 In the hydrostatic primitive equations (HPE) all underlined terms in (1.29), (1.30) and (1.31) are omitted; the singly-underlined terms are
included in the quasi-hydrostatic model (QH). The fully non-hydrostatic model (NH) includes all terms.
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approximation is relaxed. In QH all the metric terms are retained and the full variation of the radial position of a
particle monitored. The QH vertical momentum equation (1.28) becomes:

𝜕𝜑𝑛ℎ
𝜕𝑟

= 2Ω𝑢 cos𝜙

making a small correction to the hydrostatic pressure.

QH has good energetic credentials - they are the same as for HPE. Importantly, however, it has the same angular
momentum principle as the full non-hydrostatic model (NH) - see Marshall et.al. (1997a) [MHPA97]. As in HPE
only a 2-d elliptic problem need be solved.

Non-hydrostatic and quasi-nonhydrostatic forms

MITgcm presently supports a full non-hydrostatic ocean isomorph, but only a quasi-non-hydrostatic atmospheric
isomorph.

Non-hydrostatic Ocean

In the non-hydrostatic ocean model all terms in equations Eqs. (1.29) → (1.31) are retained. A three dimensional
elliptic equation must be solved subject to Neumann boundary conditions (see below). It is important to note that
use of the full NH does not admit any new ‘fast’ waves in to the system - the incompressible condition (1.3) has
already filtered out acoustic modes. It does, however, ensure that the gravity waves are treated accurately with an
exact dispersion relation. The NH set has a complete angular momentum principle and consistent energetics - see
White and Bromley (1995) [WB95]; Marshall et al. (1997a) [MHPA97].

Quasi-nonhydrostatic Atmosphere

In the non-hydrostatic version of our atmospheric model we approximate �̇� in the vertical momentum eqs. (1.28) and
(1.30) (but only here) by:

�̇� =
𝐷𝑝

𝐷𝑡
=

1

𝑔

𝐷𝜑

𝐷𝑡
(1.32)

where 𝑝ℎ𝑦 is the hydrostatic pressure.

Summary of equation sets supported by model

Atmosphere

Hydrostatic, and quasi-hydrostatic and quasi non-hydrostatic forms of the compressible non-Boussinesq equations in
𝑝−coordinates are supported.

Hydrostatic and quasi-hydrostatic

The hydrostatic set is written out in 𝑝−coordinates in Hydrostatic Primitive Equations for the Atmosphere in Pressure
Coordinates - see eqs. (1.59) to (1.63).

Quasi-nonhydrostatic

A quasi-nonhydrostatic form is also supported.
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Ocean

Hydrostatic and quasi-hydrostatic

Hydrostatic, and quasi-hydrostatic forms of the incompressible Boussinesq equations in 𝑧−coordinates are supported.

Non-hydrostatic

Non-hydrostatic forms of the incompressible Boussinesq equations in 𝑧− coordinates are supported - see eqs. (1.98)
to (1.103).

Solution strategy

The method of solution employed in the HPE, QH and NH models is summarized in Figure 1.19. Under all dy-
namics, a 2-d elliptic equation is first solved to find the surface pressure and the hydrostatic pressure at any level
computed from the weight of fluid above. Under HPE and QH dynamics, the horizontal momentum equations are
then stepped forward and �̇� found from continuity. Under NH dynamics a 3-d elliptic equation must be solved for the
non-hydrostatic pressure before stepping forward the horizontal momentum equations; �̇� is found by stepping forward
the vertical momentum equation.

There is no penalty in implementing QH over HPE except, of course, some complication that goes with the inclusion
of cos𝜙 Coriolis terms and the relaxation of the shallow atmosphere approximation. But this leads to negligible
increase in computation. In NH, in contrast, one additional elliptic equation - a three-dimensional one - must be
inverted for 𝑝𝑛ℎ. However the ‘overhead’ of the NH model is essentially negligible in the hydrostatic limit (see detailed
discussion in Marshall et al. (1997) [MHPA97] resulting in a non-hydrostatic algorithm that, in the hydrostatic limit,
is as computationally economic as the HPEs.

Finding the pressure field

Unlike the prognostic variables 𝑢, 𝑣, 𝑤, 𝜃 and 𝑆, the pressure field must be obtained diagnostically. We proceed,
as before, by dividing the total (pressure/geo) potential in to three parts, a surface part, 𝜑𝑠(𝑥, 𝑦), a hydrostatic part
𝜑ℎ𝑦𝑑(𝑥, 𝑦, 𝑟) and a non-hydrostatic part 𝜑𝑛ℎ(𝑥, 𝑦, 𝑟), as in (1.25), and writing the momentum equation as in (1.26).

Hydrostatic pressure

Hydrostatic pressure is obtained by integrating (1.27) vertically from 𝑟 = 𝑅𝑜 where 𝜑ℎ𝑦𝑑(𝑟 = 𝑅𝑜) = 0, to yield:∫︁ 𝑅𝑜

𝑟

𝜕𝜑ℎ𝑦𝑑
𝜕𝑟

𝑑𝑟 = [𝜑ℎ𝑦𝑑]
𝑅𝑜

𝑟 =

∫︁ 𝑅𝑜

𝑟

−𝑏𝑑𝑟

and so

𝜑ℎ𝑦𝑑(𝑥, 𝑦, 𝑟) =

∫︁ 𝑅𝑜

𝑟

𝑏𝑑𝑟 (1.33)

The model can be easily modified to accommodate a loading term (e.g atmospheric pressure pushing down on the
ocean’s surface) by setting:

𝜑ℎ𝑦𝑑(𝑟 = 𝑅𝑜) = 𝑙𝑜𝑎𝑑𝑖𝑛𝑔 (1.34)
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Figure 1.19: Basic solution strategy in MITgcm. HPE and QH forms diagnose the vertical velocity, in NH a prognostic
equation for the vertical velocity is integrated.

Surface pressure

The surface pressure equation can be obtained by integrating continuity, (1.3), vertically from 𝑟 = 𝑅𝑓𝑖𝑥𝑒𝑑 to 𝑟 =
𝑅𝑚𝑜𝑣𝑖𝑛𝑔 ∫︁ 𝑅𝑚𝑜𝑣𝑖𝑛𝑔

𝑅𝑓𝑖𝑥𝑒𝑑

(∇ℎ · v⃗ℎ + 𝜕𝑟 �̇�) 𝑑𝑟 = 0

Thus:

𝜕𝜂

𝜕𝑡
+ v⃗.∇𝜂 +

∫︁ 𝑅𝑚𝑜𝑣𝑖𝑛𝑔

𝑅𝑓𝑖𝑥𝑒𝑑

∇ℎ · v⃗ℎ𝑑𝑟 = 0

where 𝜂 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 − 𝑅𝑜 is the free-surface 𝑟-anomaly in units of 𝑟. The above can be rearranged to yield, using
Leibnitz’s theorem:

𝜕𝜂

𝜕𝑡
+ ∇ℎ ·

∫︁ 𝑅𝑚𝑜𝑣𝑖𝑛𝑔

𝑅𝑓𝑖𝑥𝑒𝑑

v⃗ℎ𝑑𝑟 = source (1.35)

where we have incorporated a source term.

Whether 𝜑 is pressure (ocean model, 𝑝/𝜌𝑐) or geopotential (atmospheric model), in (1.26), the horizontal gradient
term can be written

∇ℎ𝜑𝑠 = ∇ℎ (𝑏𝑠𝜂) (1.36)

where 𝑏𝑠 is the buoyancy at the surface.

In the hydrostatic limit (𝜖𝑛ℎ = 0), equations (1.26), (1.35) and (1.36) can be solved by inverting a 2-d elliptic equation
for 𝜑𝑠 as described in Chapter 2. Both ‘free surface’ and ‘rigid lid’ approaches are available.
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Non-hydrostatic pressure

Taking the horizontal divergence of (1.26) and adding 𝜕
𝜕𝑟 of (1.28), invoking the continuity equation (1.3), we deduce

that:

∇2
3𝜑𝑛ℎ = ∇.G⃗�⃗� −

(︀
∇2

ℎ𝜑𝑠 + ∇2𝜑ℎ𝑦𝑑
)︀

= ∇.F⃗ (1.37)

For a given rhs this 3-d elliptic equation must be inverted for 𝜑𝑛ℎ subject to appropriate choice of boundary conditions.
This method is usually called The Pressure Method [Harlow and Welch (1965) [HW65]; Williams (1969) [Wil69];
Potter (1973) [Pot73]. In the hydrostatic primitive equations case (HPE), the 3-d problem does not need to be solved.

Boundary Conditions

We apply the condition of no normal flow through all solid boundaries - the coasts (in the ocean) and the bottom:

v⃗.̂︀𝑛 = 0 (1.38)

where ̂︀𝑛 is a vector of unit length normal to the boundary. The kinematic condition (1.38) is also applied to the
vertical velocity at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 . No-slip (𝑣𝑇 = 0) or slip (𝜕𝑣𝑇 /𝜕𝑛 = 0) conditions are employed on the tangential
component of velocity, 𝑣𝑇 , at all solid boundaries, depending on the form chosen for the dissipative terms in the
momentum equations - see below.

Eq. (1.38) implies, making use of (1.26), that:

̂︀𝑛.∇𝜑𝑛ℎ = ̂︀𝑛.F⃗ (1.39)

where

F⃗ = G⃗�⃗� − (∇ℎ𝜑𝑠 + ∇𝜑ℎ𝑦𝑑)

presenting inhomogeneous Neumann boundary conditions to the Elliptic problem (1.37). As shown, for example, by
Williams (1969) [Wil69], one can exploit classical 3D potential theory and, by introducing an appropriately chosen
𝛿-function sheet of ‘source-charge’, replace the inhomogeneous boundary condition on pressure by a homogeneous
one. The source term 𝑟ℎ𝑠 in (1.37) is the divergence of the vector F⃗. By simultaneously setting ̂︀𝑛.F⃗ = 0 and̂︀𝑛.∇𝜑𝑛ℎ = 0 on the boundary the following self-consistent but simpler homogenized Elliptic problem is obtained:

∇2𝜑𝑛ℎ = ∇. ̃⃗︀F
where ̃⃗︀F is a modified F⃗ such that ̃⃗︀F.̂︀𝑛 = 0. As is implied by (1.39) the modified boundary condition becomes:

̂︀𝑛.∇𝜑𝑛ℎ = 0 (1.40)

If the flow is ‘close’ to hydrostatic balance then the 3-d inversion converges rapidly because 𝜑𝑛ℎ is then only a small
correction to the hydrostatic pressure field (see the discussion in Marshall et al. (1997a,b) [MHPA97] [MAH+97].

The solution 𝜑𝑛ℎ to (1.37) and (1.39) does not vanish at 𝑟 = 𝑅𝑚𝑜𝑣𝑖𝑛𝑔 , and so refines the pressure there.

Forcing/dissipation

Forcing

The forcing terms ℱ on the rhs of the equations are provided by ‘physics packages’ and forcing packages. These are
described later on.
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Dissipation

Momentum

Many forms of momentum dissipation are available in the model. Laplacian and biharmonic frictions are commonly
used:

𝐷𝑉 = 𝐴ℎ∇2
ℎ𝑣 +𝐴𝑣

𝜕2𝑣

𝜕𝑧2
+𝐴4∇4

ℎ𝑣 (1.41)

where 𝐴ℎ and 𝐴𝑣 are (constant) horizontal and vertical viscosity coefficients and 𝐴4 is the horizontal coefficient for
biharmonic friction. These coefficients are the same for all velocity components.

Tracers

The mixing terms for the temperature and salinity equations have a similar form to that of momentum except that the
diffusion tensor can be non-diagonal and have varying coefficients.

𝐷𝑇,𝑆 = ∇.[𝐾∇(𝑇, 𝑆)] +𝐾4∇4
ℎ(𝑇, 𝑆) (1.42)

where 𝐾 is the diffusion tensor and the 𝐾4 horizontal coefficient for biharmonic diffusion. In the simplest case where
the subgrid-scale fluxes of heat and salt are parameterized with constant horizontal and vertical diffusion coefficients,
𝐾, reduces to a diagonal matrix with constant coefficients:

𝐾 =

⎛⎝ 𝐾ℎ 0 0
0 𝐾ℎ 0
0 0 𝐾𝑣

⎞⎠ (1.43)

where 𝐾ℎ and 𝐾𝑣 are the horizontal and vertical diffusion coefficients. These coefficients are the same for all tracers
(temperature, salinity ... ).

Vector invariant form

For some purposes it is advantageous to write momentum advection in eq (1.1) and (1.2) in the (so-called) ‘vector
invariant’ form:

𝐷v⃗

𝐷𝑡
=
𝜕v⃗

𝜕𝑡
+ (∇× v⃗) × v⃗ + ∇

[︂
1

2
(v⃗ · v⃗)

]︂
(1.44)

This permits alternative numerical treatments of the non-linear terms based on their representation as a vorticity flux.
Because gradients of coordinate vectors no longer appear on the rhs of (1.44), explicit representation of the metric
terms in (1.29), (1.30) and (1.31), can be avoided: information about the geometry is contained in the areas and
lengths of the volumes used to discretize the model.

Adjoint

Tangent linear and adjoint counterparts of the forward model are described in Chapter 5.
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Appendix ATMOSPHERE

Hydrostatic Primitive Equations for the Atmosphere in Pressure Coordinates

The hydrostatic primitive equations (HPE’s) in 𝑝−coordinates are:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ + ∇𝑝𝜑 = ℱ⃗ (1.45)

𝜕𝜑

𝜕𝑝
+ 𝛼 = 0 (1.46)

∇𝑝 · v⃗ℎ +
𝜕𝜔

𝜕𝑝
= 0 (1.47)

𝑝𝛼 = 𝑅𝑇 (1.48)

𝑐𝑣
𝐷𝑇

𝐷𝑡
+ 𝑝

𝐷𝛼

𝐷𝑡
= 𝒬 (1.49)

where v⃗ℎ = (𝑢, 𝑣, 0) is the ‘horizontal’ (on pressure surfaces) component of velocity, 𝐷
𝐷𝑡 = 𝜕

𝜕𝑡 + v⃗ℎ ·∇𝑝 +𝜔 𝜕
𝜕𝑝 is the

total derivative, 𝑓 = 2Ω sin𝜙 is the Coriolis parameter, 𝜑 = 𝑔𝑧 is the geopotential, 𝛼 = 1/𝜌 is the specific volume,
𝜔 = 𝐷𝑝

𝐷𝑡 is the vertical velocity in the 𝑝−coordinate. Equation (1.49) is the first law of thermodynamics where internal
energy 𝑒 = 𝑐𝑣𝑇 , 𝑇 is temperature, 𝑄 is the rate of heating per unit mass and 𝑝𝐷𝛼

𝐷𝑡 is the work done by the fluid in
compressing.

It is convenient to cast the heat equation in terms of potential temperature 𝜃 so that it looks more like a generic
conservation law. Differentiating (1.48) we get:

𝑝
𝐷𝛼

𝐷𝑡
+ 𝛼

𝐷𝑝

𝐷𝑡
= 𝑅

𝐷𝑇

𝐷𝑡

which, when added to the heat equation (1.49) and using 𝑐𝑝 = 𝑐𝑣 +𝑅, gives:

𝑐𝑝
𝐷𝑇

𝐷𝑡
− 𝛼

𝐷𝑝

𝐷𝑡
= 𝒬 (1.50)

Potential temperature is defined:

𝜃 = 𝑇 (
𝑝𝑐
𝑝

)𝜅 (1.51)

where 𝑝𝑐 is a reference pressure and 𝜅 = 𝑅/𝑐𝑝. For convenience we will make use of the Exner function Π(𝑝) which
is defined by:

Π(𝑝) = 𝑐𝑝(
𝑝

𝑝𝑐
)𝜅 (1.52)

The following relations will be useful and are easily expressed in terms of the Exner function:

𝑐𝑝𝑇 = Π𝜃 ;
𝜕Π

𝜕𝑝
=
𝜅Π

𝑝
; 𝛼 =

𝜅Π𝜃

𝑝
=
𝜕 Π

𝜕𝑝
𝜃 ;

𝐷Π

𝐷𝑡
=
𝜕Π

𝜕𝑝

𝐷𝑝

𝐷𝑡

where 𝑏 = 𝜕 Π
𝜕𝑝 𝜃 is the buoyancy.
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The heat equation is obtained by noting that

𝑐𝑝
𝐷𝑇

𝐷𝑡
=
𝐷(Π𝜃)

𝐷𝑡
= Π

𝐷𝜃

𝐷𝑡
+ 𝜃

𝐷Π

𝐷𝑡
= Π

𝐷𝜃

𝐷𝑡
+ 𝛼

𝐷𝑝

𝐷𝑡

and on substituting into (1.50) gives:

Π
𝐷𝜃

𝐷𝑡
= 𝒬 (1.53)

which is in conservative form.

For convenience in the model we prefer to step forward (1.53) rather than (1.49).

Boundary conditions

The upper and lower boundary conditions are:

at the top: 𝑝 = 0, 𝜔 =
𝐷𝑝

𝐷𝑡
= 0 (1.54)

at the surface: 𝑝 = 𝑝𝑠, 𝜑 = 𝜑𝑡𝑜𝑝𝑜 = 𝑔 𝑍𝑡𝑜𝑝𝑜 (1.55)

In 𝑝−coordinates, the upper boundary acts like a solid boundary (𝜔 = 0 ); in 𝑧−coordinates the lower boundary is
analogous to a free surface (𝜑 is imposed and 𝜔 ̸= 0).

Splitting the geopotential

For the purposes of initialization and reducing round-off errors, the model deals with perturbations from reference (or
‘standard’) profiles. For example, the hydrostatic geopotential associated with the resting atmosphere is not dynami-
cally relevant and can therefore be subtracted from the equations. The equations written in terms of perturbations are
obtained by substituting the following definitions into the previous model equations:

𝜃 = 𝜃𝑜 + 𝜃′ (1.56)

𝛼 = 𝛼𝑜 + 𝛼′ (1.57)

𝜑 = 𝜑𝑜 + 𝜑′ (1.58)

The reference state (indicated by subscript ‘o’) corresponds to horizontally homogeneous atmosphere at rest
(𝜃𝑜, 𝛼𝑜, 𝜑𝑜) with surface pressure 𝑝𝑜(𝑥, 𝑦) that satisfies 𝜑𝑜(𝑝𝑜) = 𝑔 𝑍𝑡𝑜𝑝𝑜, defined:

𝜃𝑜(𝑝) = 𝑓𝑛(𝑝)

𝛼𝑜(𝑝) = Π𝑝𝜃𝑜

𝜑𝑜(𝑝) = 𝜑𝑡𝑜𝑝𝑜 −
∫︁ 𝑝

𝑝0

𝛼𝑜𝑑𝑝

The final form of the HPE’s in 𝑝−coordinates is then:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ + ∇𝑝𝜑

′ = ℱ⃗ (1.59)
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𝜕𝜑′

𝜕𝑝
+ 𝛼′ = 0 (1.60)

∇𝑝 · v⃗ℎ +
𝜕𝜔

𝜕𝑝
= 0 (1.61)

𝜕Π

𝜕𝑝
𝜃′ = 𝛼′ (1.62)

𝐷𝜃

𝐷𝑡
=

𝒬
Π

(1.63)

Appendix OCEAN

Equations of Motion for the Ocean

We review here the method by which the standard (Boussinesq, incompressible) HPE’s for the ocean written in
𝑧−coordinates are obtained. The non-Boussinesq equations for oceanic motion are:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌
∇𝑧𝑝 = ℱ⃗ (1.64)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+ 𝑔 +

1

𝜌

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.65)

1

𝜌

𝐷𝜌

𝐷𝑡
+ ∇𝑧 · v⃗ℎ +

𝜕𝑤

𝜕𝑧
= 0 (1.66)

𝜌 = 𝜌(𝜃, 𝑆, 𝑝) (1.67)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.68)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.69)

These equations permit acoustics modes, inertia-gravity waves, non-hydrostatic motions, a geostrophic (Rossby) mode
and a thermohaline mode. As written, they cannot be integrated forward consistently - if we step 𝜌 forward in (1.66),
the answer will not be consistent with that obtained by stepping (1.68) and (1.69) and then using (1.67) to yield 𝜌. It
is therefore necessary to manipulate the system as follows. Differentiating the EOS (equation of state) gives:

𝐷𝜌

𝐷𝑡
=
𝜕𝜌

𝜕𝜃

⃒⃒⃒⃒
𝑆,𝑝

𝐷𝜃

𝐷𝑡
+

𝜕𝜌

𝜕𝑆

⃒⃒⃒⃒
𝜃,𝑝

𝐷𝑆

𝐷𝑡
+
𝜕𝜌

𝜕𝑝

⃒⃒⃒⃒
𝜃,𝑆

𝐷𝑝

𝐷𝑡
(1.70)
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Note that 𝜕𝜌
𝜕𝑝 = 1

𝑐2𝑠
is the reciprocal of the sound speed (𝑐𝑠) squared. Substituting into (1.66) gives:

1

𝜌𝑐2𝑠

𝐷𝑝

𝐷𝑡
+ ∇𝑧 · v⃗ + 𝜕𝑧𝑤 ≈ 0 (1.71)

where we have used an approximation sign to indicate that we have assumed adiabatic motion, dropping the 𝐷𝜃
𝐷𝑡 and

𝐷𝑆
𝐷𝑡 . Replacing (1.66) with (1.71) yields a system that can be explicitly integrated forward:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌
∇𝑧𝑝 = ℱ⃗ (1.72)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+ 𝑔 +

1

𝜌

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.73)

1

𝜌𝑐2𝑠

𝐷𝑝

𝐷𝑡
+ ∇𝑧 · v⃗ℎ +

𝜕𝑤

𝜕𝑧
= 0 (1.74)

𝜌 = 𝜌(𝜃, 𝑆, 𝑝) (1.75)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.76)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.77)

Compressible z-coordinate equations

Here we linearize the acoustic modes by replacing 𝜌 with 𝜌𝑜(𝑧) wherever it appears in a product (ie. non-linear
term) - this is the ‘Boussinesq assumption’. The only term that then retains the full variation in 𝜌 is the gravitational
acceleration:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌𝑜
∇𝑧𝑝 = ℱ⃗ (1.78)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+
𝑔𝜌

𝜌𝑜
+

1

𝜌𝑜

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.79)

1

𝜌𝑜𝑐2𝑠

𝐷𝑝

𝐷𝑡
+ ∇𝑧 · v⃗ℎ +

𝜕𝑤

𝜕𝑧
= 0 (1.80)

𝜌 = 𝜌(𝜃, 𝑆, 𝑝) (1.81)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.82)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.83)

These equations still retain acoustic modes. But, because the “compressible” terms are linearized, the pressure equa-
tion (1.80) can be integrated implicitly with ease (the time-dependent term appears as a Helmholtz term in the non-
hydrostatic pressure equation). These are the truly compressible Boussinesq equations. Note that the EOS must have
the same pressure dependency as the linearized pressure term, ie. 𝜕𝜌

𝜕𝑝

⃒⃒⃒
𝜃,𝑆

= 1
𝑐2𝑠

, for consistency.
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‘Anelastic’ z-coordinate equations

The anelastic approximation filters the acoustic mode by removing the time-dependency in the continuity (now
pressure-) equation (1.80). This could be done simply by noting that 𝐷𝑝

𝐷𝑡 ≈ −𝑔𝜌𝑜 𝐷𝑧
𝐷𝑡 = −𝑔𝜌𝑜𝑤, but this leads to

an inconsistency between continuity and EOS. A better solution is to change the dependency on pressure in the EOS
by splitting the pressure into a reference function of height and a perturbation:

𝜌 = 𝜌(𝜃, 𝑆, 𝑝𝑜(𝑧) + 𝜖𝑠𝑝
′)

Remembering that the term 𝐷𝑝
𝐷𝑡 in continuity comes from differentiating the EOS, the continuity equation then be-

comes:

1

𝜌𝑜𝑐2𝑠

(︂
𝐷𝑝𝑜
𝐷𝑡

+ 𝜖𝑠
𝐷𝑝′

𝐷𝑡

)︂
+ ∇𝑧 · v⃗ℎ +

𝜕𝑤

𝜕𝑧
= 0

If the time- and space-scales of the motions of interest are longer than those of acoustic modes, then 𝐷𝑝′

𝐷𝑡 << (𝐷𝑝𝑜

𝐷𝑡 ,∇·
v⃗ℎ) in the continuity equations and 𝜕𝜌

𝜕𝑝

⃒⃒⃒
𝜃,𝑆

𝐷𝑝′

𝐷𝑡 << 𝜕𝜌
𝜕𝑝

⃒⃒⃒
𝜃,𝑆

𝐷𝑝𝑜

𝐷𝑡 in the EOS (1.70). Thus we set 𝜖𝑠 = 0, removing

the dependency on 𝑝′ in the continuity equation and EOS. Expanding 𝐷𝑝𝑜(𝑧)
𝐷𝑡 = −𝑔𝜌𝑜𝑤 then leads to the anelastic

continuity equation:

∇𝑧 · v⃗ℎ +
𝜕𝑤

𝜕𝑧
− 𝑔

𝑐2𝑠
𝑤 = 0 (1.84)

A slightly different route leads to the quasi-Boussinesq continuity equation where we use the scaling 𝜕𝜌′

𝜕𝑡 +∇3 ·𝜌′v⃗ <<
∇3 · 𝜌𝑜v⃗ yielding:

∇𝑧 · v⃗ℎ +
1

𝜌𝑜

𝜕 (𝜌𝑜𝑤)

𝜕𝑧
= 0 (1.85)

Equations (1.84) and (1.85) are in fact the same equation if:

1

𝜌𝑜

𝜕𝜌𝑜
𝜕𝑧

=
−𝑔
𝑐2𝑠

Again, note that if 𝜌𝑜 is evaluated from prescribed 𝜃𝑜 and 𝑆𝑜 profiles, then the EOS dependency on 𝑝𝑜 and the term 𝑔
𝑐2𝑠

in continuity should be referred to those same profiles. The full set of ‘quasi-Boussinesq’ or ‘anelastic’ equations for
the ocean are then:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌𝑜
∇𝑧𝑝 = ℱ⃗ (1.86)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+
𝑔𝜌

𝜌𝑜
+

1

𝜌𝑜

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.87)

∇𝑧 · v⃗ℎ +
1

𝜌𝑜

𝜕 (𝜌𝑜𝑤)

𝜕𝑧
= 0 (1.88)

𝜌 = 𝜌(𝜃, 𝑆, 𝑝𝑜(𝑧)) (1.89)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.90)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.91)

1.5. Appendix OCEAN 31



MITgcm Documentation, Release 1.0

Incompressible z-coordinate equations

Here, the objective is to drop the depth dependence of 𝜌𝑜 and so, technically, to also remove the dependence of 𝜌 on
𝑝𝑜. This would yield the “truly” incompressible Boussinesq equations:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌𝑐
∇𝑧𝑝 = ℱ⃗ (1.92)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+
𝑔𝜌

𝜌𝑐
+

1

𝜌𝑐

𝜕𝑝

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.93)

∇𝑧 · v⃗ℎ +
𝜕𝑤

𝜕𝑧
= 0 (1.94)

𝜌 = 𝜌(𝜃, 𝑆) (1.95)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.96)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.97)

where 𝜌𝑐 is a constant reference density of water.

Compressible non-divergent equations

The above “incompressible” equations are incompressible in both the flow and the density. In many oceanic appli-
cations, however, it is important to retain compressibility effects in the density. To do this we must split the density
thus:

𝜌 = 𝜌𝑜 + 𝜌′

We then assert that variations with depth of 𝜌𝑜 are unimportant while the compressible effects in 𝜌′ are:

𝜌𝑜 = 𝜌𝑐

𝜌′ = 𝜌(𝜃, 𝑆, 𝑝𝑜(𝑧)) − 𝜌𝑜

This then yields what we can call the semi-compressible Boussinesq equations:

𝐷v⃗ℎ

𝐷𝑡
+ 𝑓 k̂× v⃗ℎ +

1

𝜌𝑐
∇𝑧𝑝

′ = ℱ⃗ (1.98)

𝜖𝑛ℎ
𝐷𝑤

𝐷𝑡
+
𝑔𝜌′

𝜌𝑐
+

1

𝜌𝑐

𝜕𝑝′

𝜕𝑧
= 𝜖𝑛ℎℱ𝑤 (1.99)

∇𝑧 · v⃗ℎ +
𝜕𝑤

𝜕𝑧
= 0 (1.100)
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𝜌′ = 𝜌(𝜃, 𝑆, 𝑝𝑜(𝑧)) − 𝜌𝑐 (1.101)

𝐷𝜃

𝐷𝑡
= 𝒬𝜃 (1.102)

𝐷𝑆

𝐷𝑡
= 𝒬𝑠 (1.103)

Note that the hydrostatic pressure of the resting fluid, including that associated with 𝜌𝑐, is subtracted out since it has
no effect on the dynamics.

Though necessary, the assumptions that go into these equations are messy since we essentially assume a different
EOS for the reference density and the perturbation density. Nevertheless, it is the hydrostatic (𝜖𝑛ℎ = 0) form of these
equations that are used throughout the ocean modeling community and referred to as the primitive equations (HPE’s).

Appendix OPERATORS

Coordinate systems

Spherical coordinates

In spherical coordinates, the velocity components in the zonal, meridional and vertical direction respectively, are given
by:

𝑢 = 𝑟 cos𝜙
𝐷𝜆

𝐷𝑡

𝑣 = 𝑟
𝐷𝜙

𝐷𝑡

�̇� =
𝐷𝑟

𝐷𝑡

(see Figure 1.20) Here 𝜙 is the latitude, 𝜆 the longitude, 𝑟 the radial distance of the particle from the center of the
earth, Ω is the angular speed of rotation of the Earth and 𝐷/𝐷𝑡 is the total derivative.

The ‘grad’ (∇) and ‘div’ (∇·) operators are defined by, in spherical coordinates:

∇ ≡
(︂

1

𝑟 cos𝜙

𝜕

𝜕𝜆
,

1

𝑟

𝜕

𝜕𝜙
,
𝜕

𝜕𝑟

)︂

∇ · 𝑣 ≡ 1

𝑟 cos𝜙

{︂
𝜕𝑢

𝜕𝜆
+

𝜕

𝜕𝜙
(𝑣 cos𝜙)

}︂
+

1

𝑟2
𝜕
(︀
𝑟2�̇�
)︀

𝜕𝑟
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Figure 1.20: Spherical polar coordinates: longitude 𝜆, latitude 𝜑 and 𝑟 the distance from the center.
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CHAPTER 2

Getting Started with MITgcm

This chapter is divided into two main parts. The first part, which is covered in sections ref{sec:whereToFindInfo}
through ref{sec:testing}, contains information about how to run experiments using MITgcm. The second part, covered
in sections ref{sec:eg-baro} through ref{sec:eg-offline}, contains a set of step-by-step tutorials for running specific
pre-configured atmospheric and oceanic experiments.

We believe the best way to familiarize yourself with the model is to run the case study examples provided with the
base version. Information on how to obtain, compile, and run the code is found here as well as a brief description of
the model structure directory and the case study examples. Information is also provided here on how to customize
the code when you are ready to try implementing the configuration you have in mind. The code and algorithm are
described more fully in chapters ref{chap:discretization} and ref{chap:sarch}.

Where to find information
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CHAPTER 3

Contributing to the MITgcm

The MITgcm is an open source project that relies on the participation of its users, and we welcome contributions. This
chapter sets out how you can contribute to the MITgcm.

Bugs and feature requests

If you think you’ve found a bug, the best thing to check that you’re using the latest version of the model. If the bug is
still in the latest version, then think about how you might fix it and file a ticket in the GitHub issue tracker [url to be
inserted once we have the proper repo]. Please include as much detail as possible. At a minimum your ticket should
include:

• what the bug does;

• the location of the bug: file name and line number(s); and

• any suggestions you have for how it might be fixed.

To request a new feature, or guidance on how to implement it yourself, please open a ticket with the following details:

• a clear explanation of what the feature will do; and

• a summary of the equations to be solved.

Contributing to the code

To contribute to the source code of the model you will need to fork the repository and place a pull request on GitHub.
The two following sections describe this process in different levels of detail. If you are unfamiliar with git, you may
wish to skip the Quickstart guide and use the detailed instructions. All contributions are expected to conform with the
Style guide.
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Quickstart Guide

You will need a GitHub account, but that’s pretty much it!

1: Fork the project and create a local clone (copy)

You can fork by clicking the button, and create a clone either also by using the button, or in a terminal:
git clone https://github.com/user_name/MITgcm66h.git (substitute your own user
name on github)

move into the new directory: cd MITgcm66h

Finally, we need to set up a remote that points to the original project: git remote add upstream
https://github.com/altMITgcm/MITgcm66h.git

This means that we have two “remotes” of the project, one pointing to your space (origin), and one
pointing to the original (upstream). You can read and write into your “origin” version, but not into the
“upstream” version.

2: Doing stuff! This usually comes in two flavours; Fixing bugs or adding a feature. Here we will assume we are fixing
a bug and branch from the master, but if adding a new feature branching from develop is usually the way it works.

To fix this “bug” we check out the master branch, and make sure we’re up to date. git checkout
master git pull upstream master && git push origin master

Next make a new branch. Naming it something useful helps. git checkout -b bugfix/
contributingHowTo

Do the work! Be sure to include useful and detailed commit messages. To do this you should:

• edit the relevant file(s)

• use git add FILENAME to stage the file(s) ready for a commit command

• use git commit to commit the files

• type a succint (<70 character) summary of what the commit did

• leave a blank line and type a longer description of why the action in this commit was appropriate

• it is good practice to link with issues using the syntax #ISSUE_NUMBER in one or both of the
above.

3: Now we push our branch into the origin remote.

git push -u origin bugfix/contributingHowTo

4: Then create a pull request (PR). In a browser, go to the fork of the project that you made. There is a button for
“Compare and Pull” in your recent branches. Click the button! Now you can add a nice and succinct description of
what you’ve done and flag up any issues.

5: Review by the maintainers!

To sum up from https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project/

The fundamentals are:

1. Fork the project & clone locally.

2. Create an upstream remote and sync your local copy before you branch.

3. Branch for each separate piece of work.

4. Do the work, write good commit messages, and read the guidelines in the manual.

5. Push to your origin repository.

38 Chapter 3. Contributing to the MITgcm

https://akrabat.com/the-beginners-guide-to-contributing-to-a-github-project/


MITgcm Documentation, Release 1.0

6. Create a new PR in GitHub.

7. Respond to any code review feedback.

Detailed guide

To be completed.

MITgcm
main repo

MITgcm
your repo

MITgcm
local copy

“fork”

“origin”“upstream”

GitHub

local git clone
git pull

git push

“pull request”

Figure 3.1: A conceptual map of the GitHub setup. Text in serif font are labels or concepts, text in sans serif represent
commands.

Style guide

Automatic testing with Travis-CI

The MITgcm uses the continuous integration service Travis-CI to test code before it is accepted into the repository.
When you submit a pull request your contributions will be automatically tested. However, it is a good idea to test
before submitting a pull request, so that you have time to fix any issues that are identified. To do this, you will need to
activate Travis-CI for your fork of the repository.

Detailed instructions or link to be added.

Contributing to the manual

Whether you are correcting typos or describing currently undocumented packages, we welcome all contributions to
the manual. The following information will help you make sure that your contribution is consistent with the style
of the MITgcm documentation. (We know that not all of the current documentation follows these guidelines - we’re
working on it)

Once you’ve made your changes to the manual, you should build it locally to verify that it works as expected. To do
this you will need a working python installation with the following modules installed (use pip install MODULE
in the terminal):
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• sphinx

• sphinxcontrib-bibtex

• sphinx_rtd_theme

Then, run make html in the docs directory.

Section headings

• Chapter headings - these are the main headings with integer numbers - underlined with ****

• section headings - headings with number format X.Y - underlined with ====

• Subsection headings - headings with number format X.Y.Z - underlined with ---

• Subsubsection headings - headings with number format X.Y.Z.A - underlined with +++

• Paragraph headings - headings with no numbers - underlined with ###

N.B. all underlinings should be the same length as the heading. If they are too short an error will be produced.

Cross referencing

Labels go above the section they refer to, with the format .. _LABELNAME:. The leading underscore is important.

To reference sections/figures/tables/equations by number use this format for the reference:
:numref:`sec_eg_baro`

To reference sections by name use this format: :ref:`sec_eg_baro`

Maths

Inline maths is done with :math:`LATEX_HERE`

Separate equations, which will be typeset on their own lines, are produced with:

.. math::
:label: eqn_label_here

LATEX_HERE

Units

Units should be typeset in normal text, and exponents added with the :sup: command.

100 N m\ :sup:`--2`

If the exponent is negative use two dashes -- to make the minus sign long enough. The backslash removes the space
between the unit and the exponent.
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Describing subroutine inputs and outputs

This information should go in an ‘adominition’ block. The source code to achieve this is:

.. admonition:: Subroutine
:class: note

S/R GMREDI_CALC_TENSOR (*pkg/gmredi/gmredi_calc_tensor.F*)

:math:`\sigma_x`: **SlopeX** (argument on entry)

:math:`\sigma_y`: **SlopeY** (argument on entry)

:math:`\sigma_z`: **SlopeY** (argument)

:math:`S_x`: **SlopeX** (argument on exit)

:math:`S_y`: **SlopeY** (argument on exit)

Reviewing pull requests

The only people with write access to the main repository are a small number of core MITgcm developers. They are
the people that will eventually merge your pull requests. However, before your PR gets merged, it will undergo the
automated testing on Travis-CI, and it will be assessed by the MITgcm community.

Everyone can review and comment on pull requests. Even if you are not one of the core developers you can still
comment on a pull request.

To test pull requests locally you should:

• add the repository of the user proposing the pull request as a remote, git remote add USERNAME
https://github.com/USERNAME/MITgcm66h.git where USERNAME is replaced by the user name
of the person who has made the pull request;

• download a local version of the branch from the pull request, git fetch USERNAME followed by git
checkout --track USERNAME/foo;

• run tests locally; and

• possibly push fixes or changes directly to the pull request.

None of these steps, apart from the final one, require write access to the main repository. This means that anyone can
review pull requests. However, unless you are one of the core developers you won’t be able to directly push changes.
You will instead have to make a comment describing any problems you find.
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CHAPTER 4

MITgcm Example Experiments

The full MITgcm distribution comes with a set of pre-configured numerical experiments. Some of these example
experiments are tests of individual parts of the model code, but many are fully fledged numerical simulations. Full
tutorials exist for a few of the examples, and are documented in sections Section 4.2 - sec_eg_tank. The other
examples follow the same general structure as the tutorial examples. However, they only include brief instructions in
a text file called {it README}. The examples are located in subdirectories under the directory texttt{verification}.
Each example is briefly described below.

Full list of model examples

Once you have chosen the example you want to run, you are ready to compile the code.

Barotropic Gyre MITgcm Example

(in directory: verification/tutorial_barotropic_gyre/ )

This example experiment demonstrates using the MITgcm to simulate a Barotropic, wind-forced, ocean gyre circula-
tion. The files for this experiment can be found in the verification directory verification/tutorial_barotropic_gyre. The
experiment is a numerical rendition of the gyre circulation problem similar to the problems described analytically by
Stommel in 1966 [Sto48] and numerically in Holland et. al [HL5a].

In this experiment the model is configured to represent a rectangular enclosed box of fluid, 1200 × 1200 km in lateral
extent. The fluid is 5 km deep and is forced by a constant in time zonal wind stress, 𝜏𝑥, that varies sinusoidally in
the ‘north-south’ direction. Topologically the grid is Cartesian and the coriolis parameter 𝑓 is defined according to a
mid-latitude beta-plane equation

𝑓(𝑦) = 𝑓0 + 𝛽𝑦 (4.1)

where 𝑦 is the distance along the ‘north-south’ axis of the simulated domain. For this experiment 𝑓0 is set to 10−4𝑠−1

in (??) and 𝛽 = 10−11𝑠−1𝑚−1.
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The sinusoidal wind-stress variations are defined according to

𝜏𝑥(𝑦) = 𝜏0 sin(𝜋
𝑦

𝐿𝑦
) (4.2)

where 𝐿𝑦 is the lateral domain extent (1200~km) and 𝜏0 is set to 0.1𝑁𝑚−2.

Figure 4.1 summarizes the configuration simulated.
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Figure 4.1: Schematic of simulation domain and wind-stress forcing function for barotropic gyre numerical experi-
ment. The domain is enclosed by solid walls at 𝑥 = 0, 1200 km and at 𝑦 = 0, 1200 km.

Equations Solved

The model is configured in hydrostatic form. The implicit free surface form of the pressure equation described in
[MHPA97] is employed. A horizontal Laplacian operator ∇2

ℎ provides viscous dissipation. The wind-stress momen-
tum input is added to the momentum equation for the ‘zonal flow’, 𝑢. Other terms in the model are explicitly switched
off for this experiment configuration (see section Section 4.2.3 ), yielding an active set of equations solved in this
configuration as follows

𝐷𝑢

𝐷𝑡
− 𝑓𝑣 + 𝑔

𝜕𝜂

𝜕𝑥
−𝐴ℎ∇2

ℎ𝑢 =
𝜏𝑥

𝜌0∆𝑧

𝐷𝑣

𝐷𝑡
+ 𝑓𝑢+ 𝑔

𝜕𝜂

𝜕𝑦
−𝐴ℎ∇2

ℎ𝑣 =0

𝜕𝜂

𝜕𝑡
+ ∇ℎ · �⃗� =0

(4.3)

where 𝑢 and 𝑣 and the 𝑥 and 𝑦 components of the flow vector �⃗�.

Discrete Numerical Configuration

The domain is discretised with a uniform grid spacing in the horizontal set to ∆𝑥 = ∆𝑦 = 20 km, so that there are
sixty grid cells in the 𝑥 and 𝑦 directions. Vertically the model is configured with a single layer with depth, ∆𝑧, of 5000
m.
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Numerical Stability Criteria

The Laplacian dissipation coefficient, 𝐴ℎ, is set to 400𝑚𝑠−1. This value is chosen to yield a Munk layer width
[Adc95],

𝑀𝑤 = 𝜋(
𝐴ℎ

𝛽
)

1
3 (4.4)

of ≈ 100km. This is greater than the model resolution ∆𝑥, ensuring that the frictional boundary layer is well resolved.

The model is stepped forward with a time step 𝛿𝑡 = 1200 secs. With this time step the stability parameter to the
horizontal Laplacian friction [Adc95]

𝑆𝑙 = 4
𝐴ℎ𝛿𝑡

∆𝑥2
(4.5)

evaluates to 0.012, which is well below the 0.3 upper limit for stability.

The numerical stability for inertial oscillations [Adc95]

𝑆𝑖 = 𝑓2𝛿𝑡2 (4.6)

evaluates to 0.0144 , which is well below the 0.5 upper limit for stability.

The advective CFL [Adc95] for an extreme maximum horizontal flow speed of |�⃗�| = 2𝑚𝑠−1

𝑆𝑎 =
|�⃗�|𝛿𝑡
∆𝑥

(4.7)

evaluates to 0.12. This is approaching the stability limit of 0.5 and limits 𝛿𝑡 to 1200 s.

Code Configuration

The model configuration for this experiment resides under the directory verification/
tutorial_barotropic_gyre/.

The experiment files

• input/data

• input/data.pkg

• input/eedata

• input/windx.sin_y

• input/topog.box

• code/CPP_EEOPTIONS.h

• code/CPP_OPTIONS.h

• code/SIZE.h

contain the code customizations and parameter settings for this experiments. Below we describe the customizations to
these files associated with this experiment.

4.2. Barotropic Gyre MITgcm Example 45



MITgcm Documentation, Release 1.0

File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters that are
significant for this configuration are

• Line 7

– viscAh=4.E2,

– this line sets the Laplacian friction coefficient to 400𝑚2𝑠−1

• Line 10

– beta=1.E-11,

– this line sets 𝛽 (the gradient of the coriolis parameter, 𝑓 ) to 10−11𝑠−1𝑚−1

• Lines 15 and 16

– rigidLid=.FALSE.,

– implicitFreeSurface=.TRUE.,

– these lines suppress the rigid lid formulation of the surface pressure inverter and activate the implicit free
surface form of the pressure inverter.

• Line 27

– startTime=0,

– this line indicates that the experiment should start from 𝑡 = 0 and implicitly suppresses searching for
checkpoint files associated with restarting an numerical integration from a previously saved state.

• Line 29

– endTime=12000,

– this line indicates that the experiment should start finish at 𝑡 = 12000𝑠. A restart file will be written at this
time that will enable the simulation to be continued from this point.

• Line 30

– deltaTmom=1200,

– This line sets the momentum equation timestep to 1200𝑠.

• Line 39

– usingCartesianGrid=.TRUE.,

– This line requests that the simulation be performed in a Cartesian coordinate system.

• Line 41

– delX=60*20E3,

– This line sets the horizontal grid spacing between each x-coordinate line in the discrete grid. The syntax
indicates that the discrete grid should be comprise of $60$ grid lines each separated by 20 × 103𝑚 (20
km).

• Line 42

– delY=60*20E3,

– This line sets the horizontal grid spacing between each y-coordinate line in the discrete grid to 20× 103𝑚
(20 km).

• Line 43
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– delZ=5000,

– This line sets the vertical grid spacing between each z-coordinate line in the discrete grid to 5000m (5 km).

• Line 46

– bathyFile=’topog.box’

– This line specifies the name of the file from which the domain bathymetry is read. This file is a two-
dimensional (𝑥, 𝑦) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth
of the model at each grid cell, ordered with the x coordinate varying fastest. The points are ordered from
low coordinate to high coordinate for both axes. The units and orientation of the depths in this file are the
same as used in the MITgcm code. In this experiment, a depth of 0 m indicates a solid wall and a depth of
-5000 m indicates open ocean. The matlab program input/gendata.m shows an example of how to generate
a bathymetry file.

• Line 49

– zonalWindFile=’windx.sin_y’

– This line specifies the name of the file from which the x-direction surface wind stress is read. This file is
also a two-dimensional (𝑥, 𝑦) map and is enumerated and formatted in the same manner as the bathymetry
file. The matlab program input/gendata.m includes example code to generate a valid zonalWindFile file.

other lines in the file input/data are standard values that are described in the MITgcm Getting Started and MITgcm
Parameters notes.

Listing 4.1: verification/tutorial_barotropic_gyre/input/data

1 # Model parameters
2 # Continuous equation parameters
3 &PARM01
4 tRef=20.,
5 sRef=10.,
6 viscAz=1.E-2,
7 viscAh=4.E2,
8 diffKhT=4.E2,
9 diffKzT=1.E-2,

10 beta=1.E-11,
11 tAlpha=2.E-4,
12 sBeta =0.,
13 gravity=9.81,
14 gBaro=9.81,
15 rigidLid=.FALSE.,
16 implicitFreeSurface=.TRUE.,
17 eosType='LINEAR',
18 readBinaryPrec=64,
19 &
20

21 # Elliptic solver parameters
22 &PARM02
23 cg2dMaxIters=1000,
24 cg2dTargetResidual=1.E-7,
25 &
26

27 # Time stepping parameters
28 &PARM03
29 startTime=0,
30 #endTime=311040000,
31 endTime=12000.0,
32 deltaTmom=1200.0,
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33 deltaTtracer=1200.0,
34 abEps=0.1,
35 pChkptFreq=2592000.0,
36 chkptFreq=120000.0,
37 dumpFreq=2592000.0,
38 monitorSelect=2,
39 monitorFreq=1.,
40 &
41

42 # Gridding parameters
43 &PARM04
44 usingCartesianGrid=.TRUE.,
45 usingSphericalPolarGrid=.FALSE.,
46 delX=60*20E3,
47 delY=60*20E3,
48 delZ=5000.,
49 &
50

51 # Input datasets
52 &PARM05
53 bathyFile='topog.box',
54 hydrogThetaFile=,
55 hydrogSaltFile=,
56 zonalWindFile='windx.sin_y',
57 meridWindFile=,
58 &

File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

File input/windx.sin_y

The input/windx.sin_y file specifies a two-dimensional (𝑥, 𝑦) map of wind stress, 𝜏𝑥, values. The units used are𝑁𝑚−2.
Although 𝜏𝑥 is only a function of 𝑦 in this experiment this file must still define a complete two-dimensional map in
order to be compatible with the standard code for loading forcing fields in MITgcm. The included matlab program
input/gendata.m gives a complete code for creating the input/windx.sin_y file.

File input/topog.box

The input/topog.box file specifies a two-dimensional (𝑥, 𝑦) map of depth values. For this experiment values are either
0 m or −𝑑𝑒𝑙𝑍 m, corresponding respectively to a wall or to deep ocean. The file contains a raw binary stream of data
that is enumerated in the same way as standard MITgcm two-dimensional, horizontal arrays. The included matlab
program input/gendata.m gives a completecode for creating the input/topog.box file.

File code/SIZE.h

Two lines are customized in this file for the current experiment
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• Line 39

– sNx=60,

– this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

• Line 40

– sNy=60,

– this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

Listing 4.2: verification/tutorial_barotropic_gyre/code/SIZE.h

1 C $Header$
2 C $Name$
3 C
4 C /==========================================================\
5 C | SIZE.h Declare size of underlying computational grid. |
6 C |==========================================================|
7 C | The design here support a three-dimensional model grid |
8 C | with indices I,J and K. The three-dimensional domain |
9 C | is comprised of nPx*nSx blocks of size sNx along one axis|

10 C | nPy*nSy blocks of size sNy along another axis and one |
11 C | block of size Nz along the final axis. |
12 C | Blocks have overlap regions of size OLx and OLy along the|
13 C | dimensions that are subdivided. |
14 C \==========================================================/
15 C Voodoo numbers controlling data layout.
16 C sNx - No. X points in sub-grid.
17 C sNy - No. Y points in sub-grid.
18 C OLx - Overlap extent in X.
19 C OLy - Overlat extent in Y.
20 C nSx - No. sub-grids in X.
21 C nSy - No. sub-grids in Y.
22 C nPx - No. of processes to use in X.
23 C nPy - No. of processes to use in Y.
24 C Nx - No. points in X for the total domain.
25 C Ny - No. points in Y for the total domain.
26 C Nr - No. points in R for full process domain.
27 INTEGER sNx
28 INTEGER sNy
29 INTEGER OLx
30 INTEGER OLy
31 INTEGER nSx
32 INTEGER nSy
33 INTEGER nPx
34 INTEGER nPy
35 INTEGER Nx
36 INTEGER Ny
37 INTEGER Nr
38 PARAMETER (
39 & sNx = 30,
40 & sNy = 30,
41 & OLx = 2,
42 & OLy = 2,
43 & nSx = 2,
44 & nSy = 2,
45 & nPx = 1,
46 & nPy = 1,
47 & Nx = sNx*nSx*nPx,
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48 & Ny = sNy*nSy*nPy,
49 & Nr = 1)
50

51 C MAX_OLX - Set to the maximum overlap region size of any array
52 C MAX_OLY that will be exchanged. Controls the sizing of exch
53 C routine buufers.
54 INTEGER MAX_OLX
55 INTEGER MAX_OLY
56 PARAMETER ( MAX_OLX = OLx,
57 & MAX_OLY = OLy )
58

File code/CPP_OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.

A Rotating Tank in Cylindrical Coordinates

(in directory: verification/rotating_tank/)

Overview

This example configuration demonstrates using the MITgcm to simulate a laboratory demonstration using a differen-
tially heated rotating annulus of water. The simulation is configured for a laboratory scale on a 3∘ × 1cm cyclindrical
grid with twenty-nine vertical levels of 0.5cm each. This is a typical laboratory setup for illustration principles of
GFD, as well as for a laboratory data assimilation project. The files for this experiment can be found in the verification
directory under rotating_tank.

example illustration from GFD lab here

Equations Solved

Discrete Numerical Configuration

The domain is discretised with a uniform cylindrical grid spacing in the horizontal set to ∆𝑎 = 1‘ 𝑐𝑚𝑎𝑛𝑑 :
𝑚𝑎𝑡ℎ :Delta phi=3^{circ}‘, so that there are 120 grid cells in the azimuthal direction and thirty-one grid cells in
the radial, representing a tank 62cm in diameter. The bathymetry file sets the depth=0 in the nine lowest radial rows
to represent the central of the annulus. Vertically the model is configured with twenty-nine layers of uniform 0.5cm
thickness.

something about heat flux
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Code Configuration

The model configuration for this experiment resides under the directory verification/rotatingi_tank/.
The experiment files

• input/data

• input/data.pkg

• input/eedata

• input/bathyPol.bin

• input/thetaPol.bin

• code/CPP\_EEOPTIONS.h

• code/CPP\_OPTIONS.h

• code/SIZE.h

contain the code customizations and parameter settings for this experiments. Below we describe the customizations to
these files associated with this experiment.

File input/data

This file, reproduced completely below, specifies the main parameters for the experiment. The parameters that are
significant for this configuration are

• Lines 9-10,

– viscAh=5.0E-6,

– viscAz=5.0E-6,

These lines set the Laplacian friction coefficient in the horizontal and vertical, respectively. Note that they are several
orders of magnitude smaller than the other examples due to the small scale of this example.

• Lines 13-16,

– diffKhT=2.5E-6,

– diffKzT=2.5E-6,

– diffKhS=1.0E-6,

– diffKzS=1.0E-6,

These lines set horizontal and vertical diffusion coefficients for temperature and salinity. Similarly to the friction
coefficients, the values are a couple of orders of magnitude less than most

configurations.

• Line 17, f0=0.5, this line sets the

coriolis term, and represents a tank spinning at about 2.4 rpm.

• Lines 23 and 24

– rigidLid=.TRUE.,

– implicitFreeSurface=.FALSE.,

These lines activate the rigid lid formulation of the surface pressure inverter and suppress the implicit free surface
form of the pressure inverter.

• Line 40,
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– nIter=0,

This line indicates that the experiment should start from $t=0$ and implicitly suppresses searching for checkpoint files
associated with restarting an numerical integration from a previously saved state. Instead, the file thetaPol.bin will be
loaded to initialized the temperature fields as indicated below, and other variables will be initialized to their defaults.

• Line 43,

– deltaT=0.1,

This line sets the integration timestep to $0.1s$. This is an unsually small value among the examples due to the small
physical scale of the experiment. Using the ensemble Kalman filter to produce input fields can necessitate even shorter
timesteps.

• Line 56,

– usingCylindricalGrid=.TRUE.,

This line requests that the simulation be performed in a cylindrical coordinate system.

• Line 57,

– dXspacing=3,

This line sets the azimuthal grid spacing between each $x$-coordinate line in the discrete grid. The syntax indicates
that the discrete grid should be comprised of $120$ grid lines each separated by $3^{circ}$.

• Line 58,

– dYspacing=0.01,

This line sets the radial cylindrical grid spacing between each 𝑎-coordinate line in the discrete grid to 1𝑐𝑚.

• Line 59,

– delZ=29*0.005,

This line sets the vertical grid spacing between each of 29 z-coordinate lines in the discrete grid to $0.005m$
($5$~mm).

• Line 64,

– bathyFile=’bathyPol.bin’,

This line specifies the name of the file from which the domain ‘bathymetry’ (tank depth) is read. This file is a two-
dimensional (𝑎, 𝜑) map of depths. This file is assumed to contain 64-bit binary numbers giving the depth of the model
at each grid cell, ordered with the $phi$ coordinate varying fastest. The points are ordered from low coordinate to
high coordinate for both axes. The units and orientation of the depths in this file are the same as used in the MITgcm
code. In this experiment, a depth of $0m$ indicates an area outside of the tank and a depth f −0.145𝑚 indicates the
tank itself.

• Line 65,

– hydrogThetaFile=’thetaPol.bin’,

This line specifies the name of the file from which the initial values of temperature are read. This file is a three-
dimensional (𝑥, 𝑦, 𝑧) map and is enumerated and formatted in the same manner as the bathymetry file.

• Lines 66 and 67

– tCylIn = 0

– tCylOut = 20

These line specify the temperatures in degrees Celsius of the interior and exterior walls of the tank – typically taken to
be icewater on the inside and room temperature on the outside.
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Other lines in the file input/data are standard values that are described in the MITgcm Getting Started and MITgcm
Parameters notes.

Listing 4.3: verification/rotating_tank/input/data

1 # ====================
2 # | Model parameters |
3 # ====================
4 #
5 # Continuous equation parameters
6 &PARM01
7 tRef=29*20.0,
8 sRef=29*35.0,
9 viscAh=5.0E-6,

10 viscAz=5.0E-6,
11 no_slip_sides=.FALSE.,
12 no_slip_bottom=.FALSE.,
13 diffKhT=2.5E-6,
14 diffKzT=2.5E-6,
15 diffKhS=1.0E-6,
16 diffKzS=1.0E-6,
17 f0=0.5,
18 eosType='LINEAR',
19 sBeta =0.,
20 gravity=9.81,
21 rhoConst=1000.0,
22 rhoNil=1000.0,
23 #heatCapacity_Cp=3900.0,
24 rigidLid=.TRUE.,
25 implicitFreeSurface=.FALSE.,
26 nonHydrostatic=.TRUE.,
27 readBinaryPrec=32,
28 &
29

30 # Elliptic solver parameters
31 &PARM02
32 cg2dMaxIters=1000,
33 cg2dTargetResidual=1.E-7,
34 cg3dMaxIters=10,
35 cg3dTargetResidual=1.E-9,
36 &
37

38 # Time stepping parameters
39 &PARM03
40 nIter0=0,
41 nTimeSteps=20,
42 #nTimeSteps=36000000,
43 deltaT=0.1,
44 abEps=0.1,
45 pChkptFreq=2.0,
46 #chkptFreq=2.0,
47 dumpFreq=2.0,
48 monitorSelect=2,
49 monitorFreq=0.1,
50 &
51

52 # Gridding parameters
53 &PARM04
54 usingCylindricalGrid=.TRUE.,
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55 dXspacing=3.,
56 dYspacing=0.01,
57 delZ=29*0.005,
58 ygOrigin=0.07,
59 &
60

61 # Input datasets
62 &PARM05
63 hydrogThetaFile='thetaPolR.bin',
64 bathyFile='bathyPolR.bin',
65 tCylIn = 0.,
66 tCylOut = 20.,
67 &

File input/data.pkg

This file uses standard default values and does not contain customizations for this experiment.

File input/eedata

This file uses standard default values and does not contain customizations for this experiment.

File input/thetaPol.bin

The {it input/thetaPol.bin} file specifies a three-dimensional ($x,y,z$) map of initial values of $theta$ in degrees
Celsius. This particular experiment is set to random values x around 20C to provide initial perturbations.

File input/bathyPol.bin

The {it input/bathyPol.bin} file specifies a two-dimensional ($x,y$) map of depth values. For this experiment values
are either $0m$ or {bf -delZ}m, corresponding respectively to outside or inside of the tank. The file contains a raw
binary stream of data that is enumerated in the same way as standard MITgcm two-dimensional, horizontal arrays.

File code/SIZE.h

Two lines are customized in this file for the current experiment

• Line 39, - sNx=120,

this line sets the lateral domain extent in grid points for the axis aligned with the x-coordinate.

• Line 40, - sNy=31,

this line sets the lateral domain extent in grid points for the axis aligned with the y-coordinate.

Listing 4.4: verification/rotating_tank/code/SIZE.h

1 C $Header$
2 C $Name$
3 C
4 C /==========================================================\
5 C | SIZE.h Declare size of underlying computational grid. |
6 C |==========================================================|

54 Chapter 4. MITgcm Example Experiments



MITgcm Documentation, Release 1.0

7 C | The design here support a three-dimensional model grid |
8 C | with indices I,J and K. The three-dimensional domain |
9 C | is comprised of nPx*nSx blocks of size sNx along one axis|

10 C | nPy*nSy blocks of size sNy along another axis and one |
11 C | block of size Nz along the final axis. |
12 C | Blocks have overlap regions of size OLx and OLy along the|
13 C | dimensions that are subdivided. |
14 C \==========================================================/
15 C Voodoo numbers controlling data layout.
16 C sNx - No. X points in sub-grid.
17 C sNy - No. Y points in sub-grid.
18 C OLx - Overlap extent in X.
19 C OLy - Overlat extent in Y.
20 C nSx - No. sub-grids in X.
21 C nSy - No. sub-grids in Y.
22 C nPx - No. of processes to use in X.
23 C nPy - No. of processes to use in Y.
24 C Nx - No. points in X for the total domain.
25 C Ny - No. points in Y for the total domain.
26 C Nr - No. points in Z for full process domain.
27 INTEGER sNx
28 INTEGER sNy
29 INTEGER OLx
30 INTEGER OLy
31 INTEGER nSx
32 INTEGER nSy
33 INTEGER nPx
34 INTEGER nPy
35 INTEGER Nx
36 INTEGER Ny
37 INTEGER Nr
38 PARAMETER (
39 & sNx = 30,
40 & sNy = 23,
41 & OLx = 3,
42 & OLy = 3,
43 & nSx = 4,
44 & nSy = 1,
45 & nPx = 1,
46 & nPy = 1,
47 & Nx = sNx*nSx*nPx,
48 & Ny = sNy*nSy*nPy,
49 & Nr = 29)
50

51 C MAX_OLX - Set to the maximum overlap region size of any array
52 C MAX_OLY that will be exchanged. Controls the sizing of exch
53 C routine buufers.
54 INTEGER MAX_OLX
55 INTEGER MAX_OLY
56 PARAMETER ( MAX_OLX = OLx,
57 & MAX_OLY = OLy )
58

File code/CPP_OPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.
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File code/CPP_EEOPTIONS.h

This file uses standard default values and does not contain customizations for this experiment.
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CHAPTER 5

Physical Parameterizations - Packages I

In this chapter and in the following chapter, the MITgcm ‘packages’ are described. While you can carry out many
experiments with MITgcm by starting from case studies in section ref{sec:modelExamples}, configuring a brand new
experiment or making major changes to an experimental configuration requires some knowledge of the packages that
make up the full MITgcm code. Packages are used in MITgcm to help organize and layer various code building blocks
that are assembled and selected to perform a specific experiment. Each of the specific experiments described in section
ref{sec:modelExamples} uses a particular combination of packages.

Figure 5.1 shows the full set of packages that are available. As shown in the figure packages are classified into different
groupings that layer on top of each other. The top layer packages are generally specialized to specific simulation types.
In this layer there are packages that deal with biogeochemical processes, ocean interior and boundary layer processes,
atmospheric processes, sea-ice, coupled simulations and state estimation. Below this layer are a set of general purpose
numerical and computational packages. The general purpose numerical packages provide code for kernel numerical
alogorithms that apply to many different simulation types. Similarly, the general purpose computational packages
implement non-numerical alogorithms that provide parallelism, I/O and time-keeping functions that are used in many
different scenarios.

The following sections describe the packages shown in Figure 5.1. Section ref{sec:pkg:using} describes the general
procedure for using any package in MITgcm. Following that sections ref{sec:pkg:gad}-ref{sec:pkg:monitor} layout
the algorithms implemented in specific packages and describe how to use the individual packages. A brief synopsis
of the function of each package is given in table ref{tab:package_summary_tab}. Organizationally package code is
assigned a separate subdirectory in the MITgcm code distribution (within the source code directory texttt{pkg}). The
name of this subdirectory is used as the package name in table ref{tab:package_summary_tab}.

Overview

Using MITgcm Packages

The set of packages that will be used within a partiucular model can be configured using a combination of both
“compile–time” and “run–time” options. Compile–time options are those used to select which packages will be
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Figure 5.1: Hierarchy of code layers that are assembled to make up an MITgcm simulation. Conceptually (and in
terms of code organization) MITgcm consists of several layers. At the base is a layer of core software that provides
a basic numerical and computational foundation for MITgcm simulations. This layer is shown marked Foundation
Code at the bottom of the figure and corresponds to code in the italicised subdirectories on the figure. This layer
is not organized into packages. All code above the foundation layer is organized as packages. Much of the code
in MITgcm is contained in packages which serve as a useful way of organizing and layering the different levels of
functionality that make up the full MITgcm software distribution. The figure shows the different packages in MITgcm
as boxes containing bold face upper case names. Directly above the foundation layer are two layers of general purpose
infrastructure software that consist of computational and numerical packages. These general purpose packages can be
applied to both online and offline simulations and are used in many different physical simulation types. Above these
layers are more specialized packages.
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“compiled in” or implemented within the program. Packages excluded at compile time are completely absent from the
executable program(s) and thus cannot be later activated by any set of subsequent run–time options.

Package Inclusion/Exclusion

There are numerous ways that one can specify compile–time package inclusion or exclusion and they are all imple-
mented by the genmake2 program which was previously described in Section [sec:buildingCode]. The options are
as follows:

1. Setting the genamake2 options -enable PKG and/or -disable PKG specifies inclusion or exclusion.
This method is intended as a convenient way to perform a single (perhaps for a quick test) compilation.

2. By creating a text file with the name packages.conf in either the local build directory or the -mods=DIR
directory, one can specify a list of packages (one package per line, with ’#’ as the comment character) to be
included. Since the packages.conf file can be saved, this is the preferred method for setting and recording
(for future reference) the package configuration.

3. For convenience, a list of “standard” package groups is contained in the pkg/pkg_groups file. By selecting
one of the package group names in the packages.conf file, one automatically obtains all packages in that
group.

4. By default (that is, if a packages.conf file is not found), the genmake2 program will use the package
group default “default_pkg_list” as defined in pkg/pkg_groups file.

5. To help prevent users from creating unusable package groups, the genmake2 program will parse the contents
of the pkg/pkg_depend file to determine:

• whether any two requested packages cannot be simultaneously included (eg. seaice and thsice are mutually
exclusive),

• whether additional packages must be included in order to satisfy package dependencies (eg. rw depends
upon functionality within the mdsio package), and

• whether the set of all requested packages is compatible with the dependencies (and producing an error if
they aren’t).

Thus, as a result of the dependencies, additional packages may be added to those originally requested.

Package Activation

For run–time package control, MITgcm uses flags set through a data.pkg file. While some packages (eg. debug,
mnc, exch2) may have their own usage conventions, most follow a simple flag naming convention of the form:

usePackageName=.TRUE.

where the usePackageName variable can activate or disable the package at runtime. As mentioned previously,
packages must be included in order to be activated. Generally, such mistakes will be detected and reported as errors
by the code. However, users should still be aware of the dependency.

Package Coding Standards

The following sections describe how to modify and/or create new MITgcm packages.
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Packages are Not Libraries

To a beginner, the MITgcm packages may resemble libraries as used in myriad software projects. While future
versions are likely to implement packages as libraries (perhaps using FORTRAN90/95 syntax) the current packages
(FORTRAN77) are not based upon any concept of libraries.

File Inclusion Rules

Instead, packages should be viewed only as directories containing “sets of source files” that are built using some
simple mechanisms provided by genmake2. Conceptually, the build process adds files as they are found and proceeds
according to the following rules:

1. genmake2 locates a “core” or main set of source files (the -standarddirs option sets these locations and
the default value contains the directories eesupp and model).

2. genmake2 then finds additional source files by inspecting the contents of each of the package directories:

(a) As the new files are found, they are added to a list of source files.

(b) If there is a file name “collision” (that is, if one of the files in a package has the same name as one of the
files previously encountered) then the file within the newer (more recently visited) package will superseed
(or “hide”) any previous file(s) with the same name.

(c) Packages are visited (and thus files discovered) in the order that the packages are enabled within
genmake2. Thus, the files in PackB may superseed the files in PackA if PackA is enabled before
PackB. Thus, package ordering can be significant! For this reason, genmake2 honors the order in which
packages are specified.

These rules were adopted since they provide a relatively simple means for rapidly including (or “hiding”) existing files
with modified versions.

Conditional Compilation and PACKAGES_CONFIG.h

Given that packages are simply groups of files that may be added or removed to form a whole, one may wonder
how linking (that is, FORTRAN symbol resolution) is handled. This is the second way that genmake2 supports
the concept of packages. Basically, genmake2 creates a Makefile that, in turn, is able to create a file called
PACKAGES_CONFIG.h that contains a set of C pre-processor (or “CPP”) directives such as:

#undef ALLOW_KPP
#undef ALLOW_LAND
...
#define ALLOW_GENERIC_ADVDIFF
#define ALLOW_MDSIO
...

These CPP symbols are then used throughout the code to conditionally isolate variable definitions, function calls, or
any other code that depends upon the presence or absence of any particular package.

An example illustrating the use of these defines is:

#ifdef ALLOW_GMREDI
IF (useGMRedi) CALL GMREDI_CALC_DIFF(

I bi,bj,iMin,iMax,jMin,jMax,K,
I maskUp,
O KappaRT,KappaRS,
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I myThid)
#endif

which is included from the file and shows how both the compile–time ALLOW_GMREDI flag and the run–time
useGMRedi are nested.

There are some benefits to using the technique described here. The first is that code snippets or subroutines associated
with packages can be placed or called from almost anywhere else within the code. The second benefit is related to
memory footprint and performance. Since unused code can be removed, there is no performance penalty due to unnec-
essary memory allocation, unused function calls, or extra run-time IF (...) conditions. The major problems with
this approach are the potentially difficult-to-read and difficult-to-debug code caused by an overuse of CPP statements.
So while it can be done, developers should exerecise some discipline and avoid unnecesarily “smearing” their package
implementation details across numerous files.

Package Startup or Boot Sequence

Calls to package routines within the core code timestepping loop can vary. However, all packages should follow a
required “boot” sequence outlined here:

1. S/R PACKAGES_BOOT()
:

CALL OPEN_COPY_DATA_FILE( 'data.pkg', 'PACKAGES_BOOT', ... )

2. S/R PACKAGES_READPARMS()
:

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_READPARMS( retCode )
#endif

3. S/R PACKAGES_INIT_FIXED()
:

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_INIT_FIXED( retCode )
#endif

4. S/R PACKAGES_CHECK()
:

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_CHECK( retCode )
#else

if ( use${Pkg} )
& CALL PACKAGES_CHECK_ERROR('${PKG}')

#endif

5. S/R PACKAGES_INIT_VARIABLES()
:

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_INIT_VARIA( )
#endif

6. S/R DO_THE_MODEL_IO

5.1. Overview 61



MITgcm Documentation, Release 1.0

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_OUTPUT( )
#endif

7. S/R PACKAGES_WRITE_PICKUP()

#ifdef ALLOW_${PKG}
if ( use${Pkg} )

& CALL ${PKG}_WRITE_PICKUP( )
#endif

Adding a package to PARAMS.h and packages_boot()

An MITgcm package directory contains all the code needed for that package apart from one variable for each package.
This variable is the use${Pkg} * flag. This flag, which is of type logical, **must* be declared in the shared header file
PARAMS.h in the PARM_PACKAGES block. This convention is used to support a single runtime control file data.pkg
which is read by the startup routine packages_boot() and that sets a flag controlling the runtime use of a package. This
routine needs to be able to read the flags for packages that were not built at compile time. Therefore when adding a new
package, in addition to creating the per-package directory in the pkg/ subdirectory a developer should add a use${Pkg}
* flag to *PARAMS.h and a use${Pkg} * entry to the *packages_boot() PACKAGES namelist. The only other package
specific code that should appear outside the individual package directory are calls to the specific package API.

Packages Related to Hydrodynamical Kernel

Generic Advection/Diffusion

The generic_advdiff package contains high-level subroutines to solve the advection-diffusion equation of any tracer,
either active (potential temperature, salinity or water vapor) or passive (see pkg/ptracers). (see also sections
[sec:tracer:sub:equations] to [sec:tracer:sub:advectionschemes]).

Introduction

Package “generic_advdiff” provides a common set of routines for calculating advective/diffusive fluxes for tracers
(cell centered quantities on a C-grid).

Many different advection schemes are available: the standard centered second order, centered fourth order and upwind
biased third order schemes are known as linear methods and require some stable time-stepping method such as Adams-
Bashforth. Alternatives such as flux-limited schemes are stable in the forward sense and are best combined with the
multi-dimensional method provided in gad_advection.

Key subroutines, parameters and files

There are two high-level routines:

• GAD_CALC_RHS calculates all fluxes at time level “n” and is used for the standard linear schemes. This must
be used in conjuction with Adams–Bashforth time stepping. Diffusive and parameterized fluxes are always
calculated here.
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• GAD_ADVECTION calculates just the advective fluxes using the non-linear schemes and can not be used in
conjuction with Adams–Bashforth time stepping.

GAD Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
ADVr_TH | 15 |WM LR |degC.m^3/s |Vertical Advective Flux of Pot.
→˓Temperature
ADVx_TH | 15 |UU 087MR |degC.m^3/s |Zonal Advective Flux of Pot.
→˓Temperature
ADVy_TH | 15 |VV 086MR |degC.m^3/s |Meridional Advective Flux of Pot.
→˓Temperature
DFrE_TH | 15 |WM LR |degC.m^3/s |Vertical Diffusive Flux of Pot.
→˓Temperature (Explicit part)
DIFx_TH | 15 |UU 090MR |degC.m^3/s |Zonal Diffusive Flux of Pot.
→˓Temperature
DIFy_TH | 15 |VV 089MR |degC.m^3/s |Meridional Diffusive Flux of Pot.
→˓Temperature
DFrI_TH | 15 |WM LR |degC.m^3/s |Vertical Diffusive Flux of Pot.
→˓Temperature (Implicit part)
ADVr_SLT| 15 |WM LR |psu.m^3/s |Vertical Advective Flux of Salinity
ADVx_SLT| 15 |UU 094MR |psu.m^3/s |Zonal Advective Flux of Salinity
ADVy_SLT| 15 |VV 093MR |psu.m^3/s |Meridional Advective Flux of Salinity
DFrE_SLT| 15 |WM LR |psu.m^3/s |Vertical Diffusive Flux of Salinity
→˓ (Explicit part)
DIFx_SLT| 15 |UU 097MR |psu.m^3/s |Zonal Diffusive Flux of Salinity
DIFy_SLT| 15 |VV 096MR |psu.m^3/s |Meridional Diffusive Flux of Salinity
DFrI_SLT| 15 |WM LR |psu.m^3/s |Vertical Diffusive Flux of Salinity
→˓ (Implicit part)

Experiments and tutorials that use GAD

• Offline tutorial, in tutorial_offline verification directory, described in section [sec:eg-offline]

• Baroclinic gyre experiment, in tutorial_baroclinic_gyre verification directory, described in section [sec:eg-
fourlayer]

• Tracer Sensitivity tutorial, in tutorial_tracer_adjsens verification directory, described in section [sec:eg-simple-
tracer-adjoint]

Shapiro Filter

(in directory: pkg/shap_filt/)

Key subroutines, parameters and files

Implementation of filter is described in section [sec:shapiro-filter].

Experiments and tutorials that use shap filter

• Held Suarez tutorial, in tutorial_held_suarez_cs verification directory, described in section [sec:eg-hs]
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• other Held Suarez verification experiments (hs94.128x64x5, hs94.1x64x5, hs94.cs-32x32x5)

• AIM verification experiments (aim.5l_cs, aim.5l_Equatorial_Channel, aim.5l_LatLon)

• fizhi verification experiments (fizhi-cs-32x32x40, fizhi-cs-aqualev20, fizhi-gridalt-hs)

FFT Filtering Code

(in directory: pkg/zonal_filt/)

Key subroutines, parameters and files

Experiments and tutorials that use zonal filter

• Held Suarez verification experiment (hs94.128x64x5)

• AIM verification experiment (aim.5l_LatLon)

exch2: Extended Cubed Sphere Topology

Introduction

The exch2 package extends the original cubed sphere topology configuration to allow more flexible domain decom-
position and parallelization. Cube faces (also called subdomains) may be divided into any number of tiles that divide
evenly into the grid point dimensions of the subdomain. Furthermore, the tiles can run on separate processors indi-
vidually or in groups, which provides for manual compile-time load balancing across a relatively arbitrary number of
processors.

The exchange parameters are declared in \pkgexch2/W2\_EXCH2\_TOPOLOGY.h and assigned in pkg/
exch2/w2\_e2setup.F. The validity of the cube topology depends on the SIZE.h file as detailed below. The
default files provided in the release configure a cubed sphere topology of six tiles, one per subdomain, each with 32
× 32 grid points, with all tiles running on a single processor. Both files are generated by Matlab scripts in utils/
exch2/matlab-topology-generator; see Section ref{sec:topogen} for details on creating alternate topolo-
gies. Pregenerated examples of these files with alternate topologies are provided under utils/exch2/code-mods
along with the appropriate SIZE.h file for single-processor execution.

Invoking exch2

To use exch2 with the cubed sphere, the following conditions must be met:

• The exch2 package is included when genmake2 is run. The easiest way to do this is to add the line code{exch2}
to the packages.conf file – see Section ref{sec:buildingCode} sectiontitle{Building the code} for general
details.

• An example of W2\_EXCH2\_TOPOLOGY.h and w2\_e2setup.F must reside in a directory containing
files symbolically linked by the genmake2 script. The safest place to put these is the directory indicated in the
-mods=DIR command line modifier (typically ../code), or the build directory. The default versions of these
files reside in pkg/exch2 and are linked automatically if no other versions exist elsewhere in the build path,
but they should be left untouched to avoid breaking configurations other than the one you intend to modify.

• Files containing grid parameters, named tile00$n$.mitgrid where n=(1:6) (one per subdomain), must
be in the working directory when the MITgcm executable is run. These files are provided in the example
experiments for cubed sphere configurations with 32 × 32 cube sides – please contact MITgcm support if you
want to generate files for other configurations.
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• As always when compiling MITgcm, the file SIZE.h must be placed where genmake2 will find it. In par-
ticular for exch2, the domain decomposition specified in SIZE.h must correspond with the particular config-
uration’s topology specified in W2\_EXCH2\_TOPOLOGY.h and w2\_e2setup.F. Domain decomposition
issues particular to exch2 are addressed in Section ref{sec:topogen} sectiontitle{Generating Topology Files
for exch2} and ref{sec:exch2mpi} sectiontitle{exch2, SIZE.h, and Multiprocessing}; a more general back-
ground on the subject relevant to MITgcm is presented in Section ref{sec:specifying_a_decomposition} sec-
tiontitle{Specifying a decomposition}.

At the time of this writing the following examples use exch2 and may be used for guidance:

• verification/adjust_nlfs.cs-32x32x1

• verification/adjustment.cs-32x32x1

• verification/aim.5l_cs

• verification/global_ocean.cs32x15

• verification/hs94.cs-32x32x5

Generating Topology Files for exch2

Alternate cubed sphere topologies may be created using the Matlab scripts
in utils/exch2/matlab-topology-generator. Running the m-file
utils-exch2-matlab-topology-generator_driver.m from the Matlab prompt (there are no pa-
rameters to pass) generates exch2 topology files W2\_EXCH2\_TOPOLOGY.h and w2\_e2setup.F in the
working directory and displays a figure of the topology via Matlab – figures ref{fig:6tile}, ref{fig:18tile}, and
ref{fig:48tile} are examples of the generated diagrams. The other m-files in the directory are subroutines called from
driver.m and should not be run ‘’bare” except for development purposes.

The parameters that determine the dimensions and topology of the generated configuration are nr, nb, ng, tnx and
tny, and all are assigned early in the script.

The first three determine the height and width of the subdomains and hence the size of the overall domain. Each
one determines the number of grid points, and therefore the resolution, along the subdomain sides in a ‘’great circle”
around each the three spatial axes of the cube. At the time of this writing MITgcm requires these three parameters to
be equal, but they provide for future releases to accomodate different resolutions around the axes to allow subdomains
with differing resolutions.

The parameters tnx and tny determine the width and height of the tiles into which the subdomains are decomposed,
and must evenly divide the integer assigned to nr, nb and ng. The result is a rectangular tiling of the subdomain.
Figure 5.2 shows one possible topology for a twenty-four-tile cube, and Figure 5.4 shows one for six tiles.

Tiles can be selected from the topology to be omitted from being allocated memory and processors. This tuning
is useful in ocean modeling for omitting tiles that fall entirely on land. The tiles omitted are specified in the file
blanklist.txt by their tile number in the topology, separated by a newline.

exch2, SIZE.h, and Multiprocessing

Once the topology configuration files are created, each Fortran PARAMETER in SIZE.h must be configured to match.
Section ref{sec:specifying_a_decomposition} sectiontitle{Specifying a decomposition} provides a general description
of domain decomposition within MITgcm and its relation to file{SIZE.h}. The current section specifies constraints
that the exch2 package imposes and describes how to enable parallel execution with MPI.

As in the general case, the parameters varlink{sNx}{sNx} and varlink{sNy}{sNy} define the size of the individual
tiles, and so must be assigned the same respective values as code{tnx} and code{tny} in file{driver.m}.
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Figure 5.2: Plot of a cubed sphere topology with a 32 × 192 domain divided into six 32 × 32 subdomains, each of
which is divided into eight tiles of width tnx=16 and height tny=8 for a total of forty-eight tiles. The colored borders
of the subdomains represent the parameters nr (red), ng (green), and nb (blue). This tiling is used in the example
verification/adjustment.cs-32x32x1/ with the option (blanklist.txt) to remove the land-only 4 tiles (11,12,13,14) which
are filled in red on the plot.
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Figure 5.3: Plot of a non-square cubed sphere topology with 6 subdomains of different size (nr=90,ng=360,nb=90),
divided into one to four tiles each (tnx=90, tny=90), resulting in a total of 18 tiles.
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Figure 5.4: Plot of a cubed sphere topology with a 32 × 192 domain divided into six 32 × 32 subdomains with one
tile each (tnx=32, tny=32). This is the default configuration.

The halo width parameters varlink{OLx}{OLx} and varlink{OLy}{OLy} have no special bearing on exch2 and may
be assigned as in the general case. The same holds for varlink{Nr}{Nr}, the number of vertical levels in the model.

The parameters varlink{nSx}{nSx}, varlink{nSy}{nSy}, varlink{nPx}{nPx}, and varlink{nPy}{nPy} relate to the
number of tiles and how they are distributed on processors. When using exch2, the tiles are stored in the $x$ dimension,
and so code{varlink{nSy}{nSy}=1} in all cases. Since the tiles as configured by exch2 cannot be split up accross
processors without regenerating the topology, code{varlink{nPy}{nPy}=1} as well.

The number of tiles MITgcm allocates and how they are distributed between processors depends on var-
link{nPx}{nPx} and varlink{nSx}{nSx}. varlink{nSx}{nSx} is the number of tiles per processor and var-
link{nPx}{nPx} is the number of processors. The total number of tiles in the topology minus those listed in
file{blanklist.txt} must equal code{nSx*nPx}. Note that in order to obtain maximum usage from a given number
of processors in some cases, this restriction might entail sharing a processor with a tile that would otherwise be ex-
cluded because it is topographically outside of the domain and therefore in file{blanklist.txt}. For example, suppose
you have five processors and a domain decomposition of thirty-six tiles that allows you to exclude seven tiles. To
evenly distribute the remaining twenty-nine tiles among five processors, you would have to run one ‘’dummy” tile to
make an even six tiles per processor. Such dummy tiles are emph{not} listed in file{blanklist.txt}.

The following is an example of file{SIZE.h} for the six-tile configuration illustrated in figure ref{fig:6tile} running on
one processor:

PARAMETER (
& sNx = 32,
& sNy = 32,
& OLx = 2,
& OLy = 2,
& nSx = 6,
& nSy = 1,
& nPx = 1,
& nPy = 1,
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& Nx = sNx*nSx*nPx,
& Ny = sNy*nSy*nPy,
& Nr = 5)

The following is an example for the forty-eight-tile topology in figure ref{fig:48tile} running on six processors:

PARAMETER (
& sNx = 16,
& sNy = 8,
& OLx = 2,
& OLy = 2,
& nSx = 8,
& nSy = 1,
& nPx = 6,
& nPy = 1,
& Nx = sNx*nSx*nPx,
& Ny = sNy*nSy*nPy,
& Nr = 5)

Key Variables

The descriptions of the variables are divided up into scalars, one-dimensional arrays indexed to the tile number, and
two and three-dimensional arrays indexed to tile number and neighboring tile. This division reflects the functionality
of these variables: The scalars are common to every part of the topology, the tile-indexed arrays to individual tiles,
and the arrays indexed by tile and neighbor to relationships between tiles and their neighbors.

Scalars:

The number of tiles in a particular topology is set with the parameter code{NTILES}, and the maximum number of
neighbors of any tiles by code{MAX_NEIGHBOURS}. These parameters are used for defining the size of the various
one and two dimensional arrays that store tile parameters indexed to the tile number and are assigned in the files
generated by file{driver.m}.

The scalar parameters varlink{exch2_domain_nxt}{exch2_domain_nxt} and var-
link{exch2_domain_nyt}{exch2_domain_nyt} express the number of tiles in the $x$ and $y$ global in-
dices. For example, the default setup of six tiles (Fig. ref{fig:6tile}) has code{exch2_domain_nxt=6} and
code{exch2_domain_nyt=1}. A topology of forty-eight tiles, eight per subdomain (as in figure ref{fig:48tile}), will
have code{exch2_domain_nxt=12} and code{exch2_domain_nyt=4}. Note that these parameters express the tile
layout in order to allow global data files that are tile-layout-neutral. They have no bearing on the internal storage of
the arrays. The tiles are stored internally in a range from code{varlink{bi}{bi}=(1:NTILES)} in the $x$ axis, and the
$y$ axis variable varlink{bj}{bj} is assumed to equal code{1} throughout the package.

Arrays indexed to tile number:

The following arrays are of length code{NTILES} and are indexed to the tile number, which is indicated in the
diagrams with the notation textsf{t}$n$. The indices are omitted in the descriptions.

The arrays varlink{exch2_tnx}{exch2_tnx} and varlink{exch2_tny}{exch2_tny} express the $x$ and $y$ dimensions
of each tile. At present for each tile texttt{exch2_tnx=sNx} and texttt{exch2_tny=sNy}, as assigned in file{SIZE.h}
and described in Section ref{sec:exch2mpi} sectiontitle{exch2, SIZE.h, and Multiprocessing}. Future releases of
MITgcm may allow varying tile sizes.

The arrays varlink{exch2_tbasex}{exch2_tbasex} and varlink{exch2_tbasey}{exch2_tbasey} determine the tiles’
Cartesian origin within a subdomain and locate the edges of different tiles relative to each other. As an example,
in the default six-tile topology (Fig. ref{fig:6tile}) each index in these arrays is set to code{0} since a tile occupies its
entire subdomain. The twenty-four-tile case discussed above will have values of code{0} or code{16}, depending on
the quadrant of the tile within the subdomain. The elements of the arrays varlink{exch2_txglobalo}{exch2_txglobalo}
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and varlink{exch2_txglobalo}{exch2_txglobalo} are similar to varlink{exch2_tbasex}{exch2_tbasex} and var-
link{exch2_tbasey}{exch2_tbasey}, but locate the tile edges within the global address space, similar to that used
by global output and input files.

The array varlink{exch2_myFace}{exch2_myFace} contains the number of the subdomain of each tile, in a range
code{(1:6)} in the case of the standard cube topology and indicated by textbf{textsf{f}}$n$ in figures ref{fig:6tile}
and ref{fig:48tile}. varlink{exch2_nNeighbours}{exch2_nNeighbours} contains a count of the neighboring tiles each
tile has, and sets the bounds for looping over neighboring tiles. varlink{exch2_tProc}{exch2_tProc} holds the process
rank of each tile, and is used in interprocess communication.

The arrays varlink{exch2_isWedge}{exch2_isWedge}, varlink{exch2_isEedge}{exch2_isEedge}, var-
link{exch2_isSedge}{exch2_isSedge}, and varlink{exch2_isNedge}{exch2_isNedge} are set to code{1} if the
indexed tile lies on the edge of its subdomain, code{0} if not. The values are used within the topology generator to
determine the orientation of neighboring tiles, and to indicate whether a tile lies on the corner of a subdomain. The
latter case requires special exchange and numerical handling for the singularities at the eight corners of the cube.

Arrays Indexed to Tile Number and Neighbor:

The following arrays have vectors of length code{MAX_NEIGHBOURS} and code{NTILES} and describe the ori-
entations between the the tiles.

The array code{exch2_neighbourId(a,T)} holds the tile number code{Tn} for each of the tile number code{T}’s
neighboring tiles code{a}. The neighbor tiles are indexed code{(1:exch2_nNeighbours(T))} in the order right to left
on the north then south edges, and then top to bottom on the east then west edges.

The code{exch2_opposingSend_record(a,T)} array holds the index code{b} of the element in
texttt{exch2_neighbourId(b,Tn)} that holds the tile number code{T}, given code{Tn=exch2_neighborId(a,T)}.
In other words,

exch2_neighbourId( exch2_opposingSend_record(a,T),
exch2_neighbourId(a,T) ) = T

This provides a back-reference from the neighbor tiles.

The arrays varlink{exch2_pi}{exch2_pi} and varlink{exch2_pj}{exch2_pj} specify the transformations of indices in
exchanges between the neighboring tiles. These transformations are necessary in exchanges between subdomains
because a horizontal dimension in one subdomain may map to other horizonal dimension in an adjacent subdomain,
and may also have its indexing reversed. This swapping arises from the ‘’folding” of two-dimensional arrays into a
three-dimensional cube.

The dimensions of code{exch2_pi(t,N,T)} and code{exch2_pj(t,N,T)} are the neighbor ID code{N} and the tile num-
ber code{T} as explained above, plus a vector of length code{2} containing transformation factors code{t}. The first
element of the transformation vector holds the factor to multiply the index in the same dimension, and the second
element holds the the same for the orthogonal dimension. To clarify, code{exch2_pi(1,N,T)} holds the mapping of the
$x$ axis index of tile code{T} to the $x$ axis of tile code{T}’s neighbor code{N}, and code{exch2_pi(2,N,T)} holds
the mapping of code{T}’s $x$ index to the neighbor code{N}’s $y$ index.

One of the two elements of code{exch2_pi} or code{exch2_pj} for a given tile code{T} and neighbor code{N} will
be code{0}, reflecting the fact that the two axes are orthogonal. The other element will be code{1} or code{-1},
depending on whether the axes are indexed in the same or opposite directions. For example, the transform vector of
the arrays for all tile neighbors on the same subdomain will be code{(1,0)}, since all tiles on the same subdomain are
oriented identically. An axis that corresponds to the orthogonal dimension with the same index direction in a particular
tile-neighbor orientation will have code{(0,1)}. Those with the opposite index direction will have code{(0,-1)} in order
to reverse the ordering.

The arrays varlink{exch2_oi}{exch2_oi}, varlink{exch2_oj}{exch2_oj}, varlink{exch2_oi_f}{exch2_oi_f}, and var-
link{exch2_oj_f}{exch2_oj_f} are indexed to tile number and neighbor and specify the relative offset within the
subdomain of the array index of a variable going from a neighboring tile code{N} to a local tile code{T}. Consider
code{T=1} in the six-tile topology (Fig. ref{fig:6tile}), where
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exch2_oi(1,1)=33
exch2_oi(2,1)=0
exch2_oi(3,1)=32
exch2_oi(4,1)=-32

The simplest case is code{exch2_oi(2,1)}, the southern neighbor, which is code{Tn=6}. The axes of code{T} and
code{Tn} have the same orientation and their $x$ axes have the same origin, and so an exchange between the two
requires no changes to the $x$ index. For the western neighbor (code{Tn=5}), code{code_oi(3,1)=32} since the
code{x=0} vector on code{T} corresponds to the code{y=32} vector on code{Tn}. The eastern edge of code{T}
shows the reverse case (code{exch2_oi(4,1)=-32)}), where code{x=32} on code{T} exchanges with code{x=0} on
code{Tn=2}.

The most interesting case, where code{exch2_oi(1,1)=33} and code{Tn=3}, involves a reversal of indices. As in every
case, the offset code{exch2_oi} is added to the original $x$ index of code{T} multiplied by the transformation factor
code{exch2_pi(t,N,T)}. Here code{exch2_pi(1,1,1)=0} since the $x$ axis of code{T} is orthogonal to the $x$ axis of
code{Tn}. code{exch2_pi(2,1,1)=-1} since the $x$ axis of code{T} corresponds to the $y$ axis of code{Tn}, but the
index is reversed. The result is that the index of the northern edge of code{T}, which runs code{(1:32)}, is transformed
to code{(-1:-32)}. code{exch2_oi(1,1)} is then added to this range to get back code{(32:1)} – the index of the $y$
axis of code{Tn} relative to code{T}. This transformation may seem overly convoluted for the six-tile case, but it is
necessary to provide a general solution for various topologies.

Finally, varlink{exch2_itlo_c}{exch2_itlo_c}, varlink{exch2_ithi_c}{exch2_ithi_c}, var-
link{exch2_jtlo_c}{exch2_jtlo_c} and varlink{exch2_jthi_c}{exch2_jthi_c} hold the location and index bounds of
the edge segment of the neighbor tile code{N}’s subdomain that gets exchanged with the local tile code{T}. To take
the example of tile code{T=2} in the forty-eight-tile topology (Fig. ref{fig:48tile}):

exch2_itlo_c(4,2)=17
exch2_ithi_c(4,2)=17
exch2_jtlo_c(4,2)=0
exch2_jthi_c(4,2)=33

Here code{N=4}, indicating the western neighbor, which is code{Tn=1}. code{Tn} resides on the same subdomain
as code{T}, so the tiles have the same orientation and the same $x$ and $y$ axes. The $x$ axis is orthogonal to
the western edge and the tile is 16 points wide, so code{exch2_itlo_c} and code{exch2_ithi_c} indicate the column
beyond code{Tn}’s eastern edge, in that tile’s halo region. Since the border of the tiles extends through the entire height
of the subdomain, the $y$ axis bounds code{exch2_jtlo_c} to code{exch2_jthi_c} cover the height of code{(1:32)},
plus 1 in either direction to cover part of the halo.

For the north edge of the same tile code{T=2} where code{N=1} and the neighbor tile is code{Tn=5}:

exch2_itlo_c(1,2)=0
exch2_ithi_c(1,2)=0
exch2_jtlo_c(1,2)=0
exch2_jthi_c(1,2)=17

code{T}’s northern edge is parallel to the $x$ axis, but since code{Tn}’s $y$ axis corresponds to code{T}’s $x$
axis, code{T}’s northern edge exchanges with code{Tn}’s western edge. The western edge of the tiles corresponds
to the lower bound of the $x$ axis, so code{exch2_itlo_c} and code{exch2_ithi_c} are code{0}, in the western halo
region of code{Tn}. The range of code{exch2_jtlo_c} and code{exch2_jthi_c} correspond to the width of code{T}’s
northern edge, expanded by one into the halo.

Key Routines

Most of the subroutines particular to exch2 handle the exchanges themselves and are of the same format as those
described in ref{sec:cube_sphere_communication} sectiontitle{Cube sphere communication}. Like the original rou-
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tines, they are written as templates which the local Makefile converts from code{RX} into code{RL} and code{RS}
forms.

The interfaces with the core model subroutines are code{EXCH_UV_XY_RX}, code{EXCH_UV_XYZ_RX}
and code{EXCH_XY_RX}. They override the standard exchange routines when code{genmake2} is run
with code{exch2} option. They in turn call the local exch2 subroutines code{EXCH2_UV_XY_RX} and
code{EXCH2_UV_XYZ_RX} for two and three-dimensional vector quantities, and code{EXCH2_XY_RX} and
code{EXCH2_XYZ_RX} for two and three-dimensional scalar quantities. These subroutines set the dimensions of
the area to be exchanged, call code{EXCH2_RX1_CUBE} for scalars and code{EXCH2_RX2_CUBE} for vectors,
and then handle the singularities at the cube corners.

The separate scalar and vector forms of code{EXCH2_RX1_CUBE} and code{EXCH2_RX2_CUBE} reflect that the
vector-handling subroutine needs to pass both the $u$ and $v$ components of the physical vectors. This swapping
arises from the topological folding discussed above, where the $x$ and $y$ axes get swapped in some cases, and is not
an issue with the scalar case. These subroutines call code{EXCH2_SEND_RX1} and code{EXCH2_SEND_RX2},
which do most of the work using the variables discussed above.

Experiments and tutorials that use exch2

• Held Suarez tutorial, in tutorial_held_suarez_cs verification directory, described in section ref{sec:eg-hs}

Gridalt - Alternate Grid Package

Introduction

The gridalt package [Mol09] is designed to allow different components of MITgcm to be run using horizontal and/or
vertical grids which are different from the main model grid. The gridalt routines handle the definition of the all
the various alternative grid(s) and the mappings between them and the MITgcm grid. The implementation of the
gridalt package which allows the high end atmospheric physics (fizhi) to be run on a high resolution and quasi terrain-
following vertical grid is documented here. The package has also (with some user modifications) been used for other
calculations within the GCM.

The rationale for implementing the atmospheric physics on a high resolution vertical grid involves the fact that the
MITgcm 𝑝* (or any pressure-type) coordinate cannot maintain the vertical resolution near the surface as the bottom
topography rises above sea level. The vertical length scales near the ground are small and can vary on small time scales,
and the vertical grid must be adequate to resolve them. Many studies with both regional and global atmospheric models
have demonstrated the improvements in the simulations when the vertical resolution near the surface is increased ().
Some of the benefit of increased resolution near the surface is realized by employing the higher resolution for the
computation of the forcing due to turbulent and convective processes in the atmosphere.

The parameterizations of atmospheric subgrid scale processes are all essentially one-dimensional in nature, and the
computation of the terms in the equations of motion due to these processes can be performed for the air column over
one grid point at a time. The vertical grid on which these computations take place can therefore be entirely independant
of the grid on which the equations of motion are integrated, and the ’tendency’ terms can be interpolated to the vertical
grid on which the equations of motion are integrated. A modified 𝑝* coordinate, which adjusts to the local terrain
and adds additional levels between the lower levels of the existing 𝑝* grid (and perhaps between the levels near the
tropopause as well), is implemented. The vertical discretization is different for each grid point, although it consist of
the same number of levels. Additional ’sponge’ levels aloft are added when needed. The levels of the physics grid are
constrained to fit exactly into the existing 𝑝* grid, simplifying the mapping between the two vertical coordinates. This
is illustrated as follows:

The algorithm presented here retains the state variables on the high resolution ’physics’ grid as well as on the coarser
resolution ’dynamics‘ grid, and ensures that the two estimates of the state ’agree’ on the coarse resolution grid. It
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Figure 5.5: Vertical discretization for MITgcm (dark grey lines) and for the atmospheric physics (light grey lines). In
this implementation, all MITgcm level interfaces must coincide with atmospheric physics level interfaces.

would have been possible to implement a technique in which the tendencies due to atmospheric physics are computed
on the high resolution grid and the state variables are retained at low resolution only. This, however, for the case of the
turbulence parameterization, would mean that the turbulent kinetic energy source terms, and all the turbulence terms
that are written in terms of gradients of the mean flow, cannot really be computed making use of the fine structure in
the vertical.

Equations on Both Grids

In addition to computing the physical forcing terms of the momentum, thermodynamic and humidity equations on the
modified (higher resolution) grid, the higher resolution structure of the atmosphere (the boundary layer) is retained
between physics calculations. This neccessitates a second set of evolution equations for the atmospheric state variables
on the modified grid. If the equation for the evolution of 𝑈 on 𝑝* can be expressed as:

𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑡𝑜𝑡𝑎𝑙
𝑝*

=
𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

𝑝*
+
𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑝ℎ𝑦𝑠𝑖𝑐𝑠
𝑝*

where the physics forcing terms on 𝑝* have been mapped from the modified grid, then an additional equation to govern
the evolution of 𝑈 (for example) on the modified grid is written:

𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑡𝑜𝑡𝑎𝑙
𝑝*𝑚

=
𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑑𝑦𝑛𝑎𝑚𝑖𝑐𝑠

𝑝*𝑚
+
𝜕𝑈

𝜕𝑡

⃒⃒⃒⃒𝑝ℎ𝑦𝑠𝑖𝑐𝑠
𝑝*𝑚

+ 𝛾(𝑈 |𝑝* − 𝑈 |𝑝*𝑚)

where 𝑝*𝑚 refers to the modified higher resolution grid, and the dynamics forcing terms have been mapped from 𝑝*

space. The last term on the RHS is a relaxation term, meant to constrain the state variables on the modified vertical
grid to ‘track’ the state variables on the 𝑝* grid on some time scale, governed by 𝛾. In the present implementation,
𝛾 = 1, requiring an immediate agreement between the two ’states’.
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Time stepping Sequence

If we write 𝑇𝑝ℎ𝑦𝑠 as the temperature (or any other state variable) on the high resolution physics grid, and 𝑇𝑑𝑦𝑛 as the
temperature on the coarse vertical resolution dynamics grid, then:

1. Compute the tendency due to physics processes.

2. Advance the physics state: 𝑇𝑛+1**
𝑝ℎ𝑦𝑠(𝑙) = 𝑇𝑛

𝑝ℎ𝑦𝑠(𝑙) + 𝛿𝑇𝑝ℎ𝑦𝑠.

3. Interpolate the physics tendency to the dynamics grid, and advance the dynamics state by physics and dynamics
tendencies: 𝑇𝑛+1

𝑑𝑦𝑛(𝐿) = 𝑇𝑛
𝑑𝑦𝑛(𝐿) + 𝛿𝑇𝑑𝑦𝑛(𝐿) + [𝛿𝑇𝑝ℎ𝑦𝑠(𝑙)](𝐿).

4. Interpolate the dynamics tendency to the physics grid, and update the physics grid due to dynamics tendencies:
𝑇𝑛+1*

𝑝ℎ𝑦𝑠(𝑙) = 𝑇𝑛+1**
𝑝ℎ𝑦𝑠(𝑙) + 𝛿𝑇𝑑𝑦𝑛(𝐿)(𝑙).

5. Apply correction term to physics state to account for divergence from dynamics state: 𝑇𝑛+1
𝑝ℎ𝑦𝑠(𝑙) =

𝑇𝑛+1*
𝑝ℎ𝑦𝑠(𝑙) + 𝛾{𝑇𝑑𝑦𝑛(𝐿) − [𝑇𝑝ℎ𝑦𝑠(𝑙)](𝐿)}(𝑙). Where 𝛾 = 1 here.

Interpolation

In order to minimize the correction terms for the state variables on the alternative, higher resolution grid, the vertical
interpolation scheme must be constructed so that a dynamics-to-physics interpolation can be exactly reversed with a
physics-to-dynamics mapping. The simple scheme employed to achieve this is:

Coarse to fine:For all physics layers l in dynamics layer L, 𝑇𝑝ℎ𝑦𝑠(𝑙) = {𝑇𝑑𝑦𝑛(𝐿)} = 𝑇𝑑𝑦𝑛(𝐿).

Fine to coarse:For all physics layers l in dynamics layer L, 𝑇𝑑𝑦𝑛(𝐿) = [𝑇𝑝ℎ𝑦𝑠(𝑙)] =
∫︀
𝑇𝑝ℎ𝑦𝑠𝑑𝑝.

Where {} is defined as the dynamics-to-physics operator and [] is the physics-to-dynamics operator, 𝑇 stands for any
state variable, and the subscripts 𝑝ℎ𝑦𝑠 and 𝑑𝑦𝑛 stand for variables on the physics and dynamics grids, respectively.

Key subroutines, parameters and files

One of the central elements of the gridalt package is the routine which is called from subroutine gridalt_initialise to
define the grid to be used for the high end physics calculations. Routine make_phys_grid passes back the parameters
which define the grid, ultimately stored in the common block gridalt_mapping.

subroutine make_phys_grid(drF,hfacC,im1,im2,jm1,jm2,Nr,
. Nsx,Nsy,i1,i2,j1,j2,bi,bj,Nrphys,Lbot,dpphys,numlevphys,nlperdyn)

c***********************************************************************
c Purpose: Define the grid that the will be used to run the high-end
c atmospheric physics.
c
c Algorithm: Fit additional levels of some (~) known thickness in
c between existing levels of the grid used for the dynamics
c
c Need: Information about the dynamics grid vertical spacing
c
c Input: drF - delta r (p*) edge-to-edge
c hfacC - fraction of grid box above topography
c im1, im2 - beginning and ending i - dimensions
c jm1, jm2 - beginning and ending j - dimensions
c Nr - number of levels in dynamics grid
c Nsx,Nsy - number of processes in x and y direction
c i1, i2 - beginning and ending i - index to fill
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c j1, j2 - beginning and ending j - index to fill
c bi, bj - x-dir and y-dir index of process
c Nrphys - number of levels in physics grid
c
c Output: dpphys - delta r (p*) edge-to-edge of physics grid
c numlevphys - number of levels used in the physics
c nlperdyn - physics level number atop each dynamics layer
c
c NOTES: 1) Pressure levs are built up from bottom, using p0, ps and dp:
c p(i,j,k)=p(i,j,k-1) + dp(k)*ps(i,j)/p0(i,j)
c 2) Output dp's are aligned to fit EXACTLY between existing
c levels of the dynamics vertical grid
c 3) IMPORTANT! This routine assumes the levels are numbered
c from the bottom up, ie, level 1 is the surface.
c IT WILL NOT WORK OTHERWISE!!!
c 4) This routine does NOT work for surface pressures less
c (ie, above in the atmosphere) than about 350 mb
c***********************************************************************

In the case of the grid used to compute the atmospheric physical forcing (fizhi package), the locations of the grid
points move in time with the MITgcm 𝑝* coordinate, and subroutine gridalt_update is called during the run to update
the locations of the grid points:

subroutine gridalt_update(myThid)
c***********************************************************************
c Purpose: Update the pressure thicknesses of the layers of the
c alternative vertical grid (used now for atmospheric physics).
c
c Calculate: dpphys - new delta r (p*) edge-to-edge of physics grid
c using dpphys0 (initial value) and rstarfacC
c***********************************************************************

The gridalt package also supplies utility routines which perform the mappings from one grid to the other. These
routines are called from the code which computes the fields on the alternative (fizhi) grid.

subroutine dyn2phys(qdyn,pedyn,im1,im2,jm1,jm2,lmdyn,Nsx,Nsy,
. idim1,idim2,jdim1,jdim2,bi,bj,windphy,pephy,Lbot,lmphy,nlperdyn,
. flg,qphy)

C***********************************************************************
C Purpose:
C To interpolate an arbitrary quantity from the 'dynamics' eta (pstar)
C grid to the higher resolution physics grid
C Algorithm:
C Routine works one layer (edge to edge pressure) at a time.
C Dynamics -> Physics retains the dynamics layer mean value,
C weights the field either with the profile of the physics grid
C wind speed (for U and V fields), or uniformly (T and Q)
C
C Input:
C qdyn..... [im,jm,lmdyn] Arbitrary Quantity on Input Grid
C pedyn.... [im,jm,lmdyn+1] Pressures at bottom edges of input levels
C im1,2 ... Limits for Longitude Dimension of Input
C jm1,2 ... Limits for Latitude Dimension of Input
C lmdyn.... Vertical Dimension of Input
C Nsx...... Number of processes in x-direction
C Nsy...... Number of processes in y-direction
C idim1,2.. Beginning and ending i-values to calculate
C jdim1,2.. Beginning and ending j-values to calculate
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C bi....... Index of process number in x-direction
C bj....... Index of process number in x-direction
C windphy.. [im,jm,lmphy] Magnitude of the wind on the output levels
C pephy.... [im,jm,lmphy+1] Pressures at bottom edges of output levels
C lmphy.... Vertical Dimension of Output
C nlperdyn. [im,jm,lmdyn] Highest Physics level in each dynamics level
C flg...... Flag to indicate field type (0 for T or Q, 1 for U or V)
C
C Output:
C qphy..... [im,jm,lmphy] Quantity at output grid (physics grid)
C
C Notes:
C 1) This algorithm assumes that the output (physics) grid levels
C fit exactly into the input (dynamics) grid levels
C***********************************************************************

And similarly, gridalt contains subroutine phys2dyn.

Gridalt Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
DPPHYS | 20 |SM ML |Pascal |Pressure Thickness of Layers on Fizhi
→˓Grid

Dos and donts

Gridalt Reference

Experiments and tutorials that use gridalt

• Fizhi experiment, in fizhi-cs-32x32x10 verification directory

General purpose numerical infrastructure packages

OBCS: Open boundary conditions for regional modeling

Authors: Alistair Adcroft, Patrick Heimbach, Samar Katiwala, Martin Losch

Introduction

The OBCS-package is fundamental to regional ocean modelling with the MITgcm, but there are so many details to
be considered in regional ocean modelling that this package cannot accomodate all imaginable and possible options.
Therefore, for a regional simulation with very particular details, it is recommended to familiarize oneself not only with
the compile- and runtime-options of this package, but also with the code itself. In many cases it will be necessary to
adapt the obcs-code (in particular code{S/R OBCS_CALC}) to the application in question; in these cases the obcs-
package (together with the rbcs-package, section ref{sec:pkg:rbcs}) is a very useful infrastructure for implementing
special regional models.

5.3. General purpose numerical infrastructure packages 75



MITgcm Documentation, Release 1.0

OBCS configuration and compiling

As with all MITgcm packages, OBCS can be turned on or off at compile time

• using the packages.conf file by adding obcs to it,

• or using genmake2 adding -enable=obcs or -disable=obcs switches

• Required packages and CPP options:

– Two alternatives are available for prescribing open boundary values, which differ in the way how OB’s are
treated in time:

* A simple time-management (e.g. constant in time, or cyclic with fixed fequency) is provided through
S/R obcs_external_fields_load.

* More sophisticated ‘real-time’ (i.e. calendar time) management is available through
obcs_prescribe_read.

– The latter case requires packages cal and exf to be enabled.

(see also Section ref{sec:buildingCode}).

Parts of the OBCS code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set
in OBCS_OPTIONS.h. Table 5.1 summarizes these options.

Table 5.1: OBCS CPP options

CPP option Description
ALLOW_OBCS_NORTH enable Northern OB
ALLOW_OBCS_SOUTH enable Southern OB
ALLOW_OBCS_EAST enable Eastern OB
ALLOW_OBCS_WEST enable Western OB

ALLOW_OBCS_PRESCRIBE enable code for prescribing OB’s
ALLOW_OBCS_SPONGE enable sponge layer code
ALLOW_OBCS_BALANCE enable code for balancing transports through OB’s
ALLOW_ORLANSKI enable Orlanski radiation conditions at OB’s
ALLOW_OBCS_STEVENS enable Stevens (1990) boundary conditions at OB’s

(currently only implemented for eastern and
western boundaries and NOT for ptracers)

Run-time parameters

Run-time parameters are set in files data.pkg, data.obcs, and data.exf if 'real-time'
prescription is requested (i.e. package :code:`exf enabled). These parameter files are read
in S/R packages_readparms.F, obcs_readparms.F, and exf_readparms.F, respectively. Run-time pa-
rameters may be broken into 3 categories:

1. switching on/off the package at runtime,

2. OBCS package flags and parameters,

3. additional timing flags in data.exf, if selected.

Enabling the package

The OBCS package is switched on at runtime by setting useOBCS = .TRUE. in data.pkg.
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Package flags and parameters

Table 5.2 summarizes the runtime flags that are set in data.obcs, and their default values.

Table 5.2: pkg OBCS run-time parameters

Flag/parameter default Description
basic flags & parameters (OBCS_PARM01)
OB_Jnorth 0 Nx-vector of J-indices (w.r.t. Ny) of Northern OB at each I-position (w.r.t. Nx)
OB_Jsouth 0 Nx-vector of J-indices (w.r.t. Ny) of Southern OB at each I-position (w.r.t. Nx)
OB_Ieast 0 Ny-vector of I-indices (w.r.t. Nx) of Eastern OB at each J-position (w.r.t. Ny)
OB_Iwest 0 Ny-vector of I-indices (w.r.t. Nx) of Western OB at each J-position (w.r.t. Ny)
useOBCSprescribe .FALSE.
useOBCSsponge .FALSE.
useOBCSbalance code{.FALSE.}
OBCS_balanceFacN/S/E/W 1 factor(s) determining the details of the balaning code
useOrlanskiNorth/South/EastWest .FALSE. turn on Orlanski boundary conditions for individual boundary
useStevensNorth/South/EastWest .FALSE. turn on Stevens boundary conditions for individual boundary
OBXyFile file name of OB field

X: N(orth) S(outh) E(ast) W(est)
y: t(emperature) s(salinity) u(-velocity) v(-velocity)
w(-velocity) eta (sea surface height)
a (sea ice area) h (sea ice thickness) sn (snow thickness) sl (sea ice salinity)

Orlanski parameters (OBCS_PARM02)
cvelTimeScale 2000 sec averaging period for phase speed
CMAX 0.45 m/s maximum allowable phase speed-CFL for AB-II
CFIX 0.8 m/s fixed boundary phase speed
useFixedCEast .FALSE.
useFixedCWest .FALSE.

Sponge-layer parameters (OBCS_PARM03)
spongeThickness 0 sponge layer thickness (in grid points)
Urelaxobcsinner 0 sec relaxation time scale at the innermost sponge layer point of a meridional OB
Vrelaxobcsinner 0 sec relaxation time scale at the innermost sponge layer point of a zonal OB
Urelaxobcsbound 0 sec relaxation time scale at the outermost sponge layer point of a meridional OB
Vrelaxobcsbound 0 sec relaxation time scale at the outermost sponge layer point of a zonal OB

Stevens parameters (OBCS_PARM04)
T/SrelaxStevens 0 sec relaxation time scale for temperature/salinity
useStevensPhaseVel code{.TRUE.}
useStevensAdvection code{.TRUE.}

Defining open boundary positions

There are four open boundaries (OBs), a Northern, Southern, Eastern, and Western. All OB locations are specified
by their absolute meridional (Northern/Southern) or zonal (Eastern/Western) indices. Thus, for each zonal position
𝑖 = 1, . . . , 𝑁𝑥 a meridional index 𝑗 specifies the Northern/Southern OB position, and for each meridional position 𝑗 =
1, . . . , 𝑁𝑦 , a zonal index 𝑖 specifies the Eastern/Western OB position. For Northern/Southern OB this defines an 𝑁𝑥-
dimensional “row” array OB_Jnorth(Nx) / OB_Jsouth(Nx), and an 𝑁𝑦-dimenisonal “column” array OB_Ieast(Ny) /
OB_Iwest(Ny). Positions determined in this way allows Northern/Southern OBs to be at variable 𝑗 (or 𝑦) positions,
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and Eastern/Western OBs at variable 𝑖 (or 𝑥) positions. Here, indices refer to tracer points on the C-grid. A zero (0)
element in OB_I . . ., OB_J . . . means there is no corresponding OB in that column/row. For a Northern/Southern OB,
the OB V point is to the South/North. For an Eastern/Western OB, the OB U point is to the West/East. For example,

OB\_Jnorth(3)=34 means that: T(3,34) is a an OB point U(3,34) is a an OB point V(3,34) is a an OB
point OB\_Jsouth(3)=1 means that: T(3,1) is a an OB point U(3,1) is a an OB point V(3,2) is a an OB
point OB\_Ieast(10)=69 means that: T(69,10) is a an OB point U(69,10) is a an OB point V(69,10) is a
an OB point OB\_Iwest(10)=1 means that: T(1,10) is a an OB point U(2,10) is a an OB point V(1,10) is
a an OB point

For convenience, negative values for Jnorth/Ieast refer to points relative to the Northern/Eastern edges of the
model eg. OB_Jnorth(3) = −1 means that the point (3, Ny) is a northern OB.

Simple examples: For a model grid with :math:‘ N_{x}times N_{y} = 120times144‘ horizontal grid points with four
open boundaries along the four egdes of the domain, the simplest way of specifying the boundary points in is:

OB_Ieast = 144*-1,
# or OB_Ieast = 144*120,

OB_Iwest = 144*1,
OB_Jnorth = 120*-1,

# or OB_Jnorth = 120*144,
OB_Jsouth = 120*1,

If only the first 50 grid points of the southern boundary are boundary points:

OB_Jsouth(1:50) = 50*1,

Equations and key routines

OBCS_READPARMS:

Set OB positions through arrays OB_Jnorth(Nx), OB_Jsouth(Nx), OB_Ieast(Ny), OB_Iwest(Ny), and runtime flags
(see Table [tab:pkg:obcs:runtime:sub:f lags]).

OBCS_CALC:

Top-level routine for filling values to be applied at OB for 𝑇, 𝑆, 𝑈, 𝑉, 𝜂 into corresponding “slice” arrays (𝑥, 𝑧), (𝑦, 𝑧)
for each OB: OB[N/S/E/W][t/s/u/v]; e.g. for salinity array at Southern OB, array name is OBSt. Values filled are
either

• constant vertical 𝑇, 𝑆 profiles as specified in file data (tRef(Nr), sRef(Nr)) with zero velocities 𝑈, 𝑉 ,

• 𝑇, 𝑆, 𝑈, 𝑉 values determined via Orlanski radiation conditions (see below),

• prescribed time-constant or time-varying fields (see below).

• use prescribed boundary fields to compute Stevens boundary conditions.

ORLANSKI:

Orlanski radiation conditions [Orl76], examples can be found in verification/dome and verification/
tutorial\_plume\_on\_slope

(ref{sec:eg-gravityplume}).
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OBCS_PRESCRIBE_READ:

When useOBCSprescribe = .TRUE. the model tries to read temperature, salinity, u- and v-velocities from files
specified in the runtime parameters OB[N/S/E/W][t/s/u/v]File. These files are the usual IEEE, big-endian
files with dimensions of a section along an open boundary:

• For North/South boundary files the dimensions are (𝑁𝑥 × 𝑁𝑟 × time levels), for East/West boundary files the
dimensions are (𝑁𝑦 ×𝑁𝑟 × time levels).

• If a non-linear free surface is used (ref{sec:nonlinear-freesurface}), additional files OB[N/S/E/W]etaFile
for the sea surface height $eta$ with dimension (𝑁𝑥/𝑦 × time levels) may be specified.

• If non-hydrostatic dynamics are used (ref{sec:non-hydrostatic}), additional files OB[N/S/E/W]wFile for the
vertical velocity $w$ with dimensions (𝑁𝑥/𝑦 ×𝑁𝑟 × time levels) can be specified.

• If useSEAICE=.TRUE. then additional files OB[N/S/E/W][a,h,sl,sn,uice,vice] for sea ice area,
thickness (HEFF), seaice salinity, snow and ice velocities (𝑁𝑥/𝑦 × time levels) can be specified.

As in S/R external\_fields\_load or the exf-package, the code reads two time levels for each variable,
e.g.OBNu0 and OBNu1, and interpolates linearly between these time levels to obtain the value OBNu at the current
model time (step). When the exf-package is used, the time levels are controlled for each boundary separately in the
same way as the exf-fields in data.exf, namelist EXF\_NML\_OBCS. The runtime flags follow the above naming
conventions, e.g. for the western boundary the corresponding flags are OBCWstartdate1/2 and OBCWperiod.
Sea-ice boundary values are controlled separately with siobWstartdate1/2 and siobWperiod. When the
exf-package is not used, the time levels are controlled by the runtime flags externForcingPeriod and
externForcingCycle in data, see verification/exp4 for an example.

OBCS_CALC_STEVENS:

(THE IMPLEMENTATION OF THESE BOUNDARY CONDITIONS IS NOT COMPLETE. PASSIVE TRACERS,
SEA ICE AND NON-LINEAR FREE SURFACE ARE NOT SUPPORTED PROPERLY.)

The boundary conditions following [Ste90] require the vertically averaged normal velocity (originally specified as
a stream function along the open boundary) �̄�𝑜𝑏 and the tracer fields 𝜒𝑜𝑏 (note: passive tracers are currently not
implemented and the code stops when package code{ptracers} is used together with this option). Currently, the code
vertically averages the normal velocity as specified in code{OB[E,W]u} or code{OB[N,S]v}. From these prescribed
values the code computes the boundary values for the next timestep 𝑛 + 1 as follows (as an example, we use the
notation for an eastern or western boundary):

• 𝑢𝑛+1(𝑦, 𝑧) = �̄�𝑜𝑏(𝑦)+(𝑢′)𝑛(𝑦, 𝑧), where (𝑢′)𝑛 is the deviation from the vertically averaged velocity at timestep
𝑛 on the boundary. (𝑢′)𝑛 is computed in the previous time step 𝑛 from the intermediate velocity 𝑢* prior to the
correction step (see section [sec:time:sub:stepping], e.g., eq.([eq:ustar-backward-free-surface])). (This velocity
is not available at the beginning of the next time step 𝑛+1, when S/R OBCS_CALC/OBCS_CALC_STEVENS
are called, therefore it needs to be saved in S/R DYNAMICS by calling S/R OBCS_SAVE_UV_N and also
stored in a separate restart files pickup_stevens[N/S/E/W].${iteration}.data)

• If 𝑢𝑛+1 is directed into the model domain, the boudary value for tracer 𝜒 is restored to the prescribed values:

𝜒𝑛+1 = 𝜒𝑛 +
∆𝑡

𝜏𝜒
(𝜒𝑜𝑏 − 𝜒𝑛),

where 𝜏𝜒 is the relaxation time scale T/SrelaxStevens. The new 𝜒𝑛+1 is then subject to the advection by
𝑢𝑛+1.

• If 𝑢𝑛+1 is directed out of the model domain, the tracer 𝜒𝑛+1 on the boundary at timestep 𝑛+1 is estimated from
advection out of the domain with 𝑢𝑛+1 + 𝑐, where 𝑐 is a phase velocity estimated as 1

2
𝜕𝜒
𝜕𝑡 /

𝜕𝜒
𝜕𝑥 . The numerical
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scheme is (as an example for an eastern boundary):

𝜒𝑛+1
𝑖𝑏,𝑗,𝑘

= 𝜒𝑛
𝑖𝑏,𝑗,𝑘

+ ∆𝑡(𝑢𝑛+1 + 𝑐)𝑖𝑏,𝑗,𝑘
𝜒𝑛
𝑖𝑏,𝑗,𝑘

− 𝜒𝑛
𝑖𝑏−1,𝑗,𝑘

∆𝑥𝐶𝑖𝑏,𝑗
, if 𝑢𝑛+1

𝑖𝑏,𝑗,𝑘
> 0,

where 𝑖𝑏 is the boundary index. For test purposes, the phase velocity contribution or the entire advection can be
turned off by setting the corresponding parameters useStevensPhaseVel and useStevensAdvection
to .FALSE..

See [Ste90] for details. With this boundary condition specifying the exact net transport across the open boundary is
simple, so that balancing the flow with (S/R~OBCS_BALANCE_FLOW, see next paragraph) is usually not necessary.

OBCS_BALANCE_FLOW:

When turned on (ALLOW\_OBCS\_BALANCE defined in OBCS\_OPTIONS.h and useOBCSbalance=.true.
in data.obcs/OBCS\_PARM01), this routine balances the net flow across the open boundaries. By default the net
flow across the boundaries is computed and all normal velocities on boundaries are adjusted to obtain zero net inflow.

This behavior can be controlled with the runtime flags OBCS\_balanceFacN/S/E/W. The values of these flags
determine how the net inflow is redistributed as small correction velocities between the individual sections. A value
-1 balances an individual boundary, values > 0 determine the relative size of the correction. For example, the values

OBCS\_balanceFacE = 1., OBCS\_balanceFacW = -1., OBCS\_balanceFacN = 2.,
OBCS\_balanceFacS = 0.,

make the model

• correct Western OBWu by substracting a uniform velocity to ensure zero net transport through the Western open
boundary;

• correct Eastern and Northern normal flow, with the Northern velocity correction two times larger than the Eastern
correction, but not the Southern normal flow, to ensure that the total inflow through East, Northern, and Southern
open boundary is balanced.

The old method of balancing the net flow for all sections individually can be recovered by setting all flags to -1. Then
the normal velocities across each of the four boundaries are modified separately, so that the net volume transport across
each boundary is zero. For example, for the western boundary at 𝑖 = 𝑖𝑏, the modified velocity is:

𝑢(𝑦, 𝑧) −
∫︁

western boundary
𝑢 𝑑𝑦 𝑑𝑧 ≈ 𝑂𝐵𝑁𝑢(𝑗, 𝑘) −

∑︁
𝑗,𝑘

𝑂𝐵𝑁𝑢(𝑗, 𝑘)ℎ𝑤(𝑖𝑏, 𝑗, 𝑘)∆𝑦𝐺(𝑖𝑏, 𝑗)∆𝑧(𝑘).

This also ensures a net total inflow of zero through all boundaries, but this combination of flags is not useful if you want
to simulate, say, a sector of the Southern Ocean with a strong ACC entering through the western and leaving through
the eastern boundary, because the value of ‘’-1” for these flags will make sure that the strong inflow is removed.
Clearly, gobal balancing with OBCS_balanceFacE/W/N/S ≥ 0 is the preferred method.

OBCS_APPLY_*:

OBCS_SPONGE:

The sponge layer code (turned on with ALLOW\_OBCS\_SPONGE and useOBCSsponge) adds a relaxation term
to the right-hand-side of the momentum and tracer equations. The variables are relaxed towards the boundary values
with a relaxation time scale that increases linearly with distance from the boundary

𝐺
(sponge)
𝜒 = −𝜒− [(𝐿− 𝛿𝐿)𝜒𝐵𝐶 + 𝛿𝐿𝜒]/𝐿

[(𝐿− 𝛿𝐿)𝜏𝑏 + 𝛿𝐿𝜏𝑖]/𝐿
= −𝜒− [(1 − 𝑙)𝜒𝐵𝐶 + 𝑙𝜒]

[(1 − 𝑙)𝜏𝑏 + 𝑙𝜏𝑖]
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where 𝜒 is the model variable (U/V/T/S) in the interior, 𝜒𝐵𝐶 the boundary value, 𝐿 the thickness of the
sponge layer (runtime parameter spongeThickness in number of grid points), 𝛿𝐿 ∈ [0, 𝐿] ( 𝛿𝐿𝐿 = 𝑙 ∈
[0, 1]) the distance from the boundary (also in grid points), and 𝜏𝑏 (runtime parameters Urelaxobcsbound
and Vrelaxobcsbound) and 𝜏𝑖 (runtime parameters Urelaxobcsinner and Vrelaxobcsinner) the
relaxation time scales on the boundary and at the interior termination of the sponge layer. The pa-
rameters Urelaxobcsbound/inner`set the relaxation time scales for the Eastern and
Western boundaries, :code:`Vrelaxobcsbound/inner for the Northern and Southern boundaries.

OB’s with nonlinear free surface

Flow chart

C !CALLING SEQUENCE:
c ...

OBCS diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized in Table [tab:pkg:obcs:diagnostics].

[tab:pkg:obcs:diagnostics]

------------------------------------------------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

------------------------------------------------------

Reference experiments

In the directory verifcation, the following experiments use obcs:

• exp4: box with 4 open boundaries, simulating flow over a Gaussian bump based on , also tests Stevens-
boundary conditions;

• dome: based on the project “Dynamics of Overflow Mixing and Entrainment” (http://www.rsmas.miami.edu/
personal/tamay/DOME/dome.html), uses Orlanski-BCs;

• internal_wave: uses a heavily modified S/R~OBCS\_CALC

• :code:seaice_obcs‘: simple example who to use the sea-ice related code, based on lab_sea;

• tutorial_plume_on_slope: uses Orlanski-BCs, see also section [sec:eg-gravityplume].

References

Experiments and tutorials that use obcs

• tutorial\_plume\_on\_slope (section~ref{sec:eg-gravityplume})
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RBCS Package

Introduction

A package which provides the flexibility to relax fields (temperature, salinity, ptracers) in any 3-D location: so could
be used as a sponge layer, or as a “source” anywhere in the domain.

For a tracer (𝑇 ) at every grid point the tendency is modified so that:

𝑑𝑇

𝑑𝑡
=
𝑑𝑇

𝑑𝑡
− 𝑀𝑟𝑏𝑐

𝜏𝑇
(𝑇 − 𝑇𝑟𝑏𝑐)

where 𝑀𝑟𝑏𝑐 is a 3-D mask (no time dependence) with values between 0 and 1. Where 𝑀𝑟𝑏𝑐 is 1, relaxing timescale is
1/𝜏𝑇 . Where it is 0 there is no relaxing. The value relaxed to is a 3-D (potentially varying in time) field given by 𝑇𝑟𝑏𝑐.

A seperate mask can be used for T,S and ptracers and each of these can be relaxed or not and can have its own timescale
𝜏𝑇 . These are set in data.rbcs (see below).

Key subroutines and parameters

The only compile-time parameter you are likely to have to change is in RBCS.h, the number of masks, PARAME-
TER(maskLEN = 3 ), see below.

The runtime parameters are set in data.rbcs:

Set in RBCS_PARM01: - rbcsForcingPeriod: time interval between forcing fields (in seconds), zero means constant-
in-time forcing. - rbcsForcingCycle: repeat cycle of forcing fields (in seconds), zero means non-cyclic forcing. -
rbcsForcingOffset: time offset of forcing fields (in seconds, default 0); this is relative to time averages starting at 𝑡 =
0, i.e., the first forcing record/file is placed at rbcsForcingOffset + rbcsForcingPeriod/2; see below for examples.
- rbcsSingleTimeFiles: true or false (default false), if true, forcing fields are given 1 file per rbcsForcingPeriod. -
deltaTrbcs: time step used to compute the iteration numbers for rbcsSingleTimeFiles=T. - rbcsIter0: shift in iteration
numbers used to label files if rbcsSingleTimeFiles=T (default 0, see below for examples). - useRBCtemp: true or false
(default false) - useRBCsalt: true or false (default false) - useRBCptracers: true or false (default false), must be using
ptracers to set true - tauRelaxT: timescale in seconds of relaxing in temperature (𝜏𝑇 in equation above). Where mask is
1, relax rate will be 1/tauRelaxT. Default is 1. - tauRelaxS: same for salinity. - relaxMaskFile(irbc): filename of 3-D
file with mask (𝑀𝑟𝑏𝑐 in equation above. Need a file for each irbc. 1=temperature, 2=salinity, 3=ptracer01, 4=ptracer02
etc. If the mask numbers end (see maskLEN) are less than the number tracers, then relaxMaskFile(maskLEN) is used
for all remaining ptracers. - relaxTFile: name of file where temperatures that need to be relaxed to (𝑇𝑟𝑏𝑐 in equation
above) are stored. The file must contain 3-D records to match the model domain. If rbcsSingleTimeFiles=F, it must
have one record for each forcing period. If T, there must be a separate file for each period and a 10-digit iteration
number is appended to the file name (see Table [tab:pkg:rbcs:timing] and examples below). - relaxSFile: same for
salinity.

Set in RBCS_PARM02 for each of the ptracers (iTrc): - useRBCptrnum(iTrc): true or false (default is false). -
tauRelaxPTR(iTrc): relax timescale. - relaxPtracerFile(iTrc): file with relax fields.

Timing of relaxation forcing fields

For constant-in-time relaxation, set rbcsForcingPeriod=0. For time-varying relaxation, Table [tab:pkg:rbcs:timing]
illustrates the relation between model time and forcing fields (either records in one big file or, for rbcsSingleTime-
Files=T, individual files labeled with an iteration number). With rbcsSingleTimeFiles=T, this is the same as in the
offline package, except that the forcing offset is in seconds.
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Table 5.3: Timing of RBCS relaxation fields

rbcsSingleTimeFiles = T F
𝑐 = 0 𝑐 ̸= 0 𝑐 ̸= 0

model time file number file number record
𝑡0 − 𝑝/2 𝑖0 𝑖0 + 𝑐/∆𝑡rbcs 𝑐/𝑝
𝑡0 + 𝑝/2 𝑖0 + 𝑝/∆𝑡rbcs 𝑖0 + 𝑝/∆𝑡rbcs 1
𝑡0 + 𝑝+ 𝑝/2 𝑖0 + 2𝑝/∆𝑡rbcs 𝑖0 + 2𝑝/∆𝑡rbcs 2
... ... ... ...
𝑡0 + 𝑐− 𝑝/2 ... 𝑖0 + 𝑐/∆𝑡rbcs 𝑐/𝑝
... ... ... ...

where

𝑝 = rbcsForcingPeriod

𝑐 = rbcsForcingCycle

𝑡0 = rbcsForcingOffset

𝑖0 = rbcsIter0

∆𝑡rbcs = deltaTrbcs

Example 1: forcing with time averages starting at 𝑡 = 0

Cyclic data in a single file

Set rbcsSingleTimeFiles=F and rbcsForcingOffset=0, and the model will start by interpolating the last and first records
of rbcs data, placed at −𝑝/2 and 𝑝/2, resp., as appropriate for fields averaged over the time intervals [−𝑝, 0] and [0, 𝑝].

Non-cyclic data, multiple files

Set rbcsForcingCycle=0 and rbcsSingleTimeFiles=T. With rbcsForcingOffset=0, rbcsIter0=0 and deltaTr-
bcs=rbcsForcingPeriod, the model would then start by interpolating data from files relax*File.0000000000.data and
relax*File.0000000001.data, ... , again placed at −𝑝/2 and 𝑝/2.

Example 2: forcing with snapshots starting at 𝑡 = 0

Cyclic data in a single file

Set rbcsSingleTimeFiles=F and rbcsForcingOffset=−𝑝/2, and the model will start forcing with the first record at
𝑡 = 0.

Non-cyclic data, multiple files

Set rbcsForcingCycle=0 and rbcsSingleTimeFiles=T. In this case, it is more natural to set rbcsForcingOffset=+𝑝/2.
With rbcsIter0=0 and deltaTrbcs=rbcsForcingPeriod, the model would then start with data from files re-
lax*File.0000000000.data at 𝑡 = 0. It would then proceed to interpolate between this file and files re-
lax*File.0000000001.data at 𝑡 = rbcsForcingPeriod.
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Do’s and Don’ts

Reference Material

Experiments and tutorials that use rbcs

In the directory , the following experiments use rbcs:

• exp4 : box with 4 open boundaries, simulating flow over a Gaussian bump based on [AHM97]

PTRACERS Package

Introduction

This is a ‘’passive” tracer package. Passive here means that the tracers don’t affect the density of the water (as opposed
to temperature and salinity) so no not actively affect the physics of the ocean. Tracers are initialized, advected, diffused
and various outputs are taken care of in this package. For methods to add additional sources and sinks of tracers use
the pkg/gchem (section [sec:pkg:gchem]).

Can use up tp 3843 tracers. But can not use pkg/diagnostics with more than about 90 tracers. Use
utils/matlab/ioLb2num.m and num2ioLb.m to find correspondence between tracer number and tracer designation in
the code for more than 99 tracers (since tracers only have two digit designations).

Equations

Key subroutines and parameters

The only code you should have to modify is: PTRACERS_SIZE.h where you need to set in the number of tracers to
be used in the experiment: PTRACERS_num.

Run time parameters set in data.ptracers:

• PTRACERS_Iter0 which is the integer timestep when the tracer experiment is initialized. If nIter0 = PTRAC-
ERS_Iter0 then the tracers are initialized to zero or from initial files. If nIter0 > PTRACERS_Iter0 then tracers
(and previous timestep tendency terms) are read in from a the ptracers pickup file. Note that tracers of zeros will
be carried around if nIter0 < PTRACERS_Iter0.

• PTRACERS_numInUse: number of tracers to be used in the run (needs to be <= PTRACERS_num set in
PTRACERS_SIZE.h)

• PTRACERS_dumpFreq: defaults to dumpFreq (set in data)

• PTRACERS_taveFreq: defaults to taveFreq (set in data)

• PTRACERS_monitorFreq: defaults to monitorFreq (set in data)

• PTRACERS_timeave_mnc: needs useMNC, timeave_mnc, default to false

• PTRACERS_snapshot_mnc: needs useMNC, snapshot_mnc, default to false

• PTRACERS_monitor_mnc: needs useMNC, monitor_mnc, default to false

• PTRACERS_pickup_write_mnc: needs useMNC, pickup_write_mnc, default to false

• PTRACERS_pickup_read_mnc: needs useMNC, pickup_read_mnc, default to false

• PTRACERS_useRecords: defaults to false. If true, will write all tracers in a single file, otherwise each tracer
in a seperate file.

The following can be set for each tracer (tracer number iTrc):
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• PTRACERS_advScheme(iTrc) will default to saltAdvScheme (set in data). For other options see Table
[tab:advectionShemes:sub:summary].

• PTRACERS_ImplVertAdv(iTrc): implicit vertical advection flag, default to .FALSE.

• PTRACERS_diffKh(iTrc): horizontal Laplacian Diffusivity, dafaults to diffKhS (set in data).

• PTRACERS_diffK4(iTrc): Biharmonic Diffusivity, defaults to diffK4S (set in data).

• PTRACERS_diffKr(iTrc): vertical diffusion, defaults to un-set.

• PTRACERS_diffKrNr(k,iTrc): level specific vertical diffusion, defaults to diffKrNrS. Will be set to PTRAC-
ERS_diffKr if this is set.

• PTRACERS_ref(k,iTrc): reference tracer value for each level k, defaults to 0. Currently only used for dilu-
tion/concentration of tracers at surface if PTRACERS_EvPrRn(iTrc) is set and convertFW2Salt (set in data) is
set to something other than -1 (note default is convertFW2Salt=35).

• PTRACERS_EvPrRn(iTrc): tracer concentration in freshwater. Needed for calculation of dilu-
tion/concentration in surface layer due to freshwater addition/evaporation. Defaults to un-set in which case
no dilution/concentration occurs.

• PTRACERS_useGMRedi(iTrc): apply GM or not. Defaults to useGMREdi.

• PTRACERS_useKPP(iTrc): apply KPP or not. Defaults to useKPP.

• PTRACERS_initialFile(iTrc): file with initial tracer concentration. Will be used if PTRACERS_Iter0 = nIter0.
Default is no name, in which case tracer is initialised as zero. If PTRACERS_Iter0 < nIter0, then tracer con-
centration will come from pickup_ptracer.

• PTRACERS_names(iTrc): tracer name. Needed for netcdf. Defaults to nothing.

• PTRACERS_long_names(iTrc): optional name in long form of tracer.

• PTRACERS_units(iTrc): optional units of tracer.

PTRACERS Diagnostics

Note that these will only work for 90 or less tracers (some problems with the numbering/designation over this number)

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
TRAC01 | 15 |SM P MR |mol C/m |Mass-Weighted Dissolved Inorganic
→˓Carbon
UTRAC01 | 15 |UU 171MR |mol C/m.m/s |Zonal Mass-Weighted Transp of
→˓Dissolved Inorganic Carbon
VTRAC01 | 15 |VV 170MR |mol C/m.m/s |Merid Mass-Weighted Transp of
→˓Dissolved Inorganic Carbon
WTRAC01 | 15 |WM MR |mol C/m.m/s |Vert Mass-Weighted Transp of
→˓Dissolved Inorganic Carbon
ADVrTr01| 15 |WM LR |mol C/m.m^3/s |Vertical Advective Flux of
→˓Dissolved Inorganic Carbon
ADVxTr01| 15 |UU 175MR |mol C/m.m^3/s |Zonal Advective Flux of
→˓Dissolved Inorganic Carbon
ADVyTr01| 15 |VV 174MR |mol C/m.m^3/s |Meridional Advective Flux of
→˓Dissolved Inorganic Carbon
DFrETr01| 15 |WM LR |mol C/m.m^3/s |Vertical Diffusive Flux of Dissolved
→˓Inorganic Carbon (Explicit part)
DIFxTr01| 15 |UU 178MR |mol C/m.m^3/s |Zonal Diffusive Flux of
→˓Dissolved Inorganic Carbon
DIFyTr01| 15 |VV 177MR |mol C/m.m^3/s |Meridional Diffusive Flux of
→˓Dissolved Inorganic Carbon
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DFrITr01| 15 |WM LR |mol C/m.m^3/s |Vertical Diffusive Flux of Dissolved
→˓Inorganic Carbon (Implicit part)
TRAC02 | 15 |SM P MR |mol eq/ |Mass-Weighted Alkalinity
UTRAC02 | 15 |UU 182MR |mol eq/.m/s |Zonal Mass-Weighted Transp of
→˓Alkalinity
VTRAC02 | 15 |VV 181MR |mol eq/.m/s |Merid Mass-Weighted Transp of
→˓Alkalinity
WTRAC02 | 15 |WM MR |mol eq/.m/s |Vert Mass-Weighted Transp of
→˓Alkalinity
ADVrTr02| 15 |WM LR |mol eq/.m^3/s |Vertical Advective Flux of
→˓Alkalinity
ADVxTr02| 15 |UU 186MR |mol eq/.m^3/s |Zonal Advective Flux of
→˓Alkalinity
ADVyTr02| 15 |VV 185MR |mol eq/.m^3/s |Meridional Advective Flux of
→˓Alkalinity
DFrETr02| 15 |WM LR |mol eq/.m^3/s |Vertical Diffusive Flux of Alkalinity
→˓(Explicit part)
DIFxTr02| 15 |UU 189MR |mol eq/.m^3/s |Zonal Diffusive Flux of
→˓Alkalinity
DIFyTr02| 15 |VV 188MR |mol eq/.m^3/s |Meridional Diffusive Flux of
→˓Alkalinity
DFrITr02| 15 |WM LR |mol eq/.m^3/s |Vertical Diffusive Flux of Alkalinity
→˓(Implicit part)
TRAC03 | 15 |SM P MR |mol P/m |Mass-Weighted Phosphate
UTRAC03 | 15 |UU 193MR |mol P/m.m/s |Zonal Mass-Weighted Transp of
→˓Phosphate
VTRAC03 | 15 |VV 192MR |mol P/m.m/s |Merid Mass-Weighted Transp of
→˓Phosphate
WTRAC03 | 15 |WM MR |mol P/m.m/s |Vert Mass-Weighted Transp of
→˓Phosphate
ADVrTr03| 15 |WM LR |mol P/m.m^3/s |Vertical Advective Flux of Phosphate
ADVxTr03| 15 |UU 197MR |mol P/m.m^3/s |Zonal Advective Flux of Phosphate
ADVyTr03| 15 |VV 196MR |mol P/m.m^3/s |Meridional Advective Flux of Phosphate
DFrETr03| 15 |WM LR |mol P/m.m^3/s |Vertical Diffusive Flux of Phosphate
→˓(Explicit part)
DIFxTr03| 15 |UU 200MR |mol P/m.m^3/s |Zonal Diffusive Flux of Phosphate
------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
DIFyTr03| 15 |VV 199MR |mol P/m.m^3/s |Meridional Diffusive Flux of Phosphate
DFrITr03| 15 |WM LR |mol P/m.m^3/s |Vertical Diffusive Flux of Phosphate
→˓(Implicit part)
TRAC04 | 15 |SM P MR |mol P/m |Mass-Weighted Dissolved Organic
→˓Phosphorus
UTRAC04 | 15 |UU 204MR |mol P/m.m/s |Zonal Mass-Weighted Transp of
→˓Dissolved Organic Phosphorus
VTRAC04 | 15 |VV 203MR |mol P/m.m/s |Merid Mass-Weighted Transp of
→˓Dissolved Organic Phosphorus
WTRAC04 | 15 |WM MR |mol P/m.m/s |Vert Mass-Weighted Transp of
→˓Dissolved Organic Phosphorus
ADVrTr04| 15 |WM LR |mol P/m.m^3/s |Vertical Advective Flux of
→˓Dissolved Organic Phosphorus
ADVxTr04| 15 |UU 208MR |mol P/m.m^3/s |Zonal Advective Flux of
→˓Dissolved Organic Phosphorus
ADVyTr04| 15 |VV 207MR |mol P/m.m^3/s |Meridional Advective Flux of
→˓Dissolved Organic Phosphorus
DFrETr04| 15 |WM LR |mol P/m.m^3/s |Vertical Diffusive Flux of Dissolved
→˓Organic Phosphorus (Explicit part)
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DIFxTr04| 15 |UU 211MR |mol P/m.m^3/s |Zonal Diffusive Flux of
→˓Dissolved Organic Phosphorus
DIFyTr04| 15 |VV 210MR |mol P/m.m^3/s |Meridional Diffusive Flux of
→˓Dissolved Organic Phosphorus
DFrITr04| 15 |WM LR |mol P/m.m^3/s |Vertical Diffusive Flux of Dissolved
→˓Organic Phosphorus (Implicit part)
TRAC05 | 15 |SM P MR |mol O/m |Mass-Weighted Dissolved Oxygen
UTRAC05 | 15 |UU 215MR |mol O/m.m/s |Zonal Mass-Weighted Transp of
→˓Dissolved Oxygen
VTRAC05 | 15 |VV 214MR |mol O/m.m/s |Merid Mass-Weighted Transp of
→˓Dissolved Oxygen
WTRAC05 | 15 |WM MR |mol O/m.m/s |Vert Mass-Weighted Transp of
→˓Dissolved Oxygen
ADVrTr05| 15 |WM LR |mol O/m.m^3/s |Vertical Advective Flux of
→˓Dissolved Oxygen
ADVxTr05| 15 |UU 219MR |mol O/m.m^3/s |Zonal Advective Flux of
→˓Dissolved Oxygen
ADVyTr05| 15 |VV 218MR |mol O/m.m^3/s |Meridional Advective Flux of
→˓Dissolved Oxygen
DFrETr05| 15 |WM LR |mol O/m.m^3/s |Vertical Diffusive Flux of Dissolved
→˓Oxygen (Explicit part)
DIFxTr05| 15 |UU 222MR |mol O/m.m^3/s |Zonal Diffusive Flux of
→˓Dissolved Oxygen
DIFyTr05| 15 |VV 221MR |mol O/m.m^3/s |Meridional Diffusive Flux of
→˓Dissolved Oxygen
DFrITr05| 15 |WM LR |mol O/m.m^3/s |Vertical Diffusive Flux of Dissolved
→˓Oxygen (Implicit part)

Do’s and Don’ts

Reference Material

Ocean Packages

GMREDI: Gent-McWilliams/Redi SGS Eddy Parameterization

There are two parts to the Redi/GM parameterization of geostrophic eddies. The first, the Redi scheme [Red82], aims
to mix tracer properties along isentropes (neutral surfaces) by means of a diffusion operator oriented along the local
isentropic surface. The second part, GM [GM90][GWMM95] , adiabatically re-arranges tracers through an advective
flux where the advecting flow is a function of slope of the isentropic surfaces.

The first GCM implementation of the Redi scheme was by [Cox87] in the GFDL ocean circulation model. The
original approach failed to distinguish between isopycnals and surfaces of locally referenced potential density (now
called neutral surfaces) which are proper isentropes for the ocean. As will be discussed later, it also appears that the
Cox implementation is susceptible to a computational mode. Due to this mode, the Cox scheme requires a background
lateral diffusion to be present to conserve the integrity of the model fields.

The GM parameterization was then added to the GFDL code in the form of a non-divergent bolus velocity. The method
defines two stream-functions expressed in terms of the isoneutral slopes subject to the boundary condition of zero value
on upper and lower boundaries. The horizontal bolus velocities are then the vertical derivative of these functions. Here
in lies a problem highlighted by [GGP+98]: the bolus velocities involve multiple derivatives on the potential density
field, which can consequently give rise to noise. Griffies et al. point out that the GM bolus fluxes can be identically
written as a skew flux which involves fewer differential operators. Further, combining the skew flux formulation and
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Redi scheme, substantial cancellations take place to the point that the horizontal fluxes are unmodified from the lateral
diffusion parameterization.

Redi scheme: Isopycnal diffusion

The Redi scheme diffuses tracers along isopycnals and introduces a term in the tendency (rhs) of such a tracer (here
𝜏 ) of the form:

∇ · 𝜅𝜌KRedi∇𝜏

where 𝜅𝜌 is the along isopycnal diffusivity and KRedi is a rank 2 tensor that projects the gradient of 𝜏 onto the
isopycnal surface. The unapproximated projection tensor is:

KRedi =
1

1 + |S|2

⎛⎝ 1 + 𝑆2
𝑦 −𝑆𝑥𝑆𝑦 𝑆𝑥

−𝑆𝑥𝑆𝑦 1 + 𝑆2
𝑥 𝑆𝑦

𝑆𝑥 𝑆𝑦 |𝑆|2

⎞⎠
Here, 𝑆𝑥 = −𝜕𝑥𝜎/𝜕𝑧𝜎 and 𝑆𝑦 = −𝜕𝑦𝜎/𝜕𝑧𝜎 are the components of the isoneutral slope.

The first point to note is that a typical slope in the ocean interior is small, say of the order 10−4. A maximum slope
might be of order 10−2 and only exceeds such in unstratified regions where the slope is ill defined. It is therefore jus-
tifiable, and customary, to make the small slope approximation, |𝑆| << 1. The Redi projection tensor then becomes:

KRedi =

⎛⎝ 1 0 𝑆𝑥

0 1 𝑆𝑦

𝑆𝑥 𝑆𝑦 |𝑆|2

⎞⎠
GM parameterization

The GM parameterization aims to represent the “advective” or “transport” effect of geostrophic eddies by means of a
“bolus” velocity, u⋆. The divergence of this advective flux is added to the tracer tendency equation (on the rhs):

−∇ · 𝜏u⋆

The bolus velocity u⋆ is defined as the rotational of a streamfunction F⋆=(𝐹 ⋆
𝑥 , 𝐹

⋆
𝑦 , 0):

u⋆ = ∇× F⋆ =

⎛⎝ −𝜕𝑧𝐹 ⋆
𝑦

+𝜕𝑧𝐹
⋆
𝑥

𝜕𝑥𝐹
⋆
𝑦 − 𝜕𝑦𝐹

⋆
𝑥

⎞⎠ ,

and thus is automatically non-divergent. In the GM parameterization, the streamfunction is specified in terms of the
isoneutral slopes 𝑆𝑥 and 𝑆𝑦:

𝐹 ⋆
𝑥 = −𝜅𝐺𝑀𝑆𝑦

𝐹 ⋆
𝑦 = 𝜅𝐺𝑀𝑆𝑥

with boundary conditions 𝐹 ⋆
𝑥 = 𝐹 ⋆

𝑦 = 0 on upper and lower boundaries. In the end, the bolus transport in the GM
parameterization is given by:

u⋆ =

⎛⎝ 𝑢⋆

𝑣⋆

𝑤⋆

⎞⎠ =

⎛⎝ −𝜕𝑧(𝜅𝐺𝑀𝑆𝑥)
−𝜕𝑧(𝜅𝐺𝑀𝑆𝑦)

𝜕𝑥(𝜅𝐺𝑀𝑆𝑥) + 𝜕𝑦(𝜅𝐺𝑀𝑆𝑦)

⎞⎠
This is the form of the GM parameterization as applied by Donabasaglu, 1997, in MOM versions 1 and 2.

Note that in the MITgcm, the variables containing the GM bolus streamfunction are:(︂
𝐺𝑀_𝑃𝑠𝑖𝑋
𝐺𝑀_𝑃𝑠𝑖𝑌

)︂
=

(︂
𝜅𝐺𝑀𝑆𝑥

𝜅𝐺𝑀𝑆𝑦

)︂
=

(︂
𝐹 ⋆
𝑦

−𝐹 ⋆
𝑥

)︂
.
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Griffies Skew Flux

[Gri98] notes that the discretisation of bolus velocities involves multiple layers of differencing and interpolation that
potentially lead to noisy fields and computational modes. He pointed out that the bolus flux can be re-written in terms
of a non-divergent flux and a skew-flux:

u⋆𝜏 =

⎛⎝ −𝜕𝑧(𝜅𝐺𝑀𝑆𝑥)𝜏
−𝜕𝑧(𝜅𝐺𝑀𝑆𝑦)𝜏

(𝜕𝑥𝜅𝐺𝑀𝑆𝑥 + 𝜕𝑦𝜅𝐺𝑀𝑆𝑦)𝜏

⎞⎠
=

⎛⎝ −𝜕𝑧(𝜅𝐺𝑀𝑆𝑥𝜏)
−𝜕𝑧(𝜅𝐺𝑀𝑆𝑦𝜏)

𝜕𝑥(𝜅𝐺𝑀𝑆𝑥𝜏) + 𝜕𝑦(𝜅𝐺𝑀𝑆𝑦𝜏)

⎞⎠+

⎛⎝ 𝜅𝐺𝑀𝑆𝑥𝜕𝑧𝜏
𝜅𝐺𝑀𝑆𝑦𝜕𝑧𝜏

−𝜅𝐺𝑀𝑆𝑥𝜕𝑥𝜏 − 𝜅𝐺𝑀𝑆𝑦𝜕𝑦𝜏

⎞⎠
The first vector is non-divergent and thus has no effect on the tracer field and can be dropped. The remaining flux can
be written:

u⋆𝜏 = −𝜅GMKGM∇𝜏

where

KGM =

⎛⎝ 0 0 −𝑆𝑥

0 0 −𝑆𝑦

𝑆𝑥 𝑆𝑦 0

⎞⎠
is an anti-symmetric tensor.

This formulation of the GM parameterization involves fewer derivatives than the original and also involves only terms
that already appear in the Redi mixing scheme. Indeed, a somewhat fortunate cancellation becomes apparent when we
use the GM parameterization in conjunction with the Redi isoneutral mixing scheme:

𝜅𝜌KRedi∇𝜏 − u⋆𝜏 = (𝜅𝜌KRedi + 𝜅GMKGM)∇𝜏

In the instance that 𝜅𝐺𝑀 = 𝜅𝜌 then

𝜅𝜌KRedi + 𝜅GMKGM = 𝜅𝜌

⎛⎝ 1 0 0
0 1 0

2𝑆𝑥 2𝑆𝑦 |𝑆|2

⎞⎠
which differs from the variable Laplacian diffusion tensor by only two non-zero elements in the 𝑧-row.

Subroutine

S/R GMREDI_CALC_TENSOR (pkg/gmredi/gmredi_calc_tensor.F)

𝜎𝑥: SlopeX (argument on entry)

𝜎𝑦: SlopeY (argument on entry)

𝜎𝑧: SlopeY (argument)

𝑆𝑥: SlopeX (argument on exit)

𝑆𝑦: SlopeY (argument on exit)
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Variable 𝜅𝐺𝑀

[VMHS97] suggest making the eddy coefficient, 𝜅𝐺𝑀 , a function of the Eady growth rate, |𝑓 |/
√
𝑅𝑖. The formula

involves a non-dimensional constant, 𝛼, and a length-scale 𝐿:

𝜅𝐺𝑀 = 𝛼𝐿2 |𝑓 |√
𝑅𝑖

𝑧

where the Eady growth rate has been depth averaged (indicated by the over-line). A local Richardson number is
defined 𝑅𝑖 = 𝑁2/(𝜕𝑢/𝜕𝑧)2 which, when combined with thermal wind gives:

1

𝑅𝑖
=

(𝜕𝑢
𝜕𝑧 )2

𝑁2
=

( 𝑔
𝑓𝜌𝑜

|∇𝜎|)2

𝑁2
=

𝑀4

|𝑓 |2𝑁2

where 𝑀2 is defined 𝑀2 = 𝑔
𝜌𝑜
|∇𝜎|. Substituting into the formula for 𝜅𝐺𝑀 gives:

𝜅𝐺𝑀 = 𝛼𝐿2𝑀
2

𝑁

𝑧

= 𝛼𝐿2𝑀
2

𝑁2
𝑁

𝑧

= 𝛼𝐿2|𝑆|𝑁
𝑧

Tapering and stability

Experience with the GFDL model showed that the GM scheme has to be matched to the convective parameterization.
This was originally expressed in connection with the introduction of the KPP boundary layer scheme [LMD94] but in
fact, as subsequent experience with the MIT model has found, is necessary for any convective parameterization.

Subroutine

S/R GMREDI_SLOPE_LIMIT (pkg/gmredi/gmredi_slope_limit.F)

𝜎𝑥, 𝑠𝑥: SlopeX (argument)

𝜎𝑦, 𝑠𝑦: SlopeY (argument)

𝜎𝑧: dSigmadRReal (argument)

𝑧*𝜎: dRdSigmaLtd (argument)

Slope clipping

Deep convection sites and the mixed layer are indicated by homogenized, unstable or nearly unstable stratification. The
slopes in such regions can be either infinite, very large with a sign reversal or simply very large. From a numerical point
of view, large slopes lead to large variations in the tensor elements (implying large bolus flow) and can be numerically
unstable. This was first recognized by [Cox87] who implemented “slope clipping” in the isopycnal mixing tensor.
Here, the slope magnitude is simply restricted by an upper limit:

|∇𝜎| =
√︁
𝜎2
𝑥 + 𝜎2

𝑦

𝑆𝑙𝑖𝑚 = − |∇𝜎|
𝑆𝑚𝑎𝑥

where 𝑆𝑚𝑎𝑥 is a parameter

𝜎⋆
𝑧 = min(𝜎𝑧, 𝑆𝑙𝑖𝑚)

[𝑠𝑥, 𝑠𝑦] = − [𝜎𝑥, 𝜎𝑦]

𝜎⋆
𝑧
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Figure 5.6: Taper functions used in GKW91 and DM95.
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Figure 5.7: Effective slope as a function of ‘true’ slope using Cox slope clipping, GKW91 limiting and DM95 limiting.
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Notice that this algorithm assumes stable stratification through the “min” function. In the case where the fluid is well
stratified (𝜎𝑧 < 𝑆𝑙𝑖𝑚) then the slopes evaluate to:

[𝑠𝑥, 𝑠𝑦] = − [𝜎𝑥, 𝜎𝑦]

𝜎𝑧

while in the limited regions (𝜎𝑧 > 𝑆𝑙𝑖𝑚) the slopes become:

[𝑠𝑥, 𝑠𝑦] =
[𝜎𝑥, 𝜎𝑦]

|∇𝜎|/𝑆𝑚𝑎𝑥

so that the slope magnitude is limited
√︁
𝑠2𝑥 + 𝑠2𝑦 = 𝑆𝑚𝑎𝑥.

The slope clipping scheme is activated in the model by setting GM_taper_scheme = ’clipping’ in data.gmredi.

Even using slope clipping, it is normally the case that the vertical diffusion term (with coefficient 𝜅𝜌K33 = 𝜅𝜌𝑆
2
𝑚𝑎𝑥)

is large and must be time-stepped using an implicit procedure (see section on discretisation and code later). Fig. [fig-
mixedlayer] shows the mixed layer depth resulting from a) using the GM scheme with clipping and b) no GM scheme
(horizontal diffusion). The classic result of dramatically reduced mixed layers is evident. Indeed, the deep convection
sites to just one or two points each and are much shallower than we might prefer. This, it turns out, is due to the
over zealous re-stratification due to the bolus transport parameterization. Limiting the slopes also breaks the adiabatic
nature of the GM/Redi parameterization, re-introducing diabatic fluxes in regions where the limiting is in effect.

Tapering: Gerdes, Koberle and Willebrand, Clim. Dyn. 1991

The tapering scheme used in [GKW91] addressed two issues with the clipping method: the introduction of large
vertical fluxes in addition to convective adjustment fluxes is avoided by tapering the GM/Redi slopes back to zero in
low-stratification regions; the adjustment of slopes is replaced by a tapering of the entire GM/Redi tensor. This means
the direction of fluxes is unaffected as the amplitude is scaled.

The scheme inserts a tapering function, 𝑓1(𝑆), in front of the GM/Redi tensor:

𝑓1(𝑆) = min

[︃
1,

(︂
𝑆𝑚𝑎𝑥

|𝑆|

)︂2
]︃

where 𝑆𝑚𝑎𝑥 is the maximum slope you want allowed. Where the slopes, |𝑆| < 𝑆𝑚𝑎𝑥 then 𝑓1(𝑆) = 1 and the tensor
is un-tapered but where |𝑆| ≥ 𝑆𝑚𝑎𝑥 then 𝑓1(𝑆) scales down the tensor so that the effective vertical diffusivity term
𝜅𝑓1(𝑆)|𝑆|2 = 𝜅𝑆2

𝑚𝑎𝑥.

The GKW91 tapering scheme is activated in the model by setting GM_taper_scheme = ’gkw91’ in data.gmredi.

Tapering: Danabasoglu and McWilliams, J. Clim. 1995

The tapering scheme used by followed a similar procedure but used a different tapering function, 𝑓1(𝑆):

𝑓1(𝑆) =
1

2

(︂
1 + tanh

[︂
𝑆𝑐 − |𝑆|
𝑆𝑑

]︂)︂
where 𝑆𝑐 = 0.004 is a cut-off slope and 𝑆𝑑 = 0.001 is a scale over which the slopes are smoothly tapered. Function-
ally, the operates in the same way as the GKW91 scheme but has a substantially lower cut-off, turning off the GM/Redi
SGS parameterization for weaker slopes.

The DM95 tapering scheme is activated in the model by setting GM_taper_scheme = ’dm95’ in data.gmredi.
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Tapering: Large, Danabasoglu and Doney, JPO 1997

The tapering used in [LDDM97] is based on the DM95 tapering scheme, but also tapers the scheme with an additional
function of height, 𝑓2(𝑧), so that the GM/Redi SGS fluxes are reduced near the surface:

𝑓2(𝑧) =
1

2

(︁
1 + sin(𝜋

𝑧

𝐷
− 𝜋

2
)
)︁

where𝐷 = 𝐿𝜌|𝑆| is a depth-scale and 𝐿𝜌 = 𝑐/𝑓 with 𝑐 = 2 m s:math:^{-1}. This tapering with height was introduced
to fix some spurious interaction with the mixed-layer KPP parameterization.

The LDD97 tapering scheme is activated in the model by setting GM_taper_scheme = ’ldd97’ in data.gmredi.

Figure 5.8: Figure missing Mixed layer depth using GM parameterization with a) Cox slope clipping and for com-
parison b) using horizontal constant diffusion.

Package Reference

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
GM_VisbK| 1 |SM P M1 |m^2/s |Mixing coefficient from Visbeck etal
→˓parameterization
GM_Kux | 15 |UU P 177MR |m^2/s |K_11 element (U.point, X.dir) of GM-
→˓Redi tensor
GM_Kvy | 15 |VV P 176MR |m^2/s |K_22 element (V.point, Y.dir) of GM-
→˓Redi tensor
GM_Kuz | 15 |UU 179MR |m^2/s |K_13 element (U.point, Z.dir) of GM-
→˓Redi tensor
GM_Kvz | 15 |VV 178MR |m^2/s |K_23 element (V.point, Z.dir) of GM-
→˓Redi tensor
GM_Kwx | 15 |UM 181LR |m^2/s |K_31 element (W.point, X.dir) of GM-
→˓Redi tensor
GM_Kwy | 15 |VM 180LR |m^2/s |K_32 element (W.point, Y.dir) of GM-
→˓Redi tensor
GM_Kwz | 15 |WM P LR |m^2/s |K_33 element (W.point, Z.dir) of GM-
→˓Redi tensor
GM_PsiX | 15 |UU 184LR |m^2/s |GM Bolus transport stream-function :
→˓X component
GM_PsiY | 15 |VV 183LR |m^2/s |GM Bolus transport stream-function :
→˓Y component
GM_KuzTz| 15 |UU 186MR |degC.m^3/s |Redi Off-diagonal Tempetature flux: X
→˓component
GM_KvzTz| 15 |VV 185MR |degC.m^3/s |Redi Off-diagonal Tempetature flux: Y
→˓component

Experiments and tutorials that use gmredi

• Global Ocean tutorial, in tutorial_global_oce_latlon verification directory, described in section [sec:eg-global]

• Front Relax experiment, in front_relax verification directory.

• Ideal 2D Ocean experiment, in ideal_2D_oce verification directory.
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KPP: Nonlocal K-Profile Parameterization for Vertical Mixing

Authors: Dimitris Menemenlis and Patrick Heimbach

Introduction

The nonlocal K-Profile Parameterization (KPP) scheme of [LMD94] unifies the treatment of a variety of unresolved
processes involved in vertical mixing. To consider it as one mixing scheme is, in the view of the authors, somewhat
misleading since it consists of several entities to deal with distinct mixing processes in the ocean’s surface boundary
layer, and the interior:

1. mixing in the interior is goverened by shear instability (modeled as function of the local gradient Richardson
number), internal wave activity (assumed constant), and double-diffusion (not implemented here).

2. a boundary layer depth ℎ or hbl is determined at each grid point, based on a critical value of turbulent processes
parameterized by a bulk Richardson number;

3. mixing is strongly enhanced in the boundary layer under the stabilizing or destabilizing influence of surface
forcing (buoyancy and momentum) enabling boundary layer properties to penetrate well into the thermocline;
mixing is represented through a polynomial profile whose coefficients are determined subject to several con-
traints;

4. the boundary-layer profile is made to agree with similarity theory of turbulence and is matched, in the asymptotic
sense (function and derivative agree at the boundary), to the interior thus fixing the polynomial coefficients;
matching allows for some fraction of the boundary layer mixing to affect the interior, and vice versa;

5. a “non-local” term 𝛾 or ghat which is independent of the vertical property gradient further enhances mixing
where the water column is unstable

The scheme has been extensively compared to observations (see e.g. [LDDM97]) and is now common in many ocean
models.

The current code originates in the NCAR NCOM 1-D code and was kindly provided by Bill Large and Jan Morzel.
It has been adapted first to the MITgcm vector code and subsequently to the current parallel code. Adjustment were
mainly in conjunction with WRAPPER requirements (domain decomposition and threading capability), to enable
automatic differentiation of tangent linear and adjoint code via TAMC.

The following sections will describe the KPP package configuration and compiling ([sec:pkg:kpp:comp]),
the settings and choices of runtime parameters ([sec:pkg:kpp:runtime]), more detailed description of equa-
tions to which these parameters relate ([sec:pkg:kpp:equations]), and key subroutines where they are used
([sec:pkg:kpp:flowchart]), and diagnostics output of KPP-derived diffusivities, viscosities and boundary-layer/mixed-
layer depths ([sec:pkg:kpp:diagnostics]).

KPP configuration and compiling

As with all MITgcm packages, KPP can be turned on or off at compile time

• using the packages.conf file by adding kpp to it,

• or using genmake2 adding -enable=kpp or -disable=kpp switches

• Required packages and CPP options: No additional packages are required, but the MITgcm kernel flag enabling
the penetration of shortwave radiation below the surface layer needs to be set in CPP_OPTIONS.h as follows:
#define SHORTWAVE_HEATING

(see Section [sec:buildingCode]).

Parts of the KPP code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set in
KPP_OPTIONS.h. Table Table 5.4 summarizes them.
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Table 5.4: CPP flags for KPP

CPP option Description
_KPP_RL
FRUGAL_KPP
KPP_SMOOTH_SHSQ
KPP_SMOOTH_DVSQ
KPP_SMOOTH_DENS
KPP_SMOOTH_VISC
KPP_SMOOTH_DIFF
KPP_ESTIMATE_UREF
INCLUDE_DIAGNOSTICS_INTERFACE_CODE
KPP_GHAT
EXCLUDE_KPP_SHEAR_MIX

Run-time parameters

Run-time parameters are set in files data.pkg and data.kpp which are read in kpp_readparms.F. Run-time
parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) required MITgcm flags,
(iii) package flags and parameters.

Enabling the package

The KPP package is switched on at runtime by setting useKPP = .TRUE. in data.pkg.

Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to be set in conjunction with KPP:

implicitViscosity = .TRUE. enable implicit vertical viscosity
implicitDiffusion = .TRUE. enable implicit vertical diffusion

Package flags and parameters

Table 5.5 summarizes the runtime flags that are set in data.pkg, and their default values.

Table 5.5: Runtime flags for KPP

Flag/parameter default Description
I/O related parameters
kpp_freq deltaTClock Recomputation frequency for KPP

fields
kpp_dumpFreq dumpFreq Dump frequency of KPP field snap-

shots
kpp_taveFreq taveFreq Averaging and dump frequency of

KPP fields
KPPmixingMaps .FALSE. include KPP diagnostic maps in

STDOUT
Continued on next page

5.4. Ocean Packages 95



MITgcm Documentation, Release 1.0

Table 5.5 – continued from previous page
Flag/parameter default Description
KPPwriteState .FALSE. write KPP state to file
KPP_ghatUseTotalDiffus .FALSE. if .T. compute non-local term us-

ing
total vertical diffusivity
if .F. use KPP vertical diffusivity

General KPP parameters
minKPPhbl delRc(1) Minimum boundary layer depth
epsilon 0.1 nondimensional extent of the sur-

face layer
vonk 0.4 von Karman constant
dB_dz 5.2E-5 s–2 maximum dB/dz in mixed layer

hMix
concs 98.96
concv 1.8
Boundary layer parameters (S/R bldepth)
Ricr 0.3 critical bulk Richardson number
cekman 0.7 coefficient for Ekman depth
cmonob 1.0 coefficient for Monin-Obukhov

depth
concv 1.8 ratio of interior to entrainment depth

buoyancy frequency
hbf 1.0 fraction of depth to which absorbed

solar radiation contributes to surface
buoyancy forcing

Vtc non-dim. coeff. for velocity scale of
turbulant velocity shear ( = function
of concv,concs,epsilon,vonk,Ricr)

Boundary layer mixing parameters (S/R blmix)
cstar

10.
proportionality coefficient for non-
local transport

cg non-dimensional coefficient for
counter-gradient term ( = function
of cstar,vonk,concs,epsilon)

Interior mixing parameters (S/R Ri_iwmix)
Riinfty 0.7 gradient Richardson number limit

for shear instability
BVDQcon -0.2E-4 s–2 Brunt-Väisalä squared
difm0 0.005 m2 s–1 viscosity max. due to shear instabil-

ity
difs0 0.005 m2/s tracer diffusivity max. due to shear

instability
dift0 0.005 m2/s heat diffusivity max. due to shear

instability
difmcon 0.1 viscosity due to convective instabil-

ity
difscon 0.1 tracer diffusivity due to convective

instability
diftcon 0.1 heat diffusivity due to convective in-

stability
Continued on next page
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Table 5.5 – continued from previous page
Flag/parameter default Description
Rrho0 not used limit for double diffusive density ra-

tio
dsfmax not used maximum diffusivity in case of salt

fingering

Equations and key routines

We restrict ourselves to writing out only the essential equations that relate to main processes and parameters mentioned
above. We closely follow the notation of [LMD94].

KPP_CALC:

Top-level routine.

KPP_MIX:

Intermediate-level routine

BLMIX: Mixing in the boundary layer

The vertical fluxes 𝑤𝑥 of momentum and tracer properties 𝑋 is composed of a gradient-flux term (proportional to the
vertical property divergence 𝜕𝑧𝑋), and a “nonlocal” term 𝛾𝑥 that enhances the gradient-flux mixing coefficient 𝐾𝑥

𝑤𝑥(𝑑) = −𝐾𝑥

(︂
𝜕𝑋

𝜕𝑧
− 𝛾𝑥

)︂
• Boundary layer mixing profile It is expressed as the product of the boundary layer depth ℎ, a depth-dependent

turbulent velocity scale 𝑤𝑥(𝜎) and a non-dimensional shape function 𝐺(𝜎)

𝐾𝑥(𝜎) = ℎ𝑤𝑥(𝜎)𝐺(𝜎)

with dimensionless vertical coordinate 𝜎 = 𝑑/ℎ. For details of :math:‘ w_x(sigma)‘ and 𝐺(𝜎) we refer to .

• Nonlocal mixing term The nonlocal transport term 𝛾 is nonzero only for tracers in unstable (convective) forcing
conditions. Thus, depending on the stability parameter 𝜁 = 𝑑/𝐿 (with depth 𝑑, Monin-Obukhov length scale 𝐿)
it has the following form:

𝛾𝑥 = 0 𝜁 ≥ 0

𝛾𝑚 = 0

𝛾𝑠 = 𝐶𝑠
𝑤𝑠0

𝑤𝑠(𝜎)ℎ

𝛾𝜃 = 𝐶𝑠
𝑤𝜃0+𝑤𝜃𝑅
𝑤𝑠(𝜎)ℎ

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
𝜁 < 0

In practice, the routine peforms the following tasks:

1. compute velocity scales at hbl

2. find the interior viscosities and derivatives at hbl
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3. compute turbulent velocity scales on the interfaces

4. compute the dimensionless shape functions at the interfaces

5. compute boundary layer diffusivities at the interfaces

6. compute nonlocal transport term

7. find diffusivities at kbl-1 grid level

RI_IWMIX: Mixing in the interior

Compute interior viscosity and diffusivity coefficients due to

• shear instability (dependent on a local gradient Richardson number),

• to background internal wave activity, and

• to static instability (local Richardson number < 0).

TO BE CONTINUED.

BLDEPTH: Boundary layer depth calculation:

The oceanic planetary boundary layer depth, hbl, is determined as the shallowest depth where the bulk Richardson
number is equal to the critical value, Ricr.

Bulk Richardson numbers are evaluated by computing velocity and buoyancy differences between values at zgrid(kl)
< 0 and surface reference values. In this configuration, the reference values are equal to the values in the surface layer.
When using a very fine vertical grid, these values should be computed as the vertical average of velocity and buoyancy
from the surface down to epsilon*zgrid(kl).

When the bulk Richardson number at k exceeds Ricr, hbl is linearly interpolated between grid levels zgrid(k) and
zgrid(k-1).

The water column and the surface forcing are diagnosed for stable/ustable forcing conditions, and where hbl is relative
to grid points (caseA), so that conditional branches can be avoided in later subroutines.

TO BE CONTINUED.

KPP_CALC_DIFF_T/_S, KPP_CALC_VISC:

Add contribution to net diffusivity/viscosity from KPP diffusivity/viscosity.

TO BE CONTINUED.

KPP_TRANSPORT_T/_S/_PTR:

Add non local KPP transport term (ghat) to diffusive temperature/salinity/passive tracer flux. The nonlocal transport
term is nonzero only for scalars in unstable (convective) forcing conditions.

TO BE CONTINUED.

Implicit time integration

TO BE CONTINUED.
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Penetration of shortwave radiation

TO BE CONTINUED.

Flow chart

C !CALLING SEQUENCE:
c ...
c kpp_calc (TOP LEVEL ROUTINE)
c |
c |-- statekpp: o compute all EOS/density-related arrays
c | o uses S/R FIND_ALPHA, FIND_BETA, FIND_RHO
c |
c |-- kppmix
c | |--- ri_iwmix (compute interior mixing coefficients due to constant
c | | internal wave activity, static instability,
c | | and local shear instability).
c | |
c | |--- bldepth (diagnose boundary layer depth)
c | |
c | |--- blmix (compute boundary layer diffusivities)
c | |
c | |--- enhance (enhance diffusivity at interface kbl - 1)
c | o
c |
c |-- swfrac
c o

KPP diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized here:

------------------------------------------------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

------------------------------------------------------
KPPviscA| 23 |SM |m^2/s |KPP vertical eddy viscosity coefficient
KPPdiffS| 23 |SM |m^2/s |Vertical diffusion coefficient for salt & tracers
KPPdiffT| 23 |SM |m^2/s |Vertical diffusion coefficient for heat
KPPghat | 23 |SM |s/m^2 |Nonlocal transport coefficient
KPPhbl | 1 |SM |m |KPP boundary layer depth, bulk Ri criterion
KPPmld | 1 |SM |m |Mixed layer depth, dT=.8degC density criterion
KPPfrac | 1 |SM | |Short-wave flux fraction penetrating mixing layer

Reference experiments

lab_sea:

natl_box:
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References

Experiments and tutorials that use kpp

• Labrador Sea experiment, in lab_sea verification directory

GGL90: a TKE vertical mixing scheme

(in directory: pkg/ggl90/ )

Key subroutines, parameters and files

see [GGL90]

Experiments and tutorials that use GGL90

• Vertical mixing verification experiment (vermix/input.ggl90)

OPPS: Ocean Penetrative Plume Scheme

(in directory: pkg/opps/ )

Key subroutines, parameters and files

See [PR97]

Experiments and tutorials that use OPPS

• Vertical mixing verification experiment (vermix/input.opps)

KL10: Vertical Mixing Due to Breaking Internal Waves

(in directory: pkg/kl10/ )

Authors: Jody M. Klymak

Introduction

The [KL10] parameterization for breaking internal waves is meant to represent mixing in the ocean “interior” due to
convective instability. Many mixing schemes in the presence of unstable stratification simply turn on an arbitrarily
large diffusivity and viscosity in the overturning region. This assumes the fluid completely mixes, which is proba-
bly not a terrible assumption, but it also makes estimating the turbulence dissipation rate in the overturning region
meaningless.

The KL10 scheme overcomes this limitation by estimating the viscosity and diffusivity from a combination of the
Ozmidov relation and the Osborn relation, assuming a turbulent Prandtl number of one. The Ozmidov relation says
that outer scale of turbulence in an overturn will scale with the strength of the turbulence 𝜖, and the stratification 𝑁 , as

𝐿2
𝑂 ≈ 𝜖𝑁−3.
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The Osborn relation relates the strength of the dissipation to the vertical diffusivity as

𝐾𝑣 = Γ𝜖𝑁−2,

where Γ ≈ 0.2 is the mixing ratio of buoyancy flux to thermal dissipation due to the turbulence. Combining the two
gives us

𝐾𝑣 ≈ Γ𝐿2
𝑂𝑁.

The ocean turbulence community often approximates the Ozmidov scale by the root-mean-square of the Thorpe dis-
placement, 𝛿𝑧 , in an overturn [Tho77]. The Thorpe displacement is the distance one would have to move a water parcel
for the water column to be stable, and is readily measured in a measured profile by sorting the profile and tracking
how far each parcel moves during the sorting procedure. This method gives an imperfect estimate of the turbulence,
but it has been found to agree on average over a large range of overturns [WG94][SG94][Mou96].

The algorithm coded here is a slight simplification of the usual Thorpe method for estimating turbulence in overturning
regions. Usually, overturns are identified and 𝑁 is averaged over the overturn. Here, instead we estimate

𝐾𝑣(𝑧) ≈ Γ𝛿2𝑧 𝑁𝑠(𝑧).

where 𝑁𝑠(𝑧) is the local sorted stratification. This saves complexity in the code and adds a slight inaccuracy, but we
don’t believe is biased.

We assume a turbulent Prandtl number of 1, so 𝐴𝑣 = 𝐾𝑣 .

We also calculate and output a turbulent dissipation from this scheme. We do not simply evaluate the overturns for 𝜖
using ([eq:pkg:kl10:Lo]). Instead we compute the vertical shear terms that the viscosity is acting on:

𝜖𝑣 = 𝐴𝑣

(︃(︂
𝜕𝑢

𝜕𝑧

)︂2

+

(︂
𝜕𝑣

𝜕𝑧

)︂2
)︃
.

There are straightforward caveats to this approach, covered in [KL10].

• If your resolution is too low to resolve the breaking internal waves, you won’t have any turbulence.

• If the model resolution is too high, the estimates of 𝜖𝑣 will start to be exaggerated, particularly if the run in
non-hydrostatic. That is because there will be significant shear at small scales that represents the turbulence
being parameterized in the scheme. At very high resolutions direct numerical simulation or more sophisticated
large-eddy schemes should be used.

• We find that grid cells of approximately 10 to 1 aspect ratio are a good rule of thumb for achieving good
results are usual oceanic scales. For a site like the Hawaiian Ridge, and Luzon Strait, this means 10-m vertical
resolusion and approximately 100-m horizontal. The 10-m resolution can be relaxed if the stratification drops,
and we often WKB-stretch the grid spacing with depth.

• The dissipation estimate is useful for pinpoiting the location of turbulence, but again, is grid size dependent to
some extent, and should be treated with a grain of salt. It will also not include any numerical dissipation such
as you may find with higher order advection schemes.

KL10 configuration and compiling

As with all MITgcm packages, KL10 can be turned on or off at compile time

• using the packages.conf file by adding kl10 to it,

• or using genmake2 adding -enable=kl10 or -disable=kl10 switches

• Required packages and CPP options: No additional packages are required.

(see Section [sec:buildingCode]).

KL10 has no compile-time options (KL10_OPTIONS.h is empty).
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Run-time parameters

Run-time parameters are set in files data.pkg and data.kl10 which are read in kl10_readparms.F. Run-
time parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) required MITgcm
flags, (iii) package flags and parameters.

Enabling the package

The KL10 package is switched on at runtime by setting useKL10 = .TRUE. in data.pkg.

Required MITgcm flags

The following flags/parameters of the MITgcm dynamical kernel need to be set in conjunction with KL10:

implicitViscosity = .TRUE. enable implicit vertical viscosity
implicitDiffusion = .TRUE. enable implicit vertical diffusion

Package flags and parameters

Table 5.6 summarizes the runtime flags that are set in data.kl10, and their default values.

Table 5.6: KL10 runtime parameters.

Flag/parameter default Description
KLviscMax 300 m2 s–1 Maximum viscosity the scheme will ever give (useful for stability)
KLdumpFreq dumpFreq Dump frequency of KL10 field snapshots
KLtaveFreq taveFreq Averaging and dump frequency of KL10 fields
KLwriteState .FALSE. write KL10 state to file

Equations and key routines

KL10_CALC:

Top-level routine. Calculates viscosity and diffusivity on the grid cell centers. Note that the runtime parameters
viscAz and diffKzT act as minimum viscosity and diffusivities. So if there are no overturns (or they are weak)
then these will be returned.

KL10_CALC_VISC:

Calculates viscosity on the W and S grid faces for U and V respectively.

KL10_CALC_DIFF:

Calculates the added diffusion from KL10.
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KL10 diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized here:

------------------------------------------------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)

------------------------------------------------------
KLviscAr| Nr |SM |m^2/s |KL10 vertical eddy viscosity coefficient
KLdiffKr| Nr |SM |m^2/s |Vertical diffusion coefficient for salt,
→˓temperature, & tracers
KLeps | Nr |SM |m^3/s^3 |Turbulence dissipation estimate.

References

Klymak and Legg, 2010, Oc. Modell..

Experiments and tutorials that use KL10

• Modified Internal Wave experiment, in internal_wave verification directory

BULK_FORCE: Bulk Formula Package

author: Stephanie Dutkiewicz

Instead of forcing the model with heat and fresh water flux data, this package calculates these fluxes using the changing
sea surface temperature. We need to read in some atmospheric data: air temperature, air humidity, down shortwave
radiation, down longwave radiation, precipitation, wind speed. The current setup also reads in wind stress, but
this can be changed so that the stresses are calculated from the wind speed.

The current setup requires that there is the thermodynamic-seaice package (pkg/thsice, also refered below as seaice) is
also used. It would be useful though to have it also setup to run with some very simple parametrization of the sea ice.

The heat and fresh water fluxes are calculated in bulkf_forcing.F called from forward_step.F. These fluxes are used
over open water, fluxes over seaice are recalculated in the sea-ice package. Before the call to bulkf_forcing.F we call
bulkf_fields_load.F to find the current atmospheric conditions. The only other changes to the model code come from
the initializing and writing diagnostics of these fluxes.

subroutine BULKF_FIELDS_LOAD

Here we find the atmospheric data needed for the bulk formula calculations. These are read in at periodic intervals and
values are interpolated to the current time. The data file names come from data.blk. The values that can be read in
are: air temperature, air humidity, precipitation, down solar radiation, down long wave radiation, zonal and meridional
wind speeds, total wind speed, net heat flux, net freshwater forcing, cloud cover, snow fall, zonal and meridional wind
stresses, and SST and SSS used for relaxation terms. Not all these files are necessary or used. For instance cloud cover
and snow fall are not used in the current bulk formula calculation. If total wind speed is not supplied, wind speed is
calculate from the zonal and meridional components. If wind stresses are not read in, then the stresses are calculated
from the wind speed. Net heat flux and net freshwater can be read in and used over open ocean instead of the bulk
formula calculations (but over seaice the bulkf formula is always used). This is “hardwired” into bulkf_forcing and the
“ch” in the variable names suggests that this is “cheating”. SST and SSS need to be read in if there is any relaxation
used.
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subroutine BULKF_FORCING

In bulkf_forcing.F, we calculate heat and fresh water fluxes (and wind stress, if necessary) for each grid cell. First
we determine if the grid cell is open water or seaice and this information is carried by iceornot. There is a provision
here for a different designation if there is snow cover (but currently this does not make any difference). We then call
bulkf_formula_lanl.F which provides values for: up long wave radiation, latent and sensible heat fluxes, the derivative
of these three with respect to surface temperature, wind stress, evaporation. Net long wave radiation is calculated from
the combination of the down long wave read in and the up long wave calculated.

We then find the albedo of the surface - with a call to sfc_albedo if there is sea-ice (see the seaice package for
information on the subroutine). If the grid cell is open ocean the albedo is set as 0.1. Note that this is a parameter that
can be used to tune the results. The net short wave radiation is then the down shortwave radiation minus the amount
reflected.

If the wind stress needed to be calculated in bulkf_formula_lanl.F, it was calculated to grid cell center points, so in
bulkf_forcing.F we regrid to u and v points. We let the model know if it has read in stresses or calculated stresses by
the switch readwindstress which is can be set in data.blk, and defaults to .TRUE..

We then calculate Qnet and EmPmR that will be used as the fluxes over the open ocean. There is a provision for
using runoff. If we are “cheating” and using observed fluxes over the open ocean, then there is a provision here to use
read in Qnet and EmPmR.

The final call is to calculate averages of the terms found in this subroutine.

subroutine BULKF_FORMULA_LANL

This is the main program of the package where the heat fluxes and freshwater fluxes over ice and open water are
calculated. Note that this subroutine is also called from the seaice package during the iterations to find the ice surface
temperature.

Latent heat (𝐿) used in this subroutine depends on the state of the surface: vaporization for open water, fusion and
vaporization for ice surfaces. Air temperature is converted from Celsius to Kelvin. If there is no wind speed (𝑢𝑠)
given, then the wind speed is calculated from the zonal and meridional components.

We calculate the virtual temperature:

𝑇𝑜 = 𝑇𝑎𝑖𝑟(1 + 𝛾𝑞𝑎𝑖𝑟)

where 𝑇𝑎𝑖𝑟 is the air temperature at ℎ𝑇 , 𝑞𝑎𝑖𝑟 is humidity at ℎ𝑞 and 𝛾 is a constant.

The saturated vapor pressure is calculate (QQ ref):

𝑞𝑠𝑎𝑡 =
𝑎

𝑝𝑜
𝑒
𝐿(𝑏− 𝑐

𝑇𝑠𝑟𝑓
)

where 𝑎, 𝑏, 𝑐 are constants, 𝑇𝑠𝑟𝑓 is surface temperature and 𝑝𝑜 is the surface pressure.

The two values crucial for the bulk formula calculations are the difference between air at sea surface and sea surface
temperature:

∆𝑇 = 𝑇𝑎𝑖𝑟 − 𝑇𝑠𝑟𝑓 + 𝛼ℎ𝑇

where 𝛼 is adiabatic lapse rate and ℎ𝑇 is the height where the air temperature was taken; and the difference between
the air humidity and the saturated humidity

∆𝑞 = 𝑞𝑎𝑖𝑟 − 𝑞𝑠𝑎𝑡.
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We then calculate the turbulent exchange coefficients following Bryan et al (1996) and the numerical scheme of Hunke
and Lipscombe (1998). We estimate initial values for the exchange coefficients, 𝑐𝑢, 𝑐𝑇 and 𝑐𝑞 as

𝜅

𝑙𝑛(𝑧𝑟𝑒𝑓/𝑧𝑟𝑜𝑢)

where 𝜅 is the Von Karman constant, 𝑧𝑟𝑒𝑓 is a reference height and 𝑧𝑟𝑜𝑢 is a roughness length scale which could be a
function of type of surface, but is here set as a constant. Turbulent scales are:

𝑢* = 𝑐𝑢𝑢𝑠

𝑇 * = 𝑐𝑇 ∆𝑇

𝑞* = 𝑐𝑞∆𝑞

We find the “integrated flux profile” for momentum and stability if there are stable QQ conditions (Υ > 0) :

𝜓𝑚 = 𝜓𝑠 = −5Υ

and for unstable QQ conditions (Υ < 0):

𝜓𝑚 = 2𝑙𝑛(0.5(1 + 𝜒)) + 𝑙𝑛(0.5(1 + 𝜒2)) − 2 tan−1 𝜒+ 𝜋/2

𝜓𝑠 = 2𝑙𝑛(0.5(1 + 𝜒2))

where

Υ =
𝜅𝑔𝑧𝑟𝑒𝑓
𝑢*2

(
𝑇 *

𝑇𝑜
+

𝑞*

1/𝛾 + 𝑞𝑎
)

and 𝜒 = (1 − 16Υ)1/2.

The coefficients are updated through 5 iterations as:

𝑐𝑢 =
𝑐𝑢

1 + 𝑐𝑢(𝜆− 𝜓𝑚)/𝜅

𝑐𝑇 =
𝑐𝑇

1 + 𝑐𝑇 (𝜆− 𝜓𝑠)/𝜅

𝑐𝑞 = 𝑐′𝑇

where 𝜆 = 𝑙𝑛(ℎ𝑇 /𝑧𝑟𝑒𝑓 ).

We can then find the bulk formula heat fluxes:

Sensible heat flux:

𝑄𝑠 = 𝜌𝑎𝑖𝑟𝑐𝑝𝑎𝑖𝑟𝑢𝑠𝑐𝑢𝑐𝑇 ∆𝑇

Latent heat flux:

𝑄𝑙 = 𝜌𝑎𝑖𝑟𝐿𝑢𝑠𝑐𝑢𝑐𝑞∆𝑞

Up long wave radiation

𝑄𝑢𝑝
𝑙𝑤 = 𝜖𝜎𝑇 4

𝑠𝑟𝑓

where 𝜖 is emissivity (which can be different for open ocean, ice and snow), 𝜎 is Stefan-Boltzman constant.

We calculate the derivatives of the three above functions with respect to surface temperature

𝑑𝑄𝑠

𝑑𝑇
= 𝜌𝑎𝑖𝑟𝑐𝑝𝑎𝑖𝑟

𝑢𝑠𝑐𝑢𝑐𝑇

𝑑𝑄𝑙

𝑑𝑇
=

𝜌𝑎𝑖𝑟𝐿
2𝑢𝑠𝑐𝑢𝑐𝑞𝑐

𝑇 2
𝑠𝑟𝑓

𝑑𝑄𝑢𝑝
]𝑙𝑤

𝑑𝑇
= 4𝜖𝜎𝑡3𝑠𝑟𝑓
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And total derivative 𝑑𝑄𝑜

𝑑𝑇 = 𝑑𝑄𝑠

𝑑𝑇 + 𝑑𝑄𝑙

𝑑𝑇 +
𝑑𝑄𝑢𝑝

𝑙𝑤

𝑑𝑇 .

If we do not read in the wind stress, it is calculated here.

Initializing subroutines

bulkf_init.F: Set bulkf variables to zero.

bulkf_readparms.F: Reads data.blk

Diagnostic subroutines

bulkf_ave.F: Keeps track of means of the bulkf variables

bulkf_diags.F: Finds averages and writes out diagnostics

Common Blocks

BULKF.h: BULKF Variables, data file names, and logicals readwindstress and readsurface

BULKF_DIAGS.h: matrices for diagnostics: averages of fields from bulkf_diags.F

BULKF_ICE_CONSTANTS.h: all the parameters needed by the ice model and in the bulkf formula calculations.

Input file DATA.ICE

We read in the file names of atmospheric data used in the bulk formula calculations. Here we can also set the logicals:
readwindstress if we read in the wind stress rather than calculate it from the wind speed; and readsurface to read in
the surface temperature and salinity if these will be used as part of a relaxing term.

Important Notes

1. heat fluxes have different signs in the ocean and ice models.

2. StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).

References

Bryan F.O., B.G Kauffman, W.G. Large, P.R. Gent, 1996: The NCAR CSM flux coupler. Technical note TN-425+STR,
NCAR.

Hunke, E.C and W.H. Lipscomb, circa 2001: CICE: the Los Alamos Sea Ice Model Documentation and Software
User’s Manual. LACC-98-16v.2. (note: this documentation is no longer available as CICE has progressed to a very
different version 3)

Experiments and tutorials that use bulk_force

• Global ocean experiment in global_ocean.cs32x15 verification directory, input from input.thsice directory.

EXF: The external forcing package

Authors: Patrick Heimbach and Dimitris Menemenlis
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Introduction

The external forcing package, in conjunction with the calendar package (cal), enables the handling of real-time (or
“model-time”) forcing fields of differing temporal forcing patterns. It comprises climatological restoring and re-
laxation. Bulk formulae are implemented to convert atmospheric fields to surface fluxes. An interpolation routine
provides on-the-fly interpolation of forcing fields an arbitrary grid onto the model grid.

CPP options enable or disable different aspects of the package (Section [sec:pkg:exf:config]). Runtime options, flags,
filenames and field-related dates/times are set in data.exf (Section [sec:pkg:exf:runtime]). A description of key
subroutines is given in Section [sec:pkg:exf:subroutines]. Input fields, units and sign conventions are summarized in
Section [sec:pkg:exf:fields:sub:units], and available diagnostics output is listed in Section [sec:pkg:exf:diagnostics].

EXF configuration, compiling & running

Compile-time options

As with all MITgcm packages, EXF can be turned on or off at compile time

• using the packages.conf file by adding exf to it,

• or using genmake2 adding -enable=exf or -disable=exf switches

• required packages and CPP options: EXF requires the calendar package cal to be enabled; no additional CPP
options are required.

(see Section [sec:buildingCode]).

Parts of the EXF code can be enabled or disabled at compile time via CPP preprocessor flags. These options are set in
either EXF_OPTIONS.h or in ECCO_CPPOPTIONS.h. Table 5.7 summarizes these options.

Table 5.7: EXF CPP options

CPP option Description
EXF_VERBOSE verbose mode (recommended only for testing)
ALLOW_ATM_TEMP compute heat/freshwater fluxes from atmos. state input
ALLOW_ATM_WIND compute wind stress from wind speed input
ALLOW_BULKFORMULAE is used if ALLOW_ATM_TEMP or ALLOW_ATM_WIND is enabled
EXF_READ_EVAP read evaporation instead of computing it
ALLOW_RUNOFF read time-constant river/glacier run-off field
ALLOW_DOWNWARD_RADIATION compute net from downward or downward from net radiation
USE_EXF_INTERPOLATION enable on-the-fly bilinear or bicubic interpolation of input fields
used in conjunction with relaxation to prescribed (climatological) fields
ALLOW_CLIMSST_RELAXATION relaxation to 2-D SST climatology
ALLOW_CLIMSSS_RELAXATION relaxation to 2-D SSS climatology
these are set outside of EXF in CPP_OPTIONS.h
SHORTWAVE_HEATING enable shortwave radiation
ATMOSPHERIC_LOADING enable surface pressure forcing

Run-time parameters

Run-time parameters are set in files data.pkg and data.exf which is read in exf_readparms.F. Run-time
parameters may be broken into 3 categories: (i) switching on/off the package at runtime, (ii) general flags and param-
eters, and (iii) attributes for each forcing and climatological field.
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Enabling the package

A package is switched on/off at runtime by setting (e.g. for EXF) useEXF = .TRUE. in data.pkg.

General flags and parameters

Table 5.8: EXF runtime options

Flag/parameter default Description
useExfCheckRange .TRUE. check range of input fields and stop

if out of range
useExfYearlyFields .FALSE. append current year postfix of form

_YYYY on filename
twoDigitYear .FALSE. instead of appending _YYYY ap-

pend YY

repeatPeriod 0.0 0: cycle through all input fields at
the same period (in seconds)
= 0: use period assigned to each
field

exf_offset_atemp 0.0 set to 273.16 to convert from deg.
Kelvin (assumed input) to Celsius

windstressmax 2.0 max. allowed wind stress N m–2

exf_albedo 0.1 surface albedo used to compute
downward vs. net radiative fluxes

climtempfreeze -1.9 ???
ocean_emissivity longwave ocean-surface emissivity
ice_emissivity longwave seaice emissivity
snow_emissivity longwave snow emissivity
exf_iceCd 1.63E-3 drag coefficient over sea-ice
exf_iceCe 1.63E-3 evaporation transfer coeff. over sea-

ice
exf_iceCh 1.63E-3 sensible heat transfer coeff. over

sea-ice
exf_scal_BulkCdn

1.
overall scaling of neutral drag coeff.

useStabilityFct_overIce .FALSE. compute turbulent transfer coeff.
over sea-ice

readStressOnAgrid .FALSE. read wind-streess located on model-
grid, A-grid point

readStressOnCgrid .FALSE. read wind-streess located on model-
grid, C-grid point

useRelativeWind .FALSE. subtract [U/V]VEL or [U/VICE
from U/V]WIND before computing
[U/V]STRESS

zref
10.

reference height

Continued on next page
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Table 5.8 – continued from previous page
Flag/parameter default Description
hu

10.
height of mean wind

ht
2.

height of mean temperature and rel.
humidity

umin 0.5 minimum absolute wind speed for
computing Cd

atmrho 1.2 mean atmospheric density [kg/m^3]
atmcp

1005.
mean atmospheric specific heat
[J/kg/K]

cdrag_[n] ??? n = 1,2,3; parameters for drag coeff.
function

cstanton_[n] ??? n = 1,2; parameters for Stanton
number function

cdalton ??? parameter for Dalton number func-
tion

flamb
2500000.

latent heat of evaporation [J/kg]

flami
334000.

latent heat of melting of pure ice
[J/kg]

zolmin -100. minimum stability parameter
cvapor_fac

640380.

cvapor_exp 5107.4
cvapor_fac_ice

11637800.

cvapor_fac_ice 5897.8
humid_fac 0.606 parameter for virtual temperature

calculation
gamma_blk 0.010 adiabatic lapse rate
saltsat 0.980 reduction of saturation vapor pres-

sure over salt-water
psim_fac

5.

exf_monFreq monitorFreq output frequency [s]
exf_iprec 32 precision of input fields (32-bit or

64-bit)
exf_yftype ‘RL’ precision of arrays (‘RL’ vs. ‘RS’)

Field attributes

All EXF fields are listed in Section [sec:pkg:exf:fields:sub:units]. Each field has a number of attributes which can be
customized. They are summarized in Table [tab:pkg:exf:runtime:sub:attributes]. To obtain an attribute for a specific
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field, e.g. uwind prepend the field name to the listed attribute, e.g. for attribute period this yields uwindperiod:

field & attribute −→ parameter
e.g. uwind & period −→ uwindperiod

Table 5.9: EXF runtime attributes Note there is one exception for the default of atempconst = celsius2K = 273.16

attribute Default Description
field file ‘ ‘ filename; if left empty no file will be

read; const will be used instead
field const

0.
constant that will be used if no file
is read

field startdate1
0.

format: YYYYMMDD; start year
(YYYY), month (MM), day (YY)

of field to determine record number
field startdate2

0.
format: HHMMSS; start hour (HH),
minute (MM), second(SS)

of field to determine record number
field period

0.
interval in seconds between two
records

exf_inscal_field optional rescaling of input fields to
comply with EXF units

exf_outscal_field optional rescaling of EXF fields
when mapped onto MITgcm fields

used in conjunction with EXF_USE_INTERPOLATION
field _lon0 xgOrigin+delX/2 starting longitude of input
field _lon_inc delX increment in longitude of input
field _lat0 ygOrigin+delY/2 starting latitude of input
field _lat_inc delY increment in latitude of input
field _nlon Nx number of grid points in longitude

of input
field _nlat Ny number of grid points in longitude

of input

Example configuration

The following block is taken from the data.exf file of the verification experiment global_with_exf/. It
defines attributes for the heat flux variable hflux:

hfluxfile = 'ncep_qnet.bin',
hfluxstartdate1 = 19920101,
hfluxstartdate2 = 000000,
hfluxperiod = 2592000.0,
hflux_lon0 = 2
hflux_lon_inc = 4
hflux_lat0 = -78
hflux_lat_inc = 39*4
hflux_nlon = 90
hflux_nlat = 40

EXF will read a file of name ’ncep_qnet.bin’. Its first record represents January 1st, 1992 at 00:00 UTC. Next record
is 2592000 seconds (or 30 days) later. Note that the first record read and used by the EXF package corresponds to
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the value ’startDate1’ set in data.cal. Therefore if you want to start the EXF forcing from later in the ’ncep_qnet.bin’
file, it suffices to specify startDate1 in data.cal as a date later than 19920101 (for example, startDate1 = 19940101,
for starting January 1st, 1994). For this to work, ’ncep_qnet.bin’ must have at least 2 years of data because in this
configuration EXF will read 2 years into the file to find the 1994 starting value. Interpolation on-the-fly is used (in
the present case trivially on the same grid, but included nevertheless for illustration), and input field grid starting
coordinates and increments are supplied as well.

EXF bulk formulae

T.B.D. (cross-ref. to parameter list table)

EXF input fields and units

The following list is taken from the header file EXF_FIELDS.h. It comprises all EXF input fields.

Output fields which EXF provides to the MITgcm are fields fu, fv, Qnet, Qsw, EmPmR, and pload. They are defined
in FFIELDS.h.

c----------------------------------------------------------------------
c |
c field :: Description
c |
c----------------------------------------------------------------------
c ustress :: Zonal surface wind stress in N/m^2
c | > 0 for increase in uVel, which is west to
c | east for cartesian and spherical polar grids
c | Typical range: -0.5 < ustress < 0.5
c | Southwest C-grid U point
c | Input field
c----------------------------------------------------------------------
c vstress :: Meridional surface wind stress in N/m^2
c | > 0 for increase in vVel, which is south to
c | north for cartesian and spherical polar grids
c | Typical range: -0.5 < vstress < 0.5
c | Southwest C-grid V point
c | Input field
c----------------------------------------------------------------------
c hs :: sensible heat flux into ocean in W/m^2
c | > 0 for increase in theta (ocean warming)
c----------------------------------------------------------------------
c hl :: latent heat flux into ocean in W/m^2
c | > 0 for increase in theta (ocean warming)
c----------------------------------------------------------------------
c hflux :: Net upward surface heat flux in W/m^2
c | (including shortwave)
c | hflux = latent + sensible + lwflux + swflux
c | > 0 for decrease in theta (ocean cooling)
c | Typical range: -250 < hflux < 600
c | Southwest C-grid tracer point
c | Input field
c----------------------------------------------------------------------
c sflux :: Net upward freshwater flux in m/s
c | sflux = evap - precip - runoff
c | > 0 for increase in salt (ocean salinity)
c | Typical range: -1e-7 < sflux < 1e-7
c | Southwest C-grid tracer point
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c | Input field
c----------------------------------------------------------------------
c swflux :: Net upward shortwave radiation in W/m^2
c | swflux = - ( swdown - ice and snow absorption - reflected )
c | > 0 for decrease in theta (ocean cooling)
c | Typical range: -350 < swflux < 0
c | Southwest C-grid tracer point
c | Input field
c----------------------------------------------------------------------
c uwind :: Surface (10-m) zonal wind velocity in m/s
c | > 0 for increase in uVel, which is west to
c | east for cartesian and spherical polar grids
c | Typical range: -10 < uwind < 10
c | Southwest C-grid U point
c | Input or input/output field
c----------------------------------------------------------------------
c vwind :: Surface (10-m) meridional wind velocity in m/s
c | > 0 for increase in vVel, which is south to
c | north for cartesian and spherical polar grids
c | Typical range: -10 < vwind < 10
c | Southwest C-grid V point
c | Input or input/output field
c----------------------------------------------------------------------
c wspeed :: Surface (10-m) wind speed in m/s
c | >= 0 sqrt(u^2+v^2)
c | Typical range: 0 < wspeed < 10
c | Input or input/output field
c----------------------------------------------------------------------
c atemp :: Surface (2-m) air temperature in deg K
c | Typical range: 200 < atemp < 300
c | Southwest C-grid tracer point
c | Input or input/output field
c----------------------------------------------------------------------
c aqh :: Surface (2m) specific humidity in kg/kg
c | Typical range: 0 < aqh < 0.02
c | Southwest C-grid tracer point
c | Input or input/output field
c----------------------------------------------------------------------
c lwflux :: Net upward longwave radiation in W/m^2
c | lwflux = - ( lwdown - ice and snow absorption - emitted )
c | > 0 for decrease in theta (ocean cooling)
c | Typical range: -20 < lwflux < 170
c | Southwest C-grid tracer point
c | Input field
c----------------------------------------------------------------------
c evap :: Evaporation in m/s
c | > 0 for increase in salt (ocean salinity)
c | Typical range: 0 < evap < 2.5e-7
c | Southwest C-grid tracer point
c | Input, input/output, or output field
c----------------------------------------------------------------------
c precip :: Precipitation in m/s
c | > 0 for decrease in salt (ocean salinity)
c | Typical range: 0 < precip < 5e-7
c | Southwest C-grid tracer point
c | Input or input/output field
c----------------------------------------------------------------------
c snowprecip :: snow in m/s
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c | > 0 for decrease in salt (ocean salinity)
c | Typical range: 0 < precip < 5e-7
c | Input or input/output field
c----------------------------------------------------------------------
c runoff :: River and glacier runoff in m/s
c | > 0 for decrease in salt (ocean salinity)
c | Typical range: 0 < runoff < ????
c | Southwest C-grid tracer point
c | Input or input/output field
c | !!! WATCH OUT: Default exf_inscal_runoff !!!
c | !!! in exf_readparms.F is not 1.0 !!!
c----------------------------------------------------------------------
c swdown :: Downward shortwave radiation in W/m^2
c | > 0 for increase in theta (ocean warming)
c | Typical range: 0 < swdown < 450
c | Southwest C-grid tracer point
c | Input/output field
c----------------------------------------------------------------------
c lwdown :: Downward longwave radiation in W/m^2
c | > 0 for increase in theta (ocean warming)
c | Typical range: 50 < lwdown < 450
c | Southwest C-grid tracer point
c | Input/output field
c----------------------------------------------------------------------
c apressure :: Atmospheric pressure field in N/m^2
c | > 0 for ????
c | Typical range: ???? < apressure < ????
c | Southwest C-grid tracer point
c | Input field
c----------------------------------------------------------------------

Key subroutines

Top-level routine: exf_getforcing.F

C !CALLING SEQUENCE:
c ...
c exf_getforcing (TOP LEVEL ROUTINE)
c |
c |-- exf_getclim (get climatological fields used e.g. for relax.)
c | |--- exf_set_climsst (relax. to 2-D SST field)
c | |--- exf_set_climsss (relax. to 2-D SSS field)
c | o
c |
c |-- exf_getffields <- this one does almost everything
c | | 1. reads in fields, either flux or atmos. state,
c | | depending on CPP options (for each variable two fields
c | | consecutive in time are read in and interpolated onto
c | | current time step).
c | | 2. If forcing is atmos. state and control is atmos. state,
c | | then the control variable anomalies are read here via ctrl_get_gen
c | | (atemp, aqh, precip, swflux, swdown, uwind, vwind).
c | | If forcing and control are fluxes, then
c | | controls are added later.
c | o
c |
c |-- exf_radiation
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c | | Compute net or downwelling radiative fluxes via
c | | Stefan-Boltzmann law in case only one is known.
c | o
c |-- exf_wind
c | | Computes wind speed and stresses, if required.
c | o
c |
c |-- exf_bulkformulae
c | | Compute air-sea buoyancy fluxes from
c | | atmospheric state following Large and Pond, JPO, 1981/82
c | o
c |
c |-- < hflux is sum of sensible, latent, longwave rad. >
c |-- < sflux is sum of evap. minus precip. minus runoff >
c |
c |-- exf_getsurfacefluxes
c | If forcing and control is flux, then the
c | control vector anomalies are read here via ctrl_get_gen
c | (hflux, sflux, ustress, vstress)
c |
c |-- < update tile edges here >
c |
c |-- exf_check_range
c | | Check whether read fields are within assumed range
c | | (may capture mismatches in units)
c | o
c |
c |-- < add shortwave to hflux for diagnostics >
c |
c |-- exf_diagnostics_fill
c | | Do EXF-related diagnostics output here.
c | o
c |
c |-- exf_mapfields
c | | Forcing fields from exf package are mapped onto
c | | mitgcm forcing arrays.
c | | Mapping enables a runtime rescaling of fields
c | o
C o

Radiation calculation: exf_radiation.F

Wind speed and stress calculation: exf_wind.F

Bulk formula: exf_bulkformulae.F

Generic I/O: exf_set_gen.F

Interpolation: exf_interp.F

Header routines

EXF diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized below.

---------+----+----+----------------+-----------------
<-Name->|Levs|grid|<-- Units -->|<- Tile (max=80c)
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---------+----+----+----------------+-----------------
EXFhs | 1 | SM | W/m^2 | Sensible heat flux into ocean, >0 increases
→˓theta
EXFhl | 1 | SM | W/m^2 | Latent heat flux into ocean, >0 increases theta
EXFlwnet| 1 | SM | W/m^2 | Net upward longwave radiation, >0 decreases
→˓theta
EXFswnet| 1 | SM | W/m^2 | Net upward shortwave radiation, >0 decreases
→˓theta
EXFlwdn | 1 | SM | W/m^2 | Downward longwave radiation, >0 increases theta
EXFswdn | 1 | SM | W/m^2 | Downward shortwave radiation, >0 increases theta
EXFqnet | 1 | SM | W/m^2 | Net upward heat flux (turb+rad), >0 decreases
→˓theta
EXFtaux | 1 | SU | N/m^2 | zonal surface wind stress, >0 increases uVel
EXFtauy | 1 | SV | N/m^2 | meridional surface wind stress, >0 increases
→˓vVel
EXFuwind| 1 | SM | m/s | zonal 10-m wind speed, >0 increases uVel
EXFvwind| 1 | SM | m/s | meridional 10-m wind speed, >0 increases uVel
EXFwspee| 1 | SM | m/s | 10-m wind speed modulus ( >= 0 )
EXFatemp| 1 | SM | degK | surface (2-m) air temperature
EXFaqh | 1 | SM | kg/kg | surface (2-m) specific humidity
EXFevap | 1 | SM | m/s | evaporation, > 0 increases salinity
EXFpreci| 1 | SM | m/s | evaporation, > 0 decreases salinity
EXFsnow | 1 | SM | m/s | snow precipitation, > 0 decreases salinity
EXFempmr| 1 | SM | m/s | net upward freshwater flux, > 0 increases
→˓salinity
EXFpress| 1 | SM | N/m^2 | atmospheric pressure field

References

Experiments and tutorials that use exf

• Global Ocean experiment, in global_with_exf verification directory

• Labrador Sea experiment, in lab_sea verification directory

CAL: The calendar package

Authors: Christian Eckert and Patrick Heimbach

This calendar tool was originally intended to enable the use of absolute dates (Gregorian Calendar dates) in MITgcm.
There is, however, a fair number of routines that can be used independently of the main MITgcm executable. After
some minor modifications the whole package can be used either as a stand-alone calendar or in connection with any
dynamical model that needs calendar dates. Some straightforward extensions are still pending e.g. the availability of
the Julian Calendar, to be able to resolve fractions of a second, and to have a time- step that is longer than one day.

Basic assumptions for the calendar tool

It is assumed that the SMALLEST TIME INTERVAL to be resolved is ONE SECOND.

Further assumptions are that there is an INTEGER NUMBER OF MODEL STEPS EACH DAY, and that AT LEAST
ONE STEP EACH DAY is made.

Not each individual routine depends on these assumptions; there are only a few places where they enter.
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Format of calendar dates

In this calendar tool a complete date specification is defined as the following integer array:

c integer date(4)
c
c ( yyyymmdd, hhmmss, leap_year, dayofweek )
c
c date(1) = yyyymmdd <-- Year-Month-Day
c date(2) = hhmmss <-- Hours-Minutes-Seconds
c date(3) = leap_year <-- Leap Year/No Leap Year
c date(4) = dayofweek <-- Day of the Week
c
c leap_year is either equal to 1 (normal year)
c or equal to 2 (leap year)
c
c dayofweek has a range of 1 to 7.

In case the Gregorian Calendar is used, the first day of the week is Friday, since day of the Gregorian Calendar was
Friday, 15 Oct. 1582. As a date array this date would be specified as

c refdate(1) = 15821015
c refdate(2) = 0
c refdate(3) = 1
c refdate(4) = 1

Calendar dates and time intervals

Subtracting calendar dates yields time intervals. Time intervals have the following format:

c integer datediff(4)
c
c datediff(1) = # Days
c datediff(2) = hhmmss
c datediff(3) = 0
c datediff(4) = -1

Such time intervals can be added to or can be subtracted from calendar dates. Time intervals can be added to and be
subtracted from each other.

Using the calendar together with MITgcm

Each routine has as an argument the thread number that it is belonging to, even if this number is not used in the routine
itself.

In order to include the calendar tool into the MITgcm setup the MITgcm subroutine “initialise.F” or the routine
“initilise_fixed.F”, depending on the MITgcm release, has to be modified in the following way:

c #ifdef ALLOW_CALENDAR
c C-- Initialise the calendar package.
c #ifdef USE_CAL_NENDITER
c CALL cal_Init(
c I startTime,
c I endTime,
c I deltaTclock,
c I nIter0,
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c I nEndIter,
c I nTimeSteps,
c I myThid
c & )
c #else
c CALL cal_Init(
c I startTime,
c I endTime,
c I deltaTclock,
c I nIter0,
c I nTimeSteps,
c I myThid
c & )
c #endif
c _BARRIER
c #endif

It is useful to have the CPP flag ALLOW_CALENDAR in order to switch from the usual MITgcm setup to the one
that includes the calendar tool. The CPP flag USE_CAL_NENDITER has been introduced in order to enable the use
of the calendar for MITgcm releases earlier than checkpoint 25 which do not have the global variable *nEndIter*.

The individual calendars

Simple model calendar:

This calendar can be used by defining

c TheCalendar='model'

in the calendar’s data file “data.cal”.

In this case a year is assumed to have 360 days. The model year is divided into 12 months with 30 days each.

Gregorian Calendar:

This calendar can be used by defining

c TheCalendar='gregorian'

in the calendar’s data file “data.cal”.

Short routine description

c o cal_Init - Initialise the calendar. This is the interface
c to MITgcm.
c
c o cal_Set - Sets the calendar according to the user
c specifications.
c
c o cal_GetDate - Given the model's current timestep or the
c model's current time return the corresponding
c calendar date.
c
c o cal_FullDate - Complete a date specification (leap year and
c day of the week).
c
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c o cal_IsLeap - Determine whether a given year is a leap year.
c
c o cal_TimePassed - Determine the time passed between two dates.
c
c o cal_AddTime - Add a time interval either to a time interval
c or to a date.
c
c o cal_TimeInterval - Given a time interval return the corresponding
c date array.
c
c o cal_SubDates - Determine the time interval between two dates
c or between two time intervals.
c
c o cal_ConvDate - Decompose a date array or a time interval
c array into its components.
c
c o cal_CopyDate - Copy a date array or a time interval array to
c another array.
c
c o cal_CompDates - Compare two calendar dates or time intervals.
c
c o cal_ToSeconds - Given a time interval array return the number
c of seconds.
c
c o cal_WeekDay - Return the weekday as a string given the
c calendar date.
c
c o cal_NumInts - Return the number of time intervals between two
c given dates.
c
c o cal_StepsPerDay - Given an iteration number or the current
c integration time return the number of time
c steps to integrate in the current calendar day.
c
c o cal_DaysPerMonth - Given an iteration number or the current
c integration time return the number of days
c to integrate in this calendar month.
c
c o cal_MonthsPerYear - Given an iteration number or the current
c integration time return the number of months
c to integrate in the current calendar year.
c
c o cal_StepsForDay - Given the integration day return the number
c of steps to be integrated, the first step,
c and the last step in the day specified. The
c first and the last step refer to the total
c number of steps (1, ... , cal_IntSteps).
c
c o cal_DaysForMonth - Given the integration month return the number
c of days to be integrated, the first day,
c and the last day in the month specified. The
c first and the last day refer to the total
c number of steps (1, ... , cal_IntDays).
c
c o cal_MonthsForYear - Given the integration year return the number
c of months to be integrated, the first month,
c and the last month in the year specified. The
c first and the last step refer to the total
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c number of steps (1, ... , cal_IntMonths).
c
c o cal_Intsteps - Return the number of calendar years that are
c affected by the current integration.
c
c o cal_IntDays - Return the number of calendar days that are
c affected by the current integration.
c
c o cal_IntMonths - Return the number of calendar months that are
c affected by the current integration.
c
c o cal_IntYears - Return the number of calendar years that are
c affected by the current integration.
c
c o cal_nStepDay - Return the number of time steps that can be
c performed during one calendar day.
c
c o cal_CheckDate - Do some simple checks on a date array or on a
c time interval array.
c
c o cal_PrintError - Print error messages according to the flags
c raised by the calendar routines.
c
c o cal_PrintDate - Print a date array in some format suitable for
c MITgcm's protocol output.
c
c o cal_TimeStamp - Given the time and the iteration number return
c the date and print all the above numbers.
c
c o cal_Summary - List all the setttings of the calendar tool.

Experiments and tutorials that use cal

• Global ocean experiment in global_with_exf verification directory.

• Labrador Sea experiment in lab_sea verification directory.

Atmosphere Packages

Atmospheric Intermediate Physics: AIM

Note: The folowing document below describes the aim_v23 package that is based on the version v23 of the SPEEDY
code ().

Key subroutines, parameters and files

AIM Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
DIABT | 5 |SM ML |K/s |Pot. Temp. Tendency (Mass-Weighted)
→˓from Diabatic Processes
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DIABQ | 5 |SM ML |g/kg/s |Spec.Humid. Tendency (Mass-Weighted)
→˓from Diabatic Processes
RADSW | 5 |SM ML |K/s |Temperature Tendency due to Shortwave
→˓Radiation (TT_RSW)
RADLW | 5 |SM ML |K/s |Temperature Tendency due to Longwave
→˓Radiation (TT_RLW)
DTCONV | 5 |SM MR |K/s |Temperature Tendency due to
→˓Convection (TT_CNV)
TURBT | 5 |SM ML |K/s |Temperature Tendency due to
→˓Turbulence in PBL (TT_PBL)
DTLS | 5 |SM ML |K/s |Temperature Tendency due to Large-
→˓scale condens. (TT_LSC)
DQCONV | 5 |SM MR |g/kg/s |Spec. Humidity Tendency due to
→˓Convection (QT_CNV)
TURBQ | 5 |SM ML |g/kg/s |Spec. Humidity Tendency due to
→˓Turbulence in PBL (QT_PBL)
DQLS | 5 |SM ML |g/kg/s |Spec. Humidity Tendency due to Large-
→˓Scale Condens. (QT_LSC)
TSR | 1 |SM P U1 |W/m^2 |Top-of-atm. net Shortwave Radiation
→˓(+=dw)
OLR | 1 |SM P U1 |W/m^2 |Outgoing Longwave Radiation (+=up)
RADSWG | 1 |SM P L1 |W/m^2 |Net Shortwave Radiation at the Ground
→˓(+=dw)
RADLWG | 1 |SM L1 |W/m^2 |Net Longwave Radiation at the Ground
→˓(+=up)
HFLUX | 1 |SM L1 |W/m^2 |Sensible Heat Flux (+=up)
EVAP | 1 |SM L1 |g/m^2/s |Surface Evaporation (g/m2/s)
PRECON | 1 |SM P L1 |g/m^2/s |Convective Precipitation (g/m2/s)
PRECLS | 1 |SM M1 |g/m^2/s |Large Scale Precipitation (g/m2/s)
CLDFRC | 1 |SM P M1 |0-1 |Total Cloud Fraction (0-1)
CLDPRS | 1 |SM PC167M1 |0-1 |Cloud Top Pressure (normalized)
CLDMAS | 5 |SM P LL |kg/m^2/s |Cloud-base Mass Flux (kg/m^2/s)
DRAG | 5 |SM P LL |kg/m^2/s |Surface Drag Coefficient (kg/m^2/s)
WINDS | 1 |SM P L1 |m/s |Surface Wind Speed (m/s)
TS | 1 |SM L1 |K |near Surface Air Temperature (K)
QS | 1 |SM P L1 |g/kg |near Surface Specific Humidity (g/kg)
ENPREC | 1 |SM M1 |W/m^2 |Energy flux associated with precip.
→˓(snow, rain Temp)
ALBVISDF| 1 |SM P L1 |0-1 |Surface Albedo (Visible band) (0-1)
DWNLWG | 1 |SM P L1 |W/m^2 |Downward Component of Longwave Flux
→˓at the Ground (+=dw)
SWCLR | 5 |SM ML |K/s |Clear Sky Temp. Tendency due to
→˓Shortwave Radiation
LWCLR | 5 |SM ML |K/s |Clear Sky Temp. Tendency due to
→˓Longwave Radiation
TSRCLR | 1 |SM P U1 |W/m^2 |Clear Sky Top-of-atm. net Shortwave
→˓Radiation (+=dw)
OLRCLR | 1 |SM P U1 |W/m^2 |Clear Sky Outgoing Longwave
→˓Radiation (+=up)
SWGCLR | 1 |SM P L1 |W/m^2 |Clear Sky Net Shortwave Radiation at
→˓the Ground (+=dw)
LWGCLR | 1 |SM L1 |W/m^2 |Clear Sky Net Longwave Radiation at
→˓the Ground (+=up)
UFLUX | 1 |UM 184L1 |N/m^2 |Zonal Wind Surface Stress (N/m^2)
VFLUX | 1 |VM 183L1 |N/m^2 |Meridional Wind Surface Stress (N/m^
→˓2)
DTSIMPL | 1 |SM P L1 |K |Surf. Temp Change after 1 implicit
→˓time step
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Experiments and tutorials that use aim

• Global atmosphere experiment in aim.5l_cs verification directory.

Land package

Introduction

This package provides a simple land model based on Rong Zhang [e-mail:roz@gfdl.noaa.gov] 2 layers model (see
documentation below).

It is primarily implemented for AIM (_v23) atmospheric physics but could be adapted to work with a different atmo-
spheric physics. Two subroutines (aim_aim2land.F aim_land2aim.F in pkg/aim_v23) are used as interface with AIM
physics.

Number of layers is a parameter (land_nLev in LAND_SIZE.h) and can be changed.

Note on Land Model date: June 1999 author: Rong Zhang

Equations and Key Parameters

This is a simple 2-layer land model. The top layer depth 𝑧1 = 0.1𝑚, the second layer depth 𝑧2 = 4𝑚.

Let 𝑇𝑔1, 𝑇𝑔2 be the temperature of each layer, 𝑊1,𝑊2 be the soil moisture of each layer. The field capacity 𝑓1, 𝑓2 are
the maximum water amount in each layer, so 𝑊𝑖 is the ratio of available water to field capacity. 𝑓𝑖 = 𝛾𝑧𝑖, 𝛾 = 0.24 is
the field capapcity per meter soil, so 𝑓1 = 0.024𝑚, 𝑓2 = 0.96𝑚.

The land temperature is determined by total surface downward heat flux 𝐹,

𝑧1𝐶1
𝑑𝑇𝑔1
𝑑𝑡

= 𝐹 − 𝜆
𝑇𝑔1 − 𝑇𝑔2

(𝑧1 + 𝑧2)/2

𝑧2𝐶2
𝑑𝑇𝑔2
𝑑𝑡

= 𝜆
𝑇𝑔1 − 𝑇𝑔2

(𝑧1 + 𝑧2)/2

here 𝐶1, 𝐶2 are the heat capacity of each layer , 𝜆‘𝑖𝑠𝑡ℎ𝑒𝑡ℎ𝑒𝑟𝑚𝑎𝑙𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦, : 𝑚𝑎𝑡ℎ :lambda =0.42Wm^{-1}K^{-
1}.‘

𝐶1 = 𝐶𝑤𝑊1𝛾 + 𝐶𝑠

𝐶2 = 𝐶𝑤𝑊2𝛾 + 𝐶𝑠

𝐶𝑤, 𝐶𝑠 are the heat capacity of water and dry soil respectively. 𝐶𝑤 = 4.2 × 106𝐽𝑚−3𝐾−1, 𝐶𝑠 = 1.13 ×
106𝐽𝑚−3𝐾−1.

The soil moisture is determined by precipitation 𝑃 (𝑚/𝑠),surface evaporation 𝐸(𝑚/𝑠) and runoff 𝑅(𝑚/𝑠).

𝑑𝑊1

𝑑𝑡
=
𝑃 − 𝐸 −𝑅

𝑓1
+
𝑊2 −𝑊1

𝜏

𝜏 = 2 𝑑𝑎𝑦𝑠 is the time constant for diffusion of moisture between layers.

𝑑𝑊2

𝑑𝑡
=
𝑓1
𝑓2

𝑊1 −𝑊2

𝜏

In the code, 𝑅 = 0 gives better result, 𝑊1,𝑊2 are set to be within [0, 1]. If 𝑊1 is greater than 1, then let 𝛿𝑊1 =
𝑊1 − 1,𝑊1 = 1 and 𝑊2 = 𝑊2 + 𝑝𝛿𝑊1

𝑓1
𝑓2

, i.e. the runoff of top layer is put into second layer. 𝑝 = 0.5 is the fraction
of top layer runoff that is put into second layer.

The time step is 1 hour, it takes several years to reach equalibrium offline.
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Land diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
GrdSurfT| 1 |SM Lg |degC |Surface Temperature over land
GrdTemp | 2 |SM MG |degC |Ground Temperature at each level
GrdEnth | 2 |SM MG |J/m3 |Ground Enthalpy at each level
GrdWater| 2 |SM P MG |0-1 |Ground Water (vs Field Capacity)
→˓Fraction at each level
LdSnowH | 1 |SM P Lg |m |Snow Thickness over land
LdSnwAge| 1 |SM P Lg |s |Snow Age over land
RUNOFF | 1 |SM L1 |m/s |Run-Off per surface unit
EnRunOff| 1 |SM L1 |W/m^2 |Energy flux associated with run-Off
landHFlx| 1 |SM Lg |W/m^2 |net surface downward Heat flux over
→˓land
landPmE | 1 |SM Lg |kg/m^2/s |Precipitation minus Evaporation over
→˓land
ldEnFxPr| 1 |SM Lg |W/m^2 |Energy flux (over land) associated
→˓with Precip (snow,rain)

References

Hansen J. et al. Efficient three-dimensional global models for climate studies: models I and II. Monthly Weather
Review, vol.111, no.4, pp. 609-62, 1983

Experiments and tutorials that use land

• Global atmosphere experiment in aim.5l_cs verification directory.

Fizhi: High-end Atmospheric Physics

Introduction

The fizhi (high-end atmospheric physics) package includes a collection of state-of-the-art physical parameterizations
for atmospheric radiation, cumulus convection, atmospheric boundary layer turbulence, and land surface processes.
The collection of atmospheric physics parameterizations were originally used together as part of the GEOS-3 (God-
dard Earth Observing System-3) GCM developed at the NASA/Goddard Global Modelling and Assimilation Office
(GMAO).

Equations

Moist Convective Processes:

Sub-grid and Large-scale Convection

Sub-grid scale cumulus convection is parameterized using the Relaxed Arakawa Schubert (RAS) scheme of [MS92],
which is a linearized Arakawa Schubert type scheme. RAS predicts the mass flux from an ensemble of clouds. Each
subensemble is identified by its entrainment rate and level of neutral bouyancy which are determined by the grid-scale
properties.
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The thermodynamic variables that are used in RAS to describe the grid scale vertical profile are the dry static energy,
𝑠 = 𝑐𝑝𝑇 + 𝑔𝑧, and the moist static energy, ℎ = 𝑐𝑝𝑇 + 𝑔𝑧 + 𝐿𝑞. The conceptual model behind RAS depicts each
subensemble as a rising plume cloud, entraining mass from the environment during ascent, and detraining all cloud air
at the level of neutral buoyancy. RAS assumes that the normalized cloud mass flux, 𝜂, normalized by the cloud base
mass flux, is a linear function of height, expressed as:

𝜂(𝑧)𝑧 = 𝜆 𝑜𝑟 𝜂(𝑃𝜅)𝑃𝜅 = −𝑐𝑝
𝑔
𝜃𝜆

where we have used the hydrostatic equation written in the form:

𝑧𝑃𝜅 = −𝑐𝑝
𝑔
𝜃

The entrainment parameter, 𝜆, characterizes a particular subensemble based on its detrainment level, and is obtained
by assuming that the level of detrainment is the level of neutral buoyancy, ie., the level at which the moist static energy
of the cloud, ℎ𝑐, is equal to the saturation moist static energy of the environment, ℎ*. Following [MS92], 𝜆 may be
written as

𝜆 =
ℎ𝐵 − ℎ*𝐷

𝑐𝑝
𝑔

∫︀ 𝑃𝐵

𝑃𝐷
𝜃(ℎ*𝐷 − ℎ)𝑑𝑃𝜅

,

where the subscript 𝐵 refers to cloud base, and the subscript 𝐷 refers to the detrainment level.

The convective instability is measured in terms of the cloud work function 𝐴, defined as the rate of change of cumulus
kinetic energy. The cloud work function is related to the buoyancy, or the difference between the moist static energy
in the cloud and in the environment:

𝐴 =

∫︁ 𝑃𝐵

𝑃𝐷

𝜂

1 + 𝛾

[︂
ℎ𝑐 − ℎ*

𝑃𝜅

]︂
𝑑𝑃𝜅

where 𝛾 is 𝐿
𝑐𝑝
𝑞*𝑇 obtained from the Claussius Clapeyron equation, and the subscript 𝑐 refers to the value inside the

cloud.

To determine the cloud base mass flux, the rate of change of 𝐴 in time due to dissipation by the clouds is assumed to
approximately balance the rate of change of 𝐴 due to the generation by the large scale. This is the quasi-equilibrium
assumption, and results in an expression for 𝑚𝐵 :

𝑚𝐵 =
− 𝑑𝐴

𝑑𝑡

⃒⃒
𝑙𝑠

𝐾

where 𝐾 is the cloud kernel, defined as the rate of change of the cloud work function per unit cloud base mass flux,
and is currently obtained by analytically differentiating the expression for 𝐴 in time. The rate of change of 𝐴 due to
the generation by the large scale can be written as the difference between the current 𝐴(𝑡 + ∆𝑡) and its equillibrated
value after the previous convective time step 𝐴(𝑡), divided by the time step. 𝐴(𝑡) is approximated as some critical
𝐴𝑐𝑟𝑖𝑡, computed by Lord (1982) from 𝑖𝑛𝑠𝑖𝑡𝑢 observations.

The predicted convective mass fluxes are used to solve grid-scale temperature and moisture budget equations to de-
termine the impact of convection on the large scale fields of temperature (through latent heating and compensating
subsidence) and moisture (through precipitation and detrainment):

𝜃𝑡|𝑐 = 𝛼
𝑚𝐵

𝑐𝑝𝑃𝜅
𝜂𝑠𝑝

and

𝑞𝑡|𝑐 = 𝛼
𝑚𝐵

𝐿
𝜂(ℎ𝑝− 𝑠𝑝)

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝜃 =
𝑇

𝑃𝜅
‘, : 𝑚𝑎𝑡ℎ : ‘𝑃 = (𝑝/𝑝0)‘, 𝑎𝑛𝑑

5.5. Atmosphere Packages 123



MITgcm Documentation, Release 1.0

𝛼 is the relaxation parameter.

As an approximation to a full interaction between the different allowable subensembles, many clouds are simulated
frequently, each modifying the large scale environment some fraction 𝛼 of the total adjustment. The parameterization
thereby “relaxes” the large scale environment towards equillibrium.

In addition to the RAS cumulus convection scheme, the fizhi package employs a Kessler-type scheme for the re-
evaporation of falling rain [SM88], which correspondingly adjusts the temperature assuming ℎ is conserved. RAS in
its current formulation assumes that all cloud water is deposited into the detrainment level as rain. All of the rain is
available for re-evaporation, which begins in the level below detrainment. The scheme accounts for some microphysics
such as the rainfall intensity, the drop size distribution, as well as the temperature, pressure and relative humidity of
the surrounding air. The fraction of the moisture deficit in any model layer into which the rain may re-evaporate is
controlled by a free parameter, which allows for a relatively efficient re-evaporation of liquid precipitate and larger
rainout for frozen precipitation.

Due to the increased vertical resolution near the surface, the lowest model layers are averaged to provide a 50 mb thick
sub-cloud layer for RAS. Each time RAS is invoked (every ten simulated minutes), a number of randomly chosen
subensembles are checked for the possibility of convection, from just above cloud base to 10 mb.

Supersaturation or large-scale precipitation is initiated in the fizhi package whenever the relative humidity in any grid-
box exceeds a critical value, currently 100 %. The large-scale precipitation re-evaporates during descent to partially
saturate lower layers in a process identical to the re-evaporation of convective rain.

Cloud Formation

Convective and large-scale cloud fractons which are used for cloud-radiative interactions are determined diagnostically
as part of the cumulus and large-scale parameterizations. Convective cloud fractions produced by RAS are proportional
to the detrained liquid water amount given by

𝐹𝑅𝐴𝑆 = min

[︂
𝑙𝑅𝐴𝑆

𝑙𝑐
, 1.0

]︂
where 𝑙𝑐 is an assigned critical value equal to 1.25 g/kg. A memory is associated with convective clouds defined by:

𝐹𝑛
𝑅𝐴𝑆 = min

[︂
𝐹𝑅𝐴𝑆 + (1 − ∆𝑡𝑅𝐴𝑆

𝜏
)𝐹𝑛−1

𝑅𝐴𝑆 , 1.0

]︂
where 𝐹𝑅𝐴𝑆 is the instantanious cloud fraction and 𝐹𝑛−1

𝑅𝐴𝑆 is the cloud fraction from the previous RAS timestep. The
memory coefficient is computed using a RAS cloud timescale, 𝜏 , equal to 1 hour. RAS cloud fractions are cleared
when they fall below 5 %.

Large-scale cloudiness is defined, following Slingo and Ritter (1985), as a function of relative humidity:

𝐹𝐿𝑆 = min

[︃(︂
𝑅𝐻 −𝑅𝐻𝑐

1 −𝑅𝐻𝑐

)︂2

, 1.0

]︃

where

RHc & = & 1-s(1-s)(2-+2 s)r s & = & p/psurf r & = & ( ) RHmin & = & 0.75 & = & 0.573285 .

These cloud fractions are suppressed, however, in regions where the convective sub-cloud layer is conditionally unsta-
ble. The functional form of 𝑅𝐻𝑐 is shown in Figure 5.9

The total cloud fraction in a grid box is determined by the larger of the two cloud fractions:

𝐹𝐶𝐿𝐷 = max [𝐹𝑅𝐴𝑆 , 𝐹𝐿𝑆 ] .
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Figure 5.9: Critical Relative Humidity for Clouds.
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Finally, cloud fractions are time-averaged between calls to the radiation packages.

Radiation:

The parameterization of radiative heating in the fizhi package includes effects from both shortwave and longwave
processes. Radiative fluxes are calculated at each model edge-level in both up and down directions. The heating
rates/cooling rates are then obtained from the vertical divergence of the net radiative fluxes.

The net flux is

𝐹 = 𝐹 ↑ − 𝐹 ↓

where 𝐹 is the net flux, 𝐹 ↑ is the upward flux and 𝐹 ↓ is the downward flux.

The heating rate due to the divergence of the radiative flux is given by

𝜌𝑐𝑝𝑇𝑡 = −𝐹𝑧

or

𝑇𝑡 =
𝑔

𝑐𝑝𝜋
𝐹𝜎

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝑔‘𝑖𝑠𝑡ℎ𝑒𝑎𝑐𝑐𝑒𝑙𝑎𝑡𝑖𝑜𝑛𝑑𝑢𝑒𝑡𝑜𝑔𝑟𝑎𝑣𝑖𝑡𝑦𝑎𝑛𝑑 : 𝑚𝑎𝑡ℎ : ‘𝑐𝑝‘𝑖𝑠𝑡ℎ𝑒

heat capacity of air at constant pressure.

The time tendency for Longwave Radiation is updated every 3 hours. The time tendency for Shortwave Radiation is
updated once every three hours assuming a normalized incident solar radiation, and subsequently modified at every
model time step by the true incident radiation. The solar constant value used in the package is equal to 1365 𝑊/𝑚2

and a𝐶𝑂2 mixing ratio of 330 ppm. For the ozone mixing ratio, monthly mean zonally averaged climatological values
specified as a function of latitude and height [RSG87] are linearly interpolated to the current time.

Shortwave Radiation

The shortwave radiation package used in the package computes solar radiative heating due to the absoption by wa-
ter vapor, ozone, carbon dioxide, oxygen, clouds, and aerosols and due to the scattering by clouds, aerosols, and
gases. The shortwave radiative processes are described by [Cho90][Cho92]. This shortwave package uses the Delta-
Eddington approximation to compute the bulk scattering properties of a single layer following King and Harshvardhan
(JAS, 1986). The transmittance and reflectance of diffuse radiation follow the procedures of Sagan and Pollock (JGR,
1967) and [LH74].

Highly accurate heating rate calculations are obtained through the use of an optimal grouping strategy of spectral
bands. By grouping the UV and visible regions as indicated in Table 5.10, the Rayleigh scattering and the ozone
absorption of solar radiation can be accurately computed in the ultraviolet region and the photosynthetically active
radiation (PAR) region. The computation of solar flux in the infrared region is performed with a broadband param-
eterization using the spectrum regions shown in Table 5.11. The solar radiation algorithm used in the fizhi package
can be applied not only for climate studies but also for studies on the photolysis in the upper atmosphere and the
photosynthesis in the biosphere.
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Table 5.10: UV and Visible Spectral Regions used in shortwave radiation package.

UV and Visible Spectral Regions
Region Band Wavelength (micron)
UV-C

1.
.175 - .225

2.
.225 - .245

.260 - .280

3.
.245 - .260

UV-B
4.

.280 - .295

5.
.295 - .310

6.
.310 - .320

UV-A
7.

.320 - .400

PAR
8.

.400 - .700

Table 5.11: Infrared Spectral Regions used in shortwave ra-
diation package.

Infrared Spectral Regions
Band Wavenumber (cm–1) Wavelength (micron)
1 1000-4400 2.27-10.0
2 4400-8200 1.22-2.27
3 8200-14300 0.70-1.22

Within the shortwave radiation package, both ice and liquid cloud particles are allowed to co-exist in any of the model
layers. Two sets of cloud parameters are used, one for ice paticles and the other for liquid particles. Cloud parameters
are defined as the cloud optical thickness and the effective cloud particle size. In the fizhi package, the effective radius
for water droplets is given as 10 microns, while 65 microns is used for ice particles. The absorption due to aerosols is
currently set to zero.

To simplify calculations in a cloudy atmosphere, clouds are grouped into low (𝑝 > 700 mb), middle (700 mb ≥ 𝑝 >
400 mb), and high (𝑝 < 400 mb) cloud regions. Within each of the three regions, clouds are assumed maximally
overlapped, and the cloud cover of the group is the maximum cloud cover of all the layers in the group. The optical
thickness of a given layer is then scaled for both the direct (as a function of the solar zenith angle) and diffuse beam
radiation so that the grouped layer reflectance is the same as the original reflectance. The solar flux is computed
for each of eight cloud realizations possible within this low/middle/high classification, and appropriately averaged to
produce the net solar flux.

Longwave Radiation

The longwave radiation package used in the fizhi package is thoroughly described by . As described in that document,
IR fluxes are computed due to absorption by water vapor, carbon dioxide, and ozone. The spectral bands together with
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their absorbers and parameterization methods, configured for the fizhi package, are shown in Table 5.12.

Table 5.12: IR Spectral Bands, Absorbers, and Parameterization
Method (from [CMJSuarez94])

IR Spectral Bands
Band Spectral Range (cm–1) Absorber Method
1 0-340 H2O line T
2 340-540 H2O line T
3a 540-620 H2O line K
3b 620-720 H2O continuum S
3b 720-800 CO2 T
4 800-980 H2O line K

H2O continuum S
H2O line K

5 980-1100 H2O continuum S
O3 T

6 1100-1380 H2O line K
H2O continuum S

7 1380-1900 H2O line T
8 1900-3000 H2O line K
K: 𝑘-distribution method with linear pressure scaling
T: Table look-up with temperature and pressure scaling
S: One-parameter temperature scaling

The longwave radiation package accurately computes cooling rates for the middle and lower atmosphere from 0.01 mb
to the surface. Errors are < 0.4 C day−1 in cooling rates and < 1% in fluxes. From Chou and Suarez, it is estimated
that the total effect of neglecting all minor absorption bands and the effects of minor infrared absorbers such as nitrous
oxide (N:math:_2O), methane (CH:math:_4), and the chlorofluorocarbons (CFCs), is an underestimate of ≈ 5 W/m2

in the downward flux at the surface and an overestimate of ≈ 3 W/m2 in the upward flux at the top of the atmosphere.

Similar to the procedure used in the shortwave radiation package, clouds are grouped into three regions catagorized as
low/middle/high. The net clear line-of-site probability (𝑃 ) between any two levels, 𝑝1 and 𝑝2 (𝑝2 > 𝑝1), assuming
randomly overlapped cloud groups, is simply the product of the probabilities within each group:

𝑃𝑛𝑒𝑡 = 𝑃𝑙𝑜𝑤 × 𝑃𝑚𝑖𝑑 × 𝑃ℎ𝑖.

Since all clouds within a group are assumed maximally overlapped, the clear line-of-site probability within a group is
given by:

𝑃𝑔𝑟𝑜𝑢𝑝 = 1 − 𝐹𝑚𝑎𝑥,

where 𝐹𝑚𝑎𝑥 is the maximum cloud fraction encountered between 𝑝1 and 𝑝2 within that group. For groups and/or
levels outside the range of 𝑝1 and 𝑝2, a clear line-of-site probability equal to 1 is assigned.

Cloud-Radiation Interaction

The cloud fractions and diagnosed cloud liquid water produced by moist processes within the fizhi package are used
in the radiation packages to produce cloud-radiative forcing. The cloud optical thickness associated with large-scale
cloudiness is made proportional to the diagnosed large-scale liquid water, ℓ, detrained due to super-saturation. Two
values are used corresponding to cloud ice particles and water droplets. The range of optical thickness for these clouds
is given as

0.0002 ≤ 𝜏𝑖𝑐𝑒(𝑚𝑏
−1) ≤ 0.002 for 0 ≤ ℓ ≤ 2 mg/kg,
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0.02 ≤ 𝜏ℎ2𝑜(𝑚𝑏−1) ≤ 0.2 for 0 ≤ ℓ ≤ 10 mg/kg.

The partitioning, 𝛼, between ice particles and water droplets is achieved through a linear scaling in temperature:

0 ≤ 𝛼 ≤ 1 for 233.15 ≤ 𝑇 ≤ 253.15.

The resulting optical depth associated with large-scale cloudiness is given as

𝜏𝐿𝑆 = 𝛼𝜏ℎ2𝑜 + (1 − 𝛼)𝜏𝑖𝑐𝑒.

The optical thickness associated with sub-grid scale convective clouds produced by RAS is given as

𝜏𝑅𝐴𝑆 = 0.16 𝑚𝑏−1.

The total optical depth in a given model layer is computed as a weighted average between the large-scale and sub-grid
scale optical depths, normalized by the total cloud fraction in the layer:

𝜏 =

(︂
𝐹𝑅𝐴𝑆 𝜏𝑅𝐴𝑆 + 𝐹𝐿𝑆 𝜏𝐿𝑆

𝐹𝑅𝐴𝑆 + 𝐹𝐿𝑆

)︂
∆𝑝,

where 𝐹𝑅𝐴𝑆 and 𝐹𝐿𝑆 are the time-averaged cloud fractions associated with RAS and large-scale processes described
in Section [sec:fizhi:clouds]. The optical thickness for the longwave radiative feedback is assumed to be 75 % of these
values.

The entire Moist Convective Processes Module is called with a frequency of 10 minutes. The cloud fraction values
are time-averaged over the period between Radiation calls (every 3 hours). Therefore, in a time-averaged sense, both
convective and large-scale cloudiness can exist in a given grid-box.

Turbulence

Turbulence is parameterized in the fizhi package to account for its contribution to the vertical exchange of heat,
moisture, and momentum. The turbulence scheme is invoked every 30 minutes, and employs a backward-implicit
iterative time scheme with an internal time step of 5 minutes. The tendencies of atmospheric state variables due to
turbulent diffusion are calculated using the diffusion equations:

𝑢𝑡𝑡𝑢𝑟𝑏 = 𝑧(−𝑢′𝑤′) = 𝑧(𝐾𝑚𝑢𝑧)

𝑣𝑡𝑡𝑢𝑟𝑏 = 𝑧(−𝑣′𝑤′) = 𝑧(𝐾𝑚𝑣𝑧)

𝑇𝑡 = 𝑃𝜅𝜃𝑡𝑡𝑢𝑟𝑏 = 𝑃𝜅𝑧(−𝑤′𝜃′) = 𝑃𝜅𝑧(𝐾ℎ𝜃𝑣𝑧)

𝑞𝑡𝑡𝑢𝑟𝑏 = 𝑧(−𝑤′𝑞′) = 𝑧(𝐾ℎ𝑞𝑧)

Within the atmosphere, the time evolution of second turbulent moments is explicitly modeled by representing the third
moments in terms of the first and second moments. This approach is known as a second-order closure modeling.
To simplify and streamline the computation of the second moments, the level 2.5 assumption of Mellor and Yamada
(1974) and [Yam77] is employed, in which only the turbulent kinetic energy (TKE),

𝑞2 = 𝑢′2 + 𝑣′2 + 𝑤′2,

is solved prognostically and the other second moments are solved diagnostically. The prognostic equation for TKE
allows the scheme to simulate some of the transient and diffusive effects in the turbulence. The TKE budget equation
is solved numerically using an implicit backward computation of the terms linear in 𝑞2 and is written:

𝑡(𝑞2) − 𝑧(
5

3
𝜆1𝑞𝑧(𝑞

2)) = −𝑢′𝑤′𝑈𝑧 − 𝑣′𝑤′𝑉 𝑧 +
𝑔

Θ0
𝑤′𝜃𝑣

′ − 𝑞3

Λ1
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where 𝑞 is the turbulent velocity, 𝑢′, 𝑣′, 𝑤′ and 𝜃′ are the fluctuating parts of the velocity components and potential
temperature, 𝑈 and 𝑉 are the mean velocity components, Θ0

−1 is the coefficient of thermal expansion, and 𝜆1 and
Λ1 are constant multiples of the master length scale, ℓ, which is designed to be a characteristic measure of the vertical
structure of the turbulent layers.

The first term on the left-hand side represents the time rate of change of TKE, and the second term is a representation
of the triple correlation, or turbulent transport term. The first three terms on the right-hand side represent the sources
of TKE due to shear and bouyancy, and the last term on the right hand side is the dissipation of TKE.

In the level 2.5 approach, the vertical fluxes of the scalars 𝜃𝑣 and 𝑞 and the wind components 𝑢 and 𝑣 are expressed in
terms of the diffusion coefficients 𝐾ℎ and 𝐾𝑚, respectively. In the statisically realizable level 2.5 turbulence scheme
of [HL88], these diffusion coefficients are expressed as

𝐾ℎ =

{︃
𝑞 ℓ 𝑆𝐻(𝐺𝑀 , 𝐺𝐻) for decaying turbulence
𝑞2

𝑞𝑒
ℓ 𝑆𝐻(𝐺𝑀𝑒

, 𝐺𝐻𝑒
) for growing turbulence

and

𝐾𝑚 =

{︃
𝑞 ℓ 𝑆𝑀 (𝐺𝑀 , 𝐺𝐻) for decaying turbulence
𝑞2

𝑞𝑒
ℓ 𝑆𝑀 (𝐺𝑀𝑒 , 𝐺𝐻𝑒) for growing turbulence

where the subscript 𝑒 refers to the value under conditions of local equillibrium (obtained from the Level 2.0 Model), ℓ
is the master length scale related to the vertical structure of the atmosphere, and 𝑆𝑀 and 𝑆𝐻 are functions of 𝐺𝐻 and
𝐺𝑀 , the dimensionless buoyancy and wind shear parameters, respectively. Both 𝐺𝐻 and 𝐺𝑀 , and their equilibrium
values 𝐺𝐻𝑒

and 𝐺𝑀𝑒
, are functions of the Richardson number:

RI =

𝑔
𝜃𝑣
𝜃𝑣𝑧

(𝑢𝑧)2 + (𝑣𝑧)2
=

𝑐𝑝𝜃𝑣𝑧𝑃
𝜅𝑧

(𝑢𝑧)2 + (𝑣𝑧)2
.

Negative values indicate unstable buoyancy and shear, small positive values (< 0.2) indicate dominantly unstable
shear, and large positive values indicate dominantly stable stratification.

Turbulent eddy diffusion coefficients of momentum, heat and moisture in the surface layer, which corresponds to
the lowest GCM level (see — missing table —), are calculated using stability-dependant functions based on Monin-
Obukhov theory:

𝐾𝑚(𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 𝐶𝑢 × 𝑢* = 𝐶𝐷𝑊𝑠

and

𝐾ℎ(𝑠𝑢𝑟𝑓𝑎𝑐𝑒) = 𝐶𝑡 × 𝑢* = 𝐶𝐻𝑊𝑠

𝑤ℎ𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝑢* = 𝐶𝑢𝑊𝑠‘𝑖𝑠𝑡ℎ𝑒𝑠𝑢𝑟𝑓𝑎𝑐𝑒𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦, : 𝑚𝑎𝑡ℎ : ‘𝐶𝐷‘

is termed the surface drag coefficient, 𝐶𝐻 the heat transfer coefficient, and 𝑊𝑠 is the magnitude of the surface layer
wind.

𝐶𝑢 is the dimensionless exchange coefficient for momentum from the surface layer similarity functions:

𝐶𝑢 =
𝑢*
𝑊𝑠

=
𝑘

𝜓𝑚

where k is the Von Karman constant and 𝜓𝑚 is the surface layer non-dimensional wind shear given by

𝜓𝑚 =

∫︁ 𝜁

𝜁0

𝜑𝑚
𝜁
𝑑𝜁.

𝐻𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝜁‘𝑖𝑠𝑡ℎ𝑒𝑛𝑜𝑛− 𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑎𝑙𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟, 𝑎𝑛𝑑

𝜑𝑚 is the similarity function of 𝜁 which expresses the stability dependance of the momentum gradient. The functional
form of 𝜑𝑚 is specified differently for stable and unstable layers.
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𝐶𝑡 is the dimensionless exchange coefficient for heat and moisture from the surface layer similarity functions:

𝐶𝑡 = − (𝑤′𝜃′)

𝑢*∆𝜃
= − (𝑤′𝑞′)

𝑢*∆𝑞
=

𝑘

(𝜓ℎ + 𝜓𝑔)

where 𝜓ℎ is the surface layer non-dimensional temperature gradient given by

𝜓ℎ =

∫︁ 𝜁

𝜁0

𝜑ℎ
𝜁
𝑑𝜁.

𝐻𝑒𝑟𝑒 : 𝑚𝑎𝑡ℎ : ‘𝜑ℎ‘𝑖𝑠𝑡ℎ𝑒𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑜𝑓 : 𝑚𝑎𝑡ℎ : ‘𝜁‘, 𝑤ℎ𝑖𝑐ℎ

expresses the stability dependance of the temperature and moisture gradients, and is specified differently for stable
and unstable layers according to [HS95].

𝜓𝑔 is the non-dimensional temperature or moisture gradient in the viscous sublayer, which is the mosstly laminar
region between the surface and the tops of the roughness elements, in which temperature and moisture gradients can
be quite large. Based on [YK74]:

𝜓𝑔 =
0.55(𝑃𝑟2/3 − 0.2)

𝜈1/2
(ℎ0𝑢* − ℎ0𝑟𝑒𝑓𝑢*𝑟𝑒𝑓

)1/2

where Pr is the Prandtl number for air, 𝜈 is the molecular viscosity, 𝑧0 is the surface roughness length, and the subscript
ref refers to a reference value. ℎ0 = 30𝑧0 with a maximum value over land of 0.01

The surface roughness length over oceans is is a function of the surface-stress velocity,

𝑧0 = 𝑐1𝑢
3
* + 𝑐2𝑢

2
* + 𝑐3𝑢* + 𝑐4 +

𝑐5
𝑢*

where the constants are chosen to interpolate between the reciprocal relation of [Kon75] for weak winds, and the
piecewise linear relation of [LP81] for moderate to large winds. Roughness lengths over land are specified from the
climatology of [DS89].

For an unstable surface layer, the stability functions, chosen to interpolate between the condition of small values of 𝛽
and the convective limit, are the KEYPS function [Pan73] for momentum, and its generalization for heat and moisture:

𝜑𝑚
4 − 18𝜁𝜑𝑚

3 = 1 ; 𝜑ℎ
2 − 18𝜁𝜑ℎ

3 = 1 .

The function for heat and moisture assures non-vanishing heat and moisture fluxes as the wind speed approaches zero.

For a stable surface layer, the stability functions are the observationally based functions of [Cla70], slightly modified
for the momemtum flux:

𝜑𝑚 =
1 + 5𝜁1

1 + 0.00794𝜁1(1 + 5𝜁1)
; 𝜑ℎ =

1 + 5𝜁1
1 + 0.00794𝜁(1 + 5𝜁1)

.

The moisture flux also depends on a specified evapotranspiration coefficient, set to unity over oceans and dependant
on the climatological ground wetness over land.

Once all the diffusion coefficients are calculated, the diffusion equations are solved numerically using an implicit
backward operator.

Atmospheric Boundary Layer

The depth of the atmospheric boundary layer (ABL) is diagnosed by the parameterization as the level at which the
turbulent kinetic energy is reduced to a tenth of its maximum near surface value. The vertical structure of the ABL is
explicitly resolved by the lowest few (3-8) model layers.
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Surface Energy Budget

The ground temperature equation is solved as part of the turbulence package using a backward implicit time differenc-
ing scheme:

𝐶𝑔𝑇𝑔𝑡 = 𝑅𝑠𝑤 −𝑅𝑙𝑤 +𝑄𝑖𝑐𝑒 −𝐻 − 𝐿𝐸

where 𝑅𝑠𝑤 is the net surface downward shortwave radiative flux and 𝑅𝑙𝑤 is the net surface upward longwave radiative
flux.

𝐻 is the upward sensible heat flux, given by:

𝐻 = 𝑃𝜅𝜌𝑐𝑝𝐶𝐻𝑊𝑠(𝜃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝜃𝑁𝐿𝐴𝑌 ) 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐻 = 𝐶𝑢𝐶𝑡

where 𝜌 = the atmospheric density at the surface, 𝑐𝑝 is the specific heat of air at constant pressure, and 𝜃 represents the
potential temperature of the surface and of the lowest 𝜎-level, respectively.

The upward latent heat flux, 𝐿𝐸, is given by

𝐿𝐸 = 𝜌𝛽𝐿𝐶𝐻𝑊𝑠(𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑞𝑁𝐿𝐴𝑌 ) 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐻 = 𝐶𝑢𝐶𝑡

where 𝛽 is the fraction of the potential evapotranspiration actually evaporated, L is the latent heat of evaporation, and
𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝑞𝑁𝐿𝐴𝑌 are the specific humidity of the surface and of the lowest 𝜎-level, respectively.

The heat conduction through sea ice, 𝑄𝑖𝑐𝑒, is given by

𝑄𝑖𝑐𝑒 =
𝐶𝑡𝑖

𝐻𝑖
(𝑇𝑖 − 𝑇𝑔)

where 𝐶𝑡𝑖 is the thermal conductivity of ice, 𝐻𝑖 is the ice thickness, assumed to be 3 𝑚 where sea ice is present, 𝑇𝑖 is
273 degrees Kelvin, and 𝑇𝑔 is the surface temperature of the ice.

𝐶𝑔 is the total heat capacity of the ground, obtained by solving a heat diffusion equation for the penetration of the
diurnal cycle into the ground (), and is given by:

𝐶𝑔 =

√︂
𝜆𝐶𝑠

2𝜔
=

√︂
(0.386 + 0.536𝑊 + 0.15𝑊 2)2 × 10−3

86400

2𝜋
.

Here, the thermal conductivity, 𝜆, is equal to 2× 10−3 𝑙𝑦
𝑠𝑒𝑐

𝑐𝑚
𝐾 , the angular velocity of the earth, 𝜔, is written as 86400

𝑠𝑒𝑐/𝑑𝑎𝑦 divided by 2𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑑𝑎𝑦, and the expression for 𝐶𝑠, the heat capacity per unit volume at the surface, is a
function of the ground wetness, 𝑊 .

Land Surface Processes:

Surface Type

The fizhi package surface Types are designated using the Koster-Suarez [KS91][KS92] Land Surface Model (LSM)
mosaic philosophy which allows multiple “tiles”, or multiple surface types, in any one grid cell. The Koster-Suarez
LSM surface type classifications are shown in Table 5.13. The surface types and the percent of the grid cell occupied
by any surface type were derived from the surface classification of [DT94], and information about the location of
permanent ice was obtained from the classifications of [DS89]. The surface type map for a 1∘ grid is shown in Figure
5.10. The determination of the land or sea category of surface type was made from NCAR’s 10 minute by 10 minute
Navy topography dataset, which includes information about the percentage of water-cover at any point. The data were
averaged to the model’s grid resolutions, and any grid-box whose averaged water percentage was ≥ 60% was defined
as a water point. The Land-Water designation was further modified subjectively to ensure sufficient representation
from small but isolated land and water regions.
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Table 5.13: Surface Type Designation

Type Vegetation Designation
1 Broadleaf Evergreen Trees
2 Broadleaf Deciduous Trees
3 Needleleaf Trees
4 Ground Cover
5 Broadleaf Shrubs
6 Dwarf Trees (Tundra)
7 Bare Soil
8 Desert (Bright)
9 Glacier
10 Desert (Dark)
100 Ocean

Figure 5.10: Surface type combinations
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Surface Roughness

The surface roughness length over oceans is computed iteratively with the wind stress by the surface layer parameter-
ization [HS95]. It employs an interpolation between the functions of [LP81] for high winds and of [Kon75] for weak
winds.

Albedo

The surface albedo computation, described in , employs the “two stream” approximation used in Sellers’ (1987) Simple
Biosphere (SiB) Model which distinguishes between the direct and diffuse albedos in the visible and in the near infra-
red spectral ranges. The albedos are functions of the observed leaf area index (a description of the relative orientation
of the leaves to the sun), the greenness fraction, the vegetation type, and the solar zenith angle. Modifications are made
to account for the presence of snow, and its depth relative to the height of the vegetation elements.

Gravity Wave Drag

The fizhi package employs the gravity wave drag scheme of [ZSL95]. This scheme is a modified version of Vernekar
et al. (1992), which was based on Alpert et al. (1988) and Helfand et al. (1987). In this version, the gravity wave
stress at the surface is based on that derived by Pierrehumbert (1986) and is given by:

|�⃗�𝑠𝑓𝑐| =
𝜌𝑈3

𝑁ℓ*

(︂
𝐹 2
𝑟

1 + 𝐹 2
𝑟

)︂
,

where 𝐹𝑟 = 𝑁ℎ/𝑈 is the Froude number, 𝑁 is the Brunt - Väisälä frequency, 𝑈 is the surface wind speed, ℎ is the
standard deviation of the sub-grid scale orography, and ℓ* is the wavelength of the monochromatic gravity wave in the
direction of the low-level wind. A modification introduced by Zhou et al. allows for the momentum flux to escape
through the top of the model, although this effect is small for the current 70-level model. The subgrid scale standard
deviation is defined by ℎ, and is not allowed to exceed 400 m.

The effects of using this scheme within a GCM are shown in [TS96]. Experiments using the gravity wave drag
parameterization yielded significant and beneficial impacts on both the time-mean flow and the transient statistics of
the a GCM climatology, and have eliminated most of the worst dynamically driven biases in the a GCM simulation.
An examination of the angular momentum budget during climate runs indicates that the resulting gravity wave torque
is similar to the data-driven torque produced by a data assimilation which was performed without gravity wave drag.
It was shown that the inclusion of gravity wave drag results in large changes in both the mean flow and in eddy
fluxes. The result is a more accurate simulation of surface stress (through a reduction in the surface wind strength),
of mountain torque (through a redistribution of mean sea-level pressure), and of momentum convergence (through a
reduction in the flux of westerly momentum by transient flow eddies).

Boundary Conditions and other Input Data:

Required fields which are not explicitly predicted or diagnosed during model execution must either be prescribed
internally or obtained from external data sets. In the fizhi package these fields include: sea surface temperature, sea ice
estent, surface geopotential variance, vegetation index, and the radiation-related background levels of: ozone, carbon
dioxide, and stratospheric moisture.

Boundary condition data sets are available at the model’s resolutions for either climatological or yearly varying con-
ditions. Any frequency of boundary condition data can be used in the fizhi package; however, the current selection of
data is summarized in Table 5.14. The time mean values are interpolated during each model timestep to the current
time.
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Table 5.14: Boundary conditions and other input data used in the fizhi package. Also
noted are the current years and frequencies available.

Fizhi Input Datasets
Sea Ice Extent monthly 1979-current, climatology
Sea Ice Extent weekly 1982-current, climatology
Sea Surface Temperature monthly 1979-current, climatology
Sea Surface Temperature weekly 1982-current, climatology
Zonally Averaged Upper-Level Moisture monthly climatology
Zonally Averaged Ozone Concentration monthly climatology

Topography and Topography Variance

Surface geopotential heights are provided from an averaging of the Navy 10 minute by 10 minute dataset supplied by
the National Center for Atmospheric Research (NCAR) to the model’s grid resolution. The original topography is first
rotated to the proper grid-orientation which is being run, and then averages the data to the model resolution.

The standard deviation of the subgrid-scale topography is computed by interpolating the 10 minute data to the model’s
resolution and re-interpolating back to the 10 minute by 10 minute resolution. The sub-grid scale variance is con-
structed based on this smoothed dataset.

Upper Level Moisture

The fizhi package uses climatological water vapor data above 100 mb from the Stratospheric Aerosol and Gas Ex-
periment (SAGE) as input into the model’s radiation packages. The SAGE data is archived as monthly zonal means
at 5∘ latitudinal resolution. The data is interpolated to the model’s grid location and current time, and blended with
the GCM’s moisture data. Below 300 mb, the model’s moisture data is used. Above 100 mb, the SAGE data is used.
Between 100 and 300 mb, a linear interpolation (in pressure) is performed using the data from SAGE and the GCM.

Fizhi Diagnostics

Fizhi Diagnostic Menu: [sec:pkg:fizhi:diagnostics]
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NAME UNITS LEVELS DESCRIPTION
UFLUX N m–2 1 Surface U-Wind Stress on the atmosphere
VFLUX N m–2 1 Surface V-Wind Stress on the atmosphere
HFLUX W m–2 1 Surface Flux of Sensible Heat
EFLUX W m–2 1 Surface Flux of Latent Heat
QICE W m–2 1 Heat Conduction through Sea-Ice
RADLWG W m–2 1 Net upward LW flux at the ground
RADSWG W m–2 1 Net downward SW flux at the ground
RI dimensionless Nrphys Richardson Number
CT dimensionless 1 Surface Drag coefficient for T and Q
CU dimensionless 1 Surface Drag coefficient for U and V
ET m2 s–1 Nrphys Diffusivity coefficient for T and Q
EU m2 s–1 Nrphys Diffusivity coefficient for U and V
TURBU m s–1 day–1 Nrphys U-Momentum Changes due to Turbulence
TURBV m s–1 day–1 Nrphys V-Momentum Changes due to Turbulence
TURBT deg day–1 Nrphys Temperature Changes due to Turbulence
TURBQ g/kg/day Nrphys Specific Humidity Changes due to Turbulence
MOISTT deg day–1 Nrphys Temperature Changes due to Moist Processes
MOISTQ g/kg/day Nrphys Specific Humidity Changes due to Moist Processes
RADLW deg day–1 Nrphys Net Longwave heating rate for each level
RADSW deg day–1 Nrphys Net Shortwave heating rate for each level
PREACC mm/day 1 Total Precipitation
PRECON mm/day 1 Convective Precipitation
TUFLUX N m–2 Nrphys Turbulent Flux of U-Momentum
TVFLUX N m–2 Nrphys Turbulent Flux of V-Momentum
TTFLUX W m–2 Nrphys Turbulent Flux of Sensible Heat
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NAME UNITS LEV-
ELS

DESCRIPTION

TQFLUX W m–2 Nrphys Turbulent Flux of Latent Heat
CN dimension-

less
1 Neutral Drag Coefficient

WINDS m s–1 1 Surface Wind Speed
DTSRF deg 1 Air/Surface virtual temperature difference
TG deg 1 Ground temperature
TS deg 1 Surface air temperature (Adiabatic from lowest model layer)
DTG deg 1 Ground temperature adjustment
QG g kg–1 1 Ground specific humidity
QS g kg–1 1 Saturation surface specific humidity
TGRLW deg 1 Instantaneous ground temperature used as input to the Longwave

radiation subroutine
ST4 W m–2 1 Upward Longwave flux at the ground (𝜎𝑇 4)
OLR W m–2 1 Net upward Longwave flux at the top of the model
OLRCLR W m–2 1 Net upward clearsky Longwave flux at the top of the model
LWGCLR W m–2 1 Net upward clearsky Longwave flux at the ground
LWCLR deg day–1 Nrphys Net clearsky Longwave heating rate for each level
TLW deg Nrphys Instantaneous temperature used as input to the Longwave radiation

subroutine
SHLW g g–1 Nrphys Instantaneous specific humidity used as input to the Longwave radiation

subroutine
OZLW g g–1 Nrphys Instantaneous ozone used as input to the Longwave radiation subroutine
CLMOLW 0 − 1 Nrphys Maximum overlap cloud fraction used in the Longwave radiation

subroutine
CLDTOT 0 − 1 Nrphys Total cloud fraction used in the Longwave and Shortwave radiation

subroutines
LWG-
DOWN

W m–2 1 Downwelling Longwave radiation at the ground

GWDT deg day–1 Nrphys Temperature tendency due to Gravity Wave Drag
RADSWT W m–2 1 Incident Shortwave radiation at the top of the atmosphere
TAUCLD per 100 mb Nrphys Counted Cloud Optical Depth (non-dimensional) per 100 mb
TAU-
CLDC

Number Nrphys Cloud Optical Depth Counter
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NAME UNITS LEVELS Description
CLDLOW 0-1 Nrphys Low-Level ( 1000-700 hPa) Cloud Fraction (0-1)
EVAP mm/day 1 Surface evaporation
DPDT hPa/day 1 Surface Pressure time-tendency
UAVE m/sec Nrphys Average U-Wind
VAVE m/sec Nrphys Average V-Wind
TAVE deg Nrphys Average Temperature
QAVE g/kg Nrphys Average Specific Humidity
OMEGA hPa/day Nrphys Vertical Velocity
DUDT m/sec/day Nrphys Total U-Wind tendency
DVDT m/sec/day Nrphys Total V-Wind tendency
DTDT deg/day Nrphys Total Temperature tendency
DQDT g/kg/day Nrphys Total Specific Humidity tendency
VORT 10^{-4}/sec Nrphys Relative Vorticity
DTLS deg/day Nrphys Temperature tendency due to Stratiform Cloud Formation
DQLS g/kg/day Nrphys Specific Humidity tendency due to Stratiform Cloud Formation
USTAR m/sec 1 Surface USTAR wind
Z0 m 1 Surface roughness
FRQTRB 0-1 Nrphys-1 Frequency of Turbulence
PBL mb 1 Planetary Boundary Layer depth
SWCLR deg/day Nrphys Net clearsky Shortwave heating rate for each level
OSR W m–2 1 Net downward Shortwave flux at the top of the model
OSRCLR W m–2 1 Net downward clearsky Shortwave flux at the top of the model
CLDMAS kg / m^2 Nrphys Convective cloud mass flux
UAVE m/sec Nrphys Time-averaged 𝑢-Wind

NAME UNITS LEVELS DESCRIPTION
VAVE m/sec Nrphys Time-averaged 𝑣-Wind
TAVE deg Nrphys Time-averaged Temperature‘
QAVE g/g Nrphys Time-averaged Specific Humidity
RFT deg/day Nrphys Temperature tendency due Rayleigh Friction
PS mb 1 Surface Pressure
QQAVE (m/sec)2 Nrphys Time-averaged Turbulent Kinetic Energy
SWGCLR W m–2 1 Net downward clearsky Shortwave flux at the ground
PAVE mb 1 Time-averaged Surface Pressure
DIABU m/sec/day Nrphys Total Diabatic forcing on 𝑢-Wind
DIABV m/sec/day Nrphys Total Diabatic forcing on 𝑣-Wind
DIABT deg/day Nrphys Total Diabatic forcing on Temperature
DIABQ g/kg/day Nrphys Total Diabatic forcing on Specific Humidity
RFU m/sec/day Nrphys U-Wind tendency due to Rayleigh Friction
RFV m/sec/day Nrphys V-Wind tendency due to Rayleigh Friction
GWDU m/sec/day Nrphys U-Wind tendency due to Gravity Wave Drag
GWDU m/sec/day Nrphys V-Wind tendency due to Gravity Wave Drag
GWDUS N m–2 1 U-Wind Gravity Wave Drag Stress at Surface
GWDVS N m–2 1 V-Wind Gravity Wave Drag Stress at Surface
GWDUT N m–2 1 U-Wind Gravity Wave Drag Stress at Top
GWDVT N m–2 1 V-Wind Gravity Wave Drag Stress at Top
LZRAD mg/kg Nrphys Estimated Cloud Liquid Water used in Radiation
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NAME UNITS LEVELS DESCRIPTION
SLP mb 1 Time-averaged Sea-level Pressure
CLDFRC 0-1 1 Total Cloud Fraction
TPW gm cm–2 1 Precipitable water
U2M m/sec 1 U-Wind at 2 meters
V2M m/sec 1 V-Wind at 2 meters
T2M deg 1 Temperature at 2 meters
Q2M g/kg 1 Specific Humidity at 2 meters
U10M m/sec 1 U-Wind at 10 meters
V10M m/sec 1 V-Wind at 10 meters
T10M deg 1 Temperature at 10 meters
Q10M g/kg 1 Specific Humidity at 10 meters
DTRAIN kg m–2 Nrphys Detrainment Cloud Mass Flux
QFILL g/kg/day Nrphys Filling of negative specific humidity
DTCONV deg/sec Nr Temp Change due to Convection
DQCONV g/kg/sec Nr Specific Humidity Change due to Convection
RELHUM percent Nr Relative Humidity
PRECLS g/m^2/sec 1 Large Scale Precipitation
ENPREC J/g 1 Energy of Precipitation (snow, rain Temp)

Fizhi Diagnostic Description

In this section we list and describe the diagnostic quantities available within the GCM. The diagnostics are listed in
the order that they appear in the Diagnostic Menu, Section [sec:pkg:fizhi:diagnostics]. In all cases, each diagnostic as
currently archived on the output datasets is time-averaged over its diagnostic output frequency:

DIAGNOSTIC =
1

𝑇𝑇𝑂𝑇

𝑡=𝑇𝑇𝑂𝑇∑︁
𝑡=1

𝑑𝑖𝑎𝑔(𝑡)

where 𝑇𝑇𝑂𝑇 = NQDIAG
Δ𝑡 , NQDIAG is the output frequency of the diagnostic, and ∆𝑡 is the timestep over which

the diagnostic is updated.

Surface Zonal Wind Stress on the Atmosphere (𝑁𝑒𝑤𝑡𝑜𝑛/𝑚2)

The zonal wind stress is the turbulent flux of zonal momentum from the surface.

UFLUX = −𝜌𝐶𝐷𝑊𝑠𝑢 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐷 = 𝐶2
𝑢

where 𝜌 = the atmospheric density at the surface, 𝐶𝐷 is the surface drag coefficient, 𝐶𝑢 is the dimensionless surface
exchange coefficient for momentum (see diagnostic number 10), 𝑊𝑠 is the magnitude of the surface layer wind, and 𝑢
is the zonal wind in the lowest model layer.

Surface Meridional Wind Stress on the Atmosphere (𝑁𝑒𝑤𝑡𝑜𝑛/𝑚2)

The meridional wind stress is the turbulent flux of meridional momentum from the surface.

VFLUX = −𝜌𝐶𝐷𝑊𝑠𝑣 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐷 = 𝐶2
𝑢

where 𝜌 = the atmospheric density at the surface, 𝐶𝐷 is the surface drag coefficient, 𝐶𝑢 is the dimensionless surface
exchange coefficient for momentum (see diagnostic number 10), 𝑊𝑠 is the magnitude of the surface layer wind, and 𝑣
is the meridional wind in the lowest model layer.
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Surface Flux of Sensible Heat (W m–2)

The turbulent flux of sensible heat from the surface to the atmosphere is a function of the gradient of virtual potential
temperature and the eddy exchange coefficient:

HFLUX = 𝑃𝜅𝜌𝑐𝑝𝐶𝐻𝑊𝑠(𝜃𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝜃𝑁𝑟𝑝ℎ𝑦𝑠) 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐻 = 𝐶𝑢𝐶𝑡

where 𝜌 = the atmospheric density at the surface, 𝑐𝑝 is the specific heat of air, 𝐶𝐻 is the dimensionless surface
heat transfer coefficient, 𝑊𝑠 is the magnitude of the surface layer wind, 𝐶𝑢 is the dimensionless surface exchange
coefficient for momentum (see diagnostic number 10), 𝐶𝑡 is the dimensionless surface exchange coefficient for heat
and moisture (see diagnostic number 9), and 𝜃 is the potential temperature at the surface and at the bottom model level.

Surface Flux of Latent Heat (𝑊𝑎𝑡𝑡𝑠/𝑚2)

The turbulent flux of latent heat from the surface to the atmosphere is a function of the gradient of moisture, the
potential evapotranspiration fraction and the eddy exchange coefficient:

EFLUX = 𝜌𝛽𝐿𝐶𝐻𝑊𝑠(𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑞𝑁𝑟𝑝ℎ𝑦𝑠) 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝐻 = 𝐶𝑢𝐶𝑡

where 𝜌 = the atmospheric density at the surface, 𝛽 is the fraction of the potential evapotranspiration actually evapo-
rated, L is the latent heat of evaporation, 𝐶𝐻 is the dimensionless surface heat transfer coefficient,𝑊𝑠 is the magnitude
of the surface layer wind, 𝐶𝑢 is the dimensionless surface exchange coefficient for momentum (see diagnostic num-
ber 10), 𝐶𝑡 is the dimensionless surface exchange coefficient for heat and moisture (see diagnostic number 9), and
𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝑞𝑁𝑟𝑝ℎ𝑦𝑠 are the specific humidity at the surface and at the bottom model level, respectively.

Heat Conduction Through Sea Ice (𝑊𝑎𝑡𝑡𝑠/𝑚2)

Over sea ice there is an additional source of energy at the surface due to the heat conduction from the relatively warm
ocean through the sea ice. The heat conduction through sea ice represents an additional energy source term for the
ground temperature equation.

QICE =
𝐶𝑡𝑖

𝐻𝑖
(𝑇𝑖 − 𝑇𝑔)

where 𝐶𝑡𝑖 is the thermal conductivity of ice, 𝐻𝑖 is the ice thickness, assumed to be 3 𝑚 where sea ice is present, 𝑇𝑖 is
273 degrees Kelvin, and 𝑇𝑔 is the temperature of the sea ice.

NOTE: QICE is not available through model version 5.3, but is available in subsequent versions.

Net upward Longwave Flux at the surface (𝑊𝑎𝑡𝑡𝑠/𝑚2)

RADLWG = 𝐹𝑁𝑒𝑡
𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

= 𝐹 ↑
𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝐹 ↓

𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

where Nrphys+1 indicates the lowest model edge-level, or 𝑝 = 𝑝𝑠𝑢𝑟𝑓 . 𝐹 ↑
𝐿𝑊 is the upward Longwave flux and 𝐹 ↓

𝐿𝑊 is
the downward Longwave flux.
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Net downard shortwave Flux at the surface (𝑊𝑎𝑡𝑡𝑠/𝑚2)

RADSWG = 𝐹𝑁𝑒𝑡
𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

= 𝐹 ↓
𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝐹 ↑

𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

where Nrphys+1 indicates the lowest model edge-level, or 𝑝 = 𝑝𝑠𝑢𝑟𝑓 . 𝐹 ↓
𝑆𝑊 is the downward Shortwave flux and 𝐹 ↑

𝑆𝑊

is the upward Shortwave flux.

Richardson number (𝑑𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝑙𝑒𝑠𝑠)

The non-dimensional stability indicator is the ratio of the buoyancy to the shear:

RI =

𝑔
𝜃𝑣
𝜃𝑣𝑧

(𝑢𝑧)2 + (𝑣𝑧)2
=

𝑐𝑝𝜃𝑣𝑧𝑃
𝜅𝑧

(𝑢𝑧)2 + (𝑣𝑧)2

where we used the hydrostatic equation:

Φ𝑃𝜅 = 𝑐𝑝𝜃𝑣

Negative values indicate unstable buoyancy AND shear, small positive values (< 0.4) indicate dominantly unstable
shear, and large positive values indicate dominantly stable stratification.

CT - Surface Exchange Coefficient for Temperature and Moisture (dimensionless)

The surface exchange coefficient is obtained from the similarity functions for the stability dependant flux profile
relationships:

CT = − (𝑤′𝜃′)

𝑢*∆𝜃
= − (𝑤′𝑞′)

𝑢*∆𝑞
=

𝑘

(𝜓ℎ + 𝜓𝑔)

where 𝜓ℎ is the surface layer non-dimensional temperature change and 𝜓𝑔 is the viscous sublayer non-dimensional
temperature or moisture change:

𝜓ℎ =

∫︁ 𝜁

𝜁0

𝜑ℎ
𝜁
𝑑𝜁 𝑎𝑛𝑑 𝜓𝑔 =

0.55(𝑃𝑟2/3 − 0.2)

𝜈1/2
(ℎ0𝑢* − ℎ0𝑟𝑒𝑓𝑢*𝑟𝑒𝑓

)1/2

and: ℎ0 = 30𝑧0 with a maximum value over land of 0.01

𝜑ℎ is the similarity function of 𝜁, which expresses the stability dependance of the temperature and moisture gra-
dients, specified differently for stable and unstable layers according to . k is the Von Karman constant, 𝜁 is the
non-dimensional stability parameter, Pr is the Prandtl number for air, 𝜈 is the molecular viscosity, 𝑧0 is the surface
roughness length, 𝑢* is the surface stress velocity (see diagnostic number 67), and the subscript ref refers to a reference
value.

CU - Surface Exchange Coefficient for Momentum (dimensionless)

The surface exchange coefficient is obtained from the similarity functions for the stability dependant flux profile
relationships:

CU =
𝑢*
𝑊𝑠

=
𝑘

𝜓𝑚
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where 𝜓𝑚 is the surface layer non-dimensional wind shear:

𝜓𝑚 =

∫︁ 𝜁

𝜁0

𝜑𝑚
𝜁
𝑑𝜁

𝜑𝑚 is the similarity function of 𝜁, which expresses the stability dependance of the temperature and moisture gradi-
ents, specified differently for stable and unstable layers according to . k is the Von Karman constant, 𝜁 is the non-
dimensional stability parameter, 𝑢* is the surface stress velocity (see diagnostic number 67), and 𝑊𝑠 is the magnitude
of the surface layer wind.

ET - Diffusivity Coefficient for Temperature and Moisture (m^2/sec)

In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat or moisture flux for the atmosphere
above the surface layer can be expressed as a turbulent diffusion coefficient 𝐾ℎ times the negative of the gradient of
potential temperature or moisture. In the [HL88] adaptation of this closure, 𝐾ℎ takes the form:

ET = 𝐾ℎ = − (𝑤′𝜃′𝑣)

𝜃𝑣𝑧
=

{︃
𝑞 ℓ 𝑆𝐻(𝐺𝑀 , 𝐺𝐻) for decaying turbulence
𝑞2

𝑞𝑒
ℓ 𝑆𝐻(𝐺𝑀𝑒

, 𝐺𝐻𝑒
) for growing turbulence

where 𝑞 is the turbulent velocity, or
√

2 * 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑞𝑒 is the turbulence velocity derived from the
more simple level 2.0 model, which describes equilibrium turbulence, ℓ is the master length scale related to the layer
depth, 𝑆𝐻 is a function of 𝐺𝐻 and 𝐺𝑀 , the dimensionless buoyancy and wind shear parameters, respectively, or a
function of 𝐺𝐻𝑒 and 𝐺𝑀𝑒 , the equilibrium dimensionless buoyancy and wind shear parameters. Both 𝐺𝐻 and 𝐺𝑀 ,
and their equilibrium values 𝐺𝐻𝑒 and 𝐺𝑀𝑒 , are functions of the Richardson number.

For the detailed equations and derivations of the modified level 2.5 closure scheme, see [HL88].

In the surface layer, ET is the exchange coefficient for heat and moisture, in units of 𝑚/𝑠𝑒𝑐, given by:

ETNrphys = 𝐶𝑡 * 𝑢* = 𝐶𝐻𝑊𝑠

where 𝐶𝑡 is the dimensionless exchange coefficient for heat and moisture from the surface layer similarity functions
(see diagnostic number 9), 𝑢* is the surface friction velocity (see diagnostic number 67), 𝐶𝐻 is the heat transfer
coefficient, and 𝑊𝑠 is the magnitude of the surface layer wind.

EU - Diffusivity Coefficient for Momentum (m^2/sec)

In the level 2.5 version of the Mellor-Yamada (1974) hierarchy, the turbulent heat momentum flux for the atmosphere
above the surface layer can be expressed as a turbulent diffusion coefficient 𝐾𝑚 times the negative of the gradient of
the u-wind. In the [HL88] adaptation of this closure, 𝐾𝑚 takes the form:

EU = 𝐾𝑚 = − (𝑢′𝑤′)

𝑈𝑧
=

{︃
𝑞 ℓ 𝑆𝑀 (𝐺𝑀 , 𝐺𝐻) for decaying turbulence
𝑞2

𝑞𝑒
ℓ 𝑆𝑀 (𝐺𝑀𝑒 , 𝐺𝐻𝑒) for growing turbulence

where 𝑞 is the turbulent velocity, or
√

2 * 𝑡𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑡 𝑘𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦, 𝑞𝑒 is the turbulence velocity derived from the
more simple level 2.0 model, which describes equilibrium turbulence, ℓ is the master length scale related to the layer
depth, 𝑆𝑀 is a function of 𝐺𝐻 and 𝐺𝑀 , the dimensionless buoyancy and wind shear parameters, respectively, or a
function of 𝐺𝐻𝑒 and 𝐺𝑀𝑒 , the equilibrium dimensionless buoyancy and wind shear parameters. Both 𝐺𝐻 and 𝐺𝑀 ,
and their equilibrium values 𝐺𝐻𝑒 and 𝐺𝑀𝑒 , are functions of the Richardson number.

For the detailed equations and derivations of the modified level 2.5 closure scheme, see [HL88].

In the surface layer, EU is the exchange coefficient for momentum, in units of 𝑚/𝑠𝑒𝑐, given by:

EUNrphys = 𝐶𝑢 * 𝑢* = 𝐶𝐷𝑊𝑠
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where 𝐶𝑢 is the dimensionless exchange coefficient for momentum from the surface layer similarity functions (see
diagnostic number 10), 𝑢* is the surface friction velocity (see diagnostic number 67),𝐶𝐷 is the surface drag coefficient,
and 𝑊𝑠 is the magnitude of the surface layer wind.

TURBU - Zonal U-Momentum changes due to Turbulence (m/sec/day)

The tendency of U-Momentum due to turbulence is written:

TURBU = 𝑢𝑡𝑡𝑢𝑟𝑏 = 𝑧(−𝑢′𝑤′) = 𝑧(𝐾𝑚𝑢𝑧)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of u-momentum in terms of𝐾𝑚, and the equation
has the form of a diffusion equation.

TURBV - Meridional V-Momentum changes due to Turbulence (m/sec/day)

The tendency of V-Momentum due to turbulence is written:

TURBV = 𝑣𝑡𝑡𝑢𝑟𝑏 = 𝑧(−𝑣′𝑤′) = 𝑧(𝐾𝑚𝑣𝑧)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of

v-momentum in terms of 𝐾𝑚, and the equation has the form of a diffusion equation.

TURBT - Temperature changes due to Turbulence (deg/day)

The tendency of temperature due to turbulence is written:

TURBT = 𝑇𝑡 = 𝑃𝜅𝜃𝑡𝑡𝑢𝑟𝑏 = 𝑃𝜅𝑧(−𝑤′𝜃′) = 𝑃𝜅𝑧(𝐾ℎ𝜃𝑣𝑧)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of temperature in terms of 𝐾ℎ, and the equation
has the form of a diffusion equation.

TURBQ - Specific Humidity changes due to Turbulence (g/kg/day)

The tendency of specific humidity due to turbulence is written:

TURBQ = 𝑞𝑡𝑡𝑢𝑟𝑏 = 𝑧(−𝑤′𝑞′) = 𝑧(𝐾ℎ𝑞𝑧)

The Helfand and Labraga level 2.5 scheme models the turbulent flux of temperature in terms of 𝐾ℎ, and the equation
has the form of a diffusion equation.

MOISTT - Temperature Changes Due to Moist Processes (deg/day)

MOISTT = 𝑇𝑡|𝑐 + 𝑇𝑡|𝑙𝑠
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where:

𝑇𝑡|𝑐 = 𝑅
∑︁
𝑖

(︂
𝛼
𝑚𝐵

𝑐𝑝
Γ𝑠

)︂
𝑖

𝑎𝑛𝑑 𝑇 𝑡|𝑙𝑠 =
𝐿

𝑐𝑝
(𝑞* − 𝑞)

𝑎𝑛𝑑

Γ𝑠 = 𝑔𝜂𝑠𝑝

The subscript 𝑐 refers to convective processes, while the subscript 𝑙𝑠 refers to large scale precipitation processes, or
supersaturation rain. The summation refers to contributions from each cloud type called by RAS. The dry static energy
is given as 𝑠, the convective cloud base mass flux is given as 𝑚𝐵 , and the cloud entrainment is given as 𝜂, which are
explicitly defined in Section 5.5.3.2, the description of the convective parameterization. The fractional adjustment, or
relaxation parameter, for each cloud type is given as 𝛼, while 𝑅 is the rain re-evaporation adjustment.

MOISTQ - Specific Humidity Changes Due to Moist Processes (g/kg/day)

MOISTQ = 𝑞𝑡|𝑐 + 𝑞𝑡|𝑙𝑠

where:

𝑞𝑡|𝑐 = 𝑅
∑︁
𝑖

(︁
𝛼
𝑚𝐵

𝐿
(Γℎ − Γ𝑠)

)︁
𝑖

𝑎𝑛𝑑 𝑞𝑡|𝑙𝑠 = (𝑞* − 𝑞)

and

Γ𝑠 = 𝑔𝜂𝑠𝑝 𝑎𝑛𝑑 Γℎ = 𝑔𝜂ℎ𝑝

The subscript 𝑐 refers to convective processes, while the subscript 𝑙𝑠 refers to large scale precipitation processes,
or supersaturation rain. The summation refers to contributions from each cloud type called by RAS. The dry static
energy is given as 𝑠, the moist static energy is given as ℎ, the convective cloud base mass flux is given as 𝑚𝐵 , and
the cloud entrainment is given as 𝜂, which are explicitly defined in Section 5.5.3.2, the description of the convective
parameterization. The fractional adjustment, or relaxation parameter, for each cloud type is given as 𝛼, while 𝑅 is the
rain re-evaporation adjustment.

RADLW - Heating Rate due to Longwave Radiation (deg/day)

The net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative fluxes. Both the
clear-sky and cloudy-sky longwave fluxes are computed within the longwave routine. The subroutine calculates the
clear-sky flux, 𝐹 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦

𝐿𝑊 , first. For a given cloud fraction, the clear line-of-sight probability 𝐶(𝑝, 𝑝′) is computed from
the current level pressure 𝑝 to the model top pressure, 𝑝′ = 𝑝𝑡𝑜𝑝, and the model surface pressure, 𝑝′ = 𝑝𝑠𝑢𝑟𝑓 , for the
upward and downward radiative fluxes. (see Section [sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:

𝐹𝐿𝑊 = 𝐶(𝑝, 𝑝′) · 𝐹 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦
𝐿𝑊 ,

Finally, the net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative fluxes:

𝜌𝑐𝑝𝑇𝑡 = −𝑧𝐹𝑁𝐸𝑇
𝐿𝑊 ,

or

RADLW =
𝑔

𝑐𝑝𝜋
𝜎𝐹𝑁𝐸𝑇

𝐿𝑊 .

where 𝑔 is the accelation due to gravity, 𝑐𝑝 is the heat capacity of air at constant pressure, and

𝐹𝑁𝐸𝑇
𝐿𝑊 = 𝐹 ↑

𝐿𝑊 − 𝐹 ↓
𝐿𝑊
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RADSW - Heating Rate due to Shortwave Radiation (deg/day)

The net Shortwave heating rate is calculated as the vertical divergence of the net solar radiative fluxes. The clear-sky
and cloudy-sky shortwave fluxes are calculated separately. For the clear-sky case, the shortwave fluxes and heating
rates are computed with both CLMO (maximum overlap cloud fraction) and CLRO (random overlap cloud fraction)
set to zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then called a second time, for the cloudy-sky
case, with the true time-averaged cloud fractions CLMO and CLRO being used. In all cases, a normalized incident
shortwave flux is used as input at the top of the atmosphere.

The heating rate due to Shortwave Radiation under cloudy skies is defined as:

𝜌𝑐𝑝𝑇𝑡 = −𝑧𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)𝑁𝐸𝑇
𝑆𝑊 · RADSWT,

or

RADSW =
𝑔

𝑐𝑝𝜋
𝜎𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)𝑁𝐸𝑇

𝑆𝑊 · RADSWT.

where 𝑔 is the accelation due to gravity, 𝑐𝑝 is the heat capacity of air at constant pressure, RADSWT is the true incident
shortwave radiation at the top of the atmosphere (See Diagnostic #48), and

𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)𝑁𝑒𝑡
𝑆𝑊 = 𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)↑𝑆𝑊 − 𝐹 (𝑐𝑙𝑜𝑢𝑑𝑦)↓𝑆𝑊

PREACC - Total (Large-scale + Convective) Accumulated Precipition (mm/day)

For a change in specific humidity due to moist processes, ∆𝑞𝑚𝑜𝑖𝑠𝑡, the vertical integral or total precipitable amount is
given by:

PREACC =

∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

𝜌∆𝑞𝑚𝑜𝑖𝑠𝑡𝑑𝑧 = −
∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

∆𝑞𝑚𝑜𝑖𝑠𝑡
𝑑𝑝

𝑔
=

1

𝑔

∫︁ 1

0

∆𝑞𝑚𝑜𝑖𝑠𝑡𝑑𝑝

A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes time step, scaled to
𝑚𝑚/𝑑𝑎𝑦.

PRECON - Convective Precipition (mm/day)

For a change in specific humidity due to sub-grid scale cumulus convective processes, ∆𝑞𝑐𝑢𝑚, the vertical integral or
total precipitable amount is given by:

PRECON =

∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

𝜌∆𝑞𝑐𝑢𝑚𝑑𝑧 = −
∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

∆𝑞𝑐𝑢𝑚
𝑑𝑝

𝑔
=

1

𝑔

∫︁ 1

0

∆𝑞𝑐𝑢𝑚𝑑𝑝

A precipitation rate is defined as the vertically integrated moisture adjustment per Moist Processes time step, scaled to
𝑚𝑚/𝑑𝑎𝑦.

TUFLUX - Turbulent Flux of U-Momentum (Newton/m^2)

The turbulent flux of u-momentum is calculated for :math:‘diagnostic hspace{.2cm} purposes

hspace{.2cm} only‘ from the eddy coefficient for momentum:

TUFLUX = 𝜌(𝑢′𝑤′) = 𝜌(−𝐾𝑚𝑈𝑧)

where 𝜌 is the air density, and 𝐾𝑚 is the eddy coefficient.

5.5. Atmosphere Packages 145



MITgcm Documentation, Release 1.0

TVFLUX - Turbulent Flux of V-Momentum (Newton/m^2)

The turbulent flux of v-momentum is calculated for 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠 𝑜𝑛𝑙𝑦 from the eddy coefficient for mo-
mentum:

TVFLUX = 𝜌(𝑣′𝑤′) = 𝜌(−𝐾𝑚𝑉 𝑧)

where 𝜌 is the air density, and 𝐾𝑚 is the eddy coefficient.

TTFLUX - Turbulent Flux of Sensible Heat (Watts/m^2)

The turbulent flux of sensible heat is calculated for 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠 𝑜𝑛𝑙𝑦 from the eddy coefficient for heat
and moisture:

TTFLUX = 𝑐𝑝𝜌𝑃
𝜅(𝑤′𝜃′) = 𝑐𝑝𝜌𝑃

𝜅(−𝐾ℎ𝜃𝑣𝑧)

where 𝜌 is the air density, and 𝐾ℎ is the eddy coefficient.

TQFLUX - Turbulent Flux of Latent Heat (Watts/m^2)

The turbulent flux of latent heat is calculated for 𝑑𝑖𝑎𝑔𝑛𝑜𝑠𝑡𝑖𝑐 𝑝𝑢𝑟𝑝𝑜𝑠𝑒𝑠 𝑜𝑛𝑙𝑦 from the eddy coefficient for heat and
moisture:

TQFLUX = 𝐿𝜌(𝑤′𝑞′) = 𝐿𝜌(−𝐾ℎ𝑞𝑧)

where 𝜌 is the air density, and 𝐾ℎ is the eddy coefficient.

CN - Neutral Drag Coefficient (dimensionless)

The drag coefficient for momentum obtained by assuming a neutrally stable surface layer:

CN =
𝑘

ln( ℎ
𝑧0

)

where 𝑘 is the Von Karman constant, ℎ is the height of the surface layer, and 𝑧0 is the surface roughness.

NOTE: CN is not available through model version 5.3, but is available in subsequent versions.

WINDS - Surface Wind Speed (meter/sec)

The surface wind speed is calculated for the last internal turbulence time step:

WINDS =
√︁
𝑢2𝑁𝑟𝑝ℎ𝑦𝑠 + 𝑣2𝑁𝑟𝑝ℎ𝑦𝑠

where the subscript 𝑁𝑟𝑝ℎ𝑦𝑠 refers to the lowest model level.

The air/surface virtual temperature difference measures the stability of the surface layer:

DTSRF = (𝜃𝑣𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝜃𝑣𝑁𝑟𝑝ℎ𝑦𝑠)𝑃
𝜅
𝑠𝑢𝑟𝑓

where

𝜃𝑣𝑁𝑟𝑝ℎ𝑦𝑠+1 =
𝑇𝑔

𝑃𝜅
𝑠𝑢𝑟𝑓

(1 + .609𝑞𝑁𝑟𝑝ℎ𝑦𝑠+1) 𝑎𝑛𝑑 𝑞𝑁𝑟𝑝ℎ𝑦𝑠+1 = 𝑞𝑁𝑟𝑝ℎ𝑦𝑠 + 𝛽(𝑞*(𝑇𝑔, 𝑃𝑠) − 𝑞𝑁𝑟𝑝ℎ𝑦𝑠)

𝛽 is the surface potential evapotranspiration coefficient (𝛽 = 1 over oceans), 𝑞*(𝑇𝑔, 𝑃𝑠) is the saturation specific
humidity at the ground temperature and surface pressure, level 𝑁𝑟𝑝ℎ𝑦𝑠 refers to the lowest model level and level
𝑁𝑟𝑝ℎ𝑦𝑠+ 1 refers to the surface.
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TG - Ground Temperature (deg K)

The ground temperature equation is solved as part of the turbulence package using a backward implicit time differenc-
ing scheme:

TG 𝑖𝑠 𝑜𝑏𝑡𝑎𝑖𝑛𝑒𝑑 𝑓𝑟𝑜𝑚 : 𝐶𝑔𝑇𝑔𝑡 = 𝑅𝑠𝑤 −𝑅𝑙𝑤 +𝑄𝑖𝑐𝑒 −𝐻 − 𝐿𝐸

where 𝑅𝑠𝑤 is the net surface downward shortwave radiative flux, 𝑅𝑙𝑤 is the net surface upward longwave radiative
flux, 𝑄𝑖𝑐𝑒 is the heat conduction through sea ice, 𝐻 is the upward sensible heat flux, 𝐿𝐸 is the upward latent heat flux,
and 𝐶𝑔 is the total heat capacity of the ground. 𝐶𝑔 is obtained by solving a heat diffusion equation for the penetration
of the diurnal cycle into the ground (), and is given by:

𝐶𝑔 =

√︂
𝜆𝐶𝑠

2𝜔
=

√︂
(0.386 + 0.536𝑊 + 0.15𝑊 2)2𝑥10−3

86400.

2𝜋
.

Here, the thermal conductivity, 𝜆, is equal to 2𝑥10−3 𝑙𝑦
𝑠𝑒𝑐

𝑐𝑚
𝐾 , the angular velocity of the earth, 𝜔, is written as 86400

𝑠𝑒𝑐/𝑑𝑎𝑦 divided by 2𝜋 𝑟𝑎𝑑𝑖𝑎𝑛𝑠/𝑑𝑎𝑦, and the expression for 𝐶𝑠, the heat capacity per unit volume at the surface, is a
function of the ground wetness, 𝑊 .

TS - Surface Temperature (deg K)

The surface temperature estimate is made by assuming that the model’s lowest layer is well-mixed, and therefore that
𝜃 is constant in that layer. The surface temperature is therefore:

TS = 𝜃𝑁𝑟𝑝ℎ𝑦𝑠𝑃
𝜅
𝑠𝑢𝑟𝑓

DTG - Surface Temperature Adjustment (deg K)

The change in surface temperature from one turbulence time step to the next, solved using the Ground Temperature
Equation (see diagnostic number 30) is calculated:

DTG = 𝑇𝑔
𝑛 − 𝑇𝑔

𝑛−1

where superscript 𝑛 refers to the new, updated time level, and the superscript 𝑛− 1 refers to the value at the previous
turbulence time level.

QG - Ground Specific Humidity (g/kg)

The ground specific humidity is obtained by interpolating between the specific humidity at the lowest model level
and the specific humidity of a saturated ground. The interpolation is performed using the potential evapotranspiration
function:

QG = 𝑞𝑁𝑟𝑝ℎ𝑦𝑠+1 = 𝑞𝑁𝑟𝑝ℎ𝑦𝑠 + 𝛽(𝑞*(𝑇𝑔, 𝑃𝑠) − 𝑞𝑁𝑟𝑝ℎ𝑦𝑠)

where 𝛽 is the surface potential evapotranspiration coefficient (𝛽 = 1 over oceans), and 𝑞*(𝑇𝑔, 𝑃𝑠) is the saturation
specific humidity at the ground temperature and surface pressure.

QS - Saturation Surface Specific Humidity (g/kg)

The surface saturation specific humidity is the saturation specific humidity at the ground temprature and surface
pressure:

QS = 𝑞*(𝑇𝑔, 𝑃𝑠)
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TGRLW - Instantaneous ground temperature used as input to the Longwave radiation subroutine
(deg)

TGRLW = 𝑇𝑔(𝜆, 𝜑, 𝑛)

where 𝑇𝑔 is the model ground temperature at the current time step 𝑛.

ST4 - Upward Longwave flux at the surface (Watts/m^2)

ST4 = 𝜎𝑇 4

where 𝜎 is the Stefan-Boltzmann constant and T is the temperature.

OLR - Net upward Longwave flux at 𝑝 = 𝑝𝑡𝑜𝑝 (Watts/m^2)

OLR = 𝐹𝑁𝐸𝑇
𝐿𝑊,𝑡𝑜𝑝

where top indicates the top of the first model layer. In the GCM, 𝑝𝑡𝑜𝑝 = 0.0 mb.

OLRCLR - Net upward clearsky Longwave flux at 𝑝 = 𝑝𝑡𝑜𝑝 (Watts/m^2)

OLRCLR = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝐸𝑇
𝐿𝑊,𝑡𝑜𝑝

where top indicates the top of the first model layer. In the GCM, 𝑝𝑡𝑜𝑝 = 0.0 mb.

LWGCLR - Net upward clearsky Longwave flux at the surface (Watts/m^2)

LWGCLR = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝑒𝑡
𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

= 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↓𝐿𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

where Nrphys+1 indicates the lowest model edge-level, or 𝑝 = 𝑝𝑠𝑢𝑟𝑓 . 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝐿𝑊 is the upward clearsky
Longwave flux and the 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↓𝐿𝑊 is the downward clearsky Longwave flux.

LWCLR - Heating Rate due to Clearsky Longwave Radiation (deg/day)

The net longwave heating rate is calculated as the vertical divergence of the net terrestrial radiative fluxes. Both the
clear-sky and cloudy-sky longwave fluxes are computed within the longwave routine. The subroutine calculates the
clear-sky flux, 𝐹 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦

𝐿𝑊 , first. For a given cloud fraction, the clear line-of-sight probability 𝐶(𝑝, 𝑝′) is computed from
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the current level pressure 𝑝 to the model top pressure, 𝑝′ = 𝑝𝑡𝑜𝑝, and the model surface pressure, 𝑝′ = 𝑝𝑠𝑢𝑟𝑓 , for the
upward and downward radiative fluxes. (see Section [sec:fizhi:radcloud]). The cloudy-sky flux is then obtained as:

𝐹𝐿𝑊 = 𝐶(𝑝, 𝑝′) · 𝐹 𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦
𝐿𝑊 ,

Thus, LWCLR is defined as the net longwave heating rate due to the vertical divergence of the clear-sky longwave
radiative flux:

𝜌𝑐𝑝𝑇𝑡𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦 = −𝑧𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝐸𝑇
𝐿𝑊 ,

or

LWCLR =
𝑔

𝑐𝑝𝜋
𝜎𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝐸𝑇

𝐿𝑊 .

where 𝑔 is the accelation due to gravity, 𝑐𝑝 is the heat capacity of air at constant pressure, and

𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝑒𝑡
𝐿𝑊 = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝐿𝑊 − 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↓𝐿𝑊

TLW - Instantaneous temperature used as input to the Longwave radiation subroutine (deg)

TLW = 𝑇 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑛)

where 𝑇 is the model temperature at the current time step 𝑛.

SHLW - Instantaneous specific humidity used as input to the Longwave radiation subroutine (kg/kg)

SHLW = 𝑞(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑛)

where 𝑞 is the model specific humidity at the current time step 𝑛.

OZLW - Instantaneous ozone used as input to the Longwave radiation subroutine (kg/kg)

OZLW = OZ(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑛)

where OZ is the interpolated ozone data set from the climatological monthly mean zonally averaged ozone data set.

CLMOLW - Maximum Overlap cloud fraction used in LW Radiation (0-1)

CLMOLW is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
Arakawa/Schubert Convection scheme and will be used in the Longwave Radiation algorithm. These are convec-
tive clouds whose radiative characteristics are assumed to be correlated in the vertical. For a complete description of
cloud/radiative interactions, see Section [sec:fizhi:radcloud].

CLMOLW = 𝐶𝐿𝑀𝑂𝑅𝐴𝑆,𝐿𝑊 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙)
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CLDTOT - Total cloud fraction used in LW and SW Radiation (0-1)

CLDTOT is the time-averaged total cloud fraction that has been filled by the Relaxed Arakawa/Schubert and Large-
scale Convection schemes and will be used in the Longwave and Shortwave Radiation packages. For a complete
description of cloud/radiative interactions, see Section [sec:fizhi:radcloud].

CLDTOT = 𝐹𝑅𝐴𝑆 + 𝐹𝐿𝑆

where 𝐹𝑅𝐴𝑆 is the time-averaged cloud fraction due to sub-grid scale convection, and 𝐹𝐿𝑆 is the time-averaged cloud
fraction due to precipitating and non-precipitating large-scale moist processes.

CLMOSW - Maximum Overlap cloud fraction used in SW Radiation (0-1)

CLMOSW is the time-averaged maximum overlap cloud fraction that has been filled by the Relaxed
Arakawa/Schubert Convection scheme and will be used in the Shortwave Radiation algorithm. These are convec-
tive clouds whose radiative characteristics are assumed to be correlated in the vertical. For a complete description of
cloud/radiative interactions, see Section [sec:fizhi:radcloud].

CLMOSW = 𝐶𝐿𝑀𝑂𝑅𝐴𝑆,𝑆𝑊 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙)

CLROSW - Random Overlap cloud fraction used in SW Radiation (0-1)

CLROSW is the time-averaged random overlap cloud fraction that has been filled by the Relaxed Arakawa/Schubert
and Large-scale Convection schemes and will be used in the Shortwave Radiation algorithm. These are convective
and large-scale clouds whose radiative characteristics are not assumed to be correlated in the vertical. For a complete
description of cloud/radiative interactions, see Section [sec:fizhi:radcloud].

CLROSW = 𝐶𝐿𝑅𝑂𝑅𝐴𝑆,𝐿𝑎𝑟𝑔𝑒𝑆𝑐𝑎𝑙𝑒,𝑆𝑊 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙)

RADSWT - Incident Shortwave radiation at the top of the atmosphere (Watts/m^2)

RADSWT =
𝑆0

𝑅2
𝑎

· 𝑐𝑜𝑠𝜑𝑧

where 𝑆0, is the extra-terrestial solar contant, 𝑅𝑎 is the earth-sun distance in Astronomical Units, and 𝑐𝑜𝑠𝜑𝑧 is the
cosine of the zenith angle. It should be noted that RADSWT, as well as OSR and OSRCLR, are calculated at the top
of the atmosphere (p=0 mb). However, the OLR and OLRCLR diagnostics are currently calculated at 𝑝 = 𝑝𝑡𝑜𝑝 (0.0
mb for the GCM).

EVAP - Surface Evaporation (mm/day)

The surface evaporation is a function of the gradient of moisture, the potential evapotranspiration fraction and the eddy
exchange coefficient:

EVAP = 𝜌𝛽𝐾ℎ(𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 − 𝑞𝑁𝑟𝑝ℎ𝑦𝑠)

where 𝜌 = the atmospheric density at the surface, 𝛽 is the fraction of the potential evapotranspiration actually evapo-
rated (𝛽 = 1 over oceans), 𝐾ℎ is the turbulent eddy exchange coefficient for heat and moisture at the surface in𝑚/𝑠𝑒𝑐
and 𝑞𝑠𝑢𝑟𝑓𝑎𝑐𝑒 and 𝑞𝑁𝑟𝑝ℎ𝑦𝑠 are the specific humidity at the surface (see diagnostic number 34) and at the bottom model
level, respectively.
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DUDT - Total Zonal U-Wind Tendency (m/sec/day)

DUDT is the total time-tendency of the Zonal U-Wind due to Hydrodynamic, Diabatic, and Analysis forcing.

DUDT = 𝑢𝑡𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠 + 𝑢𝑡𝑀𝑜𝑖𝑠𝑡 + 𝑢𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 + 𝑢𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DVDT - Total Zonal V-Wind Tendency (m/sec/day)

DVDT is the total time-tendency of the Meridional V-Wind due to Hydrodynamic, Diabatic, and Analysis forcing.

DVDT = 𝑣𝑡𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠 + 𝑣𝑡𝑀𝑜𝑖𝑠𝑡 + 𝑣𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 + 𝑣𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DTDT - Total Temperature Tendency (deg/day)

DTDT is the total time-tendency of Temperature due to Hydrodynamic, Diabatic, and Analysis forcing.

DTDT = 𝑇𝑡𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠 + 𝑇𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑇𝑡𝑆ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

+ 𝑇𝑡𝐿𝑜𝑛𝑔𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 + 𝑇𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DQDT - Total Specific Humidity Tendency (g/kg/day)

DQDT is the total time-tendency of Specific Humidity due to Hydrodynamic, Diabatic, and Analysis forcing.

DQDT = 𝑞𝑡𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝑠 + 𝑞𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑞𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 + 𝑞𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

USTAR - Surface-Stress Velocity (m/sec)

The surface stress velocity, or the friction velocity, is the wind speed at the surface layer top impeded by the surface
drag:

USTAR = 𝐶𝑢𝑊𝑠 𝑤ℎ𝑒𝑟𝑒 : 𝐶𝑢 =
𝑘

𝜓𝑚

𝐶𝑢 is the non-dimensional surface drag coefficient (see diagnostic number 10), and 𝑊𝑠 is the surface wind speed (see
diagnostic number 28).

Z0 - Surface Roughness Length (m)

Over the land surface, the surface roughness length is interpolated to the local time from the monthly mean data of .
Over the ocean, the roughness length is a function of the surface-stress velocity, 𝑢*.

Z0 = 𝑐1𝑢
3
* + 𝑐2𝑢

2
* + 𝑐3𝑢* + 𝑐4 + 𝑐5𝑢*

where the constants are chosen to interpolate between the reciprocal relation of for weak winds, and the piecewise
linear relation of for moderate to large winds.

FRQTRB - Frequency of Turbulence (0-1)

The fraction of time when turbulence is present is defined as the fraction of time when the turbulent kinetic energy
exceeds some minimum value, defined here to be 0.005 𝑚2/𝑠𝑒𝑐2. When this criterion is met, a counter is incremented.
The fraction over the averaging interval is reported.
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PBL - Planetary Boundary Layer Depth (mb)

The depth of the PBL is defined by the turbulence parameterization to be the depth at which the turbulent kinetic
energy reduces to ten percent of its surface value.

PBL = 𝑃𝑃𝐵𝐿 − 𝑃𝑠𝑢𝑟𝑓𝑎𝑐𝑒

where 𝑃𝑃𝐵𝐿 is the pressure in 𝑚𝑏 at which the turbulent kinetic energy reaches one tenth of its surface value, and 𝑃𝑠

is the surface pressure.

SWCLR - Clear sky Heating Rate due to Shortwave Radiation (deg/day)

The net Shortwave heating rate is calculated as the vertical divergence of the net solar radiative fluxes. The clear-sky
and cloudy-sky shortwave fluxes are calculated separately. For the clear-sky case, the shortwave fluxes and heating
rates are computed with both CLMO (maximum overlap cloud fraction) and CLRO (random overlap cloud fraction)
set to zero (see Section [sec:fizhi:radcloud]). The shortwave routine is then called a second time, for the cloudy-sky
case, with the true time-averaged cloud fractions CLMO and CLRO being used. In all cases, a normalized incident
shortwave flux is used as input at the top of the atmosphere.

The heating rate due to Shortwave Radiation under clear skies is defined as:

𝜌𝑐𝑝𝑇𝑡 = −𝑧𝐹 (𝑐𝑙𝑒𝑎𝑟)𝑁𝐸𝑇
𝑆𝑊 · RADSWT,

or

SWCLR =
𝑔

𝑐𝑝
𝑝𝐹 (𝑐𝑙𝑒𝑎𝑟)𝑁𝐸𝑇

𝑆𝑊 · RADSWT.

where 𝑔 is the accelation due to gravity, 𝑐𝑝 is the heat capacity of air at constant pressure, RADSWT is the true incident
shortwave radiation at the top of the atmosphere (See Diagnostic #48), and

𝐹 (𝑐𝑙𝑒𝑎𝑟)𝑁𝑒𝑡
𝑆𝑊 = 𝐹 (𝑐𝑙𝑒𝑎𝑟)↑𝑆𝑊 − 𝐹 (𝑐𝑙𝑒𝑎𝑟)↓𝑆𝑊

OSR - Net upward Shortwave flux at the top of the model (Watts/m^2)

OSR = 𝐹𝑁𝐸𝑇
𝑆𝑊,𝑡𝑜𝑝

where top indicates the top of the first model layer used in the shortwave radiation routine. In the GCM, 𝑝𝑆𝑊𝑡𝑜𝑝 = 0
mb.

OSRCLR - Net upward clearsky Shortwave flux at the top of the model (Watts/m^2)

OSRCLR = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝐸𝑇
𝑆𝑊,𝑡𝑜𝑝

where top indicates the top of the first model layer used in the shortwave radiation routine. In the GCM, 𝑝𝑆𝑊𝑡𝑜𝑝
= 0

mb.
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CLDMAS - Convective Cloud Mass Flux (kg/m^2)

The amount of cloud mass moved per RAS timestep from all convective clouds is written:

CLDMAS = 𝜂𝑚𝐵

where 𝜂 is the entrainment, normalized by the cloud base mass flux, and 𝑚𝐵 is the cloud base mass flux. 𝑚𝐵 and 𝜂
are defined explicitly in Section 5.5.3.2, the description of the convective parameterization.

UAVE - Time-Averaged Zonal U-Wind (m/sec)

The diagnostic UAVE is simply the time-averaged Zonal U-Wind over the NUAVE output frequency. This is contrasted
to the instantaneous Zonal U-Wind which is archived on the Prognostic Output data stream.

UAVE = 𝑢(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

Note, UAVE is computed and stored on the staggered C-grid.

VAVE - Time-Averaged Meridional V-Wind (m/sec)

The diagnostic VAVE is simply the time-averaged Meridional V-Wind over the NVAVE output frequency. This is
contrasted to the instantaneous Meridional V-Wind which is archived on the Prognostic Output data stream.

VAVE = 𝑣(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

Note, VAVE is computed and stored on the staggered C-grid.

TAVE - Time-Averaged Temperature (Kelvin)

The diagnostic TAVE is simply the time-averaged Temperature over the NTAVE output frequency. This is contrasted
to the instantaneous Temperature which is archived on the Prognostic Output data stream.

TAVE = 𝑇 (𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

QAVE - Time-Averaged Specific Humidity (g/kg)

The diagnostic QAVE is simply the time-averaged Specific Humidity over the NQAVE output frequency. This is
contrasted to the instantaneous Specific Humidity which is archived on the Prognostic Output data stream.

QAVE = 𝑞(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

PAVE - Time-Averaged Surface Pressure - PTOP (mb)

The diagnostic PAVE is simply the time-averaged Surface Pressure - PTOP over the NPAVE output frequency. This
is contrasted to the instantaneous Surface Pressure - PTOP which is archived on the Prognostic Output data stream.

PAVE = 𝜋(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

= 𝑝𝑠(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡) − 𝑝𝑇
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QQAVE - Time-Averaged Turbulent Kinetic Energy (m/sec)^2

The diagnostic QQAVE is simply the time-averaged prognostic Turbulent Kinetic Energy produced by the GCM
Turbulence parameterization over the NQQAVE output frequency. This is contrasted to the instantaneous Turbulent
Kinetic Energy which is archived on the Prognostic Output data stream.

QQAVE = 𝑞𝑞(𝜆, 𝜑, 𝑙𝑒𝑣𝑒𝑙, 𝑡)

Note, QQAVE is computed and stored at the “mass-point” locations on the staggered C-grid.

SWGCLR - Net downward clearsky Shortwave flux at the surface (Watts/m^2)

SWGCLR = 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑁𝑒𝑡
𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

= 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↓𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1 − 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝑆𝑊,𝑁𝑟𝑝ℎ𝑦𝑠+1

where Nrphys+1 indicates the lowest model edge-level, or 𝑝 = 𝑝𝑠𝑢𝑟𝑓 . 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)𝑆𝑊 ↓ is the downward clearsky
Shortwave flux and 𝐹 (𝑐𝑙𝑒𝑎𝑟𝑠𝑘𝑦)↑𝑆𝑊 is the upward clearsky Shortwave flux.

DIABU - Total Diabatic Zonal U-Wind Tendency (m/sec/day)

DIABU is the total time-tendency of the Zonal U-Wind due to Diabatic processes and the Analysis forcing.

DIABU = 𝑢𝑡𝑀𝑜𝑖𝑠𝑡 + 𝑢𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 + 𝑢𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DIABV - Total Diabatic Meridional V-Wind Tendency (m/sec/day)

DIABV is the total time-tendency of the Meridional V-Wind due to Diabatic processes and the Analysis forcing.

DIABV = 𝑣𝑡𝑀𝑜𝑖𝑠𝑡 + 𝑣𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 + 𝑣𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

DIABT Total Diabatic Temperature Tendency (deg/day)

DIABT is the total time-tendency of Temperature due to Diabatic processes and the Analysis forcing.

DIABT = 𝑇𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑇𝑡𝑆ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

+ 𝑇𝑡𝐿𝑜𝑛𝑔𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 + 𝑇𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

If we define the time-tendency of Temperature due to Diabatic processes as

𝑇𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐 = 𝑇𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑇𝑡𝑆ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛

+ 𝑇𝑡𝐿𝑜𝑛𝑔𝑤𝑎𝑣𝑒𝑅𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 + 𝑇𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒

then, since there are no surface pressure changes due to Diabatic processes, we may write

𝑇𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐 =
𝑝𝜅

𝜋
𝜋𝜃𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐

where 𝜃 = 𝑇/𝑝𝜅. Thus, DIABT may be written as

DIABT =
𝑝𝜅

𝜋
(𝜋𝜃𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐 + 𝜋𝜃𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠)
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DIABQ - Total Diabatic Specific Humidity Tendency (g/kg/day)

DIABQ is the total time-tendency of Specific Humidity due to Diabatic processes and the Analysis forcing.

DIABQ = 𝑞𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑞𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒 + 𝑞𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠

If we define the time-tendency of Specific Humidity due to Diabatic processes as

𝑞𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐 = 𝑞𝑡𝑀𝑜𝑖𝑠𝑡𝑃𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑠 + 𝑞𝑡𝑇𝑢𝑟𝑏𝑢𝑙𝑒𝑛𝑐𝑒

then, since there are no surface pressure changes due to Diabatic processes, we may write

𝑞𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐 =
1

𝜋
𝜋𝑞𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐

𝑇ℎ𝑢𝑠, * *𝐷𝐼𝐴𝐵𝑄 * *𝑚𝑎𝑦𝑏𝑒𝑤𝑟𝑖𝑡𝑡𝑒𝑛𝑎𝑠

DIABQ =
1

𝜋
(𝜋𝑞𝑡𝐷𝑖𝑎𝑏𝑎𝑡𝑖𝑐 + 𝜋𝑞𝑡𝐴𝑛𝑎𝑙𝑦𝑠𝑖𝑠)

VINTUQ - Vertically Integrated Moisture Flux (m/sec g/kg)

The vertically integrated moisture flux due to the zonal u-wind is obtained by integrating 𝑢𝑞 over the depth of the
atmosphere at each model timestep, and dividing by the total mass of the column.

VINTUQ =

∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝑢𝑞𝜌𝑑𝑧∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝜌𝑑𝑧

Using 𝜌𝛿𝑧 = − 𝛿𝑝
𝑔 = − 1

𝑔 𝛿𝑝, we have

VINTUQ =

∫︁ 1

0

𝑢𝑞𝑑𝑝

VINTVQ - Vertically Integrated Moisture Flux (m/sec g/kg)

The vertically integrated moisture flux due to the meridional v-wind is obtained by integrating 𝑣𝑞 over the depth of the
atmosphere at each model timestep, and dividing by the total mass of the column.

VINTVQ =

∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝑣𝑞𝜌𝑑𝑧∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝜌𝑑𝑧

Using 𝜌𝛿𝑧 = − 𝛿𝑝
𝑔 = − 1

𝑔 𝛿𝑝, we have

VINTVQ =

∫︁ 1

0

𝑣𝑞𝑑𝑝

VINTUT - Vertically Integrated Heat Flux (m/sec deg)

The vertically integrated heat flux due to the zonal u-wind is obtained by integrating 𝑢𝑇 over the depth of the atmo-
sphere at each model timestep, and dividing by the total mass of the column.

VINTUT =

∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝑢𝑇𝜌𝑑𝑧∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝜌𝑑𝑧
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Or,

VINTUT =

∫︁ 1

0

𝑢𝑇𝑑𝑝

VINTVT - Vertically Integrated Heat Flux (m/sec deg)

The vertically integrated heat flux due to the meridional v-wind is obtained by integrating 𝑣𝑇 over the depth of the
atmosphere at each model timestep, and dividing by the total mass of the column.

VINTVT =

∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝑣𝑇𝜌𝑑𝑧∫︀ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓
𝜌𝑑𝑧

Using :math:‘rho delta z = -frac{delta p}{g} ‘, we have

VINTVT =

∫︁ 1

0

𝑣𝑇𝑑𝑝

CLDFRC - Total 2-Dimensional Cloud Fracton (0-1)

If we define the time-averaged random and maximum overlapped cloudiness as CLRO and CLMO respectively, then
the probability of clear sky associated with random overlapped clouds at any level is (1-CLRO) while the probability
of clear sky associated with maximum overlapped clouds at any level is (1-CLMO). The total clear sky probability
is given by (1-CLRO)*(1-CLMO), thus the total cloud fraction at each level may be obtained by 1-(1-CLRO)*(1-
CLMO).

At any given level, we may define the clear line-of-site probability by appropriately accounting for the maximum
and random overlap cloudiness. The clear line-of-site probability is defined to be equal to the product of the clear
line-of-site probabilities associated with random and maximum overlap cloudiness. The clear line-of-site probability
𝐶(𝑝, 𝑝′) associated with maximum overlap clouds, from the current pressure 𝑝 to the model top pressure, 𝑝′ = 𝑝𝑡𝑜𝑝,
or the model surface pressure, 𝑝′ = 𝑝𝑠𝑢𝑟𝑓 , is simply 1.0 minus the largest maximum overlap cloud value along the
line-of-site, ie.

1 −𝑀𝐴𝑋𝑝′

𝑝 (𝐶𝐿𝑀𝑂𝑝)

Thus, even in the time-averaged sense it is assumed that the maximum overlap clouds are correlated in the vertical.
The clear line-of-site probability associated with random overlap clouds is defined to be the product of the clear sky
probabilities at each level along the line-of-site, ie.

𝑝′∏︁
𝑝

(1 − 𝐶𝐿𝑅𝑂𝑝)

The total cloud fraction at a given level associated with a line- of-site calculation is given by

1 −
(︁

1 −𝑀𝐴𝑋𝑝′

𝑝 [𝐶𝐿𝑀𝑂𝑝]
)︁ 𝑝′∏︁

𝑝

(1 − 𝐶𝐿𝑅𝑂𝑝)

The 2-dimensional net cloud fraction as seen from the top of the atmosphere is given by

CLDFRC = 1 −
(︁

1 −𝑀𝐴𝑋𝑁𝑟𝑝ℎ𝑦𝑠
𝑙=𝑙1

[𝐶𝐿𝑀𝑂𝑙]
)︁𝑁𝑟𝑝ℎ𝑦𝑠∏︁

𝑙=𝑙1

(1 − 𝐶𝐿𝑅𝑂𝑙)

For a complete description of cloud/radiative interactions, see Section [sec:fizhi:radcloud].
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QINT - Total Precipitable Water (gm/cm^2)

The Total Precipitable Water is defined as the vertical integral of the specific humidity, given by:

QINT =

∫︁ 𝑡𝑜𝑝

𝑠𝑢𝑟𝑓

𝜌𝑞𝑑𝑧

=
𝜋

𝑔

∫︁ 1

0

𝑞𝑑𝑝

where we have used the hydrostatic relation :math:‘rho delta z = -frac{delta p}{g} ‘.

U2M Zonal U-Wind at 2 Meter Depth (m/sec)

The u-wind at the 2-meter depth is determined from the similarity theory:

U2M =
𝑢*
𝑘
𝜓𝑚2𝑚

𝑢𝑠𝑙
𝑊𝑠

=
𝜓𝑚2𝑚

𝜓𝑚𝑠𝑙

𝑢𝑠𝑙

where 𝜓𝑚(2𝑚) is the non-dimensional wind shear at two meters, and the subscript 𝑠𝑙 refers to the height of the top of
the surface layer. If the roughness height is above two meters, U2M is undefined.

V2M - Meridional V-Wind at 2 Meter Depth (m/sec)

The v-wind at the 2-meter depth is a determined from the similarity theory:

V2M =
𝑢*
𝑘
𝜓𝑚2𝑚

𝑣𝑠𝑙
𝑊𝑠

=
𝜓𝑚2𝑚

𝜓𝑚𝑠𝑙

𝑣𝑠𝑙

where 𝜓𝑚(2𝑚) is the non-dimensional wind shear at two meters, and the subscript 𝑠𝑙 refers to the height of the top of
the surface layer. If the roughness height is above two meters, V2M is undefined.

T2M - Temperature at 2 Meter Depth (deg K)

The temperature at the 2-meter depth is a determined from the similarity theory:

T2M = 𝑃𝜅(
𝜃*
𝑘

(𝜓ℎ2𝑚 + 𝜓𝑔) + 𝜃𝑠𝑢𝑟𝑓 ) = 𝑃𝜅(𝜃𝑠𝑢𝑟𝑓 +
𝜓ℎ2𝑚

+ 𝜓𝑔

𝜓ℎ𝑠𝑙
+ 𝜓𝑔

(𝜃𝑠𝑙 − 𝜃𝑠𝑢𝑟𝑓 ))

where:

𝜃* = − (𝑤′𝜃′)

𝑢*

where 𝜓ℎ(2𝑚) is the non-dimensional temperature gradient at two meters, 𝜓𝑔 is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript 𝑠𝑙 refers to the height of the top of the surface layer. If the roughness
height is above two meters, T2M is undefined.

Q2M - Specific Humidity at 2 Meter Depth (g/kg)

The specific humidity at the 2-meter depth is determined from the similarity theory:

Q2M = 𝑃𝜅 (

𝑞*
𝑘(𝜓ℎ2𝑚

+ 𝜓𝑔) + 𝑞𝑠𝑢𝑟𝑓 ) = 𝑃𝜅(𝑞𝑠𝑢𝑟𝑓 +
𝜓ℎ2𝑚

+ 𝜓𝑔

𝜓ℎ𝑠𝑙
+ 𝜓𝑔

(𝑞𝑠𝑙 − 𝑞𝑠𝑢𝑟𝑓 ))
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where:

𝑞* = − (𝑤′𝑞′)

𝑢*

where 𝜓ℎ(2𝑚) is the non-dimensional temperature gradient at two meters, 𝜓𝑔 is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript 𝑠𝑙 refers to the height of the top of the surface layer. If the roughness
height is above two meters, Q2M is undefined.

U10M - Zonal U-Wind at 10 Meter Depth (m/sec)

The u-wind at the 10-meter depth is an interpolation between the surface wind and the model lowest level wind using
the ratio of the non-dimensional wind shear at the two levels:

U10M =
𝑢*
𝑘
𝜓𝑚10𝑚

𝑢𝑠𝑙
𝑊𝑠

=
𝜓𝑚10𝑚

𝜓𝑚𝑠𝑙

𝑢𝑠𝑙

where 𝜓𝑚(10𝑚) is the non-dimensional wind shear at ten meters, and the subscript 𝑠𝑙 refers to the height of the top
of the surface layer.

V10M - Meridional V-Wind at 10 Meter Depth (m/sec)

The v-wind at the 10-meter depth is an interpolation between the surface wind and the model lowest level wind using
the ratio of the non-dimensional wind shear at the two levels:

V10M =
𝑢*
𝑘
𝜓𝑚10𝑚

𝑣𝑠𝑙
𝑊𝑠

=
𝜓𝑚10𝑚

𝜓𝑚𝑠𝑙

𝑣𝑠𝑙

where 𝜓𝑚(10𝑚) is the non-dimensional wind shear at ten meters, and the subscript 𝑠𝑙 refers to the height of the top
of the surface layer.

T10M - Temperature at 10 Meter Depth (deg K)

The temperature at the 10-meter depth is an interpolation between the surface potential temperature and the model
lowest level potential temperature using the ratio of the non-dimensional temperature gradient at the two levels:

T10M = 𝑃𝜅(
𝜃*
𝑘

(𝜓ℎ10𝑚 + 𝜓𝑔) + 𝜃𝑠𝑢𝑟𝑓 ) = 𝑃𝜅(𝜃𝑠𝑢𝑟𝑓 +
𝜓ℎ10𝑚

+ 𝜓𝑔

𝜓ℎ𝑠𝑙
+ 𝜓𝑔

(𝜃𝑠𝑙 − 𝜃𝑠𝑢𝑟𝑓 ))

where:

𝜃* = − (𝑤′𝜃′)

𝑢*

where 𝜓ℎ(10𝑚) is the non-dimensional temperature gradient at two meters, 𝜓𝑔 is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript 𝑠𝑙 refers to the height of the top of the surface layer.

Q10M - Specific Humidity at 10 Meter Depth (g/kg)

The specific humidity at the 10-meter depth is an interpolation between the surface specific humidity and the model
lowest level specific humidity using the ratio of the non-dimensional temperature gradient at the two levels:

Q10M = 𝑃𝜅(
𝑞*
𝑘

(𝜓ℎ10𝑚
+ 𝜓𝑔) + 𝑞𝑠𝑢𝑟𝑓 ) = 𝑃𝜅(𝑞𝑠𝑢𝑟𝑓 +

𝜓ℎ10𝑚
+ 𝜓𝑔

𝜓ℎ𝑠𝑙
+ 𝜓𝑔

(𝑞𝑠𝑙 − 𝑞𝑠𝑢𝑟𝑓 ))
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where:

𝑞* = − (𝑤′𝑞′)

𝑢*

where 𝜓ℎ(10𝑚) is the non-dimensional temperature gradient at two meters, 𝜓𝑔 is the non-dimensional temperature
gradient in the viscous sublayer, and the subscript 𝑠𝑙 refers to the height of the top of the surface layer.

DTRAIN - Cloud Detrainment Mass Flux (kg/m^2)

The amount of cloud mass moved per RAS timestep at the cloud detrainment level is written:

DTRAIN = 𝜂𝑟𝐷𝑚𝐵

where 𝑟𝐷 is the detrainment level, 𝑚𝐵 is the cloud base mass flux, and 𝜂 is the entrainment, defined in Section 5.5.3.2.

QFILL - Filling of negative Specific Humidity (g/kg/day)

Due to computational errors associated with the numerical scheme used for the advection of moisture, negative values
of specific humidity may be generated. The specific humidity is checked for negative values after every dynamics
timestep. If negative values have been produced, a filling algorithm is invoked which redistributes moisture from
below. Diagnostic QFILL is equal to the net filling needed to eliminate negative specific humidity, scaled to a per-day
rate:

QFILL = 𝑞𝑛+1
𝑓𝑖𝑛𝑎𝑙 − 𝑞𝑛+1

𝑖𝑛𝑖𝑡𝑖𝑎𝑙

where

𝑞𝑛+1 = (𝜋𝑞)𝑛+1/𝜋𝑛+1

Key subroutines, parameters and files

Dos and don’ts

Fizhi Reference

Experiments and tutorials that use fizhi

• Global atmosphere experiment with realistic SST and topography in fizhi-cs-32x32x10 verification directory.

• Global atmosphere aqua planet experiment in fizhi-cs-aqualev20 verification directory.

Sea Ice Packages

THSICE: The Thermodynamic Sea Ice Package

Important note: This document has been written by Stephanie Dutkiewicz and describes an earlier implementation
of the sea-ice package. This needs to be updated to reflect the recent changes (JMC).

This thermodynamic ice model is based on the 3-layer model by Winton (2000). and the energy-conserving LANL
CICE model (Bitz and Lipscomb, 1999). The model considers two equally thick ice layers; the upper layer has a
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variable specific heat resulting from brine pockets, the lower layer has a fixed heat capacity. A zero heat capacity snow
layer lies above the ice. Heat fluxes at the top and bottom surfaces are used to calculate the change in ice and snow
layer thickness. Grid cells of the ocean model are either fully covered in ice or are open water. There is a provision to
parametrize ice fraction (and leads) in this package. Modifications are discussed in small font following the subroutine
descriptions.

Key parameters and Routines

The ice model is called from thermodynamics.F, subroutine ice_forcing.F is called in place of external_forcing_surf.F.

In ice_forcing.F, we calculate the freezing potential of the ocean model surface layer of water:

frzmlt = (𝑇𝑓 − 𝑆𝑆𝑇 )
𝑐𝑠𝑤𝜌𝑠𝑤∆𝑧

∆𝑡

where 𝑐𝑠𝑤 is seawater heat capacity, 𝜌𝑠𝑤 is the seawater density, ∆𝑧 is the ocean model upper layer thickness and ∆𝑡
is the model (tracer) timestep. The freezing temperature, 𝑇𝑓 = 𝜇𝑆 is a function of the salinity.

1. Provided there is no ice present and frzmlt is less than 0, the surface tendencies of wind, heat and freshwater
are calculated as usual (ie. as in external_forcing_surf.F).

2. If there is ice present in the grid cell we call the main ice model routine ice_therm.F (see below). Output from
this routine gives net heat and freshwater flux affecting the top of the ocean.

Subroutine ice_forcing.F uses these values to find the sea surface tendencies in grid cells. When there is ice present,
the surface stress tendencies are set to zero; the ice model is purely thermodynamic and the effect of ice motion on the
sea-surface is not examined.

Relaxation of surface 𝑇 and 𝑆 is only allowed equatorward of relaxlat (see DATA.ICE below), and no relaxation is
allowed under the ice at any latitude.

(Note that there is provision for allowing grid cells to have both open water and seaice; if compact is between 0 and
1)

subroutine ICE_FREEZE

This routine is called from thermodynamics.F after the new temperature calculation, calc_gt.F, but before calc_gs.F.
In ice_freeze.F, any ocean upper layer grid cell with no ice cover, but with temperature below freezing, 𝑇𝑓 = 𝜇𝑆
has ice initialized. We calculate frzmlt from all the grid cells in the water column that have a temperature less than
freezing. In this routine, any water below the surface that is below freezing is set to 𝑇𝑓 . A call to ice_start.F is made
if frzmlt > 0, and salinity tendancy is updated for brine release.

(There is a provision for fractional ice: In the case where the grid cell has less ice coverage than icemaskmax we
allow ice_start.F to be called)

subroutine ICE_START

The energy available from freezing the sea surface is brought into this routine as esurp. The enthalpy of the 2 layers
of any new ice is calculated as:

𝑞1 = −𝑐𝑖 * 𝑇𝑓 + 𝐿𝑖

𝑞2 = −𝑐𝑓𝑇𝑚𝑙𝑡 + 𝑐𝑖(𝑇𝑚𝑙𝑡 − 𝑇𝑓) + 𝐿𝑖(1 − 𝑇𝑚𝑙𝑡

𝑇𝑓
)
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where 𝑐𝑓 is specific heat of liquid fresh water, 𝑐𝑖 is the specific heat of fresh ice, 𝐿𝑖 is latent heat of freezing, 𝜌𝑖 is
density of ice and 𝑇𝑚𝑙𝑡 is melting temperature of ice with salinity of 1. The height of a new layer of ice is

ℎ𝑖𝑛𝑒𝑤 =
esurp∆𝑡

𝑞𝑖0𝑎𝑣

where 𝑞𝑖0𝑎𝑣 = −𝜌𝑖

2 (𝑞1 + 𝑞2).

The surface skin temperature 𝑇𝑠 and ice temperatures 𝑇1, 𝑇2 and the sea surface temperature are set at 𝑇𝑓 .

(There is provision for fractional ice: new ice is formed over open water; the first freezing in the cell must have a
height of himin0; this determines the ice fraction compact. If there is already ice in the grid cell, the new ice must
have the same height and the new ice fraction is

𝑖𝑓 = (1 − 𝑖𝑓 )
ℎ𝑖𝑛𝑒𝑤
ℎ𝑖

where 𝑖𝑓 is ice fraction from previous timestep and ℎ𝑖 is current ice height. Snow is redistributed over the new ice
fraction. The ice fraction is not allowed to become larger than iceMaskmax and if the ice height is above hihig then
freezing energy comes from the full grid cell, ice growth does not occur under orginal ice due to freezing water.)

subroutine ICE_THERM

The main subroutine of this package is ice_therm.F where the ice temperatures are calculated and the changes in ice
and snow thicknesses are determined. Output provides the net heat and fresh water fluxes that force the top layer of
the ocean model.

If the current ice height is less than himin then the ice layer is set to zero and the ocean model upper layer temperature
is allowed to drop lower than its freezing temperature; and atmospheric fluxes are allowed to effect the grid cell. If the
ice height is greater than himin we proceed with the ice model calculation.

We follow the procedure of Winton (1999) – see equations 3 to 21 – to calculate the surface and internal ice tem-
peratures. The surface temperature is found from the balance of the flux at the surface 𝐹𝑠, the shortwave heat flux
absorbed by the ice, fswint, and the upward conduction of heat through the snow and/or ice, 𝐹𝑢. We linearize 𝐹𝑠

about the surface temperature, 𝑇𝑠, at the previous timestep (whereˆindicates the value at the previous timestep):

𝐹𝑠(𝑇𝑠) = 𝐹𝑠(𝑇𝑠) +
𝜕𝐹𝑠(𝑇𝑠)

𝜕𝑇𝑠
(𝑇𝑠 − 𝑇𝑠)

where,

𝐹𝑠 = 𝐹𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒 + 𝐹𝑙𝑎𝑡𝑒𝑛𝑡 + 𝐹 𝑑𝑜𝑤𝑛
𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒 + 𝐹𝑢𝑝

𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒 + (1 − 𝛼)𝐹𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒

and

𝑑𝐹𝑠

𝑑𝑇
=
𝑑𝐹𝑠𝑒𝑛𝑠𝑖𝑏𝑙𝑒

𝑑𝑇
+
𝑑𝐹𝑙𝑎𝑡𝑒𝑛𝑡

𝑑𝑇
+
𝑑𝐹𝑢𝑝

𝑙𝑜𝑛𝑔𝑤𝑎𝑣𝑒

𝑑𝑇
.

𝐹𝑠 and 𝑑𝐹𝑠

𝑑𝑇 are currently calculated from the BULKF package described separately, but could also be provided by
an atmospheric model. The surface albedo is calculated from the ice height and/or surface temperature (see below,
srf_albedo.F) and the shortwave flux absorbed in the ice is

fswint = (1 − 𝑒𝜅𝑖ℎ𝑖)(1 − 𝛼)𝐹𝑠ℎ𝑜𝑟𝑡𝑤𝑎𝑣𝑒

where 𝜅𝑖 is bulk extinction coefficient.

The conductive flux to the surface is

𝐹𝑢 = 𝐾1/2(𝑇1 − 𝑇𝑠)
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where 𝐾1/2 is the effective conductive coupling of the snow-ice layer between the surface and the mid-point of the
upper layer of ice :math:‘ K_{1/2}=frac{4 K_i K_s}{K_s h_i + 4 K_i h_s} . :math:‘K_i and 𝐾𝑠 are constant thermal
conductivities of seaice and snow.

From the above equations we can develop a system of equations to find the skin surface temperature, 𝑇𝑠 and the two
ice layer temperatures (see Winton, 1999, for details). We solve these equations iteratively until the change in 𝑇𝑠
is small. When the surface temperature is greater then the melting temperature of the surface, the temperatures are
recalculated setting 𝑇𝑠 to 0. The enthalpy of the ice layers are calculated in order to keep track of the energy in the
ice model. Enthalpy is defined, here, as the energy required to melt a unit mass of seaice with temperature 𝑇 . For the
upper layer (1) with brine pockets and the lower fresh layer (2):

𝑞1 = −𝑐𝑓𝑇𝑓 + 𝑐𝑖(𝑇𝑓 − 𝑇 ) + 𝐿𝑖(1 − 𝑇𝑓
𝑇

)

𝑞2 = −𝑐𝑖𝑇 + 𝐿𝑖

where 𝑐𝑓 is specific heat of liquid fresh water, 𝑐𝑖 is the specific heat of fresh ice, and 𝐿𝑖 is latent heat of melting fresh
ice.

From the new ice temperatures, we can calculate the energy flux at the surface available for melting (if 𝑇𝑠=0) and the
energy at the ocean-ice interface for either melting or freezing.

𝐸𝑡𝑜𝑝 = (𝐹𝑠 −𝐾1/2(𝑇𝑠 − 𝑇1))∆𝑡

𝐸𝑏𝑜𝑡 = (
4𝐾𝑖(𝑇2 − 𝑇𝑓 )

ℎ𝑖
− 𝐹𝑏)∆𝑡

where 𝐹𝑏 is the heat flux at the ice bottom due to the sea surface temperature variations from freezing. If 𝑇𝑠𝑠𝑡 is above
freezing, 𝐹𝑏 = 𝑐𝑠𝑤𝜌𝑠𝑤𝛾(𝑇𝑠𝑠𝑡 − 𝑇𝑓 )𝑢*, 𝛾 is the heat transfer coefficient and 𝑢* = 𝑄𝑄 is frictional velocity between
ice and water. If 𝑇𝑠𝑠𝑡 is below freezing, 𝐹𝑏 = (𝑇𝑓 − 𝑇𝑠𝑠𝑡)𝑐𝑓𝜌𝑓∆𝑧/∆𝑡 and set 𝑇𝑠𝑠𝑡 to 𝑇𝑓 . We also include the energy
from lower layers that drop below freezing, and set those layers to 𝑇𝑓 .

If 𝐸𝑡𝑜𝑝 > 0 we melt snow from the surface, if all the snow is melted and there is energy left, we melt the ice. If the
ice is all gone and there is still energy left, we apply the left over energy to heating the ocean model upper layer (See
Winton, 1999, equations 27-29). Similarly if 𝐸𝑏𝑜𝑡 > 0 we melt ice from the bottom. If all the ice is melted, the snow
is melted (with energy from the ocean model upper layer if necessary). If 𝐸𝑏𝑜𝑡 < 0 we grow ice at the bottom

∆ℎ𝑖 =
−𝐸𝑏𝑜𝑡

(𝑞𝑏𝑜𝑡𝜌𝑖)

where 𝑞𝑏𝑜𝑡 = −𝑐𝑖𝑇𝑓 +𝐿𝑖 is the enthalpy of the new ice, The enthalpy of the second ice layer, 𝑞2 needs to be modified:

𝑞2 =
ℎ̂𝑖/2𝑞2 + ∆ℎ𝑖𝑞𝑏𝑜𝑡

ℎ̂𝑖/2 + ∆ℎ𝑖

If there is a ice layer and the overlying air temperature is below 0𝑜C then any precipitation, 𝑃 joins the snow layer:

∆ℎ𝑠 = −𝑃 𝜌𝑓
𝜌𝑠

∆𝑡,

𝜌𝑓 and 𝜌𝑠 are the fresh water and snow densities. Any evaporation, similarly, removes snow or ice from the surface.
We also calculate the snow age here, in case it is needed for the surface albedo calculation (see srf_albedo.F below).

For practical reasons we limit the ice growth to hilim and snow is limited to hslim. We converts any ice and/or
snow above these limits back to water, maintaining the salt balance. Note however, that heat is not conserved in this
conversion; sea surface temperatures below the ice are not recalculated.

If the snow/ice interface is below the waterline, snow is converted to ice (see Winton, 1999, equations 35 and 36). The
subroutine new_layers_winton.F, described below, repartitions the ice into equal thickness layers while conserving
energy.
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The subroutine ice_therm.F now calculates the heat and fresh water fluxes affecting the ocean model surface layer.
The heat flux:

𝑞𝑛𝑒𝑡 = fswocn− 𝐹𝑏 −
esurp

∆𝑡

is composed of the shortwave flux that has passed through the ice layer and is absorbed by the water, fswocn= 𝑄𝑄, the
ocean flux to the ice 𝐹𝑏, and the surplus energy left over from the melting, esurp. The fresh water flux is determined
from the amount of fresh water and salt in the ice/snow system before and after the timestep.

(There is a provision for fractional ice: If ice height is above hihig then all energy from freezing at sea surface is used
only in the open water aparts of the cell (ie. 𝐹𝑏 will only have the conduction term). The melt energy is partitioned by
frac_energy between melting ice height and ice extent. However, once ice height drops below himon0 then all energy
melts ice extent.)

subroutine SFC_ALBEDO

The routine ice_therm.F calls this routine to determine the surface albedo. There are two calculations provided here:

1. from LANL CICE model

𝛼 = 𝑓𝑠𝛼𝑠 + (1 − 𝑓𝑠)(𝛼𝑖𝑚𝑖𝑛
+ (𝛼𝑖𝑚𝑎𝑥

− 𝛼𝑖𝑚𝑖𝑛
)(1 − 𝑒−ℎ𝑖/ℎ𝛼))

where 𝑓𝑠 is 1 if there is snow, 0 if not; the snow albedo, 𝛼𝑠 has two values depending on whether 𝑇𝑠 < 0 or not;
𝛼𝑖𝑚𝑖𝑛

and 𝛼𝑖𝑚𝑎𝑥
are ice albedos for thin melting ice, and thick bare ice respectively, and ℎ𝛼 is a scale height.

2. From GISS model (Hansen et al 1983)

𝛼 = 𝛼𝑖𝑒
−ℎ𝑠/ℎ𝑎 + 𝛼𝑠(1 − 𝑒−ℎ𝑠/ℎ𝑎)

where 𝛼𝑖 is a constant albedo for bare ice, ℎ𝑎 is a scale height and 𝛼𝑠 is a variable snow albedo.

𝛼𝑠 = 𝛼1 + 𝛼2𝑒
−𝜆𝑎𝑎𝑠

where 𝛼1 is a constant, 𝛼2 depends on 𝑇𝑠, 𝑎𝑠 is the snow age, and 𝜆𝑎 is a scale frequency. The snow age is
calculated in ice_therm.F and is given in equation 41 in Hansen et al (1983).

subroutine NEW_LAYERS_WINTON

The subroutine new_layers_winton.F repartitions the ice into equal thickness layers while conserving energy. We pass
to this subroutine, the ice layer enthalpies after melting/growth and the new height of the ice layers. The ending layer
height should be half the sum of the new ice heights from ice_therm.F. The enthalpies of the ice layers are adjusted
accordingly to maintain total energy in the ice model. If layer 2 height is greater than layer 1 height then layer 2 gives
ice to layer 1 and:

𝑞1 = 𝑓1𝑞1 + (1 − 𝑓1)𝑞2

where 𝑓1 is the fraction of the new to old upper layer heights. 𝑇1 will therefore also have changed. Similarly for when
ice layer height 2 is less than layer 1 height, except here we need to to be careful that the new 𝑇2 does not fall below
the melting temperature.

Initializing subroutines

ice_init.F: Set ice variables to zero, or reads in pickup information from pickup.ic (which was written out in check-
point.F)

ice_readparms.F: Reads data.ice
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Diagnostic subroutines

ice_ave.F: Keeps track of means of the ice variables

ice_diags.F: Finds averages and writes out diagnostics

Common Blocks

ICE.h: Ice Varibles, also relaxlat and startIceModel

ICE_DIAGS.h: matrices for diagnostics: averages of fields from ice_diags.F

BULKF_ICE_CONSTANTS.h (in BULKF package): all the parameters need by the ice model

Input file DATA.ICE

Here we need to set StartIceModel: which is 1 if the model starts from no ice; and 0 if there is a pickup file with the
ice matrices (pickup.ic) which is read in ice_init.F and written out in checkpoint.F. The parameter relaxlat defines the
latitude poleward of which there is no relaxing of surface 𝑇 or 𝑆 to observations. This avoids the relaxation forcing
the ice model at these high latitudes.

(Note: hicemin is set to 0 here. If the provision for allowing grid cells to have both open water and seaice is ever
implemented, this would be greater than 0)

Important Notes

1. heat fluxes have different signs in the ocean and ice models.

2. StartIceModel must be changed in data.ice: 1 (if starting from no ice), 0 (if using pickup.ic file).

THSICE Diagnostics

------------------------------------------------------------------------
<-Name->|Levs|<-parsing code->|<-- Units -->|<- Tile (max=80c)
------------------------------------------------------------------------
SI_Fract| 1 |SM P M1 |0-1 |Sea-Ice fraction [0-1]
SI_Thick| 1 |SM PC197M1 |m |Sea-Ice thickness (area weighted
→˓average)
SI_SnowH| 1 |SM PC197M1 |m |Snow thickness over Sea-Ice (area
→˓weighted)
SI_Tsrf | 1 |SM C197M1 |degC |Surface Temperature over Sea-Ice
→˓(area weighted)
SI_Tice1| 1 |SM C197M1 |degC |Sea-Ice Temperature, 1srt layer (area
→˓weighted)
SI_Tice2| 1 |SM C197M1 |degC |Sea-Ice Temperature, 2nd layer (area
→˓weighted)
SI_Qice1| 1 |SM C198M1 |J/kg |Sea-Ice enthalpy, 1srt layer (mass
→˓weighted)
SI_Qice2| 1 |SM C198M1 |J/kg |Sea-Ice enthalpy, 2nd layer (mass
→˓weighted)
SIalbedo| 1 |SM PC197M1 |0-1 |Sea-Ice Albedo [0-1] (area weighted
→˓average)
SIsnwAge| 1 |SM P M1 |s |snow age over Sea-Ice
SIsnwPrc| 1 |SM C197M1 |kg/m^2/s |snow precip. (+=dw) over Sea-Ice
→˓(area weighted)
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SIflxAtm| 1 |SM M1 |W/m^2 |net heat flux from the Atmosphere
→˓(+=dw)
SIfrwAtm| 1 |SM M1 |kg/m^2/s |fresh-water flux to the Atmosphere
→˓(+=up)
SIflx2oc| 1 |SM M1 |W/m^2 |heat flux out of the ocean (+=up)
SIfrw2oc| 1 |SM M1 |m/s |fresh-water flux out of the ocean
→˓(+=up)
SIsaltFx| 1 |SM M1 |psu.kg/m^2 |salt flux out of the ocean (+=up)
SItOcMxL| 1 |SM M1 |degC |ocean mixed layer temperature
SIsOcMxL| 1 |SM P M1 |psu |ocean mixed layer salinity
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Experiments and tutorials that use thsice

• Global atmosphere experiment in aim.5l_cs verification directory, input from input.thsice directory.

• Global ocean experiment in global_ocean.cs32x15 verification directory, input from input.thsice directory.

SEAICE Package

Authors: Martin Losch, Dimitris Menemenlis, An Nguyen, Jean-Michel Campin, Patrick Heimbach, Chris Hill and
Jinlun Zhang

Introduction

Package “seaice” provides a dynamic and thermodynamic interactive sea-ice model.

CPP options enable or disable different aspects of the package (Section Section 5.6.2.2). Run-Time options, flags,
filenames and field-related dates/times are set in data.seaice (Section Section 5.6.2.2). A description of key sub-
routines is given in Section Section 5.6.2.3. Input fields, units and sign conventions are summarized in Section
[sec:pkg:seaice:fields:sub:units], and available diagnostics output is listed in Section [sec:pkg:seaice:diagnostics].

SEAICE configuration, compiling & running

Compile-time options

As with all MITgcm packages, SEAICE can be turned on or off at compile time

• using the packages.conf file by adding seaice to it,
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• or using genmake2 adding -enable=seaice or -disable=seaice switches

• required packages and CPP options: SEAICE requires the external forcing package exf to be enabled; no
additional CPP options are required.

(see Section [sec:buildingCode]).

Parts of the SEAICE code can be enabled or disabled at compile time via CPP preprocessor flags. These options are
set in SEAICE_OPTIONS.h. Table 5.15 summarizes the most important ones. For more options see the default
pkg/seaice/SEAICE_OPTIONS.h.

Table 5.15: Some of the most relevant CPP preporocessor flags in the seaice-package.

CPP option Description
SEAICE_DEBUG Enhance STDOUT for debugging
SEAICE_ALLOW_DYNAMICS sea-ice dynamics code
SEAICE_CGRID LSR solver on C-grid (rather than original B-grid)
SEAICE_ALLOW_EVP enable use of EVP rheology solver
SEAICE_ALLOW_JFNK enable use of JFNK rheology solver
SEAICE_EXTERNAL_FLUXES use EXF-computed fluxes as starting point
SEAICE_ZETA_SMOOTHREG use differentialable regularization for viscosities
SEAICE_VARIABLE_FREEZING_POINTenable linear dependence of the freezing point on salinity (by default

undefined)
ALLOW_SEAICE_FLOODING enable snow to ice conversion for submerged sea-ice
SEAICE_VARIABLE_SALINITY enable sea-ice with variable salinity (by default undefined)
SEAICE_SITRACER enable sea-ice tracer package (by default undefined)
SEAICE_BICE_STRESS B-grid only for backward compatiblity: turn on ice-stress on ocean
EXPLICIT_SSH_SLOPE B-grid only for backward compatiblity: use ETAN for tilt computations rather

than geostrophic velocities

Run-time parameters

Run-time parameters (see Table 5.16) are set in files data.pkg (read in packages_readparms.F), and data.seaice (read
in seaice_readparms.F).

Enabling the package

A package is switched on/off at run-time by setting (e.g. for SEAICE useSEAICE = .TRUE. in data.pkg).

General flags and parameters

Table 5.16 lists most run-time parameters.

Table 5.16: Run-time parameters and default values

Name Default value Description
SEAICEwriteState T write sea ice state to file
SEAICEuseDYNAMICS T use dynamics
SEAICEuseJFNK F use the JFNK-solver
SEAICEuseTEM F use truncated ellipse method
SEAICEuseStrImpCpl F use strength implicit coupling in LSR/JFNK

Continued on next page
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Table 5.16 – continued from previous page
SEAICEuseMetricTerms T use metric terms in dynamics
SEAICEuseEVPpickup T use EVP pickups
SEAICEuseFluxForm F use flux form for 2nd central difference advection scheme
SEAICErestoreUnderIce F enable restoring to climatology under ice
useHB87stressCoupling F turn on ice-ocean stress coupling following
usePW79thermodynamics T flag to turn off zero-layer-thermodynamics for testing
SEAICEadvHeff/Area/Snow/Salt T flag to turn off advection of scalar state variables
SEAICEuseFlooding T use flood-freeze algorithm
SEAICE_no_slip F switch between free-slip and no-slip boundary conditions
SEAICE_deltaTtherm dTracerLev(1) thermodynamic timestep
SEAICE_deltaTdyn dTracerLev(1) dynamic timestep
SEAICE_deltaTevp 0 EVP sub-cycling time step, values > 0 turn on EVP
SEAICEuseEVPstar F use modified EVP* instead of EVP
SEAICEuseEVPrev F use yet another variation on EVP*
SEAICEnEVPstarSteps UNSET number of modified EVP* iteration
SEAICE_evpAlpha UNSET EVP* parameter
SEAICE_evpBeta UNSET EVP* parameter
SEAICEaEVPcoeff UNSET aEVP parameter
SEAICEaEVPcStar 4 aEVP parameter [KDL16]
SEAICEaEVPalphaMin 5 aEVP parameter [KDL16]
SEAICE_elasticParm 1

3 EVP paramter 𝐸0

SEAICE_evpTauRelax ∆𝑡𝐸𝑉 𝑃 relaxation time scale 𝑇 for EVP waves
SEAICEnonLinIterMax 10 maximum number of JFNK-Newton iterations (non-linear)
SEAICElinearIterMax 10 maximum number of JFNK-Krylov iterations (linear)
SEAICE_JFNK_lsIter (off) start line search after “lsIter” Newton iterations
SEAICEnonLinTol 1.0E-05 non-linear tolerance parameter for JFNK solver
JFNKgamma_lin_min/max 0.10/0.99 tolerance parameters for linear JFNK solver
JFNKres_tFac UNSET tolerance parameter for FGMRES residual
SEAICE_JFNKepsilon 1.0E-06 step size for the FD-Jacobian-times-vector
SEAICE_dumpFreq dumpFreq dump frequency
SEAICE_taveFreq taveFreq time-averaging frequency
SEAICE_dump_mdsio T write snap-shot using MDSIO
SEAICE_tave_mdsio T write TimeAverage using MDSIO
SEAICE_dump_mnc F write snap-shot using MNC
SEAICE_tave_mnc F write TimeAverage using MNC
SEAICE_initialHEFF 0.00000E+00 initial sea-ice thickness
SEAICE_drag 2.00000E-03 air-ice drag coefficient
OCEAN_drag 1.00000E-03 air-ocean drag coefficient
SEAICE_waterDrag 5.50000E+00 water-ice drag
SEAICE_dryIceAlb 7.50000E-01 winter albedo
SEAICE_wetIceAlb 6.60000E-01 summer albedo
SEAICE_drySnowAlb 8.40000E-01 dry snow albedo
SEAICE_wetSnowAlb 7.00000E-01 wet snow albedo
SEAICE_waterAlbedo 1.00000E-01 water albedo
SEAICE_strength 2.75000E+04 sea-ice strength 𝑃 *

SEAICE_cStar 20.0000E+00 sea-ice strength paramter 𝐶*

SEAICE_rhoAir 1.3 (or value) density of air (kg/m:math:^3)
SEAICE_cpAir 1004 (or value) specific heat of air (J/kg/K)
SEAICE_lhEvap 2,500,000 (or val ue) latent heat of evaporation
SEAICE_lhFusion 334,000 (or value ) latent heat of fusion

Continued on next page
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Table 5.16 – continued from previous page
SEAICE_lhSublim 2,834,000 latent heat of sublimation
SEAICE_dalton 1.75E-03 sensible heat transfer coefficient
SEAICE_iceConduct 2.16560E+00 sea-ice conductivity
SEAICE_snowConduct 3.10000E-01 snow conductivity
SEAICE_emissivity 5.50000E-08 Stefan-Boltzman
SEAICE_snowThick 1.50000E-01 cutoff snow thickness
SEAICE_shortwave 3.00000E-01 penetration shortwave radiation
SEAICE_freeze -1.96000E+00 freezing temp. of sea water
SEAICE_saltFrac 0.0 salinity newly formed ice (fraction of ocean surface salinity)
SEAICE_frazilFrac 0.0 Fraction of surface level negative heat content anomalies (relative to the local freezing poin
SEAICEstressFactor 1.00000E+00 scaling factor for ice-ocean stress
Heff/Area/HsnowFile/Hsalt UNSET initial fields for variables HEFF/AREA/HSNOW/HSALT
LSR_ERROR 1.00000E-04 sets accuracy of LSR solver
DIFF1 0.0 parameter used in advect.F
HO 5.00000E-01 demarcation ice thickness (AKA lead closing paramter ℎ0)
MAX_HEFF 1.00000E+01 maximum ice thickness
MIN_ATEMP -5.00000E+01 minimum air temperature
MIN_LWDOWN 6.00000E+01 minimum downward longwave
MAX_TICE 3.00000E+01 maximum ice temperature
MIN_TICE -5.00000E+01 minimum ice temperature
IMAX_TICE 10 iterations for ice heat budget
SEAICE_EPS 1.00000E-10 reduce derivative singularities
SEAICE_area_reg 1.00000E-5 minimum concentration to regularize ice thickness
SEAICE_hice_reg 0.05 m minimum ice thickness for regularization
SEAICE_multDim 1 number of ice categories for thermodynamics
SEAICE_useMultDimSnow F use SEAICE_multDim snow categories

Input fields and units

• HeffFile: Initial sea ice thickness averaged over grid cell in meters; initializes variable HEFF;

• AreaFile: Initial fractional sea ice cover, range [0, 1]; initializes variable AREA;

• HsnowFile: Initial snow thickness on sea ice averaged over grid cell in meters; initializes variable HSNOW;

• HsaltFile: Initial salinity of sea ice averaged over grid cell in g/m2; initializes variable HSALT;

Description

[TO BE CONTINUED/MODIFIED]

The MITgcm sea ice model (MITgcm/sim) is based on a variant of the viscous-plastic (VP) dynamic-thermodynamic
sea ice model [ZH97] first introduced by [Hib79][Hib80]. In order to adapt this model to the requirements of coupled
ice-ocean state estimation, many important aspects of the original code have been modified and improved [LMC+10]:

• the code has been rewritten for an Arakawa C-grid, both B- and C-grid variants are available; the C-grid code
allows for no-slip and free-slip lateral boundary conditions;

• three different solution methods for solving the nonlinear momentum equations have been adopted: LSOR
[ZH97], EVP [HD97], JFNK [LTSedlacek+10][LFLV14];

• ice-ocean stress can be formulated as in [HB87] or as in [CMF08];

• ice variables are advected by sophisticated, conservative advection schemes with flux limiting;
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• growth and melt parameterizations have been refined and extended in order to allow for more stable automatic
differentiation of the code.

The sea ice model is tightly coupled to the ocean compontent of the MITgcm. Heat, fresh water fluxes and surface
stresses are computed from the atmospheric state and – by default – modified by the ice model at every time step.

The ice dynamics models that are most widely used for large-scale climate studies are the viscous-plastic (VP) model
[Hib79], the cavitating fluid (CF) model [FWDH92], and the elastic-viscous-plastic (EVP) model [HD97]. Compared
to the VP model, the CF model does not allow ice shear in calculating ice motion, stress, and deformation. EVP models
approximate VP by adding an elastic term to the equations for easier adaptation to parallel computers. Because of its
higher accuracy in plastic solution and relatively simpler formulation, compared to the EVP model, we decided to use
the VP model as the default dynamic component of our ice model. To do this we extended the line successive over
relaxation (LSOR) method of [ZH97] for use in a parallel configuration. An EVP model and a free-drift implemtation
can be selected with runtime flags.

Compatibility with ice-thermodynamics thsice package

Note, that by default the seaice-package includes the orginial so-called zero-layer thermodynamics following with
a snow cover as in . The zero-layer thermodynamic model assumes that ice does not store heat and, therefore, tends
to exaggerate the seasonal variability in ice thickness. This exaggeration can be significantly reduced by using ’s []
three-layer thermodynamic model that permits heat storage in ice. Recently, the three-layer thermodynamic model has
been reformulated by . The reformulation improves model physics by representing the brine content of the upper ice
with a variable heat capacity. It also improves model numerics and consumes less computer time and memory.

The Winton sea-ice thermodynamics have been ported to the MIT GCM; they currently reside under pkg/seaice.
The package thsice is described in section [sec:pkg:thsice]; it is fully compatible with the packages seaice and
exf. When turned on together with seaice, the zero-layer thermodynamics are replaced by the Winton thermody-
namics. In order to use the seaice-package with the thermodynamics of thsice, compile both packages and turn
both package on in data.pkg; see an example in global_ocean.cs32x15/input.icedyn. Note, that once
thsice is turned on, the variables and diagnostics associated to the default thermodynamics are meaningless, and
the diagnostics of thsice have to be used instead.

Surface forcing

The sea ice model requires the following input fields: 10-m winds, 2-m air temperature and specific humidity, down-
ward longwave and shortwave radiations, precipitation, evaporation, and river and glacier runoff. The sea ice model
also requires surface temperature from the ocean model and the top level horizontal velocity. Output fields are surface
wind stress, evaporation minus precipitation minus runoff, net surface heat flux, and net shortwave flux. The sea-ice
model is global: in ice-free regions bulk formulae are used to estimate oceanic forcing from the atmospheric fields.

Dynamics

The momentum equation of the sea-ice model is

𝑜𝑐𝑒𝑎𝑛 −𝑚∇𝜑(0) + F, (5.1)

5.6. Sea Ice Packages 169



MITgcm Documentation, Release 1.0

where 𝑚 = 𝑚𝑖 + 𝑚𝑠 is the ice and snow mass per unit area; u = 𝑢i + 𝑣j is the ice velocity vector; i, j, and k are
unit vectors in the 𝑥, 𝑦, and 𝑧 directions, respectively; 𝑓 is the Coriolis parameter; 𝜏𝑎𝑖𝑟 and 𝜏𝑜𝑐𝑒𝑎𝑛 are the wind-ice
and ocean-ice stresses, respectively; 𝑔 is the gravity accelation; ∇𝜑(0) is the gradient (or tilt) of the sea surface height;
𝜑(0) = 𝑔𝜂 + 𝑝𝑎/𝜌0 + 𝑚𝑔/𝜌0 is the sea surface height potential in response to ocean dynamics (𝑔𝜂), to atmospheric
pressure loading (𝑝𝑎/𝜌0, where 𝜌0 is a reference density) and a term due to snow and ice loading ; and F = ∇·𝜎 is the
divergence of the internal ice stress tensor 𝜎𝑖𝑗 . Advection of sea-ice momentum is neglected. The wind and ice-ocean
stress terms are given by

𝜏𝑎𝑖𝑟 =𝜌𝑎𝑖𝑟𝐶𝑎𝑖𝑟|U𝑎𝑖𝑟 − u|𝑅𝑎𝑖𝑟(U𝑎𝑖𝑟 − u),

𝜏𝑜𝑐𝑒𝑎𝑛 =𝜌𝑜𝑐𝑒𝑎𝑛𝐶𝑜𝑐𝑒𝑎𝑛|U𝑜𝑐𝑒𝑎𝑛 − u|𝑅𝑜𝑐𝑒𝑎𝑛(U𝑜𝑐𝑒𝑎𝑛 − u),

where U𝑎𝑖𝑟/𝑜𝑐𝑒𝑎𝑛 are the surface winds of the atmosphere and surface currents of the ocean, respectively; 𝐶𝑎𝑖𝑟/𝑜𝑐𝑒𝑎𝑛

are air and ocean drag coefficients; 𝜌𝑎𝑖𝑟/𝑜𝑐𝑒𝑎𝑛 are reference densities; and 𝑅𝑎𝑖𝑟/𝑜𝑐𝑒𝑎𝑛 are rotation matrices that act on
the wind/current vectors.

Viscous-Plastic (VP) Rheology

For an isotropic system the stress tensor 𝜎𝑖𝑗 (𝑖, 𝑗 = 1, 2) can be related to the ice strain rate and strength by a nonlinear
viscous-plastic (VP) constitutive law :

𝜎𝑖𝑗 = 2𝜂(�̇�𝑖𝑗 , 𝑃 )�̇�𝑖𝑗 + [𝜁(�̇�𝑖𝑗 , 𝑃 ) − 𝜂(�̇�𝑖𝑗 , 𝑃 )] �̇�𝑘𝑘𝛿𝑖𝑗 −
𝑃

2
𝛿𝑖𝑗 . (5.2)

The ice strain rate is given by

�̇�𝑖𝑗 =
1

2

(︂
𝜕𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝑢𝑗
𝜕𝑥𝑖

)︂
.

The maximum ice pressure 𝑃max, a measure of ice strength, depends on both thickness ℎ and compactness (concen-
tration) 𝑐:

𝑃max = 𝑃 *𝑐 ℎ exp{−𝐶* · (1 − 𝑐)},

with the constants 𝑃 * (run-time parameter SEAICE_strength) and 𝐶* = 20. The nonlinear bulk and shear
viscosities 𝜂 and 𝜁 are functions of ice strain rate invariants and ice strength such that the principal components of the
stress lie on an elliptical yield curve with the ratio of major to minor axis 𝑒 equal to 2; they are given by:

𝜁 = min

(︂
𝑃max

2 max(∆,∆min)
, 𝜁max

)︂
𝜂 =

𝜁

𝑒2

with the abbreviation

∆ =
[︀(︀
�̇�211 + �̇�222

)︀
(1 + 𝑒−2) + 4𝑒−2�̇�212 + 2�̇�11�̇�22(1 − 𝑒−2)

]︀ 1
2 .

The bulk viscosities are bounded above by imposing both a minimum ∆min (for numerical reasons, run-time parameter
SEAICE_EPS with a default value of 10−10 s−1) and a maximum 𝜁max = 𝑃max/∆

*, where ∆* = (5 × 1012/2 ×
104) s−1. (There is also the option of bounding 𝜁 from below by setting run-time parameter SEAICE_zetaMin> 0,
but this is generally not recommended). For stress tensor computation the replacement pressure 𝑃 = 2 ∆𝜁 is used so
that the stress state always lies on the elliptic yield curve by definition.
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Defining the CPP-flag SEAICE_ZETA_SMOOTHREG in SEAICE_OPTIONS.h before compiling replaces the
method for bounding 𝜁 by a smooth (differentiable) expression:

𝜁 = 𝜁max tanh

(︂
𝑃

2 min(∆,∆min) 𝜁max

)︂
=

𝑃

2∆* tanh

(︂
∆*

min(∆,∆min)

)︂
where ∆min = 10−20 s−1 is chosen to avoid divisions by zero.

LSR and JFNK solver

In the matrix notation, the discretized momentum equations can be written as

A(x)x = b(x). (5.3)

The solution vector x consists of the two velocity components 𝑢 and 𝑣 that contain the velocity variables at all grid
points and at one time level. The standard (and default) method for solving Eq. (5.3) in the sea ice component of the
MITgcm, as in many sea ice models, is an iterative Picard solver: in the 𝑘-th iteration a linearized form A(x𝑘−1)x𝑘 =
b(x𝑘−1) is solved (in the case of the MITgcm it is a Line Successive (over) Relaxation (LSR) algorithm ). Picard
solvers converge slowly, but generally the iteration is terminated after only a few non-linear steps and the calculation
continues with the next time level. This method is the default method in the MITgcm. The number of non-linear
iteration steps or pseudo-time steps can be controlled by the runtime parameter SEAICEnonLinIterMax (default
is 2).

In order to overcome the poor convergence of the Picard-solver, introduced a Jacobian-free Newton-Krylov solver for
the sea ice momentum equations. This solver is also implemented in the MITgcm . The Newton method transforms
minimizing the residual F(x) = A(x)x−b(x) to finding the roots of a multivariate Taylor expansion of the residual
F around the previous (𝑘 − 1) estimate x𝑘−1:

F(x𝑘−1 + 𝛿x𝑘) = F(x𝑘−1) + F′(x𝑘−1) 𝛿x𝑘 (5.4)

with the Jacobian J ≡ F′. The root F(x𝑘−1 + 𝛿x𝑘) = 0 is found by solving

J(x𝑘−1) 𝛿x𝑘 = −F(x𝑘−1) (5.5)

for 𝛿x𝑘. The next (𝑘-th) estimate is given by x𝑘 = x𝑘−1+𝑎 𝛿x𝑘. In order to avoid overshoots the factor 𝑎 is iteratively
reduced in a line search (𝑎 = 1, 12 ,

1
4 ,

1
8 , . . .) until ‖F(x𝑘)‖ < ‖F(x𝑘−1)‖, where ‖ · ‖ =

∫︀
· 𝑑𝑥2 is the 𝐿2-norm. In

practice, the line search is stopped at 𝑎 = 1
8 . The line search starts after SEAICE_JFNK_lsIter non-linear Newton

iterations (off by default).

Forming the Jacobian J explicitly is often avoided as “too error prone and time consuming” . Instead, Krylov methods
only require the action of J on an arbitrary vector w and hence allow a matrix free algorithm for solving Eq. (5.5).
The action of J can be approximated by a first-order Taylor series expansion:

J(x𝑘−1)w ≈ F(x𝑘−1 + 𝜖w) − F(x𝑘−1)

𝜖
(5.6)

or computed exactly with the help of automatic differentiation (AD) tools. SEAICE_JFNKepsilon sets the step
size 𝜖.

We use the Flexible Generalized Minimum RESidual method with right-hand side preconditioning to solve Eq. (5.5)
iteratively starting from a first guess of 𝛿x𝑘

0 = 0. For the preconditioning matrix P we choose a simplified form of
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the system matrix A(x𝑘−1) where x𝑘−1 is the estimate of the previous Newton step 𝑘 − 1. The transformed equation
(5.5) becomes

J(x𝑘−1)P−1𝛿z = −F(x𝑘−1), with 𝛿z = P𝛿x𝑘. (5.7)

The Krylov method iteratively improves the approximate solution to Eq. (5.7) in subspace (r0, JP−1r0, (JP−1)2r0,
. . ., (JP−1)𝑚r0) with increasing 𝑚; r0 = −F(x𝑘−1) − J(x𝑘−1) 𝛿x𝑘

0 is the initial residual of Eq. (5.5); r0 =
−F(x𝑘−1) with the first guess 𝛿x𝑘

0 = 0. We allow a Krylov-subspace of dimension 𝑚 = 50 and we do not use
restarts. The preconditioning operation involves applying P−1 to the basis vectors v0,v1,v2, . . . ,v𝑚 of the Krylov
subspace. This operation is approximated by solving the linear system Pw = v𝑖. Because P ≈ A(x𝑘−1), we can
use the LSR-algorithm already implemented in the Picard solver. Each preconditioning operation uses a fixed number
of 10 LSR-iterations avoiding any termination criterion. More details and results can be found in .

To use the JFNK-solver set SEAICEuseJNFK = .TRUE., in the namelist file data.seaice;
SEAICE_ALLOW_JFNK needs to be defined in SEAICE_OPTIONS.h and we recommend using a smooth
regularization of 𝜁 by defining SEAICE_ZETA_SMOOTHREG (see above) for better convergence. The non-
linear Newton iteration is terminated when the 𝐿2-norm of the residual is reduced by 𝛾nl (runtime parameter
SEAICEnonLinTol = 1.E-4, will already lead to expensive simulations) with respect to the initial norm:
‖F(x𝑘)‖ < 𝛾nl‖F(x0)‖. Within a non-linear iteration, the linear FGMRES solver is terminated when the residual is
smaller than 𝛾𝑘‖F(x𝑘−1)‖ where 𝛾𝑘 is determined by

𝛾𝑘 =

{︃
𝛾0 for ‖F(x𝑘−1)‖ ≥ 𝑟,

max
(︁
𝛾min,

‖F(x𝑘−1)‖
‖F(x𝑘−2)‖

)︁
for ‖F(x𝑘−1)‖ < 𝑟,

(5.8)

so that the linear tolerance parameter 𝛾𝑘 decreases with the non-linear Newton step as the non-linear solution is ap-
proached. This inexact Newton method is generally more robust and computationally more efficient than exact meth-
ods . Typical parameter choices are 𝛾0 = JFNKgamma_lin_max = 0.99, 𝛾min = JFNKgamma_lin_min = 0.1, and
𝑟 = JFNKres_tFac ×‖F(x0)‖ with JFNKres_tFac = 0.5. We recommend a maximum number of non-linear it-
erations SEAICEnewtonIterMax = 100 and a maximum number of Krylov iterations SEAICEkrylovIterMax
= 50, because the Krylov subspace has a fixed dimension of 50.

Setting SEAICEuseStrImpCpl = .TRUE., turns on “strength implicit coupling” [HJL04] in the LSR-solver
and in the LSR-preconditioner for the JFNK-solver. In this mode, the different contributions of the stress divergence
terms are re-ordered in order to increase the diagonal dominance of the system matrix. Unfortunately, the convergence
rate of the LSR solver is increased only slightly, while the JFNK-convergence appears to be unaffected.

Elastic-Viscous-Plastic (EVP) Dynamics

[HD97] introduced an elastic contribution to the strain rate in order to regularize (5.2) in such a way that the resulting
elastic-viscous-plastic (EVP) and VP models are identical at steady state,

1

𝐸

𝜕𝜎𝑖𝑗
𝜕𝑡

+
1

2𝜂
𝜎𝑖𝑗 +

𝜂 − 𝜁

4𝜁𝜂
𝜎𝑘𝑘𝛿𝑖𝑗 +

𝑃

4𝜁
𝛿𝑖𝑗 = �̇�𝑖𝑗 . (5.9)

The EVP-model uses an explicit time stepping scheme with a short timestep. According to the recommen-
dation of [HD97], the EVP-model should be stepped forward in time 120 times (SEAICE_deltaTevp =
SEAICIE_deltaTdyn/120) within the physical ocean model time step (although this parameter is under debate),
to allow for elastic waves to disappear. Because the scheme does not require a matrix inversion it is fast in spite of
the small internal timestep and simple to implement on parallel computers . For completeness, we repeat the equa-
tions for the components of the stress tensor 𝜎1 = 𝜎11 + 𝜎22, 𝜎2 = 𝜎11 − 𝜎22, and 𝜎12. Introducing the divergence
𝐷𝐷 = �̇�11 + �̇�22, and the horizontal tension and shearing strain rates, 𝐷𝑇 = �̇�11 − �̇�22 and 𝐷𝑆 = 2�̇�12, respectively,
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and using the above abbreviations, the equations (5.9) can be written as:

𝜕𝜎1
𝜕𝑡

+
𝜎1
2𝑇

+
𝑃

2𝑇
=

𝑃

2𝑇∆
𝐷𝐷

𝜕𝜎2
𝜕𝑡

+
𝜎2𝑒

2

2𝑇
=

𝑃

2𝑇∆
𝐷𝑇

𝜕𝜎12
𝜕𝑡

+
𝜎12𝑒

2

2𝑇
=

𝑃

4𝑇∆
𝐷𝑆

Here, the elastic parameter 𝐸 is redefined in terms of a damping timescale 𝑇 for elastic waves

𝐸 =
𝜁

𝑇
.

𝑇 = 𝐸0∆𝑡 with the tunable parameter 𝐸0 < 1 and the external (long) timestep ∆𝑡. 𝐸0 = 1
3 is the default value in the

code and close to what and recommend.

To use the EVP solver, make sure that both SEAICE_CGRID and SEAICE_ALLOW_EVP are defined in
SEAICE_OPTIONS.h (default). The solver is turned on by setting the sub-cycling time step SEAICE_deltaTevp
to a value larger than zero. The choice of this time step is under debate. [HD97] recommend order(120) time steps
for the EVP solver within one model time step ∆𝑡 (deltaTmom). One can also choose order(120) time steps within
the forcing time scale, but then we recommend adjusting the damping time scale 𝑇 accordingly, by setting either
SEAICE_elasticPlarm (𝐸0), so that 𝐸0∆𝑡 = forcing time scale, or directly SEAICE_evpTauRelax (𝑇 ) to
the forcing time scale. (NOTE: with the improved EVP variants of the next section, the above recommendations are
obsolete. Use mEVP or aEVP instead.)

More stable variants of Elastic-Viscous-Plastic Dynamics: EVP* , mEVP, and aEVP

The genuine EVP schemes appears to give noisy solu tions [Hun01][LKT+12][BFLM13]. This has lead to a modified
EVP or EVP* [LKT+12][BFLM13][KDL15]; here, we refer to these variants by modified EVP (mEVP) and adaptive
EVP (aEVP) [KDL16]. The main idea is to modify the “natural” time-discretization of the momentum equations:

𝑚
𝐷u

𝐷𝑡
≈ 𝑚

u𝑝+1 − u𝑛

∆𝑡
+ 𝛽*u

𝑝+1 − u𝑝

∆𝑡EVP

(5.10)

where 𝑛 is the previous time step index, and 𝑝 is the previous sub-cycling index. The extra “intertial” term 𝑚 (u𝑝+1 −
u𝑛)/∆𝑡) allows the definition of a residual |u𝑝+1 − u𝑝| that, as u𝑝+1 → u𝑛+1, converges to 0. In this way EVP
can be re-interpreted as a pure iterative solver where the sub-cycling has no association with time-relation (through
∆𝑡EVP) . Using the terminology of , the evolution equations of stress 𝜎𝑖𝑗 and momentum u can be written as:

𝜎𝑝+1
𝑖𝑗 = 𝜎𝑝

𝑖𝑗 +
1

𝛼

(︁
𝜎𝑖𝑗(u

𝑝) − 𝜎𝑝
𝑖𝑗

)︁
,

u𝑝+1 = u𝑝 +
1

𝛽

(︁∆𝑡

𝑚
∇ · 𝜎𝑝+1 +

∆𝑡

𝑚
R𝑝 + u𝑛 − u𝑝

)︁
.

R contains all terms in the momentum equations except for the rheology terms and the time derivative; 𝛼 and
𝛽 are free parameters (SEAICE_evpAlpha, SEAICE_evpBeta) that replace the time stepping parameters
SEAICE_deltaTevp (∆𝑇EVP), SEAICE_elasticParm (𝐸0), or SEAICE_evpTauRelax (𝑇 ). 𝛼 and 𝛽 deter-
mine the speed of convergence and the stability. Usually, it makes sense to use 𝛼 = 𝛽, and SEAICEnEVPstarSteps
≫ (𝛼, 𝛽) [KDL15]. Currently, there is no termination criterion and the number of mEVP iterations is fixed to
SEAICEnEVPstarSteps.

In order to use mEVP in the MITgcm, set SEAICEuseEVPstar = .TRUE., in data.seaice. If
SEAICEuseEVPrev =.TRUE., the actual form of equations ([eq:evpstarsigma]) and ([eq:evpstarmom]) is
used with fewer implicit terms and the factor of 𝑒2 dropped in the stress equations ([eq:evpstresstensor2]) and
([eq:evpstresstensor12]). Although this modifies the original EVP-equations, it turns out to improve convergence
[BFLM13].
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Another variant is the aEVP scheme [KDL16], where the value of 𝛼 is set dynamically based on the stability criterion

𝛼 = 𝛽 = max

(︃
𝑐𝜋

√︃
𝑐
𝜁

𝐴𝑐

∆𝑡

max(𝑚, 10−4 kg)
, 𝛼min

)︃

with the grid cell area 𝐴𝑐 and the ice and snow mass 𝑚. This choice sacrifices speed of convergence for sta-
bility with the result that aEVP converges quickly to VP where 𝛼 can be small and more slowly in areas where
the equations are stiff. In practice, aEVP leads to an overall better convergence than mEVP [KDL16]. To use
aEVP in the MITgcm set SEAICEaEVPcoeff = 𝑐; this also sets the default values of SEAICEaEVPcStar
(𝑐 = 4) and SEAICEaEVPalphaMin (𝛼min = 5). Good convergence has been obtained with setting these val-
ues [KDL16]: SEAICEaEVPcoeff = 0.5, SEAICEnEVPstarSteps = 500, SEAICEuseEVPstar =
.TRUE., SEAICEuseEVPrev = .TRUE.

Note, that probably because of the C-grid staggering of velocities and stresses, mEVP may not converge as successfully
as in [KDL15], and that convergence at very high resolution (order 5km) has not been studied yet.

Truncated ellipse method (TEM) for yield curve

In the so-called truncated ellipse method the shear viscosity 𝜂 is capped to suppress any tensile stress:

𝜂 = min

(︃
𝜁

𝑒2
,

𝑃
2 − 𝜁(�̇�11 + �̇�22)√︀

max(∆2
min, (�̇�11 − �̇�22)2 + 4�̇�212)

)︃
.

To enable this method, set #define SEAICE_ALLOW_TEM in SEAICE_OPTIONS.h and turn it on with
SEAICEuseTEM in data.seaice.

Ice-Ocean stress

Moving sea ice exerts a stress on the ocean which is the opposite of the stress 𝜏𝑜𝑐𝑒𝑎𝑛 in Eq. (5.6.2.3). This stess is
applied directly to the surface layer of the ocean model. An alternative ocean stress formulation is given by [HB87].
Rather than applying 𝜏𝑜𝑐𝑒𝑎𝑛 directly, the stress is derived from integrating over the ice thickness to the bottom of the
oceanic surface layer. In the resulting equation for the combined ocean-ice momentum, the interfacial stress cancels
and the total stress appears as the sum of windstress and divergence of internal ice stresses: 𝛿(𝑧)(𝜏𝑎𝑖𝑟 + F)/𝜌0, see
alse Eq. 2 of [HB87]. The disadvantage of this formulation is that now the velocity in the surface layer of the ocean
that is used to advect tracers, is really an average over the ocean surface velocity and the ice velocity leading to
an inconsistency as the ice temperature and salinity are different from the oceanic variables. To turn on the stress
formulation of [HB87], set useHB87StressCoupling=.TRUE., in data.seaice.

Finite-volume discretization of the stress tensor divergence

On an Arakawa C grid, ice thickness and concentration and thus ice strength 𝑃 and bulk and shear viscosities 𝜁 and
𝜂 are naturally defined a C-points in the center of the grid cell. Discretization requires only averaging of 𝜁 and 𝜂 to
vorticity or Z-points (or 𝜁-points, but here we use Z in order avoid confusion with the bulk viscosity) at the bottom left
corner of the cell to give 𝜁

𝑍
and 𝜂𝑍 . In the following, the superscripts indicate location at Z or C points, distance across

the cell (F), along the cell edge (G), between 𝑢-points (U), 𝑣-points (V), and C-points (C). The control volumes of the
𝑢- and 𝑣-equations in the grid cell at indices (𝑖, 𝑗) are 𝐴𝑤

𝑖,𝑗 and 𝐴𝑠
𝑖,𝑗 , respectively. With these definitions (which follow
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the model code documentation except that 𝜁-points have been renamed to Z-points), the strain rates are discretized as:

�̇�11 = 𝜕1𝑢1 + 𝑘2𝑢2

=> (𝜖11)𝐶𝑖,𝑗 =
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥𝐹𝑖,𝑗
+ 𝑘𝐶2,𝑖,𝑗

𝑣𝑖,𝑗+1 + 𝑣𝑖,𝑗
2

�̇�22 = 𝜕2𝑢2 + 𝑘1𝑢1

=> (𝜖22)𝐶𝑖,𝑗 =
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

∆𝑦𝐹𝑖,𝑗
+ 𝑘𝐶1,𝑖,𝑗

𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗
2

�̇�12 = �̇�21 =
1

2

(︂
𝜕1𝑢2 + 𝜕2𝑢1 − 𝑘1𝑢2 − 𝑘2𝑢1

)︂
=> (𝜖12)𝑍𝑖,𝑗 =

1

2

(︂
𝑣𝑖,𝑗 − 𝑣𝑖−1,𝑗

∆𝑥𝑉𝑖,𝑗
+
𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

∆𝑦𝑈𝑖,𝑗

− 𝑘𝑍1,𝑖,𝑗
𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

2
− 𝑘𝑍2,𝑖,𝑗

𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

2

)︂
,

so that the diagonal terms of the strain rate tensor are naturally defined at C-points and the symmetric off-diagonal term
at Z-points. No-slip boundary conditions (𝑢𝑖,𝑗−1 +𝑢𝑖,𝑗 = 0 and 𝑣𝑖−1,𝑗 +𝑣𝑖,𝑗 = 0 across boundaries) are implemented
via “ghost-points”; for free slip boundary conditions (𝜖12)𝑍 = 0 on boundaries.

For a spherical polar grid, the coefficients of the metric terms are 𝑘1 = 0 and 𝑘2 = − tan𝜑/𝑎, with the spherical
radius 𝑎 and the latitude 𝜑; ∆𝑥1 = ∆𝑥 = 𝑎 cos𝜑∆𝜆, and ∆𝑥2 = ∆𝑦 = 𝑎∆𝜑. For a general orthogonal curvilinear
grid, 𝑘1 and 𝑘2 can be approximated by finite differences of the cell widths:

𝑘𝐶1,𝑖,𝑗 =
1

∆𝑦𝐹𝑖,𝑗

∆𝑦𝐺𝑖+1,𝑗 − ∆𝑦𝐺𝑖,𝑗
∆𝑥𝐹𝑖,𝑗

𝑘𝐶2,𝑖,𝑗 =
1

∆𝑥𝐹𝑖,𝑗

∆𝑥𝐺𝑖,𝑗+1 − ∆𝑥𝐺𝑖,𝑗
∆𝑦𝐹𝑖,𝑗

𝑘𝑍1,𝑖,𝑗 =
1

∆𝑦𝑈𝑖,𝑗

∆𝑦𝐶𝑖,𝑗 − ∆𝑦𝐶𝑖−1,𝑗

∆𝑥𝑉𝑖,𝑗

𝑘𝑍2,𝑖,𝑗 =
1

∆𝑥𝑉𝑖,𝑗

∆𝑥𝐶𝑖,𝑗 − ∆𝑥𝐶𝑖,𝑗−1

∆𝑦𝑈𝑖,𝑗

The stress tensor is given by the constitutive viscous-plastic relation 𝜎𝛼𝛽 = 2𝜂�̇�𝛼𝛽 + [(𝜁 − 𝜂)�̇�𝛾𝛾 − 𝑃/2]𝛿𝛼𝛽 . The
stress tensor divergence (∇𝜎)𝛼 = 𝜕𝛽𝜎𝛽𝛼, is discretized in finite volumes . This conveniently avoids dealing with
further metric terms, as these are “hidden” in the differential cell widths. For the 𝑢-equation (𝛼 = 1) we have:

(∇𝜎)1 :
1

𝐴𝑤
𝑖,𝑗

∫︁
cell

(𝜕1𝜎11 + 𝜕2𝜎21) 𝑑𝑥1 𝑑𝑥2

=
1

𝐴𝑤
𝑖,𝑗

{︂∫︁ 𝑥2+Δ𝑥2

𝑥2

𝜎11𝑑𝑥2

⃒⃒⃒⃒𝑥1+Δ𝑥1

𝑥1

+

∫︁ 𝑥1+Δ𝑥1

𝑥1

𝜎21𝑑𝑥1

⃒⃒⃒⃒𝑥2+Δ𝑥2

𝑥2

}︂
≈ 1

𝐴𝑤
𝑖,𝑗

{︂
∆𝑥2𝜎11

⃒⃒⃒⃒𝑥1+Δ𝑥1

𝑥1

+∆𝑥1𝜎21

⃒⃒⃒⃒𝑥2+Δ𝑥2

𝑥2

}︂
=

1

𝐴𝑤
𝑖,𝑗

{︂
(∆𝑥2𝜎11)𝐶𝑖,𝑗 − (∆𝑥2𝜎11)𝐶𝑖−1,𝑗

+ (∆𝑥1𝜎21)𝑍𝑖,𝑗+1 − (∆𝑥1𝜎21)𝑍𝑖,𝑗

}︂
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with

(∆𝑥2𝜎11)𝐶𝑖,𝑗 = ∆𝑦𝐹𝑖,𝑗(𝜁 + 𝜂)𝐶𝑖,𝑗
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥𝐹𝑖,𝑗

+ ∆𝑦𝐹𝑖,𝑗(𝜁 + 𝜂)𝐶𝑖,𝑗𝑘
𝐶
2,𝑖,𝑗

𝑣𝑖,𝑗+1 + 𝑣𝑖,𝑗
2

+ ∆𝑦𝐹𝑖,𝑗(𝜁 − 𝜂)𝐶𝑖,𝑗
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

∆𝑦𝐹𝑖,𝑗

+ ∆𝑦𝐹𝑖,𝑗(𝜁 − 𝜂)𝐶𝑖,𝑗𝑘
𝐶
1,𝑖,𝑗

𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗
2

− ∆𝑦𝐹𝑖,𝑗
𝑃

2

(∆𝑥1𝜎21)𝑍𝑖,𝑗 = ∆𝑥𝑉𝑖,𝑗𝜂
𝑍
𝑖,𝑗

𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

∆𝑦𝑈𝑖,𝑗

+ ∆𝑥𝑉𝑖,𝑗𝜂
𝑍
𝑖,𝑗

𝑣𝑖,𝑗 − 𝑣𝑖−1,𝑗

∆𝑥𝑉𝑖,𝑗

− ∆𝑥𝑉𝑖,𝑗𝜂
𝑍
𝑖,𝑗𝑘

𝑍
2,𝑖,𝑗

𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

2

− ∆𝑥𝑉𝑖,𝑗𝜂
𝑍
𝑖,𝑗𝑘

𝑍
1,𝑖,𝑗

𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

2

Similarly, we have for the 𝑣-equation (𝛼 = 2):

(∇𝜎)2 :
1

𝐴𝑠
𝑖,𝑗

∫︁
cell

(𝜕1𝜎12 + 𝜕2𝜎22) 𝑑𝑥1 𝑑𝑥2

=
1

𝐴𝑠
𝑖,𝑗

{︂∫︁ 𝑥2+Δ𝑥2

𝑥2

𝜎12𝑑𝑥2

⃒⃒⃒⃒𝑥1+Δ𝑥1

𝑥1

+

∫︁ 𝑥1+Δ𝑥1

𝑥1

𝜎22𝑑𝑥1

⃒⃒⃒⃒𝑥2+Δ𝑥2

𝑥2

}︂
≈ 1

𝐴𝑠
𝑖,𝑗

{︂
∆𝑥2𝜎12

⃒⃒⃒⃒𝑥1+Δ𝑥1

𝑥1

+∆𝑥1𝜎22

⃒⃒⃒⃒𝑥2+Δ𝑥2

𝑥2

}︂
=

1

𝐴𝑠
𝑖,𝑗

{︂
(∆𝑥2𝜎12)𝑍𝑖+1,𝑗 − (∆𝑥2𝜎12)𝑍𝑖,𝑗

+ (∆𝑥1𝜎22)𝐶𝑖,𝑗 − (∆𝑥1𝜎22)𝐶𝑖,𝑗−1

}︂
with

(∆𝑥1𝜎12)𝑍𝑖,𝑗 = ∆𝑦𝑈𝑖,𝑗𝜂
𝑍
𝑖,𝑗

𝑢𝑖,𝑗 − 𝑢𝑖,𝑗−1

∆𝑦𝑈𝑖,𝑗

+ ∆𝑦𝑈𝑖,𝑗𝜂
𝑍
𝑖,𝑗

𝑣𝑖,𝑗 − 𝑣𝑖−1,𝑗

∆𝑥𝑉𝑖,𝑗

− ∆𝑦𝑈𝑖,𝑗𝜂
𝑍
𝑖,𝑗𝑘

𝑍
2,𝑖,𝑗

𝑢𝑖,𝑗 + 𝑢𝑖,𝑗−1

2

− ∆𝑦𝑈𝑖,𝑗𝜂
𝑍
𝑖,𝑗𝑘

𝑍
1,𝑖,𝑗

𝑣𝑖,𝑗 + 𝑣𝑖−1,𝑗

2

(∆𝑥2𝜎22)𝐶𝑖,𝑗 = ∆𝑥𝐹𝑖,𝑗(𝜁 − 𝜂)𝐶𝑖,𝑗
𝑢𝑖+1,𝑗 − 𝑢𝑖,𝑗

∆𝑥𝐹𝑖,𝑗

+ ∆𝑥𝐹𝑖,𝑗(𝜁 − 𝜂)𝐶𝑖,𝑗𝑘
𝐶
2,𝑖,𝑗

𝑣𝑖,𝑗+1 + 𝑣𝑖,𝑗
2

+ ∆𝑥𝐹𝑖,𝑗(𝜁 + 𝜂)𝐶𝑖,𝑗
𝑣𝑖,𝑗+1 − 𝑣𝑖,𝑗

∆𝑦𝐹𝑖,𝑗

+ ∆𝑥𝐹𝑖,𝑗(𝜁 + 𝜂)𝐶𝑖,𝑗𝑘
𝐶
1,𝑖,𝑗

𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗
2

− ∆𝑥𝐹𝑖,𝑗
𝑃

2
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Again, no slip boundary conditions are realized via ghost points and 𝑢𝑖,𝑗−1 + 𝑢𝑖,𝑗 = 0 and 𝑣𝑖−1,𝑗 + 𝑣𝑖,𝑗 = 0 across
boundaries. For free slip boundary conditions the lateral stress is set to zeros. In analogy to (𝜖12)𝑍 = 0 on boundaries,
we set 𝜎𝑍

21 = 0, or equivalently 𝜂𝑍𝑖,𝑗 = 0, on boundaries.

Thermodynamics

**NOTE: THIS SECTION IS TERRIBLY OUT OF DATE**

In its original formulation the sea ice model uses simple thermodynamics following the appendix of [Sem76]. This
formulation does not allow storage of heat, that is, the heat capacity of ice is zero. Upward conductive heat flux is
parameterized assuming a linear temperature profile and together with a constant ice conductivity. It is expressed as
(𝐾/ℎ)(𝑇𝑤 − 𝑇0), where 𝐾 is the ice conductivity, ℎ the ice thickness, and 𝑇𝑤 − 𝑇0 the difference between water
and ice surface temperatures. This type of model is often refered to as a “zero-layer” model. The surface heat flux is
computed in a similar way to that of and .

The conductive heat flux depends strongly on the ice thickness ℎ. However, the ice thickness in the model represents
a mean over a potentially very heterogeneous thickness distribution. In order to parameterize a sub-grid scale distri-
bution for heat flux computations, the mean ice thickness ℎ is split into 𝑁 thickness categories 𝐻𝑛 that are equally
distributed between 2ℎ and a minimum imposed ice thickness of 5 cm by 𝐻𝑛 = 2𝑛−1

7 ℎ for 𝑛 ∈ [1, 𝑁 ]. The heat
fluxes computed for each thickness category is area-averaged to give the total heat flux [Hib84]. To use this thick-
ness category parameterization set SEAICE_multDim to the number of desired categories in data.seaice (7 is
a good guess, for anything larger than 7 modify SEAICE_SIZE.h); note that this requires different restart files and
switching this flag on in the middle of an integration is not advised. In order to include the same distribution for snow,
set SEAICE_useMultDimSnow = .TRUE.; only then, the parameterization of always having a fraction of thin
ice is efficient and generally thicker ice is produce [CMKL+14].

The atmospheric heat flux is balanced by an oceanic heat flux from below. The oceanic flux is proportional to
𝜌 𝑐𝑝 (𝑇𝑤 − 𝑇𝑓𝑟) where 𝜌 and 𝑐𝑝 are the density and heat capacity of sea water and 𝑇𝑓𝑟 is the local freezing point
temperature that is a function of salinity. This flux is not assumed to instantaneously melt or create ice, but a time
scale of three days (run-time parameter SEAICE_gamma_t) is used to relax 𝑇𝑤 to the freezing point. The parame-
terization of lateral and vertical growth of sea ice follows that of [Hib79][Hib80]; the so-called lead closing parameter
ℎ0 (run-time parameter HO) has a default value of 0.5 meters.

On top of the ice there is a layer of snow that modifies the heat flux and the albedo [ZWDHSR98]. Snow modifies the
effective conductivity according to

𝐾

ℎ
→ 1

ℎ𝑠

𝐾𝑠
+ ℎ

𝐾

,

where 𝐾𝑠 is the conductivity of snow and ℎ𝑠 the snow thickness. If enough snow accumulates so that its weight
submerges the ice and the snow is flooded, a simple mass conserving parameterization of snowice formation (a
flood-freeze algorithm following Archimedes’ principle) turns snow into ice until the ice surface is back at 𝑧 = 0
[Lepparanta83]. The flood-freeze algorithm is enabled with the CPP-flag SEAICE_ALLOW_FLOODDING and turned
on with run-time parameter SEAICEuseFlooding=.TRUE..

Advection of thermodynamic variables

Effective ice thickness (ice volume per unit area, 𝑐·ℎ), concentration 𝑐 and effective snow thickness (𝑐·ℎ𝑠) are advected
by ice velocities:

𝜕𝑋

𝜕𝑡
= −∇ · (u⃗𝑋) + Γ𝑋 +𝐷𝑋
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where Γ𝑋 are the thermodynamic source terms and 𝐷𝑋 the diffusive terms for quantities 𝑋 = (𝑐 · ℎ), 𝑐, (𝑐 · ℎ𝑠).
From the various advection scheme that are available in the MITgcm, we recommend flux-limited schemes to preserve
sharp gradients and edges that are typical of sea ice distributions and to rule out unphysical over- and undershoots
(negative thickness or concentration). These schemes conserve volume and horizontal area and are unconditionally
stable, so that we can set𝐷𝑋 = 0. Run-timeflags: SEAICEadvScheme ``(default=2, is the historic
2nd-order, centered difference scheme), ``DIFF = 𝐷𝑋/∆𝑥 (default=0.004).

The MITgcm sea ice model provides the option to use the thermodynamics model of [Win00], which in turn is based
on the 3-layer model of [Sem76] and which treats brine content by means of enthalpy conservation; the corresponding
package thsice is described in section [sec:pkg:thsice]. This scheme requires additional state variables, namely
the enthalpy of the two ice layers (instead of effective ice salinity), to be advected by ice velocities. The inter-
nal sea ice temperature is inferred from ice enthalpy. To avoid unphysical (negative) values for ice thickness and
concentration, a positive 2nd-order advection scheme with a SuperBee flux limiter [Roe85] should be used to ad-
vect all sea-ice-related quantities of the [Win00] thermodynamic model (runtime flag thSIceAdvScheme=77 and
thSIce_diffK =𝐷𝑋=0 in data.ice, defaults are 0). Because of the non-linearity of the advection scheme, care
must be taken in advecting these quantities: when simply using ice velocity to advect enthalpy, the total energy (i.e.,
the volume integral of enthalpy) is not conserved. Alternatively, one can advect the energy content (i.e., product of
ice-volume and enthalpy) but then false enthalpy extrema can occur, which then leads to unrealistic ice temperature. In
the currently implemented solution, the sea-ice mass flux is used to advect the enthalpy in order to ensure conservation
of enthalpy and to prevent false enthalpy extrema.

Key subroutines

Top-level routine: seaice_model.F

C !CALLING SEQUENCE:
c ...
c seaice_model (TOP LEVEL ROUTINE)
c |
c |-- #ifdef SEAICE_CGRID
c | SEAICE_DYNSOLVER
c | |
c | |-- < compute proxy for geostrophic velocity >
c | |
c | |-- < set up mass per unit area and Coriolis terms >
c | |
c | |-- < dynamic masking of areas with no ice >
c | |
c | |
c | #ELSE
c | DYNSOLVER
c | #ENDIF
c |
c |-- if ( useOBCS )
c | OBCS_APPLY_UVICE
c |
c |-- if ( SEAICEadvHeff .OR. SEAICEadvArea .OR. SEAICEadvSnow .OR. SEAICEadvSalt )
c | SEAICE_ADVDIFF
c |
c | SEAICE_REG_RIDGE
c |
c |-- if ( usePW79thermodynamics )
c | SEAICE_GROWTH
c |
c |-- if ( useOBCS )
c | if ( SEAICEadvHeff ) OBCS_APPLY_HEFF
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c | if ( SEAICEadvArea ) OBCS_APPLY_AREA
c | if ( SEAICEadvSALT ) OBCS_APPLY_HSALT
c | if ( SEAICEadvSNOW ) OBCS_APPLY_HSNOW
c |
c |-- < do various exchanges >
c |
c |-- < do additional diagnostics >
c |
c o

SEAICE diagnostics

Diagnostics output is available via the diagnostics package (see Section [sec:pkg:diagnostics]). Available output fields
are summarized in Table [tab:pkg:seaice:diagnostics].

Experiments and tutorials that use seaice

• Labrador Sea experiment in lab_sea verification directory. }

• seaice_obcs, based on lab_sea

• offline_exf_seaice/input.seaicetd, based on lab_sea

• global_ocean.cs32x15/input.icedyn and global_ocean.cs32x15/input.seaice, global
cubed-sphere-experiment with combinations of seaice and thsice

5.6. Sea Ice Packages 179



MITgcm Documentation, Release 1.0

180 Chapter 5. Physical Parameterizations - Packages I



Bibliography

[Adc95] A. Adcroft. Numerical Algorithms for use in a Dynamical Model of the Ocean. PhD thesis, Imperial College,
London, 1995.

[AC04] A. Adcroft and J.-M. Campin. Re-scaled height coordinates for accurate representation of free-surface flows
in ocean circulation models. Ocean Modelling, 7:269–284, 2004. doi:10.1016/j.ocemod.2003.09.003.

[ACHM04] A. Adcroft, J.-M. Campin, C. Hill, and J. Marshall. Implementation of an atmosphere-ocean general
circulation model on the expanded spherical cube. Mon.~Wea.~Rev., 132:2845–2863, 2004. URL: http://mitgcm.
org/pdfs/mwr_2004.pdf, doi:10.1175/MWR2823.1.

[AHCampin+04] A. Adcroft, C. Hill, J.-M. Campin„ J. Marshall, and P. Heimbach. Overview of the formulation
and numerics of the MITgcm. In Proceedings of the ECMWF seminar series on Numerical Methods, Recent
developments in numerical methods for atmosphere and ocean modelling, 139–149. ECMWF, 2004. URL: http:
//mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf.

[AHM99] A., Adcroft, C. Hill, and J. Marshall. A new treatment of the coriolis terms in c-grid models at both
high and low resolutions. Mon.~Wea.~Rev., 127:1928–1936, 1999. URL: http://mitgcm.org/pdfs/mwr_1999.pdf,
doi:10.1175/1520-0493%281999%29127<1928:ANTOTC>2.0.CO;2.

[AHM97] A.J. Adcroft, C.N. Hill, and J. Marshall. Representation of topography by shaved cells in a height
coordinate ocean model. Mon.~Wea.~Rev., 125:2293–2315, 1997. URL: http://mitgcm.org/pdfs/mwr_1997.pdf,
doi:10.1175/1520-0493%281997%29125<2293:ROTBSC>2.0.CO;2.

[BFLM13] S. Bouillon, T. Fichefet, V. Legat, and G. Madec. The elastic-viscous-plastic method revisited.
Ocean Modelling, 71(0):2–12, 2013. Arctic Ocean. URL: http://dx.doi.org/10.1016/j.ocemod.2013.05.013,
doi:10.1016/j.ocemod.2013.05.013.

[CMF08] J.-M. Campin, J. Marshall, and D. Ferreira. Sea-ice ocean coupling using a rescaled vertical coordinate
z$^\ast $. Ocean Modelling, 24(1–2):1–14, 2008. doi:10.1016/j.ocemod.2008.05.005.

[CMKL+14] K. Castro-Morales, F. Kauker, M. Losch, S. Hendricks, K. Riemann-Campe, and R. Gerdes. Sensitivity
of simulated Arctic sea ice to realistic ice thickness distributions and snow parameterizations. J.~Geophys.~Res.,
119(1):559–571, 2014. URL: http://dx.doi.org/10.1002/2013JC009342, doi:10.1002/2013JC009342.

[Cho90] M-D. Chou. Parameterizations for the absorption of solar radiation by o$_2$ and co$_2$ with applications
to climate studies. J.~Clim., 3:209–217, 1990.

[Cho92] M-D. Chou. A solar radiation model for use in climate studies. J.~Atmos.~Sci., 49:762–772, 1992.

181

https://doi.org/10.1016/j.ocemod.2003.09.003
http://mitgcm.org/pdfs/mwr_2004.pdf
http://mitgcm.org/pdfs/mwr_2004.pdf
https://doi.org/10.1175/MWR2823.1
http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf
http://mitgcm.org/pdfs/ECMWF2004-Adcroft.pdf
http://mitgcm.org/pdfs/mwr_1999.pdf
https://doi.org/10.1175/1520-0493%281999%29127\T1\textless {}1928:ANTOTC\T1\textgreater {}2.0.CO;2
http://mitgcm.org/pdfs/mwr_1997.pdf
https://doi.org/10.1175/1520-0493%281997%29125\T1\textless {}2293:ROTBSC\T1\textgreater {}2.0.CO;2
http://dx.doi.org/10.1016/j.ocemod.2013.05.013
https://doi.org/10.1016/j.ocemod.2013.05.013
https://doi.org/10.1016/j.ocemod.2008.05.005
http://dx.doi.org/10.1002/2013JC009342
https://doi.org/10.1002/2013JC009342


MITgcm Documentation, Release 1.0

[CMJSuarez94] M-D. Chou and M.J.Suarez. An efficient thermal infrared radiation parameterization for use in gen-
eral circulation models. NASA Technical Memorandum 104606-Vol 3, National Aeronautics and Space Adminis-
tration, NASA; Goddard Space Flight Center; Greenbelt (MD), 20771; USA, 1994. http://www.gmao.nasa.gov/.

[Cla70] R.H. Clarke. Observational studies in the atmospheric boundary layer. Q.~J.~R.~Meteorol.~Soc., 96:91–114,
1970.

[Cox87] M.D. Cox. An isopycnal diffusion in a z-coordinate ocean model. Ocean modelling, 74:1–5 (Unpublished
manuscript), 1987.

[DT94] R.S. Defries and J.R.G. Townshend. Ndvi-derived land cover classification at global scales. Int’l J. Rem. Sens.,
15:3567–3586, 1994.

[DS89] J.L. Dorman and P.J. Sellers. A global climatology of albedo, roughness length and stomatal resistance for
atmospheric general circulation models as represented by the simple biosphere model (sib). J.~Appl.~Meteor.,
28:833–855, 1989.

[FWDH92] G.M. Flato and III W.D. Hibler. Modeling pack ice as a cavitating fluid. J.~Phys.~Oceanogr., 22:626–651,
1992.

[GGL90] P. Gaspar, Y. Grégoris, and J.-M. Lefevre. A simple eddy kinetic energy model for simulations of the
oceanic vertical mixing: tests at station papa and long-term upper ocean study site. J.~Geophys.~Res., 95
(C9):16,179–16,193, 1990.

[GM90] P.R. Gent and J.C. McWilliams. Isopycnal mixing in ocean circulation models. J.~Phys.~Oceanogr.,
20:150–155, 1990.

[GWMM95] P.R. Gent, J. Willebrand, T.J. McDougall, and J.C. McWilliams. Parameterizing eddy-induced tracer
transports in ocean circulation models. J.~Phys.~Oceanogr., 25:463–474, 1995.

[GKW91] R. Gerdes, C. Koberle, and J. Willebrand. The influence of numerical advection schemes on the results of
ocean general circulation models. Clim.~Dynamics, 5(4):211–226, 1991. doi:10.1007/BF00210006.

[Gri98] S.M. Griffies. The Gent-McWilliams skew flux. J.~Phys.~Oceanogr., 28:831–841, 1998.

[GGP+98] S.M. Griffies, A. Gnanadesikan, R.C. Pacanowski, V. Larichev, J.K. Dukowicz, and R.D. Smith. Isoneutral
diffusion in a z-coordinate ocean model. J.~Phys.~Oceanogr., 28:805–830, 1998.

[HW65] F.H. Harlow and J.E. Welch. Numerical calculation of time-dependent viscous incompressible flow of fluid
with free surface. Physics of Fluids, 8:2182–2189, 1965.

[HS94] I.M. Held and M.J. Suarez. A proposal for the intercomparison of the dynamical cores of atmospheric general
circulation models. Bulletin of the American Meteorological Society, 75(10):1825–1830, 1994.

[HL88] H.M. Helfand and J.C. Labraga. Design of a non-singular level 2.5 second-order closure model for the pre-
diction of atmospheric turbulence. J.~Atmos.~Sci., 45:113–132, 1988.

[HS95] H.M. Helfand and S.D. Schubert. Climatology of the simulated great plains low-level jet and its contribution
to the continental moisture budget of the united states. J.~Clim., 8:784–806, 1995.

[Hib79] W.D. Hibler, III. A dynamic thermodynamic sea ice model. J.~Phys.~Oceanogr., 9:815–846, 1979.

[Hib80] W.D. Hibler, III. Modeling a variable thickness sea ice cover. Mon.~Wea.~Rev., 1:1943–1973, 1980.

[Hib84] W.D. Hibler, III. The role of sea ice dynamics in modeling co$_2$ increases. In J. E. Hansen and T. Takahashi,
editors, Climate processes and climate sensitivity, volume 29 of Geophysical Monograph, pages 238–253. AGU,
Washington, D.C., 1984.

[HB87] W.D. Hibler, III and K. Bryan. A diagnostic ice-ocean model. J.~Phys.~Oceanogr., 17(7):987–1015, 1987.

[HAJM99] C. Hill, A. Adcroft, D. Jamous, and John Marshall. A strategy for terascale climate modeling. In In
Proceedings of the Eighth ECMWF Workshop on the Use of Parallel Processors in Meteorology, 406–425. World
Scientific, 1999.

182 Bibliography

https://doi.org/10.1007/BF00210006


MITgcm Documentation, Release 1.0

[HM95] C. Hill and J. Marshall. Application of a parallel navier-stokes model to ocean circulation in parallel com-
putational fluid dynamics. In N. Satofuka A. Ecer, J. Periaux and S. Taylor, editors, Implementations and Results
Using Parallel Computers, pages 545–552. Elsevier Science B.V.: New York, 1995.

[HL5a] W.R. Holland and L.B. Lin. On the origin of mesoscale eddies and their contribution to the general circulation
of the ocean. i. a preliminary numerical experiment. J.~Phys.~Oceanogr., 5:642–657, 1975a.

[Hun01] E.C. Hunke. Viscous-plastic sea ice dynamics with the EVP model: linearization issues. J.~Comput.~Phys.,
170:18–38, 2001. doi:10.1006/jcph.2001.6710.

[HD97] E.C. Hunke and J.K. Dukowicz. An elastic-viscous-plastic model for sea ice dynamics. J.~Phys.~Oceanogr.,
27:1849–1867, 1997.

[HJL04] J.K. Hutchings, H. Jasak, and S.W. Laxon. A strength implicit correction scheme for the viscous-plastic sea
ice model. Ocean Modelling, 7(1–2):111–133, 2004. doi:10.1016/S1463-5003(03)00040-4.

[KDL15] M. Kimmritz, S. Danilov, and M. Losch. On the convergence of the modified elastic-viscous-plastic method
of solving for sea-ice dynamics. J.~Comput.~Phys., 296:90–100, 2015. doi:10.1016/j.jcp.2015.04.051.

[KDL16] M. Kimmritz, S. Danilov, and M. Losch. The adaptive EVP method for solving the sea ice momentum
equation. Ocean Modelling, 101:59–67, 2016. doi:10.1016/j.ocemod.2016.03.004.

[KL10] J.M. Klymak and S.M. Legg. A simple mixing scheme for models that resolve breaking internal waves. Ocean
Modelling, 33:224–234, 2010. doi:10.1016/j.ocemod.2010.02.005.

[Kon75] J. Kondo. Air-sea bulk transfer coefficients in diabatic conditions. Bound.~Layer~Meteorol., 9:91–112, 1975.

[KS91] R.D. Koster and M.J. Suarez. A simplified treatment of sib’s land surface albedo parameterization. NASA
Technical Memorandum 104538, National Aeronautics and Space Administration, NASA; Goddard Space Flight
Center; Greenbelt (MD), 20771; USA, 1991. http://www.gmao.nasa.gov/.

[KS92] R.D. Koster and M.J. Suarez. Modeling the land surface boundary in climate models as a composite of inde-
pendent vegetation stands. J.~Geophys.~Res., 97:2697–2715, 1992.

[LH74] A.A. Lacis and J.E. Hansen. A parameterization for the absorption of solar radiation in the earth’s atmosphere.
J.~Atmos.~Sci., 31:118–133, 1974.

[LDDM97] W.G. Large, G. Danabasoglu, S.C. Doney, and J.C. McWilliams. Sensitivity to surface forcing and bound-
ary layer mixing in a global ocean model: annual-mean climatology. J.~Phys.~Oceanogr., 27(11):2418–2447,
1997.

[LMD94] W.G. Large, J.C. McWilliams, and S.C. Doney. Oceanic vertical mixing: a review and a model with nonlo-
cal boundary layer parameterization. Rev.~Geophys., 32:363–403, 1994.

[LP81] W.G. Large and S. Pond. Open ocean momentum flux measurements in moderate to strong winds.
J.~Phys.~Oceanogr., 11:324–336, 1981.

[LKT+12] J.-F. Lemieux, D. Knoll, B. Tremblay, D.M. Holland, and M. Losch. A comparison of the Jacobian-free
Newton-Krylov method and the EVP model for solving the sea ice momentum equation with a viscous-plastic for-
mulation: a serial algorithm study. J.~Comput.~Phys., 231(17):5926–5944, 2012. doi:10.1016/j.jcp.2012.05.024.
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