MIP_api Documentation
Release 4.0.0

Mans Magnusson, Robin Andeer

December 19, 2016

Contents

1 Overview
2 Features
3 Example Usage

4 Getting Started

4.1 Installation
4.2 Prerequisites . . .
43 Usage.......

5 Change Log

6 Installation

6.1 Automated Installation e e e e e e e e e

6.2 Manual Installation

9 Adding a new program

7 Setup
7.1 Filename convention e
7.2 Dependencis v vt e
8 MIP Analysis
8.1 Startstandard analysisl e
8.2 Excluding a program from the analysis L
8.3 Skipping a already processed module i.e expect that the ouput has already been generated
8.4 Simulate standard analysis e e e e e e
8.5 Rerun analysis using exactly the same parameters as last analysisrun
8.6 Rerun analysis using exactly the same parameters as last analysis run, but in simulation mode
8.7 Generate all supported standard programs L. e e e e e e e
8.8 You can also modulate the mode of “-pp’ using -ppm:o

9.1 Call DefineParameters v i i e e e e e e e e e
9.2 Command line arguments in GetOptions i v it
9.3 if-block run checker in MAIN e

9.4 Custom subroutine
9.5 Further information

10 Structure

O O O &

13

27
27
27

29
29
29

33
33
34
34
34
34
34
34
35

37
37
38
38
39
42

43

10.1 mip.pl . . o o e e e e e e e e e e e e e
10.2 Sequence QC e e e e e e e e
103 Alignment L e e e e e e e e e e e
104 BAMfile manipulationo
10.5 Coverage QC L e e e
10.6 Variantcalling L L L e e e e e
10.7 Variant QC e e
10.8 Variant Selection L e e e e e
10.9 Variant annotation oL e e e e e e e e e e e e e e e e
10.10 Variant evaluation o . o e e e e e e e e e e e e
10.11 geCollect.pl o o o e e e e e e e
10.12 covplots_exome.R / covplots_genome.R

11 vcfParser

T1.T Usage . . . o o ot o e e e e e e e e e e e e e
11.2 Installation o e e e e e e e e e

12 QCCollect

12,1 USage . . . o o o e o e e e e e e e e e
12.2 Installation e e e e e e e e e
123 SetUp . . . o o e e e e e e

13 rank_modelv1.18

I3.1 CONSEQUENCE . . . v v v v e e e i e e e e e e e e e e e e e e e e e e e
13.2 Frequency v v i e e e e e e e e e e e e e e e e
13.3 Inheritance Model(s) e e e e e e e e e e e
13.4 Protein Functional Prediction e e e e
13.5 Gene Intolerance Score i e e e e e e e e e e e e e
13.6 Variant Quality Filter e e e e
1377 ConServation v v v v it e e e e e e e e e e e e e e e e e
13.8 Combined Annotation Dependent Depletion (CADD)
13.9 ClnVar o e e e e e e e e e e e e
13.10 Spidex . . . o o o e e e

14 rank_modelvl.11

141 CONSEqUENCE v v v v it e
142 Frequency o i i i i e e e e e e e e e e e e e
14.3 Inheritance Model(s) o e e e e e
14.4 Protein Functional Prediction
145 Variant Quality Filter oo
14.6 COonsServation o v vt v i it e
14.7 Combined Annotation Dependent Depletion (CADD)
14.8 ClinVar

15 rank_modelvl.5

15.1 CONSEqUENCE . . . v v v v ottt e e e e e e e e e e e e e e e
15.2 Frequency v v i i i i e e e e e e e e e e e e e e
15.3 Inheritance Model(S) e e e e e
15.4 Protein Functional Prediction e e
15.5 Variant Quality Filter o e
15,6 COonServation v v v v i e
15.7 Combined Annotation Dependent Depletion (CADD)
I5.8 CHnVar o o e e e e

16 svrank_modelv1l.0

45
45
45

47
47
47
47

49
49
50
51
52
52
53
53
54
54
55

57
57
58
59
59
60
60
60
61

63
63
64
65
65
66
66
66
67

69

17

18

19

20

21

16.1 CONSEQUENCE . .+« v v v v e
16.2 Frequency v v i i e et e e e e e e e e e e e e e
163 SVTYPE . . o o i e e e e e e e e
164 SVLength e
16.5 Gene Intolerance Score L. e e e e e e e e e e
16.6 Inheritance Model(S) e e e e e
16.7 Variant Quality Filter e e e e e e e

Dynamic Configuration File

Pedigree File
18.1 Pedigree capture Kits aliases L Lo e e e e e e

Individual Identification Number (IDN)
19.1 IDN Definition o e e e e e e e e e e e e

The Code
20.1 Subroutines e e e e e e e e e e e e e e

Indices and tables

75

77
78

81
81

83
83

85

MIP_api Documentation, Release 4.0.0

MIP

Mutation identification pipeline

Release 4.0.
MIP is a pipeline for clinical analysis of whole exome and whole genome sequence data.
Contents:

MIP enables identification of potential disease causing variants from sequence data.

Contents 1

https://github.com/henrikstranneheim/MIP

MIP_api Documentation, Release 4.0.0

2 Contents

CHAPTER 1

Overview

MIP performs whole genome or target region analysis of sequenced single-end and/or paired-end reads from the
[lumina platform in fastq(.gz) format to generate annotated ranked potential disease causing variants. MIP performs
QC, alignment, coverage analysis, variant discovery and annotation, sample checks as well as ranking the found
variants according to disease potential with a minimum of manual intervention. MIP is compatible with Scout and
Puzzle for visualization of identified variants. MIP has been in use in the clinical production at the Clinical Genomics
facility at Science for Life Laboratory since 2014.

https://github.com/Clinical-Genomics/scout
https://github.com/robinandeer/puzzle

MIP_api Documentation, Release 4.0.0

4 Chapter 1. Overview

CHAPTER 2

Features

¢ Installation

Simple automated install of all programs using conda/SHELL via supplied install script

¢ Autonomous

Checks that all dependencies are fulfilled before launching
Builds/Prepares/downloads references and/or files missing before launching
Decompose and normalise reference(s) and variant vcf(s)

Splits and merges files/contigs for samples and families when relevant

¢ Automatic

¢ Flexible:

¢ Fast

A minimal amount of hands-on time
Tracks and executes all module without manual intervention
Creates internal queues at nodes to optimize processing

Minimal IO between nodes and login node

Design your own workflow by turning on/off relevant modules

Restart an analysis from anywhere in your workflow

Process one, or multiple samples using the module(s) of your choice

Supply parameters on the command line, in a pedigree file or via config files
Simulate your analysis before performing it

Redirect each modules analysis process to a temporary directory (@nodes or @login)
Limit a run to a specific set of genomic intervals

Use multiple variant callers and annotation programs

Optionally split data into clinical variants and research variants

Analyses an exome trio in approximately 4 h
Analyses a X-ten sequenced genome in approximately 21 h

Rapid mode analyzes a WGS sample in approximately 4 h using a data reduction and parallelization
scheme

MIP_api Documentation, Release 4.0.0

* Traceability

Track the status of each modules through dynamically updated status logs

Recreate your analysis from the MIP log or generated config files

Logs sample meta-data and sequence meta-data

Logs version numbers of softwares and databases

Checks sample integrity (sex and relationship)

Test data output existens and integrity using automated tests
* Annotation

Gene annotation

* Summarise over all transcript and output on gene level

Transcript level annotation

% Separate pathogenic transcripts for correct downstream annotation

Annotate all alleles for a position
* Split multi-allelic records into single records to ease annotation

Left align and trim variants to normalise them prior to annotation

Annotate coverage across genetic regions

Extracts QC-metrics and stores them in YAML format
 Standardized

— Use standard formats whenever possible
* Visualization

— Ranks variants according to pathogenic potential

— Output is directly compatibel with Scout and Puzzle

6 Chapter 2. Features

CHAPTER 3

Example Usage

perl mip.pl -pMosaikBuild 0 -configFile 1_config.yaml

MIP_api Documentation, Release 4.0.0

8 Chapter 3. Example Usage

CHAPTER 4

Getting Started

4.1 Installation

MIP is written in Perl and therfore requires that Perl is installed on your OS (See Installation).

Change log (See Change Log)

4.2 Prerequisites

MIP will only require prerequisites when processing a modules that has dependencies (See Setup). However, some
frequently used sequence manipulation tools e.g. samtools, PicardTools, Bedtools are probably good to have in your
path.

4.2.1 Meta-Data

Meta data regarding the pedigree, gender and phenotype should be supplied for the analysis.
 Pedigree file (PLINK-format; See Pedigree File & MIP’s github repository).
 Configuration file (YAML-format; See Dynamic Configuration File & MIP’s github repository).

4.3 Usage

MIP is called from the command line and takes input from the command line (precedence), a config file (yaml-format)
or falls back on defaults where applicable.

Lists are supplied as comma separated input, repeated flag entries on the command line or in the config using the yaml
format for arrays.

Note: List or repeated entries need to be submitted with the same order for each element across all supplied lists.

Only flags that will actually be used needs to be specified and MIP will check that all required parameters and depen-
dencies (for these flags only) are set before submitting to SLURM.

[1]

Program parameters always begins with “p” followed by a capital letter. Program parameters can be set to “0” (=off),
“1” (=on) and “2” (=dry run mode). Any program can be set to dry run mode and MIP will create sbatch scripts,

http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml
https://github.com/henrikstranneheim/MIP/tree/master/templates
http://www.yaml.org/
https://github.com/henrikstranneheim/MIP/tree/master/templates

MIP_api Documentation, Release 4.0.0

but not submit them to SLURM for these modules. MIP can be restarted from any module, but you need to supply
previous dependent programs in dry run mode to ensure proper file handling.

MIP will overwrite data files when reanalyzing, but keeps all “versioned” sbatch scripts for traceability.

MIP allows individual target file calculations if supplied with a pedigree file or config file containing the supported
capture kits for each sample.

You can always supply perl mip.pl -h to listall available parameters and defaults.

Example usage:

S perl mip.pl -f 3 -sampleid 3-1-1A,3-2-1U0 -sampleid 3-2-2U -pFQC 0 -pMosaikBuild 2 —pM(#saikAlign 2 -

This will analyze family 3 using three individuals from that family and begin the analysis with programs after Mo-
saikAlign and use all parameter values as specified in the config file, except those supplied on the command line, which
has precedence.

Input

It is recommended to use MIP’s naming convention for input Fastq files to accurately and automatically handel indi-
vidual runs and lanes (See Setup).

Fastq files (gziped/uncompressed) should be place within the -inFilesDirs as -inFilesDirs
{PathToInFileDir}=samplelD.

Note: MIP will automatically compress any non gzipped files if —pGZip is enabled. All files ending with .fastq or
.fast.gz will be included in the run.

MIP scripts locations are specified by —inScriptDir.

All references and template files should be placed directly in the reference directory specified by ~-referencesDir,
except for ANNOVAR db files, which should be located in annovar/humandb.

Output

Analyses done per individual is found under respective sampleID subdirectory and analyses done including all samples
can be found under the family directory.

Sbatch Scripts

MIP will create sbatch scripts (.sh) and submit them in proper order with attached dependencies to SLURM. These
sbatch script are placed in the output script directory specified by —out ScriptDir. The sbatch scripts are versioned
and will not be overwritten if you begin a new analysis. Versioned “xargs” scripts will also be created where possible
to maximize the use of the cores processing power.

Data

MIP will place any generated datafiles in the output data directory specified by —outDataDir. All datatfiles are
regenerated for each analysis. STDOUT and STDERR for each program is written in the <program>/info directory
prior to alignment and in the <aligner>/<program>info directory post alignment.

Analysis Types

Currently, MIP handles WES -at sampleID=wes, WGS -at sampleID=wgs or Rapid analysis —at
sampleID=rapid for acute patient(s).

The rapid analysis requires BWA_MEM and selects the data that overlaps with the regions supplied with the
-bwamemrdb flag. MIP will automatically detect if the sequencing run is single-end or paired-end/interleaved paired-
end and the length of the sequences and automatically adjust accordingly.

10 Chapter 4. Getting Started

MIP_api Documentation, Release 4.0.0

Note: In rapid mode; Sort and index is done for each batch of reads in the BWA_Mem call, since the link to infile
is broken by the read batch processing. However pPicardToolsSortSam should be enabled to ensure correct
fileending and merge the flow to ordinary modules.

Project ID
The —project ID flag sets the account to which core hours will be allocated in SLURM.
Aligner

Currently MIP officially supports two aligners Mosaik and BWA, but technically supports any aligner that outputs
BAM files. Follow the instructions in Adding a new program to add your own favorite aligner.

Log

MIP will write the active analysis parameters and S7DOUT to a log file located in:
{OUTDIRECTORY} {FAMILYID}/{MIP_LOG}/{SCRIPTNAME_TIMESTAMP }

Information, such as infile, programs, outdatafiles etc, for each analysis run is dynamically recorded in the a yaml file
determined by the —sampleInfoFile flag. Information in the samplelnfo file will be updated in each analysis run
if identical records are present and novel entries are added. The samplelnfo file is used in QCCollect to extract relevant
gc metrics from the MPS analysis.

Pipeline WorkFlow
This is an example of a workflow that MIP can perform (used @ CMMS).

MIP — Mutation Identification Pipeline
Phase 1: MPS Data Processing Phase 2: Variant Discovery & Genotyping Phase 3: Integrative Analysis
Typically by Individual Typically by family Typically by family

Raw A
aw

Sequences S
ac equences

Ind1...Ind N

Ready VCF dbCMMS

External Data

SN v

VEP/
SnpEFF/
Annovar/
GENMOD

Alignment

Mapping & Raw

Variants

Duplicate

Covqezage Marking
Option: Merge with

H
| previous run !
1
[
[
1
I

Ready BAM

Variant
Ranking

Add.
Training
>30 Exomes

Known Known
Variation Genotypes

Variant
Recalibration

Ready BAM

Output Variant
Candidate
Lists Missing

Coverage
Realignment — oy
Training
>30 Exomes | [N ———
Base Quality Filtering-
Recalibration Output Ready N

Variants
Web-Interface:
Visualization/

Manual Filteringi

Analysis-

Output s

Reads [———— -

T
r i
! i
Variant QC : 1
]
! |
1 1
1]
1 1
1 1
1 1
1

4.3. Usage 11

https://github.com/wanpinglee/MOSAIK
http://bio-bwa.sourceforge.net/

MIP_api Documentation, Release 4.0.0

12 Chapter 4. Getting Started

CHAPTER 5

Change Log

MIP v3.0 —> v4.0

mip.pl

Fixed chrY for female in SVRanking

Fixed bug in SambambaDepth causing logging to be turned off

Fixed bug causing MostCompleteBAM being incorrectly added when launching single module
Fixed bug causing info for MarkDuplicates to not be logged to qc_samplelnfo

Added flag for creating index file with GatherBAMFile. Default to TRUE

Temporary fix allowing samtools to create index for GATKBaseRecalibration BAM instead of Picard to acco-
modate pileup.js

Modified javaUseLargePages and reducelO conditional statement to be implicitly boolean
Added creation of directory for analysis config file unless directory already exists
Validate all parameters
Changed percentag_mapped_reads to percentage_mapped_reads
Added Vcftools and Plink?2 versions to qcmetrics
Changed default for GATKReAligner to “0”
Added SLURM QOS to sbatch header
— Allowed values: [low, normal, high]. Defaults to “normal”.
Add program processing Markduplicates metric to qc_samplelnfo as “ProcessedBy” for log purpose
Remade array parameter inFilesDirs to hash parameter inFilesDir
Added CLNREVSTAT to config
Changed analysisType from scalar to hash (-at sampleID=analysisType)

Default genomes

Can be supplied from pedigree using “Sequence_type”

Enables performing analysis under correct fastq location and with correct parameters for sample spe-
cific analyses

Changed default output structure

FamilyID is now root

13

MIP_api Documentation, Release 4.0.0

— Data is stored under root in analysisType dir
— pedigree is stored under root
— scripts, mip_log, config and qc_samplelnfo are stored under FamilyID/analysis
Changed “exomes” and “genomes” to “wes” and “wgs” respectively
Added new baitset shortcut in pedigree: Agilent_SureSelectFocusedExome.V1.GRCh37_targets.bed
Modified UpdateToAbsolutePath to get info from definitions directly
Move all rio BAMProcessing to same in and out directory to enable skipping of programs

— Modules that variant callers and qc modules output under their own dir, but gathered data is processed
under alignment directory

Call sub in RankVariants for select file and adjust MTIM

Changed bcf generation to vcf.gz generation + tabix index

Changed rankedBCFFile to rankedBinaryFile

Changed svRankedBCFFile to svRankedBinaryFile

Changed tag in qc_Samplelnfo from BCFFile to VCFBinaryFile and VCFSVBCFFile to SVBinaryFile
Change to tabix from bcf since it seems more forgiving and produce similar compression level

Added “—rank_results” in genmod score for producing rank view in Scout

Remove rank score sorting of clinical/ research

Add bwa log and HLA log to qc_samplelnfo and copying back to hds

Added decomposing using bcftools for variant callers and normalization for GATK VariantRecalibration

GRCH38 Error: Error: Field name ‘phyloP46way_primate’ not found dbSnpEff

phyloP46way_primate -> phyloP20way_mammalian

phyloP100way_vertebrate -> phyloP7way_vertebrate

phastCons46way_primate -> phastCons20way_mammalian

phastCons100way_vertebrate -> phastCons7way_vertebrate
Added novel calculation of F-score using plink2
Add CLNVAR curation status (CLNREVSTAT) into rank model and bumped rank_model to version 1.17

Added —disable_auto_index_creation_and_locking_when_reading_rods to GATKReAlign and GATKBasere-
cal

Added SWEREF into rank model and to default (NOTE: only car 22 pending actual release)

Added ‘variant integrity’ to sampleCheck

Modifed InbreedingFactor regExp for plink2 .het output

Added module to split fastq files, move original files to sub dir and then exit

Exchanged ‘vars’ for our

Made Path and outdataDirection and outDataFile be collected by recursive strategy

Let MIP detect if no affected is in pedigree and warn and turn of genmod models, score and compound
Updated VTref switch to avoid modifying same reference twice

Updated rank model to locate SIFT and PolyPhen from CSQ-field directly

14

Chapter 5. Change Log

MIP_api Documentation, Release 4.0.0

Added LoFtool gene intolerance prediction to rank model

Updated rank_model to version 1.18

Added additional sorting of SV variants after vcfanno annotation

Added extra sort of SV variants after ranking

Process SV exomelrapid as one file instead of splitted per contig to ensure that no contig will lack variants
Added insert qc metrics to qc_samplelnfo and gcmetrics

Added support for interleaved fastq files and relaxed file convention criteria

Interleaved info is gathered from fastq header for read direction 1

BWAMem alignment is automatically adjusted accordingly

MIP now supports mixing of SE, PE and PE-interleaved files within the same fastq directory

Relaxed file convention criteria by collecting mandatory info from fastq header - just require sampleID
in filename

Add fake date since this information is not recorded in fastq header for standardised file spec
Added support for metadata in yaml format (pedigree and other meta data)

MIP will look at the filending to detect file format

Set mandatory keys in Plink pedigree format to be lower case throughout in MIP output

Added additional reformating of yaml value for “sex” and “phenotype” under new keys to adhere to Plink format
when required

Modified and added pedigree templates
Removed instanceTag and researchEthical Approved
Added temp_dir to genmod annotate and filter in sub VT
Modfied pedigree file to genmod calls to use famFile and changed default to ‘ped’
Modified pedigree file default ending to “.yaml”
Modified qcCollect to new yaml structure
— Added samplelD level for evaluate
— Cleaned up code
Added cut-offs for evaluation of mendel and father
Added collection of expected_coverage from ped.yaml and relay to gcCollect for evaluation
Removed extra feature annotations and some VEp field parsing
svVcfParserRangeFeatureAnnotationColumns:
— 3 =Ensembl_gene_id - REMOVED
— 4 =HGNC_symbol
— 5 = Phenotypic_disease_model - REMOVED
6 = OMIM_morbid - REMOVED

7 = Ensembl_transcript_to_refseq_transcript - REMOVED
8 = Gene_description - REMOVED

svVcfParserSelectFeatureAnnotationColumns:

15

MIP_api Documentation, Release 4.0.0

3 = HGNC_symbol

10 = Phenotypic_disease_model - REMOVED

11 = OMIM_morbid - REMOVED

14 = Ensembl_gene_id - REMOVED

— 16 = Reduced_penetrance - REMOVED

— 17 = Clinical_db_gene_annotation - REMOVED
18 = Disease_associated_transcript - REMOVED

19 = Ensembl_transcript_to_refseq_transcript - REMOVED
20 = Gene_description - REMOVED
— 21 = Genetic_disease_model - REMOVED

— Removed additional VEP parsing: - GeneticRegionAnnotation - HGVScp - INTRON - EXON -

STRAND - HGVSc - HGVSp
Added GBCEF file creation and key-path to qc_samplelnfo
Added pedigree_minimal (.fam file) and config_file_analysis to qc_sample_info
Add test of SV files in analysisrunstatus
Expect select file to have full path and not be located in MIP reference directory

Moved sacct module to case level

Install.pl

Added boolean flag condaUpDate and changed flag perllnstall to boolean
Renamed preferBioConda to preferShell and made it boolean
Renamed flag update to noUpdate and made it boolean

Activated CNVnator installation

Added install script to conda env for printing software versions connected to MIP version

Added Validate parameter checks, named arguments and sub description
Updated genmod to version 3.5.6
Added ability to set python version when creating conda env

Updated chanjo to v4.0.0

vcfParser.pl

Removed Sift and Polyhen parsing from CSQ field
Change SYMBOL to HGNC_ID in vcfparser
Added per_gene option

qcCollect.pl

Changed percentag_mapped_reads to percentage_mapped_reads
Added raw total sequences and reads mapped to qcCollect
Added Vcftools and Plink2 versions to gcmetrics

Updated regExp file to version 12

16

Chapter 5. Change Log

MIP_api Documentation, Release 4.0.0

MIP v2.6 —> v3.0

Added Net/SSLeay.pm to install.pl

Added option to skip perl install

Added Manta, Delly, FT and CNVnator as structural variant callers

Added modules CombineStructural Variants, SV VariantEffectPredictor, SVVCFParser, SVRanking
Added merging of samples in “other” chains to family chain for parallel modules

Added CNVnator version. Had to be done at start up since CNVnator does not add its version to the output.
Added Delly version on sample level

Added Manta version on sample level

Added SVVEP version and cache version

Fixed bug causing VEP version to be lost for snvs/indels

Added SVVCFParser version

Added SVGenmod/rankModel version

Added test for GATKCombine VariantsPrioritizeCaller to not include turned of variant callers
Added snpEff download of reference genome to avoid race conditions

Fixed python virtuelenvironment to not check programs if uve = 0

Added VEP/SVVEP assembly, gencode, gene build, HGMDPublic, polyphen, regbuild, Sift, version to gcmet-
rics

made NIST ID settable

Removed PicardMergeSwitch, now all files are merged or renamed (single files) for more consequent naming
and easier processing

Renamed ‘fileEnding’ to ‘fileTag’ and ‘removefileEnding’ to ‘fileEnding’
Change name of BAMCalibrationAndGTBlock to only BAMCalibrationBlock
List::Util is in core module perl 5.18 replaces List::MoreUtils

Use say instead of print where relevant

Use internal Perl system commands instead of UNIX (copy, make_path)

Removed mip log file if present in config to avoid appending to old log file. Supply on log file on cmd if you
want to append to log file.

Added plink?2 installation via bioconda in install script

Changed binary i MIP from plink to plink2

Added MultiQC in install script and as MIP module

Changed samtools stats module to include complete report for MultiQC processing

Made pPicardToolsMergeSamFiles mandatory: Always run even for single samples to rename them correctly
for standardised downstream processing. Will also split alignment per contig and copy to temporary directory
for *-rio 1’ block to enable selective removal of block submodules.

Added LOFTEE VEP plugin: https://github.com/konradjk/loftee
Added LofTool VEP plugin
Added Modern::Perl 2014’

17

https://github.com/konradjk/loftee

MIP_api Documentation, Release 4.0.0

e Added PERL_UNICODE=SAD to install script, and hence bash_profile - stdin, stdout, and stderr to UTFS§ as
well as @ ARGV and data handlers

» Use UTF-8 for all source script
* Added encoding UTF-8 pragma for open to default expect unicode when opening and writing
* Enforce perl 5.18 version
* Added autodie for generalised error and exception handling
* Removed dateTime and use less cumbersome core module Time::Piece
* Removed DV and added AD for samtools mpileup
* Added joint calling of SV using Manta
* Added SV analysis of exomes using Manta
¢ Modified CombineSV Variants to use Delly and CNVnator on sample-level and Manta on family level
* Added bcf generation of ranked vcf both select file and research
* Fixed bug in temp directory
* Bumped install version to 3.5.1
¢ Added Genmod temp dir flag
* Added sacct commands to trap for each sbatch to relay progress to MIP log file.status
* Made Sacct dependency into afterany
¢ Added pPrepareForVariantAnnotationBlock
* Removed pythonVirtualEnv and commands as conda is prefered
* Added sourceEnvironmentCommand
* Added ‘-pp’ and ‘-ppm’
* Add bcf conversion of select and research variants to MIP
* Added check of programs mode to allowed values, more strict parsing for flaggs expecting numbers
¢ Select variants prior to Plink processing using GATK Select variants
— Move processing to node, but keept final output printing to hds
¢ Added SV annotation using 1000G SV and vcfanno -ends
— Added vcfanno, lua, config
— Annotate from 1000G SV
— Modified svrank_mdodel to take 1000G frequency in account
* Add vcfanno version in SVCombine VariantCallSets
» Updated fastqc to version 0.11.5
» Updated bwa to version 0.7.13
¢ Updated sambamba to version 0.6.1
— Added “—fix-mate-overlaps” to avoid counting overlapping reads twice
— Removed Sambamba version from MIP flagg

» Updated picardtools to version 2.3.0

18 Chapter 5. Change Log

MIP_api Documentation, Release 4.0.0

* Updated Chanjo to version 3.4.1

» Updated Manta to version 0.29.6

* Updated Genmod to version 3.5.2

* Updated MultiQC to version 0.6

» Updated Vip to version 84

* Added Picardtools Markduplicates as a option and default

* Added more SambambaMarkDup options

* Make sambamba flagstats into subroutine to be used for all markdup

* Remade capture kit options into 1 hash flag, which will build all associated files if 1 is lacking

* Make Covariates to be used in the recalibration in GATKBASERCAL to be flag and array option
— annotations, -Know and -knownSites

* Remade VEP install assembly flag to be array and used rerun install for each assembly version

* Remade SnpEff install genomeVersion flag to be array and used rerun download for each genome version

¢ Added assembly flag to VEP script and alias it to use GRCh prefix and number

* Fixed chr prefix for chanjo sex check

» Updated to GATK version 3.6

* Created contig splitted target files on the fly for non genome analysis to reduce the running time of GATK
Realign, BaseRecal and Haplotype

* Added sub ReplacelUPAC and used it on freebayes and samtools mpileup vcfs
* Changed analysisType default from exomes to genomes
MIP v2.4 —> v2.6
* Updated GATK to 3.5
* Added static binning capability for base recalibration (BQSR)
* Added option —disable_indel_quals to BSQR
* Added limit for exomes to only use target bases in recalibration
e Added MTAF to SnpEff and vcfParser for MT frequency annotations
* Added ‘trio’ detection to parameters instead of scriptParameters to avoid writing key to config
* Fixed bug when supplying -sambambaDepthCutOffs on cmd
¢ MIP now handles updating to absolute path for comma separated parameters correctly
* Removed write to cmd string in mip log for some internal parameters
* Updated install script

— Added PIP to the condo env upon creation

Add check that condo is executable in system before launching rest of installation

Install script can now detect existing condo env and change cmd to accommodate

Added sambamba (0.5.9), vt (2015.11.10), bedtools (2.25.0), htslib (1.2.1) to bioconda install

Added option to prefer Bioconda install over shell for overlapping modules

19

MIP_api Documentation, Release 4.0.0

— Added soft link creation sub routine
— Use soft link sub for sambamba (both bioconda and Shell)
— Add soft link to snpEff och SnpSift for bioconda install
Update FASTQC to 11.4 via bioconda
Updated SnpEff to v4_2 via Shell
Updated Plink to v1.90b3.26 64-bit (26 Nov 2015) via shell
Updated vcfTools to 0.1.14 via SHELL
Updated Chanjo to 3.1.1 via PIP
Updated Genmod to 3.4 via PIP
Updated Picardtools to 1.141 via bioconda
Updated Samtools to 1.3
Updated befTools to 1.3
Updated htslib to 1.3
Added picardTools installation via SHELL
Updated VEP to 83 via SHELL

— Trouble with distribution - htslib and sereal (only issues with testing and not with actual running the
script)

— Added installation of VEP plugin UpDownDistance

Added use of VEP plugin UpDownDistance for MT contig only to avoid over annotation of the compact MT
genome

Added padding to 10 nucleotides for MT in Vcfparser

Added test for undetermined in fastq file name and adjust qc-test to skip entirely for these reads
Added samtools mpileup

Added GATKCombineVariants to combine variants calls from multiple variant callers

Added generalisation for supporting multiple variant callers in MIP dependencies and GATKCombinaVariants
Added no-fail to sample check

Modified installation of picardTools and SnpEff

Add filtering to variant calls from samtools mpileup

Add samtools/bcfTools versions

Add removal of samtools pileup files

Added test::Harness for TAP summary results and future inclusion of additional test scripts
Add option to determine priority in variant callers as comma sep string

Add check of variant callers active compared to prioritise flag

Add sanity check of prioritisation flag

Add option to turn on or off installation of programs in install.pl

Added bcf file compression and indexing as sub

Added vcfTobcf sub to GATKCombine Variants

20

Chapter 5. Change Log

MIP_api Documentation, Release 4.0.0

Switched vcf ready file from GATK VariantRecalibration to GATKCombine Variants
Added Freebayes variant caller
— Added to removeRedundantFiles
— Added Freebayes version to qcCollect
RemoveRedundant files info is now recorded in definition.yaml
Added GATKCombineVariants to removeRedundant files
Add beftools norm to samtools pileup and freebayes output
Add lastlogFilePath to qc_sampleInfo
Made lanes and readDirections info more nested
Add 1000G Phase 3 and Exac to Genmod annotation
Changed regEx in test.t to include all until “,” for INFO fields in Header
Modified bioconda softlinks sub call to only execute if programs are installed
Added MT.codon table sub for snpEff config to install script
Remake GENMOD CADD file option to array
Added padded target intervals to exome analysis again for GATKRealign and GATKHaplotypeCaller
Reactivate GATKPaddedTarget parameter
Made associatedPrograms arg into an array instead of a comma sep string
Fixed check for when a capture kits is lacking from input and fallback to using “latest”
Remade CheckParameterFiles to work with DataType
Add evaluation with NIST as a module in MIP
Fix the . mip.sh to bash mip.sh
Added reference to define/definitions

CheckParameterFiles now works with parameterExistsCheck directly instead of “d” and “f” enabling merge of
directory and file sections

Changed if for intervalListFile to be if($IntervalList) instead of analysisTypeExomelrapid
Add programType=Aligner to define/definitions

Remade sanity check of aligner to count if more than 1 aligner has been switched on (MosaikAligner,
BWASampe, BWAMEM)

Dynamic setting of ‘aligner’ depending in aligner supplied by outDirectoryName
Renamed aligner to alignerOutDir

Added genmod max_af

Added canonical to VEP features

MIP v2.0 —> v2.4

Bugfixes
Updated most program version (see docs) and databases
— Logs versions and databases

Added -pVT

21

MIP_api Documentation, Release 4.0.0

Added -allSites option to GenoTypeVCFs

Added version tag to definitions.yaml

Cleaned some old parameter names

Added test for parameter compatibility between defineParameters.yaml and config
Added new parameter snpSiftAnnotationOutlnfoKey

Changed SnpSift_ for 1000G and EXACATF to facilitate downstream processing since both work on KEY=AF
Remade dbsnpAF parsing to accommodate multiple entries for the same env

Added vt decompose and normalise subroutine for both reference and variant vcf
Removed vcf_parser —split

MIP now works only on config tags from select file meta data header for select genes
Added genmod version and removed RankVariants version

Add test for VEP cache and directory version linked

Added option OverclippedReadFilter to GATKBaseRecalibration/PrintReads
Exchange grep for any in array check and use eq instead of // for stringency

LEINY3

Added vt decompose and normalise subroutine call for relevant downloadable references (“indels”, “mills”,

99 ¢

“dbsnp”, “hapmap”, “dbsnpex”, “1000g_snps”)

Add check for ingoing references that VT has been used if VT is on

Fixed bug in AnalysisRunStatus modules caused when first processing -rio 1 and then -rio 0
Fixed bug when adding samples to pedigree to already processed samples

Removed Radial:sw and LR_score from dbNSFP annotation as these have become obsolete
Remade RemoveRedundant files

Added bef compression alternativ

Added perl oneliner to VT that removes ‘*’ alt.allele after decomposing as it does not add any new info

MIP v1.0 —> v2.0

Major code refactoring
Bugfixes
Updated most program version (see docs) and databases
— Logs versions and databases
Removed modules -pMerge_anvar, -pAdd_dp
— MIP no longer creates master templates, instead this is taken care of dynamically
Added -pVeP, -pSnE, -pVcP -pChanjoSexCheck
Module PicardSortSam is now integrated in alignment modules
Use VCF format where appropriate
— Created standardised VCEF list levels (7,”, ., “I”)
Clinical transcripts are selected after VEP annotation using VCFParser

— Removes ethical issue with overlapping genes

22

Chapter 5. Change Log

MIP_api Documentation, Release 4.0.0

¢ Full resolution in annotation

Gene

Transcripts

Multiple alleles

Split multi allelic calls into single records

Use SO terms

Calculate Sift an PolyPhen per transcript and allele

Remade transcript and cDNA and protein info from VEP CSQ field
Switched from MAF to AF

* Use Log4Perl for logging

 All processes create temp directory on (default @nodes)

* Creates automatic migration to and from nodes

* Deploy more aggressive scatter/gather technique. Processing per contig whenever possible.

* Analyse order in contig size not number

 Use piping in SnpSift annotation and where possible

* Reduce IO between nodes using -rio flag. Will run modules sequentially where appropriate.

Created automatic removal of files when appropiate at tempDir

* Flag changes

-huref/~humanGenomeReference —> -hgr/~humanGenomeReference

-rea/—researchEthical Approval Tag for displaying research candidates in Scout (defaults to “notAp-
proved”)

-tmd/-tempDirectory Set the temporary directory for all programs (defaults to
“/scratch/SLURM_JOB_ID”;supply whole path)

-nrm/-nodeRamMemory The RAM memory size of the node(s) in GigaBytes (Defaults to 24)
-ges/—genomicSet Selection of relevant regions post alignment (Format=sorted BED; defaults to *”’)
-rio/-reducelO Run consecutive models at nodes (defaults to “0”)

-1/-logFile Mip log file (defaults to “{outDataDir }/{familyID }/mip_log/{timestamp}/{scriptname}_{timestamp}.log™)
-pGZ/—pGZip —> -pGZ/—pGZipFastq

-pFQC/—pFastQC —> -pFqC/—pFastQC

-moaannpe/—mosaik AlignNeuralNetworkPeFile —> -moaape/-mosaikAlignNeuralNetworkPeFile
-moaannse/—mosaik AlignNeuralNetworkSeFile —> -moaase/—mosaik AlignNeuralNetworkSeFile
-pPBWA_mem/-pBwaMem —> -pMem/-pBwaMem

-bwamemrdb/-bwaMemRapidDb —> -memrdb/-bwaMemRapidDb

-pBWA_aln/-pBwaAln —> -pAln/~pBwaAln

-pBWA_sampe/-pBwaSamp —> -pSap/-pBwaSampe

-picardpath/—picardToolsPath —> -ptp/—picardToolsPath

-picttmpd/—PicardToolsTempDirectory —> removed

23

MIP_api Documentation, Release 4.0.0

-pPicT_sort/—pPicardToolsSortSam —> removed
-pPicT_merge/—pPicardToolsMergeSamFiles — -pPtM/—pPicardToolsMergeSamFiles
-pPicT_mergerr/—pPicardToolsMergeRapidReads -> -pPtMR/—pPicardToolsMergeRapidReads

-picT_mergeprev/—picardToolsMergeSamFilesPrevious - -ptmp/—
picardToolsMergeSamFilesPrevious

-pPicT_markdup/—pPicardToolsMarkduplicates — -pPtMD/—pPicardToolsMarkduplicatesWithMateCigar
-pCh_B/-pChanjoBuild —> -pChB/-pChanjoBuild

-pChS/-pChanjoSexCheck

-pCh_C/-pChanjoCalculate —> -pChA/-pChanjoAnnotate

-chccut/—chanjoCalculateCutoff —> -chacut/—chanjoAnnotateCutoff

-pCh_I/-pChanjoImport —> -pChl/—pChanjolmport

-pCC_bedgc/~pGenomeCoverageBED —> -pGceB/—pGenomeCoverageBED

-xcov/—xCoverage —> -gcbcov/—GenomeCoverageBEDMaxCoverage

-pCC_picmm/—pPicardToolsCollectMultipleMetrics - -pPtCMM/-
pPicardToolsCollectMultipleMetrics

-pCCE_pichs/—pPicardToolsCalculateHSMetrics —> -pPtCHS/—pPicardToolsCalculateHSMetrics
-extbl/—exomeTargetBedInfileLists —> -ptchsetl/—~exomeTargetBedInfileLists
-extpbl/—exomeTargetPaddedBedInfileLists —> -ptchsetpl/~exomeTargetPaddedBedInfileLists
-pRCP/-pRCovPlots —> -pRcP/-pRCovPlots

-gatkpath/—genomeAnalysisToolKitPath —> -gtp/—genomeAnalysisToolKitPath
-gatkbdv/-GATKBundleDownLoadVersion —> -gbdv/~-GATKBundleDownLoad Version
-gatktmpd/~GATKTempDirectory —> removed

-gatktpbl/~GATKTargetPaddedBedIntervalLists —> -gtpl/~-GATKTargetPaddedBedIntervalLists
-gatkdcov/-GATKDownSampleToCoverage —> -gdco/~-GATKDownSampleToCoverage

-pGATK _real/-pGATKRealigner —> -pGrA/-pGATKRealigner

-gatkrealknset1/~-GATKReAlignerINDELKnownSet1 - -graks1/-
GATKReAlignerINDELKnownSetl
-gatkrealknset2/~-GATKReAlignerINDELKnownSet2 - -graks2/—

GATKReAlignerINDELKnownSet2
-pGATK_baserecal/-pGATKBaseRecalibration —> -pGbR/-pGATKBaseRecalibration

-gatkbaserecalknset/~-GATKBaseReCalibrationSNPKnownSet - -gbrkse/—
GATKBaseReCalibrationSNPKnownSet

-pGATK _hapcall/-pGATKHaploTypeCaller —> -pGhC/-pGATKHaploTypeCaller

-gatkhapcallsnpknset/~-GATKHaploTypeCallerSNPKnownSet - -ghckse/-
GATKHaploTypeCallerSNPKnownSet

-pGATK _genotype/-pGATKGenoTypeGVCFs —> -pGgT/-pGATKGenoTypeGVCFs

-gatkgenotyperefgvcfinfile/~-GATKGenoTypeGVCFsRefGVCFInfile - -ggtgrl/—
GATKGenoTypeGVCFsRefGVCF

24

Chapter 5. Change Log

MIP_api Documentation, Release 4.0.0

-pGATK_varrecal/-pGATK VariantRecalibration — -pGvR/~pGATK VariantRecalibration
-gatkexrefsnp/~-GATKExomeReferenceSNPs —> -gvrtss/~-GATK VariantReCalibrationTrainingSetDbSNP

-gatkvarrecaltrhapmap/~GATK VariantReCalibrationTrainingSetHapMap - -gvrtsh/—
GATK VariantReCalibrationTrainingSetHapMap

-gatkvarrecaltrd 1000Gsnp/—~GATK VariantReCalibrationTrainingSet1000GSNP - -gvrtsg/—
GATKVariantReCalibrationTrainingSet1000GSNP

-gatkvarrecaltromni/~-GATK VariantReCalibrationTrainingSet1000GOmni —> -gvrtso/—
GATK VariantReCalibrationTrainingSet1 000GOmni

-gatkvarrecaltrdbmills/~GATK VariantReCalibrationTrainingSetMills - -gvrtsm/—
GATK VariantReCalibrationTrainingSetMills

-gatkvarrecaltsfilterlevel -GATK VariantReCalibrationTSFilterLevel - -gvrtsf/—
GATKVariantReCalibrationTSFilterLevel

-gvrevf/~GATK VariantReCalibrationexcludeNon VariantsFile

-gvrsmr/—~GATK VariantReCalibrationSpliMultiRecord
-pGATK_phaseTr/~-pGATKPhaseByTransmission —> -pGpT/-pGATKPhaseByTransmission
-pGATK_readPh/-pGATKReadBackedPhasing —> -pGrP/-pGATKReadBackedPhasing

-gatkreadphphaseqthr/~GATKReadBackedPhasingPhaseQualityThresh - -grpqth/—
GATKReadBackedPhasingPhaseQualityThreshold

-pGATK_varevalall/-pGATK VariantEvalAll —> -pGvEA/-pGATK VariantEvalAll
-pGATK_varevalexome/—pGATK VariantEvalExome —> -pGVEE/~pGATK VariantEvalExome
-gatkvarevaldbsnp/~GATK VariantEvalDbSNP —> -gveedbs/~GATK VariantEvalDbSNP
-gatkvarevaldbgold/~GATK VariantEvalGold —> -gveedbg/—~GATK VariantEvalGold
-pANVAR/-pAnnovar —> -pAnV/-pAnnovar

-anvarpath/—annovarPath —> -anvp/—annovarPath

-anvargbv/—annovarGenomeBuild Version —> -anvgbv/—annovarGenomeBuild Version
-anvartn/—annovarTableNames —> -anvtn/—annovarTableNames
-anvarstn/—annovarSupportedTableNames —> -anvstn/—annovarSupportedTableNames
-anvarmafth/~annovarMAFThreshold —> -anvarmafth/~annovarM AFThreshold
-pVeP/—pVariantEffectPredictor Annotate variants using VEP (defaults to “1” (=yes))
-vepp/—vepDirectoryPath Path to VEP script directory (defaults to “”’; supply whole path)
-vepc/vepDirectoryCache Specify the cache directory to use (supply whole path, defaults to “”)

ELET) 39 99

-vepf/-vepFeatures VEP features (defaults to (“refseq”,’hgvs”,’symbol”, numbers”,”’sift”,”’polyphen”,”humdiv”);
comma sep)

-pVcP/-pVCFParser Parse variants using vcfParser.pl (defaults to “1” (=yes))

-vepvt/—vcfParser VepTranscripts Parse VEP transcript specific entries (defaults to “0” (=no))

-veprff/—vcfParserRangeFeatureFile Range annotations file (defaults to *’; tab-sep)

-veprfa/—vcfParserRangeFeature AnnotationColumns Range annotations feature columns (defaults to

€,

; comma sep)

25

MIP_api Documentation, Release 4.0.0

[132]

— -vepst/—vefParserSelectFile File containging list of genes to analyse seperately (defaults to
file and HGNC Symbol required)

;tab-sep

— -vepsfm/—vcfParserSelectFileMatchingColumn Position of HGNC Symbol column in SelectFile (de-
faults to)

— -vepsfa/—vcfParserSelectFeature AnnotationColumns Feature columns to use in annotation (defaults

o,

to “’; comma sep)
— -pSnE/—pSnpEff Variant annotation using snpEFF (defaults to “1” (=yes))
— -snep/—snpEffPath Path to snpEff. Mandatory for use of snpEff (defaults to “’)
— -snesaf/—snpSiftAnnotationFiles Annotation files to use with snpSift (comma sep)
— -snesdbnsfp/—snpSiftDbNSFPFile DbINSFP File (defaults to “dbNSFP2.6.txt.gz”)

— -snesdbnsfpa/—snpSiftDbNSFPAnnotations DbNSFP annotations to use with snpSift (defaults to
(“SIFT_pred”,”Polyphen2_HDIV_pred”,’Polyphen2_HVAR_pred”,”LRT_pred”,”MutationTaster_pred”,”GERP++_NR
comma sep)

— -pRankVar/-pRankVariants — -pRaV/—pRank Variants

— -rs/-rankScore —> removed

— -gf/—geneFile —> -ravgf/—geneFile

— -imdbfile/~ImportantDbFile Important Db file (Defaults to “’) —> removed

— -imdbte/~ImportantDbTemplate Important Db template file used to create the specific family ‘-
im_dbmf” master file (Defaults to ‘“”’) —> removed

— -imdbmf/-ImportantDbMasterFile Important Db master file to be used when selecting variants (de-
faults to “{ outDataDir }/{familyID }/{familyID }.intersectCollect_selectVariants_db_master.txt”;Supply
whole path) —> removed

— -imdbfof/~ImportantDbFileOutFiles The file(s) to write to when select-
ing variants with intersectCollect.pl. Comma sep (defaults to “{out-
DataDir}/{familyID}/{aligner }/GATK/candidates/ranking/{familyID}_orphan.selectVariants,
{outDataDir }/{familyID }/{aligner }/GATK/candidates/ranking/clinical/{familyID}.selectVariants™;
Supply whole path/file) —> removed

— -raves/—~caddWGSSNVs Annotate whole genome sequencing CADD score (defaults to “0” (=no))

— -ravesf/~caddWGSSNVsFile Whole genome sequencing CADD score file (defaults to
“whole_genome_SNVs.tsv.gz”)

— -ravclkg/—cadd1000Genomes 1000 Genome cadd score file (defaults to “0” (=no))

— -ravclkgf/~cadd1000GenomesFile 1000 Genome cadd score file (defaults to “1000G.tsv.gz”)
— -ravwg/-wholeGene Allow compound pairs in intronic regions (defaults to “1” (=yes))

— -ravrm/-rankModelFile Rank model config file (defaults to “”)

— -pSCheck/-pSampleCheck —> -pScK/-pSampleCheck

- -pQCC/-pQCCollect —> -pQcC/-pQCCollect

— -QCCsampleinfo/~QCCollectSampleInfoFile —> -qccsi/—~QCCollectSamplelnfoFile

— -QCCregexp/—~QCCollectRegExpFile —> -qccref/-QCCollectRegExpFile

— -pREM/-pRemovalRedundantFiles —> -pReM/-pRemoveRedundantFiles

— -pAR/-pAnalysisRunStatus —> -pArS/—pAnalysisRunStatus

26 Chapter 5. Change Log

CHAPTER 6

Installation

6.1 Automated Installation

This installation procedure assumes that you have a working perl version and a Miniconda installation.

1. “Install” MIP

clone the official git repository
$ git clone https://github.com/henrikstranneheim/MIP.git
$ cd MIP

After this you can decide whether to make MIP an “executable” by either adding the install directory to
the SPATHIine.g. “~/.bash_profile” or move all the files from this directory to somewhere already
in your path like “~/usr/bin”. Remember to make the file(s) executable by chmod +x file.

. Create the install instructions for MIP

S perl install.pl
This will generate a batch script "mip.sh" for the install in your working director

. Run the bash script

$ bash mip.sh
This will install all the dependencies of MIP and other modules included in MIP int
However a fresh version of perl and cpanm is installed outside of the conda environ

Note: This will add the following lines to bashrc and bash_profile if the install perl version is not found in your path:

'export PATH=$HOME/perl-PERLVERSION/:$PATH' >> ~/.bashrc
'eval ‘perl -I ~/perl-PERLVERSION/lib/perl5/ -Mlocal::1lib=~/perl-PERLVERSION/ ' >> ~/.b{
'export PERL_UNICODE=SAD' >> ~/.bash_profile

3. Run MIP

$ source activate mip
S mip.pl -h

6.2 Manual Installation

1. Install a fresh copy of Perl

27

o a conda env

ment, but are

sh_profile

http://conda.pydata.org/miniconda.html

MIP_api Documentation, Release 4.0.0

On UNIX, Perl5 can be installed by following these instructions. It uses Perlbrew.

2. To switch to the new Perl installation, you might need to run:

$ INSTALLER_PERL_VERSION=5.16.0
$ perlbrew switch perl-$INSTALLER_PERL_VERSION

3. “Install” MIP

clone the official git repository
$ git clone https://github.com/henrikstranneheim/MIP.git
$ cd MIP

$ perl mip.pl -h

After this you can decide whether to make MIP an “executable” by either adding the install directory to
the SPATHine.g. “~/.bash_profile” or move all the files from this directory to somewhere already
in your path like “~/usr/bin”. Remember to make the file(s) executable by chmod +x file.

4. Dependencies

You need to make sure all depedencies are installed and loaded (See Setup). However, MIP should tell
you if something is missing.

5. To install the dependencies - use cpanm:

Cpanm <C "-J(,,@’lil&,,‘:,’l'\“;' >

S cpanm YAML

28 Chapter 6. Installation

http://learn.perl.org/installing/unix_linux.html
http://perlbrew.pl/

CHAPTER 7

Setup

7.1 Filename convention

The permanent filename should follow the following format:

‘{LANE}_{DATE}_{FLOW CELL}_{IDN}_{BARCODE SEQ}_{DIRECTION 1/2}.fastqg.qz

Note: The familyID and samplelD(s) needs to be unique and the sampleID supplied should be equal to the {IDN} in
the filename.

However, MIP will except filenames in other formats as long as the filename contains the samplelD and the mandatory
information can be collected from the fastq header.

7.2 Dependencies

Make sure you have loaded/installed all dependencies and that they are in your $SPATH. You only need to load the
dependencies that are required for the modules that you want to run. If you fail to install dependencies for a module,
MIP will tell you what dependencies you need to install (or add to your $SPATH) and exit. MIP comes with an
install script install.pl, which will install all necessary programs to execute models in MIP via bioconda and/or
$SHELL. Version after the software name are tested for compatibility with MIP.

Program/Modules

e Perl modules: YAML.pm, Log4perl.pm, List::MoreUtils, DateTime, DateTime::Format::1ISO8601, Date-
Time::Format::HTTP, DateTime::Format::Mail, Set::IntervalTree from CPAN, since these are not included in
the perl standard distribution

» Simple Linux Utility for Resource Management (SLURM)
e FastQC (version: 0.11.5)

e Mosaik (version: 2.2.24)

¢ BWA (version: 0.7.15)

* BWAK:it (version: 0.7.12)

e Sambamba (version: 0.6.3)

¢ SAMTools (version: 1.3.1)

e BedTools (version: 2.26.0)

29

http://slurm.schedmd.com/
http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/wanpinglee/MOSAIK
http://bio-bwa.sourceforge.net/
http://lomereiter.github.io/sambamba/
http://samtools.sourceforge.net/
http://bedtools.readthedocs.org/en/latest/

MIP_api Documentation, Release 4.0.0

¢ PicardTools (version: 2.5.0)
e Chanjo (version: 3.4.1)
e Manta (version: 1.0.0)
¢ GATK (version: 3.6)
* freebayes (version: 1.0.2)
e VT (version: 20151110)
e VEP (version: 84) with plugin “UpDownDistance, LoFtool, LoF”
* vcfParser.pl (Supplied with MIP; see vcfParser)
* SnpEff (4.2)
e ANNOVAR (version: 2013-08-23)
¢ GENMOD (version: 3.5.6)
* variant_integrity (version: 0.0.4)
e VcfTools (version: 0.1.0)
e BcfTools (version: 1.3.1)
e Hitslib (version: 1.3.1)
e PLINK2 (version: 1.90b3x35)
e MultiQC (version: 0.8devO0)
Depending on what programs you include in the MIP analysis you also need to add these programs to your $PATH:
¢ FastQC
* Mosaik
* BWA
* SAMTools
* Tabix
* BedTools
¢ VcfTools
* PLINK
and these to your python virtualenvironment:
* Chanjo
* GENMOD
¢ Cosmid (version: 0.4.9.1) for automatic download

To make sure that you use the same commands to work on the virtualenvironment, you need to install a virtual
environment wrapper. We recommend pyenv and pyenv-virtualenvwrapper. To enable the virualenvwrapper add:
pyenv virtualenvwrapper toyour ~/.bash_profile.

30 Chapter 7. Setup

http://picard.sourceforge.net/
https://chanjo.readthedocs.org/en/latest/
https://github.com/Illumina/manta
http://www.broadinstitute.org/gatk/
https://github.com/ekg/freebayes
https://github.com/atks/vt
http://www.ensembl.org/info/docs/tools/vep/index.html
http://snpeff.sourceforge.net/
http://www.openbioinformatics.org/annovar/
https://github.com/moonso/genmod/
http://vcftools.sourceforge.net/
https://samtools.github.io/bcftools/bcftools.html
https://www.cog-genomics.org/plink2
https://github.com/ewels/MultiQC
https://github.com/robinandeer/cosmid
https://github.com/yyuu/pyenv
https://github.com/yyuu/pyenv-virtualenvwrapper

MIP_api Documentation, Release 4.0.0

7.2.1 Databases/References

Please checkout Cosmid to download references and/or databases on your own or via MIP.

MIP can build/download many program prerequisites automatically:

Note: Download is only enabled when using the default parameters of MIP and requires a Cosmid installation in your
python virtualenvironment.

Automatic Download:
1. Human Decoy Genome Reference (1000G)
2. The Consensus Coding Sequence project database (CCDS)
3. Relevant references from the 1000G FTP Bundle (mills, omni, dbsnp etc)
Automatic Build:
Human Genome Reference Meta Files:
1. The sequence dictionnary (”.dict”)
2. The ”.fasta.fai” file
Mosaik:
1. The Mosaik align format of the human genome {mosaikAlignReference}.
2. The Mosaik align jump database {mosaikJumpDbStub}.

3. The Mosaik align network files {mosaikAlignNeuralNetworkPeFile} and {mosaikAlignNeuralNetwork-
SeFile}. These will be copied from your MOSAIK installation to the MIP reference directory.

BWA:
1. The BWA index of the human genome.

Note: If you do not supply these parameters (Mosaik/BWA) MIP will create these from scratch using the supplied
human reference genom as template.

Capture target files:
1. The “infile_list” and .pad100.infile_list files used in {pPicardToolsCalculateHSMetrics }
2. The ”.pad100.interval_list” file used by some GATK modules.

Note: If you do not supply these parameters MIP will create these from scratch using the supplied latest supported
capture kit ”.bed” file and the supplied human reference genome as template.

ANNOVAR: The choosen Annovar databases are downloaded before use if lacking in the annovar/humandb directory
using Annovars built-in download function.

Note: This applies only to the supported annovar databases. Supply flag “—annovarSupportedTableNames” to list the
MIP supported databases.

7.2. Dependencies 31

https://github.com/robinandeer/cosmid

MIP_api Documentation, Release 4.0.0

32

Chapter 7. Setup

CHAPTER 8

MIP Analysis

You can modify all parameters to MIP in order of precedence using:
1. Command line
2. Pedigree file
3. Config file
4. Definitions file (typically not done by user)

8.1 Start standard analysis

S perl develop/modules/MIP/mip.pl —-f 0 -c develop/references/CMMS_Rasta_Config.vl.4.yaml -rio 1

-rio 1 means that two blocks will be performed at the nodes without transfer of files between HDS and SLURM
nodes within the block. These two blocks are:

[BAMCalibrationBlock]

¢ [PicardTool MergeSamFiles]

* [Sambamba Markduplicates]

* [GATK ReAlignerTargetCreator/IndelRealigner]

¢ [GATK BaseRecalibrator/PrintReads]
[VariantAnnotationBlock]

¢ [PrepareForVariantAnnotationBlock]

s [VT]

e [VariantEffectPredictor]

[VCFParser]
* [SnpEff]
¢ [RankVariants]

-rio 0 means that MIP will copy in and out files from HDS and SLURM nodes between each module. Thus
increasing the network traffic.

33

MIP_api Documentation, Release 4.0.0

8.2 Excluding a program from the analysis

$ perl develop/modules/MIP/mip.pl —-f 0 -c develop/references/CMMS_Rasta_Config.vl.4.yaml -rio 1

8.3 Skipping a already processed module i.e expect that the ouput
has already been generated

$ perl develop/modules/MIP/mip.pl —-f 0 -c develop/references/CMMS_Rasta_Config.vl.q.yaml -rio 1

8.4 Simulate standard analysis

S perl develop/modules/MIP/mip.pl —-f 0 —-c develop/references/CMMS_Rasta_Config.vl.4.yaml -rio 1

—dra means that MIP will run in dru run mode i.e simulation mode. MIP will execute everything except the final
sbatch submission to SLURM and updates to gc_sampleInfo.yaml.

—dra 2 will include simulation of downloading/building of references.
—dra 1 will simulate analysis without downloading/building of references.
—dra 0 no simulation

One can use —dra 1 or —dra 2 to generate sbatch scripts which then can be submitted manually by the user
individually or sequentially using sbatch —--dependency. Note that this will not update qc_sampleInfo.yaml as
this is done at MIP runtime.

8.5 Rerun analysis using exactly the same parameters as last analy-
sis run

$ perl develop/modules/MIP/mip.pl -c /mnt/hds/proj/custOOB/develop/exomes/O/O_confﬂg.yaml

8.6 Rerun analysis using exactly the same parameters as last analy-
sis run, but in simulation mode

S perl develop/modules/MIP/mip.pl -c /mnt/hds/proj/custOOB/develop/exomes/O/O_confqg.yaml —-dra 2

8.7 Generate all supported standard programs

’ S perl develop/modules/MIP/mip.pl -f 0 -c develop/references/CMMS_Rasta_Config.vl.q.yaml -rio 1

This will print a string with programs in mode 2 (expect ouput) in chronological order (as far as possible, some things
are processed in parallel):

’ S ——-pGZipFastqg 2 —--pFastQC 2 —--pBwaMem 2 —--pPicardToolsMergeSamFiles 2 ——pSambambaWarkduplicates

34 Chapter 8. MIP Analysis

MIP_api Documentation, Release 4.0.0

Thus you will always have the actual program names that are supported facilitating starting from any step in the analy-
sis for instance updating qc_samplelnfo.yaml and rerunning module in [BAMCalibrationBlock] skipping [Sambamba
Markduplicates]:

‘ $ perl develop/modules/MIP/mip.pl —-f 0 -c develop/references/CMMS_Rasta_Config.vl.4.yaml -rio 1

You can of course start or skip any number of modules as long as it is sane to do so (MIP will not check this but just
execute)

8.8 You can also modulate the mode of ‘-pp’ using -ppm:

S perl develop/modules/MIP/mip.pl —-f 0 —-c develop/references/CMMS_Rasta_Config.vl.4
S ——pGZipFastg 1 —--pFastQC 1 --pBwaMem 1 —--pPicardToolsMergeSamFiles 1 —-pSambambaM

8.8. You can also modulate the mode of ‘-pp’ using -ppm: 35

.yaml -rio 1
arkduplicates

MIP_api Documentation, Release 4.0.0

36

Chapter 8. MIP Analysis

CHAPTER 9

Adding a new program

You need to perform a series of tasks to properly add a program to MIP. An overview of the steps can be found here:
1. Call DefineParameters
2.
3. if-block run checker in MAIN

Command line arguments in GetOptions

1. Print program name to MIPLOGG and STDOUT

Call your custom subroutine (ses below) with relevant parameters

hal

Custom subroutine

1. Writes SBATCH headers

Figure out i/o files

. Builds out the body of the SBATCH script
Calls FIDsubmitJob

More details follow below. Chanjo, a program which is part of the coverage analysis, will be used as an example.

9.1 Call DefineParameters

This subroutine takes a number of input parameters. There are basically three parameter types: “program”, “file”, and
“attribute”. Try to group your parameter definitions with related programs.

DefineParameters ("pChanjoBuild", "program", 1, "MIP", 0, "nofileEnding", "CoverageReporf

DefineParameters ("chanjoBuildDb", "path", "CCDS.current.txt", "pChanjoBuild", "file");

DefineParameters ("pChanjoCalculate", "program", 0, "MIP", 0, "nofileEnding", "MAIN");

DefineParameters ("chanjoCalculateCutoff", "program", 10, "pChanjoCalculate™, 0)

37

)i

https://chanjo.readthedocs.org/en/latest/

MIP_api Documentation, Release 4.0.0

Table 9.1: DefineParameters - parameters

Parameter Example | Description
Name pChan- Program names start with ‘p’ by convention, otherwise it’s up to you.
joBuild
Type program | Can be either program or path.
Default 1 Program: 1/0 as on/off, file: <path to file> or ‘nodefault’, attribute: e.g 10 or
‘nodefault’
Associated MIP Typically the program that calls this program. program: usually MIP,
program file/attribute: <Name>.
Exists check 0 Perform a check that a file is in the reference directory. Either: 0, ‘file’, ‘directory’.
File ending nofileEnd- | File ending when module is finished. MIP uses this to determine input files
ing downstream in the Chain. file/attribute: skip.
Chain MAIN The chain to which the program belongs to. file/attribute: skip.
Check install | chanjo The program handle to check whether it is in the $PATH. file/attribute: skip.

9.2 Command line arguments in GetOptions

This is the method that parses the command line input and stores the options. To add your own defined parameters
you need to add lines like this:

'<short_option>|<long_option>:<s(tring) /n (umber)>"' => \$parameter{'<longgoption>'}{'val#e'},

You should replace anything that looks like <placeholder>:

'pCh|pChanjoBuild:n' => \$parameter{'pChanjoBuild'}{'value'}, # ChanjoBuild coverage amalysis
'chbdb|chanjoBuildDb:s' => \$parameter{'chanjoBuildDb'}{'value'}, # Central SQLite database path
'pCh_C|pChanjoCalculate:n' => \$parameter{'pChanjoCalculate'}{'value'}, # Chanjo coverade analysis
'chccut |chanjoCalculateCutoff:n' => \$parameter{'chanjoCalculateCutoff'}{'value'}, # Cutoff used for

[T 1]

Again, program options begin with a leading “p” by convention. Make sure you don’t cause any naming conflicts.

Lists can also be specified with a special syntax. Basically you need to assign the option to an array instead of
SscriptParameters.

"ifd\inFilesDirs:s' => \@inFilesDirs, #Comma separated 1ist ‘

ITET)

Later in your code when you would like to access those values you would join on ”,”.

’@inFilesDirs = join(',', @inFilesDirs); ‘

Note: MIP doesn’t use True/False flags, all options take at least one argument. For program options it’s possible to
turn on (1), off (0) and run programs in dry mode (2). All program options should specify “n(umber)” as argument

type.

9.3 if-block run checker in MAIN

The if-block checks whether the program is set to run but it also has a number of additional responsibilities.

Perhaps the most important is to define dependencies. This is done by placing your if-statement after the closest
upsteam process to yours. ChanjoBuild, for example, needs to wait until PicardToolsMarkDuplicates has finished
processing the BAM-files before running.

38 Chapter 9. Adding a new program

MIP_api Documentation, Release 4.0.0

Closest upsteam dependency for Chanjo

if ($scriptParameter{'pPicardToolsMarkduplicates'} > 0) {
Body. ..

}

This is where Chanjo fits!

if ($scriptParameter{'pChanjoBuild'} > 0) {
Body. ..

}

Next (inside the if-block) it should print an announcement to two file handles:

’for my $fh (STDOUT, MIPLOGG) { print $fh "\nChanjoBuild\n"; }

Lastly it should call a Custom subroutine, e.g. for each individual sample or per family, which will write a SBATCH
script(s), submit them to SLURM, which executes the module.

Note: $sampleInfo isahash table storing sample information, for example filename endings from different stages
of the pipeline. It’s used to determine input filenames for your program.

9.4 Custom subroutine

First up, let’s choose a relevant (and conflict free) name for our subroutine.

sub ChanjoBuild {
Body. ..
}

If we pass ALL nessesary variables into the subroutine and assign them as scoped variables it’s easy to overview
variables used inside.

my $samplelID S_[01;
my S$familyID S_[11;
my S$aligner = $_[2];
etc ...

9.4.1 a) SBATCH headers

SBATCH headers are written by the ProgramPreRequisites subroutine. It takes a number of input arguments.

9.4. Custom subroutine 39

MIP_api Documentation, Release 4.0.0

‘ProgramPreRequisites($sampleID, "ChanjoBuild", "$aligner/coverageReport", O, *CHANJOBUIJ 1, Sruntimel

Table 9.2: ProgramPreRequisites - paramaters

Parameter | Example Description

Directory 11-1-1A Either a sample ID (e.g. IDN) or family ID depending on where output is
stored.

Program chanjo Used in SBATCH script filename.

Program $Saligner/coverageBefines output directory under Directory. Path should include current

directory aligner by convention.

Call type 0 Options: SNV, INDEL or BOTH. Can be set to: 0 7?7

File handle | *CHANJO The program specific file handle which will be written to when generating
the SBATCH script. Always prepend: “*’.

Cores 1 The number of cores to allocate.

Process 1.5 An estimate of the runtime for the particular sample in hours.

time

9.4.2 b) Figure out i/o files

It’s up to you to figure out where your program should store output files. Basically you need to ask yourself whether
putting them in the family/sample foler makes the most sense.

It’s a good idea to first specify both in- and output directories.

my $baseDir = "SoutDataDir/S$sampleID/$Saligner";
my $inDir = $baseDir;
my SoutDir = "S$baseDir/coverageReport";

If you depend on earlier scripts to generate infile(s) for the new program it’s up to you to figure out the closest program
upstream. After that you can ask for the file ending.

my $infileEnding = $sampleInfo{ $familyID }{ $sampleID }{'pPicardToolsMarkduplicates'}{

$sampleInfo is a hash table in global scope.

MIP supports multiple infiles and therefore MIP needs to check if the file(s) have been merge or not.This is done with
the ChecklfMergedFiles subroutine, which returns either a 1 (files was merged) or 0 (no merge of files)

my ($infile, S$mergeSwitch) = CheckIfMergedFiles ($samplelD);

Note: $infilesLaneNoEnding is a global hash table containing information about the filename-bases (compare
filename-endings).

9.4.3 c) Build SBATCH body

This is where you fit relevant parameters into your command line tool interface. Print everything to the file handle you
defined above.

print CHANJOBUI "
,,
Create a temp JSON file with exon coverage annotations

print CHANJOBUI "chanjo annotate $storePath using S$bamFile";

40 Chapter 9. Adding a new program

fileEnding'},

MIP_api Documentation, Release 4.0.0

print CHANJOBUI "--cutoff Scutoff";
print CHANJOBUI "--sample S$samplelID";
print CHANJOBUI "--group S$familyID";
print CHANJOBUI "--json $jsonPath";

I'm done printing; let's drop the file handle
close (CHANJOBUI) ;

Note: A wait command should be added after submitting multiple processes in the same SBATCH script with the &
command. This will ensure SLURM waits for all processes to finish before quitting on the job.

9.4.4 d) Call FIDSubmitJob

This subroutine is responsible for actually submitting the SBATCH script and handling dependencies. You should
only call this if the program is supposed to run for real (not dry run).

if ((SrunMode == 1) && (SdryRunAll == 0)) {
ChanjoBuild is a terminally branching job: linear dependencies/no follow up
FIDSubmitJob ($sampleID, S$familyID, 2, S$parameter{'pChanjoBuild'}{'chain'}, $filename,
}

Table 9.3: FIDSubmitJob - paramaters

Parameter Example Description
Sample ID 11-1-1A The sample ID/person IDN
Family ID 11 The family ID
Dependency 2 Choose between type 0-4 (see below)
type
Chain key $parame- The chain defined in DefineParameters
ter{ ‘pChanjo’ }{ ‘chain’ }
SBATCH Sfilename Always use this variable. It automagically points to your
filename SBATCH script file.
Script tracker 0 Huh? Something about parallel processes...

To figure out which option (integer) to supply as the third argument to FIDSubmitJob you can take a look at this
illustration.

9.4. Custom subroutine 41

MIP_api Documentation, Release 4.0.0

0 I ® Jobs with no dependencies

1 I ® ® Jobs with linear dependencies

2 |—£ Terminal branching jobs

Jobs with linear dependencies
executing in parallel

Jobs depending on parallel
scripts executing in parallel

Note: $filename is a variable that is created in ProgramPreRequisites. It points to your freshly composed
SBATCH script file and should be supplied to FIDSubmitJob by all custom subroutines.

Note: S$parameter{’pChanjoBuild’}{’chain’ } is justthe chain that you set in DefineParameters. In this
case we could’ve replaced it with “MAIN”.

9.5 Further information

For your convinience a template program module can be found in the project folder hosted on GitHub. [ADD LINK
TO TEMPLATE]

42 Chapter 9. Adding a new program

cHAPTER 10

Structure

10.1 mip.pl

Central hub and likely the only script most users will ever interact directly with.

$ echo "Running MIP on Uppmax, analyzing all samples in family 10"
S mip.pl -c CMMS_Uppmax_config.yaml -f 10

10.2 Sequence QC

Raw sequence quality control: FastQC

10.3 Alignment

Currently MIP supports these aligners:
1. Mosaik (WES, WGS)
2. BWA (WES, WGS, Rapid WGS)

10.4 BAM file manipulation

* Sorting and indexing: PicardTools (SortSam)
e Duplicate marking: PicardTools (MarkDuplicates & MarkDuplicatesWithMateCigar)

* Realignment and base recalibration: GATK (Realigner & BaseRecalibration)

10.5 Coverage QC

» Coverage Report and QC metrics: Chanjo & BedTools
* QC metrics: PicardTools (MultipleMetrics & HSmetrics)

43

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/wanpinglee/MOSAIK
http://bio-bwa.sourceforge.net/
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/
http://www.broadinstitute.org/gatk/
https://chanjo.readthedocs.org/en/latest/
http://bedtools.readthedocs.org/en/latest/
http://broadinstitute.github.io/picard/

MIP_api Documentation, Release 4.0.0

10.6 Variant calling

* Variant discovery and recalibration: GATK (HaploTypeCaller, GenoTypeGVCFs & VariantRecalibration)

10.7 Variant QC

e All variants: GATK (VariantEval)

¢ Exonic variants: GATK (VariantEval)

10.8 Variant Selection

Select transcripts that overlap a gene list: vcfParser

10.9 Variant annotation

Collect transcript and amino acid information and information from external databases as well as annotation of inher-
itance models: VEP, vcfParser, SnpEff, ANNOVAR, GENMOD

10.10 Variant evaluation

Score and rank each variant using weighted sums according to disease causing potential: GENMOD score (see
genmod_score)

10.11 qcCollect.pl

Collects QC data from the MPS analysis in YAML format. (see QCCollect).

10.12 covplots_exome.R / covplots_genome.R

Plots coverage across chromosomes.

44 Chapter 10. Structure

http://www.broadinstitute.org/gatk/
http://www.broadinstitute.org/gatk/
http://www.broadinstitute.org/gatk/
http://www.ensembl.org/info/docs/tools/vep/index.html
http://snpeff.sourceforge.net/
http://www.openbioinformatics.org/annovar/
https://github.com/moonso/genmod/
https://github.com/moonso/genmod/

CHAPTER 11

vciParser

Parses vcf files to reformat/add INFO fields and metaData headers and/or select entries belonging to a subgroup e.g. a
list of genes. Input can be piped or supplied as an infile.

11.1 Usage

vcfParser.pl infile.vcf > outfile.vct

vcfParser.pl infile.vcf —--parseVEP 1 -rf External Db.txt -rf_ac 3 -sf
genes.v1l.0.txt -sf_mc 3 -sf_ac 3,4,11,15,17,20 -sof selected_genes.vcf >
outfile.vct

11.2 Installation

vcfParser is written in Perl, so naturally you need to have Perl installed. The perl module Set::IntervalTree is required
and are used to add “ranged” annotations.

11.2.1 VEP

Parses the output from VEP to include RefSeq transcripts. The transcript and protein annotations, moste severe
consequence and gene annotations are also included in the output . Transcript protein predictions (Sift and Polyphen)
can also be included.

11.2.2 Select Mode

A list of genes and their corresponding HGNC Symbol can be used to fork the analysis into “selected” genes and
“orphan” genes.

GuideLines on format for database of genes

* The database file should contain a header line starting with “#”.
* The number of headers should match the number of field elements for each entry.
* Do not use whitespace in headers.

¢ Do not use ;" in file.

45

https://metacpan.org/pod/Set::IntervalTree

MIP_api Documentation, Release 4.0.0

* Separate elements in fields with ”,”. Do not use ”, ™.
» No whitespace in the beginning or end within fields.
* No entries should be duplicated within database.

* Length of gene coordinates should be greater than 0

* Only digits in gene coordinate entries

11.2.3 Range Annotations

vcfParser can also add range annotations to the vcf by using the Set::IntervalTree perl cpan module and a file with
chromosomal coordinates and features to be annotated.

46 Chapter 11. vcfParser

https://metacpan.org/pod/Set::IntervalTree

CHAPTER 12

QCCollect

Collects information on MPS analysis from each analysis run. Uses YAML files for input and output. QCCollect uses
a yaml file for matching the outdata produced in each run to another yaml file with regular expression used to actually
collect the data from the output files. The collected data is then written to disc in yaml format.

MIP produces a samplelnfo yaml file, containing all sample and family information used in each analysis run.

12.1 Usage

perl gcCollect.pl -si
[Outfile]

[SampleInfoFilePath] -r [regularExpressionFilePath] -o

12.2 Installation

gcCollect is written in Perl, so naturally you need to have Perl installed.

12.3 SetUp

1. The regular expression file needs to be created. The regExp file used at CMMS can be printed from qcCollect using
the -preg & -prego flags

Table 12.1: qcCollect Parameters

Short/Long Default Value Type Summary

-si/~samplelnfoFile Na String | The sample info file (Yaml;supply whole path)

-r/-regExpFile Na String | The regular expresion file (Yaml;supply whole
path)

-o/—outfile “qcmetrics.yaml” | String | The output file

-preg/—printRegExp 0 Integer | Print RegExp YAML file used at CMMS switch

-prego/— “qc_regExp.yaml”| String | The RegExp YAML outfile

printRegExpOutFile

-h/-help Na Na Display help message

-v/—version Na Na Display version

47

MIP_api Documentation, Release 4.0.0

48

Chapter 12. QCCollect

CHAPTER 13

rank_modelv1.18

Genmod score uses the weighted sum model (WSM) approach to rank the most likely pathogenic variant.

Generally, the higher value the more likely pathogenic variant.

Genmod_score uses config files to define the rank model, which enables customized set-up and versioning of rank

models.

The WSM uses the following alternatives and weights in the rank model:

Rank score range: -33 <=rs <=44

13.1 Consequence

Each alleles variant effect on individual transcripts are evaluated using a rule-based approach defined by SO-terms. The
SO-terms themselves are ranked in order of severity and this ranking is used to defined the weight of the consequence
alternative. The performance score is based on the most severe consequence within each gene.

Performance value for the SO-terms:

transcript_ablation = 10
initiator_codon_variant = 9
frameshift_variant = 8
stop_gained = 8

start_lost = 8

stop_lost =8
splice_acceptor_variant = §
splice_donor_variant = 8
inframe_deletion = 5
transcript_amplification = 5
splice_region_variant = 5
missense_variant = 5
protein_altering_variant = 5

inframe_insertion = 5

incomplete_terminal_codon_variant = 5

49

http://en.wikipedia.org/wiki/Weighted_sum_model
http://www.sequenceontology.org/

MIP_api Documentation, Release 4.0.0

non_coding_transcript_exon_variant = 3

synonymous_variant = 2

mature miRNA_variant = 1
non_coding_transcript_variant = 1
regulatory_region_variant = 1
upstream_gene_variant = 1
regulatory_region_amplification = 1
TFBS_amplification = 1
5_prime_UTR_variant = 1
intron_variant = 1
3_prime_UTR_variant = 1
feature_truncation = 1
TF_binding_site_variant = 1
stop_retained_variant = 1
feature_elongation = 1
regulatory_region_ablation = 1
TFBS_ablation = 1
coding_sequence_variant = 1
downstream_gene_variant = 1
NMD_transcript_variant = 1
intergenic_variant = 0

not_reported =0

13.2 Frequency

The alternative allele frequency (AF) in public databases (1000G, ExAC, MTAF, SWEREF). The highest reported
alternative frequency and observation count (locusDB) reported from the databases is used to calculate the performance

value.

Definitions:

L]

Not reported: AF Na

Very Rare: AF < 0.0005

Rare: 0.0005 <= AF < 0.005
Intermediate: 0.005 <= AF < 0.02
Common: AF >=0.02

Performance value for maximum AF:

Not reported = 4

Very rare = 3

50

Chapter 13. rank_modelv1.18

http://www.1000genomes.org/
http://exac.broadinstitute.org/about

MIP_api Documentation, Release 4.0.0

e Rare =2
¢ Intermediate = 1
e Common =-12
Observation Count
The observation count (Obs) from the local variant database locusDB.
Definitions:
* Not reported: Obs Na
e Very Rare: Obs <5
* Rare: 5<=0bs < 10
 Intermediate: 10 <= Obs < 20
¢ Common: Obs >= 20
Performance value for maximum Obs:
* Not reported = 4
* Very Rare =3
* Rare =2
¢ Intermediate = 1

e Common =-12

13.3 Inheritance Model(s)

The segregation pattern for the variant within the family. These models are currently annotated using genmod models.
A variant that is annotated as autosomal compound with no compound partner with a rank score greater than 10
will receive a penalty of -6 to the variants rank score. For single samples this rule will be enforced for variants
with inheritance model autosomal dominant, autosomal dominant denovo in addition to the autosomal compound
annotation.

Definitions:

¢ Autosomal Recessive, denoted ‘AR_hom’

¢ Autosomal Recessive denovo, denoted ‘AR_hom_dn’

¢ Autosomal Dominant, ‘AD’

¢ Autosomal Dominant denovo, ‘AD_dn’

* Autosomal Compound Heterozygote, ‘AR_comp’

¢ X-linked dominant, ‘XD’

¢ X-linked dominant de novo, ‘XD_dn’

¢ X-linked Recessive, ‘XR’

* X-linked Recessive de novo, ‘XR_dn’
Performance value for inheritance models:

¢ Valid model = 1

* No model =-12

13.3. Inheritance Model(s) 51

https://github.com/moonso/genmod

MIP_api Documentation, Release 4.0.0

e AR_comp penalty = -6

13.4 Protein Functional Prediction

The predicted functional effect on the protein. Currently 2 protein effect predictors are used (Sift, PolyPhen2). Each
predictors can contribute 1 point each to the overall protein predictor performance score.

SIFT predicts whether an amino acid substitution is likely to affect protein function based on sequence homology and
the physico-chemical similarity between the alternate amino acids [1].

PolyPhen-2 predicts the effect of an amino acid substitution on the structure and function of a protein using sequence
homology, Pfam annotations, 3D structures from PDB where available, and a number of other databases and tools
(including DSSP, ncoils etc [2].

Definitions:

* Sift Terms:
— “D” Deleterious (score<=0.05)
— “T” Tolerated (score>0.05)

e PolyPhen2HumVar Terms:
— “D”: Probably damaging (>=0.909)
— “P”: Possibly damaging (0.447<=pp2_hvar<=0.909)
— “B”: Benign (pp2_hvar<=0.446)

Performance value for protein predictors:

* Sift:
- D=1

¢ PolyPhen2Hum Var:
—DorP=1

13.5 Gene Intolerance Score

EXAC gene intolerance score - calculated by VEP’s LoFtool plugin.
Definitions:
* Not reported: LoFtool Na
* Low: LoFtool < 0.0001
e Medium: 0.0001 <= LoFtool < 0.01
» High LoFtool < 0.01
Performance value for gene intolerance score:
e Not reported =0
e Low=2
e Medium =1
* High=0

52 Chapter 13. rank_modelv1.18

http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://www.ncbi.nlm.nih.gov/pubmed/?term=22689647
http://www.ncbi.nlm.nih.gov/pubmed/?term=20354512
http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction

MIP_api Documentation, Release 4.0.0

13.6 Variant Quality Filter

Each variant call has a filter tranche attached to it indicating the quality of the actual variant call.
Definitions:

* PASS

* Other (Tranches e.g. For GATK [3]: “VQSRTrancheBOTH99.90t0100.00”

We also evaluate the combined GQ score called a Model score for reducing the impact of poor quality genotypes
across a case.

Definitions:
* Low quality (GQ => 20)
* High quality (GQ > 20)
Performance value for variant quality filter:
* Filter tranche:
- PASS =3
— Other=0
* Model score:
— Low quality =-5
— High quality =0

13.7 Conservation

The level of conservation for a sequence element (PhastCons [4]), nucleotides or classes of nucleotides PhyloP [5]
both from the Phast [6] package as well as genomic constraint score GERP [7] is used. The Phast datasets used in
the conservation calculation were generated by the UCSC/Penn State Bioinformatics comparative genomics alignment
pipeline. A description of this analysis can be found at UCSC. Each type of conservation can contribute 1 point each
to the overall conservation performance score.

Definitions:
* Conserved
— PhastCons: 0.8 >= Score <=1
— GERPRS: Score >=2
— PhyloP: Score > 2,5
Performance value for conservation:
» Conserved:
— PhastCons100way_vertebrate = 1
— PhyloP100way_vertebrate = 1
— GERP++RS =1

13.6. Variant Quality Filter 53

http://www.ncbi.nlm.nih.gov/pubmed?term=20644199
http://compgen.bscb.cornell.edu/phast/help-pages/phastCons.txt
http://www.ncbi.nlm.nih.gov/pubmed/?term=16024819
http://compgen.bscb.cornell.edu/phast/help-pages/phyloP.txt
http://www.ncbi.nlm.nih.gov/pubmed/?term=14660683
http://compgen.bscb.cornell.edu/phast/
http://www.ncbi.nlm.nih.gov/pubmed/?term=21278375
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://www.ncbi.nlm.nih.gov/pubmed/?term=15965027
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons100way

MIP_api Documentation, Release 4.0.0

13.8 Combined Annotation Dependent Depletion (CADD)

CADD is atool for scoring the deleteriousness of single nucleotide variants as well as insertion/deletions variants in the
human genome. C-scores strongly correlate with allelic diversity, pathogenicity of both coding and non-coding vari-
ants, and experimentally measured regulatory effects, and also highly rank causal variants within individual genome
sequences. The CADD-score is a pre-calculated for all SN'Vs and for indel from 1000G-project [8].

Definitions:

 Strongly deleterious (CADD > 40)

e deleterious (40 >= CADD > 30)
Mildly deleterious (30 >= CADD > 20)

* Probably deleterious (20 >= CADD > 10)

* Benign (10 >= CADD >=0)
Performance value for CADD:

 Strongly deleterious = 5

¢ Deleterious = 4

Mildly deleterious = 3

Probably deleterious = 2
* Benign=0

13.9 ClinVar

ClinVar [9] is a freely accessible, public archive of reports of the relationships among human variations and pheno-
types, with supporting evidence. Each variant in clinvar has a record of clinical significance (CLNSIG):

Definitions:
* Uncertain significance = 0
* Not provided = 1
* Benign =2
* Likely benign = 3
* Likely pathogenic = 4
* Pathogenic =5
* Drug response = 6
* Histocompatibility =7
* Other =255
Performance value for ClinVar:
* Uncertain significance = 0
* Not provided =0
* Benign =-1

¢ Likely benign =0

54 Chapter 13. rank_modelv1.18

http://cadd.gs.washington.edu/
http://www.ncbi.nlm.nih.gov/pubmed/?term=24487276
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/pubmed/?term=24234437

MIP_api Documentation, Release 4.0.0

L]

Likely pathogenic = 2
Pathogenic =5

Drug response = 0
Histocompatibility = 0
Other =0

Clinical review status

Clinical review status (CLNREVSTAT) is a measure on the certainty of the supporting evidence for the variant’s
clinical significance.

Definitions:

L]

L]

not_reported
no_assertion
no_criteria
single

mult

conf

exp

guideline

Performance value for CLNREVSTAT:

L]

not_reported =0
no_assertion = 0

no_criteria =0

single = 1
conf=1
mult =2
exp=3

guideline = 4

13.10 Spidex

Spidex is a database for snvs that have been predicted to affect splicing.

Definitions:

* Not reported =0

e Low (-1 <dpsi< 1)
e Medium (-1 <=dpsi > 1 & -2 > dpsi < 2)

« High (-2 <= dpsi >= 2)

Performance value for Spidex:

e Low=0

13.10. Spidex

55

MIP_api Documentation, Release 4.0.0

e Medium =3
* High=5

56

Chapter 13. rank_modelv1.18

CHAPTER 14

rank_modelv1.11

Genmod score uses the weighted sum model (WSM) approach to rank the most likely pathogenic variant.

Generally, the higher value the more likely pathogenic variant.

Genmod_score uses config files to define the rank model, which enables customized set-up and versioning of rank

models.

The WSM uses the following alternatives and weights in the rank model:

Rank score range: -25 <=rs <= 27

14.1 Consequence

Each alleles variant effect on individual transcripts are evaluated using a rule-based approach defined by SO-terms. The
SO-terms themselves are ranked in order of severity and this ranking is used to defined the weight of the consequence
alternative. The performance score is based on the most severe consequence within each gene.

Performance value for the SO-terms:

transcript_ablation = 10
initiator_codon_variant = 9
frameshift_variant = 8
stop_gained = 8

start_lost = 8

stop_lost =8
splice_acceptor_variant = §
splice_donor_variant = 8
inframe_deletion = 5
transcript_amplification = 5
splice_region_variant = 5
missense_variant = 5
protein_altering_variant = 5

inframe_insertion = 5

incomplete_terminal_codon_variant = 5

57

http://en.wikipedia.org/wiki/Weighted_sum_model
http://www.sequenceontology.org/

MIP_api Documentation, Release 4.0.0

* synonymous_variant = 2

* non_coding_transcript_exon_variant = 1
e mature. miRNA_variant = 1

* non_coding_transcript_variant = 1
* regulatory_region_variant = 1

e upstream_gene_variant = 1

e regulatory_region_amplification = 1
* TFBS_amplification = 1

e 5_prime_UTR_variant = 1

e intron_variant = 1

e 3_prime_UTR_variant = 1

¢ feature_truncation = 1

* TF_binding_site_variant = 1

* stop_retained_variant = 1

* feature_elongation = 1

e regulatory_region_ablation = 1

e TFBS_ablation = 1

* coding_sequence_variant = 1

* downstream_gene_variant = 1

e NMD_transcript_variant = 1

* intergenic_variant = 0

* not_reported = 0

14.2 Frequency

The alternative allele frequency (AF) in public databases (1000G, ExAC). The highest reported alternative frequency
reported from the databases is used to calculate the performance value.

Definitions:

* Not reported: AF Na

* Rare: AF <=0.005

¢ Intermediate: 0.005 <= AF <=0.02

* Common: AF > 0.02
Performance value for maximum AF:

* Not reported =3

e Rare=2

 Intermediate = 1

e Common =-12

58 Chapter 14. rank_modelv1.11

http://www.1000genomes.org/
http://exac.broadinstitute.org/about

MIP_api Documentation, Release 4.0.0

14.3 Inheritance Model(s)

The segregation pattern for the variant within the family. These models are currently annotated using genmod models.
A variant that is annotated as autosomal compound with no compound partner with a rank score greater than 10
will receive a penalty of -6 to the variants rank score. For single samples this rule will be enforced for variants
with inheritance model autosomal dominant, autosomal dominant denovo in addition to the autosomal compound
annotation.

Definitions:
¢ Autosomal Recessive, denoted ‘AR_hom’
¢ Autosomal Recessive denovo, denoted ‘AR_hom_dn’
¢ Autosomal Dominant, ‘AD’
¢ Autosomal Dominant denovo, ‘AD_dn’
* Autosomal Compound Heterozygote, ‘AR_comp’

X-linked dominant, ‘XD’

¢ X-linked dominant de novo, ‘XD_dn’

¢ X-linked Recessive, ‘XR’

¢ X-linked Recessive de novo, ‘XR_dn’
Performance value for inheritance models:

* Valid model = 1

¢ No model =-12

* AR_comp penalty = -6

14.4 Protein Functional Prediction

The predicted functional effect on the protein. Currently 2 protein effect predictors are used (Sift, PolyPhen2). Each
predictors can contribute 1 point each to the overall protein predictor performance score.

SIFT predicts whether an amino acid substitution is likely to affect protein function based on sequence homology and
the physico-chemical similarity between the alternate amino acids [1].

PolyPhen-2 predicts the effect of an amino acid substitution on the structure and function of a protein using sequence
homology, Pfam annotations, 3D structures from PDB where available, and a number of other databases and tools
(including DSSP, ncoils etc [2].

Definitions:

* Sift Terms:
— “D” Deleterious (score<=0.05)
— “T” Tolerated (score>0.05)

* PolyPhen2HumVar Terms:
— “D”: Probably damaging (>=0.909)
— “P”: Possibly damaging (0.447<=pp2_hvar<=0.909)
— “B”: Benign (pp2_hvar<=0.446)

14.3. Inheritance Model(s) 59

https://github.com/moonso/genmod
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://www.ncbi.nlm.nih.gov/pubmed/?term=22689647
http://www.ncbi.nlm.nih.gov/pubmed/?term=20354512
http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction

MIP_api Documentation, Release 4.0.0

Performance value for protein predictors:

* Sift:
-D=1

e PolyPhen2Hum Var:
— DorP=1

14.5 Variant Quality Filter

Each variant call has a filter tranche attached to it indicating the quality of the actual variant call.
Definitions:
* PASS
* Other (Tranches e.g. For GATK [3]: “VQSRTrancheBOTH99.90t0100.00”
Performance value for variant quality filter:
* PASS=3
e Other=0

14.6 Conservation

The level of conservation for a sequence element (PhastCons [4]), nucleotides or classes of nucleotides PhyloP [5]
both from the Phast [6] package as well as genomic constraint score GERP [7] is used. The Phast datasets used in
the conservation calculation were generated by the UCSC/Penn State Bioinformatics comparative genomics alignment
pipeline. A description of this analysis can be found at UCSC. Each type of conservation can contribute 1 point each
to the overall conservation performance score.

Definitions:
» Conserved
— PhastCons: 0.8 >= Score <=1
— GERPRS: Score >=2
— PhyloP: Score > 2,5
Performance value for conservation:
* Conserved:
— PhastCons =1
— PhyloP =1
- GERP=1

14.7 Combined Annotation Dependent Depletion (CADD)

CADD is a tool for scoring the deleteriousness of single nucleotide variants as well as insertion/deletions variants in the
human genome. C-scores strongly correlate with allelic diversity, pathogenicity of both coding and non-coding vari-

60 Chapter 14. rank_modelv1.11

http://www.ncbi.nlm.nih.gov/pubmed?term=20644199
http://compgen.bscb.cornell.edu/phast/help-pages/phastCons.txt
http://www.ncbi.nlm.nih.gov/pubmed/?term=16024819
http://compgen.bscb.cornell.edu/phast/help-pages/phyloP.txt
http://www.ncbi.nlm.nih.gov/pubmed/?term=14660683
http://compgen.bscb.cornell.edu/phast/
http://www.ncbi.nlm.nih.gov/pubmed/?term=21278375
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://www.ncbi.nlm.nih.gov/pubmed/?term=15965027
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons100way
http://cadd.gs.washington.edu/

MIP_api Documentation, Release 4.0.0

ants, and experimentally measured regulatory effects, and also highly rank causal variants within individual genome
sequences. The CADD-score is a pre-calculated for all SN'Vs and for indel from 1000G-project [8].

Definitions:
* Strongly deleterious (CADD > 40)
¢ deleterious (CADD > 30)
* Mildly deleterious (CADD > 20)
* Probably deleterious (CADD > 10)
Performance value for CADD:
 Strongly deleterious = 4
* Deleterious =3

Mildly deleterious = 2

Probably deleterious = 1

14.8 ClinVar

ClinVar [9] is a freely accessible, public archive of reports of the relationships among human variations and pheno-
types, with supporting evidence.

Definitions:

 Uncertain significance = 0

* Not provided = 1

* Benign =2

¢ Likely benign =3

* Likely pathogenic = 4

 Pathogenic =5

* Drug response = 6

* Histocompatibility = 7

e Other =255

Performance value for ClinVar:

» Uncertain significance = 0
* Not provided =0
* Benign =-1
* Likely benign =0
¢ Likely pathogenic = 1
» Pathogenic =2
¢ Drug response =0
* Histocompatibility = 0
e Other=0

14.8. ClinVar 61

http://www.ncbi.nlm.nih.gov/pubmed/?term=24487276
http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/pubmed/?term=24234437

MIP_api Documentation, Release 4.0.0

62

Chapter 14. rank_modelv1.11

CHAPTER 15

rank_modelv1.5

Genmod_score uses the weighted sum model (WSM) approach to rank the most likely pathogenic variant.
Generally, the higher value the more likely pathogenic variant.

Genmod_score uses config files to define the rank model, which enables customized set-up and versioning of rank
models.

The WSM uses the following alternatives and weights in rank model “v1.5”:

Rank score range: -25 <=rs <= 23

15.1 Consequence

Each alleles variant effect on individual transcripts are evaluated using a rule-based approach defined by SO-terms. The
SO-terms themselves are ranked in order of severity and this ranking is used to defined the weight of the consequence
alternative. The performance score is based on the most severe consequence within each gene.

Performance value for the SO-terms:
e transcript_ablation = 5
* splice_donor_variant = 4
* splice_acceptor_variant = 4
* stop_gained =4
e frameshift_variant = 4
* stop_lost =4
¢ initiator_codon_variant = 4
¢ inframe_insertion = 3
¢ inframe_deletion = 3
e missense_variant = 3
e transcript_amplification = 3
* splice_region_variant = 3
* incomplete_terminal_codon_variant = 3
* synonymous_variant = |

* stop_retained_variant = 1

63

http://en.wikipedia.org/wiki/Weighted_sum_model
http://www.sequenceontology.org/

MIP_api Documentation, Release 4.0.0

* coding_sequence_variant = 1

e mature_miRNA_variant = 1

e 5_prime_UTR_variant = 1

e 3_prime_UTR_variant = 1

* non_coding_transcript_exon_variant = 1
* non_coding_transcript_variant = 1
¢ intron_variant = 1

e NMD_transcript_variant = 1

e upstream_gene_variant = 1

* downstream_gene_variant = 1

e TFBS_ablation = 1

* TFBS_amplification = 1

* TF_binding_site_variant = 1

* regulatory_region_variant = 1

* regulatory_region_ablation = 1

* regulatory_region_amplification = 1
* feature_elongation = 1

¢ feature_truncation = 1

* intergenic_variant = 0

15.2 Frequency

The alternative allele frequency (AF) in public databases (1000G, ExAC). The highest reported alternative frequency

reported from the databases is used to calculate the performance value.
Definitions:

* Not reported: AF Na

e Rare: AF <= 0.005

 Intermediate: 0.005 <= AF <= 0.02

e Common: AF > 0.02
Performance value for maximum AF:

* Not reported =3

e Rare =2

* Intermediate = 1

e Common =-12

64

Chapter 15. rank_modelv1.5

http://www.1000genomes.org/
http://exac.broadinstitute.org/about

MIP_api Documentation, Release 4.0.0

15.3 Inheritance Model(s)

The segregation pattern for the variant within the family. These models are currently annotated using genmod.
Definitions:

¢ Autsomal Recessive, denoted ‘AR_hom’

¢ Autsomal Recessive denovo, denoted ‘AR_hom_dn’

¢ Autsomal Dominant, ‘AD’

¢ Autsomal Dominant denovo, ‘AD_dn’

¢ Autosomal Compound Heterozygote, ‘AR_comp’

¢ X-linked dominant, ‘XD’

¢ X-linked dominant de novo, ‘XD_dn’

¢ X-linked Recessive, ‘XR’

» X-linked Recessive de novo, ‘XR_dn’
Performance value for inheritance models:

e Valid model = 1

* No model =-12

15.4 Protein Functional Prediction

The predicted functional effect on the protein. Currently 2 protein effect predictors are used (Sift, PolyPhen2). Each
predictors can contribute 1 point each to the overall protein predictor performance score.

SIFT predicts whether an amino acid substitution is likely to affect protein function based on sequence homology and
the physico-chemical similarity between the alternate amino acids [1].

PolyPhen-2 predicts the effect of an amino acid substitution on the structure and function of a protein using sequence
homology, Pfam annotations, 3D structures from PDB where available, and a number of other databases and tools
(including DSSP, ncoils etc [2].

Definitions:
* Sift Terms:
— “D” Deleterious (score<=0.05)
— “T” Tolerated (score>0.05)
* PolyPhen2HumVar Terms:
— “D”: Probably damaging (>=0.909)
— “P”: Possibly damaging (0.447<=pp2_hvar<=0.909)
— “B”: Benign (pp2_hvar<=0.446)
Performance value for protein predictors:
* Sift:
-D=1
e PolyPhen2Hum Var:

15.3. Inheritance Model(s) 65

https://github.com/moonso/genmod
http://sift.jcvi.org/
http://genetics.bwh.harvard.edu/pph2/
http://www.ncbi.nlm.nih.gov/pubmed/?term=22689647
http://www.ncbi.nlm.nih.gov/pubmed/?term=20354512
http://genetics.bwh.harvard.edu/pph2/dokuwiki/overview#prediction

MIP_api Documentation, Release 4.0.0

— DorP=1

15.5 Variant Quality Filter

Each variant call has a filter tranche attached to it indicating the quality of the actual variant call.
Definitions:
* PASS
* Other (Tranches e.g. For GATK [3]: “VQSRTrancheBOTH99.90t0100.00”
Performance value for variant quality filter:
« PASS=3
e Other=0

15.6 Conservation

The level of conservation for a sequence element (PhastCons [4]), nucleotides or classes of nucleotides PhyloP [5]
both from the Phast [6] package as well as genomic constraint score GERP [7] is used. The Phast datasets used in
the conservation calculation were generated by the UCSC/Penn State Bioinformatics comparative genomics alignment
pipeline. A description of this analysis can be found at UCSC. Each type of conservation can contribute 1 point each
to the overall conservation performance score.

Definitions:
* Conserved
— PhastCons: 0.8 >= Score <=1
— GERPRS: Score >=2
— PhyloP: Score > 2,5
Performance value for conservation:
¢ Conserved:
— PhastCons =1
— PhyloP =1
- GERP=1

15.7 Combined Annotation Dependent Depletion (CADD)

CADD is atool for scoring the deleteriousness of single nucleotide variants as well as insertion/deletions variants in the
human genome. C-scores strongly correlate with allelic diversity, pathogenicity of both coding and non-coding vari-
ants, and experimentally measured regulatory effects, and also highly rank causal variants within individual genome
sequences. The CADD-score is a pre-calculated for all SN'Vs and for indel from 1000G-project [8].

Definitions:
* Strongly deleterious (CADD > 40)
¢ deleterious (CADD > 30)

66 Chapter 15. rank_modelv1.5

http://www.ncbi.nlm.nih.gov/pubmed?term=20644199
http://compgen.bscb.cornell.edu/phast/help-pages/phastCons.txt
http://www.ncbi.nlm.nih.gov/pubmed/?term=16024819
http://compgen.bscb.cornell.edu/phast/help-pages/phyloP.txt
http://www.ncbi.nlm.nih.gov/pubmed/?term=14660683
http://compgen.bscb.cornell.edu/phast/
http://www.ncbi.nlm.nih.gov/pubmed/?term=21278375
http://mendel.stanford.edu/SidowLab/downloads/gerp/
http://www.ncbi.nlm.nih.gov/pubmed/?term=15965027
http://genome.ucsc.edu/cgi-bin/hgTrackUi?db=hg19&g=cons100way
http://cadd.gs.washington.edu/
http://www.ncbi.nlm.nih.gov/pubmed/?term=24487276

MIP_api Documentation, Release 4.0.0

* Mildly deleterious (CADD > 20)
* Probably deleterious (CADD > 10)

Performance value for CADD:

* Strongly deleterious = 4

¢ Deleterious =3

» Mildly deleterious =2

 Probably deleterious = 1

15.8 ClinVar

ClinVar [9] is a freely accessible, public archive of reports of the relationships among human variations and pheno-
types, with supporting evidence.

Definitions:

Uncertain significance = 0

Not provided = 1

Benign =2

Likely benign = 3

Likely pathogenic = 4

Pathogenic =5

Drug response = 6

Histocompatibility = 7
Other =255

Performance value for ClinVar:

Uncertain significance = 0
Not provided = 0

Benign = -1

Likely benign =0

Likely pathogenic = 1
Pathogenic = 2

Drug response = 0
Histocompatibility = 0
Other =0

15.8. ClinVar

67

http://www.ncbi.nlm.nih.gov/clinvar/
http://www.ncbi.nlm.nih.gov/pubmed/?term=24234437

MIP_api Documentation, Release 4.0.0

68

Chapter 15. rank_modelv1.5

CHAPTER 16

svrank_modelv1.0

Genmod score uses the weighted sum model (WSM) approach to rank the most likely pathogenic variant.

Generally, the higher value the more likely pathogenic variant.

Genmod_score uses config files to define the rank model, which enables customized set-up and versioning of rank

models.

The WSM uses the following alternatives and weights in the rank model:

Rank score range: -33 <=rs <= 31

16.1 Consequence

Each alleles variant effect on individual transcripts are evaluated using a rule-based approach defined by SO-terms. The
SO-terms themselves are ranked in order of severity and this ranking is used to defined the weight of the consequence
alternative. The performance score is based on the most severe consequence within each gene.

Performance value for the SO-terms:

transcript_ablation = 10
initiator_codon_variant = 9
frameshift_variant = 8
stop_gained = 8

start_lost = 8

stop_lost =8
splice_acceptor_variant = §
splice_donor_variant = 8
inframe_deletion = 5
transcript_amplification = 5
splice_region_variant = 5
missense_variant = 5
protein_altering_variant = 5

inframe_insertion = 5

incomplete_terminal_codon_variant = 5

69

http://en.wikipedia.org/wiki/Weighted_sum_model
http://www.sequenceontology.org/

MIP_api Documentation, Release 4.0.0

* non_coding_transcript_exon_variant = 3
* synonymous_variant = 2

e mature. miRNA_variant = 1

* non_coding_transcript_variant = 1
* regulatory_region_variant = 1

e upstream_gene_variant = 1

e regulatory_region_amplification = 1
* TFBS_amplification = 1

e 5_prime_UTR_variant = 1

e intron_variant = 1

e 3_prime_UTR_variant = 1

¢ feature_truncation = 1

* TF_binding_site_variant = 1

* stop_retained_variant = 1

* feature_elongation = 1

e regulatory_region_ablation = 1

e TFBS_ablation = 1

* coding_sequence_variant = 1

* downstream_gene_variant = 1

e NMD_transcript_variant = 1

* intergenic_variant = 0

* not_reported = 0

16.2 Frequency

The alternative allele frequency (AF) in public databases (1000G). The highest reported alternative frequency reported
from the database is used to calculate the performance value.

Definitions:

* Not reported: AF Na

* Very Rare: AF < 0.0005

* Rare: 0.0005 <= AF < 0.005

* Intermediate: 0.005 <= AF < 0.02

e Common: AF >=0.02
Performance value for maximum AF:

* Not reported = 4

* Very rare =3

* Rare =2

70 Chapter 16. svrank_modelv1.0

http://www.1000genomes.org/

MIP_api Documentation, Release 4.0.0

¢ Intermediate = 1

e Common =-12

For imprecise variants each confidence interval (SVR1000G and SVL1000G) around the breakpoints are scored:

Definitions:

* Not reported: AF Na

* Rare: 0 <= AF <0.005

¢ Intermediate: 0.005 <= AF < 0.02

e Common: AF >=0.02
Performance value for maximum AF:

* Not reported = 4

e Rare =2

* Intermediate = 1

e Common =-12

16.3 SV Type

PRECISE variants are scored higher than IMPRECISE variants.
Definitions:

* Precise
Performance value for maximum AF:

¢ Precise =3

16.4 SV Length

Length of the structural variant (SVLen). Shorter SVs are scored higher.

Definitions:
* Not reported
e Long: 1000001 <= SVLen <= 100000000
e Medium: 50001 <= SVLen <= 1000000
* Short: 1 <= SVLen <= 50000
Performance value for SVLen:

* Not reported =0

e Long=-3
¢ Medium =3
e Short =8

16.3. SV Type

71

MIP_api Documentation, Release 4.0.0

16.5 Gene Intolerance Score

EXAC gene intolerance score - calculated by VEP’s LoFtool plugin.

Definitions:
* Not reported: LoFtool Na
* Low: LoFtool < 0.0001
* Medium: 0.0001 <= LoFtool < 0.01
* High LoFtool < 0.01
Performance value for gene intolerance score:
* Not reported =0
e Low=2
e Medium = 1
* High=0

16.6 Inheritance Model(s)

The segregation pattern for the variant within the family. These models are currently annotated using genmod models.
A variant that is annotated as autosomal compound with no compound partner with a rank score greater than 10
will receive a penalty of -6 to the variants rank score. For single samples this rule will be enforced for variants
with inheritance model autosomal dominant, autosomal dominant denovo in addition to the autosomal compound

annotation.

Definitions:

¢ Autosomal Recessive, denoted ‘AR_hom’

¢ Autosomal Recessive denovo, denoted ‘AR_hom_dn’

¢ Autosomal Dominant, ‘AD’

¢ Autosomal Dominant denovo, ‘AD_dn’

* Autosomal Compound Heterozygote, ‘AR_comp’

¢ X-linked dominant, ‘XD’
¢ X-linked dominant de novo, ‘XD_dn’

¢ X-linked Recessive, ‘XR’

¢ X-linked Recessive de novo, ‘XR_dn’

Performance value for inheritance models:
* Valid model = 1
¢ No model =-12
* AR_comp penalty = -6

72

Chapter 16.

svrank_modelv1.0

https://github.com/moonso/genmod

MIP_api Documentation, Release 4.0.0

16.7 Variant Quality Filter

Each variant call has a filter tranche attached to it indicating the quality of the actual variant call.
Definitions:

* PASS

* Other (Tranches e.g. For GATK [3]: “VQSRTrancheBOTH99.90t0100.00”

We also evaluate the combined GQ score called a Model score for reducing the impact of poor quality genotypes
across a case.

Definitions:
* Low quality (GQ => 20)
* High quality (GQ > 20)
Performance value for variant quality filter:
* Filter tranche:
- PASS =3
— Other=0
* Model score:
— Low quality =-5
— High quality =0

16.7. Variant Quality Filter 73

http://www.ncbi.nlm.nih.gov/pubmed?term=20644199

MIP_api Documentation, Release 4.0.0

74

Chapter 16. svrank_modelv1.0

CHAPTER 17

Dynamic Configuration File

MIP uses dynamic configuration files in YAML format to load parameters for each analysis run. An example configu-
ration file can be found here.

To facilitate using different clusters, projects and tailoring the MIP analysis to each run without having to create
new configuration files each time you can supply a cluster/project specifc configuration file. Certain paths in the
configuration file information will be updated to the current analysis when MIP executes.

This requires that these two entries are added to the configuration file:
1. ‘clusterConstantPath: {value}’, specifying the project path.
2. ‘analysisConstantPath: {value}’, specifying the analysis directory.
Entries in the configuration file containing the following “dynamic strings” will be updated in MIP:
¢ CLUSTERCONSTANTPATH! = ‘clusterConstantPath: {value}’
* ANALYSISCONSTANTPATH! = ‘analysisConstantPath: {value}’
* ANALYSISTYPE! = ‘analysisType: {value}’
e FDN! = *-f familyID’ (from command line)
For instance, the pedigree file entry in the configuration file can be supplied like this:
‘pedigreeFile: CLUSTERCONSTANTPATH!/ANALYSISTYPE!/FDN!/FDN!_pedigree.txt’

and each path element will be replaced with the corresponding value as specified in the configuration file, command
line (precedence) or pedigree file.

Note: Any entries not containing “dynamic strings” will not be modified by MIP.

Both updated and constant entries will be written to the analysis specific folder if specified by ‘-wc’.

Capture kits info supplied in the configuration file should be on samplelD level:

FDN:
IDN:
Flag: Entry

75

https://github.com/henrikstranneheim/MIP/tree/master/templates

MIP_api Documentation, Release 4.0.0

76

Chapter 17. Dynamic Configuration File

CHAPTER 18

Pedigree File

Family meta data file. Records important metrics for tracking samples and find biases in isolation of DNA or subse-
quent sequence analysis.

Among other things, the file enables:
1. Automatic coverage specification (correct target file(s))
2. Application of mendelian filtering models, e.g. autosomal dominant, based on pedigree, sex and disease status
3. Collection of analysis info for the sequence analysis pipeline

MIP supports 2 file formats for pedigree metadata PLINK and YAML.:

YAML

An example pedigree file with additional metadata can be found at metadata.yaml.

PLINK

The pedigree file format defined by PLINK, although we currently only support tab-sep pedigree files.

The first row should start with a “#” (hash) and contain relevant headers separated by tabs describing each column.
The first six columns are mandatory. The name and order of the headers should follow:

Table 18.1: Mandatory Columns

ColumnName | Type Summary

familyID String | Family identification number (mandatory)

sampleID String | Sample identification number (mandatory)

father String | Father identification number (mandatory)

mother String | Mother identification number (mandatory)

sex String | ‘I’=male ‘2’=female ‘other’=unknown (mandatory)

phenotype String | ‘-9’=missing ‘0’=missing ‘1’=unaffected ‘2’=affected (mandatory)

In addition to these mandatory columns we use the pedigree file to record meta data on each individual. Entries within
each column should be separated with ”;” (semi-colon) and entered in consecutive order. Each individual recorded in
the pedigree file is written on one line and a tab should separate each entry. No individual should be recorded twice.
The order of individuals below the header line does not matter.

If there is no information on the parents or the grandparents they should be encoded as “0”.
An example pedigree file can be found here.

The pedigree file should named: <FDN>_pedigree.txt.

77

https://github.com/henrikstranneheim/MIP/blob/develop/templates/118_pedigree.yaml
http://pngu.mgh.harvard.edu/~purcell/plink/data.shtml
https://github.com/henrikstranneheim/MIP/blob/develop/templates/1_pedigree.txt

MIP_api Documentation, Release 4.0.0

Table 18.2: Additional columns in the pedigree file

ColumnName Default Type Summary

Value
CMMSID Na String | The clinics identification number for the individual
Tissue_origin Na String | Tissue of Isolation (DNA/RNA)
Isolation_kit Na String | Kitused to isolate nucleic acids
Isolation_date Na Integer| Date of performing isolation of nucleic acids
Isolation_personnel Na String | Personnel performing isolation of nucleic acids
Medical_doctor Na String | Responsible clinician(s)
Inheritance_model Na String | Probable disease genetic model inheritance within

pedigree

Phenotype_terms Na String | Phenotypic terms associated with the disorder
CMMS_seqlD Na String | Batch identification
SciLifelD Na String | ScilifeLab identification
Capture_Kkit Na String | Capture kit used in library preparation
Capture_date Na Integer| Date of performing capture procedure
Capture_personnel Na String | Personnel performing capture procedure
Clustering_date Na Integer| Date of clustering
Sequencing_kit Na String | Sequencing kit
Clinical_db dbCMMS String | The clinical database
Clini- IEM String | Genes associated with a disease group within the clinical
cal_db_gene_annotation database
Sequencing_type Na String | Type of sequencing performed

18.1 Pedigree capture kits aliases

* Agilent Sure Select

Agilent_SureSelect.V2 => Agilent_SureSelect.V2.GenomeReferenceSource Version_targets.bed

Agilent_SureSelect.V3 => Agilent_SureSelect.V3.GenomeReferenceSource Version_targets.bed

Agilent_SureSelect.V4 => Agilent_SureSelect. V4.GenomeReferenceSource Version_targets.bed

Agilent_SureSelect.V5 => Agilent_SureSelect.V5.GenomeReferenceSource Version_targets.bed

Agilent_SureSelectCRE.V1 => Agilent_SureSelectCRE.V1.GenomeReferenceSource Version_targets.bed

Agilent_SureSelectFocusedExome.V1 => Agilent_SureSelectFocusedExome.V1.GenomeReferenceSource Version_targets.t

Latest => Agilent_SureSelectCRE.V1.GenomeReferenceSource Version_targets.bed

* NimbleGen
— Nimblegen_SeqCapEZExome.V2 => Nimblegen_SeqCapEZExome.V2.GenomeReferenceSource Version_targets.bed
— Nimblegen_SeqCapEZExome.V3 => Nimblegen_SeqCapEZExome.V3.GenomeReferenceSource Version_targets.bed

Note: You can use other target region files with MIP but then you have to supply the complete filename with ”.bed”
ending.

78 Chapter 18. Pedigree File

MIP_api Documentation, Release 4.0.0

18.1.1 Abbrevations

Abbreviation | Explation

FDN Family ID

CMMSID The CMMS samplelD

CMMS SeqlID | BatchID e.g. WESS8

SciLifelD The id tag provided by Science for Life Laboratory
AR Autosomal recessive

AD Autosomal dominant

18.1. Pedigree capture kits aliases

79

MIP_api Documentation, Release 4.0.0

80

Chapter 18. Pedigree File

CHAPTER 19

Individual Identification Number (IDN)

Ensure that each individual are anonymized and unique. The IDN also facilitates tracking of operations and analyses
performed upon the individual.

Note: Changes to the IDN format will be recorded in this document.

19.1 IDN Definition

The IDN consists of a three digits connected by a dash and a disease status (DS) letter after the last digit. The disease
status letter can be either an “A” denoting affected subjects, a “U” denoting unaffected subjects or “X” for unknown
phenotype. Each subject can only have 1 IDN and once set it should never be changed.

* The first digit represents the family identification number (FamilyID/FDN). The two first numbers, in the first
digit, represent the year that the first individual of the family was submitted to massively parallel sequencing,
MPS. The attached year is determined by the first individual to be submitted to MPS and this year should then
be used for all family members irrespective of how many times a sample or individual is resequenced. This rule
is enforced to not create multiple IDNs for the same individual and to make sure that all family members are
grouped and analyzed in the proper family. The following three numbers are the a continuous number for each
family that has been submitted for the year.

* The second digit represents the generation identification number (GenerationID/GDN) within that family. The
generation with the affected child is the defined as GDN = “I”. Older generation are numbered in ascending
order from GDN I, starting with II. Younger generations are numbered in descending order from GDN I starting
with “N” (=0 in Roman numerals).

» The last digit represents the subject identification number (SubjectID/SDN) within the family and generation.
Male subjects will have odd SDN numbers and female subjects even numbers. The lowest subject IDs will
be given to oldest subject within each family and generation and then in ascending order (both even and odd
numbers are counted). However, since there can be later additions in the pedigree this is not strictly enforced.

* The letter after the SDN is the disease status (DS) letter, which can be either of three possible letters. A =
affected, U = unaffected and X = unknown.

19.1.1 Example

FamilyID.GenerationID.SubjectID(DS) or FDN.GDN.SDN(DS)

A child in the affected child generation being the second oldest male sibling in family 1 and the first to be submitted
to sequencing within the family in 1998 would be written as: 98001-1-3A (Figure 1).

81

MIP_api Documentation, Release 4.0.0

Individual Number:
Ascending numbers,
oldest individual gets
lowest number. Male

Family Number gre assigned odd
numbers, female even
numbers.

98001-1-3A

Family Submission Year:
The first two number represents the
year the first individual was
submitted to MPS and this year
should then be used for all family
members irrespective of how many
times a sample or individual is
resequenced. Last three numbers

Generation Number:
The index case
belongs to generation
|, parents nr I,
grandparents lll etc.
Any children of

98001-111-1Y 98001-111-2U
98001-11-2Uf 98001-11-3U

] L

98001-1-1U 98001-1-3A 9800f-1-4A 98001-I-5U

I

98001-N-1U 98001-N-3U

Disease Status:
A=affected
U=unaffected

represents the order of submission for 9eneration | are

the year.

denoted N, -l etc.

82

Chapter 19. Individual Identification Number (IDN)

CHAPTER 20

The Code

20.1 Subroutines

20.1.1 FIDSubmitdob

Handles all communication with SLURM. All jobIDs and SLURM dependencies for all programs are set and submitted
here. Each program in MIP belongs to a “path” and together with the sampleID and/or familyID creates a chain of
dependencies determining the execution order in SLURM.

Paths

The central flow in MIP is called the MAIN path. MIP supports branching from the MAIN path for both familyIDs
and samplelDs. It is also possible to create completely separate paths, which are not associated at all with the MAIN
path. However, once branched of from the MAIN path there is currently no support to merge the branch to the trunk
(i.e. MAIN path) again.

Each program is supplied with a dependency flag, which determines its dependencies in the path.

Dependency Flags:

-1 = Not dependent on earlier scripts, and are self cul-de-sacs

0 = Not dependent on earlier scripts

1 = Dependent on earlier scripts (within sampleID_path or familyID_path)

2 = Dependent on earlier scripts (within sampleID_path or familyID_path), but are self
3 = Dependent on earlier scripts and executed in parallel within step

4 = Dependent on earlier scripts and parallel scripts and executed in parallel within st
5 = Dependent on earlier scripts both family and sample and adds to both familyID and s4g
Hash

All jobIDs are saved to the jobID hash using $jobID{FAMILYID_PATH} {CHAINKEY}. Only the last jobID(s)
required to set the downstrem dependencies are saved.

83

ul-de-sécs.

ep
mpleId Jjobs

MIP_api Documentation, Release 4.0.0

84

Chapter 20. The Code

CHAPTER 21

Indices and tables

¢ genindex
* modindex

e search

85

	Overview
	Features
	Example Usage
	Getting Started
	Installation
	Prerequisites
	Usage

	Change Log
	Installation
	Automated Installation
	Manual Installation

	Setup
	Filename convention
	Dependencies

	MIP Analysis
	Start standard analysis
	Excluding a program from the analysis
	Skipping a already processed module i.e expect that the ouput has already been generated
	Simulate standard analysis
	Rerun analysis using exactly the same parameters as last analysis run
	Rerun analysis using exactly the same parameters as last analysis run, but in simulation mode
	Generate all supported standard programs
	You can also modulate the mode of `-pp' using -ppm:

	Adding a new program
	Call DefineParameters
	Command line arguments in GetOptions
	if-block run checker in MAIN
	Custom subroutine
	Further information

	Structure
	mip.pl
	Sequence QC
	Alignment
	BAM file manipulation
	Coverage QC
	Variant calling
	Variant QC
	Variant Selection
	Variant annotation
	Variant evaluation
	qcCollect.pl
	covplots_exome.R / covplots_genome.R

	vcfParser
	Usage
	Installation

	QCCollect
	Usage
	Installation
	SetUp

	rank_modelv1.18
	Consequence
	Frequency
	Inheritance Model(s)
	Protein Functional Prediction
	Gene Intolerance Score
	Variant Quality Filter
	Conservation
	Combined Annotation Dependent Depletion (CADD)
	ClinVar
	Spidex

	rank_modelv1.11
	Consequence
	Frequency
	Inheritance Model(s)
	Protein Functional Prediction
	Variant Quality Filter
	Conservation
	Combined Annotation Dependent Depletion (CADD)
	ClinVar

	rank_modelv1.5
	Consequence
	Frequency
	Inheritance Model(s)
	Protein Functional Prediction
	Variant Quality Filter
	Conservation
	Combined Annotation Dependent Depletion (CADD)
	ClinVar

	svrank_modelv1.0
	Consequence
	Frequency
	SV Type
	SV Length
	Gene Intolerance Score
	Inheritance Model(s)
	Variant Quality Filter

	Dynamic Configuration File
	Pedigree File
	Pedigree capture kits aliases

	Individual Identification Number (IDN)
	IDN Definition

	The Code
	Subroutines

	Indices and tables

