

Welcome to Minter!

Minter 101

	Introduction
	What is Minter?

	Install Minter
	Using binary

	Using Docker

	From Source

	Troubleshooting

	Blockchain Specification
	Tendermint

	Consensus

	Block speed

	Block size

	Coins
	Coin Issuance

	Issuance Fees

	Coin Exchange

	Transactions
	Semantic

	Signature Types

	Types

	Send transaction

	Sell coin transaction

	Sell all coin transaction

	Buy coin transaction

	Create coin transaction

	Declare candidacy transaction

	Delegate transaction

	Unbond transaction

	Redeem check transaction

	Set candidate online transaction

	Set candidate offline transaction

	Create multisig address

	Minter Check
	Introduction

	Check hijacking protection

	How to issue a Minter Check

	How to cash a Minter Check

	Commission

	Multisignatures
	Structure of multisig wallet

	How to create multisig wallet

	How to use multisig wallet

	Commissions
	Standard commissions

	Special fees

	Validators
	Introduction

	Requirements

	Validators limitations

	Rewards

	Rules and fines

	Becoming validator in testnet

	DDOS protection. Sentry node architecture

	Delegator FAQ
	What is a delegator?

	Directives of delegators

	Revenue

	Validator’s commission

	Risks

	Minter Node API
	Status

	Volume of Base Coin in Blockchain

	Candidate

	Validators

	Balance

	Transaction count

	Send transaction

	Transaction

	Block

	Coin Info

	Estimate sell coin

	Estimate buy coin

	Estimate tx commission

	Minter SDK
	JavaScript SDK

	iOS SDK

	PHP SDK

	Android SDK

Minter 102

	Running in production
	DOS Exposure and Mitigation

	Monitoring Tendermint

	Monitoring Minter

	What happens when my app dies?

	Signal handling

	Hardware

	Configuration parameters

Introduction

Welcome to the Minter guide! This is the best place to start if you are new
to Minter.

What is Minter?

Minter is a blockchain network that lets people, projects, and companies issue
and manage their own coins and trade them at a fair market price with absolute and instant liquidity.

Install Minter

There are several ways you can install Minter Blockchain Testnet node on your machine:

Using binary

Download Minter

Get latest binary build [https://github.com/MinterTeam/minter-go-node/releases] suitable for your architecture and
unpack it to desired folder.

Run Minter

	13

	./minter

Then open http://localhost:3000/ in local browser to see node’s GUI.

Using Docker

You’ll need docker [https://docker.com/] and docker compose [https://docs.docker.com/compose/] installed.

Clone Minter source code to your machine

	1
2

	git clone https://github.com/MinterTeam/minter-go-node.git
cd minter-go-node

Start Minter

	10

	docker-compose up

Then open http://localhost:3000/ in local browser to see node’s GUI.

From Source

You’ll need go installed [https://golang.org/doc/install] and the required
environment variables set [https://github.com/tendermint/tendermint/wiki/Setting-GOPATH]

Clone Minter source code to your machine

	1
2
3
4

	mkdir $GOPATH/src/github.com/MinterTeam
cd $GOPATH/src/github.com/MinterTeam
git clone https://github.com/MinterTeam/minter-go-node.git
cd minter-go-node

Get Tools & Dependencies

	5
6

	make get_tools
make get_vendor_deps

Compile

	7

	make install

to put the binary in $GOPATH/bin or use:

	8

	make build

to put the binary in ./build.

The latest minter version is now installed.

Run Minter

	13

	minter

Then open http://localhost:3000/ in local browser to see node’s GUI.

Troubleshooting

Too many open files (24)

The default number of files Linux can open (per-process) is 1024. Tendermint is known to open more than 1024 files.
This causes the process to crash. A quick fix is to run ulimit -n 4096 (increase the number of open files allowed) and
then restart the process with gaiad start. If you are using systemd or another process manager to launch gaiad this
may require some configuration at that level.

https://easyengine.io/tutorials/linux/increase-open-files-limit/

Blockchain Specification

Tendermint

Minter Blockchain utilizes Tendermint Consensus Engine.

Tendermint is software for securely and consistently replicating an application on many machines.
By securely, we mean that Tendermint works even if up to 1/3 of machines fail in arbitrary ways.
By consistently, we mean that every non-faulty machine sees the same transaction log and computes the same state.
Secure and consistent replication is a fundamental problem in distributed systems; it plays a critical role in the
fault tolerance of a broad range of applications, from currencies, to elections, to infrastructure orchestration,
and beyond.

Tendermint is designed to be easy-to-use, simple-to-understand, highly performant, and useful for a wide variety of
distributed applications.

You can read more about Tendermint Consensus in official documentation [https://tendermint.readthedocs.io/en/master/introduction.html#consensus-overview].

Consensus

In Minter we implemented Delegated Proof of Stake (DPOS) Consensus Protocol.

DPOS is the fastest, most efficient, most decentralized, and most flexible consensus model available. DPOS leverages
the power of stakeholder approval voting to resolve consensus issues in a fair and democratic way.

Block speed

Minter Blockchain is configured to produce 1 block per 5 sec. Actual block speed may vary depends on validators count,
their computational power, internet speed, etc.

Block size

We limit block size to 10 000 transactions. Block size in terms of bytes is not limited.

Coins

Minter Blockchain is multi-coin system.

Base coin in testnet is MNT.

Base coin in mainnet is BIP.

Smallest part of each coin is called pip.

1 pip = 1^-18 of any coin. In Blockchain and API we only operating with pips.

Note:
Each coin has its own pip. You should treat pip like atomic part of a coin, not as currency.

1 MNT = 10^18 pip (MNT’s pip)

1 ABC = 10^18 pip (ABC’s pip)

1 MNT != 1 ABC

Coin Issuance

Every user of Minter can issue own coin. Each coin is backed by base coin in some proportion.
Issue own coin is as simple as filling a form with given fields:

[image: _images/coin-minter.png]

	Coin name - Name of a coin. Arbitrary string up to 64 letters length.

	Coin symbol - Symbol of a coin. Must be unique, alphabetic, uppercase, 3 to 10 letters length.

	Initial supply - Amount of coins to issue. Issued coins will be available to sender account.

	Initial reserve - Initial reserve in base coin.

	Constant Reserve Ratio (CRR) - uint, should be from 10 to 100.

After coin issued you can send is as ordinary coin using standard wallets.

Issuance Fees

To issue a coin Coiner should pay fee. Fee is depends on length of Coin Symbol.

3 letters – 1 000 000 bips + standard transaction fee

4 letters – 100 000 bips + standard transaction fee

5 letters – 10 000 bips + standard transaction fee

6 letters – 1000 bips + standard transaction fee

7 letters – 100 bips + standard transaction fee

8 letters – 10 bips + standard transaction fee

9-10 letters - just standard transaction fee

Coin Exchange

Each coin in system can be instantly exchanged to another coin. This is possible because each coin has “reserve” in base
coin.

Here are some formulas we are using for coin conversion:

	CalculatePurchaseReturn

	Given a coin supply (s), reserve balance (r), CRR (c) and a deposit amount (d),
calculates the return for a given conversion (in the base coin):

return s * ((1 + d / r) ^ c - 1);

	CalculateSaleReturn

	Given a coin supply (s), reserve balance (r), CRR (c) and a sell amount (a),
calculates the return for a given conversion

return r * (1 - (1 - a / s) ^ (1 / c));

Transactions

Semantic

Transactions in Minter are RLP-encoded [https://github.com/ethereum/wiki/wiki/RLP] structures.

Example of a signed transaction:

f873230101aae98a4d4e540000000000000094a93163fdf10724dc4785ff5cbfb9
ac0b5949409f880de0b6b3a764000080801ba06838db4a2197cfd70ede8d8d184d
bf332932ca051a243eb7886791250e545dd3a04b63fb1d1b5ef5f2cbd2ea12530c
da520b3280dcb75bfd45a873629109f24b29

Each transaction has:

	Nonce - int, used for prevent transaction reply.

	Gas Price - big int, used for managing transaction fees.

	Gas Coin - 10 bytes, symbol of a coin to pay fee

	Type - type of transaction (see below).

	Data - data of transaction (depends on transaction type).

	Payload (arbitrary bytes) - arbitrary user-defined bytes.

	Service Data - reserved field.

	Signature Type - single or multisig transaction.

	Signature Data - digital signature of transaction.

type Transaction struct {
 Nonce uint64
 GasPrice *big.Int
 GasCoin [10]byte
 Type byte
 Data []byte
 Payload []byte
 ServiceData []byte
 SignatureType byte
 SignatureData Signature
}

type Signature struct {
 V *big.Int
 R *big.Int
 S *big.Int
}

type MultiSignature struct {
 MultisigAddress [20]byte
 Signatures []Signature
}

Signature Types

	Type Name

	Byte

	TypeSingle

	0x01

	TypeMulti

	0x02

Types

Type of transaction is determined by a single byte.

	Type Name

	Byte

	TypeSend

	0x01

	TypeSellCoin

	0x02

	TypeSellAllCoin

	0x03

	TypeBuyCoin

	0x04

	TypeCreateCoin

	0x05

	TypeDeclareCandidacy

	0x06

	TypeDelegate

	0x07

	TypeUnbond

	0x08

	TypeRedeemCheck

	0x09

	TypeSetCandidateOnline

	0x0A

	TypeSetCandidateOffline

	0x0B

	TypeCreateMultisig

	0x0C

Send transaction

Type: 0x01

Transaction for sending arbitrary coin.

Data field contents:

type SendData struct {
 Coin [10]byte
 To [20]byte
 Value *big.Int
}

Coin - Symbol of a coin.

To - Recipient address in Minter Network.

Value - Amount of Coin to send.

Sell coin transaction

Type: 0x02

Transaction for selling one coin (owned by sender) in favour of another coin in a system.

Data field contents:

type SellCoinData struct {
 CoinToSell [10]byte
 ValueToSell *big.Int
 CoinToBuy [10]byte
}

CoinToSell - Symbol of a coin to give.

ValueToSell - Amount of CoinToSell to give.

CoinToBuy - Symbol of a coin to get.

Sell all coin transaction

Type: 0x03

Transaction for selling all existing coins of one type (owned by sender) in favour of another coin in a system.

Data field contents:

type SellAllCoinData struct {
 CoinToSell [10]byte
 CoinToBuy [10]byte
}

CoinToSell - Symbol of a coin to give.

CoinToBuy - Symbol of a coin to get.

Buy coin transaction

Type: 0x04

Transaction for buy a coin paying another coin (owned by sender).

Data field contents:

type BuyCoinData struct {
 CoinToBuy [10]byte
 ValueToBuy *big.Int
 CoinToSell [10]byte
}

CoinToBuy - Symbol of a coin to get.

ValueToBuy - Amount of CoinToBuy to get.

CoinToSell - Symbol of a coin to give.

Create coin transaction

Type: 0x05

Transaction for creating new coin in a system.

Data field contents:

type CreateCoinData struct {
 Name string
 Symbol [10]byte
 InitialAmount *big.Int
 InitialReserve *big.Int
 ConstantReserveRatio uint
}

Name - Name of a coin. Arbitrary string up to 64 letters length.

Symbol - Symbol of a coin. Must be unique, alphabetic, uppercase, 3 to 10 symbols length.

InitialAmount - Amount of coins to issue. Issued coins will be available to sender account.

InitialReserve - Initial reserve in BIP’s.

ConstantReserveRatio - CRR, uint, should be from 10 to 100.

Declare candidacy transaction

Type: 0x06

Transaction for declaring new validator candidacy.

Data field contents:

type DeclareCandidacyData struct {
 Address [20]byte
 PubKey []byte
 Commission uint
 Coin [10]byte
 Stake *big.Int
}

Address - Address of candidate in Minter Network. This address would be able to control candidate. Also all rewards will be sent to this address.

PubKey - Public key of a validator.

Commission - Commission (from 0 to 100) from rewards which delegators will pay to validator.

Coin - Symbol of coin to stake.

Stake - Amount of coins to stake.

Delegate transaction

Type: 0x07

Transaction for delegating funds to validator.

Data field contents:

type DelegateData struct {
 PubKey []byte
 Coin [10]byte
 Stake *big.Int
}

PubKey - Public key of a validator.

Coin - Symbol of coin to stake.

Stake - Amount of coins to stake.

Unbond transaction

Type: 0x08

Transaction for unbonding funds from validator’s stake.

Data field contents:

type UnbondData struct {
 PubKey []byte
 Coin [10]byte
 Value *big.Int
}

PubKey - Public key of a validator.

Coin - Symbol of coin to unbond.

Value - Amount of coins to unbond.

Redeem check transaction

Type: 0x09

Transaction for redeeming a check.

Data field contents:

type RedeemCheckData struct {
 RawCheck []byte
 Proof [65]byte
}

RawCheck - Raw check received from sender.

Proof - Proof of owning a check.

Set candidate online transaction

Type: 0x0A

Transaction for turning candidate on. This transaction should be sent from address which is set in the “Declare candidacy transaction”.

Data field contents:

type SetCandidateOnData struct {
 PubKey []byte
}

PubKey - Public key of a validator.

Set candidate offline transaction

Type: 0x0B

Transaction for turning candidate off. This transaction should be sent from address which is set in the “Declare candidacy transaction”.

Data field contents:

type SetCandidateOffData struct {
 PubKey []byte
}

PubKey - Public key of a validator.

Create multisig address

Type: 0x0C

Transaction for creating multisignature address.

Data field contents:

type CreateMultisigData struct {
 Threshold uint
 Weights []uint
 Addresses [][20]byte
}

Minter Check

Minter Check is like an ordinary bank check. Each user of network can issue check with any amount of coins
and pass it to another person. Receiver will be able to cash a check from arbitrary account.

Introduction

Checks are prefixed with “Mc”. Here is example of a Minter Check:

Mcf89b01830f423f8a4d4e5400000000000000843b9aca00b8419b3beac2c6ad88a8bd54d2
4912754bb820e58345731cb1b9bc0885ee74f9e50a58a80aa990a29c98b05541b266af99d3
825bb1e5ed4e540c6e2f7c9b40af9ecc011ca0387fd67ec41be0f1cf92c7d0181368b4c67a
b07df2d2384192520d74ff77ace6a04ba0e7ad7b34c64223fe59584bc464d53fcdc7091faa
ee5df0451254062cfb37

	Each Minter Check has:

	
	Nonce - unique “id” of the check.

	Coin Symbol - symbol of coin.

	Value - amount of coins.

	Due Block - defines last block height in which the check can be used.

	Lock - secret to prevent hijacking.

	Signature - signature of issuer.

Check hijacking protection

Minter Checks are issued offline and do not exist in blockchain before “cashing”.
So we decided to use special passphrase to protect checks from hijacking by another person in the moment of activation.
Hash of this passphrase is used as private key in ECDSA to prove that sender is the one who owns the check.

TODO: describe algorithm

How to issue a Minter Check

For issuing Minter Check you can use our tool [https://minter-coupon.dl-dev.ru/].

	You will need to fill a form:

	
	Nonce - unique “id” of the check.

	Coin Symbol - symbol of coin.

	Value - amount of coins.

	Pass phrase - secret phrase which you will pass to receiver of the check.

	Private key - private key of an account with funds to send.

How to cash a Minter Check

	To redeem a check user should have:

	
	Check itself

	Secret passphrase

[image: _images/redeem-check.png]

After redeeming balance of user will increased instantly.

Commission

There is no commission for issuing a check because it done offline. In the moment of
cashing issuer will pay standard “send” commission.

Multisignatures

Minter has built-in support for multisignature wallets. Multisignatures, or technically
Accountable Subgroup Multisignatures (ASM), are signature schemes which enable any
subgroup of a set of signers to sign any message, and reveal to the verifier exactly
who the signers were.

Suppose the set of signers is of size n. If we validate a signature if any subgroup
of size k signs a message, this becomes what is commonly reffered to as a k of n
multisig in Bitcoin.

	Minter Multisig Wallets has 2 main goals:

	
	Atomic swaps with sidechains

	Basic usage to manage funds within Minter Blockchain

Structure of multisig wallet

	Each multisig wallet has:

	
	Set of signers with corresponding weights

	Threshold

Transactions from multisig wallets are proceed identically to the K of N multisig in Bitcoin,
except the multisig fails if the sum of the weights of signatures is less than the threshold.

How to create multisig wallet

TO BE DESCRIBED

How to use multisig wallet

TO BE DESCRIBED

Commissions

For each transaction sender should pay fee. Fees are measured in “units”.

1 unit = 10^15 pip = 0.001 bip.

Standard commissions

Here is a list of current fees:

	Type

	Fee

	TypeSend

	10 units

	TypeSellCoin

	100 units

	TypeSellAllCoin

	100 units

	TypeBuyCoin

	100 units

	TypeCreateCoin

	1000 units

	TypeDeclareCandidacy

	10000 units

	TypeDelegate

	100 units

	TypeUnbond

	100 units

	TypeRedeemCheck

	10 units

	TypeSetCandidateOnline

	100 units

	TypeSetCandidateOffline

	100 units

Also sender should pay extra 2 units per byte in Payload and Service Data fields.

Special fees

To issue a coin with short name Coiner should pay extra fee. Fee is depends on length of Coin Symbol.

3 letters – 1 000 000 bips + standard transaction fee

4 letters – 100 000 bips + standard transaction fee

5 letters – 10 000 bips + standard transaction fee

6 letters – 1000 bips + standard transaction fee

7 letters – 100 bips + standard transaction fee

8 letters – 10 bips + standard transaction fee

9-10 letters - just standard transaction fee

Validators

Introduction

The Minter Blockchain is based on Tendermint, which relies on a set of validators that are
responsible for committing new blocks in the blockchain. These validators participate in
the consensus protocol by broadcasting votes which contain cryptographic signatures signed
by each validator’s private key.

Validator candidates can bond their own coins and have coins “delegated”, or staked, to them
by token holders. The validators are determined by who has the most stake delegated to them.

Validators and their delegators will earn BIP (MNT) as rewards for blocks and commissions. Note
that validators can set commission on the rewards their delegators receive as additional incentive.

If validators double sign or frequently offline, their staked coins (including coins of users that
delegated to them) can be slashed. The penalty depends on the severity of the violation.

Requirements

Minimal requirements for running Validator’s Node in testnet are:

	4GB RAM

	200GB SSD

	x64 2.0 GHz 4 vCPUs

SSD disks are preferable for high transaction throughput.

Recommended:

	4GB RAM

	200GB SSD

	x64 3.4 GHz 8 vCPUs

	HSM

Validators limitations

Minter Network has limited number of available slots for validators.

At genesis there will be just 16 of them. 4 slots will be added each 518,400 blocks.
Maximum validators count is 256.

Rewards

Rewards for blocks and commissions are accumulated and proportionally (based on stake value)
payed once per 12 blocks (approx 1 minute) to all active validators (and their delegators).

Block rewards are configured to decrease from 333 to 0 BIP (MNT) in ~7 years.

Delegators receive their rewards at the same time after paying commission to their validators
(commission value is based on validator’s settings).

10% from reward going to DAO account.

10% from reward going to Developers.

Rules and fines

Validators have one main responsibility:

	Be able to constantly run a correct version of the software: validators need to make sure that their
servers are always online and their private keys are not compromised.

If a validator misbehaves, its bonded stake along with its delegators’ stake and will be slashed.
The severity of the punishment depends on the type of fault. There are 3 main faults that can result in slashing
of funds for a validator and its delegators:

	Double signing: If someone reports on chain A that a validator signed two blocks at the same height on chain
A and chain B, this validator will get slashed on chain A

	Unavailability: If a validator’s signature has not been included in the last 12 blocks,
1% of stake will get slashed and validator will be turned off

Note that even if a validator does not intentionally misbehave, it can still be slashed if its node crashes,
looses connectivity, gets DDOSed, or if its private key is compromised.

Becoming validator in testnet

	
	Install and run Minter Full Node.

	See Install Minter. Make sure your node successfully synchronized.

	Get your validator’s public key from Minter GUI [http://localhost:3000/].

	
	Go to Minter Console [https://testnet.console.minter.network/masternode/] and send 2 transactions:

	Fill and send Declare candidacy and Set candidate online forms.

P.S. You can receive testnet coins in our telegram wallet @BipWallet_Bot.

	3.1. Declare candidacy

	Validators should declare their candidacy, after which users can delegate
and, if they so wish, unbond. Then declaring candidacy validator should fill a form:

	Address - You will receive rewards to this address and will be able to on/off your validator.

	Public Key - Paste public key from step 2 (Mp…).

	Commission - Set commission for delegated stakes.

	Coin - Enter coin of your stake (i.e. MNT).

	Stake - Enter value of your stake in given coin.

[image: _images/console-declare.png]

	3.2. Set candidate online

	Validator is offline by default. When offline, validator is not included in the list of
Minter Blockchain validators, so he is not receiving any rewards and cannot be punished
for low availability.

To turn your validator on, you should provide Public Key (from step 2 (Mp…)).

Note: You should send transaction from address you choose in Address field in step 3.1

[image: _images/console-candidate-on.png]

	
	Done.

	Now you will receive reward as long as your node is running and available.

DDOS protection. Sentry node architecture

Denial-of-service attacks occur when an attacker sends a flood of internet traffic to an IP
address to prevent the server at the IP address from connecting to the internet.

An attacker scans the network, tries to learn the IP address of various validator
nodes and disconnect them from communication by flooding them with traffic.

One recommended way to mitigate these risks is for validators to carefully
structure their network topology in a so-called sentry node architecture.

Validator nodes should only connect to full-nodes they trust because they
operate them themselves or are run by other validators they know socially.
A validator node will typically run in a data center. Most data centers provide
direct links the networks of major cloud providers. The validator can use
those links to connect to sentry nodes in the cloud. This shifts the burden
of denial-of-service from the validator’s node directly to its sentry nodes,
and may require new sentry nodes be spun up or activated to mitigate attacks
on existing ones.

Sentry nodes can be quickly spun up or change their IP addresses. Because
the links to the sentry nodes are in private IP space, an internet based
attacked cannot disturb them directly. This will ensure validator block
proposals and votes always make it to the rest of the network.

It is expected that good operating procedures on that part of validators will
completely mitigate these threats.

Practical instructions

To setup your sentry node architecture you can follow the instructions below:

Validators nodes should edit their config.toml:

Comma separated list of nodes to keep persistent connections to
Do not add private peers to this list if you don't want them advertised
persistent_peers = [list of sentry nodes]

Set true to enable the peer-exchange reactor
pex = false

Sentry Nodes should edit their config.toml:

Comma separated list of peer IDs to keep private (will not be gossiped to other peers)
private_peer_ids = "ipaddress of validator nodes"

Delegator FAQ

What is a delegator?

People that cannot, or do not want to run validator operations, can still participate in
the staking process as delegators. Indeed, validators are not chosen based on their own
stake but based on their total stake, which is the sum of their own stake and of the stake
that is delegated to them. This is an important property, as it makes delegators a
safeguard against validators that exhibit bad behavior. If a validator misbehaves, its
delegators will move their staked coins away from it, thereby reducing its stake. Eventually,
if a validator’s stake falls under the top addresses with highest stake, it will exit the
validator set.

Delegators share the revenue of their validators, but they also share the risks. In terms
of revenue, validators and delegators differ in that validators can apply a commission on
the revenue that goes to their delegator before it is distributed. This commission is
known to delegators beforehand and cannot be changed. In terms of risk, delegators’ coins
can be slashed if their validator misbehaves. For more, see Risks section.

To become delegators, coin holders need to send a “Delegate transaction” where they specify
how many coins they want to bond and to which validator. Later, if a delegator wants to
unbond part or all of its stake, it needs to send an “Unbond transaction”. From there, the
delegator will have to wait 30 days to retrieve its coins.

Directives of delegators

Being a delegator is not a passive task. Here are the main directives of a delegator:

	Perform careful due diligence on validators before delegating. If a validator misbehaves,
part of its total stake, which includes the stake of its delegators, can be slashed. Delegators
should therefore carefully select validators they think will behave correctly.

	Actively monitor their validator after having delegated. Delegators should ensure that the
validators they’re delegating to behaves correctly, meaning that they have good uptime, do not
get hacked and participate in governance. If a delegator is not satisfied with its validator,
it can unbond and switch to another validator.

Revenue

Validators and delegators earn revenue in exchange for their services. This revenue is given in three forms:

	Block rewards

	Transaction fees: Each transaction on the Minter Network comes with transactions fees. Fees are distributed to
validators and delegators in proportion to their stake.

Validator’s commission

Each validator’s staking pool receives revenue in proportion to its total stake. However, before this revenue is
distributed to delegators inside the staking pool, the validator can apply a commission. In other words, delegators
have to pay a commission to their validators on the revenue they earn.

10% from reward going to DAO account.

10% from reward going to Developers.

Lets consider a validator whose stake (i.e. self-bonded stake + delegated stake) is 10% of the total stake of all
validators. This validator has 20% self-bonded stake and applies a commission of 10%. Now let us consider a block
with the following revenue:

	111 Bips as block reward (after subtraction taxes of 20%)

	10 Bips as transaction fees (after subtraction taxes of 20%)

This amounts to a total of 121 Bips to be distributed among all staking pools.

Our validator’s staking pool represents 10% of the total stake, which means the pool obtains 12.1 bips. Now let us
look at the internal distribution of revenue:

	Commission = 10% * 80% * 12.1 bips = 0.69696 bips

	Validator’s revenue = 20% * 12.1 bips + Commission = 3.11696 bips

	Delegators’ total revenue = 80% * 12.1 bips - Commission = 8.98304 bips

Then, each delegator in the staking pool can claim its portion of the delegators’ total revenue.

Risks

Staking coins is not free of risk. First, staked coins are locked up, and retrieving them requires a 30 days waiting
period called unbonding period. Additionally, if a validator misbehaves, a portion of its total stake can be slashed
(i.e. destroyed). This includes the stake of their delegators.

There are 2 main slashing conditions:

	Double signing: If someone reports on chain A that a validator signed two blocks at the same height on chain
A and chain B, this validator will get slashed on chain A

	Unavailability: If a validator’s signature has not been included in the last 12 blocks,
1% of stake will get slashed and validator will be turned off

This is why delegators should perform careful due diligence on validators before delegating. It is also important
that delegators actively monitor the activity of their validators. If a validator behaves suspiciously or is too
often offline, delegators can choose to unbond from it or switch to another validator. Delegators can also mitigate
risk by distributing their stake across multiple validators.

Minter Node API

Minter Node API is based on JSON format. JSON is a lightweight data-interchange format.
It can represent numbers, strings, ordered sequences of values, and collections of name/value pairs.

If request is successful, Minter Node API will respond with result key and code equal to zero. Otherwise, it will
respond with non-zero code and key log with error description.

Status

This endpoint shows current state of the node. You also can use it to check if node is running in
normal mode.

curl -s 'localhost:8841/api/status'

{
 "code": 0,
 "result": {
 "version": "0.2.5",
 "latest_block_hash": "0CC015EA926173130C793BBE6E38145BF379CF6A",
 "latest_app_hash": "1FB9B53F32298759D936E4A10A866E7AFB930EA4D7CC7184EC992F2320592E81",
 "latest_block_height": 82541,
 "latest_block_time": "2018-08-28T18:26:47.112704193+03:00",
 "tm_status": {
 "node_info": {
 "id": "62a5d75ef3f48dcf62aad263a170b9c82eb3f2b8",
 "listen_addr": "192.168.1.100:26656",
 "network": "minter-test-network-19",
 "version": "0.23.0",
 "channels": "4020212223303800",
 "moniker": "MinterNode",
 "other": [
 "amino_version=0.10.1",
 "p2p_version=0.5.0",
 "consensus_version=v1/0.2.2",
 "rpc_version=0.7.0/3",
 "tx_index=on",
 "rpc_addr=tcp://0.0.0.0:26657"
]
 },
 "sync_info": {
 "latest_block_hash": "0CC015EA926173130C793BBE6E38145BF379CF6A",
 "latest_app_hash": "1FB9B53F32298759D936E4A10A866E7AFB930EA4D7CC7184EC992F2320592E81",
 "latest_block_height": "82541",
 "latest_block_time": "2018-08-28T15:26:47.112704193Z",
 "catching_up": true
 },
 "validator_info": {
 "address": "BCFB297FD1EE0458E1DBDA8EBAE2C599CD0A5984",
 "pub_key": {
 "type": "tendermint/PubKeyEd25519",
 "value": "G2lZ+lJWW/kQvhOOI6CHVBHSEgjYq9awDgdlErLeVAE="
 },
 "voting_power": "0"
 }
 }
 }
}

Volume of Base Coin in Blockchain

This endpoint shows amount of base coin (BIP or MNT) existing in the network. It counts block rewards, premine and
relayed rewards.

curl -s 'localhost:8841/api/bipVolume?height={height}'

{
 "code":0,
 "result":{
 "volume":"20000222000000000000000000"
 }
}

Candidate

This endpoint shows candidate’s info by provided public_key. It will respond with 404 code if candidate is not
found.

	candidate_address - Address of a candidate in minter network. This address is used to manage
candidate and receive rewards.

	total_stake - Total stake calculated in base coin (MNT or BIP).

	commission - Commission for delerators. Measured in percents. Can be 0..100.

	accumulated_reward - Reward waiting to be sent to validator and his delegators. Reward is payed each 12 blocks.

	stakes - List of candidate’s stakes.

	created_at_block - Height of block when candidate was created.

	status - Status of a candidate.

	1 - Offline

	2 - Online

	absent_times - How many blocks candidate missed. If this number reaches 12, then candidate’s stake will be
slashed by 1% and candidate will be turned off.

curl -s 'localhost:8841/api/candidate/{public_key}'

{
 "code": 0,
 "result": {
 "candidate": {
 "candidate_address": "Mxee81347211c72524338f9680072af90744333146",
 "total_stake": "5000001000000000000000000",
 "pub_key": "Mp738da41ba6a7b7d69b7294afa158b89c5a1b410cbf0c2443c85c5fe24ad1dd1c",
 "commission": 100,
 "stakes": [
 {
 "owner": "Mxee81347211c72524338f9680072af90744333146",
 "coin": "MNT",
 "value": "5000000000000000000000000",
 "bip_value": "5000000000000000000000000"
 },
 {
 "owner": "Mx4f3385615a4abb104d6eda88591fa07c112cbdbf",
 "coin": "MNT",
 "value": "1000000000000000000",
 "bip_value": "1000000000000000000"
 }
],
 "created_at_block": 165,
 "status": 2
 }
 }
}

Validators

Returns list of active validators.

curl -s 'localhost:8841/api/validators'

{
 "code": 0,
 "result": [
 {
 "accumulated_reward": "652930049792069211272",
 "absent_times": 0,
 "candidate": {
 "candidate_address": "Mxee81347211c72524338f9680072af90744333146",
 "total_stake": "5000001000000000000000000",
 "pub_key": "Mp738da41ba6a7b7d69b7294afa158b89c5a1b410cbf0c2443c85c5fe24ad1dd1c",
 "commission": 100,
 "stakes": [
 {
 "owner": "Mxee81347211c72524338f9680072af90744333146",
 "coin": "MNT",
 "value": "5000000000000000000000000",
 "bip_value": "5000000000000000000000000"
 },
 {
 "owner": "Mx4f3385615a4abb104d6eda88591fa07c112cbdbf",
 "coin": "MNT",
 "value": "1000000000000000000",
 "bip_value": "1000000000000000000"
 }
],
 "created_at_block": 165,
 "status": 2
 }
 },
 {
 "accumulated_reward": "652929919206085370058",
 "absent_times": 0,
 "candidate": {
 "candidate_address": "Mxee81347211c72524338f9680072af90744333146",
 "total_stake": "5000000000000000000000000",
 "pub_key": "Mp6f16c1ff21a6fb946aaed0f4c1fcca272b72fd904988f91d3883282b8ae31ba2",
 "commission": 100,
 "stakes": [
 {
 "owner": "Mxee81347211c72524338f9680072af90744333146",
 "coin": "MNT",
 "value": "5000000000000000000000000",
 "bip_value": "5000000000000000000000000"
 }
],
 "created_at_block": 174,
 "status": 2
 }
 }
]
}

Balance

Returns balance of an account.

curl -s 'localhost:8841/api/balance/{address}'

{
 "code": 0,
 "result": {
 "balance": {
 "MINTERONE": "2000000000000000000",
 "MNT": "97924621949581028367025445",
 "SHSCOIN": "201502537939970000000000",
 "TESTCOIN": "1000000000000000000000"
 }
 }
}

Result: Map of balances. CoinSymbol => Balance (in pips).

Transaction count

Returns count of outgoing transactions from given account. This should be used for calculating nonce for the new
transaction.

curl -s 'localhost:8841/api/transactionCount/{address}'

{
 "code": 0,
 "result": {
 "count": 59
 }
}

Result: Count of transactions sent from given account.

Send transaction

Sends transaction to the Minter Network.

curl -X POST --data '{"transaction":"..."}' -s 'localhost:8841/api/sendTransaction'

{
 "code": 0,
 "result": {
 "hash": "Mtfd5c3ecad1e8333564cf6e3f968578b9db5acea3"
 }
}

Result: Transaction hash.

Transaction

curl -s 'localhost:8841/api/transaction/{hash}'

{
 "code": 0,
 "result": {
 "hash": "E9BC108B9C9B3D9BC276EE359BF9DD98C144B7C6",
 "raw_tx": "f8818207af018a4d4e540000000000000001abea8a4d4e54000000000000009435d05ae08a664964ba730ca7e7de6e97998086f589056bc75e2d6310000080801ba076d4aeb96756d94db0ad0fdb73aaff588f4df282b64b4dec34930dba3ca2ffc5a04e47954ec056235103707c5aeb33a9112eab6d63de6b9a3d9e7a156c3bebeca7",
 "height": 94594,
 "index": 0,
 "tx_result": {
 "gas_wanted": 10,
 "gas_used": 10,
 "tags": [
 {
 "key": "dHgudHlwZQ==",
 "value": "AQ=="
 },
 {
 "key": "dHguZnJvbQ==",
 "value": "ZmU2MDAxNGE2ZTlhYzkxNjE4ZjVkMWNhYjNmZDU4Y2RlZDYxZWU5OQ=="
 },
 {
 "key": "dHgudG8=",
 "value": "MzVkMDVhZTA4YTY2NDk2NGJhNzMwY2E3ZTdkZTZlOTc5OTgwODZmNQ=="
 },
 {
 "key": "dHguY29pbg==",
 "value": "TU5U"
 }
]
 },
 "from": "Mxfe60014a6e9ac91618f5d1cab3fd58cded61ee99",
 "nonce": 1967,
 "gas_price": 1,
 "gas_coin": "MNT",
 "type": 1,
 "data": {
 "coin": "MNT",
 "to": "Mx35d05ae08a664964ba730ca7e7de6e97998086f5",
 "value": "100000000000000000000"
 },
 "payload": ""
 }
}

Block

Returns block data at given height.

curl -s 'localhost:8841/api/block/{height}'

{
 "code": 0,
 "result": {
 "hash": "6B4F84E0C801EE01B4EA1AEC34B0A0249E4EB3FF",
 "height": 94594,
 "time": "2018-08-29T10:12:52.791097555Z",
 "num_txs": 1,
 "total_txs": 5515,
 "transactions": [
 {
 "hash": "Mte9bc108b9c9b3d9bc276ee359bf9dd98c144b7c6",
 "raw_tx": "f8818207af018a4d4e540000000000000001abea8a4d4e54000000000000009435d05ae08a664964ba730ca7e7de6e97998086f589056bc75e2d6310000080801ba076d4aeb96756d94db0ad0fdb73aaff588f4df282b64b4dec34930dba3ca2ffc5a04e47954ec056235103707c5aeb33a9112eab6d63de6b9a3d9e7a156c3bebeca7",
 "from": "Mxfe60014a6e9ac91618f5d1cab3fd58cded61ee99",
 "nonce": 1967,
 "gas_price": 1,
 "type": 1,
 "data": {
 "coin": "MNT",
 "to": "Mx35d05ae08a664964ba730ca7e7de6e97998086f5",
 "value": "100000000000000000000"
 },
 "payload": "",
 "service_data": "",
 "gas": 10,
 "gas_coin": "MNT",
 "tx_result": {
 "gas_wanted": 10,
 "gas_used": 10,
 "tags": [
 {
 "key": "dHgudHlwZQ==",
 "value": "AQ=="
 },
 {
 "key": "dHguZnJvbQ==",
 "value": "ZmU2MDAxNGE2ZTlhYzkxNjE4ZjVkMWNhYjNmZDU4Y2RlZDYxZWU5OQ=="
 },
 {
 "key": "dHgudG8=",
 "value": "MzVkMDVhZTA4YTY2NDk2NGJhNzMwY2E3ZTdkZTZlOTc5OTgwODZmNQ=="
 },
 {
 "key": "dHguY29pbg==",
 "value": "TU5U"
 }
]
 }
 }
],
 "precommits": [
 {
 "validator_address": "0D1A38E170F4BC84CBA505E041AF0A656FEF7CCE",
 "validator_index": "0",
 "height": "94593",
 "round": "0",
 "timestamp": "2018-08-29T10:12:47.480971248Z",
 "type": 2,
 "block_id": {
 "hash": "CCC196AE488111387594258B4F5B417B6DF6F01E",
 "parts": {
 "total": "1",
 "hash": "6C8A070EBDD7218547617CD2E0894E031B815B95"
 }
 },
 "signature": "+tNZnoPJnQNpanlK90YEb11GnGP20wGzrrqX7Wzf729KhZBhOkK4zFZW0CnUfVHwYpu4nGVaJLOgy8G6VKCgCg=="
 },
 {
 "validator_address": "1B16468F89B8C36FE1AFC7F82F7251D4FC831530",
 "validator_index": "1",
 "height": "94593",
 "round": "0",
 "timestamp": "2018-08-29T10:12:47.494792759Z",
 "type": 2,
 "block_id": {
 "hash": "CCC196AE488111387594258B4F5B417B6DF6F01E",
 "parts": {
 "total": "1",
 "hash": "6C8A070EBDD7218547617CD2E0894E031B815B95"
 }
 },
 "signature": "GofqbrNFZye3pQk8sDsuErFH4x4Z+bs7skQOeeTcNA+jSIoupo+NWM6SV/rePg6NVOSA3PHVkXG6MVO2xYfbCg=="
 },
 {
 "validator_address": "22794FF373BE0867ECCB8206BEB77E0AB6F4A198",
 "validator_index": "2",
 "height": "94593",
 "round": "0",
 "timestamp": "2018-08-29T10:12:47.465617407Z",
 "type": 2,
 "block_id": {
 "hash": "CCC196AE488111387594258B4F5B417B6DF6F01E",
 "parts": {
 "total": "1",
 "hash": "6C8A070EBDD7218547617CD2E0894E031B815B95"
 }
 },
 "signature": "19Xu5Y8UI4QwZc89HgC42G4dB8MaMn7ibph6R1iVo9YYwwTKN4NEOjbuvvl3VYl8k/8CBIhck45GtSq73xHiBA=="
 },
 {
 "validator_address": "36575649BE18934623E0CE226B8E60FB1D1E7163",
 "validator_index": "3",
 "height": "94593",
 "round": "0",
 "timestamp": "2018-08-29T10:12:47.488838407Z",
 "type": 2,
 "block_id": {
 "hash": "CCC196AE488111387594258B4F5B417B6DF6F01E",
 "parts": {
 "total": "1",
 "hash": "6C8A070EBDD7218547617CD2E0894E031B815B95"
 }
 },
 "signature": "5PE9BYgsnXGtzUeeUBqIwA/VTfunHC+gN1keQYeN220JSjXrI7qZguYm45+9dt79s/y6jc8S4XKRSDNvVI1DDg=="
 },
 {
 "validator_address": "6330D572B9670786E0603332C01E7D4C35653C4A",
 "validator_index": "4",
 "height": "94593",
 "round": "0",
 "timestamp": "2018-08-29T10:12:47.443544695Z",
 "type": 2,
 "block_id": {
 "hash": "CCC196AE488111387594258B4F5B417B6DF6F01E",
 "parts": {
 "total": "1",
 "hash": "6C8A070EBDD7218547617CD2E0894E031B815B95"
 }
 },
 "signature": "QTW+t2Yen2U04gO3T3CRG3nhAkmkVM1ucQRD4QZS5Pokwp8C9ykP3uEefXjgTznBd3x24+hkTHSUfOy/HY9CCw=="
 }
],
 "block_reward": "333000000000000000000"
 }
}

Coin Info

Returns information about coin.

Note: this method does not return information about base coins (MNT and BIP).

curl -s 'localhost:8841/api/coinInfo/{symbol}'

{
 "code": 0,
 "result": {
 "name": "Stakeholder Coin",
 "symbol": "SHSCOIN",
 "volume": "1985888114702108355026636",
 "crr": 50,
 "reserve_balance": "394375160721239016660255",
 "creator": "Mx6eadf5badeda8f76fc35e0c4d7f7fbc00fe34315"
 }
}

	Result:

	
	Coin name - Name of a coin. Arbitrary string.

	Coin symbol - Short symbol of a coin. Coin symbol is unique, alphabetic, uppercase, 3 to 10 letters length.

	Volume - Amount of coins exists in network.

	Reserve balance - Amount of BIP/MNT in coin reserve.

	Constant Reserve Ratio (CRR) - uint, from 10 to 100.

	Creator - Address of coin creator account.

Estimate sell coin

Return estimate of sell coin transaction

curl -s 'localhost:8841/api/estimateCoinSell?coin_to_sell=MNT&value_to_sell=1000000000000000000&coin_to_buy=BLTCOIN'

	Request params:

	
	coin_to_sell – coin to give

	value_to_sell – amount to give (in pips)

	coin_to_buy - coin to get

{
 "code": 0,
 "result": {
 "will_get": "29808848728151191",
 "commission": "443372813245"
 }
}

Result: Amount of “to_coin” user should get.

Estimate buy coin

Return estimate of buy coin transaction

curl -s 'localhost:8841/api/estimateCoinBuy?coin_to_sell=MNT&value_to_buy=1000000000000000000&coin_to_buy=BLTCOIN'

	Request params:

	
	coin_to_sell – coin to give

	value_to_buy – amount to get (in pips)

	coin_to_buy - coin to get

{
 "code": 0,
 "result": {
 "will_pay": "29808848728151191",
 "commission": "443372813245"
 }
}

Result: Amount of “to_coin” user should give.

Estimate tx commission

Return estimate of buy coin transaction

curl -s 'localhost:8841/api/estimateTxCommission?tx={transaction}'

{
 "code": 0,
 "result": {
 "commission": "10000000000000000"
 }
}

Result: Commission in GasCoin.

Minter SDK

JavaScript SDK

iOS SDK

PHP SDK

Android SDK

Running in production

DOS Exposure and Mitigation

Validators are supposed to setup Sentry Node Architecture [https://blog.cosmos.network/tendermint-explained-bringing-bft-based-pos-to-the-public-blockchain-domain-f22e274a0fdb]
to prevent Denial-of-service attacks. Read more about it [https://github.com/tendermint/aib-data/blob/develop/medium/TendermintBFT.md].

P2P

The core of the Tendermint peer-to-peer system is MConnection. Each
connection has MaxPacketMsgPayloadSize, which is the maximum packet size
and bounded send & receive queues. One can impose restrictions on send &
receive rate per connection (SendRate, RecvRate).

RPC

Endpoints returning multiple entries are limited by default to return 30
elements (100 max).

Rate-limiting and authentication are another key aspects to help protect
against DOS attacks. While in the future we may implement these features, for
now, validators are supposed to use external tools like NGINX [https://www.nginx.com/blog/rate-limiting-nginx/] or traefik [https://docs.traefik.io/configuration/commons/#rate-limiting] to achieve
the same things.

Monitoring Tendermint

Each Tendermint instance has a standard /health RPC endpoint, which responds
with 200 (OK) if everything is fine and 500 (or no response) - if something is
wrong.

Other useful endpoints include mentioned earlier /status, /net_info and
/validators.

We have a small tool, called tm-monitor [https://github.com/tendermint/tools/tree/master/tm-monitor], which outputs information from the
endpoints above plus some statistics.

Monitoring Minter

Each Minter instance has a standard /api/status endpoint, which responds
with 200 (OK) if everything is fine and 500 (or no response) - if something is
wrong.

What happens when my app dies?

You are supposed to run Tendermint and Minter under a process supervisor [https://en.wikipedia.org/wiki/Process_supervision] (like systemd or runit).
It will ensure Tendermint and Minter is always running (despite possible errors).

Signal handling

We catch SIGINT and SIGTERM and try to clean up nicely. For other signals we
use the default behaviour in Go: Default behavior of signals in Go programs [https://golang.org/pkg/os/signal/#hdr-Default_behavior_of_signals_in_Go_programs].

Hardware

Processor and Memory

Minimal requirements are:

	2GB RAM

	100GB of disk space

	1.4 GHz 2v CPU

SSD disks are preferable for high transaction throughput.

Recommended:

	4GB RAM

	200GB SSD

	x64 2.0 GHz 4v CPU

Operating Systems

Tendermint and Minter can be compiled for a wide range of operating systems thanks to Go
language. List of $OS/$ARCH pairs [https://golang.org/doc/install/source#environment].

While we do not favor any operation system, more secure and stable Linux server
distributions (like Centos) should be preferred over desktop operation systems
(like Mac OS).

Configuration parameters

…

Index

 _static/plus.png

_static/up-pressed.png

_static/up.png

_images/console-candidate-on.png
SET CANDIDATE ON
This will include the node of yours in the list of active validators.

Public key

Coin to pay fee

BELTCOIN (0.71) -

Message

Set candidate on

_images/console-declare.png
DECLARE CANDIDACY
If you want to set up and run your own masternode, you can declare your candidacy here.

Address
Mxee81347211c72524338f9680072af90744333146

Public key

Coin
Stake BELTCOIN (0.71) v
Commission Coin to pay fee
0% Same as stake coin v
Message

Declare candidacy

_images/coin-minter.png
CREATE COIN

Create your own coin from scratch. It is completely up to you to decide what role it will play—that of a
currency, a security, a utility token, a right, a vote, or something else.

Coin name Coin symbol

Constant reserve ratio
Initial amount 0% Initial reserve

Coin to pay fee
BELTCOIN (0.71) v

Message

_images/redeem-check.png
REDEEM CHECK
Claim a check someone has written out to you.

Check

Password

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Minter!

 		
 Introduction

 		
 What is Minter?

 		
 Install Minter

 		
 Using binary

 		
 Download Minter

 		
 Run Minter

 		
 Using Docker

 		
 Clone Minter source code to your machine

 		
 Start Minter

 		
 From Source

 		
 Clone Minter source code to your machine

 		
 Get Tools & Dependencies

 		
 Compile

 		
 Run Minter

 		
 Troubleshooting

 		
 Too many open files (24)

 		
 Blockchain Specification

 		
 Tendermint

 		
 Consensus

 		
 Block speed

 		
 Block size

 		
 Coins

 		
 Coin Issuance

 		
 Issuance Fees

 		
 Coin Exchange

 		
 Transactions

 		
 Semantic

 		
 Signature Types

 		
 Types

 		
 Send transaction

 		
 Sell coin transaction

 		
 Sell all coin transaction

 		
 Buy coin transaction

 		
 Create coin transaction

 		
 Declare candidacy transaction

 		
 Delegate transaction

 		
 Unbond transaction

 		
 Redeem check transaction

 		
 Set candidate online transaction

 		
 Set candidate offline transaction

 		
 Create multisig address

 		
 Minter Check

 		
 Introduction

 		
 Check hijacking protection

 		
 How to issue a Minter Check

 		
 How to cash a Minter Check

 		
 Commission

 		
 Multisignatures

 		
 Structure of multisig wallet

 		
 How to create multisig wallet

 		
 How to use multisig wallet

 		
 Commissions

 		
 Standard commissions

 		
 Special fees

 		
 Validators

 		
 Introduction

 		
 Requirements

 		
 Validators limitations

 		
 Rewards

 		
 Rules and fines

 		
 Becoming validator in testnet

 		
 DDOS protection. Sentry node architecture

 		
 Practical instructions

 		
 Delegator FAQ

 		
 What is a delegator?

 		
 Directives of delegators

 		
 Revenue

 		
 Validator’s commission

 		
 Risks

 		
 Minter Node API

 		
 Status

 		
 Volume of Base Coin in Blockchain

 		
 Candidate

 		
 Validators

 		
 Balance

 		
 Transaction count

 		
 Send transaction

 		
 Transaction

 		
 Block

 		
 Coin Info

 		
 Estimate sell coin

 		
 Estimate buy coin

 		
 Estimate tx commission

 		
 Minter SDK

 		
 JavaScript SDK

 		
 iOS SDK

 		
 PHP SDK

 		
 Android SDK

 		
 Running in production

 		
 DOS Exposure and Mitigation

 		
 P2P

 		
 RPC

 		
 Monitoring Tendermint

 		
 Monitoring Minter

 		
 What happens when my app dies?

 		
 Signal handling

 		
 Hardware

 		
 Processor and Memory

 		
 Operating Systems

 		
 Configuration parameters

_static/comment.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

