

Welcome to the Mink documentation!

One of the most important parts in the web is a browser. A browser is the window
through which web users interact with web applications and other users. Users
are always talking with web applications through browsers.

So, in order to test that our web application behaves correctly, we need
a way to simulate this interaction between the browser and the web application
in our tests. We need Mink.

Mink is an open source browser controller/emulator for web applications, written
in PHP.

Read Mink at a Glance to learn more about Mink and why you need it.

Installation

Mink is a php library that you’ll use inside your test suites or project.
Before you begin, ensure that you have at least PHP 5.4 installed.

The recommended way to install Mink with all its dependencies is through
Composer [https://getcomposer.org]:

$ composer require --dev behat/mink

Note

For local installations of composer you must call it like this:
$ php composer.phar require --dev behat/mink .
In this case you must use the different call
php composer.phar everywhere instead of the simple command composer.

Everything will be installed inside the vendor folder.
Finally, include the Composer autoloading script to your project:

require_once 'vendor/autoload.php';

Note

By default, Mink will be installed with no drivers. In order to
be able to use additional drivers, you should install them (through composer).
Require the appropriate dependencies:

	GoutteDriver - behat/mink-goutte-driver

	Selenium2Driver - behat/mink-selenium2-driver

	BrowserKitDriver - behat/mink-browserkit-driver

	ChromeDriver - dmore/chrome-mink-driver

	ZombieDriver - behat/mink-zombie-driver

	SeleniumDriver - behat/mink-selenium-driver

	SahiDriver - behat/mink-sahi-driver

	WUnitDriver - behat/mink-wunit-driver

If you’re a newcomer or just don’t know what to choose, you should probably
start with the GoutteDriver and the Selenium2Driver (you will be able
to tune it up later):

Guides

Learn Mink with the topical guides:

	Mink at a Glance

	Controlling the Browser

	Traversing Pages

	Manipulating Pages

	Interacting with Pages

	Drivers

	Managing Sessions

	Contributing

Testing Tools Integration

Mink has integrations for several testing tools:

	Behat [http://behat.org] through the Behat MinkExtension [https://github.com/Behat/MinkExtension]

	PHPUnit [http://www.phpunit.de] through the phpunit-mink package [https://github.com/minkphp/phpunit-mink]

Mink at a Glance

There’s a huge number of browser emulators out there, like Goutte [https://github.com/FriendsOfPHP/Goutte], Selenium [http://seleniumhq.org/],
Sahi [http://sahi.co.in/w/] and others. They all do the same job, but do it very differently.
They behave differently and have very different API’s. But, what’s more important,
there are actually 2 completely different types of browser emulators out there:

	Headless browser emulators

	Browser controllers

The first type of browser emulators are simple pure HTTP specification implementations, like
Goutte [https://github.com/FriendsOfPHP/Goutte]. Those browser emulators send real HTTP requests against an application
and parse the response content. They are very simple to run and configure,
because this type of emulator can be written in any available programming
language and can be run through the console on servers without a GUI. Headless
emulators have both advantages and disadvantages. Advantages are simplicity,
speed and ability to run without the need of a real browser. But this
type of browser emulator has one big disadvantage, it has no JS/AJAX support.
So, you can’t test your rich GUI web applications with headless browsers.

The second type of browser emulators are browser controllers. Those emulators aim
to control the real browser. That’s right, a program to control another program.
Browser controllers simulate user interactions on the browser and are able to
retrieve actual information from the current browser page. Selenium [http://seleniumhq.org/] and Sahi [http://sahi.co.in/w/]
are the two most famous browser controllers. The main advantage of using browser
controllers is the support for JS/AJAX interactions on the page. The disadvantage
is that such browser emulators require an installed browser, extra configuration
and are usually much slower than headless counterparts.

So, the easy answer is to choose the best emulator for your project and use
its API for testing. But as we’ve already seen, both browser emulator types have
advantages and disadvantages. If you choose a headless browser emulator, you
will not be able to test your JS/AJAX pages. And if you choose a browser controller,
your overall test suite will become very slow at some point. So, in the real
world we should use both! And that’s why you need Mink.

Mink removes API differences between different browser emulators providing
different drivers (read in Drivers chapter) for every browser
emulator and providing you with an easy way to control the browser (Controlling the Browser),
traverse pages (Traversing Pages), manipulate page elements
(Manipulating Pages) or interact with them (Interacting with Pages).

Controlling the Browser

In Mink, the entry point to the browser is called the session. Think about
it as being your browser window (some drivers even let you switch tabs!).

First, start your session (it’s like opening your browser tab). Nothing can
be done with it before starting it.

// Choose a Mink driver. More about it in later chapters.
$driver = new \Behat\Mink\Driver\GoutteDriver();

$session = new \Behat\Mink\Session($driver);

// start the session
$session->start();

Note

The first argument to the session constructor is a driver object. Drivers
are the way the Mink abstraction layer works. You will discover more
about the available drivers in a later chapter.

Caution

Although Mink does its best to remove differences between the different
drivers, each driver has unique features and shortcomings. See the Driver Feature Support
to see which features are supported by each driver.

Basic Browser Interaction

Now that your session is started, you’ll want to open a page with it. Just
after starting, the session is not on any page (in a real browser, you would
be on the about:blank page), and calling any other action is likely to fail.

$session->visit('http://my_project.dev/some_page.php');

Note

Mink is primarily designed to be used for testing websites. To allow
you to browse and test error pages, the Session::visit method does
not consider error status codes as invalid. It will not throw an exception
in this case. You will need to check the status code (or certain text
on the page) to know if the response was successful or not.

Interacting with the Page

The session gives you access to the page through the Session::getPage
method. This allows you to traverse the page,
manipulate page elements and
interact with them. The next chapters
cover the page API in depth. Most of what you’ll do with Mink will use this
object, but you can continue reading to learn more about the Session.

Using the Browser History

The session gives you access to the browser history:

// get the current page URL:
echo $session->getCurrentUrl();

// use history controls:
$session->reload();
$session->back();
$session->forward();

Cookie Management

The session can manipulate cookies available in the browser.

// set cookie:
$session->setCookie('cookie name', 'value');

// get cookie:
echo $session->getCookie('cookie name');

// delete cookie:
$session->setCookie('cookie name', null);

Note

With drivers that use JavaScript to control the browser - like Sahi -
you may be restricted to accessing/setting all, but HttpOnly cookies [http://en.wikipedia.org/wiki/HTTP_cookie#HttpOnly_cookie] .

Status Code Retrieval

The session lets you retrieve the HTTP status code of the response:

echo $session->getStatusCode();

Headers Management

The session lets you manipulate request headers and access response headers:

// setting browser language:
$session->setRequestHeader('Accept-Language', 'fr');

// retrieving response headers:
print_r($session->getResponseHeaders());

Note

Headers handling is only supported in headless drivers (e.g. Goutte).
Browser controllers (e.g. Selenium2) cannot access that information.

HTTP Authentication

The session has a special method to perform HTTP Basic authentication:

$session->setBasicAuth($user, $password);

The method can also be used to reset a previous authentication:

$session->setBasicAuth(false);

Note

Automatic HTTP authentication is only supported in headless drivers.
Because HTTP authentication in the browser requires manual user action, that
can’t be done remotely for browser controllers.

Javascript Evaluation

The session allows you to execute or evaluate Javascript.

// Execute JS
$session->executeScript('document.body.firstChild.innerHTML = "";');

// evaluate JS expression:
echo $session->evaluateScript(
 "return 'something from browser';"
);

Note

The difference between these methods is that Session::evaluateScript
returns the result of the expression. When you don’t need to get a return
value, using Session::executeScript is better.

You can also wait until a given JS expression returns a truthy value or the
timeout is reached:

// wait for n milliseconds or
// till JS expression becomes truthy:
$session->wait(
 5000,
 "$('.suggestions-results').children().length"
);

Note

The Session::wait method returns true when the evaluation becomes
truthy. It will return false when the timeout is reached.

Resetting the Session

The primary aim for Mink is to provide a single consistent web browsing API
for acceptance tests. But a very important part in testing is isolation.

Mink provides two very useful methods to isolate tests, which can be used
in your test’s teardown methods:

// soft-reset:
$session->reset();

// hard-reset:
$session->stop();
// or if you want to start again at the same time
$session->restart();

Stopping the session is the best way to reset the session to its initial
state. It will close the browser entirely. To use the session again, you
need to start the session before any other action. The Session::restart
shortcut allows you to do these 2 steps in a single call.

The drawback of closing the browser and starting it again is that it takes
time. In many cases, a lower level of isolation is enough in favor of a faster
resetting. The Session::reset method covers this use case. It will try
to clear the cookies and reset the request headers and the browser history
to the limit of the driver possibilities.

Taking all this into account, it is recommended to use Session::reset()
by default and to call Session::stop() when you need really full isolation.

Traversing Pages

Most usages of Mink will involve working with the page opened in your browser.
This is done thanks to the powerful Element API. This API allows to traverse
the page (similar to the DOM in Javascript), manipulate page elements
and to interact with them, which
will be covered in the next chapters.

DocumentElement and NodeElement

The Element API consists of 2 main classes. The DocumentElement instance
represents the page being displayed in the browser, while the NodeElement
class is used to represent any element inside the page. Both classes share
a common set of methods to traverse the page (defined in TraversableElement).

The DocumentElement instance is accessible through the Session::getPage method:

$page = $session->getPage();

// You can now manipulate the page.

Note

The DocumentElement instance represents the <html> node in the
DOM. It is equivalent to document.documentElement in the Javascript
DOM API.

Traversal Methods

Elements have 2 main traversal methods: ElementInterface::findAll returns
an array of NodeElement instances matching the provided selector
inside the current element while ElementInterface::find returns the first
match or null when there is none.

The TraversableElement class also provides a bunch of shortcut methods
on top of find() to make it easier to achieve many common use cases:

	ElementInterface::has

	Checks whether a child element matches the given selector but without
returning it.

	TraversableElement::findById

	Looks for a child element with the given id.

	TraversableElement::findLink

	Looks for a link with the given text, title, id or alt attribute
(for images used inside links).

	TraversableElement::findButton

	Looks for a button with the given text, title, id, name attribute
or alt attribute (for images used inside links).

	TraversableElement::findField

	Looks for a field (input, textarea or select) with the given
label, placeholder, id or name attribute.

Note

These shortcuts return a single element. If you need to find all
matches, you will need to use findAll with the named selector.

Nested Traversing

Every find*() method will return a Behat\Mink\Element\NodeElement instance
and findAll() will return an array of such instances. The fun part is
that you can use the same methods of traversing on such elements as well:

$registerForm = $page->find('css', 'form.register');

if (null === $registerForm) {
 throw new \Exception('The element is not found');
}

// find some field INSIDE form with class="register"
$field = $registerForm->findField('Email');

Selectors

The ElementInterface::find and ElementInterface::findAll methods
support several kinds of selectors to find elements.

CSS Selector

The css selector type lets you use CSS expressions to search for elements
on the page:

$title = $page->find('css', 'h1');

$buttonIcon = $page->find('css', '.btn > .icon');

XPath Selector

The xpath selector type lets you use XPath queries to search for elements
on the page:

$anchorsWithoutUrl = $page->findAll('xpath', '//a[not(@href)]');

Caution

This selector searches for an element inside the current node (which
is <html> for the page object). This means that trying to pass it
the XPath of an element retrieved with ElementInterface::getXpath
will not work (this query includes the query for the root node). To check
whether an element object still exists on the browser page, use ElementInterface::isValid
instead.

Named Selectors

Named selectors provide a set of reusable queries for common needs. For conditions
based on the content of elements, the named selector will try to find an
exact match first. It will then fallback to partial matching if there
is no result for the exact match. The named_exact selector type can be
used to force using only exact matching. The named_partial selector type
can be used to apply partial matching without preferring exact matches.

For the named selector type, the second argument of the find() method
is an array with 2 elements: the name of the query to use and the value to
search with this query:

$topLink = $page->find('named', array('link', $escapedValue));

The following queries are supported by the named selector:

	id

	Searches for an element by its id.

	id_or_name

	Searches for an element by its id or name.

	link

	Searches for a link by its id, title, img alt, rel or text.

	button

	Searches for a button by its name, id, text, img alt or title.

	link_or_button

	Searches for both links and buttons.

	content

	Searches for a specific page content (text).

	field

	Searches for a form field by its id, name, label or placeholder.

	select

	Searches for a select field by its id, name or label.

	checkbox

	Searches for a checkbox by its id, name, or label.

	radio

	Searches for a radio button by its id, name, or label.

	file

	Searches for a file input by its id, name, or label.

	optgroup

	Searches for an optgroup by its label.

	option

	Searches for an option by its content or value.

	fieldset

	Searches for a fieldset by its id or legend.

	table

	Searches for a table by its id or caption.

Custom Selector

Mink lets you register your own selector types through implementing the Behat\Mink\Selector\SelectorInterface.
It should then be registered in the SelectorsHandler which is the registry
of available selectors.

The recommended way to register a custom selector is to do it when building
your Session:

$selector = new \App\MySelector();

$handler = new \Behat\Mink\Selector\SelectorsHandler();
$handler->registerSelector('mine', $selector);

$driver = // ...

$session = new \Behat\Mink\Session($driver, $handler);

Manipulating Pages

Once you get a page element, you will want
to manipulate it. You can also interact with the page, which is covered in
the next chapter.

Getting the tag name

The NodeElement::getTagName method allows you to get the tag name of
the element. This tag name is always returned lowercased.

$el = $page->find('css', '.something');

// get tag name:
echo $el->getTagName(); // displays 'a'

Accessing HTML attributes

The NodeElement class gives you access to HTML attributes of the element.

	NodeElement::hasAttribute

	Checks whether the element has a given attribute.

	NodeElement::getAttribute

	Gets the value of an attribute.

	NodeElement::hasClass

	Checks whether the element has the given class (convenience wrapper around
getAttribute('class')).

$el = $page->find('css', '.something');

if ($el->hasAttribute('href')) {
 echo $el->getAttribute('href');
} else {
 echo 'This anchor is not a link. It does not have an href.';
}

Element Content and Text

The Element class provides access to the content of elements.

	Element::getHtml

	Gets the inner HTML of the element, i.e. all children of the element.

	Element::getOuterHtml

	Gets the outer HTML of the element, i.e. including the element itself.

	Element::getText

	Gets the text of the element.

Note

getText() will strip tags and unprinted characters out of the response,
including newlines. So it’ll basically return the text that the user sees
on the page.

Checking Element Visibility

The NodeElement::isVisible method checks whether the element is visible.

Accessing Form State

The NodeElement class allows access to the state of form elements:

	NodeElement::getValue

	Gets the value of the element. See Interacting with Forms.

	NodeElement::isChecked

	Checks whether the checkbox or radio button is checked.

	NodeElement::isSelected

	Checks whether the <option> element is selected.

Shortcut methods

The TraversableElement class provides a few shortcut methods that allow
finding a child element in the page and checking the state of it immediately:

	TraversableElement::hasCheckedField

	Looks for a checkbox (see findField) and checks whether it is checked.

	TraversableElement::hasUncheckedField

	Looks for a checkbox (see findField) and checks whether it is not checked.

Interacting with Pages

Most usages of Mink will involve working with the page opened in your browser.
The Mink Element API lets you interact with elements of the page.

Interacting with Links and Buttons

The NodeElement::click and NodeElement::press methods let you click
the links and press the buttons on the page.

Note

These methods are actually equivalent internally (pressing a button involves
clicking on it). Having both methods allows the code to be more readable.

Interacting with Forms

The NodeElement class has a set of methods allowing interaction with
forms:

	NodeElement::getValue

	gets the value of a form field. The value depends on the type of field:

	the value of the selected option for single select boxes (or null
when none are selected);

	an array of selected option values for multiple select boxes;

	the value of the checkbox field when checked, or null when not
checked;

	the value of the selected radio button in the radio group for radio
buttons;

	the value of the field for textual fields and textareas;

	an undefined value for file fields (because of browser limitations).

	NodeElement::setValue

	sets the value of a form field

	for a file field, it should be the absolute path to the file;

	for a checkbox, it should be a boolean indicating whether it is checked;

	for other fields, it should match the behavior of getValue.

	NodeElement::isChecked

	reports whether a radio button or a checkbox is checked.

	NodeElement::isSelected

	reports whether an <option> element is selected.

	NodeElement::check

	checks a checkbox field.

	NodeElement::uncheck

	unchecks a checkbox field.

	NodeElement::selectOption

	select an option in a select box or in a radio group.

	NodeElement::attachFile

	attaches a file in a file input.

	NodeElement::submit

	submits the form.

Interacting with the Mouse

The NodeElement class offers a set of methods allowing interaction with
the mouse:

	NodeElement::click

	performs a click on the element.

	NodeElement::doubleClick

	performs a double click on the element.

	NodeElement::rightClick

	performs a right click on the element.

	NodeElement::mouseOver

	moves the mouse over the element.

Interacting with the Keyboard

Mink lets you interact with the keyboard thanks to the NodeElement::keyDown,
NodeElement::keyPress and NodeElement::keyUp methods.

Manipulating the Focus

The NodeElement class lets you give and remove focus on the element thanks
to the NodeElement::focus and NodeElement::blur methods.

Drag’n’Drop

Mink supports drag’n’drop of one element onto another:

$dragged = $page->find(...);
$target = $page->find(...);

$dragged->dragTo($target);

Shortcut Methods

The TraversableElement class provides a few shortcut methods that allow
finding a child element on the page and performing an action on it immediately:

	TraversableElement::clickLink

	Looks for a link (see findLink) and clicks on it.

	TraversableElement::pressButton

	Looks for a button (see findButton) and presses on it.

	TraversableElement::fillField

	Looks for a field (see findField) and sets a value in it.

	TraversableElement::checkField

	Looks for a checkbox (see findField) and checks it.

	TraversableElement::uncheckField

	Looks for a checkbox (see findField) and unchecks it.

	TraversableElement::selectFieldOption

	Looks for a select or radio group (see findField) and selects a choice in it.

	TraversableElement::attachFileToField

	Looks for a file field (see findField) and attaches a file to it.

Note

All these shortcut methods throw an ElementNotFoundException
if the child element cannot be found.

Drivers

How does Mink provide a consistent API for very different browser library
types, often written in different languages? Through drivers! A Mink driver
is a simple class, that implements Behat\Mink\Driver\DriverInterface.
This interface describes bridge methods between Mink and real browser emulators.
Mink always talks with browser emulators through its driver. It doesn’t know
anything about how to start/stop or traverse pages in that particular browser
emulator. It only knows what driver method it should call in order to do this.

Mink comes with six drivers out of the box:

	GoutteDriver

	BrowserKitDriver

	Selenium2Driver

	ChromeDriver

	ZombieDriver

	SahiDriver

	SeleniumDriver

Driver Feature Support

Although Mink does its best to remove browser differences between different
browser emulators, it can’t do much in some cases. For example, BrowserKitDriver
cannot evaluate JavaScript and Selenium2Driver cannot get the response status
code. In such cases, the driver will always throw a meaningful
Behat\Mink\Exception\UnsupportedDriverActionException.

	Feature

	BrowserKit/Goutte

	Selenium2

	Chrome

	Zombie

	Selenium

	Sahi

	Page traversing

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Form manipulation

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	HTTP Basic auth

	Yes

	No

	Yes

	Yes

	No

	No

	Windows management

	No

	Yes

	Yes

	No

	Yes

	Yes

	iFrames management

	No

	Yes

	Yes

	No

	Yes

	No

	Request headers access

	Yes

	No

	Yes

	Yes

	No

	No

	Response headers

	Yes

	No

	Yes

	Yes

	No

	No

	Cookie manipulation

	Yes

	Yes

	Yes

	Yes

	Yes

	Yes

	Status code access

	Yes

	No

	Yes

	Yes

	No

	No

	Mouse manipulation

	No

	Yes

	Yes

	Yes

	Yes

	Yes

	Drag’n Drop

	No

	Yes

	Yes

	No

	Yes

	Yes

	Keyboard actions

	No

	Yes

	Yes

	Yes

	Yes

	Yes

	Element visibility

	No

	Yes

	Yes

	No

	Yes

	Yes

	JS evaluation

	No

	Yes

	Yes

	Yes

	Yes

	Yes

	Window resizing

	No

	Yes

	Yes

	No

	No

	No

	Window maximizing

	No

	Yes

	Yes

	No

	Yes

	No

GoutteDriver

GoutteDriver provides a bridge for the Goutte [https://github.com/FriendsOfPHP/Goutte] headless browser. Goutte
is a classical pure-php headless browser, written by the creator of the Symfony
framework Fabien Potencier.

Note

The GoutteDriver extends the BrowserKitDriver to fix a small
edge case in the Goutte implementation of BrowserKit. It is also able
to instantiate the Goutte client automatically.

Installation

GoutteDriver is a pure PHP library available through Composer:

$ composer require behat/mink-goutte-driver

Note

GoutteDriver is compatible with both Goutte 1.x which relies on Guzzle 3 [http://guzzle3.readthedocs.org/en/latest/]
and Goutte 2.x which relies on Guzzle 4+ [http://docs.guzzlephp.org/en/latest/] for the underlying HTTP implementation.

Composer will probably select Goutte 2.x by default.

Usage

In order to talk with Goutte, you should instantiate a
Behat\Mink\Driver\GoutteDriver:

$driver = new \Behat\Mink\Driver\GoutteDriver();

Also, if you want to configure Goutte more precisely, you could do the full
setup by hand:

$client = new \Goutte\Client();
// Do more configuration for the Goutte client

$driver = new \Behat\Mink\Driver\GoutteDriver($client);

BrowserKitDriver

BrowserKitDriver provides a bridge for the Symfony BrowserKit [http://symfony.com/components/BrowserKit] component.
BrowserKit is a browser emulator provided by the Symfony project [http://symfony.com].

Installation

BrowserKitDriver is a pure PHP library available through Composer:

$ composer require behat/mink-browserkit-driver

Note

The BrowserKit component only provides an abstract implementation. The
actual implementation is provided by other projects, like Goutte [https://github.com/FriendsOfPHP/Goutte]
or the Symfony HttpKernel [http://symfony.com/components/HttpKernel] component.

If you are using Goutte, you should use the special GoutteDriver
which ensures full compatibility for Goutte due to an edge case in Goutte.

Usage

In order to talk with BrowserKit, you should instantiate a
Behat\Mink\Driver\BrowserKitDriver:

$browserkitClient = // ...

$driver = new \Behat\Mink\Driver\BrowserKitDriver($browserkitClient);

Selenium2Driver

Selenium2Driver provides a bridge for the Selenium2 (webdriver) [http://seleniumhq.org/] tool.
If you just love Selenium2, you can now use it right out of the box too.

Installation

Selenium2Driver is available through Composer:

$ composer require behat/mink-selenium2-driver

In order to talk with selenium server, you should install and configure it
first:

	Download the Selenium Server from the project website [http://seleniumhq.org/download/].

	Run the server with the following command (update the version number to
the one you downloaded):

$ java -jar selenium-server-standalone-2.44.0.jar

Tip

The Selenium2Driver actually relies on the WebDriver protocol defined
by Selenium2. This means that it is possible to use it with other implementations
of the protocol. Note however that other implementations may have some
bugs.

The testsuite of the driver is run against the Phantom.js implementation [http://phantomjs.org/]
but it still triggers some failures because of bugs in their implementation.

Usage

That’s it, now you can use Selenium2Driver:

$driver = new \Behat\Mink\Driver\Selenium2Driver('firefox');

ChromeDriver

ChromeDriver allows Mink to control Chrome without the overhead of Selenium.

It communicates directly with chrome over HTTP and WebSockets, which allows it to work at least twice as fast as Chrome with Selenium.

For Chrome 59+ it supports headless mode, eliminating the need to install a display server, and the overhead that comes with it.

Installation

ChromeDriver is available through Composer:

$ composer require dmore/chrome-mink-driver

Usage

Run Chromium or Google Chrome with remote debugging enabled:

$ google-chrome-stable --remote-debugging-address=0.0.0.0 --remote-debugging-port=9222

or headless (59+):

$ google-chrome-stable --disable-gpu --headless --remote-debugging-address=0.0.0.0 --remote-debugging-port=9222

Configure Mink to use ChromeDriver:

use Behat\Mink\Mink;
use Behat\Mink\Session;
use DMore\ChromeDriver\ChromeDriver;

$mink = new Mink(array(
 'browser' => new Session(new ChromeDriver('http://localhost:9222', null, 'http://www.google.com'))
));

That’s it!

For more details, see the official documentation [https://gitlab.com/DMore/chrome-mink-driver/blob/master/README.md]

ZombieDriver

ZombieDriver provides a bridge for the Zombie.js [http://zombie.labnotes.org/] browser emulator. Zombie.js
is a headless browser emulator, written in node.js. It supports all JS interactions
that Selenium and Sahi
do and works almost as fast as Goutte does. It is the best of both worlds
actually, but still limited to only one browser type (Webkit). Also it is
still slower than Goutte and requires node.js and npm to be installed on
the system.

Installation

ZombieDriver is available through Composer:

$ composer require behat/mink-zombie-driver

In order to talk with a zombie.js server, you need to install and configure
zombie.js first:

	Install node.js by following instructions from the official site:
http://nodejs.org/.

	Install npm (node package manager) by following the instructions from
http://npmjs.org/.

	Install zombie.js with npm:

$ npm install -g zombie

After installing npm and zombie.js, you’ll need to add npm libs to your NODE_PATH.
The easiest way to do this is to add:

export NODE_PATH="/PATH/TO/NPM/node_modules"

into your .bashrc.

Usage

After that, you’ll be able to just use ZombieDriver without manual server
setup. The driver will do all that for you automatically:

$driver = new \Behat\Mink\Driver\ZombieDriver(
 new \Behat\Mink\Driver\NodeJS\Server\ZombieServer()
);

If you want more control during driver initialization, like for example if
you want to configure the driver to init the server on a specific port, use
the more verbose version:

$driver = new \Behat\Mink\Driver\ZombieDriver(
 new \Behat\Mink\Driver\Zombie\Server($host, $port, $nodeBin, $script)
);

Note

$host simply defines the host on which zombie.js will be started. It’s
127.0.0.1 by default.

$port defines a zombie.js port. Default one is 8124.

$nodeBin defines full path to node.js binary. Default one is just node.

$script defines a node.js script to start zombie.js server. If you pass
a null the default script will be used. Use this option carefully!

SahiDriver

SahiDriver provides a bridge for the Sahi [http://sahi.co.in/w/] browser controller. Sahi is
a new JS browser controller, that fast replaced the old Selenium testing suite.
It’s both easier to setup and to use than classical Selenium. It has a GUI
installer for each popular operating system out there and is able to control
every systems browser through a special bundled proxy server.

Installation

SahiDriver is available through Composer:

$ composer require behat/mink-sahi-driver

In order to talk with a real browser through Sahi, you should install and
configure Sahi first:

	Download and run the Sahi jar from the Sahi project website [http://sourceforge.net/projects/sahi/files/] and run
it. It will run the installer, which will guide you through the installation
process.

	Run Sahi proxy before your test suites (you can start this proxy during
system startup):

cd $YOUR_PATH_TO_SAHI/bin
./sahi.sh

Usage

After installing Sahi and running the Sahi proxy server, you will be able
to control it with Behat\Mink\Driver\SahiDriver:

$driver = new \Behat\Mink\Driver\SahiDriver('firefox');

Note

Notice, that the first argument of SahiDriver is always a browser name,
supported by Sahi [http://sahi.co.in/w/browser-types-xml].

If you want more control during the driver initialization, like for example
if you want to configure the driver to talk with a proxy on another machine,
use the more verbose version with a second client argument:

$driver = new \Behat\Mink\Driver\SahiDriver(
 'firefox',
 new \Behat\SahiClient\Client(
 new \Behat\SahiClient\Connection($sid, $host, $port)
)
);

Note

$sid is a Sahi session ID. It’s a unique string, used by the driver
and the Sahi proxy in order to be able to talk with each other. You should
fill this with null if you want Sahi to start your browser automatically
or with some unique string if you want to control an already started
browser.

$host simply defines the host on which Sahi is started. It is localhost
by default.

$port defines a Sahi proxy port. The default one is 9999.

SeleniumDriver

SeleniumDriver provides a bridge for the famous Selenium [http://seleniumhq.org/] tool. If you
need legacy Selenium, you can use it right out of the box in your Mink test
suites.

Caution

The SeleniumRC protocol used by this driver is deprecated and does not
support all Mink features. For this reason, the SeleniumDriver is deprecated
in favor of the Selenium2Driver, which is based on the new
protocol and is more powerful.

Installation

SeleniumDriver is available through Composer:

$ composer require behat/mink-selenium-driver

In order to talk with the selenium server, you should install and configure
it first:

	Download the Selenium Server from the project website [http://seleniumhq.org/download/].

	Run the server with the following command (update the version number to
the one you downloaded):

$ java -jar selenium-server-standalone-2.44.0.jar

Usage

That’s it, now you can use SeleniumDriver:

$client = new \Selenium\Client($host, $port);
$driver = new \Behat\Mink\Driver\SeleniumDriver(
 'firefox', 'base_url', $client
);

Managing Sessions

Although the session object is already usable enough,
it’s not as easy to write multisession (multidriver/multibrowser) code. Yep,
you’ve heard right, with Mink you can manipulate multiple browser emulators
simultaneously with a single consistent API:

// init sessions
$session1 = new \Behat\Mink\Session($driver1);
$session2 = new \Behat\Mink\Session($driver2);

// start sessions
$session1->start();
$session2->start();

$session1->visit('http://my_project.dev/chat.php');
$session2->visit('http://my_project.dev/chat.php');

Caution

The state of a session is actually managed by the driver. This means
that each session must use a different driver instance.

Isn’t it cool? But Mink makes it even cooler:

$mink = new \Behat\Mink\Mink();
$mink->registerSession('goutte', $goutteSession);
$mink->registerSession('sahi', $sahiSession);
$mink->setDefaultSessionName('goutte');

With such configuration, you can talk with your sessions by name through
one single container object:

$mink->getSession('goutte')->visit('http://my_project.dev/chat.php');
$mink->getSession('sahi')->visit('http://my_project.dev/chat.php');

Note

Mink will even lazy-start your sessions when needed (on the first getSession()
call). So, the browser will not be started until you really need it!

Or you could even omit the session name in default cases:

$mink->getSession()->visit('http://my_project.dev/chat.php');

This call is possible thanks to $mink->setDefaultSessionName('goutte')
setting previously. We’ve set the default session, that would be returned
on getSession() call without arguments.

Tip

The Behat\Mink\Mink class also provides an easy way to reset or restart
your started sessions (and only started ones):

// reset started sessions
$mink->resetSessions();

// restart started sessions
$mink->restartSessions();

Contributing

Reporting issues

If your issue affects only a single driver, it should be reported to the
driver itself.
Any other issues in the Mink abstraction layer and feature requests should
be reported to the main Mink repository [https://github.com/minkphp/Mink].

Contributing features

Contributions should be sent using GitHub pull requests.

Any contribution should be covered by tests to be accepted. Changes impacting
drivers should include tests in the common driver testsuite to ensure consistency
between implementations.

New features should always be contributed to the main Mink repository [https://github.com/minkphp/Mink]
first. Features submitted only to a single driver without being part of the
Mink abstraction won’t be accepted.

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to the Mink documentation!

 		
 Mink at a Glance

 		
 Controlling the Browser

 		
 Basic Browser Interaction

 		
 Interacting with the Page

 		
 Using the Browser History

 		
 Cookie Management

 		
 Status Code Retrieval

 		
 Headers Management

 		
 HTTP Authentication

 		
 Javascript Evaluation

 		
 Resetting the Session

 		
 Traversing Pages

 		
 DocumentElement and NodeElement

 		
 Traversal Methods

 		
 Nested Traversing

 		
 Selectors

 		
 CSS Selector

 		
 XPath Selector

 		
 Named Selectors

 		
 Custom Selector

 		
 Manipulating Pages

 		
 Getting the tag name

 		
 Accessing HTML attributes

 		
 Element Content and Text

 		
 Checking Element Visibility

 		
 Accessing Form State

 		
 Shortcut methods

 		
 Interacting with Pages

 		
 Interacting with Links and Buttons

 		
 Interacting with Forms

 		
 Interacting with the Mouse

 		
 Interacting with the Keyboard

 		
 Manipulating the Focus

 		
 Drag’n’Drop

 		
 Shortcut Methods

 		
 Drivers

 		
 GoutteDriver

 		
 Installation

 		
 Usage

 		
 BrowserKitDriver

 		
 Installation

 		
 Usage

 		
 Selenium2Driver

 		
 Installation

 		
 Usage

 		
 ChromeDriver

 		
 Installation

 		
 Usage

 		
 ZombieDriver

 		
 Installation

 		
 Usage

 		
 SahiDriver

 		
 Installation

 		
 Usage

 		
 SeleniumDriver

 		
 Installation

 		
 Usage

 		
 Driver Feature Support

 		
 Managing Sessions

 		
 Contributing

 		
 Reporting issues

 		
 Contributing features

_static/ajax-loader.gif

