

 Navigation

 	
 index

 	
 next |

 	mimic 0.0.1 documentation

Welcome to mimic’s documentation!

Contents:

	Introduction to Mimic
	What is Mimic?

	Getting Started

	Mimic Tutorial
	Basics

	Advanced
	Variable Parameters to Mock Functions

	Calling Mock Objects Multiple Times

	Stubbing Out A Class

	MockAnything Objects

	Stubbing Out Python Builtins

	TODO
	High-level Projects

	Low-hanging Fruit

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Gavin McQuillan.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mimic 0.0.1 documentation

Introduction to Mimic

What is Mimic?

Mimic is a mock library for python that is based on
Google’s Pymox [https://code.google.com/p/pymox/], a fanstastic testing
library, which is in turn based on EasyMock – a Java mock object framework.

Mimic allows you to write true unit tests even in situations in which your code is
dependent on external systems, in situations in which dependency injection
won’t work, or would otherwise be too complicated.

Mimic Test Philosophy

Mimic is a bit more complex than many other mocking libraries. This is a strength
and a weakness. The way Mimic tests are meant to be run is in the following order:

	specify expectations

	enter replay mode

So the first part of your test ends up being about setting up the scenario for
mimic, and then the second part – after you enter replay mode – is about calling
the code you hope to test from you test function.

This two-step process is a little extra work from the onset, but it’s a hidden
strength when you realize that Mimic holds you to the expectations you set:
if you don’t call a method you mock out, you get an error; if you call a method
you weren’t expecting, you get an error. It has a kind of symmetry that many developers
find easy to trust because of its explicitness.

Why fork?

There are a couple of features that have been needed for a while, including:

	Move the codebase over to github (and thereby git) in order to allow for more community participation

	PEP8 compliant method names

	Experimental Python 3 support

	Complete, comprehensive documentation

	Continuous Integration

	
	Fixes which have been rejected from pymox proper

	
	Nosetests fixes for ‘one-character-per-line’ exception output

Most importantly, though, a library this good needs active maintenance. It’s
been a few years now since the latest release. While this is a relatively mature
code-base, there are a number of
outstanding issues [https://code.google.com/p/pymox/issues/list], which don’t
seem to be getting any traction.

Getting Started

Installing

You can download mimic from PyPI [https://pypi.python.org/] using pip [http://www.pip-installer.org/] or easy_install:

pip install mimic

Source Code and Issue Tracker

The sourcecode is available on github at https://github.com/gmcquillan/mimic/.

 Copyright 2013, Gavin McQuillan.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mimic 0.0.1 documentation

Mimic Tutorial

There are a few core concepts to understand about how Mimic works. Essentially,
there’s the part of the test where you setup your expectations, and then there’s
the part where you put your mocks into replay mode and call your code like normal.

Warning

Be careful when stubbing out your dependencies, mimic enfoces the contract you setup
with it. If you say something gets called and it doesn’t, mimic will raise an
exception. You must provide a precise, deterministic view into what these Mock
objects would do in regular service.

Note

The pymox project also has decent documentation [https://code.google.com/p/pymox/wiki/MoxDocumentation].

Basics

Here’s a rundown of the stages of a mimic-based test:

	Mimic instance

	Mocking out objects

	Replaying the mock objects

	Verifying and Unsetting the stubs (or ending Replay mode)

Mimic Instance

One way or another, you need a mimic instance from which to issue your commands
for which class, methods, or other structures need to be made into mock objects.

In many examples, you might see a situation like this:

from mimic import Mimic
mime = Mimic()

Often this will happen in a test classes setUp method. However, you can save
yourself the trouble by having your test class inherit from mimic.MimicTestBase:

When you do this, you get a self.mimic instance for free. However, that’s
not the only reason to do so. The other advantage is that the “Unsetting stubs”
step will be done automatically at the end of each test method
(more on this later).

class MyTests(mimc.MimicTestBase):

 def test_something(self):
 self.mimic.stub_out_with_mock(...)

Mocking Out Objects

Mocking Out A Function Call

A vast majority of mocking can just be done by calling stub_out_with_mock,
this is good for situations in which you just need to override a particular
function call so it doesn’t interact with an external system (database), and/or
you need to control the return values that the function returns.

Now assuming that your test classes inherit from MimicTestBase
self.mimic.stub_out_with_mock(my_module, 'my_func')
my_module.my_func(mimic.ignore_arg()).and_return('Completed')

Mocking Out An Object

In situations where you need to access attributes and call functions on an object

my_module = self.mimic.create_mock_anything()
my_module.my_func(mimic.ignore_arg()).and_return('Completed')

Mocking Out A Class

In other situations you need to mock out the creation of an instance within the
code that’s being tested. In those cases use stub_out_class_with_mocks.

See Stubbing Out A Class

Replaying Mock Objects

After setting expectations, we trigger replay mode which means that we can
make our calls for testing now.

Set expectations
self.mimic.replay_all()

Call your code
Make your assertions
self.assertTrue(my_func())

Unsetting Stubs/Verification

After all the mocks have played out (successfully hopefully!) we need to let Mimic
know that it’s time to count all the calls and arguments that we setup in our
expectations.

self.mimic.verify_all()

Note

This isn’t necessary if you’re inheriting from mimic.MimicTestBase!
self.mimic.verify_all() will be called for you in that case!

 Copyright 2013, Gavin McQuillan.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	mimic 0.0.1 documentation

Advanced

Variable Parameters to Mock Functions

IgnoreArg()

And()

Or()

Is()

IsA()

IsAlmost()

StringContains()

Regex()

In()

Not()

ContainsKeyValue()

ContainsAttributeValue()

SameElementAs()

Calling Mock Objects Multiple Times

Mimic is pretty strict about which functions are called, and how many times they’re
called. This could be tedious if the same function is called with the same Parameters
and you were required to setup those expectations repeatedly.

In a situation in which the function my_call is called three times during the
course of a test, you could do this:

my_object.my_call().and_return(True)
my_object.my_call().and_return(True)
my_object.my_call().and_return(True)

However, you can chain a multiple_times() call into the first call.

my_object.my_call().multiple_times().and_return(True)
Done! :)

Now, if you wanted to make sure it got called three times and no more or no less:

my_object.my_call().multiple_times(3).and_return(True)

Stubbing Out A Class

If you need to make an instance with the characteristic of a particular class,
and whose instance attributes and methods you wish to be able to control, try
stub_out_class_with_mocks. This is particularly useful when an object is
instanstiated within the code tested by your test.

self.mimic.stub_out_class_with_mocks(my_module, 'MyClass')
mock_object = my_module.MyClass()
Setup any expectations you want for MyClass

Now you have an object that you can set any expectations you need to override
for your testing.

MockAnything Objects

These are sort of like a mock object created by stub_out_class_with_mocks
however, you don’t even need to specify a class. It’s an empty vessel with which
any expectations you want. This is useful whenever you might need an object, but
the code you’re testing isn’t responsible for its creation (e.g. you can pass it
into the function).

fake_result = self.mimic.create_mock_anything()
fake_result.result = 'Some fake result data'
fake_connection = self.mimic.create_mock_anything()
fake_connection.query(mimic.ignore_arg()).and_return(fake_result)

Stubbing Out Python Builtins

For example, if you need to mock out a python builtin such as open, the
following code would work:

Assuming you've setup your mimic instance as self.mimic
fake_conf_file = StringIO.StringIO('')
self.mimic.stub_out_with_mock(sys.modules['__builtin__'], 'open')
sys.modules['__builtin__'].open('path/to/file.txt', 'r').and_return(
 fake_conf_file
)

self.mimic.replay_all()

Calls you would need to make that interact with filesystems, etc.

 Copyright 2013, Gavin McQuillan.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	
 previous |

 	mimic 0.0.1 documentation

TODO

Things that need doing for the project to flourish.

High-level Projects

	Full Python3 support, preferably with backwards compatibility to 2.7.
There is ongoing work on the python3 branch in this repo. If you currently
work in python3 and would like to use pymox or mimic, please take a look.

	Current status for the python3 branch is 72 failing tests out of 230.
But basic mocking and replay of mock objects does seem to work.

	The python3 branch relies on the six [http://packages.python.org/six/] module.

Low-hanging Fruit

	Convert all of Mimic and Mimic tests to be PEP8 compatible.

	Use RST docstrings to give use autodoc capabilities with Sphinx

 Copyright 2013, Gavin McQuillan.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 Navigation

 	
 index

 	mimic 0.0.1 documentation

Index

 Copyright 2013, Gavin McQuillan.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 	latest

 _static/down.png

_static/plus.png

_static/comment.png

_static/minus.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/file.png

search.html

 Navigation

 		
 index

 		mimic 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Gavin McQuillan.
 Created using Sphinx 1.1.2.

 Brought to you by Read the Docs

 		latest

_static/comment-close.png

_static/up-pressed.png

_static/down-pressed.png

_static/up.png

