

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

 With migra you can dispense with schema version numbers and multiple migration files.

Different deployment styles

Migra doesn’t force a precise workflow onto you, because every project is different. Instead, migra was designed to allow you to easily script up the workflow you want, help you automate it as fast as possible, and help you test your database changes to ensure correctness.

Nevertheless, here’s some guidelines about how set things up just right.

App-driven vs database-driven

Broadly speaking there are two ways to manage changes to an application database, which we might call app-centric and database-centric. You can use migra to enhance either style, however you’ll use it quite differently depending on your preferred situation.

With the app-centric approach, you add migration files to the same repository as your application code. When you deploy, any new migration files that haven’t yet been applied to the production database get run before the app code is deployed.

The database-centric approach is more common in an environment where you have separate people responsible for the database. Sysadmins or DBAs manage database changes as a separate task. App and DB deployments are more loosely coordinated and not run at the same time as part of the same deployment.

The key feature of both is to directly use the production schema generate the changes needed.

Migra with app-driven deployments

Instead of manually crafting migration files and mucking about with version numbers, you can do the following.

	dump the schema of your production database

	use migra to generate the changes required to move your production database to the new intended state. edit this script as necessary and add it to source control

	write tests to ensure that your app works after the migration has been applied and that it results in the exact schema you want

	add a step to your deployment that does a schema comparison to see if any of the scripts you’ve added to source control need applying. unlike traditional migration tools, no version numbers are needed here because the script checks the structure of the database directly.

	then applies the scripts, tests the schema again to check the script has resulted in the correct structure, then deploys the rest of the app as usual.

Migra with database-centric deployments

The flow with a database-centric application might look like this:

	dump the production database schema and generate the changes required.

	write tests to ensure correct functioning of the application (both before and after the database changes)

	deploy the application

	subsequently, apply the generated migration script on the production database.

 Migra is handy for speeding up database-related development and testing tasks.

Auto-syncing dev database to application code

When developing applications that work with a database, you’ll inevitably have some kind of “target” schema in mind that you want the database to have.

This is often defined with database model classes (such as used by Django/Rails), or perhaps with a setup script written in raw SQL.

When developing your application, you’ll generally have a local version of this database running for use while developing, tweaking and debugging your application.

The challenge is to keep this database in sync with your “target” schema as you tinker and continually modify the target to suit your app.

This sample script shows how you might use migra to sync up your dev database almost automatically:

:::python
def sync():
 from sqlbag import S, temporary_database as temporary_db

 DB_URL = 'postgresql:///name_of_local_dev_database'

 with temporary_db() as TEMP_DB_URL:
 load_from_app(TEMP_DB_URL)

 with S(DB_URL) as s_current, S(TEMP_DB_URL) as s_target:
 m = Migration(s_current, s_target)
 m.set_safety(False)
 m.add_all_changes()

 if m.statements:
 print('THE FOLLOWING CHANGES ARE PENDING:', end='\n\n')
 print(m.sql)
 print()
 if input('Apply these changes?') == 'yes':
 print('Applying...')
 m.apply()
 else:
 print('Not applying.')
 else:
 print('Already synced.')

Creating customized tasks and scripts

Every project is slightly different, so Migra doesn’t try and solve every migration workflow problem you could possibly have. Instead, migra tries to make it as easy as possible to write scripts to solve your own migration problems.

Most of migra’s functionality is available through the Migration object. Pass in two database sessions and migra will compare the two against each other. This basic unit of functionality should be fairly easily adaptable to your particular requirements.

Setting up tests

You can use migra to test the correctness of three things:

	The correctness of your code pre-migration.

	The correctness of your code post-migration.

	The correctness of your migration scripts.

Testing before and after database versions

With the right testing framework and fixture setup code, you can configure your tests to run twice, against both the pre and post migration versions of your database.

Here’s how to do that with python’s pytest. Suppose you are using migra to generate a file called pending.sql that contains any pending migrations. You could then add something like this to your conftest.py file:

import os.path
from sqlbag import S, temporary_database as temporary_db

def load_pre_migration(dburl):
 with S(dburl) as s:
 load_sql_from_file(s, 'MIGRATIONS/production.dump.sql')

def load_post_migration(dburl):
 with S(dburl) as s:
 load_sql_from_file(s, 'MIGRATIONS/production.dump.sql')

 with S(dburl) as s:
 load_sql_from_file(s, 'MIGRATIONS/pending.sql')

pending = os.path.exists('MIGRATIONS/pending.sql')

if pending:
 DATABASE_SETUPS_TO_TEST = [
 load_pre_migration,
 load_post_migration
]
else:
 DATABASE_SETUPS_TO_TEST = [
 load_post_migration
]

@pytest.fixture(params=DATABASE_SETUPS_TO_TEST)
def db(request):
 with temporary_db() as test_db_url:
 setup_method = request.param
 setup_method(test_db_url)
 yield test_db_url

Testing against real data

You can make your testing more comprehensive by testing against not just the empty schema structure of your production database, but a copy populated with real (preferably anonymised) application data.

If your production database is large, you really should be testing your migration against a copy of similar size, in order to detect any performance problems that could result from slow-running migration scripts.

migra is a schema comparison tool for PostgreSQL.

It’s a command line tool, and Python library. Find differences in database schemas as easily as running a diff on two text files.

Migra makes schema changes almost automatic. Management of database migration deployments becomes much easier, faster, and more reliable.

Using migra is as simple as this:

$ migra postgresql:///a postgresql:///b
alter table "public"."book" add column "author" character varying not null;

alter table "public"."book" alter column "name" set not null;

To get started, hit the Quickstart guide.

Installation

migra is written in Python so you need to install it with pip, the Python Package Manager (don’t worry, you don’t need to know or use any Python to use the migra command).

	Make sure you have pip [https://pip.pypa.io/en/stable/installing/] properly installed.

	Run:

 :::bash
 $ pip install migra[pg]

This will install the latest version of migra from PyPI (the global Python Package Index), along with psycopg2, the python PostgreSQL driver.

	Confirm migra is installed by running migra --help. The output should begin like this:

 usage: migra [-h] [--unsafe] dburl_from dburl_target

Comparing two database schemas

To compare two database schemas:

$ migra <url_of_database_A> <url_of_database_B>

For example, we have two databases, named “alpha” and “beta”. We can compare them using this command:

$ migra postgresql:///alpha postgresql:///beta

Migra will then generate whatever SQL is required to change the schema of database alpha to match database beta.

If the two database schemas match exactly, you’ll get empty output, because no changes are required. This functions like the well-known diff command [https://en.wikipedia.org/wiki/Diff_utility], which also returns empty output when comparing two identical files.

Warning

Don’t blindly copy-and-paste the output of the migra command.

migra features a safeguard against generation of dangerous statements. If the command generates a drop statement, migra will exit with an error. If you’re sure you want the drop statement(s), you can turn off this safeguard behaviour with the --unsafe flag:

migra --unsafe postgresql:///alpha postgresql:///beta

Making changes to database schemas

Suggestion

If you’re making changes to a serious production database, use a copy of it for these steps instead so you’re not changing your production environment until you intend to.

You can make a schema-only dump of your PostgreSQL database with the following command:

pg_dump --no-owner --no-privileges --no-acl --schema-only name_of_database -f schema.dump.sql

Steps

	Get the connection string of the database you want to make changes to. migra needs to connect to this database so it can analyse the database’s schema.

	Prepare a second PostgreSQL database. This database needs to have the new/desired/target schema. You might create a temporary database and set it up for this purpose.

	Generate a migration script using the following command (substituting your own connection strings):

$ migra --unsafe postgresql:///existing postgresql:///database_with_new_schema -f migration_script.sql

	Carefully review the migration script in migration_script.sql

Consider in particular:

	The generated script may result in data loss from your database when you apply this script. Consider if you intend for this to happen or if you need to add statements to copy data out of the relevant tables/columns before you drop them forever.

	Some migration operations can take a long time and cause interruptions and downtime, particularly when involving tables containing large amounts of data. More on this here.

	Apply migration_script.sql to your production database with a command similar to the following (again substituting your own connection string).

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

