MIDIUtil Documentation
Release 1.1.1

Mark Conway Wirt

Mar 04, 2018






Contents

1 Creating the MIDIFile Object 1
2 Common Events and Function 5
3 Tuning and Microtonalities 9
4 Extending the Library 13
5 Class Reference 17
6 Introduction 25
7 Installation 27
8 Quick Start 29
9 Thank You 31

10 Indices and tables 33







CHAPTER 1

Creating the MIDIFile Object

The first step in using the library is creating a MIDIFile object. There are only a few parameters that need be
specified, but they affect the functioning of the library, so it’s good to understand what they do.

The signature of of the MIDIFile __init__ () function is as follows:

def _ init__ (self,
numTracks=1,
removeDuplicates=True,
deinterleave=True,
adjust_origin=False,
file_format=1,
ticks_per_qgquarternote=TICKSPERQUARTERNOTE,
eventtime_is_ticks=False) :

where the parameters do the following:

1.1 numTracks

numTracks specifies the number of tracks the MIDI file should have. It should be set to at least 1 (after all, a MIDI
file without tracks isn’t very useful), but it may be set higher for a multi-track file.

This parameter defaults to 1.

1.2 removeDuplicates

If set to True (the default), duplicate notes will be removed from the file. This is done on a track-by-track basis.

Notes are considered duplicates if they occur at the same time, and have equivalent pitch, and MIDI channel. If set to
False no attempt is made to remove notes which appear to be duplicates.

removeDuplicates () also attempts to remove other kinds of duplicates. For example, if there are two tempo
events at the same time and same tempo, they are considered duplicates.




MIDIUtil Documentation, Release 1.1.1

Of course, it’s best not to insert duplicate events in the first place, but this could be unavoidable in some instances —
for example, if the software is used in the creation of Generative Music using an algorithm that can create duplication
of events.

1.3 deinterleave

If deinterleave is set to True (the default), an attempt will be made to remove interleaved notes.
To understand what an interleaved note is, it is useful to have some understanding of the MIDI standard.

To make this library more human-centric, one of the fundamental concepts used is that of the note. But the MIDI
standard doesn’t have notes; instead, it has note on and note off events. These are correlated by channel and pitch.

So if, for example, you create two notes of duration 1 and separated by 1/2 of a beat, ie:

time = 0

duration = 1

MyMIDI.addNote (track, channel, pitch,time, duration, volume)
time = 0.5

MyMIDI.addNote (track, channel,pitch,time,duration, volume)

you end up with a note on event at 0, another note on event a 0.5, and two note off events, one at 1.0 and one at 1.5.
So when the first note off event is processed it raises the question: which note on event does it correspond to? The
channel and pitch are the same, so there is some ambiguity in the way that a hardware or software instrument will
respond.

if deinterleave is True the library tries to disambiguate the situation by shifting the first note’s off event to be
immediately before the second note’s on event. Thus in the example above the first note on would be at 0, the first note
off would be at 0.5, the second note on would also be at 0.5 (but would be processed after the note off at that time),
and the last note off would be at 1.5.

If this parameter is set to False no events will be shifted.

1.4 adjust_origin

If adjust_origin is True the library will find the earliest event in all the tracks and shift all events so that that
time is t=0. If it is False no time-shifting will occur. The defaul value is False.

1.5 file_format

This specifies the format of the file to be written. Both format 1 (the default) and format 2 files are supported.

In the format 1 file there is a separate “tempo” track to which tempo and time signature events are written. The calls
to create these events — addTemo () and addTimeSignature () accept a track parameter, but in a format 1 file
these are ignored. In format 2 files they are interpreted literally (and zero-origined, so that a two track file has indices
0 and 1).

Track indexing is always zero-based, but with the format 1 file the tempo track is not indexed. Thus if you create a
one track file:

MyMIDI = MIDIFile(l, file_format=1)

you would only have 0 as a valid index; the tempo track is managed independently for you. Thus:

2 Chapter 1. Creating the MIDIFile Object



https://en.wikipedia.org/wiki/Generative_music

MIDIUtil Documentation, Release 1.1.1

track = 0

big_track = 1000

MyMIDI.addTempo (big_track, 0, 120)
MyMIDI.addNote (track, 0, 69, 0, 1, 100)

works, even though “track 0” is really the second track in the file, and there is no track 1000.

1.6 ticks_per_quarternote

The MIDI ticks per quarter note. Defaults to 960. This defines the finest level of time resolution available in the file.
120, 240, 384, 480, and 960 are common values.

1.7 eventtime is ticks

If set to True, all times passed into the event creation functions should be specified in ticks. Otherwise they should
be specified in quarter-notes (the default).

1.6. ticks_per_quarternote 3



MIDIUtil Documentation, Release 1.1.1

4 Chapter 1. Creating the MIDIFile Object



CHAPTER 2

Common Events and Function

This page lists some of the more common things that a user is likely to do with the MIDI file. It is not exhaustive; see
the class reference for a more complete list of public functions.

2.1 Adding Notes

As the MIDI standard is all about music, creating notes will probably be the lion’s share of what you’re doing. This is
done with the addNote () function.

MIDIFile.addNote (track, channel, pitch, time, duration, volume, annotation=None)
Add notes to the MIDIFile object

Parameters

track — The track to which the note is added.
channel - the MIDI channel to assign to the note. [Integer, 0-15]
pitch - the MIDI pitch number [Integer, 0-127].

time — the time at which the note sounds. The value can be either quarter notes [Float], or
ticks [Integer]. Ticks may be specified by passing eventtime_is_ticks=True to the MIDIFile
constructor. The default is quarter notes.

duration - the duration of the note. Like the time argument, the value can be either
quarter notes [Float], or ticks [Integer].

volume — the volume (velocity) of the note. [Integer, 0-127].

annotation — Arbitrary data to attach to the note.

The annotation parameter attaches arbitrary data to the note. This is not used in the code, but can be useful
anyway. As an example, I have created a project that uses MIDIFile to write csound orchestra files directly from
the class EventList.

As an example, the following code-fragment adds two notes to an (already created) MIDIFile object:



http://csound.github.io/

MIDIUtil Documentation, Release 1.1.1

track =0 # Track numbers are zero-origined
channel = 0 # MIDI channel number

pitch = 60 # MIDI note number

time =0 # In beats

duration = 1 # In beats

volume = 100 # 0-127, 127 being full volume

MyMIDI.addNote (track, channel,pitch,time, duration, volume)
time = 1
pitch = 61
MyMIDI.addNote (track, channel,pitch, time, duration, volume)

2.2 Add a Tempo

Every track can have tempos specified (the unit of which is beats per minute).

MIDIFile.addTempo (track, time, tempo)
Add notes to the MIDIFile object

Parameters

* track — The track to which the tempo event is added. Note that in a format 1 file this
parameter is ignored and the tempo is written to the tempo track

* time — The time (in beats) at which tempo event is placed

* tempo — The tempo, in Beats per Minute. [Integer]

Example:
track = 0
time = 0 # beats, beginning of track

tempo = 120 # BPM
MyMIDI.addTempo (track, time, tempo)

2.3 Assign a Name to a Track

MIDIFile.addTrackName (track, time, trackName)
Name a track.

Parameters
* track — The track to which the name is assigned.

* time — The time (in beats) at which the track name event is placed. In general this should
probably be time O (the beginning of the track).

* trackName — The name to assign to the track [String]

In general, the time should probably be t=0

Example:

track =0

time =0

track_name = "Bassline 1"

MyMIDI.addTrackName (track, time, track_name)

6 Chapter 2. Common Events and Function



MIDIUtil Documentation, Release 1.1.1

2.4 Adding a Program Change Event

The program change event tells the the instrument what voice a certain track should sound. As an example, if the
instrument you’re using supports General MIDI, you can use the GM numbers to specify the instrument.

Important Note: Within this library program numbers are zero-origined (as they are on a byte-level within the MIDI
standard), but most of the documentation you will see is musician-centric, so they are usually given as one-origined.
So, for example, if you want to sound a Cello, you would use a program number of 42, not the 43 which is given in
the link above.

MIDIFile.addProgramChange (tracknum, channel, time, program)
Add a MIDI program change event.

Parameters
* tracknum - The zero-based track number to which program change event is added.
* channel - the MIDI channel to assign to the event. [Integer, 0-15]
* time — The time (in beats) at which the program change event is placed [Float].

* program — the program number. [Integer, 0-127].

Example:

track =0

channel = 0

time = 8 # Eight beats into the composition
program = 42 # A Cello

MyMIDI.addProgramChange (track, channel, time, program)

2.5 Writing the File to Disk

Ultimately, you’ll need to write your data to disk to use it.

MIDIFile.writeFile (fileHandle)
Write the MIDI File.

Parameters fileHandle — A file handle that has been opened for binary writing.

Example:

with open("mymidifile.midi", 'wb') as output_file:
MyMIDI.writeFile (output_file)

2.6 Additional Public Function

The above list is not exhaustive. For example, the library includes methods to create arbitrary channel control events,
SysEx and Universal SysEx events, Registered Parameter calls and Non-Registered Parameter calls, etc. Please see
the Class Reference for a more complete list of public functions.

2.4. Adding a Program Change Event 7



https://www.midi.org/specifications/item/gm-level-1-sound-set

MIDIUtil Documentation, Release 1.1.1

8 Chapter 2. Common Events and Function



CHAPTER 3

Tuning and Microtonalities

One of my interests is microtonalities/non-standard tunings, so support for such explorations has been included in the

library.

There are several ways that tuning data can be specified in the MIDI standard, two of the most common being note
pitch-bend and bulk tuning dumps. In this library I have implemented the real-time change note tuning of the MIDI
tuning standard. I chose that as a first implementation because most of the soft-synthesizers I use support this standard.

Note, however, that implementation of the MIDI tuning standard is somewhat spotty, so you may want to verify that
your hardware and/or software supports it before you spend too much time.

Recently the pitch bend message had been implemented. The advantage of the pitch bend is that almost all software and
hardware understand it. The disadvantage is that different software and hardware can interpret the values differently.

The main function to support a tuning change is changeNoteTuning.

MIDIFile.changeNoteTuning (track, tunings, sysExChannel=127, realTime=True, tuningProgam=0)
Add a real-time MIDI tuning standard update to a track.

Parameters

track - The track to which the tuning is applied.
tunings — A list to tuples representing the tuning. See below for an explanation.

sysExChannel — The SysEx channel of the event. This is mapped to “manufacturer ID”
in the event which is written. Unless there is a specific reason for changing it, it should be
left at its default value.

realTime — Speicifes if the Universal SysEx event should be flagged as real-time or non-
real-time. As with the sysExChannel argument, this should in general be left at it’s
default value.

tuningProgram — The tuning program number.

This function specifically implements the “real time single note tuning change” (although the name is mislead-
ing, as multiple notes can be included in each event). It should be noted that not all hardware or software
implements the MIDI tuning standard, and that which does often does not implement it in its entirety.




MIDIUtil Documentation, Release 1.1.1

The tunings argument is a list of tuples, in (note number, frequency) format. As an example, if one wanted
to change the frequency on MIDI note 69 to 500 (it is normally 440 Hz), one could do it thus:

from midiutil .MidiFile import MIDIFile

MyMIDI = MIDIFile (1)

tuning = [(69, 500)]

MyMIDI.changeNoteTuning (0, tuning, tuningProgam=0)

3.1 Tuning Program

With some instruments, such as timidity, this is all you need to do: timidity will apply the tuning change to the notes.
Other instruments, such as fluidsynth, require that the tuning program be explicitly assigned. This is done with the
changeTuningProgram function:

MIDIFile.changeTuningProgram (frack, channel, time, program, time_order=False)
Change the tuning program for a selected track

Parameters
* track - The track to which the data should be written
* channel - The channel for the event
* time — The time of the event
* program — The tuning program number (0-127)

* time_order - Preserve the ordering of the component events by ordering in time. See
makeRPNCall () for a discussion of when this may be necessary

Note that this is a convenience function, as the same functionality is available from directly sequencing controller
events.

The specified tuning should already have been written to the stream with changeNoteTuning.

3.2 Tuning Bank

The tuning bank can also be specified (fluidsynth assumes that any tuning you transmit via changeNoteTuning is
assigned to bank zero):

MIDIFile.changeTuningBank (track, channel, time, bank, time_order=False)
Change the tuning bank for a selected track

Parameters
* track — The track to which the data should be written
* channel - The channel for the event
* time — The time of the event
* bank — The tuning bank (0-127)

* time order - Preserve the ordering of the component events by ordering in time. See
makeRPNCall () for a discussion of when this may be necessary

Note that this is a convenience function, as the same functionality is available from directly sequencing controller
events.

The specified tuning should already have been written to the stream with changeNoteTuning.

10 Chapter 3. Tuning and Microtonalities


http://timidity.sourceforge.net/
http://www.fluidsynth.org/

MIDIUtil Documentation, Release 1.1.1

3.3 An Example

So, as a complete example, the following code fragment would get rid of that pesky 440 Hz A and tell the instrument
to use the tuning that you just transmitted:

track
channel
tuning
program =
bank =
time =0

MyMIDI.changeNoteTuning (track, tuning, tuningProgam=program)
MyMIDI.changeTuningBank (track, channel, time, bank) # may or may not be needed
MyMIDI.changeTuningProgram(track, channel, time, program) # ditto

(69, 500)]

Il
o O— O O

3.4 Using Pitch Bend

Pitch bend is a channel level event, meaning that if you pass a pitch wheel event, all notes on that channel will be
affected.

MIDIFile.addPitchWheelEvent (frack, channel, time, pitchWheelValue)
Add a channel pitch wheel event

Parameters
* track - The track to which the event is added.
* channel - the MIDI channel to assign to the event. [Integer, 0-15]
* time — The time (in beats) at which the event is placed [Float].

* pitchWheelValue - ( for no pitch change. [Integer, -8§192-8192]

3.5 To Do

* Implement the tuning change with bank select event type.

3.3. An Example 11




MIDIUtil Documentation, Release 1.1.1

12 Chapter 3. Tuning and Microtonalities



CHAPTER 4

Extending the Library

The choice of MIDI event types included in the library is somewhat idiosyncratic; I included the events I needed for
another software project I was writting. You may find that you need additional events in your work. For this reason
I am including some instructions on extending the library. The process isn’t too hard (provided you have a working
knowledge of Python and the MIDI standard), so the task shouldn’t present a competent coder too much difficulty.
Alternately (if, for example, you don’t have a working knowledge of MIDI and don’t desire to gain it), you can submit
new feature requests to me, and I will include them into the development branch of the code, subject to the constraints
of time.

To illustrate the process I show below how the MIDI tempo event is incorporated into the code. This is a relatively
simple event, so while it may not illustrate some of the subtleties of MIDI programing, it provides a good, illustrative
case.

The MID standard defines the Tempo event as the following byte-stream:

FF 51 03 tttttt

where FF 51 is the code and sub-code of the event, 03 is the data length of the event, and tttttt are the three
bytes of data, encoded as microseconds per quarter note.

4.1 Create a New Event Type

The majority of work involved with creating a new event type is the creation of a new subclass of the GenericEvent
object of the MIDIFile module. This subclass:

* Initializes any specific instance data that is needed for the MIDI event, and
* Defines how the data are serialized to the byte stream
* Defines the order in which an event is written to the byte stream (see below)

In the case of the tempo, the actual data conversion is easy: people tend to specify tempos in beats per minute, so the
input will need to be divided into 60000000.

The serialization strategy is defined in the subclass’ serialize member function, which is presented below.

13



MIDIUtil Documentation, Release 1.1.1

sec_sort_order and insertion_order are used to order the events in the MIDI stream. Events are first
ordered in time. Events at the same time are then ordered by sec_sort_order, with lower numbers appearing in
the stream first. Lastly events are sorted on the self.insertion_order member. This strategy makes it possible
to, say, create a Registered Parameter Number call from a collection of Control Change events. Since all the CC events
will have the same time and class (and therefore default secondary sort order), you can control the order of the events
by the order in which you add them to the MIDIFile.

Al of this will perhaps be more clear if we examine the code:

class Tempo (GenericEvent) :

rrr

A class that encapsulates a tempo meta—-event
rr

evtname = 'Tempo'
sec_sort_order = 3

def _ _init__ (self, tick, tempo, insertion_order=0):
self.tempo = int (60000000 / tempo)

super (Tempo, self).__init__ (tick, insertion_order)

def _ _eqg (self, other):

return (self.evtname == other.evtname and
self.tick == other.tick and
self.tempo == other.tempo)
__hash_ = GenericEvent._ _hash_

def serialize(self, previous_event_tick):
"""Return a bytestring representation of the event, in the format required for

writing into a standard midi file.
mmn

midibytes = b""
code = 0OxFF
subcode = 0x51
fourbite = struct.pack('>L', self.tempo) # big-endian uint32
threebite = fourbite[l:4] # Just discard the MSB
varTime = writeVarLength(self.tick - previous_event_tick)
for timeByte in varTime:
midibytes += struct.pack('>B', timeByte)
midibytes += struct.pack('>B', code)
midibytes += struct.pack('>B', subcode)
midibytes += struct.pack('>B', 0x03) # length in bytes of 24-bit tempo
midibytes += threebite
return midibytes

The event name (evtname) and secondary sort order are defined in class data; any class that you create will do the
same. tick is the time in MIDI ticks of the event and insertion order will be set in the code. All events should accept
these parameters. tempo is the specific instance data needed for this event type.

The __init__ () member converts the tempo to number needed by the standard and then calls the super-class’
initialization function with tick and insertion order. All event subclasses should do this.

Next, the __eqg__ () function is defined that specifies when two events are the same. In this case they are the same if
the tick, event name, and tempo are the same. This code is used to identify and remove duplicate events. __hash__ ()
should explicitly be brought down from the parent class, in in Python 3 it is not implicitly inherited.

Lastly, the serialize member function should be created. This will return a byte stream representing the MIDI
data. A few things to note about this:

14 Chapter 4. Extending the Library




MIDIUtil Documentation, Release 1.1.1

All MIDI events begin with a time, which is written in an idiosyncratic variable-length format. Use the
writeVarLength utility function to calculate this.

Note that in the case of the tempo event, the standard only uses three bytes, whereas in python a long will be
packed into four bytes. Hence we just discard the MSB.

In the temo the actual data is packed: - The time - The code (0xFF) - The subcode (0x51) - The length of that
(defined in the event as 3 bytes) - The data proper

4.2 Create an Accessor Function

Next, an accessor function should be added to MIDITrack to create an event of this type. Continuing the example of
the tempo event:

def addTempo (self, tick, tempo, insertion_order=0):
rrr

Add a tempo change (or set) event.

rr

self.eventList.append (Tempo (tick, tempo,
insertion_order=insertion_order))

(Most/many MIDI events require a channel specification, but the tempo event does not.)
This is more-or-less boilerplate code, and just needs to appropriately create the object you defined above.

Note that this function can in some cases create multiple events. For example, when one adds a note, both a NoneOn
and a NoteOf f event will be created.

Lastly, the public accessor function is via the MIDIFile object, and must include the track number to which the event
is written. So in MIDIFile:

def addTempo (self, track, time, tempo):

mmn

Add notes to the MIDIFile object

:param track: The track to which the tempo event 1is added. Note that
in a format 1 file this parameter 1is ignored and the tempo is
written to the tempo track

:param time: The time (in beats) at which tempo event is placed

:param tempo: The tempo, in Beats per Minute. [Integer]

mmwn

if self.header.numeric_format == 1:
track = 0

self.tracks[track].addTempo (self.time_to_ticks(time), tempo,

insertion_order=self.event_counter)

self.event_counter += 1

Note that a track has been added (which is zero-origined and needs to be constrained by the number of tracks that the
MIDIFile was created with), and insertion_order is taken from the class event_counter data member.
This should be followed in each function you add. Also note that the tempo event is handled differently in format 1
files and format 2 files. This function ensures that the tempo event is written to the first track (track 0) for a format
1 file, otherwise it writes it to the track specified. In most of the public functions a check it done on format, and the
track is incremented by one for format 1 files so that the event is not written to the tempo track (but preserving the
zero-origined convention for all tracks in both formats.)

The only other complexity is that the public functions accept by default a time in quarter-notes, not MIDI ticks. So
the public accessor function should pass the time through the time_to_ticks () member. If the MIDIFile was

4.2. Create an Accessor Function 15




MIDIUtil Documentation, Release 1.1.1

instantiated with eventtime_is_ticks = True, this is just an identity fucntion and the public accessor will
expect time in ticks. Otherwise it will convert from quarter-notes to ticks (suing the TICKSPERQUARTERNOTE
instance data)

This is the function you will use in your code to create an event of the desired type.

4.3 Write Some Tests

Yea, it’s a hassle, but you know it’s the right thing to do!

16 Chapter 4. Extending the Library



CHAPTER B

Class Reference

class midiutil.MidiFile.MIDIFile (numTracks=1, removeDuplicates=True, deinter-
leave=True, adjust_origin=False, file_format=1,
ticks_per_quarternote=960, eventtime_is_ticks=False)
A class that encapsulates a full, well-formed MIDI file object.

This is a container object that contains a header (MIDIHeader), one or more tracks (class:MIDITrack), and
the data associated with a proper and well-formed MIDI file.

__init_ (numTracks=1, removeDuplicates=True, deinterleave=True, adjust_origin=False,

file_format=1, ticks_per_quarternote=960, eventtime_is_ticks=False)
Initialize the MIDIFile class

Parameters
* numTracks — The number of tracks the file contains. Integer, one or greater
* removeDuplicates — If set to True remove duplicate events before writing to disk
* deinterleave - If set to True deinterleave the notes in the stream

* adjust_origin - If set to True shift all the events in the tracks so that the first event
takes place at time t=0. Default is False

e file_format — The format of the multi-track file. This should either be 1 (the default,
and the most widely supported format) or 2.

* ticks_per quarternote — The number of ticks per quarter note is what the Stan-
dard MIDI File Format Specification calls “division”. Ticks are the integer unit of time in
the SMF, and in most if not all MIDI sequencers. Common values are 120, 240, 384, 480,
960. Note that all these numbers are evenly divisible by 2,3,4,6,8,12,16, and 24, except
120 does not have 16 as a divisor.

* eventtime_is_ticks - If set True means event time and duration argument values
are integer ticks instead of fractional quarter notes.

Note that the default for adjust_origin will change in a future release, so one should probably ex-
plicitly set it.

17



MIDIUtil Documentation, Release 1.1.1

In a format 1 file, it would be a rare cirumstance where adjusting the origin of each track to the track’s first
note makes any sense.

Example:

Create a two-track MIDIFile

from midiutil .MidiFile import MIDIFile
midi_file = MIDIFile(l, adjust_origin=False)

In previous versions of this code the file written was format 2 (which can be thought of as a collection of
independent tracks) but was identified as format 1. In this version one can specify either format 1 or 2.

In format 1 files there is a separate tempo track which contains tempo and time signature data, but contains
no note data. If one creates a single track format 1 file the actual file has two tracks — one for tempo data
and one for note data. In the track indexing the tempo track can be ignored. In other words track 0 is the
note track (the second track in the file). However, tempo and time signature data will be written to the first,
tempo track. This is done to try and preserve as much interoperability with previous versions as possible.

In a format 2 file all tracks are indexed and the track parameter is interpreted literally.

addControllerEvent (track, channel, time, controller_number, parameter)
Add a channel control event

Parameters
* track — The track to which the event is added.
* channel - the MIDI channel to assign to the event. [Integer, 0-15]
* time — The time (in beats) at which the event is placed [Float].
¢ controller number — The controller ID of the event.
* parameter — The event’s parameter, the meaning of which varies by event type.

addCopyright (track, time, notice)
Add a copyright notice to the MIDIFile object

Parameters
e track — The track to which the notice is added.

* time — The time (in beats) at which notice event is placed. In general this sould be time
t=0

* notice — The copyright notice [String]

addKeySignature (track, time, accidentals, accidental_type, mode, insertion_order=0)
Add a Key Signature to a track

Parameters
* track — The track to which this should be added
* time — The time at which the signature should be placed
* accidentals — The number of accidentals in the key signature
* accidental_type — The type of accidental
* mode — The mode of the scale

The easiest way to use this function is to make sure that the symbolic constants for accidental_type and
mode are imported. By doing this:

18 Chapter 5. Class Reference



MIDIUtil Documentation, Release 1.1.1

from midiutil.MidiFile import =

one gets the following constants defined:
e SHARPS
e FLATS
* MAJOR
¢ MINOR

So, for example, if one wanted to create a key signature for a minor scale with three sharps:

MyMIDI.addKeySignature (0, 0, 3, SHARPS, MINOR)

addNote (track, channel, pitch, time, duration, volume, annotation=None)
Add notes to the MIDIFile object

Parameters
* track — The track to which the note is added.
* channel - the MIDI channel to assign to the note. [Integer, 0-15]
e pitch — the MIDI pitch number [Integer, 0-127].

* time — the time at which the note sounds. The value can be either quarter notes [Float],
or ticks [Integer]. Ticks may be specified by passing eventtime_is_ticks=True to the MID-
IFile constructor. The default is quarter notes.

* duration - the duration of the note. Like the time argument, the value can be either
quarter notes [Float], or ticks [Integer].

* volume — the volume (velocity) of the note. [Integer, 0-127].
* annotation — Arbitrary data to attach to the note.

The annotation parameter attaches arbitrary data to the note. This is not used in the code, but can be
useful anyway. As an example, I have created a project that uses MIDIFile to write csound orchestra files
directly from the class EventList.

addPitchWheelEvent (track, channel, time, pitchWheelValue)
Add a channel pitch wheel event

Parameters
* track - The track to which the event is added.
* channel - the MIDI channel to assign to the event. [Integer, 0-15]
* time — The time (in beats) at which the event is placed [Float].
* pitchWheelValue — 0 for no pitch change. [Integer, -8192-8192]

addProgramChange (tracknum, channel, time, program)
Add a MIDI program change event.

Parameters
* tracknum - The zero-based track number to which program change event is added.
* channel - the MIDI channel to assign to the event. [Integer, 0-15]
e time — The time (in beats) at which the program change event is placed [Float].

* program — the program number. [Integer, 0-127].

19


http://csound.github.io/

MIDIUtil Documentation, Release 1.1.1

addSysEx (track, time, manlD, payload)
Add a System Exclusive event.

Parameters
¢ track - The track to which the event should be written
e time — The time of the event.
e manID - The manufacturer ID for the event

* payload - The payload for the event. This should be a binary-packed value, and will
vary for each type and function.

Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is recom-
mended that higher-level helper functions be written to wrap this function and construct the payload if a
developer finds him or herself using the function heavily.

addTempo (track, time, tempo)
Add notes to the MIDIFile object

Parameters

* track — The track to which the tempo event is added. Note that in a format 1 file this
parameter is ignored and the tempo is written to the tempo track

* time — The time (in beats) at which tempo event is placed
e tempo — The tempo, in Beats per Minute. [Integer]

addText (track, time, text)
Add a text event

Parameters
* track — The track to which the notice is added.
* time — The time (in beats) at which text event is placed.
* text — The text to adde [ASCII String]

addTimeSignature (track, time, numerator, denominator, clocks_per_tick, notes_per_quarter=38)
Add a time signature event.

Parameters

e track - The track to which the signature is assigned. Note that in a format 1 file this
parameter is ignored and the event is written to the tempo track

* time — The time (in beats) at which the event is placed. In general this should probably
be time O (the beginning of the track).

* numerator — The numerator of the time signature. [Int]

* denominator — The denominator of the time signature, expressed as a power of two
(see below). [Int]

* clocks_per_tick — The number of MIDI clock ticks per metronome click (see be-
low).

* notes_per_quarter — The number of annotated 32nd notes in a MIDI quarter note.
This is almost always 8 (the default), but some sequencers allow this value to be changed.
Unless you know that your sequencing software supports it, this should be left at its default
value.

20 Chapter 5. Class Reference



MIDIUtil Documentation, Release 1.1.1

The data format for this event is a little obscure.

The denominator should be specified as a power of 2, with a half note being one, a quarter note being
two, and eight note being three, etc. Thus, for example, a 4/4 time signature would have a numerator of

4 and a denominator of 2. A 7/8 time signature would be a numerator of 7 and a denominator
of 3.

The clocks_per_tick argument specifies the number of clock ticks per metronome click. By defini-
tion there are 24 ticks in a quarter note, so a metronome click per quarter note would be 24. A click every
third eighth note would be 3 * 12 = 36.

The notes_per_quarter value is also a little confusing. It specifies the number of 32nd notes in a
MIDI quarter note. Usually there are 8 32nd notes in a quarter note (8/32 = 1/4), so the default value is
8. However, one can change this value if needed. Setting it to 16, for example, would cause the music to
play at double speed, as there would be 16/32 (or what could be considered fwo quarter notes for every
one MIDI quarter note.

Note that both the clocks_per_tick andthe notes_per_quarter are specified in terms of quarter
notes, even is the score is not a quarter-note based score (i.e., even if the denominator is not 4). So if you’re
working with a time signature of, say, 6/8, one still needs to specify the clocks per quarter note.

addTrackName (frack, time, trackName)
Name a track.

Parameters
* track — The track to which the name is assigned.

* time — The time (in beats) at which the track name event is placed. In general this should
probably be time O (the beginning of the track).

* trackName — The name to assign to the track [String]

addUniversalSysEx (track, time, code, subcode, payload, sysExChannel=127, realTime=False)
Add a Univeral System Exclusive event.

Parameters
* track — The track to which the event should be written
¢ time — The time of the event, in beats.
* code — The event code. [Integer]
* subcode — The event sub-code [Integer]

* payload - The payload for the event. This should be a binary-packed value, and will
vary for each type and function.

* sysExChannel — The SysEx channel.
* realTime — Sets the real-time flag. Defaults to non-real-time.
* manID — The manufacturer ID for the event

Note: This is a low-level MIDI function, so care must be used in constructing the payload. It is recom-
mended that higher-level helper functions be written to wrap this function and construct the payload if a
developer finds him or herself using the function heavily. As an example of such a helper function, see the
changeNoteTuning () function, which uses the event to create a real-time note tuning update.

changeNoteTuning (track, tunings, sysExChannel=127, realTime=True, tuningProgam=0)
Add a real-time MIDI tuning standard update to a track.

Parameters

21



MIDIUtil Documentation, Release 1.1.1

track — The track to which the tuning is applied.
tunings — A list to tuples representing the tuning. See below for an explanation.

sysExChannel — The SysEx channel of the event. This is mapped to “manufacturer ID”
in the event which is written. Unless there is a specific reason for changing it, it should be
left at its default value.

realTime — Speicifes if the Universal SysEx event should be flagged as real-time or
non-real-time. As with the sysExChannel argument, this should in general be left at
it’s default value.

tuningProgram — The tuning program number.

This function specifically implements the “real time single note tuning change” (although the name is
misleading, as multiple notes can be included in each event). It should be noted that not all hardware or
software implements the MIDI tuning standard, and that which does often does not implement it in its

entirety.

The tunings argument is a list of tuples, in (note number, frequency) format. As an example, if one
wanted to change the frequency on MIDI note 69 to 500 (it is normally 440 Hz), one could do it thus:

MyMIDI =
tuning =

from midiutil .MidiFile import MIDIFile

MIDIFile (1)
[ (69, 500)]

MyMIDI.changeNoteTuning (0, tuning, tuningProgam=0)

changeTuningBank (track, channel, time, bank, time_order=False)
Change the tuning bank for a selected track

Parameters

track — The track to which the data should be written
channel — The channel for the event

time — The time of the event

bank — The tuning bank (0-127)

time_order — Preserve the ordering of the component events by ordering in time. See
makeRPNCall () for a discussion of when this may be necessary

Note that this is a convenience function, as the same functionality is available from directly sequencing
controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

changeTuningProgram (track, channel, time, program, time_order=False)
Change the tuning program for a selected track

Parameters

track — The track to which the data should be written
channel — The channel for the event

time — The time of the event

program — The tuning program number (0-127)

time_order — Preserve the ordering of the component events by ordering in time. See
makeRPNCall () for a discussion of when this may be necessary

22

Chapter 5. Class Reference




MIDIUtil Documentation, Release 1.1.1

Note that this is a convenience function, as the same functionality is available from directly sequencing
controller events.

The specified tuning should already have been written to the stream with changeNoteTuning.

makeNRPNCall (track, channel, time, controller_msb, controller_lsb, data_msb, data_lsb,

time_order=False)

Perform a Non-Registered Parameter Number Call

Parameters

track — The track to which this applies
channel — The channel to which this applies
time — The time of the event

controller_msb — The Most significant byte of thecontroller. In common usage this
will usually be 0

controller_1sb — The least significant byte for the controller message. For example,
for a fine-tunning change this would be 01.

data_msb — The most significant byte of the controller’s parameter.

data_1lsb — The least significant byte of the controller’s parameter. If none is needed
this should be set to None

time_order — Order the control events in time (see below)

The t ime_order parameter is something of a work-around for sequencers that do not preserve the order
of events from the MIDI files they import. Within this code care is taken to preserve the order of events as
specified, but some sequencers seem to transmit events occurring at the same time in an arbitrary order. By
setting this parameter to True something of a work-around is performed: each successive event (of which
there are three or four for this event type) is placed in the time stream a small delta from the preceding one.
Thus, for example, the controllers are set before the data bytes in this call.

makeRPNCall (track, channel, time, controller_msb, controller_Isb, data_msb, data_lsb,

time_order=False)

Perform a Registered Parameter Number Call

Parameters

track — The track to which this applies
channel — The channel to which this applies
time — The time of the event

controller_msb — The Most significant byte of the controller. In common usage this
will usually be 0

controller_1sb—The Least significant Byte for the controller message. For example,
for a fine-tuning change this would be O1.

data_msb — The Most Significant Byte of the controller’s parameter.

data_1lsb — The Least Significant Byte of the controller’s parameter. If not needed this
should be set to None

time_order — Order the control events in time (see below)

As an example, if one were to change a channel’s tuning program:

makeRPNCall (track, channel, time, 0, 3, 0, program)

23



MIDIUtil Documentation, Release 1.1.1

(Note, however, that there is a convenience function, changeTuningProgram, that does this for you.)

Controller number 6 (Data Entry), in conjunction with Controller numbers 96 (Data Increment), 97 (Data
Decrement), 98 (Registered Parameter Number LSB), 99 (Registered Parameter Number MSB), 100 (Non-
Registered Parameter Number LSB), and 101 (Non-Registered Parameter Number MSB), extend the num-
ber of controllers available via MIDI. Parameter data is transferred by first selecting the parameter number
to be edited using controllers 98 and 99 or 100 and 101, and then adjusting the data value for that parameter
using controller number 6, 96, or 97.

RPN and NRPN are typically used to send parameter data to a synthesizer in order to edit sound patches
or other data. Registered parameters are those which have been assigned some particular function by
the MIDI Manufacturers Association (MMA) and the Japan MIDI Standards Committee (JMSC). For
example, there are Registered Parameter numbers assigned to control pitch bend sensitivity and master
tuning for a synthesizer. Non-Registered parameters have not been assigned specific functions, and may
be used for different functions by different manufacturers.

The t ime_order parameter is something of a work-around for sequencers that do not preserve the order
of events from the MIDI files they import. Within this code care is taken to preserve the order of events as
specified, but some sequencers seem to transmit events occurring at the same time in an arbitrary order. By
setting this parameter to True something of a work-around is performed: each successive event (of which
there are three or four for this event type) is placed in the time stream a small delta from the preceding one.
Thus, for example, the controllers are set before the data bytes in this call.

writeFile (fileHandle)

‘Write the MIDI File.

Parameters fileHandle — A file handle that has been opened for binary writing.

24

Chapter 5. Class Reference



CHAPTER O

Introduction

MIDIUtil is a pure Python library that allows one to write multi-track Musical Instrument Digital Interface (MIDI)
files from within Python programs (both format 1 and format 2 files are now supported). It is object-oriented and
allows one to create and write these files with a minimum of fuss.

MIDIUtil isn’t a full implementation of the MIDI specification. The actual specification is a large, sprawling document
which has organically grown over the course of decades. I have selectively implemented some of the more useful and
common aspects of the specification. The choices have been somewhat idiosyncratic; I largely implemented what I
needed. When I decided that it could be of use to other people I fleshed it out a bit, but there are still things missing.
Regardless, the code is fairly easy to understand and well structured. Additions can be made to the library by anyone
with a good working knowledge of the MIDI file format and a good, working knowledge of Python. Documentation
for extending the library is provided.

This software was originally developed with Python 2.5.2 and made use of some features that were introduced in 2.5.
More recently Python 2 and 3 support has been unified, so the code should work in both environments. However,
support for versions of Python previous to 2.7 has been dropped. Any mission-critical music generation systems
should probably be updated to a version of Python supported and maintained by the Python foundation, lest society
devolve into lawlessness.

This software is distributed under an Open Source license and you are free to use it as you see fit, provided that
attribution is maintained. See License.txt in the source distribution for details.

25



MIDIUtil Documentation, Release 1.1.1

26

Chapter 6. Introduction



CHAPTER /

Installation

he latest, stable version of MIDIUtil is hosted at the Python Package Index and can be installed via the normal channels:

pip install MIDIUtil

Source code is available on Github , and be cloned with one of the following URLS:

git clone git@github.com:MarkCWirt/MIDIUtil.git
# or
git clone https://github.com/MarkCWirt/MIDIUtil.git

depending on if you want to use SSH or HTTPS. (The source code for stable releases can also be downloaded from
the Releases page.)

To use the library one can either install it on one’s system:

python setup.py install

or point your $PYTHONPATH environment variable to the directory containing midiutil (i.e., src).
MIDIUtil is pure Python and should work on any platform to which Python has been ported.

If you’re using this software in your own projects you may want to consider distributing the library bundled with yours;
the library is small and self-contained, and such bundling makes things more convenient for your users. The best way
of doing this is probably to copy the midiutil directory directly to your package directory and then refer to it with a
fully qualified name. This will prevent it from conflicting with any version of the software that may be installed on the
target system.

27



https://pypi.python.org/pypi/MIDIUtil/
https://github.com/MarkCWirt/MIDIUtil
https://github.com/MarkCWirt/MIDIUtil/releases

MIDIUtil Documentation, Release 1.1.1

28

Chapter 7. Installation



CHAPTER 8

Quick Start

Using the software is easy:
* The package must be imported into your namespace
* A MIDIFile object is created
» Events (notes, tempo-changes, etc.) are added to the object
e The MIDI file is written to disk.

Detailed documentation is provided; what follows is a simple example to get you going quickly. In this example we’ll
create a one track MIDI File, assign a tempo to the track, and write a C-Major scale. Then we write it to disk.

#!/usr/bin/env python

from midiutil import MIDIFile

degrees = [60, 62, 64, 65, 67, 69, 71, 72] # MIDI note number
track =0

channel = 0

time =0 # In beats

duration = 1 # In beats

tempo = 60 # In BPM

volume = 100 # 0-127, as per the MIDI standard

MyMIDI = MIDIFile(l) # One track, defaults to format 1 (tempo track
# automatically created)
MyMIDI.addTempo (track, time, tempo)

for pitch in degrees:
MyMIDI.addNote (track, channel, pitch, time, duration, volume)
time = time + 1

with open("major-scale.mid", "wb") as output_file:
MyMIDI.writeFile (output_file)

29




MIDIUtil Documentation, Release 1.1.1

There are several additional event types that can be added and there are various options available for creating the
MIDIFile object, but the above is sufficient to begin using the library and creating note sequences.

The above code is found in machine-readable form in the examples directory. A detailed class reference and docu-
mentation describing how to extend the library is provided in the documentation directory.

Have fun!

30 Chapter 8. Quick Start



CHAPTER 9

Thank You

I’d like to mention the following people who have given feedback, bug fixes, and suggestions on the library:

Bram de Jong

Mike Reeves-McMillan

Egg Syntax

Nils Gey

Francis G.

cclauss (Code formating cleanup and PEP-8 stuff, which I’'m not good at following).
Philippe-Adrien Nousse (Adphi) for the pitch bend implementation.

meteorsw (https://github.com/meteorsw) for major restructuring and clean-up of code.

31


https://github.com/meteorsw

MIDIUtil Documentation, Release 1.1.1

32

Chapter 9. Thank You



cHAaPTER 10

Indices and tables

* genindex

¢ search

33



MIDIUtil Documentation, Release 1.1.1

34

Chapter 10. Indices and tables



Index

Symbols

__init__() (midiutil. MidiFile. MIDIFile method), 17

A

addControllerEvent() (midiutil. MidiFile. MIDIFile

method), 18
addCopyright() (midiutil. MidiFile. MIDIFile method), 18
addKeySignature() (midiutil.MidiFile. MIDIFile method),
18
addNote() (midiutil. MidiFile. MIDIFile method), 19
addPitchWheelEvent() (midiutil.MidiFile. MIDIFile
method), 11, 19
addProgramChange() (midiutil.MidiFile. MIDIFile
method), 19
addSysEx() (midiutil. MidiFile. MIDIFile method), 20
addTempo() (midiutil. MidiFile.MIDIFile method), 20
addText() (midiutil. MidiFile. MIDIFile method), 20
addTimeSignature() (midiutil.MidiFile. MIDIFile
method), 20
addTrackName() (midiutil.MidiFile.MIDIFile method),

21

addUniversalSysEx() (midiutil. MidiFile. MIDIFile
method), 21

C

changeNoteTuning() (midiutil.MidiFile. MIDIFile
method), 9, 21

changeTuningBank() (midiutil.MidiFile. MIDIFile

method), 10, 22
changeTuningProgram() (midiutil.MidiFile. MIDIFile
method), 10, 22

M

makeNRPNCall() (midiutil.MidiFile.MIDIFile method),
23

makeRPNCall() (midiutil. MidiFile. MIDIFile method), 23

MIDIFile (class in midiutil. MidiFile), 17

W

writeFile() (midiutil. MidiFile. MIDIFile method), 24

35



	Creating the MIDIFile Object
	Common Events and Function
	Tuning and Microtonalities
	Extending the Library
	Class Reference
	Introduction
	Installation
	Quick Start
	Thank You
	Indices and tables

